
NOTES AND INSIGHTS
Measuring the change in behavior of a system
with a single metric
William Schoenberg,a,b* Robert Eberleinb and Pål Davidsena

Abstract

Loops that Matter (LTM) provides a practical and comprehensive way to understand which feed-
back loops are driving model behavior at different points in time. LTM describes from which
loops the observed change in behavior across all stocks in the model originate. In this paper we
present a method to measure the magnitude of the change in behavior of all stocks in the model
based on net flow values, relative to the magnitude of change taking place across an entire obser-
vation (simulation) period. We call this new metric the “system change”. We then demonstrate
how our system change metric can be visualized using loop scores to highlight those loops that
are predominantly responsible for the changes in behavior exhibited by the model. This helps
analysts focus in on the feedback loops that are prime candidates for interventions to change the
model behavior.
Copyright © 2023 The Authors. System Dynamics Review published by John Wiley & Sons Ltd
on behalf of System Dynamics Society.
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The problem

Loops that Matter (LTM) is an algorithmic method for performing a “formal
assessment of dominant structure and behavior” (Duggan and Oliva, 2013)
applicable to models of any size and complexity (Schoenberg, 2020; Schoen-
berg et al., 2020, 2023). LTM is the first of the algorithmic methods,i devel-
oped to perform loop dominance analysis, that has been integrated within
commercially available system dynamics software (Stella Architect v2.0 and
later) and is, therefore, currently applied by practitioners as well as
researchers in the field, including Aboah and Enahoro (2022), Aboah and
Setsoafia (2022); Hovmand et al. (2022), Mumtaz et al. (2022), and Kliem
et al. (2021). LTM is unique among the behavior domain algorithmic
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iOther algorithmic methods are Eigenvalue-based methods—that is, Eigenvalue Elasticity Analysis
(Graham, 1977; Forrester, 1982; Eberlein, 1984; Saleh, 2002; Güneralp, 2006; Gonçalves, 2009; Saleh
et al., 2010; Kampmann, 2012; Moxnes and Davidsen, 2016; Oliva, 2016; Naumov and Oliva, 2018;
Oliva, 2020) and Pathway Participation Metric-based methods (Mojtahedzadeh, 1996; Mojtahedzadeh, 1997;
Mojtahedzadeh et al., 2004, Mojtahedzadeh, 2008; Mojtahededzadeh, 2011), including the Loop Impact
method (Hayward and Boswell, 2014; Sato, 2016; Hayward and Roach, 2017; Hayward and Roach, 2022).
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methods applied to formal loop dominance in that it defines and measures
loop dominance on a model-wide basis as opposed to within the context of a
single stock. Schoenberg et al., define loop dominance in their 2020 article
in the quote below:

[In LTM] We define loop dominance as a concept which relates to the entirety of
a model, as opposed to loop dominance being something that affects a single
stock. For loop dominance to apply to the entire model, we require that all
stocks are connected to each other by the network of feedback loops in the
model. For models where there are stocks that do not share feedback loops, we
consider each subcomponent of interrelated feedback loops individually, and
we refer to each model substructure as having a separate loop dominance pro-
file. [In LTM] Our measurement of loop dominance is specific to the particular
time period selected for analysis. We say that a loop (or set of loops) is dominant
if the loop(s) describe at least 50% of the observed change in behavior across all
stocks in the model over the selected time period.

Analysts using LTM often struggle with the lack of a formal definition for the
concept of “observed change in behavior across all stocks in the model”. For
clarity we will refer to this concept as the aggregate state change. The litera-
ture published to date has not specifically addressed the aggregate state
change and, in this paper, we will provide a computational definition along
with a description of visualization techniques for displaying this information.
We will then show how this can be combined with the results of LTM domi-
nance measures to help narrow the focus of the analysis to key time ranges.

Background on LTM

LTM computes three metrics which are used to measure loop dominance.
These three metrics were first elaborated in Schoenberg et al. (2020) and
were subsequently updated in Schoenberg et al. (2023) (the update first
appearing in Stella Architect version 2.1). The three metrics are the link
score, the loop score and the relative loop score.

The link score is a measure of the contribution and polarity of any causal
link from an independent to a dependent variable regardless of whether the
link contains an integration process or not. The link score is illustrated
below for the case where there are two inputs (x and y) to the dependent var-
iable z characterized by the equation z¼ f x,yð Þ. The link score for the link
x! z is written in a discontinuous form to reflect the implementation of the
calculation. Schoenberg et al. (2023) shows how to measure the link score
between a flow and a stock using the same process.

Equation 1: The link score for the link x to z for the equation z = f(x, y) is
given by
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LS x! zð Þ¼
Δxz
Δz

����

���� � sign
Δxz
Δx

� �� �
,

0,Δz¼ 0orΔx¼ 0

8
<

: (1)

where Δz is the change in z from the previous to the current time, Δx is the
change in x over that same time step, and Δxz is the change in z with respect
to x, which is often called the partial change in z with respect to x. In plain
English, it is the amount that z would have changed, had x changed the
amount it did, yet y had not changed. The first major term in Eq. 1 repre-
sents the magnitude of the link score; the second is the link score polarity.
The loop score is computed by multiplying the link scores for all links in

a loop. This is a demonstrably unique measure which has a well-defined
relationship to the Loop Impact metric of Hayward and Boswell (2014). For
further explanation of the relationships between LTM, Pathway Participation
Metric and PPM, see Schoenberg et al. (2023).
Equation 2: The definition of loop score for loop x, which contains n links

through n variables (v), is given by

Loop score Lxð Þ¼ LS v1 ! v2ð Þ �LS v2 ! v3ð Þ… �LS svn�1 ! vnð Þ �LS svn ! v1ð Þ½ �
(2)

The third and final key metric is the relative loop score (Eq. 3), which
compares the contribution of feedback loops to determine which loops are
dominant at any point in time. The relative loop score requires that there is
no independence across the loops it compares and, when possible, uses the
exhaustive set of feedback loops as the basis for comparison.
Equation 3: The definition of the relative loop score for loop x normalized

over all loops m analyzed in the chosen loop set is given by

Relative loop score Lxð Þ¼ Loop score Lxð Þ
Pm

y¼0
Loop score Ly

� ��� ��

0
BBB@

1
CCCA (3)

The sign of a relative loop score represents the polarity of the feedback
loop. The relative loop score is a normalized measure taking on a value
between �1 and 1. It reports the polarity and instantaneous fractional contri-
bution of a feedback loop to the change in value of all connected stocks. By
comparing loop scores, it can easily be determined which loop (or set of
loops of the same polarity) are dominant—that is, contribute the most to the
behavior of all stocks in the feedback loop set under study at any point in
time (indicated by the fact that their loop scores sum to over 50% of the total
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score). This normalization is critical to maintaining scores that are easy to
work with.

LTM, with the loop score, thus measures dominance as a contribution to
the aggregate state change at each point in time. Since both loop scores and
the aggregate state change vary over the course of a simulation, it is natural
for analysts to ask at which times should they pay the most attention to the
loop dominance profile to understand simulated behavior. This can be done,
for example, by partitioning a simulation into different segments
(e.g., growth, saturation, collapse) and then reviewing the loop scores within
each segment of the partitioned loop dominance profile. This partitioning
will vary between model scenarios and adds an additional analysis step. By
automatically measuring the magnitude of the aggregate state change, it is
possible to decrease the burden on the analysts. From the perspective of an
LTM analysis, it is most important to look at times when the aggregate state
change is large. That is typically around the inflection points of one or more
of the stocks in the model. The feedback loops that contribute the most
(i.e., have large loop scores) during these time periods are those that, when
modified, can cause a the most significant change in the overall behavior of
the model at that time.

A simple demonstration of the problem

Using the Bass diffusion model (Bass, 1969), the problem of having no for-
mal definition for the aggregate state change becomes clearer. In Figure 1,
the structure and behavior of a Bass diffusion model is portrayed. In
Figure 2, the result of an associated LTM analysis is presented.

By studying the feedback loop dominance profile in Figure 2 in isolation,
analysts may mistakenly overemphasize the significance of the loop R1,
which is completely dominant at the beginning of the run, or B1, which is
completely dominant at the end of the run. While these conclusions regard-
ing dominance are a correct interpretation of the relative loop scores in
Figure 2, it is clear from Figure 1 that the most significant dynamics (the
largest changes in stock values as well as pattern of behavior) are those tak-
ing place in the middle of the run, not at the beginning or the end. LTM is
doing exactly what it was designed to do—reporting the causes of the aggre-
gate state change, no matter how small that change may be, effectively ignor-
ing the magnitude of the aggregate state change at each point in time. We
argue that information about that magnitude is critical to analysts when con-
textualizing the significance of a loop dominance profile. During those
periods, when the aggregate state change is small, then none of the model
variables are changing very much (“nothing is happening”), whereas, during
periods when the aggregate state change is large, some variables are chang-
ing significantly (“something is happening”). The model behavior is made up
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of the accumulation of the net flows. Therefore, if the analysts wish to
change the behavior of a model, they may well do so by influencing the feed-
back loops that are actively contributing to significant changes in behavior—
that is, when the change in the aggregate state is relatively large.ii

Our goal then, is to superimpose the loop dominance profile from LTM
onto a measure of the aggregate state change so that analysts may focus their
attention on loops active during times of change. Without such a metric, ana-
lysts must take advantage of their intuitive understanding of when the stocks
in the model are most in flux and combine that understanding with the loop
dominance profile to develop a more complete understanding of how to
influence model behavior. This may be fairly easy to do for a simple diffu-
sion model but can be very difficult in models with several stocks.

Potential
Adopters Adopters

adopting

Market Size

contact rate

adoption
fraction

probability of
contact with potentials

adopter
contacts

potential contacts
with adopters

adoption from
word of mouth
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Fig. 1. Stock and flow
diagram of Bass Diffusion
model along with a plot
of Potential Adopters
(Blue Solid) and Adopters
(Red Dashed)
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Fig. 2. The loop
dominance profile for the
Bass Diffusion model—A
plot of the Relative Loop
Scores for both feedback
loops in the model.

iiIt is important to note that the intervention does not need to happen when the behavior is being generated.
Oftentimes it may be beneficial to intervene long before an undesirable change in behavior materializes and
is recognized.
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Solving the problem

Conceptually, a system as a whole is changing in direct proportion to the
net flows of the stocks within it. Therefore, the net flows for each stock will
be the key input to any metric quantifying the aggregate state change. The
challenge is to combine those net flows in a metric that work well for
models of different complexity, formulated in different ways. Though we
ultimately settled on an additive measure, it is helpful to understand two
alternatives we considered and why we ended up rejecting them.

Taking the product of all net flows, just as we take the product of link
scores to compute a loop score was our first inclination. It solved the scaling
problem discussed below, but unfortunately has a significant flaw. Consider
a model that oscillates, where one stock stops changing (at the turnover
point) while the other stocks are changing the fastest (at a point of inflec-
tion). The turnover point would give a net change of 0, which when multi-
plied by anything is still 0. But when one stock is constant, it does not mean
that all the other stocks in the model are not changing—in fact they may be
changing very rapidly. Multiplying would, when a single net flow is zero,
report zero also for the aggregate state change at any point in time. That
would be incorrect. Multiplying effectively makes the smallest change (net
flow) dominate the measure of the aggregate state change, which is the oppo-
site of what we are striving for.

Another approach we considered was to make the largest change domi-
nate the measure of aggregate state change by selecting the largest net
flow at each point in time. There is an obvious scaling issue here, which
we will address below. In that case, there is also another conceptual prob-
lem. The largest change approach would treat the case of one stock
changing rapidly, while another does not change, the same as the case
where the second stock is changing—just not as quickly as the first.
Clearly, a good measure of the aggregate state change would result in the
latter case being larger.

That leaves us with an additive approach. The adding needs to take place
in such a way as to satisfy two conditions.

First, each net flow contribution must be dimensionless so that it is at least
possible to combine changes in stocks of different units. For instance, it does
not make sense to add the change in the number of apples in a warehouse to
the change in the number of dollars in a bank account. Any metric with
dimensioned components would necessarily be uninterpretable. That is not
to say that by making a dimensionless metric we are guaranteed to have one
which is safe to add across stocks with values that differ in magnitude. Even
after being made dimensionless, we can think of residual “types” as having
been left behind in the process of making the stock values dimensionless.
This brings us to the second condition.
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A good measure of the aggregate state change must be independent of
scale and scaling; it must be able, for example, to combine flows for variables
ranging from 0 to 1 with flows ranging from 1 billion to 2 billion. To ensure
that the dimensionless net flow contribution is safe to combine, the relative
system change metric cannot vary across runs if the loop dominance profile
does not also vary across those same runs. This means that even if the mod-
eler changes the units (and therefore the values) of a stock (and all of its
associated parameters) from grams to kilograms, the computed system
change metric must be invariant. Ensuring this means that we are not
improperly adding types, which would cause the introduction of an indirect
units-dependency into the aggregate state change metric.
A sensible metric is therefore a weighted average of net flows; it is the

selection of those weights that turn out to be the most problematic. Our first
inclination was to come up with a measure that could be computed at each
point in time, using only information available at that point in time (as we
do with loop scores). We tried out various derivations of such a measure. In
retrospect, we do not believe such an approach can succeed because the
comparison we want to make is from time to time, not loop to loop. Thus,
the normalization needs to be across time, not across loops, and we cannot
conceive of a metric that normalizes across time without first simulating
across time.
With all of that in mind, we developed a “system change” metric, which is a

weighted average of the absolute value of the net flow for each stock at each
point in time. The weights used are defined the same way for all times and are
equal to the reciprocal of the sum of the absolute value of the net flows across
time. Thus, we divide the amount that each stock is currently changing by the
total amount it changes during the entire simulation period, and we then add
the result up across all stocks. Finally, we then divide the result by the largest
value it takes over all times during the simulation period so as to obtain a nor-
malized score, ranging from 0 to 1 for each time. The details of this computa-
tion are outlined in the pseudo code in Figure 3, as well as in the Eqs 4–6. As
long as the net flows are not changing dramatically between computational
intervals (the model is well behaved) the results will not be sensitive to dt.
Equation 4: The definition of accumulated stock change for stock S is

given by

As ¼
XStop time

Time¼Start time

by ΔT

dS
dt

����
���� (4)

Equation 5: The definition of raw system change over time for all stocks in
the model is given by

W. Schoenberg, R. Eberlein and P. Davidsen:A system with a single metric 7 of 16

© 2023 The Authors. System Dynamics Review published by John Wiley & Sons Ltd on behalf of System Dynamics Society.
DOI: 10.1002/sdr

 10991727, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sdr.1754 by U

N
IV

E
R

SIT
Y

 O
F B

E
R

G
E

N
, W

iley O
nline L

ibrary on [07/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Fig. 3. Pseudo code used to calculate the system change metric which is executed after the entire simulation is complete.
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R¼
X

All stocks S

dS
dt

�� ��
As

(5)

Equation 6: The definition of system change over time is given by

System change over time¼ R
max Rð Þ (6)

As can be seen in Eq. 5, we compare the net flow for a stock dS
dt

�� �� at a given
time with its accumulation over the entire time period. This means that if a
stock changes a significant amount of its total change (As) over a single time
period, that stock will not contribute significantly to the system change met-
ric. This is a beneficial property of the system change metric that will ensure
we do not distract the analysts with relatively insignificant changes in stock
values and, therefore, inappropriately flag feedback loops as significant
when loops are active merely during times which stocks remain predomi-
nantly unchanged.
In Eq. 6 astute readers will notice that we are adding dimensionless values

across stocks that originally had different units. Because we have made the
values dimensionless via scaling by the accumulated stock change for each
stock S (As), there is no residual scaling effect. For example, changing units
from grams to kilograms will change both the numerator and denominator
proportionally. Still, the raw system change in any instant (R) is the fraction
that was observed at one time T of the total change across all stocks over all
time periods—an abstract and unintuitive concept at best. Equation 6 serves
to make the system change metric more easily interpreted, and rescales the
values to be between 0 and 1 for each point in time. This makes it easier to
reason about relative system change values, where a value of, say, 0.5 means
the aggregate state change at that instant is half of the maximum observed
aggregate state change.
Continuing with the Bass diffusion example, Figure 4 shows the calculated

system change over the simulation period. In this plot, we clearly see the
inflection point at the peak of adopting. Figure 4 (which is identical to
the single net flow, adopting, scaled (to percentages) by its peak value) can
now be used by analysts to identify the period of largest change, to help
them contextualize the loop dominance profile and focus on times where the
model is most in flux.
The obvious visualization extension is to scale (multiply) the relative loop

scores in the loop dominance profile by the calculated system change metric,
which helps emphasize the loops that matter when the system is changing,
and thus show their significance to the overall model behavior. We have cre-
ated the resulting plot as shown in Figure 5. It is important to note that ana-
lysts cannot choose which feedback loops to plot. Instead, all feedback loops
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in the model must be plotted so that the total system change is maintained.
This mixed visualization method does not work well when the number of
explanatory loops (loops of significance) at any one point in time is large—
realistically, more than five. In those cases, analysts must fall back to loop
dominance profiles (like the one in Figure 2) and use a plot of the system
change (like the one in Figure 4) to identify periods of interest. Subse-
quently, they may narrow the time range over which the loop dominance
profile is defined in order to identify important feedback loops that should
be made, subject to further studies.

Figure 5 helps reinforce the understanding that the key time period to
study is around the inflection point in Adopters. During that period, first R1
is more important, then B1 is. Figure 5 does not have sufficient fidelity to
replace Figure 2 for questions about dominance, but is rather meant to be
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Fig. 4. Calculated system
change metric for Bass
Diffusion example
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Fig. 5. Contribution to
system change plot by
feedback loop for the Bass
Diffusion example model.
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used in conjunction with it, to focus the analysts’ attention to the periods of
time with the largest aggregate state change, governed by the loops that con-
tribute most significantly to model behavior. The loops identified through
this process are the most likely candidates for interventions aimed at chang-
ing the behavior exhibited by the model, since they are the ones predomi-
nantly responsible for creating that behavior. The displayed relative loop
score values are of limited use numerically. Rather, they are primarily useful
pictorially to help analysts focus on the key time periods for further studies
into the loop dominance profile.

Applying the system change metric to overshoot and collapse

The yeast alcohol model is a common test model for analysis in the loop
dominance literature. In recent literature it has been analyzed by Schoenberg
et al. (2020), who compared its analysis with other automated loop domi-
nance analysis techniques. The model and behavior shown in Figure 6 are
directly reproduced from that paper. This model serves as a good test case
for demonstrating the utility of the system change metric because the model
contains two stocks measured in non-commensurate units (C = yeast cells;
A = mL of alcohol). The loop dominance profile for this model is shown in
Figure 7, and the contribution of each of the loops to system change—that is,
their significance—is shown in Figure 8.
In this analysis, U1 (a loop of unknown—i.e., changing—polarity) is the

“births” loop representing the growth of the yeast cells, and after time
70 additional deaths from alcohol.iii B1 is the natural deaths loops, B2 facili-
tates the reduction in births from alcohol production, and B3 causes the
increase in deaths from alcohol production.
Analysis of this model (Table 1) shows that its dynamics are initially dom-

inated by the reinforcing component of U1 (U1+), which leads to the growth
of yeast cells and alcohol. As U1+ loses strength, B2 gains strength with
leads to the accumulation of alcohol, reducing births of new yeast cells.
This, then, leads the model into a period where the impact of the accumula-
tion of alcohol on deaths (B3) is the dominant feedback loop that finally con-
cludes with the dominance of the natural deaths of yeast cells B1. Theses
phases of dominance are shown in Table 1.
Table 2 reports the total loop score, which is defined in the Stella Archi-

tect software as the average magnitude of the relative loop score over the
given time period of the simulation (Schoenberg, 2020). In Table 2 this is
over the entire simulation time period from 0 to 100. This measure

iiiThe reason this loop has an unknown polarity is that, under conditions of high alcohol (which are encoun-
tered at time 70), the births variable with the equation B = C*(1.1–0.1*A)/b1 computes negative values. This
flaw has been left uncorrected to maintain the consistency of the model across analyses in the literature.
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is referred to as the total loop score because it reports the contribution of a
loop to the aggregate stock change over the given time period. We chose to
report this metric because it quantifies for analysts the relative importance of
each loop in the loop dominance profile over the selected time period. It is
the percentage of the area covered by each loop in the loop dominance pro-
file (Figure 7), and it is prominently featured in the Stella Architect software.

By studying only the loop dominance profile and the total loop score over
the entire simulation period (Table 2), analysts may place more emphasis on
the dominance of U1 because the calculation reports that it describes
49.17% of the aggregate state change over the simulated time period.
Analysts may mistakenly assume that B3 is relatively unimportant, as it only
describes 9.46% of the aggregate state change over the entire simulation
period. Whereas, when the analysts consider the loop dominance profile,
contextualized using the system change metric (Figure 8), it becomes appar-
ent that U1+ is not doing all that much before time 25 (because the number
of yeast cells is low) and that B1 does not really do much of anything after
time 80 (because the yeast cells are dead).
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Fig. 6. Yeast Alcohol
model reproduced from
Schoenberg et al., 2020
with plot of stock
behavior on the left

Fig. 7. Loop dominance
profile for Yeast Alcohol
model. Results are in line
with Schoenberg
et al., 2020 but uses the
improvement in LTM
from Schoenberg
et al., 2023 which yields
small differences in the
loop dominance profile.
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What Figure 8 emphasizes is that the analysts cannot ignore B2 and B3
when making judgments about which loops are important to the behavior
generated in this model run and, therefore, about what loops to modulate to
change model behavior. Just because these two loops have the least explana-
tory power over all times (Table 2) does not mean that these loops are
unimportant to the behavior exhibited by the model. Figure 8 shows analysts
that B2 and B3 are important during periods of major change in the system
(the overshoot and the collapse). If analysts wish to intervene in the system
in order to change this mode of behavior, then the fact that those feedback
loops are directly responsible for the change in system behavior during the

Fig. 8. Contribution to system change for the yeast alcohol model. This shows the analysts that Phases 2 and 3 (Table 1),
which are the periods changing the most are the most important areas for study to understand the overshoot and collapse of
the system. Looking at just the system change metric (the area under the curve, not the individual loops) the analysts can see
that the system change metric is a combination of the two net flows in this model, but not the same as either one of them.

Table 1. Phases of
dominance in the yeast
alcohol model.

Time range Phase 1: 0–51.5 Phase 2: 52–66 Phase 3: 66.5–75 Phase 4: 75.5–100

Dominant loop U1+ B2 B3 B1

Table 2. Loop dominance
over the simulation
period for all loops in the
Yeast Alcohol model

Loop Total loop score time = [0, 100]

U1 �49.17%
B1 �23.72%
B2 �17.66%
B3 �9.46%
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critical overshoot and collapse is information of major importance that
guides analysts to the prime targets, the leverage points (feedback loops) to
be modulated in order to change the observed behavior.

Figure 8 reinforces the understanding of this model as a shift from the
exponential growth in the number of yeast cells from time �25 to �55
driven by (U1+), which leads to the corresponding rise in the level of alco-
hol. It is recognized that, then, the alcohol governs the behavior of the sys-
tem, first dominating through the reduction in the birth of yeast cells, and
later through the death of yeast cells—ultimately pushing the yeast cells to
collapse. After the onset of that collapse, the natural deaths process then
takes over, driving the number of yeast cells to 0. By time �80 there is not
that much activity left in the system because all the yeast cells are either
dead or, thanks to B1, very soon will be. Figure 8 has ensured that analysts
do not ignore what they may at first perceive to be two minor, unimportant
balancing loops B2 and B3 that turn out to be clearly critical to the develop-
ment of the behavior of this model, contrary to U1 and B1, which are domi-
nant for far longer periods of “less interesting” time—that is, when there are
relatively few changes that take place.

Conclusions

We have developed a new metric, “system change”, by which we can cap-
ture in a single time series the aggregate state change, providing a relative
measure of the amount of change across all stocks in the model over an
entire simulation period. This system change metric is constructed to mea-
sure the same change that LTM uses to report its loop dominance metrics.
The metric, when plotted with the relative loop scores of all loops in a
model, makes clear to analysts which are the most important loops over
time, contextualized by the amount the system is changing overall. This
guides the analysts towards loops that are dominant when the system is in
flux and, therefore, potentially constitute its most effective leverage points.
This stands as a significant addition to the usefulness of LTM.
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