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ABSTRACT As deepfake technology gains traction, the need for reliable detection systems is crucial.
Recent research has introduced various deep learning-based detection systems, yet they exhibit limitations
in generalising effectively across diverse data distributions that differ from the training data. Our study
focuses on understanding the generalisation challenge by exploring different aspects such as deep
learning model architectures, pre-training strategies and datasets. Through a comprehensive comparative
analysis, we evaluate multiple supervised and self-supervised deep learning models for deepfake detection.
Specifically, we evaluate eight supervised deep learning architectures and two transformer-based models
pre-trained using self-supervised strategies (DINO, CLIP) on four different deepfake detection benchmarks
(FakeAVCeleb, CelebDF-V2, DFDC and FaceForensics++). Our analysis encompasses both intra-dataset
and inter-dataset evaluations, with the objective of identifying the top-performing models, datasets that
equip trained models with optimal generalisation capabilities, and assessing the influence of image
augmentations on model performance. We also investigate the trade-off between model size, efficiency
and performance. Our main goal is to provide insights into the effectiveness of different deep learning
architectures (transformers, CNNs), training strategies (supervised, self-supervised) and deepfake detection
benchmarks. Following an extensive empirical analysis, we conclude that Transformer models surpass CNN
models in deepfake detection. Furthermore, we show that FaceForensics++ and DFDC datasets equip
models with comparably better generalisation capabilities, as compared to FakeAVCeleb and CelebDF-V2
datasets. Our analysis also demonstrates that image augmentations can be beneficial in achieving improved
performance, particularly for Transformer models.

INDEX TERMS Deepfake detection, image classification, convolutional neural networks, transformers,
video processing.

I. INTRODUCTION
Deepfakes, or deepfake media, are digital media that have
been generated or modified using deep learning algo-
rithms [1]. They have gained notoriety in recent years due to
their potential to manipulate and deceive by producing fraud-
ulent and deceptivemedia content.While deepfakes can serve
innocent or even entertaining purposes, they also harbor sub-
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stantial dangers when harnessed for malicious intentions, like
crafting convincing fraudulent media to sway public opinion,
manipulate electoral outcomes, or incite violence [2], [3], [4].
Also, given the prevalence of powerful and budget-friendly
computing resources along with the widespread accessibility
of paid, as well as open-source software, the creation of
deepfakes has become increasingly straightforward [5]. This
accessibility extends to individuals with limited technical
knowledge, facilitating the production of convincing deep-
fakes that closely resemble genuine content.
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The research community has been actively proposing
novel AI-based automated deepfake detection models, trying
to address these issues posed by deepfake media [6], [7],
[8], [9], [10], [11]. However, a significant issue associated
with current deepfake detection models is their lack of
generalisation capability [1], [7], [12]. This means that
the detection systems work excellently when dealing with
deepfakes that come from the same data distribution as they
were trained on. However, they struggle to performwell when
exposed to deepfakes generated using different methods than
the ones used for training.

Previous research efforts have introduced a multitude
of carefully designed deep learning models for deepfake
detection, accompanied by novel techniques for training (e.g.,
multi-modal features [6], novel augmentations [13] etc) and
evaluating these models on well-known deepfake datasets.
However, given the vast volume of research publications,
it has become increasingly challenging to discern which kind
of architectures yield optimal results and which datasets are
most effective in facilitating robust model performance, thus
enhancing generalisation to unseen data. In light of these
considerations, we contend that a comprehensive analysis that
unites a diverse range of deep learning architectures, trained
and assessed across multiple prominent deepfake datasets in a
unified manner, is imperative to gain a deeper understanding
of this issue. We also believe that such a comparative analysis
has the potential to uncover valuable insights for identifying
the most suitable architecture and dataset(s) to enhance the
effectiveness of deepfake detection systems. Consequently,
we believe that this analysis will also contribute significantly
to understanding the challenge of generalisation in deepfake
detection.

In this study, we carry out a comprehensive compar-
ative analysis of several widely recognised deep neural
network architectures for image and video recognition,
aiming to assess their efficacy in detecting deepfakes.
Our primary goal is to determine which among these
models achieves superior performance on unseen, out-of-
distribution data, i.e., exhibit impressive generalisation capa-
bility. The models selected for our study comprise of both
Convolutional Neural Networks (CNNs) and Transformer
models. The rationale behind incorporating transformer
models is rooted in their recent notable achievements
across a spectrum of computer vision tasks such as image
classification [14], [15], [16], object detection [17], [18],
image segmentation [19], video classification [20], multi-
modal learning [21], [22], 3D analysis [23], [24] and
beyond [25].
For our analysis we train all participating models on four

deepfake detection datasets (one-by-one) and evaluate them
in both intra-dataset 1 and inter-dataset 2 configurations.
Additionally, we evaluate the difficulty level of each bench-
mark and investigate whether a more challenging benchmark

1models trained and evaluated on the same dataset
2models trained on one dataset and evaluated on another dataset

leads to better generalisation performance on unseen data.
We train participating models on all four datasets twice:
first, without any image augmentations and then with various
image augmentations to find out if they improve models’
performance.

Recently, transformer models trained using self-supervised
methods have demonstrated the ability to generate robust
representations from both textual and visual data [26],
[27], [28]. Resulting models have been shown to achieve
excellent performance on new tasks oftenwithout the need for
additional training or with minimal training on downstream
tasks [19], [26], [27], [29], [30]. Owing to this, we also
analyse Vision Transformer (ViT) architecture pre-trained
using two well-known self-supervised learning strategies:
DINO [26] and CLIP [27]. To study these models and
find out how good the self-supervised feature representations
are, we use self-supervised ViT-Base models (DINO and
CLIP) as feature extractors and train a classification head
on top of them. It is important to note that we only train
the classification head and freeze the weights of the feature
extractors.

In summary, our study aims to provide insights into various
aspects, including: (1) identifying the most effective model
architectures for detecting deepfakes among those being
tested, (2) pinpointing the model with the highest ability to
adapt to new and unseen data, (3) assessing the difficulty
of different datasets for model training, (4) determining the
dataset that best facilitates generalisation to unseen data,
(5) evaluating the performance of self-supervised training
strategies and (6) examining the impact of augmentations on
enhancing model performance.

This paper is organised as follows. In Section II we
present literature review on the topic of deepfake detection.
Section III presents the proposed framework. In Section IV
we present the results and discussion of our findings and
finally Section V concludes this study by summarising our
analysis and presents future research direction.

II. LITERATURE REVIEW
Since recently quite a large number of research studies
focused on deepfake media detection have been proposed.
Most studies employ CNN models trained on large amounts
of data in order to detect deepfake media. The proposed
studies also employ different strategies e.g., novel augmen-
tation techniques [13], hybrid models [9], [31], biological
features [32], multi-modal features [6], [9], temporal features
along with spatial information [9], [10], [33], recurrent
networks, transformer models [8], [9] etc to detect deepfake
images/videos while trying to increase the models’ gener-
alisation capabilities. Below we present some well-known,
as well as some of the recently proposed deepfake detection
studies. We chose to review studies in this section that share
similarities with ours, focusing on common aspects such as
the selection of detection models, datasets used to train and
evaluate the proposed models.
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A. CNN BASED DETECTION MODELS
In 2019, Rossler et al. released FaceForensics++, a dataset
for deepfake detection [34]. The dataset, containing over
1.8 million manipulated images was made publicly available.
Using the proposed dataset authors also conducted an
extensive analysis of several data-driven deepfake detection
methods. The methods included traditional machine learning
models (SVMs) trained on handcrafted features, as well
as deep learning architectures including MesoNet [35]
and XceptionNet [36]. By conducting a thorough analysis,
authors discovered that a vanilla deep CNNXceptionNet [36]
outperforms other participating models significantly in the
context of detection task on compressed low quality data.
Authors additionally demonstrated via experiments and sur-
veys that the data-driven models even outperform humans in
detecting deepfakes. However, the paper lacks a cross-dataset
analysis of the models, which could have been beneficial in
understanding the generalisation performance across diverse
and unseen domains.

In [33] Sabir et al. proposed a deepfake detection system
by focusing on the temporal information present in video
streams to exploit temporal discrepancies across multiple
frames in fake videos. In order to analyse temporal data
authors employed a recurrent convolutional architecture [37],
[38] comprising of a CNN for feature extraction and a
BiDirectional Recurrent Neural Network (BiDir RNN) to
analyse temporal information present in videos. Specifically,
authors studied two different CNN architectures, ResNet [39]
and DenseNet [40] for feature extraction. The authors
also employed a carefully crafted pre-processing regime to
pre-process facial frames before inputting them into the
models. The models were evaluated using the renowned
FaceForensics++ deepfake detection benchmark [34], show-
ing excellent results in an intra-dataset evaluation regime.
Authors do not carry out a cross-dataset analysis in their
study.

Ciftci et al. [32], shifted away from traditional image
features and proposed to employ biological signals (i.e.,
photoplethysmography or PPG signals which detects subtle
alterations in color and motion within RGB videos) to train
their models. The proposed model was comprised of a CNN,
as well as a Support Vector Machine (SVM). The CNN
and SVM models made their individual classifications on
the provided feature sets, which were then fused together
in order to get a final classification score. The proposed
deepfake detection scheme achieved promising results when
tested using both intra-dataset as well as inter-dataset
configurations on multiple different deepfake detection
benchmarks including, CelebDF [41], FaceForensics [42] and
FaceForensics++ [34] datasets.

In study [6], Zhu et al. introduced a deepfake detection
framework that leveraged 3D face decomposition features
for detecting deepfakes. The authors demonstrated that
the fusion of 3D identity texture and direct light features
notably enhanced the detection performance, simultaneously
promoting the model’s generalisation ability when assessed

across different datasets. The training of the detection model
involved both a cropped facial image and its corresponding
3D features. Authors employed XceptionNet [36] for feature
extraction. The study also provides an extensive analysis of
various feature fusion strategies. The proposed model was
trained on the FaceForensics++ [34] benchmark and sub-
sequently evaluated on three datasets: (1) FaceForensics++,
(2) Google Deepfake Detection Dataset [43] and (3)
DFDC [44] dataset. The reported evaluation statistics showed
promising results across all three datasets, highlighting the
model’s robust generalisation capability in comparison to
previously proposed deepfake detection methods.

B. TRANSFORMER BASED DETECTION MODELS
In study [9], Khan et al. introduced the utilisation of trans-
former architecture for the purpose of deepfake detection,
presenting two novel models: (1) Image Transformer and
(2) Video Transformer. Both models were trained using
3D face features [45] in addition to standard cropped face
images. Incorporating 3D face features was intended to obtain
aligned facial details, thereby enhancing the learning process.
The combination of these aligned features with conventional
cropped face data contributed to the acquisition of pertinent
facial details. To harness temporal information within videos,
authors modified the standard Vision Transformer (ViT) [14]
to accommodate multiple successive face frames. Notably,
the proposed model exhibited incremental learning capa-
bilities, accommodating new data without catastrophically
forgetting prior knowledge. Authors conducted comprehen-
sive evaluations of their models across prominent deepfake
detection benchmarks, including FaceForensics++ [34],
DFDC [44] and Google DFD [43]. Their models showed
impressive performance across all these datasets, underscor-
ing their efficacy in deepfake detection.

Wang et al. [8] introduced a Multi-modal Multi-scale
TRansformer (M2TR) model, which was capable of process-
ing patches of multiple sizes to identify local abnormalities in
a given image at multiple different spatial levels. M2TR also
utilised the frequency domain information along with RGB
information using a sophisticated cross-modality information
fusion block to detect forgery related artifacts in a better
way. Through extensive experiments authors established the
effectiveness of M2TR and showed their model outperforms
other participating deepfake detection models by acceptable
margins.

Coccomini et al. in [31] proposed a video deepfake
detection model based on a hybrid transformer architecture.
Authors used an EfficientNet-B0 to extarct image features.
The extracted features were then used to train two different
types of Vision Transformer models in their study, e.g.,
(1) Efficient ViT and (2) Convolutional Cross ViT. The
latter was comprised of two branches, i.e., S-branch for
processing images with smaller patch sizes (7 × 7) and
L-branch for processing images using a larger patch size
(64×64), thereby possessing a wider receptive field. Through
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FIGURE 1. The proposed framework. The process involves several steps, starting with the extraction and cropping of face frames from videos,
followed by augmentation, normalisation and resizing. The pre-trained models are then used as feature extractors, with a new classification head
(linear layer) added on top. During training, the weights of both the feature extractor and the classification head are updated for supervised
models, while only the newly added classification head is updated for self-supervised models. All models are evaluated through both intra-dataset
and inter-dataset evaluation strategies to test their performance and generalisation capabilities. For image models, the input data is a single
cropped face image, while for video models, it is a tensor containing eight consecutive cropped face images from a given video..

experimentation on DFDC [44] dataset, authors established
that the hybrid model comprising of EfficientNet-B0 feature
extractor and Convolutional Cross ViT achieved the best
performance scores as compared to other models that they
tested in their study. They also carried out cross-dataset
analysis on FaceForensics++ [34] showing encouraging
results.

Zhao et al. [10] propose an Interpretable Spatial-Temporal
Video Transformer (ISTVT) for deepfake detection was
proposed. The proposed model incorporates a novel decom-
posed spatio-temporal self-attention as well as a self-subtract
mechanism to learn forgery related spatial artifacts and
temporal inconsistencies. ISTVT can be also visualise the dis-
criminative regions for both spatial and temporal dimensions
by using the relevance propagation algorithm [10]. Extensive
experiments on large-scale datasets were conducted, showing
a strong performance of ISTVT both in intra-dataset and
inter-dataset deepfake detection establishing the effectiveness
and robustness of proposed model.

Through this literature review it becomes apparent that
the research community actively employs deep learning
models along with other techniques to try develop robust
and efficient deepfake detectors. However, while carefully
reading the research studies it also becomes noticeable that
the models do not always perform as expected when tested
on unseen, out-of-distribution data. In addition to this, there
is a lack of comparative studies which aim to identify which
specific family of deep learning architectures is better for
the task of deepfake detection. Furthermore, it is not easy
to determine without thorough experimentation that which
of the well-known datasets offer improved generalisation
potential to the models, i.e., allow models to better handle
new and unseen data.

To address this, we study some of the most frequently used
architectures (EfficentNets, XceptionNet, Vision Transform-
ers) in the literature of deepfake detection in this research.
We also employ widely known datasets for experimentation
and try to find out the datasets offering best generalisation
capabilities to the models. We also analyse some of the
understudied approaches for deepfake detection i.e., we train
and evaluate the performance of self-supervised models on
deepfake detection and compare their performance with that
of the supervised models.

III. THE PROPOSED FRAMEWORK
The workflow followed in this study for training and
evaluating the models is illustrated in Figure 1. On top we
show the training pipeline where we start by extracting and
cropping faces from videos. The cropped face frames are then
augmented, normalised and resized before being fed to the
model for training. We load pre-trained models as feature
extractors, i.e., we remove the last layer from the loaded
models and add a new classification head (linear layer) on top.
For supervised models, during training we update weights of
both feature extractor as well as the classification head.

For self-supervised models, our objective is to assess the
quality of the representations they produce since they were
initially trained through self-supervised training strategies.
Consequently, for these models we only update weights
of the newly added classification head while maintaining
the frozen weights of the feature extractor backbone. This
strategy enables us to directly compare the self-supervised
feature representations with those obtained from supervised
models. Since we deal DINO and CLIP as feature extractors,
we follow the guidelines provided in their respective code
repositories to extract features.
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TABLE 1. Number of real and fake images used to train, validate and test
our image models.

For DINO, we extract features from the last four encoder
blocks, as this configuration yielded optimal results. On the
other hand, for CLIP, we exclusively extract features from
the last encoder block. We then feed these features into the
classification head.

For intra-dataset evaluation we evaluate models on the
same dataset (test set) it was trained on, e.g., model trained
on dataset D1 is evaluated on the test set of D1. The primary
objective of intra-dataset evaluation is to discern whichmodel
achieves the highest performance score as compared to other
participating models on each of the dataset. Moreover, this
evaluation will offer insights into which dataset presents the
greatest learning challenge for the models and which dataset
is comparatively easier to learn.

In the context of inter-dataset evaluation, we evalu-
ate models that were trained on one dataset across the
remaining three datasets. For instance, a model trained
on dataset D1 is tested on D2, D3 and D4 datasets.
The objective of inter-dataset evaluation is two-fold: first,
to investigate the models’ ability to generalise across
datasets and second, to understand how effectively the
training dataset empowers models to generalise well on
unseen data.

The input data for training and evaluating image models
is a single face cropped image ([3, 224, 224]), whereas,
input data for training and evaluating video models is
a tensor containing 8 consecutive face cropped images
([8, 3, 224, 224]) from any given video.

A. DATASETS
In this study we train and evaluate several differ-
ent deep learning models on four deepfake detection
datasets/benchmarks including FaceForensics++ [34],
CelebDF-V2 [41], DFDC [44] and FakeAVCeleb [46]. All
of the four datasets comprise of real and fake videos,
where fake videos are generated using different deepfake
generation methods. In subsequent paragraphs, we present
a brief description of these datasets.
• FaceForensics++ [34] is one of the most widely studied
deepfake detection benchmarks. It comprises of 1000 real
video sequences (mostly from YouTube) of mostly frontal
faces andwithout any occlusions. These real videos were then
manipulated using four different face manipulation methods:
(1) FaceSwap [47], (2) Deepfakes [48], (3) Face2Face [49]

and (4) NeuralTextures [50] to have four subsets. Each
subset comprises of 1000 videos each. In total, the dataset
contains 5000 videos, i.e., 1000 real and 4000 fake videos.
FaceForensics++ contains videos having three different
resolutions, i.e., (1) Raw, (2) High-Quality and (3) Low-
Quality. In our study, we experimented the high-quality
videos. FaceSwap and Deepfakes subset contains videos
generated using what is called, face swapping. As the name
suggests, face of the target person is replaced with the face
of source person and results in transferring the identity of the
source person onto the target. Face2Face and NeuralTextures
subsets are generated by a different process called, face re-
enactment. In contrast to face swapping, face re-enactment
swaps the faces of source and target, however, keeps the
original identity of the target face.
• CelebDF-V2 [41] contains 5639 fake and 590 real videos.
The real videos are collected from YouTube and contain
interview videos of 59 celebrities having diverse ethnic back-
grounds, genders, age groups. CelebDF-V2 dataset comprises
of fake videos generated using Encoder-Decoder models.
Post-processing operations are also employed to circumvent
color mismatch, temporal flickering and inaccurate face
masks.
• Deepfake Detection Challenge (DFDC) dataset [44]
comprises of around 128k videos, out of which, around
104k are fake. Similar to the FaceForensics++, the DFDC
also comprises of videos generated using more than one
face manipulation algorithms. Five different methods were
employed to generate fake videos, namely, (1) Deepfake
Autoencoder [44], (2) MM/NN [51], (3) NTH [52], (4)
FSGAN [53] and (5) StyleGAN [54]. In addition to these,
a random selection of videos also underwent a simple
sharpening post-processing operation which increases the
videos’ perceptual quality. Unlike FaceForensics++ dataset,
the DFDC dataset also contains videos having undergone
audio-swapping. However, in this study we do not use audio
features to train and evaluate ourmodels. Since DFDC dataset
is huge as compared to other participating datasets, we only
use a subset of the full dataset to train and evaluate our models
i.e., to keep the number of training, validation and test data
nearly similar. For training we use roughly around 19.5k
(around 16.5k fake and 3k real) randomly selected videos
from which we get 100k face cropped images (50k real and
50k fake). We use 20k images as validation set. For testing
the models we use 4000 face frames randomly selected from
3500 (3200 fake and 300 real) videos.
• FakeAVCeleb [46] is the most recently proposed dataset
as compared to the three other datasets used in this
study. FakeAVCeleb dataset contains 19.5k fake and
500 real videos. This dataset also contains audio modal-
ity and manipulates audio as well as video content
to generate deepfake videos. For video manipulation,
FaceSwap [55] and FSGAN [53] algorithms are used. For
audio manipulation, a real-time voice cloning tool called
SV2TTS [56] and Wav2Lip [57] are used. The dataset is
divided into four subsets, i.e., (1) FakeVideo/FakeAudio,
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FIGURE 2. Visual representation of the models used for analysis in this study. Due to space limitations, only basic, key concepts for each
model are illustrated instead of the whole model. For optimal understanding of the essential components of each model, we recommend
viewing this figure in color and at a higher magnification.

(2) RealVideo/RealAudio, (3) FakeVideo/RealAudio and
(4) RealVideo/FakeAudio. In this study, we only employ
2 of the mentioned subsets to train our models, i.e., (1)
FakeVideo/FakeAudio and (2) RealVideo/RealAudio.

B. DATASET PREPARATION
The data preparation process was notably time-consuming
due to two main factors: firstly, the datasets being substantial
in size and secondly, some selected datasets lacking clear
dataset preparation guidelines. For instance, FakeAVCeleb

does not provide predefined train/validation/test splits.
Consequently, we had to manually develop a strategy to
effectively partition the dataset into train, validation and test
sets. Ensuring that a single identity didn’t appear in multiple
splits added another layer of complexity to this task.

Additionally, all the datasets exhibit an imbalance, with a
significantly higher number of ‘‘fake’’ videos compared to
‘‘real’’ ones. To address this, we took steps to ensure that
the resulting datasets of cropped face images are balanced by
extracting more frames from real videos as compared to fake
videos. We also make sure to include at least one frame from
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every video selected for training and evaluation. You can refer
to Table 1 for detailed information regarding the number of
face frames used for training, validation andmodel evaluation
from each dataset.

The data provided in Table 1 clearly illustrates that the
training and validation sets for FakeAVCeleb contain a
relatively smaller number of frames. This discrepancy can
be attributed to the dataset containing a limited count of
real videos (only 500), while the number of fake videos
is substantially larger (19500). As the video clips are of
shorter duration, this translates to 47, 808 frames being
extracted from the chosen 300 real videos for the training
set and 5360 frames from 100 videos for the validation set.
Despite this slight variance in the size of the training and
validation sets, we assume that it has a minimal impact on
the models’ performance. This assumption is supported by
our observations from training and evaluating the models
using even fewer frames (approximately 25k real and 25k
fake frames), which resulted in no significant deviations in
the final test scores.

In addition, the test set for CelebDF-V2 contains fewer
frames for the same underlying reason - the test set of the
dataset includes only 50 real and 50 fake videos. Due to this,
we were only able to extract a total of 2000 frames from this
set of 100 test videos.

C. PRE-PROCESSING AND AUGMENTATIONS
We adopt two distinct approaches to train our models
in this study. Initially, we train models without applying
any image augmentations. Afterwards, we train the models
using a range of randomly chosen image augmentations,
such as horizontal flips, affine transformations and random
cut-out augmentations. All the cropped face images are
then normalised according to the same method which was
originally used for pre-training on the ImageNet [58]. For
augmentations, we utilise the imgaug3 library.

D. MODELS
We opt to explore six supervised image classification models,
equally divided into three CNNs and three transformer-based
models. Furthermore, we assess two variations of transformer
models trained via self-supervised methods, namely (1)
DINO [26] and (2) CLIP [27]. In addition to the image
classificationmodels, our study encompasses the training and
evaluation of two distinct video classification models: (1)
ResNet-3D [59], a CNN model for video classification and
(2) TimeSformer [20], a transformer model tailored for video
classification.

We choose models based on their performance on the
ImageNet benchmark [58], their parameter count and, in the
case of certain models like Xception [36] and Efficient-
Net [44] their established performance in deepfake detection,
as reported by some of the previous studies [34], [44].

3https://imgaug.readthedocs.io/en/latest/

1) IMAGE MODELS
Deepfake detection is typically treated as an image clas-
sification problem. In this context, deep learning models
are trained and evaluated on images independently, dealing
with each image on its own. This differs from video-based
deepfake detection, where models are trained and tested on
consecutive video frames to capture temporal discrepancies
between frames along with spatial cues within each frame.

Below, we provide a brief introduction to the imagemodels
employed in this study.

• Xception [36] is a convolutional neural network (CNN)
architecture that builds upon the Google’s Inception CNN
architecture [60]. It distinguishes itself by using depth-wise
separable convolutions in place of conventional Inception
modules. Unlike standard convolutions, which are applied
across all N channels at once, depth-wise convolutions
operate sequentially on individual image channels. This
characteristic reduces Xception’s trainable parameters com-
pared to other prominent deep CNN models. Despite this
reduction, Xception’s performance remains on par with
models having more parameters, as evidenced on the Ima-
geNet benchmark [58]. Furthermore, its smaller parameter
count enhances resistance to overfitting on unseen data and
decreases computational load, making it an efficient choice.
Figure 2A illustrates the concept of depth-wise convolution,
the fundamental building block of this network. Xception not
only demonstrates excellent performance on the ImageNet
benchmark but also boasts significant achievements in
previous deepfake detection studies [6], [34], [44]. Based on
its proven track record in this domain, we include Xception
for analysis in this study.
• Res2Net [61] is a CNN architecture which is built
upon the widely adopted ResNet architecture [39]. Res2Net
introduces a new building block named the ‘‘Res2Net Block,’’
which replaces the conventional bottleneck residual blocks
utilised in ResNet models. By operating at a granular level,
the Res2Net architecture captures multi-scale features and
extends the receptive field range for every network layer.
As a result, the network becomes more potent and efficient,
leading to enhanced performance across diverse computer
vision tasks, including image classification, segmentation and
object detection [61]. The innovative Res2Net block can be
seamlessly integrated into other leading-edge backbone CNN
models, such as ResNet [39], DLA [62], BigLittleNet [63]
and ResNeXt [64]. We visualise the Res2Net block in
Figure 2B. In this study, we employ Res2Net-101 to explore
whether multi-scale CNN features contribute to improved
deepfake detection performance. Additionally, we investigate
whether these enhancements extend to cross-dataset perfor-
mance, gauging the model’s generalisation capability.
• EfficientNet [65] belongs to the EfficientNet family of
CNN architectures. In their paper, the authors propose
a scaling technique that uniformly adjusts depth, width
and resolution using a compound coefficient. The central
concept revolves around systematically scaling the model’s
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architecture and parameters to achieve better efficiency.
Unlike the conventional approach of arbitrarily scaling
individual dimensions, the proposed strategy employs a
consistent set of scaling coefficients across all dimensions.
Consequently, the architecture offers a family of seven
models spanning various scales [65]. Impressively, Efficient-
Net achieves top-notch performance across several image
classification benchmarks, while maintaining computational
efficiency that surpasses other architectures like ResNet
and Inception [65]. In a manner similar to Xception,
a specific variant of EfficientNet, namely EfficientNet-
B7, has also demonstrated remarkable prowess in deepfake
detection tasks. Notably, the triumphant solution of the
Google-sponsored Deepfake Detection Challenge (DFDC)
was built upon the strengths of EfficientNet-B7 models [44].
Given this notable track record, we employ this model for
analysis in our study.
• Vision Transformer [66] belongs to the family of
transformer models which were initially designed for natural
language processing tasks [66]. In the realm of computer
vision, the Vision Transformer (ViT) emerged as a pioneer-
ing transformer-based architecture designed specifically for
image classification tasks [14]. ViT harnesses the power
of self-attention mechanisms to processes visual data. Its
methodology employs a simple yet powerful strategy, i.e.,
it divides images into smaller patches, which are then
flattened. These flattened patches are then enriched with
learnable positional embeddings, enabling them to retain
their spatial context within the original image. A special
classification token is added at the beginning of this input
to enable the transformer model for image classification
task. The input is fed to the transformer for processing.
At the end of processing, the added classification token
contains the representation of the entire image, which is
then fed to a multilayer perceptron which in the end outputs
probability scores for each class. This process empowers
the model to better capture the context and relationships
between different parts of the image. As a result, the network
effectively captures contextual nuances and interrelationships
across distinct segments of the image, achieving performance
comparable to state-of-the-art CNN models on the ImageNet
dataset, especially when trained on giant datasets like
ImageNet-21k or JFT-300M [14]. The ViT architecture is
visually depicted in Figure 2E. In our analysis, we ViT-Base
model for experimentation and subsequently compare its
performance against other models participating in the study.
• Swin Transformer [15] is a class of Vision Transformer
models. Swin Transformer architecture comes with a hier-
archical structure, utilising a shifted windows approach for
computing image representations. The shifted windowing
strategy enhances efficiency by confining self-attention
computation to non-overlapping local windows, while still
enabling cross-window connections. This hierarchical design
offers flexibility for modeling at different scales and main-
tains linear computational complexity concerning image

size. Swin Transformers achieve competitive performance,
comparable to other state-of-the-art image classification
models like EfficientNets [15], [65] and even outperform
Vision Transformers and ResNets [14], [39]. Not only limited
to image classification, Swin Transformers also excel in
tasks such as image segmentation and object detection [15].
Figure 2G provides an illustration of the window generation
and attention calculation process in Swin Transformers.
Because of the excellent performance Swin Transformer
achieve on ImageNet [58], we use it in this study. Specifically,
we employ Swin-Base variant for experimentation.
• Multiscale Vision Transformer [16] is another class
of ViT models. Unlike traditional ViTs, the MViTs have
multiple stages that vary in both channel capacity and resolu-
tion. These stages create a hierarchical pyramid of features,
where initial shallow layers focus on capturing low-level
visual information with high spatial resolution, while deeper
layers extract complex, high-dimensional features at a coarser
spatial resolution. This approach allows the network to
capture the context and relationships between different parts
of the image in a better way, which results in improved
performance on a broad range of computer vision tasks
including image classification and image segmentation [16].
A broad overview of the architecture of MViT is shown
in Figure 2C. Since MViTs are relatively new and achieve
excellent performance on different vision tasks, we employ
these in our study to analyse how well they perform on the
task of deepfake detection. We use MViT-V2-Base variant in
this study.
• DINO [26] is a self-supervised training method, which is
interpreted as self-DIstillation with NO labels. Authors show
that transformer models trained using DINO show interesting
properties, e.g., (1) self-supervised ViT features (DINO)
incorporate explicit visual informationwithin an image useful
for computer vision tasks such as semantic segmentation,
which does not come along as evidently with supervised ViTs
and also not with CNNs; (2) self-supervised ViT features are
also shown to achieve excellent performance when tested as
k-NN classifiers, attaining 78.3% top-1 on ImageNet with
a ViT-small architecture. For further details, we would like
to point readers towards the original DINO paper [26]. The
DINO training strategy is shown in Figure 2I. Inspired from
these findings, we also employ ViT-Base [14] architecture
trained using DINO [26]. In our study, we use the ViT-Base as
feature extractor and add a classification head on top.We only
train the added classification head on participating deepfake
detection datasets, while freezing the weights of the ViT-Base
feature extractor.
• Contrastive Language-Image Pre-Training (CLIP) [27]
is a neural network that has been trained on a diverse
set of (image, text) pairs in a self-supervised contrastive
manner. It has the ability to infer the most suitable text
excerpt for a given image using natural language, without
explicit supervision for this task. It exhibits zero-shot
capabilities similar to the ones exhibited by GPT-2/GPT-
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3 [67], [68]. In CLIP’s original research paper, authors show
that it achieves performance scores equivalent to the original
ResNet50 [39] CNNmodel when evaluated on ImageNet [58]
in a zero-shot fashion, i.e., even though CLIP does not use
any of the 1.28 million labelled examples from the original
dataset it achieves comparable performance as a ResNet50
model trained on ImageNet in a supervised manner. CLIP is
illustrated in Figure 2H. For more details on CLIP, we refer
readers to [27]. We employ a ViT-Base model trained using
CLIP as a feature extractor for our study. Similar to DINO,
we add a classification head on top of ViT-Base trained using
CLIP. For our analysis, we only train the classification head
and keep the CLIP ViT-Base features frozen i.e., we do not
update its weights during training.

2) VIDEO MODELS
We examined two different video classification models in
this paper: (1) ResNet-3D [59], a CNN-based video clas-
sifier and (2) TimeSformer [20], a transformer-based video
classification model. Our investigation includes assessing
the performance of both these models in both intra-dataset
and inter-dataset contexts across four renowned deepfake
detection benchmarks. Our decision to include video-based
models alongside image-based detection models stems from
our curiosity about the potential impact of temporal informa-
tion present in videos for the deepfake detection task.

• ResNet-3D [59] is based on the same principles as the
original ResNet architecture [39], but they are specifically
designed to work with 3D data, such as videos and volumetric
medical images. These models use 3D convolutions, instead
of 2D layers, for feature extraction. In addition to that,
ResNet-3D models generally use a large number of layers,
which allows them to learn complex and abstract features in
the data. ResNet-3Dmodels have been utilised for a variety of
computer vision tasks, including video classification, action
recognition and medical image segmentation [59], [69]. For
reference, we illustrate both 2D and 3D convolutions in
Figure 2F. We choose to employ ResNet-3D model for our
study because, (1) it is widely studied in regards of video
recognition and (2) pre-trained models are easily available.
We chose ResNet-3Dmodel pre-trained on 8 frames per video
to experiment in this study.
• TimeSformer [20] is a video recognition model based
on the transformer architecture. TimeSformer utilises
self-attention over space and time, instead of traditional
convolutional layers, or the spatial attention as employed
by ViT for image classification. The TimeSformer model
modifies the transformer architecture, generally used for
image classification, by directly learning the spatio-temporal
features from a sequence of frame-level patches. This is
accomplished by extending the self-attention mechanism
from the image space to the 3D space-time volume. Similar
to the Vision Transformer (ViT) model, the TimeSformer
employs linear mapping and positional embeddings to
interpret ordering of the resulting sequence of features.

In TimeSformer paper [20], authors experimented with
different self-attention techniques. Out of those techniques,
the ‘‘divided attention’’ technique which calculates temporal
and spatial attention separately within each block, was
found to perform better than other self-attention calculation
techniques and thus we choose to analyse the same
architecture in this study. Divided space-time attention is
illustrated in Figure 2D. We opt to evaluate TimeSformer
on the task of deepfake detection and compare it with
convolutional video classification network, ResNet-3D.
We also chose 8 frame per video version of the TimeSformer
model, same as the ResNet-3D model we described above.

E. EVALUATION METRICS
In order to analyse the performance of our models in
a comprehensive way, we employ multiple widely used
classification metrics, e.g., (1) LogLoss, (2) AUC and (3)
Accuracy. Below we briefly introduce the chosen evaluation
metrics.

1) LOGLOSS
LogLoss, also known as logarithmic loss or cross-entropy
loss, is used to measure the classification performance
of machine/deep learning models. LogLoss calculates the
dissimilarity between the predicted probability score with
the true label (0, 1 in case of binary classification). The
LogLoss score is computed as the negative logarithm of
the likelihood of the true labels given a set of predicted
probabilities. The range of the LogLoss function is from 0 to
infinity, with 0 representing the ideal outcome and higher
values representing worse outcomes.

L = −
1
N

N∑
i=1

[yi log(pi) + (1 − yi) log(1 − pi)] (1)

where L is the LogLoss, N is the total number of samples
in the dataset, yi is the true label of the i-th sample, pi is the
predicted probability for the i-th sample.

It is worth noting that Logloss is a widely used evaluation
metric in machine learning competitions such as Kaggle
competitions, as it gives a general idea of how good the
predictions of the model are. We use LogLoss as one of the
evaluation metrics in this study as other previously proposed
deepfake detection research studies often use it as their
evaluation metric and thus would allow us to compare our
results with them.

2) AREA UNDER THE CURVE (AUC)
AUC is another widely known metric used to evaluate
classification models. AUC basically refers to calculating the
entire two-dimensional area under the Receiver Operating
Curve (ROC). AUC gives hints about how well a model
has made a certain prediction. Quite understandably, the
higher the area falling under the ROC, i.e., AUC, the better
the performance of the model at discriminating between
‘‘real’’ and ‘‘fake’’ samples in our case. Most of the recently
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TABLE 2. This table presents a detailed account of efficiency metrics of
all the participating supervised models, including, the parameter count,
inference times both on CPU and GPU and the number of floating point
operations per second (FLOPs).

proposed deepfake detection studies employ AUC as the
evaluation metric to study the performance of their models.

Note that the ROC curve is created by varying the threshold
used to make predictions from 0 to 1, so the AUC provides
a summary of the model’s performance across all possible
thresholds.

3) ACCURACY
Accuracy is another prominent classification metric. Accu-
racy score is basically the measure of correct predictions
made by a model in relation to all the predictions made
by the model. Accuracy does not indicate how well a
model has made a certain classification, as was the case
with LogLoss and AUC. Accuracy score can be obtained
by dividing the number of correct predictions by total
predictions.

It is worth noting that accuracy is the proportion of
correctly classified samples out of the total number of
samples. It is a common evaluation metric used in binary
classification tasks, however, it can be misleading in cases
where the classes (real, fake) are imbalanced, or if the cost
associated with the false positives and false negatives is
different. In such cases, other evaluation metrics like F1
score, precision, recall, or AUC may provide a more accurate
evaluation of the classification model’s performance. In our
study however, since we have balanced number of samples
both for real and fake classes, we can use accuracy as one of
the evaluation metrics.

4) EFFICIENCY COMPARISON
To gain a comprehensive understanding of models’ perfor-
mance in deepfake detection, we conduct an in-depth analysis
using three distinct classification performance metrics out-
lined in earlier sections. Additionally, we provide efficiency
metrics (see Table 2) for each model to offer insights into
the trade-off between a model’s effectiveness in detecting
deepfakes and its efficiency in real-world deployment. This

analysis highlights the financial implications of deploying
detectionmodels on cloud services, emphasising the trade-off
between efficiency and detection performance. For example,
while models like Xception or ViT demonstrate high
efficiency (on GPU), the forthcoming sections show that
slower, more heavy models often outperform faster, lighter
models in deepfake detection. For visual depiction of these
efficiency scores, please see Figure 12 and 13.

We employ fvcore4 library to compute GFLOPs for our
models. While various libraries exist which allow GFLOPs
measurement, it is crucial to acknowledge that results may
exhibit slight variations.

To determine CPU and GPU inference times, we execute
inference on 300 random images and then calculate the
average time spent on each image in milliseconds. For
GPU, a warm-up phase precedes inference, involving the
processing of 10 images to ensure optimal GPU performance
before the actual inference on 300 images commences. Our
machine is equipped with an RTX 3080 GPU, Ryzen 5800X
CPU and 32GB RAM.

F. IMPLEMENTATION DETAILS
We use PyTorch5 framework to facilitate the training and
testing of our models. In our training approach, we employ a
batch size of 16 for imagemodels and 4 for videomodels. The
learning rate remains constant at 3×10−3 for both image and
video models. Our chosen loss function is CrossEntropyLoss
and we utilise Stochastic Gradient Descent (SGD) as the
optimiser for model training. Our models undergo training
for a span of 5 epochs, with final selection of the model
having lowest validation loss for subsequent testing and
evaluation purposes. For the evaluation stage, we use Scikit-
Learn library [70]. We use Scikit-Learn to calculate and
report LogLoss, AUC, Accuracy scores, as well as ROC and
DET6 (Detection Error Tradeoff) curves [70].
To facilitate our model implementations and leverage pre-

trained weights, we heavily rely on the PyTorch Image Mod-
els7 repository by Ross Wightman. Additionally, we adapt
certain code snippets from [26] to train linear classification
heads on top of self-supervised feature extractors like DINO
and CLIP.We augment images for training using the imgaug8

library.

IV. RESULTS
We conducted extensive experimentation and evaluation on
six image classification models and two video classifica-
tion models, which we specifically trained for deepfake
detection. These evaluations are conducted across four
different datasets, as outlined in Section III. The analysis
includes evaluating all models under both intra-dataset

4https://github.com/facebookresearch/fvcore
5https://pytorch.org/
6https://scikit-learn.org/stable/auto_examples/model_selection/

plot_det.html
7https://github.com/huggingface/pytorch-image-models
8https://imgaug.readthedocs.io/en/latest/
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TABLE 3. Intra-dataset performance comparison of image models. The table below presents scores achieved by image models when trained and
evaluated on FakeAVCeleb [46] dataset. Best results are highlighted in yellow.

TABLE 4. Intra-dataset comparison of image models. The table below presents scores achieved by image models when trained and evaluated on
CelebDF-V2 [41] dataset.

TABLE 5. Intra-dataset comparison of image models. The table below presents scores achieved by image models when trained and evaluated on
FaceForensics++ [34] dataset.

conditions (trained and evaluated on the same dataset) and
inter-dataset conditions (trained on one dataset and evaluated
on other datasets, excluding the training dataset). Subsequent
sections present the performance outcomes of all partic-

ipating models within both intra-dataset and inter-dataset
contexts.

In addition to the supervised models, our investigation
includes two vision transformer (ViT-Base) models that
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TABLE 6. Intra-dataset comparison of image models. The table below presents scores achieved by image models when trained and evaluated on
DFDC [44] dataset.

FIGURE 3. Performance (accuracy) comparison of participating models on
all datasets. The reported scores result in an intra-dataset evaluation.
Results in this figure are obtained by evaluating each model separately
on each dataset and averaging the resulting scores. In addition to this,
the figure presents the performance of each model trained with and
without the augmentations, along with their parameter count.

have been pre-trained using the self-supervised techniques
DINO [26] and CLIP [27], as previously outlined in
Section III. We then compare these two self-supervised
models against a supervised Vision Transformer (ViT) [14].
it is important to note that all three models - DINO, CLIP
and the supervised ViT - are all ViT-Base models. By training
a classification head on top of these three models, our goal
is to discern whether self-supervised features offer superior
representations in comparison to supervised features.

A. FAKEAVCELEB
FakeAVCeleb [46] is a newly released deepfake detection
dataset containing four different categories of videos as
given in Section III-A earlier. Since we focus only on visual

TABLE 7. This table compares the performance of all the participating
(supervised) models. We present scores after averaging the scores
(LogLoss, AUC, Accuracy) achieved by each model when evaluated in an
intra-dataset setting.

deepfakes in this study, we do not use the audio data (real
and fake) for training and evaluating the models. Thus out
of the four subsets of FakeAVCeleb dataset, we only use
two for our experiments i.e., (1) FakeVideo/FakeAudio, (2)
RealVideo/RealAudio.

We present scores of intra-dataset evaluation in Table 3
showing that all models perform pretty well in distinguishing
between fake and real faces. From Table 3, we can see
that all of the participating models achieved almost 99%
AUC and very low LogLoss score when tested in an intra-
dataset configuration. The numbers in Table 3 suggest that
FakeAVCeleb dataset is relatively easy and thus the models
can accurately distinguish between real and fake samples.

Table 11 reports results achieved by all the models when
trained on FakeAVCeleb and evaluated on the remaining
three datasets. From numbers reported in Table 11, it is
apparent that almost all of the models perform poorly on
all the other datasets. We can see that in terms of accuracy
scores, the models are making random guesses. LogLoss and
AUC scores are also not remarkably good in inter-dataset
evaluation.
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FIGURE 4. This figure presents t-SNE visualisations of the participating detection models. We chose the best performing models on all
datasets (with/without image augmentations).

For self-supervised models, the intra-dataset evaluation
scores are not as high as those achieved by the supervised
models, however, they are still not bad. This is under-
standable as these models aren’t trained in an end-to-end
manner, rather only the classification heads are trained on
frozen features, as previously mentioned. On this dataset,
DINO outperforms the other two models, i.e., CLIP and
supervised ViT, with a significant margin as indicated
in Table 8.

In an inter-dataset evaluation setting, self-supervised
models provide intriguing insights. Notably, DINO, trained
on the FakeAVCeleb dataset and evaluated on CelebDF-
V2 and FaceForensics++ datasets, demonstrates comparable
results to supervised image models. It is worth highlighting
that DINO achieves this performance while only training
the classification head, in contrast to supervised models that
undergo full training. Also, the results suggest that training
more complex models on easier datasets do not yield good
performance scores when tested on out-of-distribution data,

i.e., the models overfit training data. Table 12 presents these
results.

To sum up, the results given in Tables 3, 8, 10, 11 and 12
we can infer that FakeAVCeleb dataset is not challenging
enough for the models to learn and is fairly easy to distinguish
between fake and real samples for both supervised and self-
supervised models. In addition to that, this dataset does not
enhance the models’ ability to learn robust distinguishing
features between real and fake faces, or in other words,
it lacks at integrating the generalisation capability into the
models, as is apparent from Tables 10, 11 and 12.

B. CELEBDF-V2
Table 4 presents the performance of supervised models when
trained and evaluated on CelebDF-V2 [41] dataset. Same as
it was the case with FakeAVCeleb dataset, almost all of the
participating models achieve excellent scores i.e., more than
97% accuracy and more than 99% AUC score, while having
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TABLE 8. This table compares the performance of all the participating (self-supervised) models when evaluated in an intra-dataset setting. The statistics
of this table are illustrated in Figure 10.

FIGURE 5. Performance (accuracy) comparison of two self-supervised ViT
models and one supervised ViT. The reported scores result in an
intra-dataset evaluation. Results in this figure are obtained by evaluating
each model separately on each dataset and averaging the resulting
scores. In addition to this, the figure presents the performance of each
model trained with and without the augmentations. All of of the three
models have the same amount of trainable parameters since they all are
ViT-Base models and the only difference is the pre-training schemes used
to train the models.

a very small LogLoss. We can thus infer that the models
quite comfortably learnt to discriminate between real/fake
samples of the CelebDF-V2 dataset, similar to FakeAVCeleb
dataset.

To gauge the extent to which this dataset aids models
in acquiring robust features for enhanced generalisation,

TABLE 9. This table compares the performance of the self-supervised
models. We present scores after averaging the scores (LogLoss, AUC,
Accuracy) achieved by each model on the four datasets, when evaluated
in an intra-dataset setting. In this table, Supervised refer to ViT-Base
model pre-trained using supervised training scheme. DINO refers to
ViT-Base model pre-trained using self-supervised scheme proposed
in [26] and CLIP refers to ViT-Base pre-trained using self-supervised
scheme prposed in [27]. All of these ViT-Base models are used as feature
extractors, where we only train a classification head on top of each of the
feature extractor and freeze the weights of feature extractors.

we carry out extensive inter-dataset evaluation involving all
participating models trained on CelebDF-V2. The outcomes
of this evaluation are presented in Table 13. Surprisingly
similar to the observations from models trained on the
FakeAVCeleb dataset and assessed on other datasets, the
models trained on CelebDF-V2 and subjected to inter-dataset
evaluation also display suboptimal performance. This out-
come could possibly be attributed to CelebDF-V2 not being
particularly challenging for the models to differentiate,
as they almost flawlessly categorise every real/fake sample.
Nonetheless, this dominance in classification also renders the
models less adept at handling unseen data, as evidenced by
the performance metrics detailed in Table 13.

The evidence of CelebDF-V2 being less challenging to
learn is further substantiated by the outcomes obtained from
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FIGURE 6. CBAM visualisations of the supervised image models.

the self-supervised models as illustrated in Table 8. The
numbers clearly demonstrate that even when training merely
a classification head on feature extractors that remain frozen,
models still manage to achieve commendable results. For
inter-dataset evaluation, self-supervised models trained on
CelebDF-V2 and tested on the other datasets yield outcomes
akin to those of supervised models, but in some cases,
e.g., for DFDC self-supervised models show a considerable
performance drop. For additional details, kindly consult
Tables 13 and 14.

C. FACEFORENSICS++

The performance metrics for all supervised models when
trained and evaluated on the FaceForensics++ [34] dataset

are presented in Table 5. These results are noticeably less
favorable compared to those achieved with the previous
datasets, FakeAVCeleb and CelebDF-V2. Few models man-
aged to exceed 95% accuracy and LogLoss scores are
also less impressive in comparison. The metrics imply that
this dataset presents a relatively intricate challenge for the
models to differentiate between real and fake samples.
The self-supervised models also encounter difficulties in
achieving good scores on the FaceForensics++ dataset,
as evident from the numbers in Table 8. This reaffirms
the notion that accurately distinguishing between fake
and real faces in the FaceForensics++ dataset poses a
formidable task. This prompts us to question whether a more
demanding dataset corresponds to enhanced generalisation
capabilities.
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FIGURE 7. Performance (accuracy) comparison of participating models evaluated using inter-dataset scheme. Results in this figure are obtained by, (1)
evaluating each model trained on one dataset on each of the remaining datasets and (2) averaging the achieved scores, i.e., add the 3 accuracy scores
and divide by 3.

Consequently, we move forward with evaluating all
supervised models trained on the FaceForensics++ dataset
using an inter-dataset evaluation framework. The insights
from this evaluation are outlined in Table 15. The models
now exhibit satisfactory performance even when confronted
with data originating from previously unseen domains. This
contrasts with models trained on the FakeAVCeleb and
CelebDF-V2 datasets, which tend to exhibit comparatively
poor generalisation capabilities. To illustrate, the assessment
of MViT trained on FaceForensics++ and evaluated on
the FakeAVCeleb dataset yields an accuracy exceeding
80% and an AUC score exceeding 90%. Furthermore,
not only on the FakeAVCeleb dataset, we can also see
encouraging performance from all models trained on this

dataset and evaluated on others. The results in Tables 15
and 16 support the statement that more challenging datasets
mean better generalisation capability. But we have to
further re-enforce this statement after evaluating the mod-
els trained using DFDC [44] dataset in the upcoming
section.

D. DFDC
DFDC is one of the biggest and widely adopted deep-
fake detection benchmarks. We present intra-dataset eval-
uation scores of our models trained and evaluated on
DFDC in Table 6. Res2Net-101 turned out to be the
best model in this evaluation, managing to achieve more
than 84% accuracy score, 93% AUC score on the DFDC
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TABLE 10. This table compares the performance of all the participating (supervised) models evaluated in an inter-dataset setting. Results in this table are
obtained by, (1) evaluating each model trained on one dataset on each of the remaining datasets and (2) averaging the achieved scores, i.e., add the
3 accuracy scores and divide by 3. Figure 7 illustrate the statistics of this table.
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TABLE 11. Inter-dataset evaluation scores of models trained on FakeAVCeleb [46] dataset and evaluated on the remaining three datasets.

dataset. Self-supervised models also achieve relatively low
scores when trained and evaluated on DFDC, as apparent
from Table 8. This establishes that DFDC is comparably
more challenging dataset out of all the four datasets in
this study.

In Table 17 we present inter-dataset evaluation scores
achieved by the supervised models trained on DFDC dataset.
It is evident from the numbers that the models trained using
DFDCdataset still achieve acceptable performance on unseen
data, as compared to the scores achieved by the models
which were trained on FakeAVCeleb and CelebDF-V2. Also,
by looking at the results now, we can affirm the statement
that models trained using more challenging datasets seem to
achieve better results. This finding is evident from Tables 10,
15, 16, 17 and 18.

E. DISCUSSION
1) SUPERVISED MODELS
In Figure 3, we illustrate a comparison of all participat-
ing supervised models based on their attained accuracy
scores (averaged) in an intra-dataset evaluation context.
The visualisation clearly indicates that there exists minimal
performance difference among the models. Across the
majority of cases, the models achieve accuracy levels ranging
from approximately 92% to 94%.

Notably, the figure underscores that image augmenta-
tions do not always yield significant performance gains.
For instance, XceptionNet, Res2Net-101, MViT-V2-Base
and EfficientNet-B7 display superior performance when
trained without image augmentations, as compared to their
counterparts trained with augmentations. Nonetheless, the
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TABLE 12. Inter-dataset evaluation scores of self-supervised models fine-tuned on FakeAVCeleb [46] dataset and evaluated on the remaining three
datasets.

FIGURE 8. ROC curves of each of the model when evaluated on each of the 4 different participating
datasets in an intra-dataset evaluation setting.

divergence in accuracy scores between models trained with
and without image augmentations is generally modest, except
in the case of ViT. Specifically, the ViT trained with image
augmentations achieves an accuracy of 91.62%, whereas
the ViT trained without augmentations records an accuracy
of 88.63%. In addition to this, Figure 3 highlights that
transformer models consistently perform better when trained
using augmentations. Additionally, video models also exhibit
better performance when trained using image augmentations.
An important insight is that the best-performingmodel, Swin-

Base, attains its peak accuracy when trained with image
augmentations, further advocating for the incorporation of
augmentations in training protocols.

Furthermore, it is worth noting that the transformer
models (Swin-Base and MViT-V2-Base, TimeSformer)
demonstrate superior performance compared to their CNN
counterparts. Interestingly, the Res2Net-101 model also
achieves remarkable numbers in the intra-dataset evalu-
ation context, despite having roughly half the number
of parameters (43 million parameters) compared to the
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TABLE 13. Inter-dataset evaluation scores of models trained on CelebDF-V2 [41] dataset and evaluated on the remaining three datasets.

top-performing Swin-Base model (87 million parameters).
Figure 3 and Table 7 collectively indicate a valuable
observation: models equipped with multi-scale feature pro-
cessing capabilities, such as Res2Net, MViT-V2 and Swin
Transformer, exhibit the best performance among all the
models.

Moving towards inter-dataset analysis, we present the
outcomes attained by the supervised models when assessed
in an inter-dataset context through Figure 7. The figure show-
cases that the models exhibit noticeably reduced performance
levels in inter-dataset evaluation compared to intra-dataset
evaluation. This discrepancy is reasonable since detection
models tend to experience performance degradation when
confronted with data originating from unseen distributions.
However, the Figure 7 reports a useful finding: across all
datasets, as compared to CNN models the transformers
consistently emerge as the top-performing models. We refer

readers to Table 10 to examine the inter-dataset scores
achieved by models on each of the dataset.

We also visualise t-SNE plots of all the supervised models
in Figure 4. These visual representations illustrate how the
models cluster together faces from the same datasets in
close proximity to each other, contrasting with faces from
different datasets. The t-SNE plots also offer insights into
the relative difficulty of datasets, with a clear distinction
between the easier datasets (FakeAVCeleb and CelebDF-
V2) and the more challenging ones (FaceForensics++ and
DFDC), as evident in Figure 4.

Another notable observation is that image models tend
to perform the separation task more effectively compared
to video models. This is expected, considering our earlier
mention that video models typically require larger amounts
of training data (we trained both image and video models on
the same dataset in this study). As part of our future research,
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TABLE 14. Inter-dataset evaluation scores of self-supervised models fine-tuned on CelebDF-V2 [41] dataset and evaluated on the remaining three
datasets.

TABLE 15. Inter-dataset evaluation scores of models trained on FaceForensics++ [34] dataset and evaluated on the remaining three datasets.
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TABLE 16. Inter-dataset evaluation scores of self-supervised models fine-tuned on FaceForensics++ [34] dataset and evaluated on the remaining three
datasets.

TABLE 17. Inter-dataset evaluation scores of models trained on DFDC [44] dataset and evaluated on the remaining three datasets.
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FIGURE 9. DET curves of each of the model when evaluated on each of the 4 different participating datasets
in an intra-dataset evaluation setting.

TABLE 18. Inter-dataset evaluation scores of self-supervised models fine-tuned on DFDC [44] dataset and evaluated on the remaining three datasets.

we aim to explore video models on larger datasets to further
validate this hypothesis. Despite this, the t-SNE visualisations
reveal an interesting insight: while the video model ResNet-
3D may struggle to distinguish between real and fake faces
within the same dataset, it excels at effectively separating data
from different datasets.

In addition to that, for a better diagnosis of the models
we also visualise the predictions using Gradient-weighted
Class Activation Mapping (Grad-CAM)9 [71]. Figure 6

9https://github.com/jacobgil/pytorch-grad-cam

presents Grad-CAMs of the supervised image models on all
datasets. It is interesting to observe that all models, to varying
degrees, concentrate on different facial regions when making
predictions.

Furthermore, we provide the ROC, DET curves for the
participating models assessed in an intra-dataset context,
as illustrated in Figures 8 and 9 respectively. The corre-
sponding AUC scores reinforce the notion that FakeAVCeleb
and CelebDF-V2 datasets present less complexity to the
models in comparison to FaceForensics++ and DFDC
datasets. This underscores the idea that training the models
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FIGURE 10. ROC curves of self-supervised models trained and evaluated on each dataset using the intra-dataset evaluation scheme.
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FIGURE 11. DET curves of self-supervised models trained and evaluated on each dataset using the intra-dataset evaluation scheme.
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FIGURE 12. This bar chart highlights the efficiency of the supervised models in terms of inference time on both GPU and
CPU devices. It reveals that CNN models outperform transformer models, taking nearly half the time for processing a single
image frame on CPU. On GPU, the figure illustrates that all models achieve inference in less than 45 milliseconds at most.
ViT and Xception models are the fastest among other models on GPU inference speeds, taking less than 10 milliseconds to
process a single frame.

FIGURE 13. This figure illustrates the performance of supervised image models, showcasing both total parameters and the
number of floating-point operations per second (GFLOPs). The results align with the preceding bar chart, emphasising the
superior efficiency of CNN models, as compared to transformer models. it is important to note that video models, although
not depicted here, exhibit a significantly higher number of floating-point operations per second, acting as outliers in the
figure and slightly affecting its visual coherence. This disparity arises from the nature of video models processing more
data at once, specifically 8 image frames, compared to image models that handle only one image at a time.

on more challenging datasets, rather than easier ones,
enhances their generalisation capabilities for deepfake
detection.

The scores (LogLoss, AUC, ACC) reported in Tables 7
and 9 for each model are calculated by averaging the
individual scores achieved by that specific model on each

dataset. For example, s1, s2, s3, s4 are scores that a model
achieved on datasets d1, d2, d3 and d4.

2) SELF-SUPERVISED MODELS
In Figure 5 we show a similar comparison involving self-
supervised models. It is clear that DINO outperforms the
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other two models. A careful examination of the outcomes
in Tables 8 and 9 enables us to deduce that self-supervised
features, particularly DINO, yield superior feature repre-
sentations in comparison to CLIP and supervised ViT.
To strengthen this finding further, we illustrate the ROC and
DET curves in Figures 10 and 11 respectively.

3) THE OUTCOME
Answering the six questions that we posed at the beginning
of this study in Section I:

• identifying the most effective model architectures for
detecting deepfakes among those being tested - Ans:
Models equipped with multi-scale feature representation
capabilities, such as MViT-V2-Base, Res2Net-101 and
Swin-Base (hierarchical representations).
• pinpointing the model architectures with the highest ability
to adapt to new and unseen data - Ans: Upon examining
the tables, it becomes evident that transformer models
including Swin-Base, MViT-V2-Base and TimeSformer
achieve superior performance scores compared to other
models in the majority of cases..
• assessing the difficulty of different datasets for model
training -Ans: DFDC and FaceForensics++ datasets pose
greater challenges for the models to learn in comparison
to CelebDF-V2 and FakeAVCeleb datasets.
• determining the dataset that best facilitates generalisa-
tion to unseen data - Ans: Table 10 confirms that the
FaceForensics++ dataset promotes strong generalisation
of models to unseen data, with the DFDC dataset ranking
second in this regard.
• evaluating the performance of self-supervised training
strategies - Ans: From Tables 8 and 9, it is evident that
DINO outperforms the other two competing strategies in
intra-dataset evaluation across all datasets.
• examining the impact of augmentations on enhancing
model performance - Ans: Within the scope of this
study, the augmentations that we have employed have a
minimal effect onmodels’ performance i.e., in some cases,
augmentations help models achieve better performance,
while in other cases, they do not.

V. CONCLUSION
We conducted a comprehensive study to assess the effective-
ness of various image and video classification architectures
for deepfake detection. Models were initially pre-trained
using both supervised and self-supervised approaches and
then evaluated on four prominent deepfake detection datasets.
Our extensive experiments revealed that models adept
at processing multi-scale features, such as Res2Net-101,
MViT-V2 and Swin Transformer, consistently outperformed
others in intra-dataset comparisons. Notably, MViT-V2-
Base and Res2Net-101 achieved superior performance with
approximately half the parameters of the Swin-Base trans-
former model. Regarding generalisation across datasets,
transformer models consistently outperformed CNN models,

with FaceForensics++ [34] and DFDC [44] enhancing
generalisation capabilities.

Our investigation into models pre-trained using self-
supervised strategies showed that the ViT-Base model, pre-
trained using DINO [26], outperformed both supervised
ViT-Base and self-supervised CLIP [27] ViT-Base mod-
els. Additionally, our findings indicate that the selected
image augmentations lead to improved performance for
Transformer models, while offering comparably less notable
benefits for CNN models.
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