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Abstract. We study the unconditional uniqueness of solutions to the Benjamin-Ono

equation with initial data in Hs, both on the real line and on the torus. We use the gauge

transformation of Tao and two iterations of normal form reductions via integration by

parts in time. By employing a refined Strichartz estimate we establish the result below

the regularity threshold s = 1/6. As a by-product of our proof, we also obtain a nonlinear

smoothing property on the gauge variable at the same level of regularity.

1. Introduction

We consider the Benjamin-Ono equation (BO)

∂tu+H∂2xu = ∂x(u
2) , (1.1)

where u = u(t, x) is a real-valued function, t ∈ R, x ∈ R or T and H is the Hilbert transform,

together with the initial condition

u|t=0 = u0 , (1.2)

where the initial data u0 lies in the Sobolev space Hs(R) := Hs(R;R) or Hs(T) :=

Hs(T;R)1. This equation appears as a model for the propagation of unidirectional in-

ternal waves in stratified fluids [5, 52] and it is completely integrable [2]. We refer the

reader to [55] for a review of the derivation of this model as well as an up-to-date survey of

the literature on BO and related equations.

The well-posedness of BO provides analytical challenges at various regularity levels s,

mainly due to the presence of the spatial derivative in the nonlinearity and weak dispersive

properties in the linear part – see [54, 27, 1, 53, 38, 39, 30, 60, 9, 26, 44, 25, 46] in the

real line case and [42, 43, 44, 17, 18, 19] in the periodic case. Nowadays, it is known that

BO is (globally in time) well-posed in Hs, for any s ≥ 0. This result was first established

by Ionescu and Kenig [26] in the Euclidean case and by Molinet [43] in the periodic case.

We also refer to the papers of Molinet and Pilod [44] and of Ifrim and Tataru [25]2 for

other proofs. The solution constructed by [26, 43, 44, 25] is guaranteed to be unique

either in the class of limits of classical solutions or under some additional condition on

(some transformation of) the solution itself. Therefore the uniqueness of solution remains

conditional, dependent on the method used.

Below L2(T), by using the Lax pair formulation of (1.1), Gérard, Kappeler, and Topalov

[17, 18, 19] showed that BO in the periodic setting is (globally in time) well-posed in the
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1We will also use Hs to denote both Hs(R) and Hs(T) when the statements apply in both cases.
2The method in [25] also provides long time asymptotics for solutions emanating from small initial data.
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sense that the solution map (defined for smooth data) continuously extends to Hs(T) for

−1
2 < s < 0 and that no such extension exists for s ≤ −1

2 , even if the mean-value of the

solution is prescribed. We refer the reader to their survey paper [21] for a precise statement

of these results as well as other powerful applications of the nonlinear Fourier transform such

as the construction of periodic and quasiperiodic solutions to (1.1)-(1.2). Indeed, scrit = −1
2

is a natural threshold for the well-posedness of BO as indicated by the invariance of the

homogeneous Sobolev norm with respect to the scaling symmetry of the equation.

To this date the well-posedness of BO on the real line below L2(R) remains an open

problem. Note however that the direct scattering problem was solved in [62] and that the

complete integrability of BO restricted to N -soliton manifolds has been recently proved in

[57]. We also mention here that the techniques developed in [33] were applied for BO in [59]

showing that there exist conservation laws of Sobolev norms at negative regularity (namely

−1
2 < s < 0) for classical solutions to (1.1)-(1.2). Further in this direction, the method

of perturbation determinants was successfully employed [32] to show that the Korteweg-de

Vries equation (KdV) is well-posed in H−1(R).
BO has a quasilinear nature in that the dependence of solution on the initial data is merely

continuous in the Hs-topology, even at high regularity. Indeed, this was first pointed out

by Molinet, Saut, and Tzvetkov [49] showing that the C2 continuity of the solution map

fails for any s ∈ R. Furthermore, even uniform continuity (on bounded subsets of Hs) fails

for any s > 0 and s < −1
2 in the Euclidean case due to [39, 6] and for any s > −1

2 in the

periodic case due to [20]. This property of the Benjamin-Ono equation tells us that the

nonlinearity is in fact non-perturbative since it prohibits a direct application of fixed point

arguments. To improve the nonlinearity, Tao [60] considered a variant of the Cole-Hopf

transformation, i.e.

w := ∂xP+hi(e
−iF ) , (1.3)

where F is a spatial anti-derivative of u and P+hi denotes the Littlewood-Paley projection to

positive high frequencies. Consequently, one works with an equation for w which is no longer

in closed form (see (1.7) below), but has the advantage of having a milder nonlinearity. This

idea and various refinements turned out to be central in the papers [9, 26, 43, 44, 25] and

it is also key to our work.

The question we address in this paper is that of unconditional uniqueness of solutions

to BO, i.e. whether for given initial data u0 ∈ Hs the solution u to (1.1) is unique in the

entire space C(R;Hs). In the affirmative, the uniqueness statement in the well-posedness

theory can be upgraded, namely it now holds without restricting the solution to a resolution

subspace specific to some particular method(s). To be precise, by solution to the initial-

value problem (1.1)-(1.2) we mean a continuous function in time with values inHs satisfying

the integral (Duhamel) formulation

u(t) = etH∂2
xu0 +

∫ t

0
e(t−t′)H∂2

x∂x(u(t
′)2)dt′ (1.4)

in the sense of (tempered) distributions, for all times t.

For nonlinear dispersive PDEs, the study of unconditional well-posedness goes back to

the work of Kato [29] who was the first to address the question for the nonlinear Schrödinger

equation (NLS). Since then the unconditional well-posedness for NLS was further improved,

see [16, 23, 24, 36, 41] and studied for various other nonlinear dispersive PDEs, see e.g. [3, 63]



UNCONDITIONAL UNIQUENESS FOR THE BENJAMIN-ONO EQUATION 3

for KdV, [40, 45, 47, 41] for the modified KdV equation, [13, 50] for the derivative NLS

equation, and [35] for the periodic modified Benjamin-Ono equation.

The uniqueness of solution problem for the Benjamin-Ono equation received attention

in several papers. We mention here that, in the Euclidean setting, the L2-well-posedness

result in [26] ensured uniqueness only in the class of limits of smooth solutions, while

the approach of [9] rendered unconditional uniqueness for data in H
1
2 (R) (see [8]). This

result was further improved in [44] to unconditional uniqueness in Hs(R) for any s > 1
4

and a conditional uniqueness statement for any s > 0. The method in [44] also yielded

unconditional uniqueness in Hs(T), s ≥ 1
2 . More recently, Kishimoto showed in [34] that

BO is unconditionally well-posed in Hs(T) for any s > 1
6 .

At an expeditious investigation, the regularity s = 1
6 appears to be a possible threshold

for the unconditional well-posedness of BO. Indeed, after renormalizing the equation for w,

one encounters a variant of the NLS equation (a cubic term plus some other nonlinearities

- see the equation (1.13))3 . Therefore, for the renormalized equation, the largest possible

space C(R;Hs) for the solution u (and thus for w) in which one can make sense of the

nonlinearity as a spatial distribution is given by s = 1
6 , courtesy of the Sobolev embedding

H
1
6 ⊂ L3. Note, however, that for the original equation (1.1) one can easily make sense

of the nonlinearity as soon as s ≥ 0. Thus it was unclear whether the cubic nonlinearity

determines a regularity restriction for the unconditional well-posedness of BO.

In this article, we answer this question by showing that the regularity for the uncondi-

tional well-posedness of BO in Hs can be further pushed down past s = 1
6 . We state the

main result of this paper which holds both on the line and on the torus.

Theorem 1.1. Let 3−
√
33/4 < s ≤ 1

4 and u0 ∈ Hs = Hs(R) or Hs(T). Then, there exists

a unique solution u ∈ C(R;Hs) to the Benjamin-Ono equation (1.1) with (1.2).

Note that 3 −
√
33/4 ∼ 0.128 < 1

6 . We believe that this lower bound on s is simply

a technical restriction that appears in our main nonlinear estimates which hold under a

quadratic restriction on s (see Corollary 3.11 below). In fact, we speculate that BO is

unconditionally well-posed down to L2, possibly missing the end-point s = 0.

As a by-product of our proof, we also obtain a nonlinear smoothing property for the

gauge variable w, both on the line and on the torus, which may be of independent interest.

Corollary 1.2. Let 3 −
√
33/4 < s ≤ 1

4 . (i) If u0 ∈ Hs = Hs(R), then there exists δ > 0

such that for all T > 0,∥∥w(t)− eit∂
2
xw0

∥∥
L∞
T Hs+δ ≤ C(T, ∥u0∥Hs) <∞ , (1.5)

where w is the gauge variable defined in (1.3) corresponding to the solution u ∈ C(R;Hs)

to the Benjamin-Ono equation (1.1) emanating from u0.

(ii) If u0 ∈ Hs = Hs(T), assume that
∫
T u0(x)dx = 0 and let m0 := 1

2π

∫
T u

2
0(x)dx. Then,

there exists δ > 0 such that for all T > 0,∥∥w(t)− eit(∂
2
x+m0)w0

∥∥
L∞
T Hs+δ ≤ C(T, ∥u0∥Hs) <∞ , (1.6)

3Such a cubic NLS-type structure also appears in [25], where the authors performed two normal form

transformations, the first one in the spirit of Shatah [56] and the second one in the spirit of the gauge

transformation of Tao [60].
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where w is the gauge variable defined in (5.1) corresponding to the solution u ∈ C(R;Hs)

to the Benjamin-Ono equation (1.1) emanating from u0.

Remark 1.3. In the periodic case, a similar nonlinear smoothing was shown by Isom,

Mantzavinos, Oh and Stefanov in [28] for s > 1
6 , by using the Fourier restriction norm

method. More recently, this result has been extended up to L2(T) by Gérard, Kappeler,

and Topalov in [22] by using the complete integrability structure of BO. Note that the gain

of regularity in [22] is δ = 2s and is also proved to be sharp.

We now briefly describe our approach to proving the above unconditional well-posedness

result for BO. We first renormalize the equation (1.1) by employing the gauge transforma-

tion (1.3) of Tao [60] in order to remove the worst high-low frequency interaction in the

nonlinearity. At this point w satisfies a Schrödinger equation with two quadratic nonlinear-

ities, one of them being negligible (as shown by Lemma 2.6):

∂tw − i∂2xw = −2P+hi∂x
[
∂−1
x w · P−∂xu

]
+ “negligible term” . (1.7)

Also, by following the idea used in [34, Section 4], in Lemma 2.12 we establish Hs-estimates

for the difference of two solutions to BO in terms of the difference of the corresponding gauge

transformations, for any s ≥ 0. It then remains to establish reverse estimates with constants

that can be taken arbitrarily small. To this purpose, the idea is to further renormalize the

main nonlinearity in (1.7) via the fairly elementary method of integration by parts in the

temporal variable. By considering the Van der Pole change of variables on the Fourier side,

i.e.

ũ(t, ξ) := F(etH∂2
xu(t))(ξ) , w̃(t, ξ) := F(e−it∂2

xw(t))(ξ) , (1.8)

where the Fourier transform is taken only in the space variable, the equations (1.1) and

(1.7) essentially become

∂tũ(ξ) =

∫
R
eitΩ(ξ,ξ1,ξ−ξ1) ξ ũ(ξ1)ũ(ξ − ξ1)dξ1 , (1.9)

∂tw̃(ξ) =

∫
R
eitΩ(ξ,ξ1,ξ−ξ1)σ(ξ, ξ1, ξ − ξ1)

ξ(ξ − ξ1)

ξ1
w̃(ξ1)ũ(ξ − ξ1)dξ1 , (1.10)

Here, Ω(ξ, ξ1, ξ2) := ξ|ξ| − ξ1|ξ1| − ξ2|ξ2| is the resonance relation for the BO equation and

σ(ξ, ξ1, ξ2) gathers the symbols of the frequency projections in the main nonlinearity of

(1.7) (see (3.8)-(3.9) below). Also, for the sake of exposition, we dropped the contribution

of the negligible term of (1.7). We then integrate by parts in the Duhamel formulation of

(1.10) and we obtain

w̃(t)− w̃(0) =− 2

[∫
R

eit
′Ω(ξ,ξ1,ξ−ξ1)

iΩ(ξ, ξ1, ξ − ξ1)
σ(ξ, ξ1, ξ − ξ1)

ξ(ξ − ξ1)

ξ1
w̃(ξ1)ũ(ξ − ξ1)dξ1

]t′=t

t′=0

+ 2

∫ t

0

∫
R

eit
′Ω(ξ,ξ1,ξ−ξ1)

iΩ(ξ, ξ1, ξ − ξ1)
σ(ξ, ξ1, ξ − ξ1)

ξ(ξ − ξ1)

ξ1
∂t′

(
w̃(ξ1)ũ(ξ − ξ1)

)
dξ1 dt

′ .

(1.11)

While the boundary terms are fairly easy to estimate in the Hs-norm, s ≥ 0, the latter

term is still unfavourable. Nonetheless, due to the sign restrictions given by σ(ξ, ξ1, ξ2), the
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resonance relation can be factorized, i.e. Ω(ξ, ξ1, ξ − ξ1) = 2ξ(ξ − ξ1), and thus

2

Ω(ξ, ξ1, ξ − ξ1)

ξ(ξ − ξ1)

ξ1
=

1

ξ1
. (1.12)

After substituting ∂t′w̃ and ∂t′ ũ with (1.10) and (1.9) in the last term of (1.11), and after

undoing the change of variables (1.8), we can write the obtained renormalized equation

essentially as

∂tw − i∂2xw = ∂tN (1)
0 (w, u)− i P+hi

(
P+hi

(
∂−1
x wP−∂xu

)
P−u

)
︸ ︷︷ ︸

=:N (2)
1 (w,u,u)

−i P+hi

(
∂−1
x wP−∂x

(
u2

))︸ ︷︷ ︸
=:N (2)

2 (w,u,u)

(1.13)

It turns out that since we are morally dealing with cubic nonlinearities, the desired Hs-

estimates can be proven only for s > 1
4 . Hence, we proceed with a further iteration of

normal form reductions, namely we apply the same strategy of integration by parts in time

as above, now for the termsN (2)
1 (w, u, u) andN (2)

2 (w, u, u). While the first is easy to handle,

the latter is more involved due to the indefinite sign of the resonance relation.

The new ingredient in this scheme that allows us to obtain nonlinear estimates below the

regularity threshold s = 1
6 of the result in [34] is the use of a refined Strichartz estimate in

the spirit of [4, 61, 7, 38, 30]. Such estimate is obtained by applying the classical Strichartz

estimate on small time intervals depending on the size of the frequency of the solution. We

also refer to [45, 47] for the use of this kind of estimates for the unconditional uniqueness

problem, although in a different method.

Remark 1.4. Further iterations of normal form reductions would possibly lower the regu-

larity of the result, although we doubt that s = 0 could be reached without an additional

tool.

Remark 1.5. In the periodic setting, it is slightly easier to work with the gauge transforma-

tion (1.3) since one can assume that u has vanishing mean-value to define an anti-derivative

(see Section 5 for more details).

Remark 1.6. To justify rigorously the two integration by parts, we perform dyadic decom-

positions of each function involved in the nonlinear terms. Since for fixed dyadic numbers,

the integrals restricted to these dyadic pieces are absolutely convergent, we can interchange

the integrals in frequency and the integrals in time rigorously in the nonlinear terms and

then integrate by parts. The summations over all the dyadic frequencies are performed

only at the end of the argument, after the two integrations by parts. We refer the reader

to Section 3 for more details.

This technique of renormalizing the nonlinearity is akin to applying Poincaré-Dulac nor-

mal form reductions for ordinary differential equations. We refer to [58, 51, 3, 40, 11, 12,

23, 41, 13, 50] for some applications to nonlinear dispersive equations, although the list is

not exhaustive.

This method was also used for the periodic BO by Kishimoto in [34], where two normal

form iterations were performed. Note however that Kishimoto did not work directly on the

equation (1.7) of w, but instead reinjected the expression of u in terms of w to work with

the main nonlinearity in closed form in the spirit of [26].
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In [10], Correia implemented the infinite-iterations normal form reductions scheme, de-

veloped in [23, 37, 40, 41], and showed unconditional uniqueness of solution to BO with

initial data in the weighted Sobolev space Hs
w := {f ∈ Hs : xf(x) ∈ L2, f̂(0) = 0}, for

s > 0.

In [14, 15], the initial-value problem (1.1)-(1.2) was studied in weighted Sobolev spaces

and some unique continuation properties have been established. More recently, Kenig,

Ponce, and Vega [31] proved the unique continuation property in regular Sobolev spaces

Hs, for s > 5
2 .

The paper is organized as follows. In the main body of the article, we focus on the real

line case. In Section 2, we introduce the notations, prove the refined Strichartz estimates,

introduce the gauge transformation of Tao and state some basic estimates for a solution u

and its gauge transformation w. Section 3 is the heart of the paper; there we develop two

normal form iterations on the equation for w, which allows us to prove the key estimate for

the difference of the gauges w1 and w2, corresponding to two solutions u1 and u2 evolving

from the same initial data. Section 4 is devoted to the proofs of Theorem 1.1 and Corollary

1.2 in the real line case. Finally, in Section 5, we explain what are the main modifications

of the proofs in the periodic case.

2. Prerequisites

2.1. Notation. For any T > 0, we use the short-hand notation CTH
s := C([0, T ];Hs).

Unless otherwise mentioned, all Lebesgue and Sobolev norms are with respect to the spatial

variable.

We recall that the Hilbert transform on R defined by (Hf)(x) = p.v.
1

π

∫
R

f(y)

x− y
dy has

the Fourier transform Ĥf(ξ) = −i sgn(ξ)f̂(ξ), where sgn(0) = 0, sgn(ξ) = 1 for ξ > 0, and

sgn(ξ) = −1 for ξ < 0. The Riesz projection operators P± are defined via

P̂±f(ξ) = 1>0(±ξ)f̂(ξ) ,

where 1>0 and 1<0 denote the indicator functions of the intervals (0,∞) and (−∞, 0),

respectively. More generally, we use 1“Expr” as the indicator function for the set on which

“Expr” holds true. We know that P± are bounded on Lp(R), only for 1 < p < ∞. Note

that we have H = −iP+ + iP− .

Let ψ be a smooth bump (real-valued) even function that is equal to 1 on [−1, 1] and

vanishes outside [−2, 2]. For any N ∈ 2Z, we use the Littlewood-Paley operators:

P̂≤Nf(ξ) = ψ(N−1ξ)f̂(ξ) ,

PN = P≤N − P≤N
2
,

P>N = 1− P≤N .

Also, we set

Plo := P≤1 , Phi := 1− Plo , P±hi := P±Phi ,

PLO := P≤2 , PHI := 1− PLO , P±HI := P±PHI .

We know that Plo, PLO, Phi, PHI, P±hi, P±HI are bounded on Lp, for any 1 ≤ p ≤ ∞, while

P± are bounded on Lp, for any 1 < p < ∞. Note that we have PHIPlo = 0 , PhiPlo =
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P≥−1P≤1 , PHIPLO = P≥0P≤3, etc. Also, P∓f = P±f , P∓hif = P±hif , P∓HIf =

P±HIf , Plof = Plof , PLOf = PLOf .

By Ds and Js we denote the Fourier multiplier operators with symbols |ξ|s and ⟨ξ⟩s :=
(1 + |ξ|)s, respectively. We use F( · ) to denote the spatial Fourier transform when the

·̂ notation is impractical. It is also useful to employ shorthand notation when handling

nonlinear expressions on the Fourier side. Thus, we use for example ξ12 in place of ξ1 + ξ2,

ξ123 in place of ξ1 + ξ2 + ξ3, etc.

2.2. Basic estimates. We first recall the well-known Bernstein inequalities.

Lemma 2.1. Let s ≥ 0 and 1 ≤ p ≤ q ≤ ∞. We have

∥P≤ND
sf∥Lp ∼ N s∥P≤Nf∥Lp ,

∥P≥Nf∥Lp ≲ N−s∥DsP≥Nf∥Lp ,

∥P≤Nf∥Lq ≲ N
1
p
− 1

q ∥P≤Nf∥Lp ,

∥D±sPNf∥Lp ∼ N±s∥PNf∥Lp .

Due to the gauge transformation that we use (see (2.10) below), the estimates provided

by the following lemma come in handy when estimating terms involving e±iF .

Lemma 2.2 ([44, Lemma 2.7]). Let 2 ≤ q < ∞ and 0 ≤ α ≤ 1
q . Suppose F1, F2 are two

real-valued functions such that uj := ∂xFj ∈ L2(R) for j = 1, 2. Then∥∥Jα
(
e±iF1g)

∥∥
Lq(R) ≲

(
1 + ∥u1∥L2(R)

)∥∥Jαg
∥∥
Lq(R) (2.1)

and ∥∥Jα
(
(e±iF1 − e±iF2)g

)∥∥
Lq(R)

≲
(
∥u1 − u2∥L2(R) +

∥∥eiF1 − eiF2
∥∥
L∞
x (R)

(
1 + ∥u1∥L2(R)

))∥∥Jαg
∥∥
Lq(R) .

(2.2)

2.3. Gauge transformation. We use the idea of Tao [60], namely the adaptation to the

Benjamin-Ono equation of the Cole-Hopf transformation u 7→ e−iF , where F is a spatial

antiderivative of u, that transforms the quadratic derivative Schrödinger equation

∂tu− i∂2xu = ∂x(u
2)

into the linear Schrödinger equation. However, the dispersive linear part of the Benjamin-

Ono equation (1.1) changes sign between positive and negative frequencies. Nonetheless,

the idea is to work with

W := P+hi(e
−iF ) , (2.3)

at the price of dealing with an equation forW which is not in closed form, and subsequently

inverting (2.3) is more involved than simply multiplying with eiF .

Since we are working at low regularity, we employ here the construction of the gauge

transformation of Burq and Planchon [9] that can be carried over for u ∈ CTL
2. It proceeds

by constructing F = F [u], a spatial antiderivative of u (i.e. ∂xF = u), which also satisfies

∂tF +H∂2xF = u2 (2.4)
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in the sense of distributions. Such an F is uniquely determined up to an additive constant

More precisely, we take

F (t, x) :=

∫
R
ψ(y)

(∫ x

y
u(t, z)dz

)
dy +G(t) , (2.5)

for some smooth, compactly supported ψ : R → R, with
∫
R ψ(y)dy = 1, and where we

choose

G(t) :=

∫ t

0

∫
R

(
−Hψ′(y)u(t′, y) + ψ(y)u(t′, y)2

)
dy dt′ . (2.6)

Note that F is real-valued.

Remark 2.3. We have that e−iF ∈ L∞(R), but clearly e−iF /∈ L2(R). Hence e−iF is

a tempered distribution on R and its Fourier transform ê−iF is defined via pairing with

Schwartz functions. Provided that we stay away from the zero frequency, i.e. |ξ| ≳ 1, we

can make sense of ê−iF (ξ) almost everywhere. Indeed, since ∂x(e
−iF ) ∈ L2(R), one easily

verifies that

ê−iF (ξ) =
1

iξ

∫
R
e−ixξ∂x(e

−iF )dx , (2.7)

for almost every ξ ∈ R. Hence, by using the Littlewood-Paley projections, Phi(e
−iF ),

PHI(e
−iF ), P±hi(e

−iF ), are well-defined L2(R)-functions. However, due to the possible sin-

gularity at the zero frequency which is apparent in (2.7), P±(e
−iF ) might not be well-

defined (unless we impose additional assumptions on u itself). We make sense of Plo(e
−iF ),

PLO(e
−iF ) not via Littlewood-Paley projections, but by defining:

Plo(e
−iF ) := e−iF − Phi(e

−iF ) , PLO(e
−iF ) := e−iF − PHI(e

−iF ) .

Still, we have PHIPlo(e
−iF ) = PHI(e

−iF )−PHI(e
−iF ) = 0 and that ∂xPlo(e

−iF ) = Plo∂x(e
−iF ).

Similarly, for F itself we do not have information about its decay at spatial infinity, we

only know that ∂xF = u ∈ Hs
x(R). Thus, PhiF, PHIF, P±hiF are well-defined, whereas P±F

might not be.

Remark 2.4. If u is a solution to (1.1) on [0, T ], i.e.

u(t) = e−tH∂2
xu0 +

∫ t

0
e−(t−t′)H∂2

x∂x(u(t
′)2)dt′ ,

in the sense of spatial distributions, for all t ∈ [0, T ], then F = F [u] constructed via (2.5)

is a solution to ∂tF +H∂2xF = (∂xF )
2, i.e.

F (t) = e−tH∂2
xF0 +

∫ t

0
e−(t−t′)H∂2

x
(
∂xF (t

′)
)2
dt′ ,

in the sense of spatial distributions, for all t ∈ [0, T ], where F0(x) :=
∫
R ψ(y)

∫ x
y u0(z)dzdy.

The following is a variant of [44, Lemma 4.1] stated for two solutions with the same initial

data.

Lemma 2.5. Assume that u1, u2 ∈ CTL
2 are two solutions to (1.1) on [0, T ] emanating

from initial data u1,0, u2,0 having the same low frequency part, i.e. Plou1,0 = Plou2,0. Let

F1, F2 denote the corresponding spatial antiderivatives of u1, u2 satisfying (2.4) (as per the

construction above). Then∥F1|t=0 − F2|t=0∥L∞ ≲ ∥u1,0 − u2,0∥L2 and

∥F1 − F2∥CTL∞ ≲ ⟨T ⟩
(
∥u1∥CTL2 + ∥u2∥CTL2

)
∥u1 − u2∥CTL2 . (2.8)
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Straightforward computations give the following equation for W :

∂tW − i∂2xW = −2P+hi

[(
P+hie

−iF
)(
P−∂

2
xF

)]
− 2P+hi

[(
Ploe

−iF
)(
P−∂xu

)]
. (2.9)

Note that
(
P−hie

−iF
)(
P−∂

2
xF

)
vanishes under P+hi. Also, by Lemma 2.2, if u(t) ∈ Hs then

we have W (t) ∈ Hs+1, for any 0 ≤ s ≤ 1
2 .

However, as in [42], we prefer to work at the Hs-level, namely we consider

w := ∂xW (2.10)

and thus the Benjamin-Ono equation becomes

∂tw − i∂2xw = −2P+hi∂x
[
∂−1
x w · P−∂xu

]
− 2P+hi∂x

[(
Ploe

−iF
)(
P−∂xu

)]
. (2.11)

The difficult term on the right-hand side is the first term and note that its first factor,

i.e. ∂−1
x w, necessarily has larger frequency than the second factor. Recall that due to the

restriction of w to positive high frequencies, ∂−1
x w is defined as the Fourier multiplier with

symbol (iξ)−1; this is not the case for u itself, hence the need to carefully construct its

antiderivative F .

The second term on the right-hand side of (2.11) is negligible in the sense that we are

essentially dealing with a quadratic term involving two smooth factors. Indeed, the estimate

for the difference of two such terms is straightforward and it is given by the following lemma.

Lemma 2.6 (estimate for the negligible term in (2.11)). Let σ ≥ 0, u1, u2 ∈ L2 and denote

E(f, g) := −2P+hi∂x
[(
Plof

)(
P−∂xg

)]
.

Then, we have∥∥∥E(
e−iF1 , u1

)
− E

(
e−iF2 , u2

)∥∥∥
Hσ

≲ ∥u1∥L2∥F1 − F2∥L∞ + ∥u1 − u2∥L2 . (2.12)

Proof. We can insert two PLO operators, namely we have

E(f, g) = −2PLOP+hi∂x
[(
Plof

)(
PLOP−∂xg

)]
,

and thus∥∥∥E(
e−iF1 , u1

)
− E

(
e−iF2 , u2

)∥∥∥
Hσ

≲
∥∥∥Plo

(
e−iF1 − e−iF2

)
PLOP−∂xu1 + Plo

(
e−iF2

)
PLOP−∂x

(
u1 − u2

)∥∥∥
L2

≲
∥∥Plo

(
e−iF1 − e−iF2

)∥∥
L∞∥PLOP−∂xu1∥L2 +

∥∥Plo

(
e−iF2

)∥∥
L∞∥PLOP−∂x(u1 − u2)∥L2

≲ ∥F1 − F2∥L∞∥u1∥L2 + ∥u1 − u2∥L2 .

□

Remark 2.7. Formally (i.e. for smooth solutions or for limits of smooth solutions), one

can verify that (2.9)-(2.11) hold by straightforward computations. For a low-regularity

CTL
2-solution u to (1.1), one can proceed as in [34, Section 2] to justify that the gauge

transformation w is a solution to (2.11) in the sense of distribution. More precisely, for

any dyadic number N ≥ 1, we use the truncation u≤N := P≤Nu and define its spatial

antiderivative F≤N by

F≤N = F (t, x) :=

∫
R
ψ(y)

(∫ x

y
u≤N (t, z)dz

)
dy +G≤N (t)
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where G≤N (t) :=
∫ t
0

∫
R
(
−Hψ′(y)u≤N (t′, y) + ψ(y)P≤N

(
u(t′, y)2

))
dy dt′. Then, ∂xF≤N =

u≤N and if we define H≤N := P≤N (u2)− u2≤N , the equation

∂tF≤N +H∂2xF≤N = u2≤N +H≤N

holds in the classical sense. It follows that w≤N := ∂xP+hi(e
−iF≤N ) satisfies

∂tw≤N − i∂2xw≤N = −2P+hi∂x
[
∂−1
x w≤N · P−∂xu≤N

]
− iP+hi∂x

[
e−iF≤NH≤N

]
+ E(e−iF≤N , u≤N )

(2.13)

also in the classical sense. Now observe from Lemma 2.5 that (u≤N , w≤N , F≤N ) → (u,w, F )

in CT (L
2 × L2 × L∞). Moreover, H≤N → 0 in CTH

−1 as N → +∞. Therefore, it follows

from the estimate (see [34, Section 2])∥∥P+hi

[
∂−1
x w · P−∂xu

]
∥H−1 ≲ ∥w∥L2∥u∥L2

and Lemma 2.6 that the right-hand side of (2.13) converges to the right-hand side of (2.11)

in CTH
−2, which justifies that w solves (2.11) in the distributional sense.

2.4. Strichartz estimates. We recall here that for u a solution to

∂tu+H∂2xu = F , u|t=0 = u0 (2.14)

we have the classical Strichartz estimates:

∥u∥Lp
tL

q
x
≲ ∥u0∥L2

x
+ ∥F∥L1

tL
2
x
, (2.15)

for any Strichartz admissible pair, i.e. 2
p + 1

q = 1
2 with 4 ≤ p ≤ ∞, 2 ≤ q ≤ +∞. Next, we

follow an argument of Koch-Tzvetkov in [38] and Kenig-Koenig in [30] for the Benjamin-

Ono equation of decomposing the time interval [0, T ] into small subintervals whose length

depends on the size of the frequency of the solution. See also Burq-Gérard-Tzvetkov [7]

for the nonlinear Schrödinger equation on compact manifolds, and Bahouri-Chemin [4] and

Tataru [61] for the wave equation.

Lemma 2.8 (refined Strichartz estimates). Let 0 ≤ s ≤ 1
4 , N ∈ 2Z, N ≥ 26, and T > 0.

We assume that (p, q) is a Strichartz admissible pair and we denote

α(s, p) :=
3
2 − s

p
− s . (2.16)

(i) If u is a solution to (2.14) with F = ∂x(u1u2 + u3u4), then we have

∥PNu∥Lp
TLq

x
≲ T

1
pNα(s,p)

(
∥PNu∥L∞

T Hs
x
+ ∥u1∥L∞

T Hs
x
∥u2∥L∞

T Hs
x
+ ∥u3∥L∞

T Hs
x
∥u4∥L∞

T Hs
x

)
;

(2.17)

(ii) If w is a solution to

∂tw − i∂2xw = −2P+hi∂x
[
∂−1
x w1 · P−∂xw2 + ∂−1

x w3 · P−∂xw4

]
+ ϕ ,

where supp(ŵ1), supp(ŵ3) ⊂ (2−3,∞) and supp(ϕ̂) ⊂ [−24, 24], then we have

∥PNw∥Lp
TLq

x
≲ T

1
pNα(s,p)

(
∥PNw∥L∞

T Hs
x
+ ∥w1∥L∞

T Hs
x
∥w2∥L∞

T Hs
x
+ ∥w3∥L∞

T Hs
x
∥w4∥L∞

T Hs
x

)
.

(2.18)
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Remark 2.9. Note that α(s, p) ↘ −s as p ↗ ∞, but for p = ∞ we can use directly the

trivial estimate

∥PNu∥L∞
T L2

x
∼ N−s∥PNu∥L∞

T Hs
x
.

The advantage of using this refinement of the Strichartz estimate (i.e. (2.17)) is evident

when comparing it with the estimate

∥PNu∥Lp
TLq

x
≲ T

1
pN

2
p
−s∥PNu∥L∞

T Hs
x
, (2.19)

which follows directly from the third Bernstein inequality and Hölder inequality in time.

Remark 2.10. Since we would also like to apply these estimates for differences of two

solutions, we stated the estimates (2.17) and (2.18) with the term involving u3, u4 and

w3, w4, respectively.

Proof of Lemma 2.8. With δ > 0 to be chosen later, let Ij =: [aj , bj ] be such that
⋃

j Ij =

[0, T ], bj − aj ∼ N−δ, and the number of such intervals is ∼ TN δ. For (i), by using (2.15)

we get

∥PNu∥pLp
TLq

x
=

∑
j

∫ bj

aj

∥PNu∥pLq
x
dt

≲ TN δ∥PNu∥pL∞
T L2

x
+
∑
j

|Ij |p−1∥PNF∥pLp
Ij
L2
x

which gives us

∥PNu∥Lp
TLq

x
≲ T

1
pN

δ
p ∥PNu∥L∞

T L2
x
+N

−
(
1− 1

p

)
δ∥PNF∥Lp

TL2
x

≲ T
1
pN

δ
p ∥PNu∥L∞

T L2
x
+ T

1
pN

−
(
1− 1

p

)
δ∥PNF∥L∞

T L2
x
.

In particular, for

F = ∂x(u1u2 + u3u4) ,

we get

∥PNu∥Lp
TLq

x
≲ T

1
pN

δ
p
−s∥PNu∥L∞

T Hs
x
+T

1
pN

1−
(
1− 1

p

)
δ
(
∥PN (u1u2)∥L∞

T L2
x
+∥PN (u3u4)∥L∞

T L2
x

)
.

Together with

∥PN (u1u2)∥L2
x
≲ N

1
r
− 1

2 ∥u1u2∥Lr
x
≤ N

1
r
− 1

2 ∥u1∥L2r
x
∥u2∥L2r

x
≲ N

1
r
− 1

2 ∥u1∥Hs
x
∥u2∥Hs

x
, (2.20)

where 1 ≤ r ≤ 2 is determined by s = 1
2 −

1
2r (or equivalently, r = 1

1−2s), and with the same

estimate for PN (u3u4), we obtain

∥PNu∥Lp
TLq

x
≲T

1
pN

δ
p
−s∥PNu∥L∞

T Hs
x

+ T
1
pN

3
2
−
(
1− 1

p

)
δ−2s

(
∥u1∥L∞

T Hs
x
∥u2∥L∞

T Hs
x
+ ∥u3∥L∞

T Hs
x
∥u4∥L∞

T Hs
x

)
.

Note that the restriction on r restricts us to 0 ≤ s ≤ 1
4 . We choose δ such that

δ

p
− s =

3

2
−
(
1− 1

p

)
δ − 2s ,

or equivalently δ = 3
2 − s, and with α(s, p) := 3

2p −
(
1 + 1

p

)
s we obtain (2.17).
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To obtain (2.18) we argue similarly. Indeed, by using the classical Strichartz estimate for

the linear Schrödinger equation, we obtain as above

∥PNw∥Lp
TLq

x
≲ T

1
pN

δ
p ∥PNw∥L∞

T L2
x
+ T

1
pN

−
(
1− 1

p

)
δ∥PNG∥L∞

T L2
x
, (2.21)

where we set

G = −2P+hi∂x
[
∂−1
x w1 · P−∂xw2 + ∂−1

x w3 · P−∂xw4

]
+ ϕ .

Note that PNϕ = 0 and thus with gj = F−1
(∣∣F(wj)

∣∣), j = 1, 2, 3, 4, we have

∥PNG∥L2
x
≲ N∥PN (g1g2)∥L2

x
+N∥PN (g3g4)∥L2

x
.

Then, similarly to (2.20), we get

∥PN (gjgk)∥L2
x
≲ N

1
2
−2s∥gj∥Hs

x
∥gk∥Hs

x
= N

1
2
−2s∥wj∥Hs

x
∥wk∥Hs

x
,

for (j, k) = (1, 2) or (j, k) = (3, 4). From (2.21), we obtain

∥PNw∥Lp
TLq

x
≲ T

1
pN

δ
p
−s∥PNw∥L∞

T Hs
x

+ T
1
pN

3
2
−
(
1− 1

p

)
δ−2s(∥w1∥L∞

T Hs
x
∥w2∥L∞

T Hs
x
+ ∥w1∥L∞

T Hs
x
∥w2∥L∞

T Hs
x

)
and thus (2.18) follows by choosing δ as above.

□

Lemma 2.11. Let 0 < s ≤ 1
4 , 2 ≤ q ≤ 4 such that

(
3
2 − s

) (
1
4 − 1

2q

)
− s < 0, and N ∈ 2Z,

N ≥ 26. Suppose u, u† are two solutions of (1.1). (i) We have∥∥PN∂t
(
ũ− ũ†

)∥∥
L1
TL2

x
≲ TN

2
q
+ 1

2
(
1 + ∥u∥L∞

T Hs + ∥u†∥L∞
T Hs

)3∥u− u†∥L∞
T Hs , (2.22)

where ũ(t) = etH∂2
xu(t) and ũ†(t) = etH∂2

xu†(t).

(ii) If w,w† are the corresponding gauge transformations of u, u†, we also have∥∥PN∂t
(
w̃ − w̃†)∥∥

L1
TL2

x

≲ TN
2
q
+ 1

2
(
1 + ∥u∥L∞

T Hs + ∥u†∥L∞
T Hs

)6(∥w − w†∥L∞
T Hs + ∥u− u†∥L∞

T Hs

)
,

(2.23)

where w̃(t) = e−it∂2
xw(t) and w̃†(t) = e−it∂2

xw†(t).

Proof. We first prove (2.22) for which we set v := u− u† The equation on the Fourier side

satisfied by ṽ := etH∂2
xv = ũ− ũ† can be rewritten as

∂t̂̃v(t, ξ) = iξ

∫
ξ12=ξ

eitΩ(ξ,ξ1,ξ2)
(̂̃u(t, ξ1) + ̂̃u†(t, ξ1))̂̃v(t, ξ2)dξ1

= iξeit|ξ|ξ
∫
ξ12=ξ

(
û(t, ξ1) + û†(t, ξ1)

)
v̂(t, ξ2)dξ1 .

Then, by using the Hölder and Bernstein inequalities, it follows that∥∥PN∂tṽ
∥∥
L1
TL2

x
≲ N

∥∥PN

(
(u+ u†)v

)∥∥
L1
TL2

x
≲ T

1− 2
pN

2
q
+ 1

2
∥∥PN

(
(u+ u†)v

)∥∥
L

p
2
T L

q
2
x

≲ T
1− 2

pN
2
q
+ 1

2
(
∥u∥Lp

TLq
x
+ ∥u†∥Lp

TLq
x

)
∥v∥Lp

TLq
x
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where (p, q) is a Strichartz admissible pair, with p such that α(s, p) is negative, or equiv-

alently
(
3
2 − s

) (
1
4 − 1

2q

)
− s < 0. Note that the refined Strichartz estimates given in

Lemma 2.8 (i) apply to both u and v. Hence we obtain∥∥PN∂tṽ
∥∥
L1
TL2

x
≲ TN

2
q
+ 1

2
(
1 + ∥u∥L∞

T Hs + ∥u†∥L∞
T Hs

)2(
1 + ∥v∥L∞

T Hs

)
∥v∥L∞

T Hs

≤ TN
2
q
+ 1

2
(
1 + ∥u∥L∞

T Hs + ∥u†∥L∞
T Hs

)3∥u− u†∥L∞
T Hs .

For (2.23), we set z = w − w†, z̃ = e−it∂2
xz = w̃ − w̃† and Ẽ = e−it∂2

xE. We have

∂t̂̃z(t, ξ) = iξ

∫
ξ12=ξ

eitΩ(ξ,ξ1,ξ2)σ(ξ, ξ1, ξ2)
ξ2
ξ1

(̂̃z(ξ1)̂̃u(ξ2) + ̂̃w†(ξ1)̂̃v(ξ2))dξ1
+

̂̃
E
(
e−iF , u

)
− ̂̃
E
(
e−iF †

, u†
)

= iξeit|ξ|ξ
∫
ξ12=ξ

σ(ξ, ξ1, ξ2)
ξ2
ξ1

(
ẑ(ξ1)û(ξ2) + ŵ†(ξ1)v̂(ξ2)

)
dξ1

+
̂̃
E
(
e−iF , u

)
− ̂̃
E
(
e−iF †

, u†
)
,

where F and F † denote the corresponding spatial antiderivatives of u and u†, respectively,

constructed as in the previous subsection, and σ(ξ, ξ1, ξ2) = χ+(ξ)χ̃+(ξ1)1<0(ξ2). Since N

is large enough, the E-terms vanish under PN . By taking into account that |ξ2| < ξ1 on

the support of σ and then arguing similarly as in part (i), we get that
∥∥PN∂tz̃

∥∥
L1
TL2

x
is

controlled by

N
∥∥PNP+hi

(
P+hi∂

−1
x zP−∂xu

)
∥L1

TL2
x
+N

∥∥PNP+hi

(
P+hi∂

−1
x w†P−∂xv

)
∥L1

TL2
x

We only deal with the first term as the second one is estimated similarly. By taking into

account that |ξ2| < ξ1 on the support of σ, performing dyadic decompositions and using

Hölder’s inequality, we control the first term by

N
∑
N1

∑
N2≲N1

∥PNP+hi

(
P+hi∂

−1
x PN1zP−∂xPN2u

)
∥L1

TL2
x

≲ N
2
q
+ 1

2T
1− 2

p

∑
N1

∑
N2≲N1

∥P+hi∂
−1
x PN1z∥Lp

TLq
x
∥P−∂xPN2u∥Lp

TLq
x

≲ N
2
q
+ 1

2T
1− 2

p

∑
N1

∑
N2≲N1

N2

N1
∥PN1z∥Lp

TLq
x
∥PN2u∥Lp

TLq
x
.

We conclude the proof by using Lemma 2.8 as above (the dyadic summations are finite since

α(s, p) < 0) and Lemma 2.2. □

2.5. Estimates for solutions to the original BO in terms of gauge transformations.

Here we follow the idea from [34, Section 4] to establish a control for ∥u1−u2∥CTHs in terms

of ∥w1 −w2∥CTHs , where u1, u2 are two solutions to (1.1) and w1, w2 are the corresponding

gauge transformations.

Lemma 2.12. Let 0 ≤ s < 1
2 , N ∈ 2Z+, and T > 0. Assume that u1, u2 are two solutions

to (1.1) on [0, T ] with the same initial data u0 ∈ Hs and let w1, w2 be the corresponding
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gauge transformations of u1, u2, respectively. Then, we have

∥P≤N (u1 − u2)∥CTHs ≲ TN
3
2
+s

(
1 + ∥u1∥CTHs + ∥u2∥CTHs

)2∥u1 − u2∥CTL2 , (2.24)

∥P>N (u1 − u2)∥CTHs ≲
(
1 + ∥u1∥CTHs + ∥u2∥CTHs

)4
×

(
∥w1 − w2∥CTHs + ⟨T ⟩

(
N s− 1

2 + ∥P>N
2
w2∥CTHs

)
∥u1 − u2∥CTHs

)
.

(2.25)

Proof. For the low-frequency part, we use directly (1.4) and take the difference term by

term, namely we use

u1 − u2 =

∫ t

0
e−(t−t′)H∂2

x∂x
(
u21 − u22

)
(t′) dt′ .

By using the Bernstein and Hölder inequalities, we get

∥P≤N (u1 − u2)∥CTHs ≤
∫ T

0

∥∥P≤N∂x(u
2
1 − u22)

∥∥
CTHsdt

′

≲ TN
3
2
+s

∥∥P≤N

(
(u1 + u2)(u1 − u2)

)∥∥
CTL1

≲ TN
3
2
+s

(
∥u1∥CTL2 + ∥u2∥CTL2

)
∥u1 − u2∥CTL2 .

For the high-frequency part, we recall that since u1, u2 are real-valued,

∥P>N (u1 − u2)∥CTHs ∼ ∥P>NP+(u1 − u2)∥CTHs .

We write uj in terms of Fj and wj in the following way:

uj = eiFje−iFjuj = ieiFj∂x
[
P+hi(e

−iFj ) + Plo(e
−iFj ) + P−hi(e

−iFj )
]

= ieiFjwj + ieiFjPlo∂x(e
−iFj ) + ieiFjP−hi∂x(e

−iFj ) .

Therefore, we have

∥P>NP+(u1 − u2)∥Hs

≤
∥∥P>NP+

(
eiF1(w1 − w2)

)∥∥
Hs (2.26)

+
∥∥P>NP+

(
(eiF1 − eiF2)w2)

)∥∥
Hs (2.27)

+
∥∥P>NP+

(
eiF1Plo∂x(e

−iF1 − e−iF2)
)∥∥

Hs (2.28)

+
∥∥P>NP+

(
(eiF1 − eiF2)Plo∂x(e

−iF2)
)∥∥

Hs (2.29)

+
∥∥P>NP+

(
eiF1P−hi∂x(e

−iF1 − e−iF2)
)∥∥

Hs (2.30)

+
∥∥P>NP+

(
(eiF1 − eiF2)P−hi∂x(e

−iF2)
)∥∥

Hs . (2.31)

Before estimating each term (2.26)-(2.31) one by one, notice that by Lemma 2.2, for any

0 ≤ σ ≤ s we have∥∥∂x(e−iF1 − e−iF2
)∥∥

Hσ ≤
∥∥e−iF1(u1 − u2)

∥∥
Hσ +

∥∥(e−iF1 − e−iF2
)
u2

∥∥
Hσ

≲
(
1 + ∥u1∥Hσ + ∥u2∥Hσ

)2(∥u1 − u2∥Hσ + ∥F1 − F2∥L∞
)
. (2.32)

By (2.1), we have

(2.26) ≲
∥∥Js

(
eiF1(w1 − w2)

)∥∥
L2 ≲

(
1 + ∥u1∥L2

)
∥w1 − w2∥Hs .
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For the second term, we split w2 = P≤N
2
w2+P>N

2
w2 and then we use Berstein’s inequality,

Plancherel’s identity, (2.2) and (2.32) with σ = 0:

(2.27) ≲
∥∥P>N

2
Js

(
eiF1 − eiF2

)∥∥
L∞

∥∥P≤N
2
w2

∥∥
L2 +

∥∥(eiF1 − eiF2
)
P>N

2
w2

∥∥
Hs

≲ N−( 1
2
−s)∥∂x(eiF1 − eiF2)∥L2∥w2∥L2

+
(
∥u1 − u2∥L2 +

(
1 + ∥u1∥Hs + ∥u2∥Hs

)
∥F1 − F2∥L∞

)∥∥P>N
2
w2

∥∥
Hs

≲
(
1 + ∥u1∥Hs + ∥u2∥Hs

)(
∥u1 − u2∥L2

x
+ ∥F1 − F2∥L∞

)(
N s− 1

2 +
∥∥P>N

2
w2

∥∥
Hs

)
.

For the next term we can insert for free P>N
2
P+ in the first factor, namely we have

(2.28) =
∥∥∥P>NP+

(
P>N

2
P+(e

iF1) · Plo∂x
(
e−iF1 − e−iF2

))∥∥∥
Hs

≲
∥∥P>N

2
P+J

s(eiF1)
∥∥
L2

∥∥Plo∂x(e
−iF1 − e−iF2)

∥∥
L∞

≲ N s−1
∥∥P>N

2
P+∂x(e

iF1)
∥∥
L2

∥∥Plo∂x(e
−iF1 − e−iF2)

∥∥
L2

≲ N s−1∥u1∥L2

(
∥u1 − u2∥L2 +

(
∥u1∥Hs + ∥u2∥Hs

)
∥F1 − F2∥L∞

)
.

Similarly, we have

(2.29) =
∥∥∥P>NP+

(
P>N

2
P+(e

iF1 − eiF2) · Plo∂x(e
−iF2)

)∥∥∥
Hs

≲ N s−1∥u1∥L2

(
∥u1 − u2∥L2 +

(
∥u1∥Hs + ∥u2∥Hs

)
∥F1 − F2∥L∞

)
and

(2.30) ≲
∥∥P>N

2
P+J

s(eiF1)
∥∥
L∞

∥∥P−hi∂x(e
−iF1 − e−iF2)

∥∥
L2

≲ N s− 1
2 ∥u1∥L2

(
∥u1 − u2∥Hs +

(
∥u1∥Hs + ∥u2∥Hs

)
∥F1 − F2∥L∞

)
,

where in the last step we have used (2.32) with σ = s. Lastly, we argue similarly to

estimating (2.30) by using (2.32) with σ = 0 and we obtain:

(2.31) ≲
∥∥∥P>NP+

(
P>N

2
P+J

s(eiF1 − eiF2) · P−hi∂x(e
−iF2)

)∥∥∥
L2

≲ N s− 1
2

∥∥∂x(eiF1 − eiF2)
∥∥
L2∥e−iF2u2∥L2

≤ N s− 1
2
(
1 + ∥u1∥L2 + ∥u2∥L2

)3(∥u1 − u2∥L2 +
(
∥u1∥Hs + ∥u2∥Hs

)
∥F1 − F2∥L∞

)
.

Hence, (2.25) follows from the above estimates and Lemma 2.5. □

3. Normal form reductions

The goal of this section is to prove an estimate for the difference of two solutions w1, w2 to

(2.11) in terms of the difference of the corresponding solutions u1, u2 to the original equation

(1.1). We proceed by renormalizing the main nonlinear term of (2.11) which introduces new

nonlinearities. We prove multilinear estimates for these new terms in several lemmata below,

which together imply the following proposition.

Proposition 3.1. Let 3−
√

33/4 < s ≤ 1
4 , T > 0, and M > 1. Assume that u1, u2 are two

solutions to (1.1) on [0, T ] with the same initial data u0 ∈ Hs. Then, for the corresponding
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gauge transformations w1, w2, we have

∥w1 − w2∥CTHs

≲
(
TM

3
2 +M− 1

16
)(
1 + ∥u1∥CTHs + ∥u2∥CTHs

)10(∥w1 − w2∥CTHs + ∥u1 − u2∥CTHs

)
.

(3.1)

Recall that after the gauge transformation u 7→ w = ∂xP+hi(e
−iF ), BO transforms into

∂tw − i∂2xw = −2P+hi∂x
[
∂−1
x w · P−∂xu

]
+ E(e−iF , u) (3.2)

(see (2.11)), where the second term, given by E(e−iF , u) = −2P+hi∂x
[
(Ploe

−iF )(P−∂xu)
]
, is

easy to handle via Lemma 2.6. For simplicity of writing we drop the functional arguments

for this negligible term, i.e. we set E := E(e−iF , u). Here we use the following change of

variables:

w̃(t) := e−it∂2
xw(t) , (3.3)

ũ(t) := etH∂2
xu(t) , (3.4)

Ẽ(t) = e−it∂2
xE(t) . (3.5)

Then w̃ satisfies pointwise in time the following equation in Hs
x

w̃(t)− w̃(0) =

∫ t

0
N(1)(w̃, ũ)(t′)dt′ , (3.6)

where the nonlinearity is defined by

F
(
N(1)(w̃, ũ)

)
(t, ξ) = −2i

∫
ξ12=ξ

eitΩ(ξ,ξ1,ξ2) ξξ2
ξ1
σ(ξ, ξ1, ξ2) ̂̃w(t, ξ1)̂̃u(t, ξ2)dξ1

+
̂̃
E(t, ξ) .

(3.7)

In (3.7) above we have set

Ω(ξ, ξ1, ξ2) := ω(ξ)− ω(ξ1)− ω(ξ2) = ξ|ξ| − ξ1|ξ1| − ξ2|ξ2| , (3.8)

σ(ξ, ξ1, ξ2) := χ+(ξ)χ̃+(ξ1)1<0(ξ2) , (3.9)

where

χ+(ξ) := (1− ψ(ξ))1>0(ξ) (3.10)

is the symbol of P+hi. Also, we inserted χ̃+(ξ1), where χ̃+ is a smooth function equal to

1 on the support of χ+ and vanishing on a neighborhood of zero. Since χ+ and χ̃+ play

the same role (they indicate positive frequencies away from zero) we make a slight abuse of

notation and replace χ̃+ by χ+ in every occurrence below.

Due to the sign restrictions on the frequencies ξ, ξ1, ξ2, we have the following factorization

on the convolution plane ξ = ξ1 + ξ2:

Ω(ξ, ξ1, ξ2) = 2ξξ2 . (3.11)

We note that the phase (3.11) is signed, namely Ω(ξ, ξ1, ξ2) < 0. Also, we have

⟨ξ⟩ ∼ |ξ| = ξ = ξ1 + ξ2 < ξ1 = |ξ1| ∼ ⟨ξ1⟩ (3.12)

and

|ξ2| = −ξ2 = ξ1 − ξ < ξ1 . (3.13)
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We also rewrite here (1.4) on the Fourier side, namely we have

̂̃u(t, ξ)− û0(ξ) = iξ

∫ t

0

∫
ξ12=ξ

eit
′Ω(ξ,ξ1,ξ2)̂̃u(t′, ξ1)̂̃u(t′, ξ2)dξ1dt′ , (3.14)

with Ω(ξ, ξ1, ξ2) as in (3.8) (there is no factorization since there is no additional information

on the signs of the frequencies involved).

Lemma 3.2. Let u ∈ CTL
2
x be a solution to (1.1), let w be the corresponding gauge trans-

formation, and let ũ, w̃ be given by (3.4), (3.3), respectively. Then for fixed ξ, the functions

: t 7→ û(t, ξ), ŵ(t, ξ), ̂̃u(t, ξ), ̂̃w(t, ξ)
are continuously differentiable.

Proof. We argue here for the last function, the others follow analogously. We claim that

: t 7→
∫
ξ=ξ12

eitΩ(ξ,ξ1,ξ2) ξ2
ξ1
σ(ξ, ξ1, ξ2) ̂̃w(t, ξ1)̂̃u(ξ2)dξ1

is continuous, which combined to (3.6)-(3.7) proves that : t 7→ ̂̃w(t, ξ) is continuously differ-

entiable. Indeed, since : t 7→ w(t, ·) ∈ L2 and : t 7→ u(t, ·) ∈ L2 are continuous, the claim

follows from Lebesgue’s dominated convergence theorem and the estimate∫
ξ=ξ12

|ξ2|
ξ1
σ(ξ, ξ1, ξ2)| ̂̃w(t, ξ1)||̂̃u(t, ξ2)|dξ1 ≲ ∥w(t, ·)∥L2

x
∥u(t, ·)∥L2

x
. (3.15)

□

3.1. First step. Let us consider the main term in (3.6). We denote by N (1) the bilinear

operator given by:

F
(
N (1)(w̃, ũ)

)
(t, ξ) = −2i

∫
ξ=ξ12

eitΩ(ξ,ξ1,ξ2) ξξ2
ξ1
χ+(ξ)χ+(ξ1)1<0(ξ2) ̂̃w(t, ξ1)̂̃u(t, ξ2)dξ1 .

(3.16)

Note that the difference between N(1)(w̃, ũ) and N (1)(w̃, ũ) is the negligible term Ẽ.

Next, we split

N (1) = N (1)
≤M +N (1)

>M , (3.17)

where the two terms on the right-hand side are defined similarly to (3.16), with the multiplier

including the indicator function for |Ω(ξ, ξ1, ξ2)| ≤M and |Ω(ξ, ξ1, ξ2)| > M , respectively.

Remark 3.3. We prove the estimates in multilinear form since in the end we need an

estimate for the difference of two solutions. Thus we use v1, v2 in place of w̃(t) and ũ(t).

Also, for the proofs we find it useful to introduce here the notation:

Vj := F−1
(∣∣F(vj)

∣∣) . (3.18)

Note that it follows from Plancherel’s identity that ∥Vj∥Hs = ∥vj∥Hs for any s ∈ R.

Lemma 3.4. Let s ≥ 0 and 0 < δ < 1
2 . We have the following estimate pointwise in time:∥∥N (1)

≤M (v1, v2)
∥∥
Hs+δ ≲M∥v1∥Hs∥v2∥L2 .
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Proof. By Plancherel and (3.12), we have∥∥N (1)
≤M (v1, v2)

∥∥
Hs+δ ≲M

∥∥∥∥∫
ξ=ξ12

⟨ξ1⟩s+δ−1|v̂1(ξ1)v̂2(ξ2)| dξ1
∥∥∥∥
L2
ξ

∼M
∥∥(Js+δ−1V1)V2

∥∥
L2
x
,

Then by Hölder and Sobolev inequalities, together with Plancherel, we get∥∥(Js+δ−1V1)V2
∥∥
L2
x
≤

∥∥Js+δ−1V1
∥∥
L∞

∥∥V2∥∥L2 ≲
∥∥JsV1∥L2

∥∥V2∥L2 ∼ ∥v1∥Hs∥v2∥L2 .

□

Since we do not have a satisfactory estimate for the term N>M (w̃, ũ), we proceed with

an integration by parts step in the temporal variable, namely∫ t

0
F
(
N (1)

>M (w̃, ũ)
)
(t′, ξ)dt′

= −2i

[ ∫
ξ=ξ12

eit
′Ω(ξ,ξ1,ξ2)

Ω(ξ, ξ1, ξ2)

ξξ2
ξ1

1|Ω|>Mχ+(ξ)χ+(ξ1)1ξ2<0
̂̃w(t′, ξ1)̂̃u(t′, ξ2)dξ1]t′=t

t′=0

+ 2i

∫ t

0

∫
ξ=ξ12

eit
′Ω(ξ,ξ1,ξ2)

Ω(ξ, ξ1, ξ2)

ξξ2
ξ1

1|Ω|>Mχ+(ξ)χ+(ξ1)1ξ2<0

(
∂t′ ̂̃w(t′, ξ1))̂̃u(t′, ξ2) dξ1dt′

+ 2i

∫ t

0

∫
ξ=ξ12

eit
′Ω(ξ,ξ1,ξ2)

Ω(ξ, ξ1, ξ2)

ξξ2
ξ1

1|Ω|>Mχ+(ξ)χ+(ξ1)1ξ2<0
̂̃w(t′, ξ1)(∂t′ ̂̃u(t′, ξ2)) dξ1dt′ .

(3.19)

Notice that we interchanged the time integral with the frequency convolution integral sev-

eral times. One can rigorously justify this step by using Fubini’s theorem and dyadic

decomposition. Indeed, let us decompose

w̃ =
∑
N1

w̃N1 and ũ =
∑
N2

ũN2 , (3.20)

where w̃N1 := PN1w̃ and ũN2 := PN2 ũ. We denote

I(1)(t, ξ) := −2iξ

∫ t

0

∫
ξ=ξ12

e2it
′ξξ2 ξ2

ξ1
1|Ω|>Mχ+(ξ)χ+(ξ1)1ξ2<0

̂̃w(t′, ξ1)̂̃u(t′, ξ2)dξ1dt′ (3.21)

and

I
(1)
N1,N2

(t, ξ) := −2iξ

∫ t

0

∫
ξ=ξ12

e2it
′ξξ2 ξ2

ξ1
1|Ω|>Mχ+(ξ)χ+(ξ1)1ξ2<0

̂̃wN1(t
′, ξ1)̂̃uN2(t

′, ξ2)dξ1dt
′

(3.22)

We now fix ξ ∈ R and 0 < t < T . Since∫ t

0

∫
ξ=ξ12

|ξ2|
ξ1

1|Ω|>Mχ+(ξ)χ+(ξ1)1ξ2<0| ̂̃w(t′, ξ1)||̂̃u(t′, ξ2)|dξ1dt′ ≤ T∥w∥L∞
T L2

x
∥u∥L∞

T L2
x
,∫ t

0

∫
ξ=ξ12

|ξ2|
ξ1

1|Ω|>Mχ+(ξ)χ+(ξ1)1ξ2<0|̂̃wN1(t
′, ξ1)||̂̃uN2(t

′, ξ2)|dξ1dt′

≤ T
N2

N1
∥wN1∥L∞

T L2
x
∥uN2∥L∞

T L2
x
, (3.23)
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the integrals (3.21) and (3.22) are absolutely convergent and thus we can switch the order

of integration defining them. Moreover, for any θ > 0,∑
N1

∑
N2

|I(1)N1,N2
| ≲ T

∑
N1

∑
N2≲N1

N2

N1
∥wN1∥L∞

T L2
x
∥uN2∥L∞

T L2
x
≲ T

∑
N1

N−θ
1 ∥w∥L∞

T Hθ
x
∥u∥L∞

T L2
x

≲ T∥w∥L∞
T Hθ

x
∥u∥L∞

T L2
x
. (3.24)

Therefore, by using once again Fubini’s theorem and then integration by parts in time we

have∫ t

0
F
(
N (1)

>M (w̃, ũ)
)
(t′, ξ)dt′ = I(1) =

∑
N1

∑
N2

I
(1)
N1,N2

(3.25)

= −2iξ
∑
N1

∑
N2

∫
ξ=ξ12

∫ t

0
e2it

′ξξ2 ξ2
ξ1
1|Ω|>Mχ+(ξ)χ+(ξ1)1ξ2<0

̂̃wN1(t
′, ξ1)̂̃uN2(t

′, ξ2)dt
′dξ1

= −i
∑
N1

∑
N2

[ ∫
ξ=ξ12

e2it
′ξξ2

ξ1
1|Ω|>Mχ+(ξ)χ+(ξ1)1ξ2<0

̂̃wN1(t
′, ξ1)̂̃uN2(t

′, ξ2)dξ1

]t′=t

t′=0

+ i
∑
N1

∑
N2

∫
ξ=ξ12

∫ t

0

e2it
′ξξ2

ξ1
1|Ω|>Mχ+(ξ)χ+(ξ1)1ξ2<0∂t′

(̂̃wN1(t
′, ξ1)̂̃uN2(t

′, ξ2)
)
dt′dξ1

The splitting into two terms in the last step above is justified as the first summation-integral

is absolutely convergent (the estimate is similar to (3.23) and (3.24) above). Thus,∑
N1

∑
N2

[ ∫
ξ=ξ12

e2it
′ξξ2

ξ1
1|Ω|>Mχ+(ξ)χ+(ξ1)1ξ2<0

̂̃wN1(t
′, ξ1)̂̃uN2(t

′, ξ2)dξ1

]t′=t

t′=0

=
[ ∫

ξ=ξ12

e2it
′ξξ2

ξ1
1|Ω|>Mχ+(ξ)χ+(ξ1)1ξ2<0

̂̃w(t′, ξ1)̂̃u(t′, ξ2)dξ1]t′=t

t′=0
.

For the second summation-integral, due to Lemma 3.2 we can use the product rule to

distribute ∂t′ to the two factors. However, we cannot ensure summation in N1.

Remark 3.5. Indeed, the first resulting term (i.e. when ∂t′ falls on ̂̃wN1(t
′, ξ1)) would be∑

N1

∑
N2

∫
ξ=ξ12

∫ t

0

e2it
′ξξ2

ξ1
1|Ω|>Mχ+(ξ)χ+(ξ1)1ξ2<0ψN1(ξ1)∂t′

(̂̃w(t′, ξ1))̂̃uN2(t
′, ξ2)dt

′dξ1 ,

(3.26)

and observe that by using Lemma 2.11 (ii) (with s, q satisfying the hypothesis), we have∑
N1

∑
N2

∫ t

0

∫
ξ=ξ12

1

ξ1
1|Ω|>Mχ+(ξ)χ+(ξ1)1ξ2<0ψN1(ξ1)|∂t′

(̂̃w(t′, ξ1))||̂̃uN2(t
′, ξ2)|dξ1dt′

≲
∑
N1

∑
N2≲N1

1

N1
∥PN1∂tw̃∥L1

TL2
x
∥ũN2∥L∞

T L2
x

≲ T
∑
N1

N
2
q
− 1

2

1

(
1 + ∥w∥L∞

T Hs
x

)6(∥u∥L∞
T Hs

x
+ ∥w∥L∞

T Hs
x

)
∥u∥L∞

T Hs
x
.

Moreover, it is worth to note that under the assumptions of Lemma 2.11, one cannot have
2
q −

1
2 < 0.
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For the convenience of writing let us introduce notation4 for the boundary terms that

appear on the right-hand side of (3.19):

F
(
N (1)

0 (w̃, ũ)
)
(t, ξ) = −2i

∫
ξ12=ξ

eitΩ(ξ,ξ1,ξ2)

Ω(ξ, ξ1, ξ2)

ξξ2
ξ1

1|Ω|>Mχ+(ξ)χ+(ξ1)1<0(ξ2) ̂̃w(ξ1)̂̃u(ξ2))dξ1 .
Once we localize the functions w̃ and ũ, the normal form reduction (3.19) reads

N (1)
>M (w̃N1 , ũN2) = ∂tN (1)

0 (w̃N1 , ũN2)−N (1)
0 (∂tw̃N1 , ũN2)−N (1)

0 (w̃N1 , ∂tũN2) .

Thus far, we formally have∫ t

0
F
(
N (1)

>M (w̃, ũ)
)
(t′, ξ)dt′ =

[
N (1)

0 (w̃, ũ)(t′)
]t′=t

t′=0

−
∑
N1

∑
N2

∫ t

0
N (1)

0 (∂t′w̃N1 , ũN2)(t
′)dt′

−
∑
N1

∑
N2

∫ t

0
N (1)

0 (w̃N1 , ∂t′ ũN2)(t
′)dt′ .

(3.27)

In view of Remark 3.5 and since we do not need to interchange the dyadic summations

with the integrals until after the last normal form transformation, we proceed to the next

step by fixing the dyadic numbers N1 and N2. Note that once N1 and N2 are fixed, we

can freely switch the order of the time and frequency convolution integrals and it is easy

to check the absolute convergence of all the integrals on the right-hand side by using the

Cauchy-Schwarz inequality and Lemma 2.11.

The following provides a straightforward estimate for the first boundary term.

Lemma 3.6. Let s ≥ 0 and δ < 1
2 . We have the following estimate pointwise in time:∥∥N (1)

0 (v1, v2)
∥∥
Hs+δ ≲M− 1

8
+ δ

4 ∥v1∥Hs∥v2∥L2 .

Proof. By (3.12) and by using M < |Ω| < |ξ1|2, we have

⟨ξ⟩s+δ

|ξ1|
≲ ⟨ξ1⟩s+δ−1 ≲M

1
2
(δ− 1

2
+θ)⟨ξ1⟩s−

1
2
−θ , 0 < θ <

1

2
− δ .

Therefore, with Vj as in (3.18), and θ = 1
2(

1
2 − δ), we get∥∥N (1)

0 (v1, v2)
∥∥
Hs+δ ≲M− 1

4
( 1
2
−δ)

∥∥(Js− 1
2
−θV1)(P−V2)

∥∥
L2

≲M− 1
8
+ δ

4

∥∥Js− 1
2
−θV1

∥∥
L∞∥V2∥L2

≲M− 1
8
+ δ

4

∥∥v1∥∥Hs∥v2∥L2 ,

where in the last step we have used the Sobolev embedding H
1
2
+θ ⊂ L∞ and Plancherel’s

identity. □

4Note that to furthermore simplify the writing we drop the explicit temporal variable except in the factor

eitΩ(ξ,ξ1,ξ2) which is used for the next iteration of integrating by parts in time. Also, we point out that all

the nonlinearities that appear below depend on M .
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Next, the substitution of ∂t′w̃N1 in N (1)
0 (∂t′w̃N1 , ũN2)(t

′) is easily justified using again

Lemma 2.11 (ii). At this point, we prefer to change the label N1 into N12 to maintain a

coherent notation in view of the convention that ξ12 = ξ1 + ξ2. We also change N2 into N3.

As we argued above, once the dyadic numbers are fixed, it is easy to check the absolute

convergence of the double integrals (time and frequency). Thus, by using (3.6), (3.7), and

(3.11), we have

∫ t

0
F
(
N (1)

0 (∂t′w̃N12 , ũN3)
)
(t′, ξ)dt′

=

∫
η+ξ3=ξ

∫ t

0

eit
′Ω(ξ,η,ξ3)

η
1|Ω|>Mχ+(ξ)χ+(η)1<0(ξ3)

(
∂t′̂̃wN12

)
(η)̂̃uN3(ξ3)dt

′dη

=

∫
η+ξ3=ξ

∫ t

0

eit
′Ω(ξ,η,ξ3)

η
1|Ω|>Mχ+(ξ)χ+(η)1<0(ξ3)ψN12(η)

̂̃uN3(ξ3)

×

[∫
ξ12=η

∑
N1

∑
N2

eitΩ(η,ξ1,ξ2) 2ηξ2
iξ1

χ+(η)χ̃+(ξ1)1<0(ξ2)̂̃wN1(ξ1)
̂̃uN2(ξ2)dξ1 + Ê(η)

]
dt′dη

=
∑
N1

∑
N2

∫ t

0

∫
ξ=ξ123

eitΩ
(2)
1 (ξ,ξ1,ξ2,ξ3)m

(2)
1 (ξ, ξ1, ξ2, ξ3) ̂̃w(ξ1)̂̃u(ξ2)̂̃u(ξ3) dξ1dξ2 dt′

+

∫ t

0
F
(
N (1)

0 (ẼN12 , ũN3)
)
(t′, ξ)dt′ ,

(3.28)

where

Ω
(2)
1 (ξ, ξ1, ξ2, ξ3) = Ω(ξ, ξ12, ξ3) + Ω(ξ12, ξ1, ξ2)

and

m
(2)
1 (ξ, ξ1, ξ2, ξ3) :=− 2i

ξ2
ξ1

1|Ω(ξ,ξ12,ξ3)|>Mχ+(ξ)χ+(ξ1)χ+(ξ12)
21<0(ξ2)1<0(ξ3)

× ψN12(ξ12)ψN1(ξ1)ψN2(ξ2)ψN3(ξ3) .

(3.29)

In the last step, for the split into two integrals in t′ and η is justified since the term containing

the smooth term Ê is an absolutely convergent integral. Furthermore, the changing of

integration order of

∫
η+ξ3=ξ

,

∫ t

0
,

∫
ξ12=η

, and
∑
N1

∑
N2

is justified as in (3.23)–(3.25) and by

taking into account that ̂̃uN3(·) = ψN3(·)̂̃u(·) is localized (and thus also in L1). Indeed, for ξ,

t, N12 and N3 fixed, we have by using twice the Cauchy-Schwarz inequality and Plancherel’s
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identity

∑
N1

∑
N2≲N1

∫ t

0

∫
η+ξ3=ξ

∫
ξ12=η

∣∣∣∣ηξ2ηξ1

∣∣∣∣ |̂̃uN3(ξ3)||̂̃wN1(ξ1)||̂̃uN2(ξ2)|dξ1dηdt′

≲
∑
N1

∑
N2≲N1

N2

N1

∫ t

0

∫
|η|∼N12

|̂̃uN3(ξ − η)|∥̂̃wN1∥L2∥̂̃uN2∥L2dηdt

≲ TN
1
2
12

∑
N1

∑
N2≲N1

N2

N1
∥uN3∥L∞

T L2
x
∥wN1∥L∞

T L2
x
∥uN2∥L∞

T L2
x

≲ TN
1
2
12∥uN3∥L∞

T L2
x
∥wN1∥L∞

T H
0+
x

∥uN2∥L∞
T L2

x
<∞.

(3.30)

Therefore the sum-integral above is absolutely convergent and we can put the summation

in N1, N2 outside of the integrals in η and ξ1.

Let us introduce the nonlinearity N (2)
1 defined by

F
(
N (2)

1 (v1, v2, v3)
)
(t, ξ) =

∫
ξ=ξ123

eitΩ
(2)
1 (ξ,ξ1,ξ2,ξ3)m

(2)
1 (ξ, ξ1, ξ2, ξ3) v̂1(ξ1)v̂2(ξ2)v̂3(ξ3) dξ1dξ2

(3.31)

and we note that due to the frequency restrictions in m
(2)
1 we have that

Ω(ξ, ξ12, ξ3) < 0 , Ω(ξ12, ξ1, ξ2) < 0 ,

Ω
(2)
1 (ξ, ξ1, ξ2, ξ3) = 2ξξ3 + 2ξ12ξ2 , (3.32)

ξ, |ξ3| < ξ12 < ξ1 and |ξ2| < ξ1 . (3.33)

We rewrite (3.28) as

∫ t

0
N (1)

0 (∂t′w̃N12 , ũN3)dt
′ =

∑
N1

∑
N2

∫ t

0
N (2)

1 (w̃, ũ, ũ)(t′)dt′ +

∫ t

0
N (1)

0 (ẼN12 , ũN3)(t
′)dt′ .

In the next subsection, we will work on

∫ t

0
N (2)

1 (w̃, ũ, ũ)(t′)dt′. We point out that the mul-

tiplier m
(2)
1 depends on the dyadic numbers N1, N2, N3, and N12, all of which are henceforth

fixed.
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Next, we move to the last term of (3.27). By using (3.14) and arguing as above, we get

(for fixed N1 and N23):∫ t

0
N (1)

0 (w̃N1 , ∂t′ ũN23)dt
′

= −i
∫ t

0

∫
ξ1+η=ξ

eit
′Ω(ξ,ξ1,η)

ξ1
1|Ω|>Mχ+(ξ)χ+(ξ1)1<0(η)̂̃wN1(ξ1)

(
∂t′ ̂̃uN23

)
(η)dξ1dt

′

=

∫ t

0

∫
ξ1+η=ξ

∫
ξ23=η

∑
N2

∑
N3

eit
′Ω

(2)
2 (ξ,ξ1,ξ2,ξ3)m

(2)
∗ (ξ, ξ1, ξ2, ξ3) ̂̃w(ξ1)̂̃u(ξ2)̂̃u(ξ3)dξ2dξ1dt′ ,

(3.34)

where

Ω
(2)
2 (ξ, ξ1, ξ2, ξ3) = Ω(ξ, ξ1, ξ23) + Ω(ξ23, ξ2, ξ3) .

and

m
(2)
∗ (ξ, ξ1, ξ2, ξ3) = −iξ23

ξ1
1|Ω(ξ,ξ1,ξ23)|>Mχ+(ξ)χ+(ξ1)1<0(ξ23)ψN1(ξ1)ψN23(ξ23)ψN2(ξ2)ψN3(ξ3) .

(3.35)

Since, for t, ξ,N1, N23 fixed, and for any θ > 0,∑
N2

∑
N3

∫ t

0

∫
ξ1+η=ξ

∫
ξ23=η

∣∣∣∣ξ23ξ1
∣∣∣∣ |̂̃wN1(ξ1)||̂̃uN2(ξ2)||̂̃uN3(ξ − ξ1 − ξ2)| dξ2dξ1dt′

≲
N23

N1

∑
N2

∑
N3

∫ t

0

∫
ξ1+η=ξ

|̂̃wN1(ξ1)|∥̂̃uN2∥L2∥̂̃uN3∥L2dξ1dt
′

≲ TN
− 1

2
1 N23∥̂̃wN1∥L2∥u∥2Hθ

∑
N2

∑
N3

N−θ
2 N−θ

3 <∞ ,

(3.36)

we can bring the summation in N2 and N3 outside in the last term of (3.34), i.e.∫ t

0
N (1)

0 (w̃N1 , ∂t′ ũN23)dt
′

=
∑
N2

∑
N3

∫ t

0

∫
ξ1+η=ξ

∫
ξ23=η

eit
′Ω

(2)
2 (ξ,ξ1,ξ2,ξ3)m

(2)
∗ (ξ, ξ1, ξ2, ξ3) ̂̃w(ξ1)̂̃u(ξ2)̂̃u(ξ3)dξ1dξ2dt′ .

(3.37)

The frequency restrictions for this term only give us

Ω(ξ, ξ1, ξ23) = 2ξξ23 < 0

and

ξ, |ξ23| < ξ1 . (3.38)

We discuss the sign of the term Ω(ξ23, ξ2, ξ3):

Ω(ξ23, ξ2, ξ3) = −ξ223 − ξ2|ξ2| − ξ3|ξ3| =


−2ξ2ξ3 , if ξ2 < 0, ξ3 < 0 ,

−2ξ2ξ23 , if ξ2 ≥ 0, ξ3 < 0 ,

−2ξ3ξ23 , if ξ2 < 0, ξ3 ≥ 0 .

(3.39)
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Note that due to the symmetry of the multiplier, the second and third branch in (3.39) give

the same term. Thus we consider the regions:

R
(2)
≤M := {|ξ12| ≤ 1} ∪ {|Ω(2)

2 (ξ, ξ1, ξ2, ξ3)| ≤M} ,

R
(2)
2 := {ξ2 < 0, ξ3 < 0} \R(2)

≤M ,

R
(2)
3 := {ξ2 < 0, ξ3 ≥ 0} \R(2)

≤M ,

and we split the multiplier m
(2)
∗ into three terms

m
(2)
∗ = m

(2)
∗ 1

R
(2)
≤M

+m
(2)
∗ 1

R
(2)
2

+m
(2)
∗ 1

R
(2)
3

. (3.40)

Note that the same estimate (3.36) holds for each of these multipliers, and therefore after

introducing the nonlinearities N (2)
≤M ,N

(2)
2 , and N (2)

3 defined by

F
(
N (2)

≤M (v1, v2, v3)
)
(t, ξ)

= −i
∫
ξ=ξ123

eitΩ
(2)
2 (ξ,ξ1,ξ2,ξ3)

(
m

(2)
∗ 1

R
(2)
≤M

)
(ξ, ξ1, ξ2, ξ3) v̂1(ξ1)v̂2(ξ2)v̂3(ξ3) dξ1dξ2 ,

F
(
N (2)

j (v1, v2, v3)
)
(t, ξ)

=

∫
ξ=ξ123

eitΩ
(2)
2 (ξ,ξ1,ξ2,ξ3)

(
m

(2)
∗ 1

R
(2)
j

)
(ξ, ξ1, ξ2, ξ3) v̂1(ξ1)v̂2(ξ2)v̂3(ξ3) dξ1dξ2 , for j = 2, 3,

we can rewrite (3.37) as∫ t

0
N (1)

0 (w̃N1 , ∂t′ ũN23)dt
′

=
∑
N2

∑
N3

∫ t

0
N (2)

≤M (w̃, ũ, ũ)dt′ +
∑
N2

∑
N3

∫ t

0
N (2)

2 (w̃, ũ, ũ)dt′ +
∑
N2

∑
N3

∫ t

0
N (2)

3 (w̃, ũ, ũ)dt′ .

(3.41)

Note that in the first term we put back inner-most the summations in N2, N3. The first

term is easy to handle in view of the following estimate:

Lemma 3.7. Let s ≥ 0 and δ < min{s, 12}. We have the following estimate pointwise in

time: ∥∥N (2)
≤M (v1, v2, v3)

∥∥
Hs+δ ≲M

3
2

3∏
j=1

∥PNjvj∥Hs .

Proof. If |ξ12| ≤ 1, we easily have ⟨ξ3⟩ ∼ ⟨ξ⟩ < ⟨ξ1⟩ (see (3.38)) and thus∥∥N (2)
≤M (v1, v2, v3)

∥∥
Hs+δ ≲ ∥PLO

(
(JsV1)V2

)
(JδV3)∥L2 ≤ ∥PLO

(
(JsV1)V2

)
∥L∞∥JδV3∥L2

≲ ∥(JsV1)V2∥L1∥V3∥Hδ ≲ ∥v1∥Hs∥v2∥L2∥v3∥Hδ .

Now assume that |ξ12| > 1 and |Ω(2)
2 (ξ, ξ1, ξ2, ξ3)| ≤M , where we recall that Ω

(2)
2 (ξ, ξ1, ξ2, ξ3) =

Ω(ξ, ξ1, ξ23)+Ω(ξ23, ξ2, ξ3). We recall here that the multiplier of N (2)
≤M is m

(2)
∗ 1

R
(2)
≤M

. Notice

that on the first branch of (3.39), i.e. when ξ2 < 0 and ξ3 < 0 the conditions

|Ω(2)
2 (ξ, ξ1, ξ2, ξ3)| ≤M ⇔ |ξξ23 − ξ2ξ3| ≤

M

2
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and

|Ω(ξ, ξ1, ξ23)| > M ⇔ |ξξ23| >
M

2

cannot hold simultaneously. Hence it remains to discuss the third branch of (3.39), i.e.

ξ2 < 0 and ξ3 ≥ 0 (the second branch follows by the symmetry of the multiplier in ξ2, ξ3).

In this case we have Ω
(2)
2 (ξ, ξ1, ξ2, ξ3) = 2ξ12ξ23 and thus |ξ23| ≤ M

2 . Since on the support

of m
(2)
≤M we also have ξ < ξ1 It follows that∥∥N (2)

≤M (v1, v2, v3)
∥∥
Hs+δ ≲M

∥∥(Js+δ−1V1
)
P≤M (V2V3)

∥∥
L2 ≤M

∥∥Js+δ−1V1
∥∥
L∞

∥∥P≤M (V2V3)
∥∥
L2

≲M
3
2

∥∥JsV1
∥∥
L2

∥∥V2V3∥∥L1 ≤M
3
2 ∥v1∥Hs∥v2∥L2∥v3∥L2 .

□

Remark 3.8. A version of the estimate above with δ = 0 follows analogously to [41,

Lemma 2.3] taking into account that
∣∣ ξ23
ξ1

∣∣ < 1 on the support of m
(2)
≤M . However, here we

exploit that
∣∣ ξ23
ξ1

∣∣ ≲ M
⟨ξ1⟩ and this allows us to obtain the estimate of N (2)

≤M in the Hs+δ-norm

(albeit at the cost of a higher power on M in the right-hand side).

Formally, we summarize the normal form reductions in this first step:

w̃(t)− w̃0 =

∫ t

0
N (1)

≤M (w̃, ũ)(t′)dt′ +

∫ t

0
Ẽ(t′)dt′ +

[
N (1)

0 (w̃, ũ)(t′)
]t′=t

t′=0

−
∑
N12

∑
N3≲N12

{∑
N1

∑
N2≲N1

∫ t

0
N (2)

1 (w̃, ũ, ũ)(t′)dt′ +

∫ t

0
N (1)

0 (ẼN12 , ũN3)(t
′)dt′

}

−
∑
N1

∑
N23≲N1

{∑
N2

∑
N3

∫ t

0
N (2)

≤M (w̃, ũ, ũ)dt′

+
∑
N2

∑
N3

∫ t

0
N (2)

2 (w̃, ũ, ũ)dt′ +
∑
N2

∑
N3

∫ t

0
N (2)

3 (w̃, ũ, ũ)dt′

}
(3.42)

Notice that due to Lemma 3.6 and Lemma 3.7 (applied with s−δ′ and δ+δ′ for some small

enough δ′ > 0), respectively, we have∑
N12

∑
N3≲N12

∫ t

0

∥∥N (1)
0 (ẼN12 , ũN3)(t

′)
∥∥
Hs+δdt

′ ≲ TM− 1
8
+ δ+δ′

4

∑
N12

∑
N3≲N12

N−δ′

12 ∥Ẽ∥Hs∥ũ∥L2

≲ TM− 1
8
+ δ+δ′

4 ∥Ẽ∥Hs∥ũ∥L2

and∑
N1

∑
N23≲N1

∑
N2

∑
N3

∫ t

0

∥∥N (2)
≤M (w̃, ũ, ũ)(t′)

∥∥
Hs+δdt

′

≲ TM
3
2

∑
N1

∑
N23≲N1

∑
N2

∑
N3

N−δ′

1 N−δ′

2 N−δ′

3 ∥w̃∥Hs∥ũ∥2Hs ≲ TM
3
2 ∥w̃∥Hs∥ũ∥2Hs .

(3.43)
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Thus, it remains to handle the terms N (2)
1 (w̃, ũ, ũ), N (2)

2 (w̃, ũ, ũ), and N (2)
3 (w̃, ũ, ũ). These

terms are all nonresonant and therefore we can proceed with a second step of integration

by parts in time.

3.2. Second step. Let us recall here the terms to which we have to apply a second step of

integration by parts in time, their phases and their multiplier symbols on the Fourier side:

F
(
N (2)

j (v1, v2, v3)
)
(ξ) =

∫
ξ=ξ123

eitΩ
(2)
j (ξ,ξ1,ξ2,ξ3)m

(2)
j (ξ, ξ1, ξ2, ξ3) v̂1(ξ1)v̂2(ξ2)v̂3(ξ3) dξ1dξ2 ,

j = 1, 2, 3, respectively with phases given by

Ω
(2)
1 (ξ, ξ1, ξ2, ξ3) = 2ξξ3 + 2ξ12ξ2 ,

Ω
(2)
2 (ξ, ξ1, ξ2, ξ3) = 2ξξ23 − 2ξ2ξ3 ,

Ω
(2)
3 (ξ, ξ1, ξ2, ξ3) = 2ξξ23 − 2ξ3ξ23 = 2ξ12ξ23 ,

and multipliers given by

m
(2)
1 (ξ, ξ1, ξ2, ξ3) =− 2i

ξ2
ξ1
1|ξξ3|>M

2
1|ξξ3+ξ12ξ2|>M

2
χ+(ξ)χ+(ξ12)

2χ+(ξ1)1<0(ξ2)1<0(ξ3)

× ψN12(ξ12)ψN1(ξ1)ψN2(ξ2)ψN3(ξ3) ,

m
(2)
2 (ξ, ξ1, ξ2, ξ3) =i

ξ23
ξ1

1|ξξ23|>M
2
1|ξξ23−ξ2ξ3|>M

2
1|ξ12|>1χ+(ξ)χ+(ξ1)1<0(ξ2)1<0(ξ3)

× ψN1(ξ1)ψN23(ξ23)ψN2(ξ2)ψN3(ξ3) ,

m
(2)
3 (ξ, ξ1, ξ2, ξ3) =i

ξ23
ξ1

1|ξξ23|>M
2
1|ξξ23−ξ3ξ23|>M

2
1|ξ12|>1χ+(ξ)χ+(ξ1)1<0(ξ2)1≥0(ξ3)1<0(ξ23)

× ψN1(ξ1)ψN23(ξ23)ψN2(ξ2)ψN3(ξ3) .

Since w̃ and ũ factors are all localized in frequency, the interchange of the time integral and

frequency integrals is justified by (3.30) (for j = 1) and (3.36) (for j = 2, 3), and thus after

applying integration by parts in time, together with Lemma 3.2, we get

N (2)
j (w̃, ũ, ũ) = ∂tN (2)

j,0 (w̃, ũ, ũ)−N (2)
j,0 (∂tw̃, ũ, ũ)−N (2)

j,0 (w̃, ∂tũ, ũ)−N (2)
j,0 (w̃, ũ, ∂tũ) ,

(3.44)

where

F
(
N (2)

j,0 (v1, v2, v3)
)
(ξ) =

∫
ξ=ξ123

eitΩ
(2)
j (ξ,ξ1,ξ2,ξ3)

m
(2)
j (ξ, ξ1, ξ2, ξ3)

iΩ
(2)
j (ξ, ξ1, ξ2, ξ3)

v̂1(ξ1)v̂2(ξ2)v̂3(ξ3)dξ1dξ2 .

The estimates for the boundary terms appearing in the second step are provided by the

following:

Lemma 3.9. Let s ≥ 0. We have the following estimates pointwise in time:∥∥∥N (2)
j,0 (v1, v2, v3)

∥∥∥
Hs+1

2
≲M− 1

4
+∥v1∥Hs∥v2∥L2∥v3∥L2 , j = 1, 2, 3 .

Proof. One checks that for each j = 1, 2, 3 we have M ≲ ξ21 . Let us also denote Vk :=

F−1
(∣∣F(vk)

∣∣), k = 1, 2, 3. If j = 1 and j = 3, we have∣∣∣∣m(2)
j (ξ, ξ1, ξ2, ξ3)

Ω
(2)
j (ξ, ξ1, ξ2, ξ3)

∣∣∣∣⟨ξ⟩s+ 1
2 ≲ ξ

− 1
2
+s

1 ξ−1
12 ≲M− 1

4
+⟨ξ1⟩s−⟨ξ12⟩−1+ .
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Then, by Hölder’s inequality and Sobolev embedding,∥∥∥N (3)
j,0 (v1, v2, v3)

∥∥∥
Hs+1

2
≲M− 1

4
+
∥∥J−1+

(
Js−V1V2

)
V3

∥∥
L2

≲M− 1
4
+
∥∥J−1+

(
Js−V1V2

)∥∥
L∞∥v3

∥∥
L2

≲M− 1
4
+
∥∥Js−V1V2

∥∥
L1+∥v3

∥∥
L2

≲M− 1
4
+
∥∥Js−V1

∥∥
L2+∥v2

∥∥
L2∥v3∥L2

≲M− 1
4
+
∥∥v1∥∥Hs∥v2

∥∥
L2∥v3∥L2 .

If j = 2, we have∣∣∣∣m(2)
2 (ξ, ξ1, ξ2, ξ3)

Ω
(2)
2 (ξ, ξ1, ξ2, ξ3)

∣∣∣∣⟨ξ⟩s+ 1
2 ≲ ξ−1

1 ξ−
1
2
+s ≲M− 1

4
+⟨ξ1⟩−

1
2
+s−⟨ξ⟩−

1
2
− .

Then, by Hölder’s inequality and Sobolev embedding,∥∥∥N (3)
2,0 (v1, v2, v3)

∥∥∥
Hs+1

2
≲M− 1

4
+
∥∥J− 1

2
−(J− 1

2
+s−V1V2V3

)∥∥
L2

≲M− 1
4
+
∥∥J− 1

2
+s−V1V2V3

∥∥
L1

≲M− 1
4
+
∥∥J− 1

2
+s−V1

∥∥
L∞
x
∥V2∥L2

x
∥V3∥L2

x

≲M− 1
4
+
∥∥v1∥∥Hs∥v2

∥∥
L2∥v3∥L2 .

□

Lastly, the following estimates together with those of Lemma 2.11 allow us to also handle

the remaining terms on the right hand side of (3.44):

Lemma 3.10. Let 0 < s < 1
4 and δ ≥ 0. We have the following estimate for j = 1, 2, 3 and

any θ > 0

sup
N

∥∥PNN (2)
j,0 (PN1v1, PN2v2, PN3v3)

∥∥
Hs+δ

≲ N−1−s+δ+θ
max N s

medN
s
min∥PN1v1∥L2∥PN2v2∥L2∥PN3v3∥L2 ,

(3.45)

where Nmax, Nmed, Nmin are the maximum, the median, and the minimum of N1, N2, N3,

respectively.

Proof. Due to Plancherel’s identity, we have that∥∥PNN (2)
j,0 (PN1v1, PN2v2, PN3v3)

∥∥
Hs+δ

≲ N s+δ

∥∥∥∥∥
∫
ξ=ξ123

∣∣∣∣∣m
(2)
j (ξ, ξ1, ξ2, ξ3)

Ω
(2)
j (ξ, ξ1, ξ2, ξ3)

∣∣∣∣∣ψN1(ξ1)|v̂1(ξ1)|ψN2(ξ2)|v̂2(ξ2)|ψN3(ξ3)|v̂3(ξ3)|dξ1dξ2

∥∥∥∥∥
L2
ξ

(3.46)

and that the supremum in N is taken over all dyadic numbers ≥ 1
2 (due to the restriction

on ξ in m
(2)
j ). As before, we denote Vk := F−1

(∣∣F(vk)
∣∣), k = 1, 2, 3. We discuss separately
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the three cases depending on j.

Case 1: j = 1. We recall that the multiplier
m

(2)
1 (ξ,ξ1,ξ2,ξ3)

Ω
(2)
1 (ξ,ξ1,ξ2,ξ3)

is

−iξ2
ξ1(ξξ3 + ξ12ξ2)

1|ξξ3|>M
2
1|ξξ3+ξ12ξ2|>M

2
χ+(ξ)χ+(ξ12)

2χ+(ξ1)1<0(ξ2)1<0(ξ3) .

Due to the sign restrictions, we have max{ξ, |ξ3|} < ξ12 < ξ1 and |ξ2| < ξ1.

Subcase 1.i: |ξ12| ∼ |ξ1|. In this case,∣∣∣∣∣m(2)
1 (ξ, ξ1, ξ2, ξ3)

Ω
(2)
1 (ξ, ξ1, ξ2, ξ3)

∣∣∣∣∣ ≲ ξ−2
1

and thus, we deduce from Berstein’s inequality that

LHS of (3.46) ≲ N−2+s+δ
1

∥∥PN

(
PN1V1PN2V2PN3V3

)∥∥
L2
x

≲ N
− 3

2
+s+δ

1 ∥PN1V1∥
L

1
2s
x

∥PN2V2∥
L

2
1−2s
x

∥PN3V3∥
L

2
1−2s
x

≲ N−1−s+δ
1 N s

2N
s
3

3∏
j=1

∥PNjvj∥L2
x
.

Subcase 1.ii: |ξ12| ≪ |ξ1| and ξ ≲ |ξ3|. In this case we necessarily have |ξ2| ∼ ξ1. We use∣∣∣∣∣m(2)
1 (ξ, ξ1, ξ2, ξ3)

Ω
(2)
1 (ξ, ξ1, ξ2, ξ3)

∣∣∣∣∣ ≲ ξ−1
1 ξ−1

12

to get that

LHS of (3.46) ≲ N s+δN−1
1

∑
K≲N1

K−1
∥∥∥PN

(
PK

(
PN1V1PN2V2

)
PN3V3

)∥∥∥
L2
x

≲ N s
3N

−1+δ
1

∑
K≲N1

∥∥PK

(
PN1V1PN2V2

)∥∥
L1
x
∥PN3V3∥L2

x

≲ N−1−s+δ+θ
1 N s

2N
s
3

3∏
j=1

∥PNjvj∥L2
x
,

for any θ > 0.

Subcase 1.iii: |ξ12| ≪ |ξ1| and ξ ≫ |ξ3|. Note that in this case |ξ2| ∼ ξ1 and ξ12 ∼ ξ.

Then, we have ∣∣∣∣∣m(2)
1 (ξ, ξ1, ξ2, ξ3)

Ω
(2)
1 (ξ, ξ1, ξ2, ξ3)

∣∣∣∣∣ ≲ ξ−1
1 ξ−

1
2 ξ

− 1
2

12 .
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It follows that

LHS of (3.46) ≲ N− 1
2
+s+δN−1

1

∑
K∼N

K− 1
2

∥∥∥PN

(
PK

(
PN1V1PN2V2

)
PN3V3

)∥∥∥
L2
x

≲ N δN−1
1

∑
K∼N

K− 1
2

∥∥∥PN

(
PK

(
PN1V1PN2V2

)
PN3V3

)∥∥∥
L

1
1−s
x

≲ N−1+δ
1

∑
K∼N

K− 1
2

∥∥PK

(
PN1V1PN2V2

)∥∥
L2
x
∥PN3V3∥

L
2

1−2s
x

≲ N−1+δ
1 N s

3∥PN1V1PN2V2∥L1
x
∥PN3V3∥L2

x

≲ N−1−s+δ
1 N s

2N
s
3

3∏
j=1

∥PNjvj∥L2
x
.

Case 2: j = 2. We recall that the multiplier
m

(2)
2 (ξ,ξ1,ξ2,ξ3)

Ω
(2)
2 (ξ,ξ1,ξ2,ξ3)

is

iξ23
2ξ1(ξξ23 − ξ2ξ3)

1|ξξ23|>M
2
1|ξξ23−ξ2ξ3|>M

2
1|ξ12|>1χ+(ξ)χ+(ξ1)1<0(ξ2)1<0(ξ3) .

Due to the sign restrictions, we have max{|ξ2|, |ξ3|} < |ξ23| < ξ1 and ξ < ξ1. Without loss

of generality we may assume that |ξ2| ≤ |ξ3| so that |ξ23| ≤ 2|ξ3| and note that Nmax = N1,

Nmed = N3, and Nmin = N2. Then∣∣∣∣∣m(2)
2 (ξ, ξ1, ξ2, ξ3)

Ω
(2)
2 (ξ, ξ1, ξ2, ξ3)

∣∣∣∣∣ ≲ |ξ23|
1
2
−s

ξ1ξ
1
2
+s|ξ2ξ3|

1
2
−s

≲
1

ξ1ξ
1
2
+s|ξ2|

1
2
−s
.

Subcase 2.i: ξ ∼ ξ1 (i.e. N ∼ N1). We have

LHS of (3.46) ≲ N
− 3

2
+δ

1 N
− 1

2
+s

2

∥∥PN

(
PN1V1PN2V2PN3V3

)∥∥
L2
x

≲ N
− 3

2
+δ

1 N
− 1

2
+s

2 ∥PN1V1∥
L

1
s
x

∥PN2V2∥L∞
x
∥PN3V3∥

L
2

1−2s
x

≲ N−1−s+δ
1 N s

2N
s
3

3∏
j=1

∥PNjvj∥L2
x
.

Subcase 2.ii: ξ ≪ ξ1. Then we necessarily have ξ1 ∼ |ξ23|. Since ξ2 and ξ3 have the same

sign, we cannot have that |ξ3| ≪ ξ1, and thus |ξ3| ∼ ξ1 (or equivalently N3 ∼ N1). Then

LHS of (3.46) ≲ N δN−1
1 N

− 1
2
+s

2

∥∥PN

(
PN1V1PN2V2PN3V3

)∥∥
L1
x

≲ N−1+δ
1 N

− 1
2
+s

2 ∥PN1V1∥L2
x
∥PN2V2∥L∞

x
∥PN3V3∥L2

x

≲ N−1−s+δ
1 N s

2N
s
3

3∏
j=1

∥PNjvj∥L2
x
.

Case 3: j = 3. We recall that
m

(2)
3 (ξ,ξ1,ξ2,ξ3)

Ω
(2)
3 (ξ,ξ1,ξ2,ξ3)

is

i

2ξ1ξ12
1|ξξ23|>M

2
1|ξ12ξ23|>M

2
1|ξ12|>1χ+(ξ)χ+(ξ1)1<0(ξ2)1≥0(ξ3)1<0(ξ23) .
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Due to the sign restrictions, we have max{|ξ23|, ξ} < ξ1 and ξ3 < |ξ2|. Clearly, it holds that∣∣∣∣∣m(2)
3 (ξ, ξ1, ξ2, ξ3)

Ω
(2)
3 (ξ, ξ1, ξ2, ξ3)

∣∣∣∣∣ ≲ ⟨ξ1⟩−1⟨ξ12⟩−1 .

Subcase 3.i: |ξ2| ≪ ξ1. Observe that ξ1 ∼ |ξ12| ∼ ξ, and Nmax = N1, Nmed = N2,

Nmin = N3. Then, LHS of (3.46) is estimated exactly as in Subcase 1.i.

Subcase 3.ii: |ξ2| ∼ ξ1 and ξ ≲ ξ3. In this case we have Nmin = N3 and Nmax ∼ Nmed ∼
N1 ∼ N2 and thus the LHS of (3.46) is estimated exactly as in Subcase 1.ii.

Subcase 3.iii: |ξ2| ∼ ξ1 and ξ ≫ ξ3. Then ξ ∼ |ξ12| and Nmin = N3 and Nmax ∼ Nmed ∼
N1 ∼ N2. Therefore, the LHS of (3.46) is estimated exactly as in Subcase 1.iii.

Subcase 3.iv: |ξ2| ≫ ξ1. Then |ξ2| ∼ ξ3 ∼ |ξ12| and note that Nmax = N2, Nmed = N3,

and Nmin = N1. It follows that

LHS of (3.46) ≲ N s+δ+ 1
2N−1

1 N−1
2

∥∥PN

(
PN1V1PN2V2PN3V3

)∥∥
L1
x

≲ N
− 1

2
+s

1 N−1+δ
2 ∥PN1V1∥L∞

x
∥PN2V2∥L2

x
∥PN3V3∥L2

x

≲ N s
1N

−1−s+δ
2 N s

3

3∏
j=1

∥PNjvj∥L2
x
.

□

For the following corollary to the above Lemma 3.10 we recall that the multipliers m
(2)
j

depend on the dyadic numbers N1, N2, N3, N12, N23, which are all dominated by Nmax.

Corollary 3.11. Let 3−
√

33/4 < s ≤ 1
4 . There exist δ, ε > 0 small enough such that for

each j = 1, 2, 3, we have∥∥N (2)
j (w̃, ũ, ũ)(t′)

∥∥
L1
THs+δ

≲ N−ε
max

(
M− 1

8 + T
(
1 + ∥u∥L∞

T Hs

)6)(∥w∥L∞
T Hs + ∥u∥L∞

T Hs

)
∥u∥2L∞

T Hs ,
(3.47)

where Nmax = max{N1, N2, N3}.

Proof. For the first term on the right-hand side of (3.44) we simply invoke Lemma 3.9.

For the remaining terms, we apply Lemma 3.10 followed by Lemma 2.11 together with

Lemma 2.2. For instance, we get that for any θ > 0∥∥PNN (2)
j,0 (∂tw̃, ũ, ũ)(t

′)
∥∥
L1
THs+δ

≲ N−1−s+δ+θ
max N s

medN
s
min∥PN1∂tw̃∥L1

TL2
x
∥PN2 ũ∥L∞

T L2
x
∥PN3 ũ∥L∞

T L2
x

≲ TN
2
q
+ 1

2

1 N−1−s+δ+θ
max N s

medN
s
min

(
1 + ∥u∥L∞

T Hs

)6
×
(
∥u∥L∞

T Hs + ∥w∥L∞
T Hs

)
∥PN2u∥L∞

T L2
x
∥PN3u∥L∞

T L2
x
,

(3.48)

where Nmed and Nmin are as in Lemma 3.10 and 2 ≤ q ≤ 4 satisfies the hypothesis of

Lemma 2.11, i.e. (
3

2
− s

)(
1

4
− 1

2q

)
− s < 0 . (3.49)
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In the case that Nmax = N1, we easily notice that if we also impose

2

q
− 1

2
− s+ δ + θ < −2ε , (3.50)

then ∥∥PNN (2)
j,0 (∂tw̃, ũ, ũ)(t

′)
∥∥
L1
THs+δ ≲ TN−ε

maxN
−ε

(
1 + ∥u∥L∞

T Hs

)6∥w∥L∞
T Hs∥u∥2L∞

T Hs

since on the support of the multiplier m
(2)
j we have ξ < ξ1, hence N ≲ N1 ≤ Nmax, for all

j = 1, 2, 3. In the case that Nmax = N2, we clearly have N s
medN

s
min ≤ N s

maxN
s
3 , and thus

N
2
q
+ 1

2

1 N−1−s+δ+θ
max N s

medN
s
min ≤ N

2
q
− 1

2
−s+δ+θ

max N s
2N

s
3 ≲ N−ε

maxN
−ε ,

by imposing the same condition (3.50). The case Nmax = N3 is analogous to the case

Nmax = N2. Lastly, the estimates for the remaining two terms in (3.44) follow similarly.

Hence, we can pick q, δ, and ε to satisfy both (3.49) and (3.50) as long as

s2 − 6s+
3

4
< 0 . (3.51)

□

Proof of Proposition 3.1. It follows by gathering Lemmata 3.4, 3.6, 3.7, and Corollary 3.11.

Indeed, we can now check that all the summation-integrals that appear while performing

the above two steps of normal form reductions are absolutely convergent. Therefore, we

can also regroup similar terms to derive the equation below in order to provide the desired

difference estimate

w̃1(t)− w̃2(t) =∫ t

0

{
N (1)

≤M (w̃1, ũ1)(t
′)−N (1)

≤M (w̃2, ũ2)(t
′)

}
dt′ +

∫ t

0

{
Ẽ1(t

′)− Ẽ2(t
′)
}
dt′

+
[
N (1)

0 (w̃1, ũ1)(t
′)−N (1)

0 (w̃2, ũ2)(t
′)
]t′=t

t′=0

−
∑
N12

∑
N3≲N12

∑
N1

∑
N2≲N1

∫ t

0

{
N (2)

1 (w̃1, ũ1, ũ1)(t
′)−N (2)

1 (w̃2, ũ2, ũ2)(t
′)

}
dt′

−
∑
N12

∑
N3≲N12

∫ t

0

{
N (1)

0 (Ẽ1N12
, ũ1N3

)(t′)−N (1)
0 (Ẽ2N12

, ũ2N3
)(t′)

}
dt′

−
∑
N1

∑
N23≲N1

∑
N2

∑
N3

∫ t

0

{
N (2)

≤M (w̃1, ũ1, ũ1)(t
′)−N (2)

≤M (w̃2, ũ2, ũ2)(t
′)

}
dt′

+
∑
N1

∑
N23≲N1

∑
N2

∑
N3

∫ t

0

{
N (2)

2 (w̃1, ũ1, ũ1)(t
′)−N (2)

2 (w̃2, ũ2, ũ2)(t
′)

}
dt′

+
∑
N1

∑
N23≲N1

∑
N2

∑
N3

∫ t

0

{
N (2)

3 (w̃1, ũ1, ũ1)(t
′)−N (2)

3 (w̃2, ũ2, ũ2)(t
′)

}
dt′ .

(3.52)

By using telescoping sums and a version of Corollary 3.11 when the difference of two so-

lutions appears as one of the arguments, we handle the series containing N (2)
j (w̃k, ũk, ũk),

k = 1, 2, j = 1, 2, 3. The summations containing ẼkN12
, k = 1, 2, are in fact finite sum-

mations as Ẽk have compact Fourier suppport. Lastly, by arguing similarly to (3.43), we
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have that the series containing N (2)
≤M (w̃k, ũk, ũk), k = 1, 2, are absolutely convergent in

CTH
s. □

4. Proof of Theorem 1.1 and Corollary 1.2

Proof of Theorem 1.1. Let u0 ∈ Hs and let u ∈ C(R;Hs) denote the (global-in-time) so-

lution to BO with initial data u0 provided by the results in [44] or [26] or [25]. Sup-

pose there exists another solution u† ∈ C(I;Hs) to BO (not necessarily global-in-time),

with the same initial data u0, on some open time interval I, neighborhood of t = 0.

By the time translation symmetry of BO, we can assume without loss of generality that

max{t ∈ I : u(t) = u†(t)} = 0 and thus to reach a contradiction, it suffices to show that

u = u† in CTH
s for any small T > 0. By the time reversal symmetry of BO, one argues

analogously for negative times.

Denote by F,w and F †, w† the corresponding spatial antiderivatives and gauge transfor-

mations of u and u†, respectively. We fix some T ′ ∈ I ∩ (0, 1) and we set

K̃ := (1 + C2)
(
1 + ∥u∥CT ′Hs + ∥u†∥CT ′Hs

)2
<∞ ,

where C2 denotes the implicit constant in (2.25). By first choosing N ∈ 2Z such that

C2K̃
2
(
N s− 1

2 + ∥P>N
2
w†∥CT ′Hs

)
≤ 1

4

and then by choosing 0 < T < T ′ such that

C1K̃TN
3
2
+s ≤ 1

4
,

where C1 is the implicit constants in (2.24), Lemma 2.12 implies that

∥u− u†∥CTHs ≤ 2C2K̃∥w − w†∥CTHs . (4.1)

Since both w and w† satisfy the integral formulation of (3.44), we can appeal to Proposi-

tion 3.1 and thus there is some C3 > 0 such that

∥w − w†∥CTHs ≤ C3

(
TM

3
2 +M− 1

16
)
K̃10

(
∥w − w†∥CTHs + ∥u− u†∥CTHs

)
. (4.2)

With β ∈ (0, 1) such that

2C2K̃
β

1− β
≤ 1

2
, (4.3)

choose M ≫ 1 such that

C3M
− 1

16 K̃10 ≤ β

2

and then we adjust T such that we also verify

C3TM
3
2 K̃10 ≤ β

2
.

Then, from (4.2) we have

∥w − w†∥CTHs ≤ β

1− β
∥u− u†∥CTHs (4.4)

Hence, by (4.1), (4.3), and (4.4), we get ∥u − u†∥CTHs = 0, which completes the proof of

Theorem 1.1. □
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Proof of Corollary 1.2. We recall here that w = eit∂
2
xw̃ and that w̃ satisfies the normal form

equation

w̃(t)− w̃0 =

∫ t

0
N (1)

≤M (w̃, ũ)(t′)dt′ +

∫ t

0
Ẽ(t′)dt′ +

[
N (1)

0 (w̃, ũ)(t′)
]t′=t

t′=0

−
∑
N12

∑
N3≲N12

∑
N1

∑
N2≲N1

∫ t

0
N (2)

1 (w̃, ũ, ũ)(t′)dt′

−
∑
N12

∑
N3≲N12

∫ t

0
N (1)

0 (ẼN12 , ũN3)(t
′)dt′

−
∑
N1

∑
N23≲N1

∑
N2

∑
N3

∫ t

0
N (2)

≤M (w̃, ũ, ũ)(t′)dt′

+
∑
N1

∑
N23≲N1

∑
N2

∑
N3

∫ t

0
N (2)

2 (w̃, ũ, ũ)(t′)dt′

+
∑
N1

∑
N23≲N1

∑
N2

∑
N3

∫ t

0
N (2)

3 (w̃, ũ, ũ)(t′)dt′ .

(4.5)

Therefore, by setting M := T− 16
25 , by Lemmata 3.4, 3.6, 3.7, and Corollary 3.11, we get

∥w(t)− eit∂
2
xw0∥Hs+δ = ∥w̃(t)− w̃(0)∥Hs+δ ≲ T

1
25
(
1 + ∥u∥CTHs

)20∥u∥CTHs .

Due to the uniqueness result of Theorem 1.1 and since ∥u∥CTHs ≤ C(T, ∥u0∥Hs) (see for

example Theorem 1.1 in [26]), we conclude the proof of Corollary 1.2. □

5. The periodic case

Here we consider the Benjamin-Ono equation (1.1) posed on the torus T := R/2πZ. We

point out the main modifications needed to obtain the unconditional uniqueness result of

Theorem 1.1.

5.1. The gauge transformation. Since the Benjamin-Ono evolution conserves the mean,

i.e.
∫
T u(t, x)dx =

∫
T u0(x)dx for all t, by using the translation transformation

ũ(t, x) := u
(
t, x− t

π

∫
T
u0

)
− 1

2π

∫
T
u0,

we can assume without loss of generality that∫
T
u(t, x)dx = 0 , for all t .

We then define F := ∂−1
x u the spatial anti-derivative of u by

F̂ (0) = 0 , F̂ (n) =
1

in
û(n) , n ∈ Z∗

and note that in place of Lemma 2.5, we easily have ∥F1 − F2∥L∞(T) ≲ ∥u1 − u2∥L2(T) with

a constant independent of t. Moreover, we denote

P±(f) = F−1
(
1±n>0f̂

)
and P0(f) = F−1

(
1n=0f̂

)
= f̂(0).
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Since ê−iF (n) is well-defined for all n ∈ Z, P±(e
−iF ) are well-defined L2(T)-functions with

∥e−iF ∥L2(T) ∼ 1. Also, note that F satisfies

∂tF +H∂2xF = u2 − P0(u
2) .

The gauge transformation

w := ∂xP+(e
−iF ) , (5.1)

satisfies

∂tw − i∂2xw − im(t)w = −2P+∂x
[
∂−1
x w · P−∂xu

]
, (5.2)

where m(t) := P0(u
2)(t).

It is worth noting that at this level of regularity, the weak solutions of BO, which are

not constructed through (conditional) well-posedness results, do not necessarily satisfy the

L2-conservation law. For this reason, we perform another gauge transformation : w 7→
e−i

∫ t
0 m(t′)dt′w, so that the equation for the gauge variable becomes

∂tw − i∂2xw = −2P+∂x
[
∂−1
x w · P−∂xu

]
, (5.3)

and, by setting E[f, g] := −2P+Plo∂x[f · P−∂xg], we rewrite (5.3) precisely as (3.2). It is

easy to check that the estimate corresponding to (2.12) also holds in this case.

5.2. The Strichartz estimates.

Lemma 5.1 (refined Strichartz estimates on the torus). Let 0 ≤ s ≤ 1
4 , N ∈ 2Z+, T > 0,

and 2 ≤ p ≤ 4. Let u be a solution to (2.14) with F = ∂x(u1u2). Then, we have

∥PNu∥Lp([0,T ]×T) ≲ T
1
pNβ(s,p)

(
∥PNu∥L∞

T Hs
x
+ ∥u1∥L∞

T Hs
x
∥u2∥L∞

T Hs
x

)
, (5.4)

where

β(s, p) :=
(3
2
− s

)(1
4
− 1

2p

)
− s . (5.5)

Proof. Following the proof of [48, Lemma 2.1], we use the L4-Strichartz estimate due to

Zygmund [64] to deduce ∥∥etH∂2
xf

∥∥
L4([0,T ]×T) ≲ T

1
8 ∥f∥L2

x(T) .

After interpolating with the trivial estimate∥∥etH∂2
xf

∥∥
L2([0,T ]×T) ≲ T

1
2 ∥f∥L2

x(T) ,

this implies ∥∥etH∂2
xf

∥∥
Lp([0,T ]×T) ≲ T

3
2p

− 1
4 ∥f∥L2

x(T) , (5.6)

for any 2 ≤ p ≤ 4.

The proof then follows similarly to the proof of Lemma 2.8. With δ > 0 to be chosen

later, let Ij =: [aj , bj ] be such that
⋃

j Ij = [0, T ], bj − aj ∼ N−δ, and the number of such

intervals is ∼ TN δ. We then deduce from (5.6)

∥PNu∥pLp([0,T ]×T) =
∑
j

∫ bj

aj

∥PNu∥pLp
x
dt

≲ TN δ(1− 3
2
+ p

4
)∥PNu∥pL∞

T L2
x
+
∑
j

|Ij |p−1|Ij |
3
2
− p

4 ∥PNF∥pLp
Ij
L2
x
,
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so that

∥PNu∥Lp([0,T ]×T) ≲ T
1
pN

(− 1
2p

+ 1
4
)δ∥PNu∥L∞

T L2
x
+ T

1
pN

−
(

3
4
+ 1

2p

)
δ∥PNF∥L∞

T L2
x
.

In particular, for

F = ∂x(u1u2) ,

we get

∥PNu∥Lp([0,T ]×T) ≲ T
1
pN

(− 1
2p

+ 1
4
)δ−s∥PNu∥L∞

T Hs
x
+ T

1
pN

1−
(

3
4
+ 1

2p

)
δ∥PN (u1u2)∥L∞

T L2
x
.

Together with

∥PN (u1u2)∥L2
x
≲ N

1
r
− 1

2 ∥u1u2∥Lr
x
≤ N

1
r
− 1

2 ∥u1∥L2r
x
∥u2∥L2r

x
≲ N

1
r
− 1

2 ∥u1∥Hs
x
∥u2∥Hs

x
,

where 1 ≤ r ≤ 2 is determined by s = 1
2 − 1

2r , or equivalently r =
1

1−2s , we obtain

∥PNu∥Lp([0,T ]×T) ≲ T
1
pN

(− 1
2p

+ 1
4
)δ−s∥PNu∥L∞

T Hs
x
+ T

1
pN

3
2
−
(

3
4
+ 1

2p

)
δ−2s∥u1∥L∞

T Hs
x
∥u2∥L∞

T Hs
x

(the restriction on r imposes 0 ≤ s ≤ 1
4). We choose δ such that

(− 1

2p
+

1

4
)δ − s =

3

2
−
(3
4
+

1

2p

)
δ − 2s,

or equivalently δ = 3
2 − s, and with β(s, p) as in (5.5), we obtain (5.4). □

5.3. Nonlinear estimates and proofs of the main results. We note that the normal

form transformations as well as the nonlinear estimates from Section 3 carry over exactly

as in the real-line case. The proof of the estimates of Lemma 2.11 is similar, but now using

the refined Strichartz estimate (5.4) instead of (2.17). For the convenience of the reader

we check the numerology of Corollary 3.11 and verify that the same regularity condition is

necessary. Indeed, we must ensure

β(s, p) < 0 and δ +
2

p
− 1

2
< s

(to be compared with (3.49) and (3.50) in the real-line case), or equivalently

(
3

2
− s)(

1

4
− 1

2p
)− s < 0 and

1

4
− 1

2p
>

1

8
− s

4

which hold true for some p ∈ (2, 4) under the same condition (3.51).

The proof of Theorem 1.1 is then carried out by reasoning on equation (5.3) and by

arguing exactly as on the real line case.

Finally, we comment on the proof of Corollary 1.2 in the periodic case. With Theorem 1.1

in hand, one can assume that any solution at this level of regularity is constructed through

a (conditional) well-posedness result. In particular, by invoking the L2-conservation law,

we can then rigorously justify that m(t) = m0 := P0(u
2
0), so that the equation for the gauge

variable (5.2) becomes

∂tw − i∂2xw − im0w = −2P+∂x
[
∂−1
x w · P−∂xu

]
. (5.7)

Since the Lp([0, T ]×T)-norms are invariant under the transformation : w 7→ eim0tw, one also

has the same Strichartz estimate for PNw as in Lemma 2.16 (ii). Therefore, we conclude

the proof of Corollary 1.2 in the periodic case by arguing exactly as in the continuous case.
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