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Abstract

This paper researches the possibility of utilizing machine learning to locate
factors contributing to a failing job at the ALICE grid, focusing on the grid
site at the University of Bergen. A prototype system has been developed
for data collection, management, analysis, and machine learning. The anal-
ysis data originates from the ALICE monitoring system, MonaLISA, and its
grid middleware JAliEn. A custom transformer model is utilized in the re-
search, which addresses memory constraints in the project test environment
by processing subsets of the complete input related to a job execution at a
time.
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Chapter 1

Introduction

1.1 Motivation

Machine Learning (ML) is a branch of Artificial Intelligence (AI) that has
grown quickly in recent years in terms of data analysis tasks [34]. It is
a technology that can extract meaningful patterns and structures in data.
There are multiple use cases for ML, where language translation tasks are
one of several examples where it has proven exceptionally well [42]. This
motivates the project to utilize this powerful technology for its data analysis.

A Large Ion Collider Experiment (ALICE), is situated at CERN’s Large
Hadron Collidor (LHC) in Geneva, Switzerland. The experiment revolves
around a study of the physics of strongly interacting matters at high en-
ergy densities [11]. Data procured in this experiment is preserved for further
analysis, where several computational tasks, referred to as jobs, are gener-
ated to analyze this data. These are distributed across multiple computer
nodes within a grid infrastructure, as the computational power required is
substantial.

The grid sites utilized by the ALICE experiment sometimes experience job
failures, where a job cannot successfully execute its tasks. These jobs con-
sume computing resources without yielding any valuable output. The project
aims to find the causes of job failure to provide more insight into why a job
fails. This information can be quite valuable, especially if the causes can be
addressed. A reduction in job failures reduces wasteful computing, which
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conserves resources in terms of power and costs. The first step towards this
goal is to locate the problem’s origins.

1.2 Research questions

The primary objective of this project is to investigate the feasibility of uti-
lizing Machine Learning to locate the underlying causes of job failure at its
test subject, the University of Bergen’s grid site. In pursuit of this goal, the
research will address the following key questions:

• RQ1: How can AI help us discover the underlying causes and factors
contributing to job failures?

• RQ2: What strategies and mechanisms can be devised for the efficient
optimization of computer resources based on insights derived from this
AI model?

These research inquiries will guide the exploration of ML-driven data analysis
within the context of failing jobs at the University of Bergen’s grid site.
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Chapter 2

Background

This section will provide some background information relating to Grid Com-
puting, ALICE, and Machine Learning. The provided information will be
utilized in the following chapters.

2.1 Grid Computing

Grid computing utilizes the collaboration between interconnected computers
to obtain higher performance and more resources. It has several benefits,
one of which is the ability to solve more resource-heavy problems. Grid com-
puting also provides an infrastructure for collaboration between institutions
and organizations, as described in the book ”Grid Computing” by Barry
Wilkinson [44].

Grids have a decentralized structure, in which authorized users can submit
tasks. Not one person or organization has control over the complete system,
but rather a part of it. The essence of grid computing is having distributed
computing resources working towards a common goal. The distribution yields
a need for certain standards to ensure successful executions of the compu-
tational tasks. Problems might occur if the (local) test environment of a
task differs from the execution environment. In short, grid computing pro-
vides an interface to heterogeneous resources, which can be across multiple
administrative domains [16].
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2.2 CERN

The European Organization of Nuclear Research, known as CERN, is an or-
ganization that has been researching the elementary particles and forces that
build this universe since 1954 [15]. CERN has a particle accelerator called
the Large Hadron Collidor (LHC), which is the largest and most powerful
particle accelerator in the world [9]. It currently (Jan. 2024) supports nine
experiments, each of which is part of a collaboration of scientists and insti-
tutions worldwide[8]. The experiments use specific detectors (located in the
LHC) designed to capture different physical phenomena.

2.3 ALICE

The ALICE experiment, functioning as a versatile, heavy-ion detector located
within the complex of the CERN Large Hadron Collider (LHC), is dedi-
cated to the comprehensive examination of physics observables originating
from collisions of particles [11]. Notably, the data generation is formidable,
amounting to tens of petabytes during a typical operational year. A portion
of this extensive data is utilized for subsequent in-depth analysis [28] [24].

2.3.1 ALICE Computing

ALICE leverages the World LHC Computing Grid (WLCG), a sophisticated
computing infrastructure, in conjunction with the Java ALICE Evironment
(JAliEn) grid middleware for the storage, processing, and analysis of data
[24]. The WLCG serves as a pivotal computational resource reservoir con-
sisting of multiple grid sites located worldwide, offering support to numerous
CERN initiatives.

2.3.2 CernVM File System (CVMFS)

CVMFS is the current software distribution for the ALICE grid. It is a
read-only file system, whose purpose is to deliver software in a fast, scalable,
and reliable way [20]. The system is implemented as a POSIX (The Portable
Operating System Interface) file system [7], which can be added to an existing
file three [40]. Software stored within the CVMFS can be run directly from
it, without any additional installations.
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2.3.3 Java ALICE Evironment (JAliEn)

ALICE utilizes the grid middleware JAliEn. It consists of a collection of
several services and serves as the user interaction with the ALICE grid. The
interaction is a Linux-like console, in which certain commands are available
such as job submission. Users can connect to JAliEn using their CERN-issued
grid certificate. Interactions with its services are also possible via scripts
connecting to the WebSocket endpoint. An example of this is the Python
package Alienpy [39], which is a package that connects to the WebSocket
endpoint to enable interactions with JAliEn via Python scripts.

One of the main components of JAliEn is JCentral. This component is
responsible for the job queue, named TaskQueue. A lot of functionality is
related to this queue, such as job submission, registering job outputs, job
status transition, job matching, and job tracing. All of which is managed by
JCentral. It also controls the data management, deciding file placement for
every grid job (such as the trace file of a job). The location of these files is
annotated in a File Catalogue, which users can interact with (via JAliEn) to
locate and access these files [24].

2.3.4 MonaLISA

ALICE utilizes the MonaLISA system to monitor its grid sites. It is a mon-
itoring system, which is built up of independent self-describing agent-based
subsystems, registered to MonaLISA as dynamic services [5]. These services
are responsible for monitoring and passing along the information. Its agent-
based architecture enables additional services to register themselves, to be
utilized in other services or clients that depend on this information. MonaL-
ISA has a layered architecture, consisting of four logical layers illustrated in
Fig. 2.1. The first layer consists of ”regional or high-level services (HLS)”,
namely repositories and clients. This layer exists for the consumers of the
monitored data, which they can utilize for storage, analysis, etc. The second
layer consists of proxies, enabling secure and reliable communication in a
scalable way. The proxies can multiplex the data received from MonaLISA
services to all the subscribed clients, meaning that the services only have
to send the same information once. The third layer consists of the services,
responsible for the monitoring tasks. The fourth layer is a lookup service
(LUS), a network of services enabling dynamic registration and discovery of
the other system components found in the other layers. MonaLISA services
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can find each other and be found by clients needing their monitoring data.

Figure 2.1: The four logical layers of the MonALISA architecture, from top
to bottom: 1. high level services, 2. proxies, 3. distributed agents, 4. lookup
services. [5]

2.4 Machine Learning

Machine Learning is described as a computational paradigm where algo-
rithms develop the capability to solve problems through the analysis of his-
torical data [22]. This is done by training a machine-learning model. A
model contains both an architecture, which describes the structure, and a
set of numerical weights that are optimized during training. The architec-
ture of a model defines how the weights connect to each other, and how
inputs interact with these weights. There exist different learning approaches
in Machine Learning, one of which is supervised learning.

2.4.1 Supervised Learning

The supervised approach utilizes data that has a defined label for each input,
a target value that we want to predict as accurately as possible. The training
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process consists of passing an input through a model that outputs a predicted
value. This value is then compared to the label to calculate loss (or other
measurements), which quantifies how far the predicted value is from the
label. The goal of the training is to minimize this loss. Several mathematical
functions can be utilized to calculate loss, but a common example is the
Mean Squared Error (MSE), illustrated below:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (2.1)

MSE calculates the average squared difference between each predicted (yi)
and target (ŷi) value [14]. The weights are updated concerning this loss,
where a common optimization technique is gradient descent. First, we cal-
culate the derivative of the loss function (here MSE) with respect to each
individual weight. Then, we utilize gradient descent in order to minimize
loss. This is done by following the negative gradient of each of the derivative
functions [3]. In essence, the derivative will show us whether increasing or
decreasing the weight will minimize loss, and we alter the weights accord-
ingly. This is often done in batches, which are subsets of the total training
data. Training in batches ensures that model optimizations are based on
several inputs. A separate validation dataset, which is not exposed to the
model during training, is utilized to measure how well the model performs
on unseen data. Models can train for several epochs, where an epoch is one
training iteration where the model has ”seen” each input exactly once.

2.4.2 Transformer architecture

The transformer architecture was first proposed in the paper ”Attention Is
All You Need” by Ashish Vaswani et al [42], and has since been proven ex-
ceptionally well in Natural Language Processing (NLP) [6] and computer
vision tasks [23]. Transformers leverage self-attention mechanisms to focus
on important parts of the input and ignore less relevant parts. The suggested
self-attention mechanism by Vaswani et al is called Scaled Dot-Product At-
tention, illustrated in Fig 2.2.

12



Figure 2.2: (left) Scaled Dot-Product Attention. (right) Multi-Head Atten-
tion consists of several attention layers running in parallel [42]

The Scaled Dot-Product Attention utilizes three vectors, denoted query(Q),
key(K), and value(V). The article ”Unpacking the Query, Key, and Value
of Transformers: An Analogy to Database Operations” by Mohamed Nabil
explains the purpose of these vectors as such [26]:

“In transformers, the query is the information that is being looked for, the
key is the context or reference, and the value is the content that is being
searched.”

These vectors are derived from linear layers, where each linear layer corre-
sponds to a specific purpose(query, key, or value). Linear layers perform a
matrix-vector operation, where the input vector (x) is scaled by a matrix
(W)[25]:

y = xW (2.2)

The matrices in the linear layers consist of trainable weights, which are op-
timized in the training phase. The outputs are transformed representations
of the input, learned during training. A single element of the input is passed
through the linear layers at a time, where an element can be a vector if the
input is a matrix (this is often the case in NLP). This results in a collec-
tion of vectors that are merged in their respective matrices (Q, K, V), where
different rows contain information from separate parts of the input.
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The query and key matrices are combined through a series of operations,
resulting in a matrix of attention scores. This matrix is referred to as an
attention matrix and contains information about how strong the relations
are between the elements in the input. This matrix is applied to the value
matrix to emphasize parts of the input that are more relevant than others.
This is how the transformers generate contextual relevance in the input.

Several self-attention mechanisms are applied to the input in parallel in trans-
formers. This is called Multi-Head Attention, where multi-head refers to
multiple self-attention mechanisms and thus multiple query, key, and value
matrices. Several linear layers are utilized for each of the matrix types (Q,
K, V), such that each ”Head”, which is a single instance of self-attention,
produces a different representation of the input. The outputs from the differ-
ent heads are concatenated and transformed, resulting in a rich, contextual
representation of the input.

The transformer architecture proposed by Vaswani et al (Illustrated in Fig.
2.3) is an encoder-decoder structure. The encoder processes the input, while
the decoder produces an output. The suggested decoder is auto-regressive,
meaning that one output element (i.e. a word) of the complete predicted
output is generated at a time. Complete outputs are produced through
iterations, where the current (incomplete) version of the predicted output is
given as input to the decoder in each iteration. More detailed information
about the transformer architecture can be found in the papers ”Attention Is
All You Need” by Ashish Vaswani et al [42] and ”Transformers in Vision: A
Survey” by Salman Khan et al [23].
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Figure 2.3: The Transformer - model architecture. [42]. Consists of an
encoder(left) and a decoder(right).
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Chapter 3

Methodology

This chapter discusses the methodologies utilized in this project. It is impor-
tant to have a research methodology, as this structures the project, as well
as increases the efficiency, validity, and reliability. The software development
branch is a bit unique within the realm of research, as the implementation
of various systems is a big part of such projects. They need to address the
narrative of the project and work within its defined environment.

The project utilizes the Design Science methodology as its research method-
ology. It describes an iterative process of implementation and evaluation, as
well as ensures that it is built on a knowledge base in the respective field.
The following section discusses the different aspects of Design Science as de-
scribed in the paper ”A Three Cycle View of Design Science Research” by
Alan R. Hevner [17].

3.1 Design science

Alan R. Hevner discusses how the interaction between the Environment, De-
sign Science Research, and Knowledge Base works in a Design-science project.
The form of the interaction is through cycles, or iterations included in the de-
velopment of an application. It is a way to ensure that multiple prospects are
considered in the process of implementation. The three cycles; Relevance,
Design, and Rigor cycle form a methodology for software development, in
which multiple aspects are considered.
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Figure 3.1: The design sciences research cycle [17]. Illustrate the iterative
nature of the methodology by three cycles, Relevance, Design, and Rigor
cycle. It is a methodology that ensures that environment and knowledge
have been considered during the development of a system.

According to Alan R. Hevner, the design science cycle can be reduced to
three central components, combined by three cycles: Relevance Cycle, Design
Cycle, and Rigor Cycle.

3.1.1 The Relevance Cycle

The relevance cycle defines the interaction between the environment, called
the application domain, and the Design science research. The environment
possesses certain system requirements, which are defined by people or systems
on which the application will be dependent. It can produce problems and
opportunities, in which some acceptance criteria are set. The cycle defines an
iteration of field testing, where the application will be tested directly toward
the acceptance criteria, which again will determine whether additional iter-
ations are necessary. The iterations might also show the need for additional
requirements, in which further acceptance criteria can be included for the
subsequent iterations. This helps ensure that the adoption of the applica-
tion in the given environment will work within the requirements posed by its
domain.

The project environment in terms of the Design Science model consists of
project supervisors, a test environment for the code, and ALICE-related
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systems. These have posed certain requirements to the system developed
in the project. The relevance cycle consists of defining certain key features,
implementing them, and exposing them to the test environment, as well as
the project supervisors. Weekly meetings with the supervisors have been
held during the project. These meetings usually consisted of presenting the
work done and receiving feedback in the form of additional requirements or
tips for solving current problems.

3.1.2 The Rigor Cycle

The Rigor Cycle ensures that past knowledge has been considered in the de-
velopment of the application. There exist practices, principles, systems, and
design patterns that have been proven successful in the development of an ap-
plication. This knowledge might not only speed up the development process
but can also help establish a more profound foundation. It is however worth
mentioning that not all aspects of the application should be derived from
previous knowledge, as this might be a blocker for the process of innovation.
The scientific findings obtained in the current design-science project might
one day appear in the knowledge base for another, as this is the progression
of science.

The project has leaned on experience and expertise in its development pro-
cess. The expertise of supervisors and the JAliEn development team has
helped the project a lot, especially concerning the utilization of ALICE-
related systems. Litterateur and tutorials have been quite helpful as well in
terms of design and development of different systems in the project. Several
aspects of this project were initially unknown to the author, in which the
rigor cycle was visited to obtain the knowledge required.

3.1.3 The Design Cycle

The Design Cycle is the core of design science projects. Through an iterative
process of development, new features are added and evaluated to ensure that
they work as expected. The results from the evaluation work as feedback to
the implementation, to make sure that requirements (given from the Rele-
vance cycle) are upheld. The essence of the design circle is to have a fine
balance between development and evaluation, as well as ensuring that the
relevance and rigor cycle is present in both.
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The project’s design cycle mainly consisted of implementing features, de-
fined in the relevance cycle, and evaluating them. The evaluation for certain
features was in the form of unit tests, while other features relied only on
user tests to confirm that they functioned as intended. The implementation
was revisited in the case of undesired functionality and further tested until
a satisfactory result was reached.

3.2 The Machine Learning Lifecycle

The project utilizes Machine Learning for its data analysis, in which the
Machine Learning Lifecycle framework (fig. 3.2) would be natural to utilize
in this project. The ML life cycle is a development framework that divides the
development of a Machine Learning model into specific stages, structuring
an ML project [4]. These stages include:

• Business goals: Define an overall goal

• ML problem framing: Define how the model would help us reach this
goal

• Data Processing: Define data sources, collect and process data, and
feature engineering

• Model Development: Define an appropriate model for our data and
goal. Train the model with different parameters to obtain an optimal
model

• Deployment: Expose the model to a production environment

• Monitoring: Ensure that the model serves the overall goal. Further
development of the model might be needed.

It can be adopted in a broad variety of ML projects as it describes the
necessary steps in the creation of a model. We will further discuss how these
stages were utilized in the project.
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Figure 3.2: The lifecycle of Machine Learning development framework [4].
Divides the development of a model into six different stages, structuring the
development process. The first stage is defining a Business Goal.

3.2.1 Business goal

This project aims to find causes of job failure, with an overall goal of reducing
computational waste for the ALICE project, focusing on the grid site at the
University of Bergen. The waste in question is resources tied up in the
execution of failing jobs. This is a broad definition, but it provides the
constraint that the data in question needs to be related to a job execution.

3.2.2 ML Problem Framing

How can Machine Learning help achieve the goal of reducing computational
waste? There are several choices on model architectures and overall approach.
The discussion of whether to use supervised or unsupervised learning depends
on our overall goal. Unsupervised learning is a great tool for discovering
underlying structures and relationships in our data. This could give us a
broader understanding of the data patterns for successful and failing jobs.
Supervised learning is another approach, where we would try to predict a
target value for our data. The natural target value of a job’s end status
incentivizes the project to use this approach. We therefore defined the ML
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problem as: ”Can Machine Learning predict whether a job execution succeeds
or fails?”. This is a binary classification problem, meaning that there are two
possible classes that the model can predict, namely success or failure.

3.2.3 Data Processing

Data processing is an important step in every ML project. It incorporates the
process of data collection, feature selection (which attributes to use as input),
and feature engineering (creating new attributes with the data available).
The data utilized in the training process of the model directly influences the
performance, robustness, and generalization capabilities of a model. Utilizing
data relevant to the problem is a key factor in ML.

The first step in the data processing stage is data collection, making the data
accessible for our model. Possible data sources are limited by our business
goal and ML problem, which states that the data must be related to job
executions and have a corresponding label. The computing environment of
a job, namely the grid site, is a data source that upholds these conditions.

ALICE utilizes MonaLISA to monitor its grid. This system comes with a
GUI, which (amongst other things) gives an overview of the several services
monitored by MonaLISA (Fig. 3.3). Services related to the UiB grid site are
grouped, which gives us an easy overview of the available data.

There are several services monitored at the UiB site, each of which contains
different measurements. These need to be tied to a job execution to ad-
dress our ML problem. Additionally, we need a target value for our data,
namely job end status. This information is not available through MonaLISA,
meaning that we need an extra data source.

The ALICE grid middleware JAliEn traces each job execution. Each trace
is available in the trace file, which essentially is a log containing information
such as which grid site executes the job. This file contains valuable informa-
tion that can be utilized to link data from the MonaLISA services to specific
job executions, such as job-id and worker node (computer at the grid site
executing the job). Each job also has a related JDL file (Job Description
Language file), which can be accessed through JAliEn. Certain properties
are defined in this file such as the TLL (Time To Live), job arguments, and
the executable file for that specific job [2]. This file might also be of inter-
est, as it contains additional information about the job execution. JAliEn
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Figure 3.3: Screen snippet of the MonaLISA GUI. It provides an overview
of the available services. The services are grouped into farms, and their
measurements are grouped in Clusters.

is also responsible for job status transitions, assigning status to jobs. There
are several possible statuses for a job, such as ”RUNNING”, ”DONE”, and
several different error statuses [21]. These statuses are accessible via JAliEn.
The project will focus its efforts on jobs that ended with the status ”ER-
ROR E”, jobs that terminated with an execution error, and ”DONE”, jobs
that successfully terminated.

A combination of these two data sources, MonaLISA and JAliEn, provides
the necessary information to access resource usage related to a job execution.
The project stores this data locally, to ensure its availability for longer peri-
ods. The project utilizes the grid site of the University of Bergen as its test
site but aims to be versatile and usable throughout the ALICE grid. This
provides the acceptance criteria that the systems responsible for collecting
this data are configurable.

Data management is important, especially when operating with several data
sources. The project uses the term ”data management” to describe the pro-
cess of obtaining and utilizing the data after it is stored locally. Data need to
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be retrieved and held in an organized way. A data representation in the code,
that encapsulates data retrieval and operations, makes it easier to utilize the
data further.

3.2.4 Model Development

The Model Development stage is the stage where we choose an appropriate
Machine Learning model for our problem and train it on our data. The model
is constrained by data type and our defined learning approach. The project
operated with time-series data, a version of sequential data, which it aims
to utilize for supervised learning. The Long Short-Term Memory (LSTM)
architecture is quite suitable for such tasks, as it can capture long-term de-
pendencies in sequential data, where the information from previous inputs
is available when processing the following inputs [18]. The Transformer ar-
chitecture can also be utilized to process sequential data [43] and has (as
mentioned in the background) proven quite well on different tasks. This in-
centivizes the project to research whether job end-status prediction is one of
these tasks.

3.2.5 Monitoring and Deployment

This stage is dedicated to the deployment of a model, in which it is placed in a
production environment. The continuous monitoring of a model is essential,
as cases might occur that are not present in either the training or validation
set. This serves as a verification that it works as expected. Further training
might be necessary, which the monitoring process should show.

3.3 Development method

This project has a focus on quick development. The development method
utilized consisted of a planning phase, followed by an implementation phase.
In the planning phase, system models were created and key features deter-
mined. These were the first features implemented, and new functionality was
implemented when needed. The described method does not perfectly align
with any specific software development methodologies, but it shares some
common traits with Agile development, as it has an iterative cycle of adding
functionality [32].
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Chapter 4

Design and Implementation

This chapter discusses the design and implementation of the various sub-
systems developed in this project. There are two data collectors and one
data analysis system utilized, where one of the data collectors is an already
existing tool that is further configured. A simplified overview of the complete
system is illustrated in Fig. 4.1.
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Figure 4.1: A simplified model architecture of the complete system developed
in the project. Two data collectors are utilized, one that stores data from
MonaLISA and one from JAliEn. Both of the collectors have their respective
databases due to the type of data they retrieve. This data is further utilized
in the Job Data Analyzer.

The data utilized in the project are stored in two databases; a time-series
Influx Data database[19], and an object-relational PostgreSQL database [27].
The reasoning for this is the data type collected in the respective collectors.
The Site Collector gathers site attributes at different timestamps, a time
series datatype. The simplest way of storing this data is to utilize a time-
series database, such as InfluxDB. InfluxDB operates with buckets instead of
tables, where each bucket groups the same fields and differentiates separate
measurements with a timestamp. The Job Collector stores job attributes
related to specific job executions. All jobs contain the same properties and are
collected once per job execution. This presents a more ”tabular-like” dataset,
in which a relation database is a fitting structure, storing the properties in a
relational table consisting of columns and rows.

Note: The test environment for this project is set up on a computer node
at the University of Bergen (separate from its grid site), accessed through
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an SSH tunnel. This node is set up with PostgreSQL, Influxdb, Docker,
CVMFS, Python, and Java. The node is also set up with an additional disk
of 100TB.

4.1 The Site Collector

The purpose of the Site Collector is to collect grid site attributes from the
services monitored by MonaLISA. There already exists a GitHub repository
for this exact purpose, called EPN2EOSMonitor [38]. This application reg-
isters a new client to MonaLISA to access data from the EPN2EOS data
transfer, which is a service monitored by MonaLISA. The exact purpose of
this service is not relevant to the project and will therefore not be discussed.
The data it receives from this service is further stored in an InfluxDB bucket,
whose properties can be configured in an influx.properties file. This appli-
cation can be tailored to our purposes by redefining which service to gather
data from. An additional property file was created in our forked version of
this repository: config.properties. It serves as a simple way of re-configuring
the client such that the Site Collector can collect data from different grid
sites, addressing our acceptance criteria that the developed system in this
project is usable across the ALICE grid.

The application can only be configured to store data from one service at a
time with the current implementation. The application is therefore running
as a docker container. A container is a sandboxed process, meaning that it
runs in a separate, isolated environment. The container has all the required
dependencies within this environment, where it runs its software and config-
urations [13]. Data from each service that is of interest is collected through
an instance of the Site Collector, storing it in their own respective InfluxDB
bucket. A screen snippet of data stored in one of the project buckets is shown
in Fig. 4.2.
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Figure 4.2: A (incomplete) screen snippet from the data stored in an In-
fluxDB bucket. Similar fields are grouped and differentiated by a timestamp.
Each field measurement contains (amongst other things) the name of the field
and the measurement, a timestamp, and a corresponding value.

4.2 The Job Collector

The purpose of the Job Collector is to store job attributes related to job
executions. This is done by retrieving, filtering, and storing data accessed
via JAliEN. The collector has a service-oriented architecture, whose services
are managed by a central controller as illustrated in Fig. 4.3.
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Figure 4.3: Job Collector Architecture, designed as a micro-service architec-
ture. It contains a central controller that utilizes three services (via their
respective APIs) to collect, filter, and store job properties. The system uti-
lizes a Postgres database to store its collected properties.
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The application contains four components:

• The Controller is responsible for the application logic and application
flow, integrating all of the services into the application.

• The Job Collector service collects job attributes by interacting with
the Python version of JAliEn, Alienpy. It encapsulates alienpy calls in
functions with descriptive names, such as getJDL and getTrace.

• The Processor service is responsible for processing and parsing all
data, formatting it for further use.

• The DBManager service is responsible for all database operations.
It is the only component connected to the PostgreSQL database, where
we store the job properties. It contains functions that encapsulate SQL
queries, populated by the function input.

The decision of a service-oriented approach was based on the application’s
purpose. It would need features such as data collection, filtering/cleaning,
and storage. These components would need a natural integration into the
application. Dividing them into different services separates the domain of
concern as well as keeping the application organized. It was initially devel-
oped as a highly coupled monolithic architecture, but during the development
of the Job Data Analyzer (which will be discussed in the next section), it
became clear that it could make use of the services within the Job Collector.
A migration to a micro-service architecture was done to address this. An
”REST-like” API layer is attached to each of the services. This API maps
its calls to functions within the respective services, making them accessible
throughout the system (they currently only available through localhost).

The application is dependent on some initialization parameters, defined in
the configuration file config.json. It contains information about the database
(table name and fields to store), grid sites to monitor, application iteration
interval, and the URLs for the respective APIs. This configuration enables it
to be set up in different environments and collect job properties from jobs ex-
ecuted on different sites. The application starts with an initialization phase,
where the controller reads the configuration file and sets up the database
table (if it doesn’t exist) with help from the DBManager. It then starts its
first iteration, which consists of the following:

1. Collect id and job-status of running jobs: JAliEn keeps an overview of
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running/recently run jobs (Collector).

2. Remove jobs that are still running or are already stored in our database
(Controller / DBManager). Some end statuses are ignored, such as
zombies.

3. Collect trace and JDL for the remaining jobs (Collector).

4. Parse and filter out the properties defined in the config.json file (Pro-
cessor / Collector)

5. Store the properties in the database (DBManager)

6. Repeat steps 1-5 at iteration interval (Controller)

4.3 Job Data Analyzer

The Job Data Analyzer system is where we utilize our collected data. It is
designed as a tightly coupled application that handles data analysis tasks
and machine learning. The system is built up of three main components;
Data Management, Data analysis, and Machine Learning.

All systems within the Job Data Analyzer have their dedicated purpose, but
they all share a common component; a Job Data Handler. This component
connects to the DBManager service within the Job Collector to collect job
attributes. This is the only component that interacts with the Job Collector,
illustrated in Fig. 4.4. It comes with some predefined functions to handle the
job attributes, one of which is dividing them into error and success attributes.
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Figure 4.4: Model of the interaction between the Job Data Handler and the
DBManager in the Job Collector. The interactions are done via an API,
which enables the Job Data Handler to utilize database operations.

4.3.1 Data Management

This system has an object-oriented data management approach. All data
related to a job execution is stored within a Python object called a DataBox.
The box holds the data and contains all data operations related to a single
job execution. For data operations on multiple jobs, a DataTerminal is uti-
lized, which essentially is a collection of DataBoxes. The DataTerminal is
initialized with a collection of job parameters, which is used to initialize a
collection of DataBoxes. The attributes needed are Job ID, worker node, and
start/end execution time, which are accessed through the Job Data Handler.
These attributes are used to filter out the grid site data related to a job
execution. The DataBox utilizes an InfluxManager for this, which populates
predefined queries with job attributes to obtain the correct site data. The
data flow is visualized in Fig. 4.5.
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Figure 4.5: Model illustrating the flow of data in the Data Management
component. A collection of job properties is passed as an argument to the
DataTerminal, which utilizes it to create new instances of the DataBox. Each
DataBox is initialized with a set of job parameters, which all relate to the
same job execution. These are further passed to the InfluxManager, which
populates predefined queries with the job properties to filter out the grid site
data related to this job. This data is held within the DataBoxes, which are
managed by the DataTerminal.

There are two configuration files associated with Data Management; data conf.json,
which enables us to define which influx buckets to load data from, and
data cleaning.json, used to define which fields to keep from each bucket as
well as which fields to log (for ML usage). These files are loaded in the
DataTerminal and its information is passed to each DataBox. These files give
us customization options, enabling us to retrieve data from several buckets
and filter out fields we want to study further.

The site data, retrieved from InfluxDB, is initially loaded into a dictionary
called ”data” in the DataBox. The key-value pair in the dictionary is (bucket
name, bucket data), where bucket data is a Pandas DataFrame, a data struc-
ture for tabular data [1]. The several DataFrames (one for each bucket), held
as values in the data dictionary, are further merged into a single DataFrame,
where each field gets its column and values with the same timestamp are
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grouped in the same row, as illustrated in Fig. 4.6. The project refers to
this DataFrame as a Data Matrix. The matrix contains all the grid site data
related to the job execution. It has a more ”human-readable” format, and
further data operations are quicker, both implementation and computational-
wise since we don’t have to group similar fields before applying the opera-
tions.

Figure 4.6: A model illustrating the creation of the data matrix. The
DataFrames held in the data dictionary are merged into a single DataFrame,
called a Data Matrix, where similar fields are grouped in the same column
and values with identical timestamps in the same row. All tables in this
model solely serve as an illustration and only contain example data.

4.3.2 Data Analysis

The Data Analysis component utilizes the DataTerminal and a visualizer to
compare and visualize the data. It is implemented as an interactive Python
script, where certain predefined functions can be run. Some configuration
is possible through the script, such as defining how many jobs to compare.
The functionality is mainly geared towards data analysis tasks, but it also
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contains a function for ensuring that given job attributes have corresponding
site data. The Data analysis component contains the following operations:

• Filter out job attributes that contain grid site data: This creates
a new database table within the Job Collector. The table consists of
job attributes columns aligned with a ”bucket” column, which indicates
that these attributes have associated data in the corresponding bucket.
This is the table we load attributes from in all other operations, hence
this function needs to be run first.

• Correlate features to label: This operation calculates and plots the
Pearson correlation score for field - job end status pairs. All available
buckets and fields are used in this operation.

• Plot comparison of defined fields: This operation compares the
values between failed and successful jobs. It plots the field values ((x,
y) ⇒ (execution time, field value)), and two boxplots (one for done and
one for error jobs) of all fields defined in the data cleaning.json file. The
failed and successful jobs are differentiated with a different color in the
value plot. The plots generated from this function are merged into
two PDFs, one for the value plots and one for the boxplots for easier
studying of the data. This operation is only done on the fields defined
in the cleaning conf.json file.

• Create field to field plot: Plots a pair of fields, one on the x-axis and
one on the y-axis. The failed and successful jobs are differentiated with
a different color in the plot. The project has not utilized this operation
in its analysis, but the idea is to research if there exists a correlation
between fields, and if that differentiates between done and error jobs.

All data operations related to job executions are contained within the DataTer-
minal and DataBox. The visualizer displays the given data via plotting or
merging plots to PDFs. The data analysis component works as an intermedi-
ary between the Job Data Handler, DataTerminal, and Visualizer (Illustrated
in Fig. 4.7). It provides the application flow.

This tool can be utilized to study our data more carefully. The idea is to get
a broader idea of how the fields differentiate between failed and successful job
executions. This is especially useful in the feature extraction process, which
is the process of selecting which fields to utilize as data for the machine
learning model.
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Figure 4.7: Model of the Data Analysis component. The data analysis is an
interactive script that utilizes the DataTerminal, to retrieve grid site data
and perform data operations, as well as a visualizer to display the data in
the form of plots or PDFs.

4.3.3 Machine Learning

Machine Learning is the last part of the Job Analysis system. It consists of
three main components; a training script, a custom dataset, and a model.
It is implemented with the PyTorch libraries, which is a tensor library for
deep learning [29]. The training of this model is done through the train model
script, which utilizes a custom dataset (via a data loader) to train a machine-
learning model. The job attributes are accessed through the Job Data Han-
dler, like the other components in the Job Data Analyzer system.

Our dataset, the JobDataset, is implemented as a class that inherits func-
tionality from the PyTorch Dataset module. This module functions like an
abstract class, which can be customized to load and convert our data to a
format that the model understands. The models within the PyTorch library
expect a tensor input, which essentially is a numeric list/matrix that can
be loaded and utilized on a GPU. These custom Datasets can be utilized
in a PyTorch Dataloader, which creates an iterator for the Dataset. The
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JobDataset is initialized with a collection of job attributes. It consist of two
main functions

• len(): Returns the number of elements in the collection.

• get item(i): Takes an index as argument. Retrieves the job attributes
located at this position to create a Data Matrix (via the DataTerminal).
This matrix is converted to a tensor, which the function returns.

The DataLoader creates an iterator with the help of these functions by pass-
ing indexes in the range of the dataset to the get item function. Our dataset
is initialized with a collection of job attributes. Each call to the get item
function prepares the data for a single job execution. The job attributes are
fed into a DataTerminal, which filters out fields and buckets as defined in the
data conf and data cleaning files, and creates the data matrix. This matrix
is then extracted from the DataTerminal and converted to a Pytroch tensor
matrix (visualized in Fig. 4.8). Such custom datasets can be passed as an
argument to a PyTorch dataloader, which creates an iterator for the dataset.

Figure 4.8: Flow of get item function in the custom dataset. It takes an index
as an argument and retrieves the job attributes located at that position in the
collection. These attributes are utilized to initialize a DataTerminal, which
creates the Data Matrix. This matrix contains all the (grid site) data related
to a single job execution. The matrix is further converted to a tensor, which
the function returns.

The model is a class that inherits functionality from the PyTorch nn.Module.
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This also functions as an abstract class, in which we can customize a ma-
chine learning model. PyTorch comes with predefined machine-learning lay-
ers (i.e. a transformer), which we can combine to create a custom model.
The project’s model, called StatefulTransformer, contains three components:

• A transformer layer (transformer model architecture) to process the
input.

• A linear layer to reduce the dimensionality of the output from the
transformer.

• A Sigmoid activation function, which squeezes the output from the
linear layer to a value between 0 and 1. The output from the Sigmoid
function is the prediction for the processed input.

The interaction between the input and these components is defined in the
”forward” function of the model, which is a function that all PyTorch models
are expected to have. The model is initialized with parameters, such as input
size, number of heads (in the transformer), etc.

The training script utilizes the job handler to retrieve job attributes, the
JobDataset to create an iterator for the data (via a DataLoader), the State-
fulTransformer, and a visualizer to display i.e. training progression. Two
datasets are utilized, one for training the model and one for validation. The
training consists of extracting data from one job at a time and passing it
through the model to make a prediction. The prediction is then compared
to the true target value, the actual job end status, to calculate the loss. The
loss is then utilized to update the weights to minimize loss. We iterate over
the training dataset multiple times and validate it between each iteration to
see how well it performs on unseen data. A simple illustration of the training
process is found in Fig. 4.9.
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Figure 4.9: The training loop in the train model script. The DataLoader
iterates over its given job attributes to load and convert grid site data to a
PyTorch tensor. This tensor is passed through the model to make a predic-
tion, which is compared to the true target value for that job execution to
calculate loss. The loss is further utilized to update the weights in the model
(to minimize this loss).

4.4 Code structure

The code in this project is located in three different GitHub projects: Job
Collector, Site Collector, and Job Data Analyzer. The Job Data Analyzer
project is dependent on data collected from the two collectors, as well as the
DBManager service within the Job Collector. The project has had a focus
on object-oriented implementation, as this naturally divides functionality
responsibilities. The project’s source code can be found in the appendix.
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Chapter 5

Analysis and Assessment

The project consists of three components which together create a system
for data analysis and machine learning. This has been utilized to study the
collected data and train a machine-learning model. In this chapter, we will
evaluate this system design and data credibility. The chapter will also discuss
how the collected data was utilized to create a machine-learning model.

5.1 System evaluation

5.1.1 Job Collector

The Job Collector is implemented as an object-oriented application with a
micro-service architecture. There are several benefits to micro-service archi-
tectures. They are often quite flexible, often resulting in a maintainable,
available, and scalable application [30]. The availability of this architecture
comes to good use in this project. It provides the opportunity to reuse much
of the functionality of the application, such as database access. The ap-
plication’s entry point is the controller, acting as an intermediary between
the application’s three services: collector, processor, and DBManager. This
object-oriented design divides responsibilities and separates concerns, mak-
ing the application quite organized. The services are accessed through their
own respective API layer, which maps REST-like requests to the object’s
functions. This provides system-wide interactions (the APIs are currently
limited to the local host) with the services, enabling the reuse of their func-
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tionality.

Some implementations in this system are less than optimal, such as the pars-
ing of the trace file (by the processor service). Data from the trace file is
mainly parsed by pattern recognition. This method is highly vulnerable to
changes in the layout, where the change of keywords in the trace could lead
to faulty parsing. There exists a Java trace class, which can be utilized
for parsing [41]. This tool is maintained by the JAliEn development team,
which ensures its reliability and adaption to changes in the trace layout. This
should ideally be integrated into the processor, as it minimizes the possibility
of faulty parsing of a trace.

The services have a clear field of concern, but some logic from the processor
has floated over to the controller. The system contains the needed function-
ality and fulfills the project’s acceptance criteria for data collection by being
configurable to collect job properties from jobs executed on different sites at
the ALICE grid. The services and the controller have been unit-tested which
ensures that they function as expected. Additional integration tests are done
via user testing, to verify that the complete system works as intended.

5.1.2 Site Collector

The Site Collector is an already existing tool, which is further extended
to accept some additional configurations. It is not a lot to evaluate, given
that it is not developed in this project. The additional configuration does
however enable data collection from several different MonaLISA services,
which addresses the project’s acceptance criteria for data collection.

5.1.3 Job Data Analyzer

The Job Data Analyzer contains logic for job data management and analysis.
The system was developed in the later stages of the project, where time lim-
itations made for some ”less than optimal” decisions to finish the prototype
and make some room for data analysis. There are optimization opportunities
in this system, some of which will be discussed in this section.

The data is managed mainly through two objects; the DataBox and DataTer-
minal. All logic in terms of data transformations and statistical calculations
are done through these objects. Representing the data as an object is an
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organized approach, as data operations are confined within the object that
holds it. It simplifies the further use of the collected data as it can be
retrieved by initializing the object. The process of initializing the DataTer-
minal could however be optimized, which currently is done by passing it a
collection of job attributes. These attributes are accessed via the Job Data
Handler, which interacts with the DBManager service in the Job Collector.
Therefore, utilizing the DataTerminal in other programs requires that the
job properties are gathered before initializing it. A better approach could be
moving the functionality from the Job Data Handler to the DataTerminal.
This would not only result in a cleaner architecture but also make the ini-
tialization of the DataTerminal more flexible, as we could initialize it with
i.e. a time interval or an integer representing the number of jobs to load.

The collector and processor services are not currently being utilized in the
Job Data Analyzer system, but their availability can be further utilized for
monitoring a machine-learning model. Presently running jobs are ignored by
the controller(in the Job Collector), as they do not have an end status yet.
The service makes these jobs accessible such that we can predict their end
status before their termination, and validate as they terminate. This can
provide continuous monitoring of a model, ensuring that it performs well on
present jobs and not just the historical data it is trained on.

The Data Analysis component utilizes the DataTerminal and a visualizer to
perform statistical calculations and visualize the data. This is a well-suited
prototype, which visualizes the data in the form of plots and PDFs. There are
currently only a few possible operations available but additional functionality
can be implemented on demand. The functionality for verifying that job
attributes contain corresponding site data should however be moved, as it
is not a data analysis task. Here we have at least two possible approaches;
verification before storing (Job Collector), and verification before loading
(DataBox/ DataTerminal). The simplest solution is probably to verify in
the DataTerminal before loading, where we can choose not to include jobs
without grid site data. In addition, with the proposed update of moving
the Job Data Handler logic to the DataTerminal, the job attributes can be
removed from the database since the terminal can use the DBManager service
in the Job Collector.

The data analysis components have only been user-tested to verify that it
function as intended. Additional unit tests should be implemented to verify
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the correctness of the code.

5.2 Data Credibility

The data credibility is only assured by the queries defined in the influx man-
ager, as well as an additional check in the Databox, which filters out data
between its defined start and end execution time. The queries do however
ensure that the site data retrieved are relevant to the conditions given(job
id, worker node, start and end time), as they are used as filtering conditions
in the queries. This gives our utilized data more credibility, although ad-
ditional verification such as checking that each Databox object contains all
the expected fields for each collected MonaLISA service would give us more
assurances.

Currently, the project imputes missing values with the mean for each field.
This is done for each individual job when creating the data matrix. It is also
done for the datasets utilized to calculate the correlation, in the case that a
field is missing for every measurement related to that job. This is a simple
approach to address missing values, which enables us to preserve our sample
size. Replacing missing values with the mean does not change the central
tendency of our dataset since the mean is a measurement of this [33]. It
does however introduce some bias to our data, where we assume our missing
values are similar to the ones observed. A print within the calculation of the
correlations shows that there exist jobs that are missing a complete field, but
that they are few (in the utilized dataset) compared to the total amount of
measurements (Fig. 5.1).

Figure 5.1: A print showing that 1620 cells (field measured at a specific time)
in the dataset consisting of 500 jobs are missing values. This dataset contains
fields gathered from the Self nodes bucket. The complete shape of the matrix
is printed below, showing that the complete matrix contains about 10 million
cells (10 million measurements in total).

The number of missing values can be explained by one job missing three
fields or three jobs missing a field, given that the average amount of rows
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per job is about 650 (num rows/num jobs), which is not a lot compared to
the 500 jobs utilized in the calculation. This might be an indication that the
jobs missing a complete field are in the minority, but we cannot state that
confidently, and thus additional checks for this should be implemented.

5.3 Machine Learning analysis

The Job Data Analyzer system provides some tools for feature selection and
machine learning. These, alongside data collected from the job and Site
Collectors, were utilized in the creation of a machine-learning model with
the purpose of predicting whether a job would succeed or fail. A transformer
architecture was selected to address this problem.

5.3.1 Data Processing

The first step in the model creation is data processing. In this step, the Job
Collector was set up to collect several job-related attributes, where four of
these properties are necessary to filter out the corresponding site data. These
properties are:

• Job ID: A unique ID for each job execution

• Workernode: The computer node executing the job

• Start execution time: The data and time at which a job has started its
execution.

• End execution time: The date and time at which a job has terminated
its execution.

The necessity of these attributes became clear when studying the collected
grid site data, as the services we monitor (from the UiB grid site) separate
its measurements by job ID and worker node. Some MonaLISA services
were recommended to utilize in the research by the JAliEn development
team (Costin Grigoras, personal communication, Nov 10, 2023). The data
collected contains information relating to a jobs resource usage, via the AL-
ICE::UiB::SLURM Jobs service, and resource usage at the host (the grid
site at UiB), via the ALIEN Self Nodes and ALIEN System Nodes services.
These are stored in three different InfluxDB buckets: Slurm, Self nodes, and
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System nodes. The project will further refer to the bucket names when dis-
cussing data from these services.

Data collected from these services are utilized for analysis and machine learn-
ing. There are over 100 fields in total present in these services, where a field
is a type of measurement (i.e. CPU usage). Some of these might not be as
relevant to the problem as others. By studying the data closer we might be
able to locate a smaller subset of fields that are more likely to impact the
success or failure of a job. This is the purpose of the data analysis script in
the job analysis system. The project utilizes the grid site data related to job
executions in its analysis. More data are available, such as certain properties
from a job’s JDL file, but this is not utilized in the analysis and creation of
the model.

Job end statuses are encoded to numerical representations, 0 (error jobs)
and 1 (done jobs), to perform mathematical/statistical operations on them.
They are further referred to as labels for job executions. The project’s first
analysis step was utilizing the Pearson correlation coefficient in an attempt to
determine how closely each fields relate to the label. The Pearson correlation
coefficient is a measurement of linear association between two variables [37].
Its values range between -1, indicating a strong negative association, and 1,
indicating a strong association, while a value of 0 indicates no association at
all. For this analysis, a subset of 500 jobs were randomly selected. At this
point (May 2024) the project had data from about 1000 error job executions.
About 25% of the available error jobs were therefore present in this analysis.
A correlation histogram of the fields, retrieved from the Slurm bucket, and
its labels can be found in Fig. 5.2.
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Figure 5.2: Histogram plot of the Pearson correlation between field values
and labels for the Slurm bucket. 500 jobs were utilized in this calculation,
with an even distribution between done and error jobs.

There are a total of 4 histogram plots created, one for each service monitored
except the system nodes service, which has two associated histograms due
to its shared number of fields. Most of the fields are in the range of 0 to 0.6
in correlation score. This indicates a somewhat positive linear association
between some of the fields, but it isn’t as clear as first hoped. This however
doesn’t mean that there doesn’t exist a strong association between the fields
and labels, just that it might not be linear.

Certain comparison plots were created to study the differentiation in field
values between done and error jobs. A subset of 500 (new) randomly selected
jobs were utilized for this, evenly distributed between done and error jobs.
A value plot was created to display all values measured for each field. Done
and error jobs are differentiated with a different color in the plot, blue for
done and yellow for error jobs (Example found in Fig 5.3). In addition to the
value plot, a boxplot was created with the same job data (Example found in
Fig. 5.4). The boxplot is a popular way to visualize data and is especially
useful for displaying multiple datasets [31]. The traditional boxplot displays
the distribution of several datasets in simple figures. A combination of value
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plot and boxplot gives us a greater understanding of how the several fields
differ between done and error jobs. The plots were merged into two PDFs
for organizational purposes, one for the value plots and one for the boxplots.
This simplifies the process of studying the plots since we can visualize both
PDFs at the same time while being able to scroll up and down to quickly
change between plots.

Figure 5.3: A linear plot of the measured values of the field ”in-
stant cpu usage” gathered from the Slurm bucket. The x-axis represents
the execution time (in seconds), and the y-axis represents the field values.
Done jobs are presented in blue, while error jobs are presented in yellow. 500
randomly selected jobs were utilized in the creation of this plot.
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Figure 5.4: A boxplot of the measured values of the field ”instant cpu usage”
gathered from the Slurm bucket. Done jobs are presented on the left, while
error jobs are presented on the right. The y-axis represents the field value.
Consists of data from the same 500 jobs utilized to create the linear plots.

The value plots were mainly utilized to study the progression of values during
the execution of a job. The example of ”instant cpu usage”, illustrated in
Fig. 5.3, indicates that error jobs running for longer time periods contain
lower field values in the later execution stages compared to done jobs. It is
however not clear if this is representable for most jobs or if these jobs are
outliers. This is where the boxplot is handy, as it displays the data distribu-
tion. A boxplot consists of four main components (explained in context of
the boxplot illustrated in Fig. 5.4):

• Interquartile range (IQR): Represented as a box in the plot. Ranges
from the 25th(Q1) and 75th (Q3) quantiles. 50% of the data is therefore
located in this interval.

• The median: Displayed as an orange line within the box and is located
on the 50th (Q2) quantile.

• The whiskers: Two lines that extend up and down from the edges of
the box. The lower whisker extends to the smallest data point that
is within the range of 1.5 * the range of the box (specifically; Q2 -
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1.5*IQR). Respectively, the higher whisker extends to the highest data
point that is within the range of 1.5*IQR (Q3 + 1.5*IQR).

• Outliers: Displayed as circles outside the whiskers. Represents all data
points that are located outside the whiskers.

Note: The quartiles in a dataset are the values of the elements that split it
into 4 equal pieces in the sorted version of the dataset. For a sorted dataset
of 1000 elements, Q1 is the element’s value at index 250, Q2 is the value at
index 500, and Q3 at index 750.

The boxplot illustrated in Fig. 5.4 shows a clear difference in the error and
done jobs data distributions for the field ”instant cpu usage”. The interquar-
tile range is much bigger for done jobs, indicating that they generally operate
on a wider interval of values. It confirms that the lower field value for error
jobs is not an outlier as the IQR is somewhere in the range of 100-200, while
the IQR for done jobs is in the range of 300-700. This field might therefore
be of interest for further study, given its visual difference between field values
of error and done jobs.

A combination of these plots has been utilized to locate a subset of fields for
further study. The subset contains the fields: cpu usage, instant cpu usage,
workdir size, open files, virtualmem, and cpu time. All of these fields have
visual differences between error and done jobs in their respective plots (they
can be found in the appendix). These fields, in addition to a column contain-
ing ”seconds since execution start”, are the input features for the project’s
machine-learning model. The complete input is the Data Matrix (created in
the DataTerminal) with these fields, converted to a PyTorch tensor. This is
a tensor matrix where each row contains field values measured at a specific
time.

Some of the fields are pre-processed before being utilized to train the model.
Columns that contain big numerical values or operate in widely different
ranges are mathematically logged (log base 10). This normalizes the field
values by bringing the dataset closer to a similar scale. This technique
can improve performance and training stability for machine learning models
[12]. This is done by defining the ”field to log” parameter in the ”clean-
ing conf.json” file.
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5.3.2 Model Development

The project’s model utilizes a transformer model to predict whether a grid job
succeeds or fails. The purpose of this is to research whether the transformers’
attention mechanisms can find a context in the raw grid site data, and utilize
this to perform a prediction. Its architecture consists of four encoders and a
single decoder, containing four heads (four instances of self-attention) and is
illustrated in Fig. 5.5.

Figure 5.5: The projects transformer architecture. It utilizes six transformer
encoders to process the input and one decoder to process encoder outputs in
context with a state. This state refers to a collection of previously seen (raw)
encoder inputs. The prediction is generated by a linearly transforming of the
decoder output to a single numerical value, which is squeezed to a number
between 0 and 1 by a Sigmoid function.

The model iterates over the input matrix, processing a single row before
adding it to a ”state”. The state is a collection of previously processed rows,
namely previous measurements. An example model of the data extraction is
illustrated in Fig. 5.6. This state, as well as the input from the encoders, is
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the decoder input. The decoder processes the last encoder output in combi-
nation with this state. The idea is to process each row in context with recent
measurements. The decoder output goes into a classifier, which is an ML
component that transforms its inputs into a class (which in our case is either
success (1) or failure (0)). This classifier consists of a linear layer, which
reduces the dimensionality of the decoder output to a single numerical value.
This value is the input for a Sigmoid activation function, which is a (non-
linear) mathematical function that squeezes its inputs to a number between
0 and 1. The output from the Sigmoid function is the model prediction or
rather, a part of it. Each job produces several predictions since each row
is passed through the decoder individually. The complete prediction is an
average of these values.

Figure 5.6: Individual input and state extraction from the complete in-
put matrix. The column headers in the input tensor matrix are just for
an overview of possible fields. Column headers are not present in Pytorch
tensors, which are strictly numerical.

This architecture currently serves as a prototype. It is developed to address
the memory system constraint at the test node. The whole input matrix, rep-
resenting a job execution, would ideally be processed at once, as a complete
context of the execution could be learned. This was however not possible
with the available memory. The current model implementation processes a
subset of the input matrix at a time.
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Our dataset consists of about 2000 jobs. This was divided into two datasets,
a training dataset containing 90% of the data, and a validation dataset con-
taining 10% of the data. Both datasets were evenly distributed between
error and done jobs. The training was done with 10 epochs, where an epoch
is a complete pass-through of the training dataset, where the model has seen
each element exactly once. The batch size was set to four, meaning that the
model’s weights are updated after every 4th job, ensuring that multiple job
predictions are utilized to update the weights. The model trained for about
three days, but did not have a great progression, illustrated in Fig. 5.7.

Figure 5.7: A plot of the training and validation loss. The x-axis represents
epochs, and the y-axis represents loss. The loss is calculated after each epoch.
The plot shows that the model does not train very well, as the loss, for both
the training and validation dataset, is close to the initial loss (at the first
epoch) for all epochs.

The plot shows that the model does not have any substantial improvements
during training, as the loss measured after each epoch is close to its initial
loss. The training has resulted in a poor-performing model, which is con-
firmed by a confusion matrix, illustrating predictions on the validation set
(Fig. 5.8).
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Figure 5.8: Confusion matrix of the predicted values. The y-axis illustrates
the true labels and the x-axis predicted labels. It shows that the model
predicts a failing job for every job execution, which results in a 50% accuracy
since the validation dataset has an equal amount of done and error jobs.

The model has a 50% accuracy, which it achieves by predicting a failed job
for each job execution in the validation set. Several factors can explain the
poor performance, one of which is the model itself. Processing a single row at
a time produces a substantial amount of predictions for each job. Averaging
these values skews the final prediction towards the majority of predictions,
as well as extreme values (values close to 0 or 1). The encoder input size
should ideally be increased as well to provide a wider context and reduce the
amounts of predictions. Another explanation for the poor results could be
the input features, as they might not contain the relevant information.

The model training process is generally an iterative process. When achieving
unsatisfactory results, the usual next step is to go back the to model devel-
opment and data processing stages and continue the research. Possible steps
include data analysis, possibly identifying additional features and further
development of the model (which can be a complete change of model archi-
tecture). The project could unfortunately not perform another iteration, and
it must conclude the development with unsatisfactory results.
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Chapter 6

Discussion

The project has developed a system for job data collection and machine
learning, which serves as a foundation for job execution analysis for the
ALICE project. The system can be configured to store data from multiple
(ALICE) grid sites, as the Job Collector passes the ”site” property to Alienpy
to retrieve the related data and the Site Collector subscribes a client to the
services defined in its configuration. Its use cases are mainly tasks related
to job data collection and analysis. As of now, there are only a few data
analysis tasks available. It is however a foundation that is meant to be
further developed. Its flexible nature provides the possibility to study a
wide range of grid site measurements related to job executions. Additional
machine learning problems are also possible to research with this system.

The data analysis and machine learning did not yield conclusive results,
meaning further research is needed. The next sections will discuss the re-
search done, the system design, and the utilized methodologies.

6.1 The research problem

The research problem revolves around identifying reasons for job failure with
the help of machine learning. This is formulated as two research questions,
which we will now discuss.

• RQ1: How can AI help us discover the underlying causes and factors
contributing to job failures?
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There are several approaches to researching this question, such as different
learning approaches in ML. The project’s approach concerning RQ2 was to
identify possible candidate factors (grid site measurements) by data analysis
and seeking confirmation by (supervised) machine learning. An accurate
model can be viewed as an additional verification that the input contains
information about the problem. Accurate models derive an output, close
to the label, by applying transformations to the input. This indicates a
relationship between the input and the label. This approach does not strictly
utilize a model to discover the underlying causes but rather as a tool for
verification, which can help us determine if its inputs are factors contributing
to job failure. The project cannot determine the efficiency of this approach
concerning job failure, since the created model is inaccurate, meaning that
we did not get any confirmation that the selected input features are causes
of job failure.

Unsupervised learning is another approach to address RQ2. The goal of un-
supervised learning is to investigate the underlying structures in a dataset. A
common unsupervised learning task is clustering, which aims to divide data
into meaningful groups based on the statistical sides of the data [10]. Clus-
tering can be utilized to study the data more carefully, as groups dominated
by failing jobs might occur, indicating that the model has found patterns in
the data that relate to its end status.

• RQ2: What strategies and mechanisms can be devised for the efficient
optimization of computer resources based on insights derived from this
AI model?

Some strategies and mechanisms could possibly be utilized to optimize com-
puter resources in the event that the model would be accurate. Early stopping
of a job execution can be a simple strategy. Stopping jobs that are likely to
fail is a possible approach, but this might also affect jobs that would succeed
and do not address the cause of the problem. Another approach could be to
give a job more resources if it seems to fail, i.e. if CPU usage is found to be
a leading cause, then providing additional CPU cores for a predicted error
job might help the job succeed. This approach does however depend on the
availability of additional resources at the site.

The proposed strategies utilize the model as a decision-making tool, which
can provide actionable intel. This way of using a model is also suggested in a
similar project, provided in the paper ”A Study of Job Failure Prediction at
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Job Submit-State and Job Start-State in High-Performance Computing Sys-
tem: Using Decision Tree Algorithms” by Anupong Banjongkan [35], where
decision trees (a machine learning model type) are utilized to predict whether
a job execution will succeed or fail. The paper obtains an accuracy of about
85% by training several decision trees (models) on data from workload logs
collected from the National Electronics and Computer Technology Center
(NECTEC) in Thailand and Los Alamos National Laboratory (LANL) in
the USA. The paper suggests that the model can help users make ”efficient
justifications”, helping the users make informed decisions while their job is
running.

The project does not provide any conclusions to its research questions. The
work done is however not futile, as it has brought us closer to answering
them. Certain systems related to data collection, management, and analysis
were developed to address the questions. These systems can be utilized as
a foundation for further projects, bringing them closer to the core of the
research; data analysis and machine learning. Their design will be discussed
in the next section.

6.2 System design

The project has developed a prototype system for data collection, manage-
ment, and analysis. The system currently works for its intended use, although
additional testing and optimizations are needed. The implementations in the
later stages of the project have less than optimal design and lack testing,
specifically the job data analysis system. The job data analysis system has
only been user-tested. There exist no unit tests, which is a bad practice
as these tests serve as an additional confirmation that the code works as
intended.

In Chapter 5, we discussed some possible optimizations for the system, such
as moving logic within the job data handler to the data terminal and utilizing
the Java trace class to parse the trace file. The analysis suggests that the sys-
tem in its current state cannot be considered a final product, but a prototype
for a suggested architecture that could be improved. The project therefore
proposes a revised architecture for data collection and management(Fig. 6.1).
This considers the named optimizations, providing a complete data collection
and management system.
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Figure 6.1: A proposed architecture for a data collection and management
system for job and grid attributes related to job executions. It addresses the
data-related stages of the ML life cycle; Data Processing and Monitoring.

The suggested architecture contains the necessary tools to store, filter, and
utilize grid site data related to job executions. The service-oriented design
of the job collector enables us to reuse its DBManager to obtain historical
job attributes, as well as access the collector and processor to obtain and
filter out attributes from jobs that are currently running. This gives the sys-
tem another dimension, namely real-time monitoring, which can be utilized
as additional test data for a machine-learning model. The object-oriented
approach of the data representation, via the Databox and Data terminal ob-
jects, makes it easy to retrieve and utilize the data as it can be accessed by
initializing a terminal with parameters such as the number of jobs to load or
a time interval (or both). This architecture is the biggest takeaway from this
project, as the data analysis and machine learning produced no conclusive
results.

6.3 Methodologies

Several methodologies have been utilized in the project to structure the re-
search and development process, and have partly been utilized with success.
The design science methodology was a good fit for the project. It ensured
that multiple aspects were considered in the development process, such as
system and project requirements. This was however used in addition to a
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development methodology that has caused the project some problems. A
lot of it is due to poor planning, where the initially developed systems were
planned in isolation from upcoming systems. This has caused the project a
lot of excess work to integrate the systems, which could have been avoided
with a more profound planning phase. The project would’ve also benefited
from a more structured development strategy, something similar to the scrum
sprint. The sprints divide the development process into cycles of short peri-
ods, in which currently valuable tasks are in focus [36]. This would force the
project to prioritize the most valuable tasks at hand, resulting in less time
consumption on less relevant tasks. Tests were implemented after a system
was deemed ”functioning” by user tests, which becomes a problem when this
happens in the end stage of a project, and time limitations force the project
to use its resources elsewhere.

The machine learning lifecycle was a great way to structure the development
of a model as it describes the necessary steps. This helped us plan for some
upcoming functionality when integrating the systems, such as continuous
monitoring. We did not reach a deployment stage(in either the test or pro-
duction environment) but made sure that monitoring would be possible with
some additional development.

Methodologies play a big role, especially in bigger projects. The project
methodologies have been helpful, but the selected development methodology
had some drawbacks. Selecting a fitting development methodology enables
quicker development (at least in the bigger picture) and ensures that more
aspects of the code (such as testing) are accounted for. This is a lesson
learned for upcoming projects.
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Chapter 7

Conclusion and Further Work

The project successfully designed an architecture for data collection and man-
agement that can be utilized across the ALICE grid (Fig. 6.1). The design
addresses the data-related stages in the Machine Learning Life Cycle; Data
Processing and Monitoring. A prototype of a previous version of this ar-
chitecture has been developed and utilized for data analysis and Machine
Learning. This analysis did not obtain satisfactory results, which provides
an inconclusive answer to the project research questions. Certain strate-
gies are however discussed. These remain as recommendations for further
research, which can be continued with the foundations laid in this project.

Further work on this project includes data processing and model develop-
ment steps. A data analysis technique worth researching is Mutual Informa-
tion(MI). This is a widely utilized technique to measure feature relevance,
as it can find linear and non-linear dependencies [45]. As for model de-
velopment, increasing the input size of the suggested model and adjusting
its parameters (such as the number of encoders and the number of heads)
could yield a better result. Other architectures can also be considered, as
transformers might not be the optimal model choice.

The project utilizes grid-related measurements in its analysis, but cannot
verify that these can explain the whole problem. Additional data properties
could be included in the research, such as additional job attributes. An
example of this is the TLL (Time To Live) of a job. This is the maximum
execution time for a job. If exceeded, the job terminates before it finishes.
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Additional data are worth exploring if grid site limitations fail to explain the
problem.
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Appendix A

Source code

The source code for the job data collection system: https://git.app.uib.
no/Erlend.Skutlaberg/job-data-collector.

The source code for the site collector: https://gitlab.cern.ch/eskutlab/
epn2eosmonitor.

The source code for the job data analysis system: https://git.app.uib.

no/Erlend.Skutlaberg/data_inspection.

A.1 Additional analysis plots

Here is a collection of plots of the fields utilized for machine learning. The
decision to include these fields was mainly based on the visual differences
in data distribution between done and error jobs. This is displayed in the
boxplots, where especially the difference in IQR between done and error jobs
is quite visual.
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Figure A.1: A linear plot of the measured values of the field ”cpu time”
retrieved from the Slurm bucket.

Figure A.2: A boxplot of the measured values of the field ”cpu time” retrieved
from the Slurm bucket..
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Figure A.3: A linear plot of the measured values of the field ”cpu usage”
retrieved from the Slurm bucket.

Figure A.4: A boxplot of the measured values of the field ”cpu usage” re-
trieved from the Slurm bucket.
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Figure A.5: A linear plot of the measured values of the field ”disk usage”
retrieved from the Slurm bucket.

Figure A.6: A boxplot of the measured values of the field ”disk usage” re-
trieved from the Slurm bucket.
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Figure A.7: A linear plot of the measured values of the field ”open files”
retrieved from the Slurm bucket.

Figure A.8: A boxplot of the measured values of the field ”open files” re-
trieved from the Slurm bucket.
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Figure A.9: A linear plot of the measured values of the field ”virtualmem”
retrieved from the Slurm bucket.

Figure A.10: A boxplot of the measured values of the field ”virtualmem”
retrieved from the Slurm bucket.
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Figure A.11: A linear plot of the measured values of the field ”workdir size”
retrieved from the Slurm bucket.

Figure A.12: A boxplot of the measured values of the field ”workdir size”
retrieved from the Slurm bucket.
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