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Abstract

By interpreting sums as area we construct the area rearrangement operator
which looks like Φ = −x d

dx in the continuous case and ϕ = −x∆ in the
discrete case. We explore the properties of these operators, among them
how they create a sequence of linearly independent functions all of which
integrate/sum to the same value. Using the discrete operator, we discover
a family of functions that satisfies those two properties, as well as one
regarding their “finite diagonals”. These three properties becomes the criteria
for the Main Problem we will explore in this paper, where we search for a
way to find other families of functions that satisfies this. This leads us to the
“Main Solution”, which itself can be seen as an operator, which exists both
in discrete and continuous calculus, with its own interesting properties.
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Chapter 1

Preliminaries

1.1 Background and motivation
In this thesis we will look at infinite sums; in particular how to find different
functions with identical infinite sums and how to combine and manipulate
them in ways that preserves certain traits. As such sums are inherently
discrete in the sense that we only plug in positive whole numbers, a majority
of this thesis will deal with concepts from discrete calculus. A somewhat
unusual notation that we sometimes see in this discrete calculus is letting
x ∈ N (as opposed to being in the reals). This is a notation we will make
use of whenever we are on the topic of discrete calculus. That said, we will
occasionally make use of concepts from infinitesimal calculus. And later
on, we will see what observations from the discrete case carries over to the
continuous one (where we will let x be part of the reals, as usual). The other
variables we make use of (n,m,k, etc. and their variations) will however
always be part of the natural numbers.

1.2 Discrete calculus
In regular calculus, we are used to working with infinitesimal quantities and
the infinite precision that real numbers offer. However, in discrete calculus,
we no longer have access to such concepts or properties. Instead, we operate
with a countable amount of elements and explore functions where we (usu-
ally) only plug in natural numbers. This has many consequences as to how
we approach calculus. Take for instance the derivative limh→0

f (x+h)− f (x)
h ,
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which is normally a limit procedure, where h gets arbitrarily close to 0, but
never equal to 0. In discrete calculus, the smallest step we can take that is
not 0 itself, is a step of 1 unit, hence the “derivative” of discrete calculus is
of the following form:

Definition 1.2.1. The forward difference (of step 1) of a function f is given
by [6]

∆ f (x) = f (x+1)− f (x)

This is what we get if we set h = 1 in the continuous definition for the
derivative. The forward difference shares many traits with the derivative; it
is a linear map that reduces the degree of polynomials by 1 [6]. Although
notably, it does this in a different way than the derivative. While the derivat-
ive reduces powers of x in a clean way, the forward difference instead does
this with their discrete counterpart, which are called the “falling factorials”,
which are defined as such:

Definition 1.2.2. We call the following expression the falling factorials of x

(x)n = x(x−1)(x−2)...(x−n+1) =
n−1

∏
k=0

(x− k)

While the falling factorials serve the discrete version of xn, we also have
another similar version known as the “rising factorial”, given by:

Definition 1.2.3. We call the following expression the rising factorials of x

x(n) = x(x+1)(x+2)...(x+n−1) =
n−1

∏
k=0

(x+ k) (1.1)

We will also deal with the binomial coefficient and the Stirling numbers
of the second kind.

Definition 1.2.4. The binomial coefficient is the the amount of ways to
choose n (unordered) objects from k total objects, and is given by [6](

n
k

)
=

n!
k!(n− k)!

(1.2)

The unsigned Stirling numbers of the second kind
{n

k

}
are given by [6]{

n
k

}
= [

∆nxk

n!
]x=0
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While their exacts values are not of particular interest to us, some of
their properties most certainly are, the ones relevant for us being [6](

n+1
k

)
=

(
n
k

)
+

(
n

k−1

)
(1.3){

n+1
k

}
=

{
n
k

}
k+

{
n

k−1

}
(1.4)(

n
n+m

)
=

{
n

n+m

}
= 0, m > 0 (1.5)(

n
−m

)
=

{
n
−m

}
= 0, m > 0 (1.6)(

n
0

)
=

{
n
0

}
=

{
0, n ̸= 0

1, n = 0
(1.7)(

n
k

)
=

(
n

n− k

)
(1.8)

We will also deal with the binomial transform, which can be related to
the forward difference like so:

Definition 1.2.5. let fn(x) = f (x+ n) be some sequence of numbers gen-
erated by some arbitrary function, then its binomial transform is given by
[3]

n

∑
k=0

(−1)k
(

n
k

)
f (x+ k) = (−1)n

∆
n f (x) (1.9)

Finally, we will occasionally make use of the convention that the empty
sum and empty product evaluates to 0 and 1 respectively, i.e.

−1

∑
k=0

f (k) = 0,
−1

∏
k=0

f (k) = 1 (1.10)

1.3 Important functions

We will encounter a number of both discrete and continuous functions in
this thesis, so for ease of access we will define and discuss them here and
reference them later when needed. The first of which being the harmonic
numbers.
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Definition 1.3.1. The x-th harmonic number is defined as the sum of the first
x reciprocals of the natural numbers, starting with 1, i.e.

Hx =
x

∑
k=1

1
k

(1.11)

Another useful function is the factorial function x!, which is the product
of the x first positive integers. This discrete function can be extended to the
reals via the gamma function.

Definition 1.3.2. The gamma function Γ(x) is given by [6]

Γ(x) =
∫

∞

0
tx−1etdt (1.12)

In particular, if x is a non-negative integer we have Γ(x) = (x−1)!

From here, if we take the natural logarithm of it, and then its derivative
we get what is known as the digamma function [6].

Definition 1.3.3. The digamma function ψ(x) is given by [6]

ψ(x) =
d
dx

lnΓ(x) =
d
dxΓ(x)
Γ(x)

(1.13)

The digamma function can also be expressed via the harmonic numbers
for x ∈ N [6]

ψ(x) = Hx−1 − γ (1.14)

where γ is the Euler-Mascheroni constant (with approximate value 0.577).
The digamma function is also part of the “polygamma functions”.

Definition 1.3.4. The polygamma functions ψn(x) of order n are defined as
the n-th derivative of the digamma function, i.e. [6]

ψ
n(x) =

dn

dxn ψ(x) (1.15)

Finally, the polygamma functions can be expressed by an infinite sum
for x ∈ N [6]

ψn(x)
(−1)n+1n!

=
∞

∑
k=x

1
kn+1 (1.16)
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Area rearrangement operator

2.1 Geometric intuition
To build towards our new family of functions, we need an operator ϕ that
takes in a function whose infinite sum converges and gives back another
(different) function whose infinite sum converges to the same value. We will
make use of the floor function to make a connection between sums and area
under a curve.

Definition 2.1.1. The floor function of x (denoted by ⌊x⌋) is defined to
be x rounded down to its nearest integer. We use also use the notation
f ⌊x⌋ := f (⌊x⌋) and refer to it as a floored function.

Using the floor function we can view sums over integers as integrals of
floored functions, as shown below, which we will then interpret geometric-
ally to derive the operator of interest.

b

∑
x=a

f (x) =
∫ b+1

a
f ⌊x⌋ dx (2.1)

This relation allows us to visualize sums as area underneath floored
functions, where each term in the sum is now a 1 unit wide column. As-
suming this area is finite, it should not matter how we measure it, as long
as we ensure that we measure exactly the area we want. Obviously there
are several ways to do this, but we want to focus on summing the areas in
horizontal layers instead of the usual vertical ones.
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(a) Counting the area in vertical strips (b) Counting the area in horizontal
strips

Figure 2.1: The area under f (x) = 1/⌊x⌋ counted in two different ways

When counting the area horizontally, notice how our 1st strip has the
same height as f (1), but is cut short by the height of f (2). Likewise the 2nd
slice has the height of f (2), but cut short by the height of f (3), but now with
a width of 2. In fact, the x-th slice has the height of f (x) (and assuming f
is strictly decreasing) is always cut short by the height of f (x+1), with a
width of x. We thus get the following expression for our area rearrangement
operator:

Definition 2.1.2. Let RN denote the space of all real valued functions on
N. The area rearrangement operator ϕ : RN 7→ RN of some function f (x) is
given by

ϕ f (x) = x( f (x)− f (x+1)) =−x∆ f (x) (2.2)

2.2 Properties
By construction, we have that if f (x) has a converging infinite sum, then the
infinite sum of ϕ f (x) will converge to the same value, assuming (for now
at least) that f (x) is strictly decreasing. As we will see, this isn’t actually a
requirement.

Theorem 2.2.1. If the infinite sum is well-defined and limx→∞ x f (x) = 0,
then

∞

∑
x=1

f (x) =
∞

∑
x=1

ϕ f (x)



2.2 Properties 7

Proof. Let g(x) = ϕ f (x) = x f (x)− x f (x+1), then we have

n

∑
x=1

f (x) = f (1)+ f (2)+ ...+ f (n)

n

∑
x=1

g(x) = f (1)− f (2)+2 f (2)−2 f (3)+3 f (3)−3 f (4)+ ...+n f (n)−n f (n+1)

= f (1)+ f (2)+ f (3)+ ...+ f (n)+n f (n+1)

=
n

∑
x=1

f (x)+n f (n+1)

Per assumption n f (n+1)→ 0 as n → ∞ and we have our conclusion.

As the topic of infinite sums is vast, we will narrow our focus down to a
subset of rational functions. This will allow us to focus on an “easy” set of
functions that will simplify most proofs, several of which will generalize
to other sufficiently nice functions. The functions of interest are defined as
follows.

Definition 2.2.2. Any rational function f (x) = p(x)/q(x) ̸= 0 with integer
coefficients that has no poles for any positive integers and deg(q) > 1+
deg(p) is called “suitable” or a “suitable function”. If we also allow
deg(q)≥ 1+deg(p), then we call them “suitable∗” (with a star).

We can also use this definition to create vector spaces of interest.

Definition 2.2.3. We define S (and S∗) to be the vector space(s) defined by
the span of all suitable (or suitable∗) functions with scalars in Q.

It’s easy to see that suitable functions must have a converging infinite
sum, as the degree of the denominator is at least 2 more than the degree of
the numerator, and with no poles for the positive integers there’s nothing that
prevents the sum from converging. Using the definition of suitable functions,
we can get a corollary from the above theorem.

Corollary 2.2.4. For a suitable f (x) we have

∞

∑
x=1

f (x) =
∞

∑
x=1

ϕ
n f (x)
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Proof. We first note that ϕ of a rational function with rational coefficients
is itself a rational function with integer coefficients. Couple this with the
fact that if a suitable f (x) has no poles for positive integers, then ϕ f (x) =
x f (x)− x f (x+ 1) does not have poles there either. We know that ϕ f (x)
has a converging infinite sum provided f (x) has one, which means that
the polynomial in the denominator and numerator of ϕ f (x) must have a
difference of degrees of at least 2. Hence, the function must stay suitable
after applying ϕ to it, and we can use the above theorem as many times as
we’d like.

From this, we have that any suitable function has infinitely many “cous-
ins”, that all converge to the exact same value. In this section, we will
continue to explore the properties of ϕ .

Proposition 2.2.5. ϕ takes suitable functions to suitable functions and
suitable∗ functions to suitable∗ functions.

Proof. The first part was shown in the proof for Corollary 2.2.4.

For suitable∗ functions we consider the partial fractional decomposition
(pfd) of some suitable∗ function f . Since ϕ is linear (proven in Proposition
2.2.6), we can examine what ϕ does to each term of the pfd, and if all terms
remains suitable∗, then the sum of these terms must remain suitable∗. Let’s
consider one term of the pfd, which will be of the following form:

f (x) =
p(x)

q(x)m

ϕ f (x) =
xp(x)
q(x)m − xp(x+1)

q(x+1)m

=
x(p(x)q(x+1)m − p(x+1)q(x)m)

q(x)mq(x+1)m

We let Q(x) = p(x)q(x+1)m − p(x+1)q(x)m to get

ϕ f (x) =
xQ(x)

q(x)mq(x+1)m

Let deg(p) = n and deg(qm) = M, for n < M, then deg(xQ) = n+M
which is less than deg(q(x)mq(x+ 1)m) = 2M, and hence we end up with
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another rational function where the degree of the polynomial in the denom-
inator is greater than the one in the numerator. Finally we note that if q(x)
does not have any poles at the positive integers, then neither does q(x+1),
and thus the functions stays suitable∗ after applying ϕ to it.

Proposition 2.2.6. The operator ϕ has the following properties.

1. ϕ is linear.

2. ϕ does not change the degree of non-constant polynomials, whereas
constants are mapped to 0.

3. ϕ can be modified to become injective by only allowing functions that
tend to 0.

Proof. Consider two arbitrary functions f (x) and g(x) and some constant c.

1. To show linearity, we need to show that ϕ( f +g) = ϕ( f )+ϕ(g) and
ϕ(c · f ) = c ·ϕ( f )

ϕ( f (x)+g(x))

= x[( f (x)+g(x))− ( f (x+1)+g(x+1))]

= x[( f (x)− f (x+1)+(g(x)−g(x+1))]

= x[ f (x)− f (x+1)]+ x[g(x)−g(x+1)]

= ϕ( f )+ϕ(g)

ϕ(c · f ) = x[c f (x)− c f (x+1)] = c · x[ f (x)− f (x+1)] = c ·ϕ( f )
Hence, ϕ is linear,

2. Since ϕ first takes the forward difference (before multiplying by −x),
it will reduce the degree of polynomials by 1. Multiplying it with −x
will raise its power back to its original degree, unless it was a constant
that was reduced to 0, which will remain at 0 even after multiplying
by −x.

3. Since ϕ is linear and takes constants to 0, if ϕ takes f (x) → F(x),
then it will also take ( f (x)+ c)→ F(x), hence it is not injective. But
if we restrict the inputs by requiring them to tend to 0 as x approaches
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infinity, this no longer becomes a problem, as only a single choice
of c will let f (x) → 0. As we have already seen, if f (x) → 0, then
so does ϕ( f ). To check for injectivity, we now need to examine the
kernel of ϕ . For ϕ to map something to 0, we need f (x) = f (x+1).
This is only satisfied by constant functions and periodic ones with a
period of 1, the only one that fits our criteria that it has to tend to 0 is
the zero function itself, hence ϕ is injective when we require that the
input function tends to 0.

Theorem 2.2.7. ϕ satisfies a discrete version of the Leibniz rule, i.e.

ϕ( f (x)g(x)) = ϕ( f (x))g(x)+ f (x+1)ϕ(g(x))

Proof.

ϕ( f (x)g(x)) = x f (x)g(x)− x f (x+1)g(x+1)

= x f (x)g(x)− x f (x+1)g(x)+ x f (x+1)g(x)− x f (x+1)g(x+1)

= (x f (x)− x f (x+1))g(x)+ f (x+1)(xg(x)− xg(x+1))

= ϕ( f (x))g(x)+ f (x+1)ϕ(g(x))

As we can see, ϕ inherits a lot of its properties from the finite difference
operator; it’s linear, takes constants to 0 and satisfies this special case of
the Leibniz rule. That said, it doesn’t lower the degree of non-constant
polynomials, but it does have an inverse.

Theorem 2.2.8. The inverse of ϕ is given by the following:

ϕ
−1 f (x) = c−

x−1

∑
k=1

f (k)
k

=C+
∞

∑
k=x

f (k)
k

for some constants c, C.
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Proof.

ϕ f (x) = x f (x)− x f (x+1)
ϕ f (x)

x
= f (x)− f (x+1)

x−1

∑
k=1

ϕ f (k)
k

= f (1)− f (2)+ f (2)− f (3)+ ...+ f (x−1)− f (x)

−
x−1

∑
k=1

ϕ f (k)
k

=− f (1)+ f (x)

f (x) = f (1)−
x−1

∑
k=1

ϕ f (k)
k

where f (1) is some constant. Since ϕ takes such constants to 0, any arbitrary
constant c will work in place of (or in addition to) f (1). Alternatively, we
can do the infinite sum from k = x to ∞, which also creates a telescoping sum,
but this time f (x)→ 0 as x → ∞, meaning we don’t get an extra constant
term when evaluating this sum. But since we know ϕ takes constants to 0,
we should still add such a constant nonetheless.

As mentioned earlier, we will mostly focus on rational functions, which
then creates a problem for our inverse, as it takes some rational functions to
non-rational functions. An example of this is functions of the form f (x) =
1/xm which gets mapped to some polygamma functions.

Proposition 2.2.9. ϕ−1 maps functions of the form 1/xm to ψm(x)
(−1)m+1m! .

Proof. Plugging f (x) = 1/xm into the inverse with the infinite sum we get
the infinite sum formula for the polygamma functions (1.16).

ϕ
−1 f (x) =

∞

∑
k=x

f (k)
k

=
∞

∑
k=x

1
km+1 =

ψm(x)
(−1)m+1m!

Theorem 2.2.10. The set { fn(x)}∞
n=0 defined by the sequence

fn+1(x) = ϕ fn(x), for a suitable∗ f0 is linearly independent in S∗.

Proof. We will first show that whenever we apply ϕ to some suitable∗

f (x) = p(x)/q(x)m we end up with ϕ f (x) = p̂1(x)
q(x)m + p̂2(x)

q(x+1)m , where q(x) is
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irreducible, deg(qm)> deg(p), pgcd(p,q) = 1 and p̂2(x) ̸= 0. From Propos-
ition 2.2.5 we have:

ϕ f (x) =
x(p(x)q(x+1)m − p(x+1)q(x)m)

q(x)mq(x+1)m

= xQ(x)/(q(x)mq(x+1)m)

which we can apply partial fraction decomposition to and write in the form
that we want, as long as q(x+ 1) does not cancel out. Note that x cannot
be a factor of q(x+ 1), as this would imply that q(x) has a pole at x = 1,
which contradicts it coming from a suitable f . Now, since q(x) is irreducible,
this means that q(x+1) is also irreducible [4], meaning that each of the m
q(x+1) in the denominator either fully cancels out, or doesn’t cancel out at
all.

Let m̄ be such that 0< m̄≤m. We now assume that some of the q(x+1)m

cancels out, leaving us with m̄ of them. This means that q(x+ 1)m̄ is a
factor of Q(x), which implies Q(x) = q(x+1)m̄Q̂(x), where Q̂(x) is some
polynomial. Then we have:

Q(x) = q(x+1)m̄Q̂(x)

p(x)q(x+1)m − p(x+1)q(x)m = q(x+1)m̄Q̂(x)

p(x)q(x+1)m−m̄ − p(x+1)q(x)m

q(x+1)m̄ = Q̂(x)

Since p(x)q(x+ 1)m−m̄ and Q̂(x) are polynomials, we must have that
p(x+1)q(x)m

q(x+1)m̄ is also a polynomial, which implies that q(x+1) gets partially or
fully cancelled out. Per assumption, p(x+1) and q(x+1) have no factors
in common, so we must have that q(x) divides q(x+1) (or vice versa), but
no non-constant polynomial satisfies this, and as q(x) must have at least
a degree of 1, this is impossible, and hence, our assumption that q(x+ 1)
could be cancelled out (either partially or fully) leads to a contradiction.

Now, we choose any suitable∗ f0 and perform partial fractional decom-
position (pfd) on it to get some finite amount of terms, all of which of the
form p(x)

q(x)m . We then choose such a term, such that q(x+n) is not equal to any
of the other q(x) in the other terms for all n. This guarantees that whenever
we go from n → n+1, we will have a q(x+n)→ q(x+n+1) which will
always be unique (and doesn’t “turn into” any of the other denominators
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found in the original pfd). Now we have for every n shown that fn will
contain a term in its pfd with a unique denominator, which none of the
proceeding elements of the set contains, or can be turned into with a linear
combination. This ensures that whenever we add the (n+1)’th term, the set
remains linearly independent. Notably this argument also holds for suitable
functions, meaning such a set will also be linearly independent in S.
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Chapter 3

A new family of functions

3.1 Construction & closed forms

With ϕ explored, it is time to move onto the main family of functions we
want to explore in this thesis. Our goal is that given any function with
a converging infinite sum to find different functions whose infinite sum
converge to the same value. For the sake of simplicity, we will only look
at suitable starting functions, the simplest of which being f0(x) = 1/x2.
With the use of ϕ we already have infinitely many other functions that
share this infinite sum. Furthermore, we can use linear combinations of
these functions to create even more of them, so in a sense, our problem
seems to already have been solved before it even started. But when we try
to create an explicit formula for fn, given the initial function f0(x) = 1/x2,
something unexpected happens. Starting with with this choice of f0 and
letting f1 = ϕ( f0) we have:

f0(x)→ f1(x)
1
x2 → 2x+1

x(x+1)2

We want to generalize the change from f0 to f1, such that the same
change can be applied to f1 to get f2, such that it has the same infinite
sum. If we ignore that some factors are squared, the change between the
denominators has a simple pattern: x → x(x+1), which seems to follow a
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pattern similar to the rising factorial (1.1) like so:

x(x+1)→ x(x+1)(x+2)→ x(x+1)(x+2)(x+3)→ ...→
n

∏
k=0

(x+ k)

but always with the “last” factor squared. As for the numerator, if we again
ignore the denominator having a squared factor, then taking its derivative
gives us what we need. In other words, for initial function 1/x2 we get the
following family of functions:

Definition 3.1.1. We call the following family of functions the “Basel func-
tions” (named after the Basel problem [5], which is the base case when
taking their infinite sums)

bn(x) =
d
dx ∏

n
k=0(x+ k)

(x+n)∏
n
k=0(x+ k)

As unrigorous as the construction of these functions was, it has in fact
successfully created a family of functions, all of which converge to the
same value (proven in Theorem 3.2.2). But even more interestingly, the
Basel functions are a completely different family of functions than what
we would get by repeatedly applying ϕ to 1/x2. Apart from the two first
functions being the same, there is seemingly no overlap between them.
And obviously, we can plug all of these new functions into ϕ to generate
infinitely many more functions that sum to our target value. For now, we
will continue to explore this new family of functions, to discover their most
relevant properties. In their current closed form, they look rather ugly being
expressed by products. Fortunately, it can be easily shown that they can be
rewritten using sums (or the digamma function).

Theorem 3.1.2. In addition to having a product formula, the Basel functions
also has a summation and a digamma formula:

bn(x) =
d
dx ∏

n
k=0(x+ k)

(x+n)∏
n
k=0(x+ k)

=
1

x+n

n

∑
k=0

1
x+ k

=
ψ(x+n+1)−ψ(x)

x+n
(3.1)

Proof. We start with the summation expression. We do this by finding the
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derivative of Pn(x) = ∏
n
k=0(x+ k), via implicit differentiation:

Pn(x) =
n

∏
k=0

(x+ k)

ln(Pn(x)) = ln(
n

∏
k=0

(x+ k)) =
n

∑
k=0

ln(x+ k)

d
dx

ln(Pn(x)) =
d
dx

n

∑
k=0

ln(x+ k)

1
Pn(x)

· d
dx

Pn(x) =
n

∑
k=0

1
x+ k

d
dx

Pn(x) = Pn(x)
n

∑
k=0

1
x+ k

Substituting this in on the LHS simplifies the expression to the summation
form.

As for the digamma expression, we show that it is the same as the
summation form. We cancel the common factor of 1/(x+ n) and use the
“harmonic number” definition of ψ(x) (1.14) to arrive at the conclusion.

ψ(x+n+1)−ψ(x)

= Hx+n − γ − (Hx−1 − γ)

= Hx+n −Hx−1

=
x+n

∑
k=1

1
k
−

x−1

∑
k=1

1
k

=
x+n

∑
k=x

1
k
=

1
x
+

1
x+1

+ ...+
1

x+n

=
n

∑
k=0

1
x+ k

3.2 Properties
To prove that the Basel functions sum to the same value, we will first build
towards a lemma, the idea of which is that if two infinite sums has a well
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defined difference, then their partial difference has to approach this value.
Starting with f0(x) = 1/x2 and f1(x) = ϕ( f0), we examine their first terms
and define their partial difference.

∑ f0(x) = 1+
1
4
+

1
9
+ ...

∑ f1(x) =
3
4
+

5
18

+
7

48
+ ...

We define the partial difference between these two sums as the n first
terms of f0(x) and (n−1) first terms of f1(x). Let d(x) be the function that
describes this sequence of partial differences, where d(1) = f0(1) = 1. To
get the next value of d(x), we take the previous value, add the next term
from f0, and subtract the next term from f1, like so:

d(2) = d(1)+ f0(2)− f1(1) = 1+
1
4
− 3

4
=

1
2

d(3) = d(2)+ f0(3)− f1(2) =
1
2
+

1
9
− 7

48
=

1
3

This process of generating the values of d(x) is given by the following
recursive formula:

d(x+1) = d(x)+ f0(x+1)− f1(x), d(1) = f0(1)

As we continue this process it looks like d(x) = 1/x. But equally important
is to note that if d(x)→ 0, then the two sums must be the same.

Lemma 3.2.1. Given f (x) and g(x) with converging infinite sums and d(x)
satisfying d(x+1) = d(x)+ f (x+1)−g(x), d(1) = f (1), then

∞

∑
x=1

f (x)−
∞

∑
x=1

g(x) = lim
x→∞

d(x)

Proof. By construction of d(x) the statement is true. Furthermore, if the two
functions sum to the same value, then d(x) must go to 0. Likewise if d(x)
goes to 0, then the sums must be equal.

This lemma allows us to use knowledge of the infinite sum of one of
them to infer the other’s. Additionally it lets you choose which function to
be “ f ” and which to be “g”, as d(x) will depend on this choice, potentially
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making it easier or harder to reach a desirable conclusion. A special case
of this lemma is when the two sums are equal, which implies that the limit
goes to 0, which is what we will use to show that our fn(x) all sum to the
same value.

Theorem 3.2.2. For the Basel functions bn(x) we have
∞

∑
x=1

bn(x) =
∞

∑
x=1

b0(x) =
π2

6

Proof. We will take for granted that ∑
∞
x=1

1
x2 =

π2

6 , as this specific value isn’t
the main interest of this proof, rather that all the sums are equal. We show
this by comparing (the summation formula (3.1) for) bn(x) and bn+1(x),
with a fitting dn(x) that records their partial difference. In this case we have
dn(x) = 1

n+1 ∑
n
k=0

1
x+k . Using our lemma, we need the following to hold for

all n:

dn(x+1) = dn(x)+bn(x+1)−bn+1(x)

dn(x+1)−dn(x) = bn(x+1)−bn+1(x)

1
n+1

(
n

∑
k=0

1
x+ k+1

−
n

∑
k=0

1
x+ k

) =
1

x+n+1
(

n

∑
k=0

1
x+ k+1

−
n+1

∑
k=0

1
x+ k

)

1
n+1

(
1

x+n+1
− 1

x
) =

1
x+n+1

(−1
x
)

1
n+1

· x− x−n−1
x(x+n+1)

=
−1

x(x+n+1)
−n−1
n+1

=−1

−1 =−1

which clearly holds for all n. Since dn(x)→ 0 (for all n), we have that bn(x)
has the same infinite sum as bn+1(x), meaning they are all equal.

Theorem 3.2.3. The Basel functions are linearly independent in S

Proof. By using the summation formula bn(x) = 1
x+n ∑

n
k=0

1
x+k , we see that

for every n, there will be one and only one term that has a double pole, that
being the term of the form 1

(x+n)2 . This term will be unique for every n, and
as such we cannot combine any of the other terms into these unique double
pole terms, and therefore every bn(x) has a term that ensures it is not a linear
combination of any of the others.
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Now, to give some further insight into the Basel functions, let’s examine
the first few values of n and x, although now re-indexed such that n starts at
1 as opposed to 0:

x = 1 x = 2 x = 3 x = 4
b1(x) = 1

x2 1 1/4 1/9 1/16
b2(x) = 2x+1

x(x+1)2 3/4 5/18 7/48 9/100

b3(x) = 3x2+6x+2
x(x+1)(x+2)2 11/18 13/48 47/300 37/360

b4(x) = 4x3+18x2+22x+6
x(x+1)(x+2)(x+3)2 25/48 77/300 19/120 319/2940

Viewing their values like this reveals a (very surprising) property, namely
that their finite diagonals all sum to 1. This is the 3rd and final property that
makes the Basel functions special (the other two being equal infinite sums
and linear independence). We will later search for other families of functions
that also satisfies these three criteria, but for now, we will continue to explore
the Basel functions and build towards a proof of our “diagonal sum” property.

In the previous table we saw that each row was generated by each of
our bn(x) functions, but this is not the only way to generate these values.
If we go column by column instead, we can use the harmonic numbers to
create the following family of functions: hn(x) =

Hx−Hn−1
x , which generates

the same values (and some extra ones):
x = 1 x = 2 x = 3 x = 4 x = 5 x = 6

h1(x) 1 3/4 11/18 25/48 137/300 49/120
h2(x) 0 1/4 5/18 13/48 77/300 29/120
h3(x) −1/2 0 1/9 7/48 47/300 19/120
h4(x) −5/6 −1/6 0 1/16 9/100 37/360
h5(x) −13/12 −7/24 −1/12 0 1/25 11/180

As we can see, we get b1(x) down the “first diagonal”, and then as we
move on to the diagonal to its right, we get the values of b2(x), and then
b3(x) to the right of that, etc. What is new here is the diagonal of zeros,
which separates the previous terms from some new negative terms. For those
interested, the diagonals with negative terms are generated by the following
function: Dn(x) = 1

x ∑
n
k=1

1
x+k , but apart from acknowledging its existence,

it is not something we will explore further in this thesis.
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Since we have a set of numbers that can be generated in two different
ways, we can make a bijection between them.

Lemma 3.2.4. If bn(x) = b(n,x) = 1
x+n−1 ∑

n−1
k=0

1
x+k

and hn(x) = h(n,x) = 1
x (Hx −Hn−1) =

1
x (∑

x
k=1

1
k −∑

n−1
k=1

1
k ),

then b(n,x) = h(x,x+n−1)

Proof.

h(n,x) =
1
x
(

x

∑
k=1

1
k
−

n−1

∑
k=1

1
k
)

h(x,x+n−1) =
1

x+n−1
(

x+n−1

∑
k=1

1
k
−

x−1

∑
k=1

1
k
)

=
1

x+n−1
(

x−1

∑
k=1

1
k
+

x+n−1

∑
k=x

1
k
−

x−1

∑
k=1

1
k
)

=
1

x+n−1

x+n−1

∑
k=x

1
k

=
1

x+n−1
(
1
x
+

1
x+1

+ ...+
1

x+n−1
)

=
1

x+n−1

n−1

∑
k=0

1
x+ k

= b(n,x)

With this, we finally have everything we need to prove our claim that the
sums of bn(x)’s finite diagonals all equal 1.

Theorem 3.2.5. bn(x)’s finite diagonals sum to 1, i.e.

n

∑
k=1

bk(n− k+1) = 1
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Proof.

n

∑
k=1

bk(n− k+1) =
n

∑
k=1

b(k,n− k+1) =
n

∑
k=1

h(n− k+1,n)

=
n

∑
k=1

1
n
(

n

∑
K=1

1
K
−

n−k

∑
K=1

1
K
) =

n

∑
k=1

1
n
(Hn −Hn−k)

=
1
n

n

∑
k=1

Hn −
1
n

n

∑
k=1

Hn−k =
n
n

Hn −
1
n
(Hn−1 + ...+H1 +H0)

= Hn −
1
n

n−1

∑
k=0

Hk

For our statement to hold, we need this to evaluate to 1. We then get:

Hn −
1
n

n−1

∑
k=0

Hk = 1 ⇐⇒
n−1

∑
k=0

Hk = nHn −n

which we will prove by induction. For the base case n = 0, both sides
evaluates to 0. We let n → n+1 to finish the proof.

n

∑
k=0

Hk = (n+1)Hn+1 − (n+1)

Hn +
n−1

∑
k=0

Hk = (n+1)Hn+1 − (n+1)

Hn +nHn −n = (n+1)(Hn +
1

n+1
)− (n+1)

(n+1)Hn −n = (n+1)Hn −n+1−1

This holds true, meaning the diagonals always sum to 1.

Another interesting property of these functions is that the difference
between the degree of the denominator and numerator looks to remain
constant at 2, but some linear combinations of them gives a difference of 3
instead. If we let the coefficients sum to 1, the linear combination will have
the same infinite sum, and as such, with a difference of degree 3 will make
them converge faster than those with a degree difference of 2. Here’s some
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examples of these:

b0 +b1 −b2 =
6x3 +17x2 +14x+4

x6 +6x5 +13x4 +12x3 +4x2

b0 +b2 −b3 =
9x4 +54x3 +113x2 +102x+36

x7 +11x6 +47x5 +97x4 +96x3 +36x2

b1 +ϕ(b0)−ϕ(b1) =
9x2 +20x+8

x5 +6x4 +13x3 +12x2 +4x
(b1 +b2 −b4),(b0 +b3 −b4),(b0 +b4 −b5)

In general, it seems to hold for triplets of the form (b0 + bn−1 − bn), but
obviously it works for other triplets as well, and even more so if we allow
applying ϕ to this family of functions.
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Chapter 4

The Main Problem

The family of functions we explored in the previous section had three main
properties; their infinite sums were the same, their (finite) diagonals summed
to the same value and they were linearly independent. These three criteria
are the basis of the “Main Problem” I want to explore in this thesis, in which
we pick an arbitrary function f0(x) whose infinite sum converge, and try to
find all fn(x) such that these three requirements are fulfilled.

Definition 4.0.1. The Main Problem (very informally known as the Tveiten
problem) is given by the following:

Pick any suitable function f0(x). Find all fn(x) such that:

1. ∑
∞
x=1 fn(x) = ∑

∞
x=1 f0(x) (equal infinite sums)

2. ∑
n
k=0 fk(n− k+1) = f0(1) (equal diagonals)

3. fn(x) are linearly independent in S

Remark 4.0.2. The formula in the second criteria adds the diagonal terms
from top/right to bottom/left, but this is equivalent to adding them in the
opposite order, in which case the criteria would look like:
∑

n
k=0 fn−k(k+1) = f0(1)

4.1 Various approaches
As we have seen before, ϕ can be used to generate linearly independent
functions that sum to the same value, and as such is a natural place to begin
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looking for a solution to this problem.

Proposition 4.1.1. For any suitable f0, ϕ f0 is a valid choice for f1 (as it
doesn’t contradict any of the three criteria)

Proof. We already know that this choice of f1 satisfies the first and last
criteria of the Main Problem. So we need to show the equal diagonals
criteria holds true for the second diagonal:

f0(2)+ f1(1) = f0(2)+1( f0(1)− f0(2)) = f0(1)

Unfortunately, repeatedly applying ϕ to our function does not give a
solution to our problem, as ϕ only respects the diagonal condition with
respect to its input, and outside of this it has no reason to hold true with
respect to the preceding functions. However, applying ϕ to an already known
solution seems to generate a new solution. So before we attempt to solve for
solutions, we explore the possibility of using previously known solutions to
generate new ones.

Conjecture 4.1.2. If fn(x) is a solution to the Main Problem for f0(x), then
gn(x) = ϕ fn(x) is a solution for g0(x) = ϕ f0(x)

Proving this holds true is easy enough for the first and third criteria. We
get the first one for free, as ϕ preserves the infinite sum of a suitable f0.
As for the third criteria, we have shown that ϕ is linear and injective with
respect to suitable functions, meaning it preserves linear independence [7].
It is the second criteria that is troublesome, showing that our new set of
functions satisfies the diagonal property. We will later see that this holds
true for one type of solutions, but not for another (see Remark 5.2.7).

Although an illegal choice for the initial function, if we let f0 = 1/x,
we notice something special. If we apply ϕ to it we get 1/(x+1), which is
f0(x) shifted by 1 unit. Applying ϕ again doesn’t shift the function again,
but as we already know, the solution to the Main Problem is not given by
repeatedly applying ϕ , so if we were forced to guess the closed form in this
case, it would have to be fn = 1/(x+n). These fn satisfies the diagonal and
linearly independent criteria, but their infinite sum doesn’t converge, so it
doesn’t make sense to call this a solution, so instead we will refer to it as an
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“almost solution” for now. What’s interesting with this sequence of functions
is how it relates to the Basel functions. Recall how they were of the form
bn = 1/(x+n)∑

n
k=0 1/(x+ k), which is notably entirely made up from our

“almost solution”. This brings us to our next conjecture.

Conjecture 4.1.3. Let fn(x) be a solution to the Main Problem for f0(x),
then gn(x) = 1

x+n ∑
n
k=0 fk(x) is a solution for g0(x) = f0(x)/x

This new family of function seems to respect the 2 last criteria, but prov-
ing that all of their infinite sums are the same is an elusive problem. Like in
the previous conjecture, it is possible that this holds true for a specific kind
of solution, but this remains unknown. Later on we construct a sequence
where this doesn’t work (see Remark 5.2.7).

If this were to be true (for the solutions of interest at the very least), it
would give us the solutions to all initial functions of the form f0(x) = 1/xm,
for m ≥ 2, which could all be generated from the Basel functions, which
itself can be generated from our “almost solution”. If we create a table for
these families of functions, we can show an equivalent procedure to generate
all of these functions. Let ζm,0 be the initial functions of the form 1/xm, then
we have ζ1,n be our almost solution, ζ2,n be the Basel functions, and the rest
can be constructed using the previous entries.

ζ1,0 = 1/x ζ1,1 = 1/(x+1) ζ1,2 = 1/(x+2) ζ1,3 = 1/(x+3) ...

ζ2,0 = 1/x2 ζ2,1 = b1(x) ζ2,2 = b2(x) ζ2,3 = b3(x) ...

ζ3,0 = 1/x3 ζ3,1 ζ3,2 ζ3,3 ...

ζ4,0 = 1/x4 ζ4,1 ζ4,2 ζ4,3 ...
...

...
...

... . . .

With the first row given, we can recursively find any ζn,m by adding
together the m first functions in the row above and then multiply it by
1/(x+m) = ζ1,m. If we fill in this table, then each row represents one solu-
tion to the Main Problem (except the first one being an “almost solution”),
creating a family of solutions. Similar families of solutions could possibly
be created for other solutions, given that the above conjecture holds (for
certain solutions).

Another property of solutions to the Main Problem is that we would
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expect the sum of two solutions to itself be another solution. To show this,
we first need the following definition.

Definition 4.1.4. For a,b ∈ R, a ∼ b if a = p
q b, for p,q integers, q ̸= 0.

Theorem 4.1.5. if fn and gn are solutions to the Main Problem (for some f0
and g0 respectively) such that ∑ fn = a ≁ b = ∑gn, then hn = c1 fn+c2gn is
a solution for h0 = c1 f0 + c2g0, for c1,c2 ∈Q

Proof. Let fn = { f0, f1, ...} and gn = {g0,g1, ...} be two solutions to the
Main Problem, meaning they are both (individually) linearly independent
sets. If their union is not linearly independent, then we can linearly combine
elements from fn to get an element from gn (or vice versa). But we have
that ∑ fn ≁ ∑gn, meaning no matter how we combine terms from fn (with
rational coefficients), their infinite sum will never be equal to the infinite
sum of gn, hence their union must also be linearly independent.

Remark 4.1.6. We will later see that the constraint a ≁ b is not actually
necessary for the conclusion of this theorem, but the proof for this requires
a general solution to the Main Problem.

This theorem (alongside the previous conjecture) allows us to potentially
use “almost solutions” to find new solutions. In the same way that we can
combine two known solutions to find a new one, we could in theory some-
times do this in reverse; splitting a solution into two different solutions. If
one of these new solutions were of the form of a rational function with a sum
diverging to infinity, we could show that these ”almost solutions” are in fact
well-defined, and can be combined in specific ways to construct even more
solutions. An example of this would be f0 = 2/(2x+ x2) = 1/x−1/(x+2).
If we granted that our “almost solution” for f0 = 1/x is well-defined, and
found a solution for f0 = 2/(2x+x2), we could use this to find a well-defined
solution for f0 = 1/(x+2), which we could then use (with or without the
previous conjecture) to find more solutions. As our known solutions grows,
we would also get more “almost solutions”, which would give us more
options for ways to combine and modify them to create more solutions.

When it comes to actually finding solutions for any given f0, that looks
to be difficult without some one-fits-all solution. The best hope we have is to
apply ϕ to our first function, and hope there is an obvious change between
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f0 and f1 that is easy to generalize. A potential example of such a case is
f0 = 1/(x2 + x), which seems to have the following solution:

fn(x) =
n+1

x2 +(2n+1)x+n(n+1)
= (n+1)(

1
x+n

− 1
x+n+1

)

Another trick that simplifies the problem is that the denominators seems
to have the following pattern: qn+1(x) = qn(x+1)q0(x) before any cancel-
lation occurs, which if true, simplifies the problem from finding the right
rational functions to finding the right polynomial for each of the denom-
inators. But even with all of this, finding individual solutions is very difficult.

4.2 A note on linear independence
Before we move on to the Main Solution to the Main Problem, I want to
stress the importance of the 3rd criteria; the linear independence of our
functions, as this being a requirement isn’t immediately obvious. If we allow
linear dependence, then if we start with a suitable initial function f0 and
apply ϕ to it to get f1, we can now combine them to create the other fn. As
f0 and f1 sum to the same value, we note that c0 f0 + c1 f1 will also sum to
this same value, provided that c0 +c1 = 1. Using the fact that the sum of the
diagonals equals f0(1), we can create another equation for c0 and c1, giving
us 2 equations with 2 unknowns:

1. c0 + c1 = 1

2. c0 f0(1)+ c1 f1(1) = f0(1)− ( f0(3)+ f1(2))

Solving this gives you f2(x) = c0 f0(x)+ c1 f1(x), which you can then use
to create two new equations with two unknowns, that you solve to get f3(x)
and so on and so forth. If we do this to the first two elements of the Basel
functions the sequence continues like so:

23x2 +4x−5
9x2(x+1)2 ,

487x2 − x−163
162x2(x+1)2 ,

62027x2 −7352x−25577
18225x2(x+1)2

which obviously differ from the Basel functions and grows in complexity
quicker (and notably looks a lot uglier).
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The reason why such solutions are of little interest, is that the whole
point of the Main Problem is to find new functions that sum to the same
value while also satisfying the diagonal property. While a clever solution,
allowing for linear combinations of previous functions to generate new ones
doesn’t really (in my opinion) create any new such functions, and are more
like old functions in disguise. Requiring the family of functions to be linearly
independent is a good enough requirement that the functions we get are
“new” and different enough from the previous ones.
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Solution to the Main Problem

We will now examine a solution to the Main Problem, which as we will see,
works for any suitable choice of f0.

Definition 5.0.1. For any suitable choice of f0, we call the following family
of functions the “Main Solution” (to the Main Problem)

fn+1 =
ϕ( f0 + f1 + ...+ fn)

n+1
=

1
n+1

n

∑
k=0

ϕ( fk)

5.1 Proving the Main Solution solves the Main
Problem

Theorem 5.1.1. The family of functions defined by the Main Solution satisfies
the 1st criteria of the Main Problem (equal infinite sums)

Proof. We show this by induction. For the base case we have

∞

∑
x=1

f0(x) =
∞

∑
x=1

ϕ f0(x)

which holds true per the equal infinite sum property of ϕ . We assume our
claim is true for some n, then check if it holds true for n+1.
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∞

∑
x=1

fn+1 =
∞

∑
x=1

ϕ( f0 + f1 + ...+ fn)

n+1
=

1
n+1

∞

∑
x=1

(ϕ( f0)+ϕ( f1)...+ϕ( fn))

=
1

n+1
(

∞

∑
x=1

ϕ( f0)+
∞

∑
x=1

ϕ( f1)+ ...+
∞

∑
x=1

ϕ( fn))

=
1

n+1
(

∞

∑
x=1

f0 +
∞

∑
x=1

f0 + ...+
∞

∑
x=1

f0) =
n+1
n+1

∞

∑
x=1

f0 =
∞

∑
x=1

f0

Theorem 5.1.2. The Main Solution has the following recursive formula

fn+1 =
n fn +ϕ( fn)

n+1
(5.1)

Proof. We see that the formula for the definition can always be rearranged
into our target formula for any n.

f1 = ϕ( f0) =
0 f0 +ϕ( f0)

1

f2 =
ϕ( f0 + f1)

2
=

ϕ( f0)+ϕ( f1)

2
=

f1 +ϕ( f1)

2

f3 =
ϕ( f0 + f1 + f2)

3
=

ϕ( f0 + f1)+ϕ( f2)

3
=

2 f2 +ϕ( f2)

3
...

fn+1 =
ϕ( f0 + ...+ fn)

n+1
=

ϕ( f0 + ...+ fn−1)+ϕ( fn)

n+1
=

n fn +ϕ( fn)

n+1

Before we move onto the explicit formula for the Main Solution, we will
establish a lemma which will be used in several proofs involving the explicit
formula.

Lemma 5.1.3.
n+1

∑
k=0

(−1)k
(

n+1
k

)
f (x+k)=

n

∑
k=0

(−1)k
(

n
k

)
f (x+k)−

n

∑
k=0

(−1)k
(

n
k

)
f (x+k+1)

(5.2)
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Proof. This follows from (1.3), (1.6) and (1.5):

n+1

∑
k=0

(−1)k
(

n+1
k

)
f (x+ k)

=
n+1

∑
k=0

(−1)k
(

n
k

)
f (x+ k)+

n+1

∑
k=0

(−1)k
(

n
k−1

)
f (x+ k)

=
n

∑
k=0

(−1)k
(

n
k

)
f (x+ k)+

n+1

∑
k=1

(−1)k
(

n
k−1

)
f (x+ k)

=
n

∑
k=0

(−1)k
(

n
k

)
f (x+ k)−

n

∑
k=0

(−1)k
(

n
k

)
f (x+ k+1)

Theorem 5.1.4. The Main Solution has the following explicit formula, for
any given f0:

fn(x) =
1
n!

n−1

∏
k=0

(x+ k)
n

∑
k=0

(−1)k
(

n
k

)
f0(x+ k) (5.3)

Proof. Using the definition of the Main Solution and ϕ we can find expres-
sions for the first few functions in terms of f0:

f0(x) = f0(x)

f1(x) = x( f0(x)− f0(x+1))

f2(x) =
1
2

x(x+1)( f0(x)−2 f0(x+1)+ f0(x+2))

f3(x) =
1
6

x(x+1)(x+2)( f0(x)−3 f0(x+1)+3 f0(x+2)− f0(x+3))

which appears to be of the form:

fn =
1
n!

n−1

∏
k=0

(x+ k)
n

∑
k=0

(−1)k
(

n
k

)
f0(x+ k)

We will show by induction that the two forms we have found are the same,
i.e.

ϕ( f0 + f1 + ...+ fn−1)

n
=

1
n!

n−1

∏
k=0

(x+ k)
n

∑
k=0

(−1)k
(

n
k

)
f0(x+ k)
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Let n = 1 be the base case:
ϕ( f0)

1 = 1
1!x( f0(x)− f0(x+1), which per the definition of ϕ is true.

We assume this holds for some n, and see if it still holds for n+1:

ϕ( f0 + f1 + ...+ fn−1 + fn)

n+1
=

1
(n+1)!

n

∏
k=0

(x+k)
n+1

∑
k=0

(−1)k
(

n+1
k

)
f0(x+k)

We multiply both sides by (n+1), then focus on the RHS, apply Lemma
5.1.3 and use the recursive formula for the Main Solution (5.1):

1
n!

n

∏
k=0

(x+ k)
n+1

∑
k=0

(−1)k
(

n+1
k

)
f0(x+ k)

=(x+n) · 1
n!

n−1

∏
k=0

(x+ k)[
n

∑
k=0

(−1)k
(

n
k

)
f0(x+ k)−

n

∑
k=0

(−1)k
(

n
k

)
f0(x+ k+1)]

=(x+n) · ϕ( f0 + ...+ fn−1)

n
− (x+n)

n−1

∏
k=0

(x+ k)
n

∑
k=0

(−1)k
(

n
k

)
f0(x+ k+1)

=(x+n) fn − x(x+n)
n−1

∏
k=1

(x+ k)
n

∑
k=0

(−1)k
(

n
k

)
f0(x+ k+1)

We use the recursive formula (5.1) on the LHS:

ϕ( f0 + f1 + ...+ fn−1 + fn) = n fn +ϕ fn

= n fn + x fn − x fn(x+1) = (x+n) fn − x fn(x+1)

We cancel the (x+n) fn term on both sides to get:

x fn(x+1) = x(x+n)
n−1

∏
k=0

(x+ k)
n

∑
k=0

(−1)k
(

n
k

)
f0(x+ k+1)

Expanding the LHS we get:

x fn(x+1) = x · 1
n!

n−1

∏
k=0

(x+ k+1)
n

∑
k=0

(−1)k
(

n
k

)
f (x+ k+1)

= x(x+n)
1
n!

n−1

∏
k=1

(x+ k)
n

∑
k=0

(−1)k
(

n
k

)
f (x+ k+1)

which equals the RHS.
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Theorem 5.1.5. The Main Solution satisfies the 2nd criteria of the Main
Problem (equal diagonals)

Proof. We need to show that fn satisfies the diagonal property, i.e.
∑

N
K=0 fN−K(K +1) = f0(1). Let f0(x) = f (x), we then have

fn(x) =
1
n!

n−1

∏
k=0

(x+ k)
n

∑
k=0

(−1)k
(

n
k

)
f (x+ k)

fN−K(K +1) =
1

(N −K)!

N−K−1

∏
k=0

(K + k+1)
N−K

∑
k=0

(−1)k
(

N −K
k

)
f (K + k+1)

We can simplify everything in front the of the sum:

1
(N −K)!

N−K−1

∏
k=0

(K + k+1)

=
1

(N −K)!
(K +1)(K +2)...(N)

=
1

(N −K)!
· N!

K!
=

N!
K!(N −K)!

=

(
N
K

)
We then have:

N

∑
K=0

fN−K(K +1) =
N

∑
K=0

(
N
K

)N−K

∑
k=0

(−1)k
(

N −K
k

)
f (K + k+1)

=

(
N
0

)
[

(
N −0

0

)
f (1)−

(
N −0

1

)
f (2)+ ...+

(
N −0
N −1

)
f (N)−

(
N
N

)
f (N +1)]

+

(
N
1

)
[

(
N −1

0

)
f (2)−

(
N −1

1

)
f (3)+ ...+

(
N −1
N −1

)
f (N +1)]

+. . .

+

(
N

N −1

)
[

(
1
0

)
f (N)−

(
1
1

)
f (N +1)]

+

(
N
N

)
f (N +1)

=
N

∑
K=0

f (N −K +1)
N−K

∑
k=0

(−1)k
(

K + k
k

)(
N

K + k

)

We expect all f (N −K +1) to cancel out, with the sole exception of f (1).
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We get this if the inner sum evaluates to 1 when K = N and 0 otherwise. The
former is trivially true, and the latter can be done by induction, i.e.
∑

N−K
k=0 (−1)k(K+k

k

)( N
K+k

)
= 0 for all K,N s.t. 0 ≤ K < N.

For now, we skip the base case and go directly to the induction hypo-
thesis; we assume it holds for some N, and then see if it still holds for
N +1:

N−K+1

∑
k=0

(−1)k
(

K + k
k

)(
N +1
K + k

)
=

N−K+1

∑
k=0

(−1)k
(

K + k
k

)(
N

K + k−1

)
+

N−K+1

∑
k=0

(−1)k
(

K + k
k

)(
N

K + k

)
=

N−K+1

∑
k=0

(−1)k
(

K + k
k

)(
N

K + k−1

)
+(−1)N−K+1

(
N +1

N −K +1

)(
N

N +1

)
=

N−K+1

∑
k=0

(−1)k
(

K + k
k

)(
N

K + k−1

)
Notice that after applying induction once, we end up with an almost identical
expression, the only change being we have an extra term in our sum, and
that the 2nd binomial coefficient’s 2nd argument has been lowered by 1.
In other words, showing that our original expression always sums to 0 is
equivalent to showing that our new expression also sums to 0. If we apply
induction again, we will once again add another term to our sum, and lower
the argument by 1 once more. By induction, we can do this as many times as
we want, until the 2nd binomial has a negative 2nd argument for all values
of N and K. At this point it will always evaluate to 0, which means all of the
terms in the sum evaluates to 0, meaning the sum itself also evaluates to 0.
The only thing left to show is that the base cases hold every time we apply
induction to our problem. Let K = 0 and N = 1 for each of the base cases,
we then need to show:

1+m

∑
k=0

(−1)k
(

k
k

)(
1

k−m

)
=

1+m

∑
k=0

(−1)k
(

1
k−m

)
= 0

For m = 0 we get:

1

∑
k=0

(−1)k
(

1
k

)
=

(
1
0

)
−
(

1
1

)
= 0



5.2 Properties of the Main Solution 37

Then we note for any m> 0, the last 2 terms will be the same as we get above
(with or without reversed signs, which doesn’t change anything), while all
previous terms will have a binomial with a negative argument, meaning they
all evaluate to 0, which completes our proof.

Theorem 5.1.6. The Main Solution satisfies the third criteria of the Main
Problem (linear independence)

Proof. We know that the set defined by the sequence of repeatedly applying
ϕ to some suitable f0 is a linearly independent set. Recall the recursive
formula for the Main Solution: fn+1 = n fn+ϕ( fn)

n+1 , which is just a linear
combination of fn and ϕ( fn). By the same argument we used to show that
the former set was linearly independent, we can show that the Main Solution
is also linearly independent. We start with f0, and add f1, which is a linear
combination of f0 and f1, where f1 is guaranteed to have at least one unique
denominator in its pfd, which makes our new set linearly independent. By the
same reasoning, adding f2 to our set also preserves linear independence. And
by induction, we have that the entire Main Solution is a linearly independent
set.

With that, we have shown that the Main Solution solves the Main Prob-
lem for any suitable function f0(x).

5.2 Properties of the Main Solution

With the benefit of having a one-fits-all solution to our problem, we can
improve some of our previous statements.

Theorem 5.2.1. Let M be all sets of functions that are part of the Main
Solution for suitable functions. Then for fn,gn ∈ M we have

1. ϕ( fn) ∈ M

2. fn +gn ∈ M provided f0 +g0 is suitable

Proof. This is essentially an improved version of a previous conjecture
and theorem. For the first claim, we need to show that the Main Solution
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generated by ϕ( f0) = x f0(x)−x f0(x+1) is the same as the sum of the Main
Solutions for x f0(x) and x f0(x+1).

x fn(x)− x fn(x+1) =
x
n!

n−1

∏
k=0

(x+ k)
n

∑
k=0

(−1)k
(

n
k

)
f0(x+ k)

− x
n!

n

∏
k=1

(x+ k+1)
n

∑
k=0

(−1)k
(

n
k

)
f0(x+ k+1)

=
x
n!

n−1

∏
k=0

(x+ k)
n

∑
k=0

(−1)k
(

n
k

)
( f0(x+ k)− f0(x+ k+1))

ϕ( f0(x)) =
1
n!

n−1

∏
k=0

(x+ k)
n

∑
k=0

(−1)k
(

n
k

)
x( f0(x+ k)− f0(x+ k+1))

=
x
n!

n−1

∏
k=0

(x+ k)
n

∑
k=0

(−1)k
(

n
k

)
( f0(x+ k)− f0(x+ k+1))

As for the second claim, if f0 +g0 is a suitable function, then we can use
this as our initial function and apply the Main Solution to it to get a family
of functions that is in M .

Playing around with different choices of f0 for the Main Solution is
lots of fun, especially for “illegal” ones. The most obvious one is f0 = 0,
which (as expected) makes all fn = 0, which violates the linear independence
criteria. Another interesting initial choice is f0 = 1/x, which doesn’t have
a converging infinite sum, but as previously guessed, the “almost solution”
we had where fn = 1/(x+n) was correct.

Proposition 5.2.2. Applying the Main Solution to f0(x) = 1/x gives us:

fn(x) =
1

x+n

Proof. We know the Main Solution satisfies fn+1 =
n fn+ϕ( fn)

n+1 +, so if our
closed form expression also satisfies this (for the same initial function, they
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must be the same).

fn =
1

x+n

fn+1 =
n 1

x+n +
x

x+n −
x

x+n+1

n+1
=

x+n
x+n −

x
x+n+1

n+1

=
1− x

x+n+1

n+1
=

n+1
(x+n+1)(x+n)

=
1

x+n+1

Corollary 5.2.3.

n

∑
k=0

(−1)k(n
k

)
x+ k

= n!
n

∏
k=0

1
x+ k

Proof. We know that plugging f0(x) = 1/x into the Main Solution is equal
to 1/(x+n). Rearranging the equation gives us the conclusion.

Another interesting question is whether or not the Main Solution is the
only solution. One attempt at checking this is to see whether or not the Basel
functions are the same as the Main Solution applied to b0(x) = 1/x2.

Theorem 5.2.4. The Basel functions are the same as the Main Solution
applied to b0(x) = 1/x2, i.e.

bn(x) =
1

x+n

n

∑
k=0

1
x+ k

=
1
n!

n−1

∏
k=0

(x+ k)
n

∑
k=0

(−1)k
(

n
k

)
1

(x+ k)2

Proof. We use the same reasoning as before, checking if the Basel functions
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satisfies the same recursive formula.

1
n+1

(nbn +ϕ(bn))

=
1

n+1
(

n
x+n

n

∑
k=0

1
x+ k

+
x

x+n

n

∑
k=0

1
x+ k

− x
x+n+1

n

∑
k=0

1
x+ k+1

)

=
1

n+1
(
x+n
x+n

n

∑
k=0

1
x+ k

− x
x+n+1

n

∑
k=0

1
x+ k+1

)

=
1

n+1
(
1
x
+

n

∑
k=1

1
x+ k

− x
x+n+1

(
1

x+n+1
+

n

∑
k=1

1
x+ k

))

=
1

n+1
(
1
x
− x

(x+n+1)2 +(1− x
x+n+1

)
n

∑
k=0

1
x+ k

)

=
1

n+1
(
1
x
− x

(x+n+1)2 )+
1

n+1
· n+1

x+n+1

n

∑
k=1

1
x+ k

We now set this equal to bn+1 and confirm that they are the same:

1
n+1

(
1
x
− x

(x+n+1)2 )+
1

x+n+1

n

∑
k=1

1
x+ k

=
1

x+n+1

n+1

∑
k=0

1
x+ k

x+n+1
x(n+1)

− x
(n+1)(x+n+1)

+
n

∑
k=1

1
x+ k

=
n

∑
k=1

1
x+ k

+
1
x
+

1
x+n+1

x+n+1
x(n+1)

− x
(n+1)(x+n+1)

=
1
x
+

1
x+n+1

(x+n+1)2 − x2

x(n+1)(x+n+1)
=

(2x+n+1)(n+1)
x(n+1)(x+n+1)

2nx+2x+n2 +2n+1 = 2nx+2x+n2 +2n+1

Corollary 5.2.5.

n

∑
k=0

(−1)k(n
k

)
(x+ k)2 =

n!(x−1)!
(x+n)!

(ψ(x+n+1)−ψ(x))

Proof. This comes as a result of the Basel functions being the same as the
Main Solution for the initial function f0 = 1/x2. If we multiply both sides
by 1/n!∏

n−1
k=0(x+ k) we get the Main Solution expression on the LHS, and
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if (and only if) our claim holds, the RHS will then evaluate to the digamma
expression for the Basel functions.

1
n!
(

n−1

∏
k=0

(x+ k))
n!(x−1)!
(x+n)!

(ψ(x+n+1)−ψ(x))

= x(x+1)...(x+n−1)
(x−1)!
(x+n)!

(ψ(x+n+1)−ψ(x))

=
(x+n−1)!
(x−1)!

(x−1)!
(x+n)!

(ψ(x+n+1)−ψ(x))

=
1

x+n
(ψ(x+n+1)−ψ(x))

While the Basel functions equals a Main Solution, and thus doesn’t help
determine whether or not there exists other solutions, we can show that other
solutions do exist.

Theorem 5.2.6. The Main Solution is not the only solution to the Main
Problem.

Proof. Let fn(x) be a family of functions defined by the Main Solution.
Then let g(x) have a converging infinite sum such that g(1) = 0 = g(2).
Then h(x) = g(x)−ϕ(g) will have an infinite sum equal to 0, and h(0) = 0.
We now modify two consecutive elements in our family of functions like so:
fm → f̂m = fm(x)+h(x) and fm+1 → f̂m+1 = fm+1(x)−h(x+1) for some
fixed m, then both the infinite sum and the diagonal sum be preserved. If we
show that there exists such an h(x) that also preserves linear independence
for some fn(x), then we are done.

Let bn(x) be the Basel functions, and g(x) = (x− 1)(x− 2)/x4. This
choice of g(x) satisfies the criteria above, and hence h(x) = g(x)−ϕ(g) has
an infinite sum equal to 0 with h(1) = 0, and hence the first two criteria of
the Main Problem are satisfied. Applying pfd to h we get:

h(x) =−1
x
+

1
x+1

+
4
x2 −

4
(x+1)2 −

5
x3 +

5
(x+1)3 +

2
x4 −

2
(x+1)4

We modify two consecutive elements from the Basel functions: b1 → b̂1
and b2 → b̂2 and use the same argument as in Theorem 3.2.3 to get our
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conclusion. That is, we note the n-th member of our modified family of
functions contains a term in its pfd of the form 1/(x+n)2 that none of the
proceeding functions had in its pfd, which remains true even in this modified
version, and hence they are linearly independent, meaning this alternate
family of function is another solution to the Main Problem for the initial
function f0(x) = 1/x2.

Remark 5.2.7. Such a modified version of the Main Solution is enough
to disprove conjecture 4.1.2 and 4.1.3. That said, we have shown that the
former holds true for the Main Solution, whereas the latter keeps its status
as a conjecture even if we change “any solution” to “the Main Solution”.

In this proof we modified the 2nd and 3rd entries of an already known
solution to create our new solution, but this was arbitrarily chosen and can
be replaced by any two consecutive functions in the sequence. Furthermore,
we can do this multiple times and with different choices for h(x), which
strongly points to there being no bound to the amount of such solutions to
the Main Problem. The most obvious consequence of such solutions are the
earlier conjectures where we tried to use previous solutions to find new ones.
The existence of these modified solutions provides us with counterexamples
to these conjectures, and as such, these conjectures may strictly be qualities
of the Main Solution itself, rather than of any particular solution.

Another interesting observation is what the Main Solution does to poly-
nomials, as it seems to “kill” polynomials of degree m after m+1 iterations,
meaning the first m fn equals some polynomials, and then after that they all
equal 0.

Theorem 5.2.8. Let f0(x) be some polynomial of degree m, then the se-
quence fn(x) defined by the Main Solution is identically equal to 0 for all
n > m

Proof. We see that the Main Solution contains the binomial transformation
(1.9), which is the same as the m-th forward difference with alternating signs.
We know from [6] that the forward difference reduces polynomials by 1
degree, which means that it will be fully reduced to the 0-polynomial after
m+1 iterations of the forward difference. After this, the forward difference
will always return 0.
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A fun consequence of this theorem is that if we create a “Main Prob-
lem”, but for an initial function f0 some polynomial of degree m, and only
care about the diagonal property, then this problem can be solved with (at
most) m non-zero polynomials. By applying the Main Solution to the initial
polynomial, it’s obvious that the functions we get will always stay as a
polynomial, and as the theorem says, we will only get the 0-polynomial after
the first m additional functions in the sequence.

5.3 Main Solution on shifted functions

In this section we will explore how the Main Solution interacts with shifted
functions. We define the Main Solution as an operator on suitable func-
tions like so: M : f0(x) 7→ ( fn(x))∞

n=0. We take some suitable function
f (x) = f0,0(x) and shift it by m units to turn it into f0,0(x−m) = f0,m(x),
and then apply the Main Solution: M f0,m(x) = fn,m(x), where m is the
amount we shifted the function by, and n is the n-th element after applying
the Main Solution.

We now have a new family of functions that converge to some (usually)
new value, even if we shift it back by the same amount. As we will see, its
sum will now no longer be independent of n, but it will still be related to the
original sum in some way. We start with the case where we shift the function
by 1 unit.

Theorem 5.3.1. Let f (x) and f (x−1) be suitable, then we have:

∞

∑
x=1

( fn,1(x+1)− fn,0(x)) = f (0)− fn,1(1) =
n−1

∑
k=0

fk,0(1)

Proof. Let ∑
∞
x=1 f (x) = A, then ∑

∞
x=1 f (x− 1) = A+ f (0). We then have

∑
∞
x=1 fn,1(x+1) = A+ f (0)− fn,1(1), which means

∑
∞
x=1 fn,1(x+1)−∑

∞
x=1 fn(x) = f (0)− fn,1(1), which was the first equality

we wanted to show. We use induction on the other equality:

f (0)− fn,1(1) =
n−1

∑
k=0

fk,0(1)
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For the base case n = 0 both sides evaluates to 0. We then assume our
statement holds for some n, and sees if it holds for n+1:

f (0)− fn+1,1(1) =
n

∑
k=0

fk,0(1)

f (0)− fn+1,1(1) = fn,0(1)+
n−1

∑
k=0

fk,0(1)

f (0)− fn+1,1(1) = fn,0(1)+ f (0)− fn,1(1)

− fn+1,1(1) = fn,0(1)− fn,1(1)

We then use the explicit formula for the Main Solution (5.3) for all the terms.
Note that since all terms are evaluated at x = 1, the “1/n!∏(x+ k)” part of
the Main Solution will cancel itself out. The LHS then becomes:

− fn+1,1(1) =−
n+1

∑
k=0

(−1)k
(

n+1
k

)
f (k)

=−
n+1

∑
k=0

(−1)k
(

n
k

)
f (k)−

n+1

∑
k=0

(−1)k
(

n
k−1

)
f (k)

=−
n

∑
k=0

(−1)k
(

n
k

)
f (k)+

n

∑
k=0

(−1)k
(

n
k

)
f (k+1)

which equals the RHS:

fn,0(1)− fn,1(1) =
n

∑
k=0

(−1)k
(

n
k

)
f (k+1)−

n

∑
k=0

(−1)k
(

n
k

)
f (k)

One of the main motivations for doing this is how it lets us apply the
Main Solution to functions that diverge because it has a pole at x = 1. An
example of this would be f (x) = 1/(x−1)2. If we instead start with 1/x2,
we shift it back by 1 to get to 1/(x−1)2, apply the Main Solution, and then
shift it back, we will then have successfully applied the Main Solution to an
otherwise illegal starting function, whose infinite sum we can now relate to
another family of functions we are familiar with.

In the proof above we showed that f (0)− fn,1(1) = ∑
n−1
k=0 fk,0(1). While

the terms on the LHS may not always be defined (due to poles), the sum on
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the RHS always is, which suggests that the equality (excluding the middle
one) in Theorem 5.3.1 holds even if f (x− 1) isn’t suitable, which would
mean we can get the same, meaningful result regardless of f (x−1) being
suitable or not. Furthermore, the theorem seems to hold even for suitable∗

functions. If we define gn(x) = Fn(x+ 1)− fn(x), then when we take its
infinite sum, it appears we always end up with a telescoping sum, which
again leaves us with some sum of rational numbers.

By extending theorem 5.3.1 to an arbitrary shift of length m we get the
following theorem.

Theorem 5.3.2. Let f (x) and f (x−m) be suitable, then we have

∞

∑
x=1

( fn,m(x+m)− fn,0(x)) =
m−1

∑
k=0

( f (−k)− fn,m(k+1)) =
n−1

∑
k=0

m−1

∑
h=0

fk,h(h+1)

Proof. Let ∑
∞
x=1 f (x) = A ∈ R, then assuming f (x−m) is suitable we have

∑
∞
x=1 f (x−m) = A+ f (0)+ f (−1)+ ...+ f (−m+ 1) = A+∑

m−1
k=0 f (−k).

We now apply the Main Solution: f (x−m) = f0,m(x)
M−→ fn,m(x). We shift

it back and take its infinite sum to get:

∞

∑
x=1

fn,m(x+m) = A+
m−1

∑
k=0

f (−k)− fn,m(1)− fn,m(2)− ...− fn,m(m)

= A+
m−1

∑
k=0

f (−k)−
m−1

∑
k=0

f (k+1)

We subtract the infinite sum of f (x) to get the first desired equality:

∞

∑
x=1

fn,m(x+m)−
∞

∑
x=1

f (x) =
m−1

∑
k=0

f (−k)−
m−1

∑
k=0

f (k+1)

Now we need to show ∑
m−1
k=0 ( f (−k)− fn,m(k+1)) = ∑

n−1
k=0 ∑

m−1
h=0 fk,h(h+1).

We apply induction and check the base case n = 0:

m−1

∑
k=0

f (−k)−
m−1

∑
k=0

f0,m(k+1) = 0

m−1

∑
k=0

f (−k) =
m−1

∑
k=0

f0,0(k+1−m)

f (0)+ f (−1)+ ...+ f (−m+1) = f (−m+1)+ ... f (−1)+ f (0)
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Which holds true for all m. Now we let n → n+1:
m−1

∑
k=0

( f (−k)− fn+1,m(k+1)) =
n

∑
k=0

m−1

∑
h=0

fk,h(h+1)

m−1

∑
k=0

( f (−k)− fn+1,m(k+1)) =
n−1

∑
k=0

m−1

∑
h=0

fk,h(h+1)+
m−1

∑
h=0

fn,h(h+1)

m−1

∑
k=0

( f (−k)− fn+1,m(k+1)) =
m−1

∑
k=0

( f (−k)− fn,m(k+1))+
m−1

∑
h=0

fn,h(h+1)

m−1

∑
k=0

fn+1,m(k+1) =
m−1

∑
k=0

fn,m(k+1)−
m−1

∑
h=0

fn,h(h+1) (5.4)

We end up with three sums, which we will evaluate one by one. But before
we do this, we need to establish some properties of the Main Solution. We
want to express all of our terms in terms of fn,0(x) = fn(x). To do this,
we separate the explicit formula for the Main Solution into two parts; the
factorial/product and the sum. If we start with the sum, the easy case is
whenever we have a function of the form fn,m(x), as its summation part
evaluates to ∑

n
k=0(−1)k(n

k

)
f (k+ x−m), which shares its summation form

with fn,0(x−m). The slightly trickier case is when we have fn+1,m whose
summation expression evaluates to:

n+1

∑
k=0

(−1)k
(

n+1
k

)
f (k+ x−m)

which per Lemma 5.1.3 equals
n

∑
k=0

(−1)k
(

n
k

)
f (k+ x−m)−

n

∑
k=0

(−1)k
(

n
k

)
f (k+ x−m+1)

which shares its summation expression with fn,0(x−m)+ fn,0(x−m+1).

Now, the factorial and product expression for fn,m(x) evaluates to

1
n!

n−1

∏
k=0

(x+ k) =
x(x+1)...(x+n−1)

n!
· (x−1)!
(x−1)!

=
(x+n−1)!
n!(x−1)!

=
(x+n−1)...(n+1)n!

n!(x−1)!

=
(n+1)(n+2)...(x+n−1)

(x−1)!
=

1
(x−1)!

x−1

∏
k=1

(n+ k)
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For the fn+1,m case, we simply let n → n+1. We now use the properties of
the product and summation part of the Main Solution to express the terms in
(5.4) one by one, starting with the sum on the LHS.

m−1

∑
k=0

fn+1,m(k+1) = fn+1,m(1) = fn(1−m)− fn(2−m)

+ fn+1,m(2) = [ fn(2−m)− fn(3−m)](n+2)

+ fn+1,m(3) = [ fn(3−m)− fn(4−m)]
(n+2)(n+3)

2
+ ...

+ fn+1,m(m) = [ fn(0)− fn(1)]
(n+2)...(n+m)

(m−1)!

Now we do the same for the sums on the LHS:
m−1

∑
k=0

fn,m(k+1) = fn,m(1) = fn(1−m)

+ fn,m(2) = fn(2−m)(n+1)

+ fn,m(3) = fn(3−m)
(n+1)(n+2)

2
+ ...

+ fn,m(m) = fn(0)
(n+1)...(n+m)

(m−1)!

−
m−1

∑
h=0

fn,h(h+1) =− fn,0(1) =− fn(1)

− fn,1(2) =− fn(1)(n+1)

− fn,2(3) =− fn(1)
(n+1)(n+2)

2
− ...

− fn,m−1(m) =− fn(1)
(n+1)...(n+m−1)

(m−1)!

We need the coefficients for each fn(x) be equal on both sides of the
equation. Starting with the coefficients for fn(1), we need to show the
following:

1+(n+1)+
(n+1)(n+2)

2
+...+

(n+1)...(n+m−1)
(m−1)!

=
(n+2)...(n+m)

(m−1)!
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For the base case m = 1 we get 1 = 1 (using the convention that the empty
product on the RHS is 1). Now we let m → m+1:

(n+2)...(n+m)

(m−1)!
+

(n+1)...(n+m)

m!
=

(n+2)...(n+m+1)
m!

(n+2)...(n+m)m+(n+1)...(n+m) = (n+2)...(n+m+1)

(n+2)...(n+m)(m+n+1) = (n+2)...(n+m)(n+m+1)

which is true. Finally, to show the coefficients of the other terms are equal,
we need to show the following:

(n+2)...(n+m+1)
m!

− (n+2)...(n+m)

(m−1)!
=

(n+1)...(n+m)

m!

which is equivalent to the previous expression. Therefore, all the coefficients
are equal on both sides of the equation, which concludes the proof.

Remark 5.3.3. Note that the first equality in the theorem can be simplified
to:

∞

∑
x=1

( fn,0(x−m)− fn,m(x+m)) =
m

∑
k=1

fn,m(k)

Once again, we note that while the middle term may not always be
suitable, the LHS and RHS always are, regardless if f (x−m) is suitable or
not.

A reason why we care about these shifted functions, is how they relate to
the sums over the negative integers for some suitable functions. As usual, we
take the Basel functions as our example. For n = 0 we have a pole at x = 0,
and for every n after this, we will also have poles at the negative integers up
to n. So when we take our infinite sum, we want to avoid these. So for each
n, we start our sum from x =−n and from there go towards −∞. If we let
x →−x−n, we can take the infinite sum from x = 1 to ∞ like normal:

∞

∑
x=1

bn(−x−n)

Our goal is to evaluate this sum (or similar ones). If we use the previous
theorem for m = 1 on b0(x), we surprisingly seem to get an equality between
their infinite sums, which if we are lucky, means that the two functions
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themselves are equal. We will show this is the case, not just for the Basel
functions, but also for initial functions of the form 1/xm (although with
alternating signs for each m).

Theorem 5.3.4. For f0(x) = 1/xm we have fn,1(x+1) = (−1)m fn(−x−n)

Proof. We plug both expressions into the explicit formula for the Main
Solution (5.3).

fn,1(x+1) = (−1)m fn(−x−n)

1
n!

n−1

∏
k=0

(x+ k+1)
n

∑
k=0

(−1)k(n
k

)
(x+ k)m =

(−1)m

n!

n−1

∏
k=0

(−x−n+ k)
n

∑
k=0

(−1)k(n
k

)
(−x−n+ k)m

We cancel the 1/n! and focus on the RHS and use (1.8) to get:

(−1)m
n−1

∏
k=0

(−x−n+ k)
n

∑
k=0

(−1)k(n
k

)
(−x−n+ k)m

(−1)m · (−1)n
n−1

∏
k=0

(x+n− k)
n

∑
k=0

(−1)k( n
n−k

)
(−1)m(x+n− k)m

(−1)n · (−1)n
n−1

∏
k=0

(x+ k+1)
n

∑
k=0

(−1)k(n
k

)
(x+ k)m

which equals the LHS, and hence the functions are the same (up their
sign).

Now that we can express fn(−x− n) in terms of fn,1(x+ 1), we can
apply the previous theorem(s) to establish the sum of our target functions.
In fact, we can now establish the values of the sums of such functions over
all the integers where the functions doesn’t have poles.

Theorem 5.3.5. Let fn(x) be the Main Solution for f0(x) = 1
xm , and Z∗ be

the set of integers where fn(x) doesn’t have any poles. If we assume that
theorem 5.3.2 holds even when f (x−1) isn’t suitable, we then have:

∑
x∈Z∗

fn(x) = 2ζ (m)+
n−1

∑
k=0

fk(1)

Where ζ (m) = ∑
∞
x=1

1
xm is the Riemann-zeta function.
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Proof. We split the sum into two parts, and apply the previous theorem.

∑
x∈Z∗

fn(x) =
∞

∑
x=1

fn(x)+(−1)m
∞

∑
x=1

fn(−x−n)

= ζ (m)+(−1)m · (−1)m
∞

∑
x=1

fn,1(x+1)

From theorem 5.3.2 we have that

∞

∑
x=1

( fn,1(x+1)− fn,0(x)) =
n−1

∑
k=0

fk,0(1)

∞

∑
x=1

fn,1(x+1)−ζ (m) =
n−1

∑
k=0

fk(1)

∞

∑
x=1

fn,1(x+1) = ζ (m)+
n−1

∑
k=0

fk(1)

Substituting this into the above we get our conclusion.

Unfortunately, theorem 5.3.4 only applies to initial functions of the
form f0(x) = 1/xm, and we don’t have a similar relation that works for
an arbitrary suitable function. As such, (for now at least) we can’t create
such formulas for sums over all the integers (excluding the poles) for other
suitable functions.



Chapter 6

Area rearrangement operator in
continuous calculus

In this chapter we will look at the continuous version of the ϕ operator
and explore its properties. Recall how ϕ f (x) =−x∆ f (x). The continuous
version of the finite difference is the derivative, and as such, the continuous
version of the area rearrangement operator is as follows:

Definition 6.0.1. The continuous area rearrangement operator
Φ : C∞([1,∞)) 7→C∞([1,∞)) is given by

Φ f (x) =−x f ′(x)

While we can plug in any smooth function into Φ, we will mostly con-
sider functions that has a converging infinite integral. With this restriction,
the operator should behave like it does in the discrete case, and for the
sake of brevity we will skip proving claims that are trivial and/or equivalent
to the discrete case. This includes (but is not limited to) Φ being linear,
injective, taking constants to 0 and having an inverse. It should also still re-
arrange the area of interest in some way, by measuring the area in horizontal
strips, rather than the usual vertical columns, but unlike the former claims,
this is worth investigating further. Under certain conditions, we expect to
end up with the same area of some function f after applying Φ to it. The
geometric interpretation of measuring the area “sideways” is reminiscent
of a Lebesgue integral, however these are not the same and should not be
conflated. Whereas the Lebesgue integral always evaluates to the same value
as the Riemann integral for continuous functions [9, p. 81-82], we will soon
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see that the Φ operator does not necessarily do this.

6.1 Identities
From the discrete case, we expect some function f (x) to have the same
area as Φ f (x), at least under some (as for now unknown) conditions. If we
instead of focusing on a strict equality between them, consider the difference
between them, we would then expect to get some meaningful result, which
we do.

Theorem 6.1.1. ∫
f (x)−Φ f (x) dx = x f (x)+C

Proof. Using the definition of Φ we get:∫
f (x)−Φ f (x) dx =

∫
f (x)− (−x f ′(x)) dx =

∫
f (x)+ x f ′(x) dx

Using partial fraction decomposition we get our result:∫
f (x) dx+

∫
x f ′(x) dx

=
∫

f (x) dx+ x f (x)−
∫

f (x) dx

= x f (x)+C

From this we see that the difference between the areas are not necessarily
0, and hence the integral of f does not always agree with the integral of
Φ( f ), meaning this is not equivalent to a Lebesgue integral. But from this
identity, we can still find cases where the two must be the same, and as such,
recover a continuous version of the discrete equal infinite sums identity.

Theorem 6.1.2. Let a =−∞ or 0 and b = 0 or +∞,
if
∫ b

a f dx is well-defined for a “suitable” f , we have∫ b

a
f (x)−Φ( f ) dx = 0



6.1 Identities 53

Proof. If a = 0 = b then the integral obviously evaluates to 0. Otherwise, we
know the integral evaluates to [x f (x)]ba = b f (b)−a f (a). If either a or b is 0
and f (a) or f (b) is well-defined at this point, then their product evaluates to
0.

Lastly we need to show that limx→±∞ x f (x) = 0. We know an infinite
sum converges if and only if the corresponding improper integral converges
[10]. Per assumption, our improper integral is well-defined, which means so
is the corresponding infinite sum, which we have shown earlier that if it is
absolutely convergent satisfies the limit of interest, at least when x →+∞.
For the negative case, we note that it is essentially equivalent to the positive
case, and as such it also holds. Finally, we need to address the criteria that f
needs to be absolutely convergent. If we let f be “suitable” like before (i.e. a
rational function), we then know it can only change its sign a finite amount
of times. After this, it will behave as either a non-negative (or non-positive)
function, and hence the conclusion follows.

Corollary 6.1.3. For the same assumptions as before we have∫ b

a
f (x)−Φ

n f (x) dx = 0

Proof. We simply note that if the integrals are equal after applying Φ once,
and that Φ f (x) necessarily has to remain “suitable”, meaning the conditions
of the above theorem holds no matter how many times we apply Φ, and
hence all the integrals will be the same.

And just like that we have our equal continuous improper integral version
of the equal discrete infinite sums, by use of the area rearrangement operator.
Like in the discrete case, there are some choices of f that are illegal and thus
dictates what constitutes a “suitable” function. From the theorem, we noted
that f (x) has to be well-defined for x = 0, as we need 0 f (0) to evaluate to
0 (or at the very least limx→0+ x f (x) needs to be 0), meaning any function
with xm in the denominator prevents this from happening. As such we arrive
at the following definition for continuous “suitable” functions.

Definition 6.1.4. A suitable function (in the continuous case) is any rational
function f (x) = p(x)/q(x) ̸= 0 with integer coefficients that has no poles
for any non-negative integers. If we also allow deg(q)≥ 1+deg(p), then
we call them “suitable∗” (with a star).
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Definition 6.1.5. We define SC (and S∗C) to be the vector space(s) defined by
the span of all continuously suitable (or suitable∗) functions with scalars in
R.

Now that we have the continuous equal area identity, a natural question
to ask is whether or not we can have a continuous version of our Main Prob-
lem. While the Φ operator seems to generate linearly independent functions,
there does not seem to be an obvious “equal finite diagonal sum” property
to be found in the continuous case, which prevents us from translating the
discrete problem into a continuous one.

That said, there is one short-coming ϕ had that Φ does not share, that
being the ease of finding a closed form for repeatedly applying it to some
function.

Theorem 6.1.6.

Φ
n f (x) = (−1)n

n

∑
k=1

{
n
k

}
xk f (k)(x)

where
{n

k

}
is the unsigned Stirling numbers of the second kind

Proof. We can find the first few cases of Φn f (x) by hand:

Φ
0 f (x) = + f (x)

Φ
1 f (x) =−x f ′(x)

Φ
2 f (x) = +x f ′(x)+ x2 f ′′(x)

Φ
3 f (x) =−x f ′(x)−3x2 f ′′(x)− x3 f ′′′(x)

Φ
4 f (x) = +x f ′(x)+7x2 f ′′(x)+6x3 f ′′′(x)+ x4 f ′′′′(x)

which seems to be of the above form. We know Φn+1 f (x) =−x d
dxΦn f (x),

so if the expression we got satisfies this (for the same initial f ), we have our
conclusion. We begin with the RHS:

−x
d
dx

Φ
n f (x) =−x(−1)n

n

∑
k=1

{
n
k

}
d
dx

[xk f (k)(x)]

= (−1)n+1
n

∑
k=1

{
n
k

}
kxk f (k)(x)+(−1)n+1

n

∑
k=1

{
n
k

}
xk+1 f (k+1)(x)
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We now focus on the LHS and use the properties of the Stirling numbers
(1.4), (1.5), (1.7), which yields a result reminiscent to Lemma 5.1.3.

Φ
n+1 f (x) = (−1)n+1

n+1

∑
k=1

{
n+1

k

}
xk f (k)(x)

= (−1)n+1
n+1

∑
k=1

{
n
k

}
kxk f (k)(x)+(−1)n+1

n+1

∑
k=1

{
n

k−1

}
xk f (k)(x)

= (−1)n+1
n

∑
k=1

{
n
k

}
kxk f (k)(x)+(−1)n+1

n

∑
k=1

{
n
k

}
xk+1 f (k+1)(x)

which is the same as the RHS.

Using the previous theorems we can find antiderivatives for Φm f (x)− Φn f (x).

Theorem 6.1.7. for m < n we have∫
Φ

m f (x)−Φ
n f (x) dx = x

n−1

∑
k=m

Φ
k f (x)+C

Proof. We first show the following:
∫

f (x)−Φn f (x)dx= x∑
n−1
k=0 Φk f (x)+C.

We do this by subtracting and adding each of the Φm f (x) that lies “between”
f and Φn f , like so:∫

f (x)−Φ
n f (x) dx

=
∫

f (x)−Φ
1 f (x)+Φ

1 f (x)−Φ
2 f (x)+ ...+Φ

n−1 f (x)−Φ
n f (x) dx

=
∫

f (x)−Φ
1 f (x) dx+

∫
Φ

1 f (x)−Φ
2 f (x) dx+ ...+

∫
Φ

n−1 f (x)−Φ
n f (x) dx

We now have n integrals, all of the form
∫

gn(x)+xg′n(x) dx, which we know
evaluates to xgn(x)+C. Substituting Φn f (x) in for g(x) we get

x f (x)+ xΦ
1 f (x)+ ...+ xΦ

n−1 f (x)+C = x
n−1

∑
k=0

Φ
n f (x)+C

From here we do this for some m and n and take the difference to get our
conclusion∫

f (x)−Φ
n f (x) dx−

∫
f (x)−Φ

m f (x) dx = x
n−1

∑
k=0

Φ
k f (x)− x

m−1

∑
k=0

Φ
k f (x)+C

∫
Φ

m f (x)−Φ
n f (x) dx = x

n−1

∑
k=m

Φ
k f (x)+C
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6.2 Continuous Main Solution
Although it doesn’t seem possible to create a continuous version of the Main
Problem, we can still define a “Main Solution” for the continuous case,
which has more or less the same properties as before.

Definition 6.2.1. The continuous version of the Main Solution is given by

fn+1(x) =
Φ( f0(x)+ f1(x)+ ...+ fn(x))

n+1
=

1
n+1

n

∑
k=0

Φ fk(x)

Like before, this definition can be rearranged into a recursive formula
of the form fn+1 =

n fn+Φ( fn)
n+1 , and obviously it still has the “equal integral”

property that we explored previously. Although the proof is similar to the
discrete case, I will show that the sequence generated by this Main Solution
is a linearly independent set.

Theorem 6.2.2. The sequence of functions defined by the Main Solution for
a suitable f is a linearly independent set in SC.

Proof. We take some suitable function and apply pfd on it to get a sum of
suitable∗ functions. We choose one of them and see what happens when we
apply Φ to it. Let f (x) = p(x)

q(x)m , be a suitable∗ function s.t. pgcd(p,q) = 1
and q(x) is irreducible.

Φ( f ) =−x
d
dx

[p(x)q(x)−m]

=−x[p′(x)q(x)−m −mp(x)q(x)−m−1q′(x)]

=
−xp′(x)
q(x)m +

mxp(x)q′(x)
q(x)m+1

We ignore the first term with the q(x)m in the denominator, as that’s the
denominator we had to begin with. The other term has q(x)m+1 in its denom-
inator, which will ensure linear independence as long as this factor does not
get cancelled out (by anything more than a constant). Since f was suitable∗

we have that x can not be a factor of q(x). Likewise per assumption p(x) does
not divide q(x). Hence we only have to show that q′(x) cannot divide q(x)
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(by anything more than a constant). Let’s assume it does, which happens if
and only if q′(x) divides q(x), meaning q(x)

q′(x) must be a polynomial not equal
to a constant multiple of q(x). The only way for this to happen would be for
this to happen is if q(x) has any repeated roots, which contradicts it being
irreducible, and hence we have q′(x) does not divide q(x) (by more than a
constant).

From here the proof remains the same as in the discrete case; we pick a
term in the pfd of f that ensures linear independence and note that the Main
Solution can be recursively defined such that it inherits linear independence
from the set defined by repeatedly applying Φ.

Like before, there also exists an explicit expression for the Main Solution.

Theorem 6.2.3. The Main Solution has the following explicit formula

fn(x) = (−1)n 1
n!

xn f (n)(x)

Proof. We know that our family of functions satisfies fn+1 =
n fn+Φ( fn)

n+1 , so
if our explicit formula also satisfies this (for the same initial function) they
must be the same.

fn+1 =
n fn +Φ( fn)

n+1
xn+1 f (n+1)

(−1)n+1(n+1)!
=

1
n+1

(n
xn f (n)

(−1)nn!
− x

d
dx(x

n f (n))
(−1)nn!

)

xn+1 f (n+1)

(−1)n+1(n+1)!
=

nxn f (n)

(−1)n(n+1)!
− nxn f (n)

(−1)n(n+1)!
− xn+1 f (n+1)

(−1)n(n+1)!

xn+1 f (n+1)

(−1)n+1(n+1)!
=

xn+1 f (n+1)

(−1)n+1(n+1)!

Like before, we can find antiderivatives of differences of fn.

Theorem 6.2.4. For fm and fn in the Main Solution s.t. m < n we have

∫
fm(x)− fn(x) dx =

n−1

∑
k=m

x fk(x)
k+1

+C =
n−1

∑
k=m

(−1)k

(k+1)!
xk+1 f (k)(x)+C
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Proof. First we find an expression for the integral of the difference of two
consecutive functions in the Main Solution.∫

fn − fn+1 dx =
∫

fn −
n fn +Φ( fn)

n+1
dx =

1
n+1

∫
fn −Φ( fn) dx =

x fn(x)
n+1

+C

We now look at the integral of the difference between two arbitrary functions
in the sequence, and subtract and add the missing functions “between” them.∫

fm − fn dx

=
∫

fm − fm+1 + fm+1 − fm+2 + ...+ fn−1 − fn dx

=
∫

fm − fm+1 dx+
∫

fm+1 − fm+2 dx+ ...+
∫

fn−1 − fn dx

=
x fm(x)
m+1

+
x fm+1(x)

m+2
+ ...+

x fn−1(x)
n

+C

=
n−1

∑
k=m

x fk(x)
k+1

+C =
n−1

∑
k=m

x(−1)kxk f (k)(x)
(k+1)k!

+C =
n−1

∑
k=m

(−1)kxk+1 f (k)(x)
(k+1)!

+C

Like before, the Main Solution “kills off” polynomials, which is even
more obvious this time. The explicit formula includes the n-th derivative
in its product, which reduces polynomials of degree m to 0 after m+ 1
iterations. What’s more interesting is if we let f0 = xm, then the alternating
binomial coefficients show up.

Theorem 6.2.5. fn’s coefficients for f0 = xm are the alternating binomial
coefficients, i.e.

(−1)n

n!
xn dn

dxn xm = (−1)n
(

m
n

)
xm

Proof. We cancel out the alternating signs on both sides, and use a closed
form expression for the repeated derivative of xm

1
n!

xn m!
(m−n)!

xm−n =

(
m
n

)
xm

m!
n!(m−n)!

xm =

(
m
n

)
xm
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The Main Solution can be used to find and evaluate sequences of integ-
rals. Among them is the integral that extends the factorial function from the
naturals to the reals.

Theorem 6.2.6. The Main Solution can be used to derive the following
integral formula for n!

n! =
∫

∞

0
xne−x dx = Γ(n+1) (6.1)

Proof. Let f0(x) = e−x and plug it into the Main Solution to get fn(x) =
xn

n! e−x. Per the property of the Main Solution we have
∫

∞

0
xn

n! e−x dx=
∫

∞

0 e−xdx.
We evaluate the latter integral to get 1, and multiply both sides by n! to get
our conclusion.

Another interesting function we can apply the continuous Main Solution
to is f0(x) = ln(x)/ex. While this function has a pole at x = 0, we still have
limx→0+ x f (x) = 0, and as its integral from 0 to ∞ still converges (to −γ [2]),
we have enough motivation to apply the Main Solution to it and see what
happens. When we do this, we get a sequence of functions that begins like
this:

f0(x) =
ln(x)

ex

f1(x) =
x ln(x)

ex − 1
ex

f2(x) =
x2 ln(x)

2ex − 2x+1
2ex

f3(x) =
x3 ln(x)

6ex − 3x2 +3x+2
6ex

We notice that we seem to get one term with a natural log, and one with
a polynomial in it (in their numerators). While the Main Solution tells us
what the integral from 0 to ∞ their sum remains constant, we don’t know
what their integrals evaluates to individually, which is what we will explore
here. The integral of the natural log term seems to be Hn − γ , whereas the
one with the polynomial seems to evaluate to −Hn. Adding those values
together we get our expected result. Now we just have to prove that these
are the values the integrals evaluate to.

Theorem 6.2.7. Assuming the integral from 0 to ∞ of the Main Solution
applied to f0(x) = ln(x)/ex always evaluates to −γ , we have:
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1. ∫
∞

0

xn ln(x)
n!ex dx = Hn − γ

2. ∫
∞

0

∑
n
k=1(k−1)!

(n
k

)
xn−k

n!ex dx = Hn

Proof. We start by adding the expression in the first integral to the negative
of the second one, and show that this is what we get when we apply the
Main Solution to our original function, which means we have to show the
following:

(−1)n xn

n!
dn

dxn
ln(x)

ex =
xn ln(x)

n!ex − ∑
n
k=1(k−1)!

(n
k

)
xn−k

n!ex

(−1)n dn

dxn
ln(x)

ex =
ln(x)

ex − ∑
n
k=1(k−1)!

(n
k

)
x−k

ex

We do this with proof by induction. For the base case n = 0 we get ln(x)/ex

on both sides. We let n → n+1 and show that it still holds true.

(−1)n+1 dn+1

dxn+1
ln(x)

ex =
ln(x)

ex − ∑
n+1
k=1(k−1)!

(n+1
k

)
x−k

ex

We focus on the LHS:

(−1)n+1 dn+1

dxn+1
ln(x)

ex

=(−1)
d
dx

(−1)n dn

dxn
ln(x)

ex

=(−1)
d
dx

[
ln(x)

ex − ∑
n
k=1(k−1)!

(n
k

)
x−k

ex ]

=(−1)[
1

xex −
ln(x)

ex +
∑

n
k=1(k−1)!

(n
k

)
x−k

ex +
∑

n
k=1 k!

(n
k

)
x−k−1

ex ]

We cancel the ln(x)/ex term on both sides and multiply by −ex to get:

1
x
+

n

∑
k=1

(k−1)!
(

n
k

)
x−k +

n

∑
k=1

k!
(

n
k

)
x−k−1

=
n

∑
k=1

(k−1)!
(

n
k

)
x−k +

n

∑
k=0

k!
(

n
k

)
x−k−1
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Focusing on the RHS, we do something similar to Lemma 5.1.3 to get:

n+1

∑
k=1

(k−1)!
(

n+1
k

)
x−k

=
n+1

∑
k=1

(k−1)!
(

n
k

)
x−k +

n+1

∑
k=1

(k−1)!
(

n
k−1

)
x−k

=
n

∑
k=1

(k−1)!
(

n
k

)
x−k +

n

∑
k=0

k!
(

n
k

)
x−k−1

which equals the LHS.

From here, we note that proving either of the statements in the theorem
proves the other one, as per assumption the difference between them is
−γ . We choose the second one and show that it is true. Per (1.2) we have
(k−1)!

(n
k

)
/n! = 1/(k(n− k)!). We use this and expand the sum to get:

∫
∞

0

xn−1

(n−1)!ex +
xn−2

2(n−2)!ex +
xn−3

3(n−3)!ex + ...+
1

nex dx

=
∫

∞

0

xn−1dx
(n−1)!ex +

1
2

∫
∞

0

xn−2dx
(n−2)!ex +

1
3

∫
∞

0

xn−3dx
(n−3)!ex + ...+

1
n

∫
∞

0

dx
ex

From (6.1) we have that all of the above integrals evaluate to 1, meaning
we end up with the sum of their coefficients, which is the sum of the n first
reciprocals of the natural numbers, which is the definition of the Harmonic
numbers.

These two examples highlight how the Main Solution can do more than
just find expressions whose integrals converge to some constant value. When
we have a sequence of functions that converge to the same value, we can
manipulate them to get interesting and non-trivial results. We only showed
two examples of this, but there are almost surely many more to be found. As
long as we can find a clean expression for the n-th derivative of the starting
function, the possibility of finding interesting identities will remain.
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Chapter 7

Final thoughts

7.1 Conjectures and further work

In this section we will examine ideas that had lots of potential, but ultimately
were left under-explored or unproven. We already dealt with two conjectures
in chapter 4, both concerning using known solutions of the Main Problem to
find new ones. We later concluded that if we slightly changed the conditions
of the conjecture, by replacing “any solution” to “the Main Solution”, we
then get that the first one (4.1.2) holds true, while the other one (4.1.3) (for
now at least) remains a conjecture. But as these have already been discussed,
we will move on for now.

Another under-explored topic was how we managed to extend the table
in section 3.2 to include a diagonals of zeros and negative terms. We relied
on this observation for the proof of the diagonal property for the Basel
functions, but we never explained how this was done to begin with. Unfor-
tunately, the Basel functions just happened to have a pattern that was easy
to extend, and as such, we don’t have an easy way to do the same for any
arbitrary suitable function.

At last, we have a conjecture regarding the integrals of the discrete Main
Solution functions. If we take any Main Solution fn(x) and plot their graphs,
now letting x take on real values in the interval [1,∞), we notice that as n
increases, the graphs seems to get “flatter”. This becomes a very important
detail when we try to compare the infinite sum of these functions with their



64 Final thoughts

infinite integral. The idea is that as the curve gets flatter, the integral will
become a better and better approximation of the original sum. Our conjecture
being that in the limit, they become equal.

Conjecture 7.1.1. If fn is a solution to the Main Problem, then

∞

∑
x=1

fn(x) = lim
n→∞

∫
∞

1
fn(x) dx

For some extra motivation for this conjecture, we note that if it is true,
then it becomes another solution to the problem of when we have some
function whose sum equals its integral, like the “Sophomore’s dream” [8] or
certain expressions using the binomial coefficient [1].

Now, we can actually show that this holds for the Basel functions, much
as a consequence of them having their summation formula.

Theorem 7.1.2. For the Basel functions bn(x) we have

∞

∑
x=1

bn(x) = lim
n→∞

∫
∞

1
bn(x) dx =

π2

6

Proof. Let En be the difference between the sum and the integral. We then
use (2.1) to turn our sum into an integral and make an expression for the
difference between the sum and the integral:

En =
∞

∑
x=1

bn(x)−
∫

∞

1
bn(x) dx

=
∫

∞

1
bn⌊x⌋ dx−

∫
∞

1
bn(x) dx

=
∫

∞

1
bn⌊x⌋−bn(x) dx

Since bn(x) is strictly decreasing (and always > 0) on our interval for all n,
we have that bn⌊x⌋−bn(x) will be bounded by bn(x)−bn(x+1) on every
interval of the type [m,m+1), i.e.

En =
∫

∞

1
bn⌊x⌋−bn(x) dx ≤

∞

∑
x=1

(bn(x)−bn(x+1)) = bn(1)
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Hence, if we show that bn(1) can become arbitrarily small, we have our
conclusion. We start by using the summation formula for the Basel functions
(3.1):

bn(1) =
1

n+1

n

∑
k=0

1
k+1

=
Hn

n+1

We take the limit as n → ∞ and use L’Hôpital’s rule:

lim
n→∞

Hn

n+1
= lim

n→∞

d
dnHn

d
dn(n+1)

The numerator becomes 1, and as such we only need to focus on the de-
rivative of the harmonic numbers. We change the argument back to x, and
Use the harmonic number definition of ψ(x) (1.14) and the definition of the
polygamma functions (1.15) to get:

Hx−1 = ψ(x)+ γ

Hx = ψ(x+1)+ γ

d
dx

Hx =
d
dx

ψ(x+1) = ψ
1(x+1)

From the summation formula for the polygamma functions (1.16) it is
obvious that as x → ∞, ψ1(x)→ 0, and hence, En → 0 as n → ∞.

Remark 7.1.3. The exact same argument will work for any functions that is
always > 0 and strictly decreasing for x ∈ [1,∞), with limn→∞ fn(1) = 0.

Using this theorem, we can get some interesting identities:

lim
n→∞

∫
∞

1

1
x+n

n

∑
k=0

1
x+ k

dx =
∞

∑
x=1

1
x+n

n

∑
k=0

1
x+ k

=
π2

6

lim
n→∞

[
∫

∞

1

n−1

∑
k=0

1
(x+n)(x+ k)

dx+
∫

∞

1

1
(x+n)2 dx] =

π2

6

lim
n→∞

n−1

∑
k=0

ln(n+1)− ln(k+1)
n− k

+ lim
n→∞

1
n
=

π2

6

lim
n→∞

n−1

∑
k=0

ln(n+1)− ln(k+1)
n− k

=
π2

6
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If we split the sum into two parts and plug both sides into exp(x) we get
another nice expression:

lim
n→∞

[
n−1

∑
k=0

ln(n+1)
n− k

−
n−1

∑
k=0

ln(k+1)
n− k

] =
π2

6

lim
n→∞

exp(Hn ln(n+1))

exp(∑n−1
k=0 ln(k+1)

1
n−k )

= exp(
π2

6
)

lim
n→∞

n−1

∏
k=0

(
n+1
k+1

)
1

n−k = e
π2
6

lim
n→∞

(n+1)Hn

∏
n−1
k=0(k+1)

1
k−n

= e
π2
6

Of course the Basel functions are just one family of functions out of
infinitely many from the Main Solution, so it would be nice if the conjecture
holds true for all of them, which would allow us to find similar expressions
for any suitable function. Perhaps if we could find a general “summation”
formula for the Main Solution, then it would be easier to prove. Or maybe
strictly looking at rational functions has been a red herring this whole time,
and that the true space of functions of interest are some combination of
digamma (and polygamma) functions. The fact that the inverse of the ϕ

operator takes certain rational functions into polygamma functions supports
this idea. Perhaps if we could generalize these findings to a space of poly-
gamma functions, it would allow us to find “easy to work with” summation
formulas for more than just the Basel functions.

7.2 Conclusion
Although the x d

dx and x∆ operators are known in the literature, they seem to
remain unfamiliar to many, despite their simplicity. Perhaps as a consequence
of this, there are many properties of these operators that have been mostly
overlooked, among them how if we put a minus sign in front, we get an
operator that preserves area by rearranging it, which is why we refer to
it as the area rearrangement operator. While interesting on its own, it is
also the basis for the Main Solution, which can also be seen as an operator,
which shares the property of preserving the very same area. In addition
to being great ways of finding more unique functions whose sum/integral
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remains the same, they are also very useful in finding various sum and
integral expressions that naturally arise when working with these families of
functions.
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