
University of Bergen
Department of Informatics

Flushable Promises: Modular Event

Coalescing in Graphical User

Interface Programming

Author: Maria Katrin Bonde

Supervisors: Knut Anders Stokke, Jaakko Timo Henrik Järvi, Mikhail

Barash

June, 2024

Abstract

Graphical user interfaces (GUIs) are everywhere. They serve as the primary means of in-

teraction between an application and its users. Developing GUIs with complex dataflows,

where multiple elements depend on each other’s input, is challenging. GUI dataflows often

include asynchronous operations, and are typically implemented as chains—or graphs—of

JavaScript promises.

Event coalescing strategies, like debouncing and throttling, are common techniques

for dealing with a large number of GUI events. In GUIs with complex dataflows, these

techniques are a source of subtle bugs: event coalescing easily breaks modularity. When

a program needs to get data from a promise at the end of a dataflow, the programmer

needs to know if the source of the data is being delayed by event coalescing.

This thesis proposes an extension to the JavaScript promise abstraction: the ability

to “flush” a promise chain. An arbitrary promise anywhere in a promise chain can

signal the first promise of the promise chain to resolve. We call this extended version

of promises flushable promises. With flushable promises, event coalescing strategies can

be implemented in a less fragile manner, improving the modularity and separation of

concerns in programming GUIs with complex dataflows.

Acknowledgements

I would first like to express my gratitude to my supervisors for all their support: Knut

Anders Stokke, for his immense help, sitting with me for hours on end and helping

with every aspect of my thesis; Professor Jaakko Timo Henrik Järvi, for his words of

encouragement and detailed feedback on my writing; and Associate Professor Mikhail

Barash, for his pep talks and always being ready to answer any questions I might have.

Secondly, I want to thank my boyfriend Knut for all his care, reassurance and uplifting

words when they were needed.

Finally, I would also like to thank my parents, my sisters and my friends for their

support throughout my studies.

Maria Katrin Bonde

Tuesday 11th June, 2024

Contents

1 Introduction 1

2 Background 4

2.1 Event coalescing strategies . 4

2.1.1 Debouncing . 5

2.1.2 Throttling . 6

2.1.3 Implementing debouncing and throttling in JavaScript 7

2.2 Asynchronous programming in JavaScript 8

2.2.1 The JavaScript event loop . 9

2.2.2 Callbacks . 10

2.2.3 Promises . 11

2.2.4 Generator functions . 12

2.2.5 Programming with async and await 13

2.2.6 Promises and event coalescing strategies 14

2.3 Multi-way dataflow constraint systems 15

2.3.1 Event coalescing in HotDrink . 17

3 Flushable Promises 18

3.1 A simple circle area picker . 18

3.2 Flushable promises . 21

3.3 Using flushable promises . 22

4 Extending λp calculus with flushing capabilities 25

4.1 Expressions and state in λfp . 26

4.2 Rules in λfp . 28

4.3 The semantics of Promise.all in λfp . 31

5 Implementation 33

5.1 The FlushablePromise constructor . 34

5.2 then(onFulfilled, onRejected) . 36

i

5.2.1 Type parameters . 36

5.2.2 Achieving the flushing functionality 38

5.2.3 Chaining the promise . 38

5.2.4 Linking two promises . 39

5.3 catch(onRejected) and finally(onFinally) 40

5.4 flush() . 42

5.5 resolve and reject . 42

5.6 all, race and any . 43

6 Evaluation 44

6.1 Testing the flushable promise . 44

6.2 Fixing a travel planner . 45

7 Related Work 49

7.1 Coroutines . 49

7.1.1 Suspending functions in Kotlin 51

7.2 Asynchronous programming in other languages 52

7.2.1 Futures in Scala . 52

7.2.2 The introduction of promises . 53

7.3 Promises/A+ specification . 54

7.4 Promise.withResolvers . 54

7.5 Optimizations for events in GUIs . 55

7.6 Human-computer interaction . 56

7.6.1 Documented effect of delay in human-computer interaction 56

7.6.2 Response times . 57

8 Discussion and Future Work 58

Bibliography 61

A Remaining Promise λ Rules 67

ii

List of Figures

2.1 Illustration of calls to a debounced function. 5

2.2 Illustration of calls to a throttled function. 7

2.3 DNB house loan calculator. 16

3.1 Circle area picker GUI and its dependencies. 19

4.1 (a) Syntax of λfp. (b) Evaluation contexts for λfp. 27

4.2 Runtime state for λfp. 27

6.1 A flushable travel planner. 47

iii

Listings

2.1 Debounce implementation. 7

2.2 Throttling implementation. 8

2.3 Use of debounce. 8

2.4 The complexity of nested callback functions. 10

2.5 Chained promises. 11

2.6 Generator function. 12

2.7 Chained promises using async/await. 13

3.1 Creating a new flushable promise. 22

3.2 Function called at every change in input field. 23

3.3 Function returning debounced function. 23

3.4 Function for flushing the promise chain. 23

4.1 all implemented with λfp operations. 32

5.1 The fields of a flushable promise. 34

5.2 The constructor in FlushablePromise. 35

5.3 Method then in FlushablePromise. 37

5.4 Method catch in FlushablePromise. 41

5.5 Method finally in FlushablePromise. 41

5.6 The flush method. 42

6.1 Creating promise chain. 45

6.2 Testing promises with Jest. 45

7.1 Promise.withResolvers(). 54

iv

Chapter 1

Introduction

In modern software development, graphical user interfaces (GUIs) are inescapable in

many applications. In such applications, the GUI acts as the main interface through

which users interact with and operate the application. Developers and designers are

thus continuously working on improving the intuitiveness, response time and overall user

experience of their GUIs.

Different fields, widgets and visual elements in a GUI may be related to each other so

that when users interact with one, the others are updated accordingly. The GUI’s dataflow

defines how data propagates from one widget to other widgets. It can be challenging

for a programmer to create GUIs with complex dataflows that remain responsive and

always behave as expected, especially if the program has dependencies both ways between

several GUI variables, that is, networks of variables where data can flow in multiple

directions [45].

Multi-way dataflow constraint system [31] programming enables developing GUIs with

complex dataflows, by establishing the relations between variables as constraint-enforcing

methods. HotDrink [33] is a JavaScript library that implements multi-way dataflow con-

straint systems by representing every variable as a promise. Promises (or sometimes

“futures”) are many programming languages’ default way to represent asynchronous op-

erations and can be chained to create sequential asynchronous operations, where one op-

eration’s execution depends on the preceding operation’s completion. HotDrink employs

promises to create networks of sequential operations on variables, where one promise’s

value depends on one or several other promises’ values. This network forms a graph of

dependencies, a promise graph.

1

The HotDrink library manages the dynamic dataflows of GUIs: during user interac-

tion, new dataflows are computed based on the order in which the variables have been

edited, and for each dataflow a new promise graph is constructed. When a programmer

develops a GUI using HotDrink, they do not need to care about the order in which the

variables are updated, or which sources are used to compute new values for the variables.

This allows for a modular GUI and separation of concerns—the programmer should not

have to worry about the order as long as the outcome is always correct.

The source of a variable update may stem from user interaction with the widgets.

Whenever the values of these widgets change, the new data is propagated through a new

promise graph. Some widgets will typically encounter rapid user events: a text input

field may produce an event for every keystroke, and a slider may produce hundreds of

events as users move the slider to a new value.

Every such event may not need processing. If many similar events occur in a short

period of time, and especially if the event handler causes potentially computationally ex-

pensive or time-consuming network requests, the program may benefit from not process-

ing every event. Additionally, if continuously occurring events cause rapid re-rendering

of the GUI, the user experience may worsen as the page is constantly updated.

To not process every event we can employ event coalescing strategies [41], which

are strategies to manage rapid events, to combine multiple events into one. Two such

event coalescing strategies commonly used are throttling and debouncing. A throttled

event-handling function will have a period after it executes in which all calls to the same

function will be ignored. The execution of a debounced function will be delayed until it

is not called for a fixed period of time. Both strategies are useful and can improve our

user experience, but their obvious implementations are a source of subtle problems and

can lead to error-prone GUIs.

In programs with complicated graphs of promises such as those maintained by Hot-

Drink, these event coalescing strategies break modularity: The part of the program that

uses data at the end of the dataflow may not be aware that event coalescing is happening

at the sources. The essence of the problem is that when delays are implemented naively,

the programmer must keep track of whether an asynchronous task is being delayed or

not. This problem is prevalent in both small- and large-scale applications.

An example of this issue is a form for users to input their email, where the form

validates whether it is an accepted email or not. To avoid validation checks at every

typing event, the validation checks are debounced. If users type quickly and then press

2

Enter or outside the input field, a validation check should be executed immediately. The

variable containing the email input may not have been updated with the latest keystroke

events, and therefore the pressing of Enter triggers a validation check on a different string

than what the user actually typed. To rectify this, the event handler for Enter would

have to be aware that the validation check’s data source was debounced, and also know

how to update the variable with the correct value before triggering the check. Even for

such a simple dependency graph, the modularity is broken, which can consequently be

experienced from the many erroneous validations on website forms.

In this thesis, we propose extending promises with functionality to better handle

event coalescing: Promises waiting on values that are delayed—due to event coalescing—

have the ability to flush, that is, resolve with the correct data immediately if possible.

Moreover, when using data from a promise at the end of a promise graph, programmers

can, through this promise, trigger all its source promises to flush. We believe this improves

programming with complicated dataflows where reasoning about how promises are related

within a promise is non-trivial. We call this abstraction flushable promises.

With the help of flushable promises, event coalescing strategies can be implemented

in a less brittle way: when processing data at the end of a dataflow, programmers do not

need to worry about which widgets or input sources throttle, debounce, or do neither.

3

Chapter 2

Background

To program GUIs that have no unsurprising behavior while maintaining complex

dataflows, we introduce an abstraction building upon promises in JavaScript. To under-

stand how this abstraction works and its usefulness, this chapter gives a solid foundation

of knowledge regarding both the root of the problem we are solving and the components

that are used in our solution.

The material in this chapter is ordered as follows. First, we explain the event coa-

lescing strategies debouncing and throttling and their respective applications, which is

followed by an exposition of the concepts of asynchronous event handling. Here we fol-

low the course of the history of asynchronous programming in JavaScript, which starts

with callbacks. We subsequently explain JavaScript promises, an asynchronous datatype,

which is then followed by generators and finally the abstraction async/await. Further-

more, we look at the complexity that arises when combining debouncing or throttling

with promises. Lastly, we describe how multi-way dataflow constraint systems benefit

end-users by making it easy for programmers to define complicated dataflows for their

GUIs, and how the complexity of event coalescing strategies is intensified in constraint

system-powered GUIs.

2.1 Event coalescing strategies

When implementing user interfaces, we must often consider the case that some user

input may cause a lot of calls with the same or similar input to the same event-handling

4

Figure 2.1: Illustration of calls to a debounced function.

function. In GUI implementations, there are event listeners and event-handling functions.

The event listener fires every time an event happens, but we can limit the number of times

the event-handling function is executed. This can be beneficial because if the function

calls become too frequent, a program can slow down as we are overloading the program.

The event coalescing strategies discussed in this chapter limit the amount of work by

deciding when to trigger further processing of the event, when to ignore the event, and

when to delay further processing to first see if more user input is happening. Thereby

not executing the event-handling function every time it is called by the program.

2.1.1 Debouncing

Debouncing [36] is an event coalescing strategy where we include a brief delay between

the moment a function is called and when it is executed. During this waiting period,

if the function is called again, the pending execution is canceled and the waiting period

is reset. Hence, the function will not be executed until a delay is concluded without

another function call interruption. To further illustrate the concept of debouncing, in

Figure 2.1, the purple bars represent events, and the light blue squares represent the

compulsory delay. In this figure, the delay is set to half a second. The dark blue squares

represent function execution, that is, where the delay is permitted to finish. The purpose

of debouncing is to ensure that the function in question is not invoked with intermediate

input, and in this way prevent unnecessary and excessive execution of function calls.

In certain GUI scenarios, debouncing is a much-used technique. For example, when

a user types into a search bar and we want to show search suggestions, it is customary

to debounce the input events a few hundred milliseconds as we do not want to send a

new request on every keystroke. In most cases, the user will type the first few letters

of the word they are after, and therefore we would want to wait until they pause their

typing before sending the call to show them the search suggestions. Debouncing is a good

technique for such situations.

5

In other cases, it is clear that debouncing is not the right choice of delay strategy.

An example of this is a button in a GUI where the user typically expects an immediate

outcome. In the case that a user presses a button, and nothing happens right away,

the then frustrated user might rapidly press the same button a few more times. If the

function handling the button press is debounced, the more the user presses the button,

the more its action is delayed.

2.1.2 Throttling

Another technique for limiting event processing work is throttling. When an event-

handling function is throttled, a waiting period will be included after the call to the

processing function is executed, in which all the following events attempting to call said

function are ignored. The first function call after the waiting period is over is once again

executed. Figure 2.2 illustrates the calls to a throttled function; the function is invoked

after the first event, and the events that follow are ignored. The first event that occurs

after the five-second wait time is processed. Events that occur during the wait time will

be ignored, as illustrated in the figure with the last three events. The events are processed

regularly no matter the frequency of events.

Throttling is recommended for curbing large quantities of input events in a range of

GUIs, for such tasks as resizing windows, scrolling, or typing that trigger fetching from

APIs. No matter the frequency of the events, if the event handler is throttled, the events

will be processed regularly. Hence, the user will not have to pause their user interaction

to observe a change in the GUI. In use cases where the user might input a lot of events,

but it is fine to ignore a few function calls in between executing them, throttling might

be useful. The previously mentioned scenario of the frustrated user pressing excessively

on the same button to hasten the event handling is an example of where throttling could

be implemented to avoid unnecessary function calls. Since a button press event carries

no other information than that the button was pressed, it is usually sufficient to process

just the first event of a sequence of repeating events. If the button triggers a network

request, and the user clicks the button several times while the application is waiting for

the response, there is usually no point in sending the same network request many times.

The throttled event handler for the button can process the first click and safely ignore

any subsequent clicks for a period of time.

6

Figure 2.2: Illustration of calls to a throttled function.

2.1.3 Implementing debouncing and throttling in JavaScript

The debounce function implemented in Listing 2.1 takes the event handler function and

the waiting period as parameters. The implementation schedules a function to be called,

and if the function is called again within the given time frame, the previously scheduled

function call must be stopped; the variable scheduledCall will store a reference to the

currently scheduled call so that it can be unscheduled. The debounce function then

returns another function that schedules the event handler function, which first stops the

currently scheduled call, if any. Thus, if the debounce function is called before a timeout

is over, that scheduled call is canceled and a new one begins, producing the behavior of

debouncing discussed in the previous section. Spread syntax (e.g. (...args)) is used

here to forward all the arguments to a call to func1.

Listing 2.1: Debounce implementation.

1 function debounce(func , delay) {

2 let scheduledCall = null;

3 return (... args) => {

4 clearTimeout(scheduledCall);

5 scheduledCall = setTimeout (() => {

6 func (... args);

7 }, delay);

8 };

9 }

The implementation of throttling is shown in Listing 2.2. The variable acceptNextCall

decides whether a call to the throttled func can be executed or not. The first time

throttle is called, acceptNextCall is true. To make sure there are no timers currently

running, we check if the acceptNextCall variable is true. If that is the case, we imme-

diately set the acceptNextCall to false, and we call the throttled function and set a

1The spread syntax in a function’s parameter list accepts any number of arguments and in a function
call passes the arguments on. Some implementations of debouncing are more simplistic and do not use
the spread operator. Such implementations only work with handler functions that take no arguments.

7

timeout. Any calls made during the timeout will be ignored. After this timeout is over,

the acceptNextCall is set to true again, and so any future event can again call func.

Listing 2.2: Throttling implementation.

1 function throttle(func , delay) {

2 let acceptNextCall = true;

3 return (... args) => {

4 if (acceptNextCall) {

5 acceptNextCall = false;

6 func (... args);

7 setTimeout (() => {

8 acceptNextCall = true;

9 }, delay);

10 }

11 };

12 }

Note that both implementations return a function, and we refer to these functions

as the inner function bodies. When employing these delay strategies, we do not call

debounce or throttle directly every time an event happens. The correct way to em-

ploy these functions—in this case, debouncing—is illustrated in Listing 2.3. When

handleEvent is initialized, the code outside the inner function body of debounce is

executed. As mentioned debounce returns a function, which is stored in handleEvent.

We add handleEvent as the handler of an event listener. Thus, handleEvent will be

called every time an event happens to myButton, but inside handleEvent, processValue

will only be executed if the delay finishes.

Listing 2.3: Use of debounce.

1 const handleEvent = debounce (() => processValue (), 250);

2 myButton.addEventListener (() => handleEvent ());

2.2 Asynchronous programming in JavaScript

Concurrency is an important aspect of GUI programming, as GUIs should remain respon-

sive to user interaction while performing potentially time-consuming operations. There-

fore, in addition to event coalescing strategies such as debouncing and throttling, asyn-

chronous event-handling plays a pivotal role in enhancing an application’s responsiveness

8

and efficiency. These properties are especially important because they can often be the

primary factors contributing to whether a GUI offers a good user experience or not. To

understand how the different asynchronous mechanisms in JavaScript work, we need to

know how JavaScript handles concurrency and chooses which code to execute.

JavaScript is a single-threaded language, with one thread called the “thread of exe-

cution” [29], or in the context of GUI programming, the “UI thread”, as its purpose is

to queue and respond to tasks created by user interaction. Every event will be added to

the back of the event dispatch queue paired with the code expected to run when the UI

thread picks it up. The UI thread picks the event at the front of the queue and runs the

code paired with the event [29]. When the UI thread is handling an event, the page it is

running on is frozen. If a task takes a few milliseconds to execute, this is not a problem,

as the user will most likely not notice. However, when performing tasks such as retrieving

large amounts of data from a server, keeping the UI thread waiting for the response could

potentially freeze the page for a noticeable amount of time. This is the reason we need

asynchronous event handling.

2.2.1 The JavaScript event loop

The JavaScript event loop determines how events are handled by an application. The

event loop checks the front of the event queue and matches the first event to an event-

handler [55, Ch.2]. The event queue is (at least) two separate queues, which hold tasks

performed by the browser. The queues are sometimes referred to as macroqueue and

microqueue, as they make a distinction between microtasks and macrotasks; a macrotask

can be parsing of HTML code, altering the current URL, page loading and handling a

time event. A macrotask is a well-defined unit of work, and when the event loop has

handled a macrotask, it can continue with other tasks. Microtasks are tasks that update

the application state and should therefore take priority over macrotasks. These include

asynchronous tasks such as promise callbacks and changes to the hierarchy of the DOM

tree. These are tasks that might require UI rendering after they are completed, and

should therefore be handled before a re-rendering task [55, Ch.13].

The exact machinery of the event loop is hard to understand as different browsers

implement it differently, and the event loop is not mentioned in the ECMAScript spec-

ification [55, Ch.13], but the HTML specification [60] has a detailed description of how

a JavaScript event loop should behave. When the event loop checks the event queues,

it should check if there are any macrotasks, and handle the first one, and then, while

9

Listing 2.4: The complexity of nested callback functions.

1 function getData () {

2 retrieveDataFromAPI(url , (response) => {

3 getDataFromAnotherAPI(response , (newResponse) => {

4 showData(newResponse , (text) => {

5 console.log(‘result: ${text}‘);
6 });

7 });

8 });

9 }

the microqueue is not empty, it should handle the microtasks [60, 8.1.7.3]. Thus, dur-

ing one iteration of the loop, at most one macrotask is handled, and all the microtasks

are handled. After the microqueue is empty, the event loop checks if the page needs

re-rendering.

2.2.2 Callbacks

In earlier versions of JavaScript, callbacks were the main way to perform asynchronous

operations without blocking the UI thread. Callbacks are functions passed to other

functions as parameters, and their intended use is that the callback will be called once

the function’s operation is completed. An example of a callback is an event handler, like

the function passed to the onClick attribute of an HTML button tag. Using callbacks,

the GUI can remain responsive while performing some computationally intensive task,

because the callbacks are only invoked once the task is finished [55]. Callbacks provide

us with a straightforward approach for developing GUIs that not only interact seamlessly

with users but also respond promptly to user inputs while handling tasks.

The drawback of relying solely on callbacks to manage asynchronous operations in

JavaScript is the readability and flexibility of one’s program code. If one only needs

one callback function, the resulting code can be understood easily. The problem arises

when one wants to execute a series of asynchronous operations sequentially, where each

operation depends on the result of the previous. This problem is portrayed in Listing 2.4.

To perform several callbacks in a certain order, one calls them “inside of” each other,

each using the result of the previous callback to produce the new result. Altering the

order of the callbacks is non-trivial, as there are many nested expressions to work with.

Further, it might be challenging to understand the code, and it is easy to get lost in the

convoluted expressions. This way of chaining sequential asynchronous operations is often

referred to as “callback hell” [49, 12].

10

2.2.3 Promises

Promises avoids this “callback hell” by encapsulating the asynchronous process and giving

us a method to decide what should happen after the asynchronous process is completed.

In modern JavaScript, promises, which were introduced in 2015 [25], serve as the cor-

nerstone of asynchronous programming. Promises are objects holding the state of an

asynchronous operation, and we can instruct the promise on what should follow a change

of the state. The state of a promise object is always one of three values; it is either

pending, fulfilled, or rejected [43]. When the promise is first created, its state starts as

pending. When we resolve a promise, we change the state from pending to fulfilled. If

we reject a promise, the state becomes rejected.

To attach reactions to a promise, that is, react when the promise is fulfilled or

rejected, we can use the method then(onFulfilled, onRejected). The parameters

onFulfilled and onRejected are callback functions one provides to define what hap-

pens to the value with which the promise is resolved or rejected. The then method

returns a new promise that we say is chained to the promise it was called on. If we re-

solve the original promise, the onFulfilled reaction will then be scheduled for execution

immediately.

The onRejected parameter is optional; if onRejected is present, and the promise

is rejected with a value x, the promise returned by then will be resolved with

onRejected(x). However, if a chained promise has no reject-reaction, this promise is

rejected too. If a promise is rejected and there are no reject reactions downstream the

chain, an error will be thrown.

As the then method returns a new promise, we can program longer sequential asyn-

chronous operations by calling then on the promise returned by the previous then, creat-

ing a chain of promises. Even though callback functions are still needed to chain promises,

the “callback hell” shown in Listing 2.4 can hereby be replaced by the much more elegant

and easily managed code in Listing 2.5.

Listing 2.5: Chained promises.

1 retrieveDataFromAPI(url)

2 .then((response) => getDataFromAnotherAPI(response))

3 .then((newResponse) => showData(newResponse))

4 .then((text) => console.log(‘result: ${text}‘));

11

When we further want to use the result of an asynchronous operation, promises offer

another advantage as opposed to callbacks; each promise in the promise chain is a first-

class citizen. A first-class citizen is an entity that programmers can perform all common

programming operations on, such as assigning it to variables, passing it as arguments,

and returning it from functions. Asynchronous operations implemented with callbacks

are not first-class citizens, because with callbacks we do not obtain a concrete result

to refer to. In Listing 2.4 we have to encapsulate the asynchronous operations inside

a function to make it possible to refer to later. Even with such a reference, we cannot

assign any further reaction to the operation as we can with promises.

2.2.4 Generator functions

Another asynchronous programming technique used in many programming languages is

generators. A generator is an object returned by a generator function, introduced in ES6

together with promises [29, 25, 55]. We use generators when we want a function to wait to

return something until it is prompted to do so. We annotate the function with an asterisk

(*) to make it a generator function, as shown in Listing 2.6. Generators introduce the

keyword yield, which works similarly to return, but where return returns a value and

terminates the function, yield returns both a value and the control flow to its caller,

thus pausing its own execution.

To retrieve the next value from a generator, we use the method next on the generator

returned by a generator function. In the generator example shown in Listing 2.6, the

generatorObject will first return the value {value: 5, done: false}. We could

then do some operations with this value while the generator is paused. When we need

the next value, we call next again and get {value: 4, done: false}. The next time

we call next, we get {value: 3, done: true }. If we attempt to call next again, we

will be warned that there are no more values.

Listing 2.6: Generator function.

1 function* generatorFunction () {

2 yield 5;

3 yield 4;

4 return 3;

5 }

6 const generatorObject = generatorFunction ();

7 console.log(generatorObject.next());//{value: 5, done: false}

12

The yield keyword works by releasing control of the function, yielding the value to

the code that invoked the generator. Calling next returns the control to the generator,

which executes until the next yield [35]. A generator function can have many different

use cases, a common use case is when we want a function to run indefinitely, like a

function generating the next number in a Fibonacci sequence.

Generators are a useful mechanism for handling asynchronous code [55]. If we put

the asynchronous code inside a generator, we can then yield whenever we execute an

asynchronous task. Outside the generator function, we create a promise that resolves

when the nextmethod returns a value. This will not cause blocking and unresponsiveness

as yielding lets go of the control of the execution context [55].

2.2.5 Programming with async and await

As a further simplification of the use of promises, the async and await keywords were

introduced in JavaScript. Although long chains of then’s are much more elegant than

nested callbacks, understanding the chains may still be challenging as we end up present-

ing several operations over a few lines. The await keyword makes it possible to write

asynchronous code that looks synchronous and more imperative and recognizable than

the promise chains [35].

When we want a program to wait for the value of an asynchronous function that

returns a promise, we can label the function as async, and then simply write await

in front of a call to that function. The execution of an await statement yields, and is

resumed after the promise returned from the async function is settled. The promise’s

value appears as the return value of the async function. If the promise is rejected with

a value, the value is thrown. In Listing 2.7 we can see how the previous code would look

employing async and await instead of then.

Listing 2.7: Chained promises using async/await.

1 async function getData () {

2 let response = await retrieveDataFromAPI(URL);

3 let newResponse = await getDataFromAnotherAPI(response);

4 let text = await showData(newResponse);

5 console.log(‘result: ${text}‘);

6 }

13

The way await works is by releasing control of the thread when it is still awaiting a

promise’s settlement. The thread then resumes where the async function was called

from and continues with whatever the next instructions of the program are [29]. When

the promise we are waiting for is eventually resolved, the code following the await call

gets queued. If the thread is busy with another task, this will not interrupt that task.

The way await works may seem familiar, as it is very similar to yield2.

2.2.6 Promises and event coalescing strategies

When combining chained promises with event coalescing strategies like debouncing, an

issue may arise when promises at the end of a promise chain need resolving, and resolving

the first promise is debounced. For the promises at the end of the chain to resolve, they

would need to know how to resolve the first promise with the correct value. An example

of this can occur in a GUI with a search field, where typing generates search suggestions

and pressing the Enter key triggers the search process.

If we want to use promises to manage the event handling of the search field GUI, the

flow of the GUI could for example be described as follows. The first promise, query, gets

resolved with the input from the input field. We then trigger fetching suggestions by

chaining query with a second promise, suggestions, which returns a list of suggestions

based on the input. This second promise suggestions is then again chained with the

operation to show the search suggestions in the GUI. We have a counter to keep track of

which suggestion the user picks, with the default choice being the first suggestion. Should

the user press Enter after seeing the search suggestions, the first suggestion of the list

will then autocomplete the search field with the suggestion and execute the actual search

for the input.

Fetching the search suggestion list is the operation that takes the longest here, as it

will involve retrieving data from an API. We debounce resolving the first promise query,

as it is unnecessary to fetch search suggestions for every key press, and resolving query

will trigger the resolution of the rest of the promises in the chain.

We have an event listener for the Enter key, and when it fires, it chains the second

promise suggestions with both the autocompletion operation and starting the search

2There is some debate about whether await is just yield with some additional functionality [4];
it is certainly possible to emulate the behavior of await using yield and promises, as described in
Section 2.2.4.

14

process. If the user types something, and then before the search suggestions appear, they

press Enter, we can deduce that they know what the first search suggestion is going to be,

and we should start the search process immediately with the new value. What happens

in many GUIs instead is that search process commences with the previous value that was

input, not the most recent. The problem is that we have employed debouncing, and so

the promise chain does not know about the updated value. This results in a search for

the wrong input, and the user will have to attempt the search anew. It would therefore

be useful with a way to interrupt the ongoing delay, and resolve the first promise query

with the correct value right away.

2.3 Multi-way dataflow constraint systems

In the previous section, we discussed an example of debouncing causing unwanted be-

havior in a GUI. This can happen in a lot of different GUIs, and it can be especially

detrimental if the GUI has a large network of dependencies from input sources to views

that need constant updating. In many different websites, we will encounter a GUI where

we input some data, and calculations, graphics or information will change depending on

the data that was entered. The different widgets in these websites are related and affect

each other, and the relationships require complicated ad-hoc algorithms in each widget’s

event handler to be maintained [45]. In the GUIs of these websites, we can define the

dataflow execution model [46] of the program, a directed graph detailing how the different

variables affect each other, i.e., their dependencies. Many dependencies going in different

directions can lead to a great computational toll on the program and reasoning toll on

the programmer, and therefore efforts to reduce these tolls have been attempted in the

field of dataflow programming.

An example of one of these web-based GUIs is a house loan calculator. We can find

one on the bank DNB’s website [6], shown in Figure 2.3. The calculator has three input

fields for housing price, interest, and repayment period, and one can also input one’s

desired loan amount both with the slider and the input field beside the slider.

Many fields in this calculator are uneditable: users cannot alter the monthly payment,

equity needs or the total cost. This is surprising, as users may very well know their savings

and how much they want to pay on the mortgage a month, and want to know how much

they can buy for. Likely one of the reasons why we cannot alter these fields is that this

would introduce more than one possible dataflow in the calculator, which would have

15

Figure 2.3: DNB house loan calculator.

to be managed in each of the widget’s event handler. For example, the total cost is

calculated from the monthly cost and the number of months in the repayment period.

The calculation of the monthly payment needs the repayment period, the interest rate and

the total cost of the loan. If the total cost of the loan is altered, the event handler of the

total cost input field would have to accordingly update the monthly cost, the repayment

period, or both. It would make the most sense to subsequently alter the monthly cost,

but what if the user just altered the monthly cost before editing the total cost? Should

we infer that they have decided upon a monthly cost and want to see the other variables

change?

Which variables should be updated and which should be left untouched must be

dynamically decided by each event handler. It involves introducing extra global variables,

e.g., to store the order in which the variables were edited, and error-prone code with

branches for every possible scenario. Moreover, if an extra input field is introduced in

calculator, the code of all the existing event handlers would subsequently have to be

changed.

GUIs with multi-directional dataflow will often therefore exhibit very high levels of

code complexity. The development of GUIs with many possible dataflows can be sim-

16

plified by using multi-way dataflow constraint systems (MDCS) [31]. Here the relations

between the variables are specified as constraints, and when variables are updated, the

system propagates the change to the other variables, making sure all constraints are en-

forced. The JavaScript library HotDrink has an implementation of a MDCS that lets

the programmer set up variables and constraints for the different relations. Whenever

a variable is updated, the constraint system—managed by the library—finds a dataflow

and computes new values according to the dataflow. The burden of managing multiple

dataflows is shifted from the application programmer to the library.

2.3.1 Event coalescing in HotDrink

When implementing GUIs with complex dataflows, HotDrink simplifies how the program-

mer can specify the dataflow. To manage the complex dataflows that can arise, HotDrink

uses promises graphs: for a dataflow where one variable x is dependent on the value of

a variable y to compute its own value, HotDrink constructs a promise graph where a

promise with the value of x is chained to a promise with the value of y. When the

promise representing y resolves, it will send its value to the promise representing x [31].

Whenever a variable changes, a new promise graph that propagates the edited value

to other variables is constructed. Which promise is at the start of the promise chain

depends on the dataflow and is therefore not fixed. The library manages the dataflows,

and the programmer should not have to know which promises are at the start of the

promise chain represented by the promise graphs. However, if the programmer wants

to use event coalescing strategies on some widgets’ event handlers to avoid calculating

the dataflow at every user event, the programmer would have to know which promises

are at the start of a promise graph. They would need to identify the first promise of a

chain in every promise graph created to avoid promises further down the chain needlessly

waiting, as discussed previously in Section 2.2.6. They would subsequently have to make

the program “aware” of the event-coalesced promise, and figure out how to resolve the

promise immediately if the value is needed.

We need a way to notify the event-coalesced promise in the chain that it no longer

has to wait from wherever we need its value. Enabling the interruption of artificially

introduced delays—in a safe and modular way—is what this thesis is attempting to solve.

17

Chapter 3

Flushable Promises

In the previous chapter, we discussed methods for developing GUIs that obtain the cor-

rect values at the right times while minimizing the computational burden that can stem

from unnecessary function calls and processes. In Section 2.2.6, the problem of functions

needlessly waiting for values that especially occur when we use promises and debouncing

together was briefly described. In this chapter, we describe our solution to the prob-

lem, which involves extending the existing functionality of promises. We use a concrete

example GUI to frame the discussion.

3.1 A simple circle area picker

A GUI that commonly employs debouncing is a search bar providing search suggestions

while the user types. As mentioned in Section 2.1.1, this choice typically stems from the

observation that users frequently will know the word they want to search for and type

several letters at once. Requesting a server for search suggestions for every letter typed

would be redundant.

By moderating the number of function invocations that will result in search sug-

gestions, two key benefits are obtained: Firstly, excessive function calls can reduce the

application’s performance, leading to slow responsiveness, which is not optimal for the

user’s experience. Secondly, the continual emergence of new search suggestions while the

user is still typing can prove distracting and overwhelming. In our example application—

a circle area picker—the second concern is more important. The function triggered by

18

(a) GUI (b) Promise dependencies

Figure 3.1: Circle area picker GUI and its dependencies.

an event is by itself not computationally expensive, but we still benefit from debouncing

to not overwhelm the user. The application is illustrated in Figure 3.1 (a): A simple

GUI with a number input field deciding the area of a circle, a “Submit” button, and the

resulting circle. If the user clicks “Submit”, we simulate sending the data to the server,

and a message appears below confirming the radius submitted.

In the “Circle area picker”, the user can type a number and the circle will subsequently

be resized. If the circle is resized at every keypress, and we want to input the area 130,

it would change three times in the time it took to write 130: we would see the circle first

change to the area of 1, then to 13, and finally to 130. As resizing the circle is simply

re-rendering an HTML element, this is not likely to cause the application to slow down.

However, it is not necessary to resize the circle three times, and the constant re-rendering

of the circle might very well be distracting. Thus we have to make a choice regarding

which keypress events should result in a circle resizing and which should be ignored. It

might be enough to wait to change the circle until the user clicks “Submit” or presses

Enter. Many applications delay processing input until the input field becomes inactive,

i.e., when the user clicks somewhere outside the input field. On the other hand, many

GUIs are highly responsive, and the user might expect the circle to change on its own,

19

without having to click somewhere outside the input field. The application could therefore

benefit from debouncing the circle resizing function that is called when a keypress event

happens.

With debouncing applied to the event handling function, when a user types numbers

into the input field, there will be a short delay before the circle gets resized. This will

work for most of the use cases of the GUI, but in the case that the user types some

numbers and then swiftly presses Enter, the “Submit” button, or somewhere outside the

input field, they may expect the circle to be resized immediately and that the most recent

user-provided radius value is used in whatever action “submitting” sends the value to.

Moreover, the reason for debouncing no longer applies because we can be sure that they

have settled on the area of their choice. In this case, we want to interrupt the delay and

resize the circle right away.

In Figure 3.1 (b), the GUI’s program flow is illustrated. When a new keypress event

from the input field is created, a new promise P1 is created unless there already exists

a pending promise. We chain P1 with the operation to calculate the radius from the

area. The chaining method then returns a new promise we refer to as P2. When P1 gets

resolved with the area value, it then passes the area value to P2, which calculates and

returns the resulting radius. P2 is then chained with the operation to rerender the page

with the new circle, which returns the promise P3.

In this application, the action of typing a number and waiting to see the circle updat-

ing, and the action of typing and clicking “Submit” or Enter, are separate user interactions

with different results. When the user clicks “Submit” or Enter, we simulate updating the

backend by displaying the radius submitted below the circle. We need the radius to up-

date this text. P2 returns the radius, so we chain it again with P4, with the operation to

update the text field.

We debounce resolving P1 with the event value, and so if another event is created

while we are in a delay, we postpone resolving P1. If the user types a value x and then

swiftly presses Enter, we want to interrupt the delay caused by the debouncing and get

P2 resolved with x as quickly as possible, as we want to update the text and the circle.

The issue is that P2 will be waiting for P1 to resolve, and P1 will be resolved with the

correct value after the debouncing delay is finished. If we resolve P1 right away it would

therefore not be with the correct value. We could make another function to retrieve the

value and resolve P1 with it in this case, but the “Submit” button would have to “know”

about P2’s preceding promise, and that the resolution of P1 is debounced, which makes

the code more tangled than it needs to be.

20

3.2 Flushable promises

To solve the problem of waiting for a value because it itself is waiting for a delay to pass

before it can get resolved, we have to look at how the values are connected and how we

may ship information between them. In the case of promises in JavaScript, a promise

further down in a chain can only be resolved once the preceding promise in the chain

gets resolved. This is the rule for all of the promises in the chain. In the case that we

have access to an arbitrary promise that we know is not the first promise of a promise

chain, and want its value right away, we need to communicate to the promise causing

the delay, the first promise in the chain of pending promises, that it should be resolved

immediately. We thus need the information to flow backward, or for every promise in

the chain to carry information about the previous one. In regular promises, information

does not flow backward, and we do not have a pointer to the promise that needs to be

resolved for the current promise to be resolved. A possible solution is for every promise

that is created with a then call, or by some other means that creates a dependency to

another promise, to be created with a backward link to the previous promise.

A new type of promise where every promise in a chain has a link to the previous

promise can solve part of the problem at hand. It gives us the functionality we need

to notify the delay-causing promise that it needs to “hurry up” and resolve so every

downstream promise can resolve, in other words, flush the promise chain. The act of

flushing the promise chain thus entails sending a request upstream that tells whatever

promise is at the head of the chain to resolve itself.

Every promise needs to be resolved with a certain value. When rushing a promise

chain, we do not specify a value it should resolve to, but expect that the promise knows

how to obtain that value. When we construct a “flushable” promise we equip it with a

special function, we name it onFlush, that will provide this value.

Our solution to the backward link is to simply store the previous promise as an

attribute of the current promise. The only promises that will not have this attribute

are the first promises of the promise chains. To “travel upstream” in a chain, we call

flush recursively on the previous promise. Once we arrive at a promise that does not

have a backlink, we know we are at the head of the chain. With the first promise of the

chain acquired, we can call the onFlush function that we passed to the promise when

initializing it, and resolve the promise with the value onFlush returns. When we resolve

the first promise, every other promise in the chain will be able to resolve and we have

achieved our goal.

21

Listing 3.1: Creating a new flushable promise.

1 function createFlushablePromise () {

2 getInputValue = new FlushablePromise (()=>

↪→ getValueFromNumberPicker ());

3 getRadius = getInputValue.then(

4 (area) => {

5 promise_is_settled = true;

6 return calculateRadius(area);

7 },

8 (error) => {

9 promise_is_settled = true;

10 return error;

11 });

12 getRadius.then((radius) => updateCircleRadius(radius));

13 }

3.3 Using flushable promises

We call this new type of promise a flushable promise. In the example of the circle area

picker, with regular promises there was no way to signal P1 from P2 to and tell P1 to

resolve with x, but with the flushable promise developed in this thesis, there is. To see

how the flushable promise would work in practice, we continue with the example of the

circle area picker, examining how it is implemented with the new version of promises.

As the flushable promise is developed to work as similarly as possible to regular

promises, the GUI implementation of the circle area picker will look very similar to an

implementation that uses regular promises. The difference between the implementations

is the use of the flushable promise, and that whenever the program needs a value of a

promise at the end of the promise chain, this promise is flushed to obtain said value.

The GUI still has some shared variables for accessing the promises P1 and P2, in the

code referred to as getInputValue and getRadius, from different functions. As shown in

Listing 3.1, we create a promise chain where we first pass the area from getInputValue to

getRadius, and when the radius has been calculated, we update the circle with another

promise. Here we also handle errors if there are any. As mentioned, getInputValue and

getRadius are shared variables declared outside any function and so if they already have

a value they will be overwritten here.

The executable we pass as an argument to the constructor of getInputValue in

Listing 3.1 is the only element in this code snippet that differs from an implementation

22

Listing 3.2: Function called at every change in input field.

1 function numberChanged (){

2 let newValue = getValueFromNumberPicker ();

3 if (! getInputValue || promise_is_settled) {

4 createFlushablePromise ();

5 }

6 debouncedResolvePromise(newValue);

7 }

using regular promises. This is the onFlush parameter discussed previously, which here

is an arrow function returning the function getValueFromNumberPicker. This method

retrieves the current value in the number input field.

Whenever the user types something or alters the number in the input field, the function

numberChanged will be called. Referring to Listing 3.2, we first retrieve the value from the

number picker. Note that this is the same function we passed to the onFlush attribute on

getRadius. We then check if getInputValue is not yet initialized, or if it already has been

settled. Normally we cannot access the state of a promise, and that is not possible with

flushable promises either, which is why in Listing 3.1 we set the boolean shared variable

promise is settled to true in both arguments of then(onFulfilled, onRejected). If

getInputValue is either undefined or settled, we call the function creating a new promise,

overwriting the old variable value of getInputValue and getRadius. If getInputValue

is neither settled nor undefined, that means that it already has been instantiated and is

waiting to be resolved. In either case, we call the function debouncedResolvePromise.

Listing 3.3: Function returning debounced function.

1 const debouncedResolvePromise =

2 debounce ((value) => (resolvePromise(value)), 500);

In Listing 3.3, we debounce the resolvePromise function and pass it the value from

getValueFromNumberPicker. In Section 2.1.3, the significance of the correct way to

debounce a function was stressed. As mentioned, debounce returns a function, which

we save in debouncedResolvePromise, and it is invoked at every keypress event in the

input field. The function that is debounced, resolvePromise, resolves getInputValue

with the value passed to it, and is called from debouncedResolvePromise whenever the

timeout is allowed to conclude without any more calls to debouncedResolvePromise.

Listing 3.4: Function for flushing the promise chain.

1 function submitOrEnterClicked () {

23

2 let submitText = getRadius.then((value)=>updateRadiusText(

↪→ value))

3 submitText.flush ();

4 }

As mentioned in Section 3.1, if the user clicks “Submit” or Enter, we update the text

with the radius submitted. To do this, we chain the promise getRadius once more, with

the operation update the text field. In Listing 3.4, the event handler for the “Submit”

button and the Enter keypress action is shown. We chain the second promise return-

ing the suggestions with a new promise submitText, responsible for updating the text

field. As the user has clicked “Submit” or Enter, we do not want to debounce the

resolution of getInputValue. If the circle area picker was implemented using regular

promises, here we would have to retrieve the value from the input field, and resolve the

first promise with that value. Instead we call flush on submitText. This will cause

the entire promise chain to flush, ultimately resolving getInputValue with the value

returned by getValueFromNumberPicker.

Calling flush does not directly interrupt the debouncing, it only speeds up the com-

munication between the promises, resolving the promises by immediately resolving the

first promise. We do not have to bother to use clearTimeout as when getInputValue

first gets resolved, it cannot get resolved again. This is a property of regular promises,

and if we try to resolve getInputValue again, which does happen in this application

when submitOrEnterClicked is used, it is simply ignored.

24

Chapter 4

Extending λp calculus with flushing

capabilities

The use of promises is known to be error-prone, possibly because there are no static

checks to ensure correct usage; programmers may forget to resolve a promise or call then

with a non-function argument [12, 49]. If we want an IDE, linter or compiler to be

able to tell us the cause of the error in our implementation using promises, we need to

perform some type of program analysis. In order to analyze the program in a correct

manner, we need to be able to formally reason about promises. The paper “A Model for

Reasoning About JavaScript Promises” [49] introduces a formal λp calculus for reasoning

about promises. The authors’ motivation for making this formal language is to develop

tools to detect errors in the use of promises. Their “promise calculus” is an extension of

an already established λJS calculus [37], and specifies in detail the processes that occur

when the different promise methods are called, both regarding the promise itself, and the

event loop.

To be able to reason about the flushable promises, and to specify precisely its se-

mantics, we extend the λp calculus with the functionality to flush promise chains. The

updated λfp calculus is developed based on the idea that promises in JavaScript are

extended to include a flush method. For this we do not need to change the entire spec-

ification. In this chapter, we give a brief introduction to the λp calculus, and show the

rules that change to introduce the flushing ability to λp.

This flush method should behave as described previously in this chapter; when called

on an arbitrary promise that is not the first promise of its chain, it should “travel up-

stream” the promise chain, until it finds the originators of the chain, and then flush this

25

promise. The originator of the chain can be equipped with a lambda function at the time

of its creation; this function will settle the promise. If it was passed a lambda upon cre-

ation, and we call flush on an arbitrary promise in its chain, we can resolve the originator

with this lambda function, and trigger the resolution of the entire promise chain.

4.1 Expressions and state in λfp

The λp calculus we extend consists of expressions and evaluation rules. The runtime

state is a tuple, whose components represent different aspects of an application’s state,

such as addresses allocated in the heap or whether a promise is pending, fulfilled or

rejected. As the λp calculus has a “small-step reduction semantics” [49], the evaluation

rules specify how “holes” in expressions are reduced by updating the runtime state. Holes

in expressions in evaluation contexts represents placeholders for subexpressions. When

we are evaluating an expression, the hole in the expression is where we want to further

reduce or substitute the expression [30]. A hole is represented by a □ here. An evaluation

rule states how an expression can be reduced, and how the reduction affects the runtime

state. We now present the updated syntax, evaluation context and runtime state, where

we have highlighted our additions to the established λp

The updated syntax is shown in Figure 4.1 (a) and consists of seven expressions:

promisify evaluates an object and turns it into a pending promise; resolve fulfills

a pending promise with a value and schedules the promise’s resolve reactions; reject

rejects a pending promise with a value, and schedules the promise’s reject reactions;

the onResolve expression registers a new resolve reaction and creates a new promise

dependent on the original promise, and onReject registers a new reject reaction and

creates a new promise also dependent on the original promise; link links two existing

promises, such that if the first promise resolves, the second will also get resolved, with the

same value as the first promise—this applies also if the first promise gets rejected [49].

The only additional expression that is new in λp is flush. Calling flush on a pending

promise entails flushing the promise chain of that promise, i.e., following the backlink

to the first promise of a promise chain, and invoking the function passed during the

promise’s creation.

The extended evaluation context of λfp is shown in Figure 4.1 (b). As previously

stated, the evaluation context explains how sub-expressions can be reduced. We show

two ways of calling an expression, stating that we can both call for example onResolve

26

e ∈ Exp = promisify(e, e) [create promise]

| e.resolve(e) [resolve promise]

| e.reject(e) [reject promise]

| e.onResolve(e) [chain promise]

| e.onReject(e) [chain promise]

| e.link(e) [link promises]

| e.flush() [flush promise]

(a)

E = □

| promisify(E,e) | promisify(e,E)
| E.resolve(e) | v.resolve(E)
| E.reject(e) | v.reject(E)
| E.onResolve(e) | v.onResolve(E)
| E.onReject(e) | v.onReject(E)
| E.link(e) | v.link(E)
| E.flush()

(b)

Figure 4.1: (a) Syntax of λfp. (b) Evaluation contexts for λfp.

σ ∈ Heap = Addr ↪→ V al

ψ ∈ PromiseState = Addr ↪→ PromiseValue

f ∈ FulfillReactions = Addr ↪→ (Reaction × Addr)∗

r ∈ RejectReactions = Addr ↪→ (Reaction × Addr)∗

π ∈ Queue = (PromiseValue × Reaction × Addr)∗

ρ ∈ Reaction = Lam | default
α ∈ FlushReaction = Lam0 | null
Ψ ∈ PromiseValue = {P,F(Val),R(Val)}

φ ∈ RetrieveReactions = Addr ↪→ FlushReaction

δ ∈ PrecedingPromises = Addr ↪→ Addr ∗

Figure 4.2: Runtime state for λfp.

on an expression that could be further reduced, or we can pass a reducible expression to

onResolve.

The updated runtime state of our λfp calculus is shown in Figure 4.2. In the runtime

state of λp, an address refers to a location or a memory address. The heap σ refers to the

heap of the program mapping addresses to values. The promise state ψ maps addresses

to promise values Ψ, which can be either pending P, fulfilled F(v), or rejected R(v), where

v is the value settling the promise. The fulfill - and reject reactions f and r map addresses

to a list of pairs of a reaction ρ and the dependent promise address. The reaction can

either be a lambda or a default function, which can be thought of as a function that

just returns its argument. Finally, the queue π denotes the event queue, where we put

scheduled reactions that the event loop will execute at some point.

27

We introduce three additional components to the context of λfp that are not in λp:

The flush reactions α, denoting valid types of functions passed to promisify; retrieve

reactions maps the address of a promise to a flush reaction; and lastly, the preceding

promises maps the address of one promise to the address of one or several promises. The

flush reactions can either be a nullary function in Lam0 or null. The program state can

be represented as ⟨σ, ψ, f, r, π, φ, δ⟩. As we introduce new components in the program

state, every operation rule in λp needs to be updated, but here we only show the rules

that are significantly different, that is, more than just updating the program state. The

rest of the rules can be found in Appendix A.

4.2 Rules in λfp

Following are the evaluation rules we either created or made significant changes to in

order to extend the λp calculus with the flushing ability. In the existing rules that we

needed to make adjustments to, we have highlighted these adjustments.

E-Promisify

a ∈ Addr a ∈ dom(σ) a /∈ dom(ψ) a /∈ dom(φ) ψ′ = ψ[a 7→ P]

f ′ = f [a 7→ Nil] r′ = r[a 7→ Nil] δ′ = δ[a 7→ Nil] φ′ = φ[a 7→ λ0]

⟨σ, ψ, f, r, π, φ, δ, E[promisify(a, λ0)]⟩ → ⟨σ, ψ′, f ′, r′, π, φ′, δ′, E[a]⟩

[E-Promisify]. This rule applies when a new promise is created. To be able to

use the flush functionality later, we store the promise created and its eventual flush

function together. Specifically, we assert that a is an address in the heap, λ0 is a flush

reaction, and a is not previously in the promise state or the flush state. If the expression

to be reduced is promisify, we initialize the promise state of a to pending P and we

initialize the fulfill and reject reactions to the empty list as the promise has no registered

reactions upon creation. We also initialize the preceding promises to the empty list, as

every promise starts out with their preceding promises as an empty list. We update the

retrieve reactions with a mapping from a to λ0. This is to eventually retrieve the function

λ0 and invoke it if the promise chain is flushed at a later time.

When we create a promise, if we want it to be able to flush and resolve with a value

at a later point, we pass a nullary lambda function that retrieves the value as the λ0

28

parameter in promisify(s, λ0). If we do not need the flushing functionality, we pass

null.

The [E-Promisify] rule in λfp differs from λp by having an additional argument

passed to promisify, verifying that a is not already in the retrieve reactions, and adding

a to the retrieve reactions with λ0.

E-OnResolve-Pending

a ∈ Addr a ∈ dom(σ)

ψ(a) = P a′ ∈ Addr a′ /∈ dom(σ) ψ′ = ψ[a′ 7→ P] σ′ = σ[a′ 7→ {}]

f ′ = f [a 7→ f(a) ::: (λ, a′)][a′ 7→ Nil] r′ = r[a′ 7→ Nil] δ′ = δ[a′ 7→ [a]]

⟨σ, ψ, f, r, π, φ, δ, E[a.onResolve(λ)]⟩ → ⟨σ′, ψ′, f ′, r′, π, φ, δ′, E[a′]⟩

[E-OnResolve-Pending]. This rule handles registering a resolve reaction to an existing

pending promise. This reaction is what will happen when the promise gets resolved. We

can register countless resolve- and reject-reactions for a promise, and all of them will

be scheduled to run when said promise is resolved. Specifically, if the expression to be

reduced is a.onResolve(λ), where a is an address already allocated in the heap, that is,

an existing pending promise, and λ is a fulfill reaction, a new promise a′ is created. The

new promise a′ is initialized to the pending state. The fulfill- and reject reactions are

initialized to empty lists. To the fulfill reactions of the existing promise a, the pair (λ, a′)

is added, such that it can be run once a gets resolved. A mapping from a′ to a singleton

list containing a in the preceding promises is added as well. This is where we create the

backlink to the preceding promise. Note that there is no difference between promises

that have a flush reaction and promises that do not have a flush reaction, we simply add

every chained promise to the preceding promises.

This rule differs only from the original [E-OnResolve-Pending] in the λp calculus

in that we have added a mapping from a′ to a in the preceding promises. [E-OnReject-

Pending] would conceptually be very similar to this rule, and we have therefore decided

not to present it.

E-Flush-Pending-HasFetchValue

a ∈ Addr a ∈ dom(σ) φ(a) = λ0 ψ(a) = P

⟨σ, ψ, f, r, π, φ, δ, E[a.flush()]⟩ → ⟨σ, ψ, f, r, π, φ, δ, E[if(λ0 ̸= null) a.resolve(λ0())]⟩

29

[E-Flush-Pending-HasFetchValue]. This rule does not have an equivalent rule

in the λp calculus. It handles the case where we call flush on a pending promise, and

that promise is in φ, which signifies that it is at the head of the promise chain and has

a function that can immediately find a value for the promise. If the expression to be

reduced is a.flush(), and a is an address allocated in the heap, and its promise state is

pending, and a is in φ, we have a promise that is at the head of its chain. As λ0 either

can signify a nullary lambda function or null, the returned expression needs to verify this.

If it is not null, that means that a was passed a nullary lambda function upon creation.

We then resolve a with λ0. Notice that nothing in the program state has been altered

yet. See the rule [E-Resolve-Pending] in Appendix A for what will follow in the case

that λ0 is not null and we call a.resolve(λ0()). However, if λ0 is equal to null, nothing

will happen in the case that flush is called.

E-Flush-Pending-HasPrecedingPromises

a1 ∈ Addr . . . an ∈ Addr a1 ∈ dom(σ) . . . an ∈ dom(σ) ψ(a1) . . . ψ(an) = P

ak ∈ Addr ak ∈ dom(σ) δ(ak) = a1 . . . an ak /∈ dom(φ) ψ(ak) = P

⟨σ, ψ, f, r, π, φ, δ, E[ak.flush()]⟩ → ⟨σ, ψ, f, r, π, φ, δ, E[a1.flush(); . . . an.flush();]⟩

[E-Flush-Pending-HasPrecedingPromises.] This rule also has no equivalent in the

λp calculus. It handles the case where flush is called on a pending promise ak that has

one or several preceding promises. We refer to the promise or promises that another

promise is dependent on as its preceding promises here. A promise may have several

preceding promises if it was created with the method Promise.all, which we will cover

later in this chapter.

Specifically, the expression to be reduced is ak.flush() and ak is a pending promise

address allocated in the heap. a1 . . . an are also all pending promises that are allocated

in the heap. If there is a registered mapping from ak to a1 . . . an, we call flush() for

every promise that ak is mapped to in δ. This rule will then for every preceding promise

either call itself, or [E-Flush-Pending-HasFetchValue] if it is the case that we have

arrived at the head of the promise chain for one or several of a1 . . . an.

E-Link-Pending

a1 ∈ Addr a1 ∈ dom(σ)

a2 ∈ Addr a2 ∈ dom(σ) ψ(a1) = P f ′ = f [a1 7→ f(a1) ::: (default, a2)]

r′ = f [a1 7→ r(a1) ::: (default, a2)] δ′ = δ[a2 7→ [a1]]

⟨σ, ψ, f, r, π, φ, δ, E[a1.link(a2)]⟩ → ⟨σ, ψ, f ′, r′, π, φ, δ′, E[undef]⟩

30

[E-Link-Pending]. This rule handles the specific case when the to-be registered

resolve reaction in itself returns another promise. Whatever happens to one promise

should then also happen to the promise “linked” to it. Specifically, if a1 and a2 are

promise addresses allocated in the heap, and a1 is pending, we update the fulfill- and

reject-reactions of a1 so that if a1 gets resolved or rejected, a2 will also get resolved or

rejected. We do this by passing the reaction (default, a2) to both reaction lists. We

also update the preceding promises to be able to flush the resulting promise chain, as

if whatever happens to a1 also should happen to a2, we deduce that if a2 is flushed, a1

should also be flushed.

This rule only differs from the original [E-Link-Pending] in the λp calculus in that

we add a mapping from a2 to a1 in the preceding promises.

4.3 The semantics of Promise.all in λfp

The Promise API static method all takes a sequence of promises and either returns a

promise fulfilled with an array of the results of the now fulfilled sequence of promises,

or it returns a promise rejected with the value of the first promise to be rejected. It is

another way of chaining promises besides then. In the λp paper, all does not have its

own rule, its implementation is instead described in words. The method then’s imple-

mentation is presented, using the other primitive promise operations in λp, showing that

it is possible to implement with the existing rules. This applies to then with our rules as

well, but implementing all with the operations in our λfp calculus requires some extra

consideration.

To implement all, we make a counter and a new promise. We call then on every

promise passed in the sequence, and inside onFulfilled, we add the resolve-value to a

list, decrement the counter and check if the counter is zero. If so, we resolve the new

promise with the list of resolve-values.

We have to consider how the promise dependencies would look like, and how we

mitigate flushing if we have a promise Pi dependent on the result of all, which we will

refer to as Pk. One or several of the promises P1 . . . Pn passed as arguments to all may

be resolved quicker if we flush, and if we call flush on Pi, we want every flushable promise

to also flush. We therefore need to set every promise in P1 . . . Pn as preceding promises

for Pk.

31

Listing 4.1: all implemented with λfp operations.

1 Promise.all =

2 function ([promise_1 ... promise_n]) {

3 let counter = n;

4 let arr = [];

5 let promise = promisify ({});

6 promise.setPrecedingPromises ([promise_1 ... promise_n])

7 for (let i = 0; i < n; i++) {

8 promise_i.onResolve ((v) => {

9 arr[i] = v;

10 if(--counter == 0) {

11 promise.resolve(arr);

12 }

13 },(e)=>promise.reject(e))

14 }

15 return promise

16 }

We have no separate rule for setting preceding promises. One possibility is to make

several rules for the process of the all method, one for when it is called, to show that we

would call onResolve on every promise, and one to show what follows when we know we

are resolving the last promise and all other promises are already resolved. The issue with

separating the rules is that there is no conceivable proper way to imply that the promises

in question had previously been passed to all. We would have to make another set in

the state, just to state that this promise has previously been called in a sequence to all,

and we would like this to happen when it resolves.

In this thesis we have decided to show how to implement all with the existing rules,

assuming there exists a method setPrecedingPromises that sets a promise’s list of pre-

ceding promises—such a method is straightforward to implement. Calling then registers

a resolve reaction that adds a new preceding promise connection, but in the case of all,

it would not connect the promises we need to be connected; then called on P1 returns

a new promise P2, and P1 is P2’s preceding promise, while here we want P1 . . . Pn as

preceding promises for Pk, where Pk is a new promise we create in all. Nevertheless,

Listing 4.1 shows an implementation of all with our existing rules, except the use of

setPrecedingPromises line 6, which is not a standalone operation in our λfp calculus.

32

Chapter 5

Implementation

In the previous section, the idea of the flushable promise was described. Furthermore,

an example was presented to outline the expected behavior of flushable promises. In this

chapter, we describe in detail how flushable promises are implemented.1

The difference between a flushable promise and a regular promise is small. The

only added functionality is the flush method, but to make flushing work we need to

have supplemental attributes and private methods as well. As stated in Section 3.2, to

accomplish the flushing ability, we need a backward link to the previous promises and a

way to let the first promise of a chain know how to retrieve its value immediately. We get

these by storing the previous promise as a new attribute, and by providing the option to

pass an onFlush attribute to a new promise when initializing it.

To implement flushable promises, we made a “promise wrapper class” in JavaScript.

There are other ways to add functionality to an existing class in JavaScript, but this

method seemed the most straightforward. Hence, the FlushablePromise class is a

JavaScript class with a regular promise as one of the attributes. Another implemen-

tation approach could be to implement promises from the ground up, encoding every

rule formalized in λfp. A such implementation would, however, not take advantage of

all the existing functionality of JavaScript promises, like updating the state and chaining

promises. Furthermore, any JavaScript engine would likely treat promises from a such

implementation differently than regular promises.

Instead of plain JavaScript, we give the definitions in TypeScript. We have im-

plemented flushable promises in both the major gradually typed JavaScript extensions,

TypeScript and Flow.

1The implementation in its entirety can be found at https://github.com/MariaBonde/
FlushablePromise.

33

https://github.com/MariaBonde/FlushablePromise.
https://github.com/MariaBonde/FlushablePromise.

Listing 5.1: The fields of a flushable promise.

1 class FlushablePromise <T> {

2 private promise: Promise <T>;

3 public resolve: (x: T) => void;

4 public reject: (x: any) => void;

5 private fetchValue: () => T;

6 private precedingPromises: FlushablePromise <any >[];

7 ...

8 }

In the class declaration listed in Listing 5.1, a class called FlushablePromise is de-

fined. It is a generic class, as promises should work with values of any type, here iden-

tified as T. The different attributes have their respective uses, and most of them are

self-explanatory. If the value of an instance of the FlushablePromise class has the type

T, then the value of promise has to also have the type T, and the same applies to the

argument for resolve. The attribute fetchValue is where we store the onFlush function

if it is given. The value returned from fetchValue has to also be the type T, as it is what

we are going to resolve the promise with. When we reject a promise, the value we reject

it with can be anything, and therefore the type has to be any.

The precedingPromises attribute is a list of flushable promises that can have any

type. It is an array because a promise can have multiple preceding promises. In general,

one should avoid using the type any when possible as if we have one any type, we

often end up having to accept the any type everywhere. The values of the promises in

precedingPromises is not, however, used anywhere in this class, we just use the promises

to travel “upstream” the promise chain. Therefore using any here does not lead to loss

of type information here.

The attributes promise, fetchValue and precedingPromises are private, while

resolve and reject are public. This is because fetchValue and precedingPromises

are only for making flushing possible, and not for external use. The promise attribute is

private as it should not be necessary to use it externally.

5.1 The FlushablePromise constructor

In Section 3.3, we saw the constructor of the flushable promise in use. We passed an

arrow function returning another function in the constructor. This parameter is called

34

Listing 5.2: The constructor in FlushablePromise.

1 constructor(onFlush ?: () => T) {

2 this.promise = new Promise ((resolve , reject) => {

3 this.resolve = (v) => {

4 resolve(v);

5 };

6 this.reject = (e) => {

7 reject(e);

8 };

9 });

10 if (onFlush) {

11 this.fetchValue = onFlush;

12 }

13 this.precedingPromises = []

14 }

onFlush and we can see how it is set among the other attributes of the FlushablePromise

class in Listing 5.2. The onFlush parameter is an optional parameter, and we therefore

check if it was passed before we set this.fetchValue with it. If we do not pass an

onFlush argument, the promise should behave like a regular promise.

When programmers are introduced to promises through examples, they encounter

the promise constructor a lot. When programming in practice, creating a promise using

its constructor is, however, not that common. Promises are rather often returned by

functions we commonly use. For example, a common way to retrieve data from an API

is by using the global fetch method. One often uses the response from the API by,

e.g., fetch(url).then(response=>handleData(response)). Programmers may write

such code without really thinking about promises, even though a promise is created and

returned by fetch, and fulfilled when the response from the API becomes available [61].

Two notable attributes also set in the constructor are this.resolve and

this.reject. When creating a regular promise, as we do on the first line inside the

constructor in Listing 5.2, we have access to resolve and reject, and we can state

conditions for under which the promise should get resolved and rejected. Here we exploit

this by setting the class attributes this.resolve and this.reject to these functions.

This allows us to resolve and reject the flushable promise instances inside other class

methods as well. This method of “extracting” the resolve and reject methods us quite

common, and was already employed in another promise wrapper class in HotDrink, which

served as inspiration for the basic structures of the FlushablePromise class.

35

5.2 then(onFulfilled, onRejected)

In regular promises, the then method registers a reaction to a promise and returns

a new, chained promise that again can be chained in order to further register another

reaction. In the FlushablePromise class, the semantics of the method then only differs

in that when we register a reaction to a flushable promise, which produces a new promise,

flushing the new promise should flush the original promise. This is not straightforward,

as the method is overloaded and can be used in many different ways.

The implementation of then for flushable promises is given in Listing 5.3. In this

section, we explain the machinery of the then method for promises and how our imple-

mentation makes promises aware of what their preceding promises are.

5.2.1 Type parameters

The method declaration of then introduces the type parameters ResolveType=T and

RejectType=never. The type ResolveType will be the type of the value of the new

promise, should it get resolved. We declare that the default type for the value of the new

promise is T.

We also introduce RejectType and set it to be the default type never, which is a

type that represents the absence of something, similar to null and undefined. When a

function returns never, it usually signifies that they never will return, like a function de-

signed to throw an exception [20]. Here we use never as the default type for RejectType

because if we have not stated a reject type, the type of the value of the returned promise

will be ResolveType | never, which is computed by the program to just ResolveType.

The onFulfilled parameter has the type (a:T) => ResolveType. The parameter

a is the value of the previous promise and has type T. ResolveType is the new type,

which is decided by what the programmer introduces here. onRejected has the type

(a:any) => RejectType, as the promise can be rejected with any value. As mentioned

in Section 2.2.3, onRejected is an optional parameter, and this is because it is not

compulsory to provide both a resolve- and reject-reaction. If there is no onRejected

argument, and the promise gets rejected, it will pass the state of the promise to the next

promise in the chain, until it either finds a “handler” for the state [29], or an error is

thrown. The then method returns a flushable promise with either the ResolveType or

RejectType.

36

37

Listing 5.3: Method then in FlushablePromise.

1 then <ResolveType = T, RejectType = never >(

2 onFulfilled: (a: T) => ResolveType ,

3 onRejected ?: (a: any) => RejectType

4): FlushablePromise <ResolveType | RejectType > {

5 var newPromise = new FlushablePromise <ResolveType |

↪→ RejectType >();

6
7 newPromise.setPrecedingPromise(this);

8
9 this.promise.then(

10 (x) => {

11 let fulfilledVal = onFulfilled(x);

12 if (fulfilledVal instanceof FlushablePromise) {

13 fulfilledVal.setPrecedingPromise(this);

14 newPromise.setPrecedingPromise(fulfilledVal);

15 fulfilledVal.resolve(x);

16 return newPromise.resolve(fulfilledVal);

17 } else {

18 return newPromise.resolve(fulfilledVal);

19 }

20 },

21 (y) => {

22 if (onRejected) {

23 let rejectedVal = onRejected(y);

24 if (rejectedVal instanceof FlushablePromise) {

25 rejectedVal.setPrecedingPromise(this);

26 newPromise.setPrecedingPromise(rejectedVal);

27 rejectedVal.reject(y);

28 return newPromise.resolve(rejectedVal);

29 } else {

30 return newPromise.resolve(rejectedVal);

31 }

32 } else {

33 return newPromise.reject(y);

34 }

35 }

36);

37 return newPromise;

38 }

5.2.2 Achieving the flushing functionality

Replicating the then function of the Promise class in this promise wrapper class requires

some consideration, as it should work exactly like a regular promise, but the new promise

needs to inherit the attribute precedingPromises. To replicate the functionality of then,

we could just have returned this.promise.then() which returns a promise. However,

that would return a regular, dependent promise, and we need to alter the dependent

promise’s attributes. We need every promise in the chain to be a flushable promise.

Therefore, we first create a new flushable promise inside then. We then use the private

method setPrecedingPromise to set the current promise as a preceding promise for the

new promise.

We could check if the current promise either has a current fetchValue or

precedingPromises before setting the preceding promise, as we only need the promises

that were created with an onFlush, or have a preceding promise that was created with

an onFlush, to be flushable. This would, however, give us problems later with the other

chaining methods. Because of this, we simply let every chained promise have a preceding

promise, and we refer to every object that is an instance of the FlushablePromise class

as a flushable promise. If calling flush on a promise has an effect, however, is dependent

on whether it or its preceding promise was initialized with an onFlush argument.

5.2.3 Chaining the promise

We use the functionality of then by calling it on the current promise (this). What

is inside the following block will only run once this is resolved or rejected. In the

arguments of then, we get to decide what happens once this is resolved or rejected,

namely onFulfilled and onRejected, respectively. In the first argument, we set the

new promise to resolve with the value returned by onFulfilled applied to x. If the

current promise gets resolved, we will resolve the next promise in the chain with the

onFulfilled provided by it.

In the second argument, we decide what happens if the promise is rejected; we first

check if onRejected is defined, and if it is, we resolve the new promise with the result of

onRejected applied to y. This might seem counterintuitive, but if we add a way to handle

a rejection, we do not want an error to be thrown and the program to conclude, instead

we want the chain to continue with the value provided by the onRejected function. If

38

there is no onRejected, we reject the new promise with the value sent in. In the case

that a promise with no reject reaction in a promise chain gets rejected, every promise in

the promise chain will get rejected with the same value until it finds a reject reaction. If

there is a promise with a reject reaction in the chain, the promise will get resolved with

the result of the reject reaction applied to the value from the first rejection [29].

5.2.4 Linking two promises

There is a special case we need to facilitate when replicating then; if onFulfilled or

onRejected returns a promise: Firstly, there is the factor of what follows when this

happens in regular promises. “ECMAScript 2025 Language Specification” [27] does

not have clear instructions regarding the different return values of onFulfilled and

onRejected, but the book “JavaScript Async: Events, Callbacks, Promises and Async

Await” [29] covers a few different cases, depending on what these “handlers” return.

If the handler returns a pending promise, it states that “resolution/rejection of the

Promise returned by then will be the same as the resolution/rejection of the promise

returned by the handler” [29], i.e. that we should do the same to the promise returned

by onFulfilled/onRejected as we do the promise we return in then.

To rectify this, inside the then method of the FlushablePromise class we can take

advantage of the fact that we can intercept what happens before the handlers are called

inside the “real” then. In the onResolve-block, before we resolve the current promise, we

call onFulfilled on the argument x sent in by the previously resolved promise, and then

we check if the resulting variable is an instance of the FlushablePromise class. If it is

not a flushable promise, we can just call resolve on the next promise in the chain with the

result from onFulfilled. On the other hand, if it is the case that the programmer has

sent in another flushable promise as the return value for onFulfilled or onRejected,

we need to consider how the flushing ability should work in the resulting chain.

In “A Model for Reasoning About JavaScript Promises” [49], they refer to this mecha-

nism as “linking” two promises, and in the rule, it is defined as simply adding the promise

linked to the other promise’s fulfill-reactions. We must consider the programmer’s pos-

sible motivation for linking two flushable promises P1 and P2: if the two promises are

linked, and we want whatever happens to P1 to also happen to P2, and we instantiated

P1 with the onFlush argument, then it should also be possible to flush P2 or a promise

chained to P2 and subsequently resolve P1. Therefore P2 should have P1 as a preceding

promise.

39

There is one more promise to consider here, namely the promise we return in then,

in Listing 5.3 referred to as newPromise; we have previously put this, which in this case

refers to P1, as the preceding promise for newPromise, but now this is the preceding

promise of P2. The newPromise, or P3 also needs a preceding promise if we want to be

able to flush the chain, and therefore we set the preceding promise of P3 to be P2. We

could set P1 as the preceding promise of both P2 and P3, but then that would indicate

that they are two separate chains. If P1 gets resolved, that should lead to both P2 and

subsequently P3 getting resolved. We believe that if the programmer links P1 and P2,

chains the resulting P3 further, and later tries to call Pn.flush(), where Pn is in the

same chain as P3, they expect P1 to be able to call flush.

When we are inside the onResolve-block, we are handling the case that the previous

promise P1 is already resolved. In that case, we want to also resolve the newPromise or

P3, but now there is a promise between them in the chain, namely P2. Therefore, we have

to make sure to not only resolve P3, but also P2. The rule is that if P1 and P2 are linked,

then resolution/rejection will be the same for both of them, therefore we can resolve P2

with the same x that P1 got resolved with. In the case that P1 gets rejected, and P2

is passed as what onRejected returns, then we infer that P2 also should get rejected,

but P3, or newPromise, should get resolved with the onRejected value. Note that like

regular promises, if we resolve a promise with another resolved promise, the promise will

get resolved with the value of the already resolved promise [29].

We now have called then on our current promise, created a new promise, instructed

the resolve- and reject reactions for our new promise, and finally, we return the new

promise for further chaining or other use cases. The whole then is listed in Listing 5.3.

5.3 catch(onRejected) and finally(onFinally)

A promise chain needs some kind of error handling, because if there is none and a promise

gets rejected, an error will be thrown because of the unhandled promise rejection. If a

promise early in the chain gets rejected, the subsequent onFulfilled reactions on every

promise in the chain are not executed until a onRejected is found. In the meantime

the value from the rejected promise is simply passed on. If there is an onRejected,

the rejected value will be its input, and the value from the onRejected operation will

be passed on in the promise chain. In the case that we do not want a value from an

onRejected passed on, it is common to only provide resolve reactions and then at the

40

Listing 5.4: Method catch in FlushablePromise.

1 catch <RejectType >(

2 onRejected: (x: any) => RejectType

3): FlushablePromise <T | RejectType > {

4 return this.then((x) => x, onRejected);

5 }

Listing 5.5: Method finally in FlushablePromise.

1 finally(onFinally: () => void | any): FlushablePromise <any > {

2 if (typeof onFinally != "function") {

3 return this.then(onFinally , onFinally);

4 } else {

5 return this.then(

6 (value) => FlushablePromise.resolve(onFinally ()).then

↪→ (() => value),

7
8 (reason) =>

9 FlushablePromise.resolve(onFinally ()).then (() => {

10 throw reason;

11 })

12);

13 }

14 }

end of the chain write a catch all error routine [29]. It is therefore customary to write

catch(onRejected) at the end of the promise chain, to make sure we handle all errors

that might arise. catch(onRejected) is simply calling then with no resolve reaction and

only a reject reaction, then(null, onRejected). catch is listed in Listing 5.4

The method finally is another function that is a simplification of a certain way to

call then. If one wants something to happen both if a promise is rejected or resolved,

one could pass the same argument to both onFulfilled and onRejected, but this is

unnecessary. Instead, we can use finally when we want something to happen at the

end of the promise chain no matter what [54]. If onFinally is a value, we call then

with onFinally passed in both arguments [51, 26]. However, if onFinally is a function,

we call then on the current promise, and if the current promise resolves, we await the

resolution of onFinally, after which we create an already resolved promise with the

value sent from the current promise. If the current promise is rejected, we still await the

resolution of onFinally, but we throw the value the current promise was rejected with.

The resulting code is listed in Listing 5.5, and the implementation is retrieved from the

MDN web docs page on finally [26, Section 27.2.5.3].

41

Listing 5.6: The flush method.

1 flush (): void {

2 if (this.fetchValue) {

3 this.resolve(this.fetchValue ());

4 } else {

5 this.precedingPromises.forEach ((flushable) => flushable.

↪→ flush());

6 }

7 }

5.4 flush()

The only method of the FlushablePromise class that is not replicating existing promise

methods meant for public use is the flush method, shown in Listing 5.6. This is the

method we call when we want to alert the original promise that it needs to hurry up

and resolve because another promise is waiting for its value. We achieve notifying the

original promise of the chain by having every promise notify its preceding promise. In the

constructor, we set the attribute fetchValue if the onFlush argument is provided. In

the then method, we set the preceding promise for the new promise to be its originator.

The flush method is pretty simple, it checks if fetchValue is defined, and if it is, the

promise we are checking is a promise at the head of its chain that was initialized with an

onFlush argument. If that is not the case, we call flush on each of its preceding promises.

When we call flush on a promise further down in a promise chain, it will call itself

recursively until it either finds a promise with fetchValue, in which case it will resolve

and start the chain reaction of resolving every promise in the chain, or it finds neither a

fetchValue nor a preceding promise. In this case, we have an original promise that does

not have the flush ability, and the attempt to flush has no effect.

5.5 resolve and reject

In Listing 5.5, we saw a static method FlushablePromise.resolve that we have not

seen before. This is an established method in the Promise API, and its purpose is to

create a resolved promise from a value. In the flushable promise class, we implement it

as close to the promise specification [26, Section 27.2.4.7] as possible. It should take any

value and return a promise that is resolved with that value. If the value is a promise,

42

we simply return it. In the case of the flushable promise class, there is only one extra

consideration to make: if the argument value is a flushable promise, we do not need to

concern ourselves with its preceding promises, as we only return it, and do not make

a new promise. The Promise.reject(value) method is similar, it returns a promise

that has been rejected with value. Conforming to the specification, we create a promise,

reject it with a value, and then return that promise [26, Section 27.2.4.6].

5.6 all, race and any

The methods Promise.all, Promise.race and Promise.any are all static methods be-

longing to the Promise API. They all take a list of promises as a parameter and return

a new promise comprised of the list of promises in some way. The method all returns

a promise that gets resolved only when all of the promises in the list of promises get

resolved. The value the promise gets resolved with is a list of all of the values that each

promise in the promise list got resolved with. The method race returns the promise in

the promise list that gets settled first, and any returns the first fulfilled promise.

All of these methods create a new situation to consider for the preceding promises,

namely several preceding promises for one promise. If we call Promise.all([p1,p2,p3]),

and we then chain the promise result and call flush, we need to flush all three promises,

as we do not know ahead of time what promise will resolve first. One might flush because

of needing the value quicker, but it can also be used to make sure no new user input

is accepted, like in the case where we press Enter on a GUI widget and it subsequently

becomes inactive. In any case, we should flush all the dependent promises, and therefore

we add them all as preceding promises for the promise returned by Promise.all

In the case of race or any, it may defeat the purpose if only one of them was created

with an onFlush argument; if we call Promise.race([p1,p2,p3]), and only p2 has a

defined onFlush, then if we call flush on a promise in a promise chain derived from that

expression, then p2 will resolve first. Hence the programmer should consider whether

using race or any in combination with flushing makes sense. In the case that we called

flush on the result of Promise.all where not every promise has a defined onFlush,

it would end up waiting for the non-flushable promises. Every promise returned by

these functions will have all of the promises passed in the promise list argument as their

preceding promises, and it is then up to each user of the FlushablePromise class to use

them how they see fit.

43

Chapter 6

Evaluation

6.1 Testing the flushable promise

The flushable promise’s purpose is to be able to send a signal upstream in a promise chain

that data is needed immediately. If the original promise of the chain was created with an

onFlush argument, we then want it to resolve with the provided flushing function. The

original intended use case for this flushing functionality is the case where the resolution of

a promise is blocked by a timeout due to event coalescing strategies such as debouncing.

In a chain of flushable promises where the first promise was created with a flush

function, if we flush one of the chained promises , we should then expect that the original

promise gets resolved with the value returned in the flush function. We also expect that

this value is sent further to the rest of the promises in the chain. To test whether our

implementation of the flushable promise works as intended, we can use unit tests to check

what value the promises are resolved with. One framework for unit testing in JavaScript

is Jest [1]. Here we are testing the JavaScript version of the FlushablePromise class, as

Jest requires some extra work to compile TypeScript files.

In the promise chain presented in Listing 6.1, we set the onFlush argument of

promise 1 to return the text “flushing”, and the respective chained promises to con-

catenate the result from the last promise with “p1” and “p2”. We then create a timeout

where we plan to resolve the first promise of the chain in three seconds, but we also create

another timeout to flush the third promise after one second. With this we emulate the

situation where we are in the middle of a timeout, waiting for the promise to get resolved,

and then instead flushing whatever promise we have access to.

44

Listing 6.1: Creating promise chain.

1 let promise_1 = new FlushablePromise (()=>"flushing;");

2 let promise_2 = promise_1.then((x)=> x + " p2;",(e)=>"error

↪→ ");

3 let promise_3 = promise_2.then((x)=> x + " p3;");

4 setTimeout (() => promise_1.resolve("resolving"), 3000);

5 setTimeout (() => promise_3.flush (), 1000);

To test the value of the promises after they are settled, we can use the Jest functions

test, expect and toBe. We need resolves to wait for the promises to resolve, as the

code is asynchronous. If promise 3 was not able to flush the promise chain, the test

would not pass, as the result passed from promise 1 to the rest of the chain would be

“resolving” and not “flushing”. The tests showed in Listing 6.2 all pass.

Listing 6.2: Testing promises with Jest.

1 test(’promise_1 should be flushing;’, () => {

2 expect(promise_1).resolves.toBe("flushing;");

3 });

4 test(’promise_2 should be flushing; chain 1;’, () => {

5 expect(promise_2).resolves.toBe("flushing; p2;");

6 });

7 test(’promise_3 should be flushing; chain 1; chain 2;’, ()

↪→ => {

8 expect(promise_3).resolves.toBe("flushing; p2; p3;");

9 });

Note that the Jest method resolves only works with promises, normally giving an

error message that what resolves is called on must be a promise, but as it probably

uses the promise’s then method, it accepts an instance of the FlushablePromise class

here as well.

6.2 Fixing a travel planner

To evaluate the flushable promise solution in a more real-world example, we revisit the

problem it is trying to solve; a GUI widget field getting input that the user is expecting

it to act on immediately, while the widget itself is programmed to wait before acting on

the information received for optimization purposes.

45

A demonstration of this problem can be found in the search for cities at the travel

planner “momondo” [7]. If we type the letter “A”, and then let the search suggestions

appear, “Amsterdam” is at the top of the list of search suggestions. If we then type “T”

and press enter right away, we would expect the search to update with the cities whose

names start with “At”. Furthermore, it would make sense for the GUI to then select

the top option since we pressed Enter, which would be Atlanta. What happens instead

is that Amsterdam gets chosen as our selected city. We cannot know for sure how this

application has been implemented for it to act this way. However, we know that the

value is not being updated right away, and it somehow stores the “old” value. This is

not expected GUI behavior, and we can hypothesize that there is some waiting period

implemented to alleviate the pressure of many API calls, and that they have not thought

of the instance where a user presses Enter on input that still has not been processed.

To evaluate the flushable promise, we made a mock-up of a travel planner GUI to

replicate the momondo travel planner, using debouncing and JavaScript promises. We

first present how it could be implemented with regular promises: upon a key event from

the input field, we check if there is already an unresolved promise, and if not, we create

one. We subsequently chain the promise to retrieve search suggestions based on the input.

This second promise then returns a list of the countries’ names that match the input. The

resolution of the first promise is debounced to alleviate the pressure on the hypothetical

API call we would have to make to fetch the search suggestions.

When the list of country names that fit with our search is ready, it triggers the

updating of the page with the search suggestions, using a third promise. If the user has

already chosen a suggestion by the time we have the list of compatible countries, which

would happen if they typed and pressed Enter right away, we do not need to update

the page with the search suggestions. Therefore, the second promise is chained with

two separate promises, the other one responsible for “autocompleting” the field with the

chosen value, where this “autocompleting” action only happens if the user clicks on one

of the proposed countries or presses Enter. The travel planner is illustrated in Figure 6.1

We have to make some considerations to handle the problem of delayed values upon

a user’s submit action. We could keep a reference to the first promise, and implement a

function resolving this promise in the case that Enter or “Submit” is pressed. We would

then need a way to get a hold of the correct value to resolve the promise, which would

send the value further to the next promise and retrieve the search suggestions based on

that. This solution is doable, but it has some drawbacks: First, the solution breaks the

modularity of the application; the event handler for the “Submit” button should not have

46

Figure 6.1: A flushable travel planner.

to “know” that the input field is debounced. It makes the code more tangled, and it is

not a good abstraction for the problem. If we were to revisit this code at a later time,

it would perhaps not be clear why we resolve the first promise at the “Submit” button

listener. Furthermore, in GUIs with more complex dataflows, the original promise of the

chain may vary depending on the current flow of data, as discussed in Section 2.3.1.

If we instead use flushable promises in our travel planner, the code remains modular.

When creating the first promise, we pass a function retrieving the value from the input

field as the onFlush argument. If the user presses Enter, we still chain the second promise

with the autocompletion. With the promise returned by that operation, we call flush.

This then bypasses the debouncing wait time and right away triggers the retrieval of the

suggestions. Since the user pressed Enter, we know they want whatever is at the top,

and we can then skip showing the search suggestions and just pick the first of the list.

Using the flushable promise instead of a regular promise, we first and foremost get

the advantage of abstracting the problem at hand. When revisiting the code, using the

flushable promise will be a more explicit way to solve the problem of delayed values than

using regular promises and keeping a global reference to the first promise of the chain.

Another key benefit is better modularity. The “Submit” button does not have to “know”

that the input field is debounced. For the GUIs where it is especially difficult to keep a

47

reference to the original promise, the flushable promise will be very helpful, as we only

need an arbitrary promise in the chain to be able to flush the entire chain.

On the other hand, using the flushable promise is not much less work than using

regular promises, as we still have to provide a function retrieving the value in both

solutions. In the solution using the flushable promise, the first promise still had to be

a shared variable as we had to check if it was defined at every new key event from the

input field. Furthermore, since the FlushablePromise class is just a wrapper class at

this point, it lacks some functionality that regular promises offer. One can for example

not combine flushable promises with async and await for more understandable code, as

async functions in JavaScript are translated into regular promises.

48

Chapter 7

Related Work

The motivation of this thesis, and the work on MDCS-based GUIs, and HotDrink specifi-

cally, is to help programmers construct high-quality user interfaces. One quality criterion

of a GUI is that it behaves in an unsurprising way [32]. If the GUI is displaying some

unexpected behavior, this can worsen the gulf of evaluation [32, 44], which refers to the

amount of processing a user has to perform to determine whether or not their goal in

using the GUI has been achieved. We developed the flushable promise to help program-

mers implement GUIs that do not exhibit defects caused by event coalescing, that is, to

help them implement unsurprising GUIs.

Before implementing the flushable promise, we needed to look at existing implemen-

tations of promises and other asynchronous programming concepts, to get a better under-

standing of what already had been attempted in the field of asynchronous programming.

In this chapter, we present other asynchronous programming concepts and how they are

used in other languages. We also present some topics related to event coalescing strate-

gies. Additionally, it was important to get a better understanding of the existing research

on human-computer interaction, as the basis for needing the flushable promise revolves

around improving user experience and avoiding potential surprises in the behavior of the

GUI, and therefore we detail the findings of studies on response time in human-computer

interaction.

7.1 Coroutines

An umbrella term for asynchronous event handling where one leaves and then revisits

code is coroutines, although it relates more to async/await rather than promises. The

49

idea of coroutines was introduced in the early 1960s and was widely explored in the

following years. They lost popularity over the years, and not many years ago they were

not supported by the most used programming languages [52]. As of late, they have been

having a kind of “renaissance”, gaining interest since the early 2000s [28]. Coroutines

are generally understood as a subcontext that has its own local data that stays the

same between calls, where the execution of the subcontext can be suspended and re-

entered [50, 52]. The generator functions described in Section 2.2.4 are a type of coroutine;

we have a function where there are local variables, and the execution context leaves the

function when it encounters a yield, but it is possible to revisit the function until the

context encounters a return.

How coroutines work differs greatly in different languages. Regarding the way they

transfer control of the execution context, some coroutines are symmetric and others are

asymmetric. The generator in JavaScript is asymmetric, as it has one function to resume

execution, namely next, and one to suspend the execution, namely yield. Symmetric

coroutines often have one function to suspend execution and pass it on, typically to

another coroutine, and are mostly used for concurrency. Generators in JavaScript and

Python are stackless, or nonstackful, which means we can only suspend them from the

same context as they were created. If we make a second function inside a generator

function in JavaScript and in the second function body we try to yield, we get an error.

Stackful coroutines on the other hand allow suspension of the execution from within

nested functions. In some languages, coroutines can only be used in certain limited

contexts and in disguise, e.g., as an iterator that can only be called from within a for

loop [52].

A lot of coroutines are implemented using continuations. A continuation is a repre-

sentation of the whole control state at some point in the program execution. We can

invoke the continuation at a later point, which will resume the execution of the state of

the program as it was when the continuation was created [52, 42]. Continuations are used

in a lot of programming languages, to for example jump out of a deeply nested function in

the case of throwing an error, or in a try-catch-block to be able to return the state of the

program to where it began if the try-block did not work out. Both C# and JavaScript

use a continuation-passing style (CPS) to implement coroutines, which signifies that a

continuation somehow gets passed to the function with its other parameters [28].

The way coroutines can be used for asynchronous event handling is by how they

can simulate multitasking in single-threaded programs. We can do this by having a

possibly blocking operation called inside a coroutine, and suspending the active routine

50

when we encounter an operation that cannot be immediately resolved, as described in

Section 2.2.5. It is hypothesized that the reason coroutines have not been prioritized

earlier and have not been implemented many in general-purpose programming languages

is because, with multi-threaded languages and multi-core machines, we have not needed

them [52]. Multiple threads accessing the same resources present, however, a wide range

of problems on their own, which coroutines could avoid. That could be why as of recently

more and more programming languages are including their own versions of coroutines as

they evolve.

7.1.1 Suspending functions in Kotlin

In 2017, coroutines were introduced in Kotlin [15]. Kotlin’s implementation is somewhat

unique, as it allows a lot of flexibility to the programmer regarding the use of coroutines.

Kotlin can be compiled to JVM, JavaScript, and native binaries, and so the implementa-

tion needs to work the same way in all these platforms. The async/await approach has

been praised for its readability for making asynchronous code look synchronous. Kotlin’s

designers took this kind of readability as a priority for Kotlin’s coroutines. They went

with a suspending function, which is similar to async function, but with the key dif-

ference that there is no need for an await-type keyword, as the functions marked with

the suspend keyword in Kotlin are simply implicitly awaited [28]. This results in the

asynchronous code looking no different than synchronous code.

Although the implementation of coroutines in Kotlin does not need an await, there

are still rules to how one calls these suspending functions. A call to a suspending func-

tion cannot be made from a non-suspending function. If one wants to make an asyn-

chronous call from within a synchronous function, one must use a coroutine builder : a

non-suspending function where one of the parameters is a suspending lambda that is re-

sponsible for calling the coroutine [52]. These coroutine builders are not built-in but are

implemented in the coroutine API, with different builders for different purposes; some

are implemented to specifically block the current thread until the coroutine in question

completes, while others have a specific return value.

Coroutines in Kotlin are made with continuations. When a suspendable function is

invoked, it gets transformed into CPS. It then has an additional parameter representing

the continuation, and its return type gets transformed into an optional any-type. A

suspendable function may either suspend or return. If it is suspended, it returns a

specific value COROUTINE SUSPENDED. The programmer cannot manually return this value,

51

but rather suspends the function using some established function from a Continuation

interface. If a function returns COROUTINE SUSPENDED, its caller will also return this value

and so forth until the execution reaches a coroutine builder.

7.2 Asynchronous programming in other languages

Generators were introduced in JavaScript in ES6 in 2015, along with promises [25]. In

2017, async and await were introduced, but as they are a combination of generators

and promises, implementations were available already in 2015 [29]. Python was early

implementing generators in 2002 [52]. There have been many recent attempts at incor-

porating coroutines in more languages [16]. C++ recognizes all functions that contain

the await keyword as async functions, and therefore does not need an async modifier

itself [28]. Before promises in JavaScript, promise-like concepts had been introduced in

various JavaScript libraries, and JQuery had a popular implementation called deferreds,

another common word used for a placeholder value for an asynchronous operation [17].

Another term commonly used is future, which is used, e.g., in Rust and C++. In Rust,

if one marks a function with the keyword async [8], it will return a future [10]. A future

is a trait, which can be thought of as an interface [47, 10.2]. The keywords await [9]

and async were introduced in 2018: one can await a future, which entails suspending the

function execution until the future is completed. The future has one required method,

poll, which attempts to resolve to future into a final value, and this is what await does.

7.2.1 Futures in Scala

The asynchronous concept of an object assigned to holding a value at some point in time

has varying names in different programming languages. Some consider a future and a

promise as two separate concepts, while others use the terms interchangeably. A future

will oftentimes be seen as a placeholder for a computation that eventually will become

available, while promises are a form of futures where the programmer can provide the

result. Many programming languages will choose one or the other, but in Scala, both

futures and promises are implemented: In the Scala documentation, futures are said to

be a placeholder for an eventual computation result [39].

When one defines a future, one can state what computation it should perform, and

when that computation completes. The state of a future is either completed or not

52

completed. Callbacks can be used to handle a future’s result asynchronously, that is,

eventually after the future is complete. Scala is a multithreaded language, so the callback

can be called on another thread than the one the future was created on. There are a

few different callbacks one can use, onComplete is similar to then in JavaScript in the

way that it takes a Success and Failure case for handling both possible ways a future

can be settled. The forEach callback only handles the Success case. These callbacks’

results cannot be chained, as they do not return a future, but Scala provides combinators,

like map that takes a future and a mapping function for the eventual value, and returns

a new future [39].

There is no resolve method for futures, they are described as read-only. However,

promises in Scala have a future attribute, and this future can be resolved using the

success method on the promise. One can extract the future simply by calling p.future,

where p is an instance of a promise. Promises in Scala have single assignment semantics

and they only be completed once. This is different from JavaScript, where if you call

resolve on an already-resolved promise nothing happens; in Scala an exception will be

thrown in such a case [39].

7.2.2 The introduction of promises

In 1988, the paper ”Promises: Linguistic Support for Efficient Asynchronous Procedure

Calls in Distributed Systems” [48] defined a ”new data type” they referred to as a promise.

The authors Barbara Liskov and Liuba Shrira are credited to having introduced promises

with this paper [52]. What motivated the development of promises was the need for

a placeholder for the result of what they called a call-stream, a language-independent

communication mechanism. They compared them to remote-procedure calls (RPCs),

but whereas in RPCs a sender had to wait to receive the reply to a call before making

another call, in call-streams the sender could make more calls before receiving a reply. In

addition to this, an RPC would send a call immediately, whereas a call-stream could be

sent when convenient. Promises were to be created when a call was performed, initially

in a blocked state, and when the call returns, it switches to a ready state. When a

promise is ready, it also has a value indicating whether the execution succeeded or not,

and the corresponding result [48].

In Liskov’s and Shrira’s paper, the promise concept was attributed as an extension

of the “futures” of MultiLisp [48, 40]. In MultiLisp, the future construct represented

a value that was “initially undetermined” [40]: (future x) would return a future and

53

begin evaluating x, and when x was finally determined, the future would be replaced

by the value x was evaluated to. An operation needing the value would be suspended

until the future became determined [40]. What separated promises from these futures

was the error handling and pipelining of multiple promises, where a key part of the idea

of promises was that the result of one call-stream could be used further in another call-

stream, creating a pipeline of promises. The promise’s value could also never be changed

once their state switched to ready.

7.3 Promises/A+ specification

The Promises/A+ specification is an open standard for JavaScript promises [19]. Many

have tried implementing their own versions of promises, and a consistent issue was that

chaining different types of promises did not work. To rectify this issue, the Promises/A+

specification was created [24]. The specification therefore focuses on the behavior of

the then method of promises, stating rules about the different types of arguments it

should accept, what it should return, and many more details. Based on the Promises/A+

specification, a test suite has been created to check whether one’s promise implementation

complies with the specification [23].

7.4 Promise.withResolvers

Section 5.1 describes the implementation of the constructor of the flushable promise.

As mentioned, we had to “extract” the methods resolve and reject, as it is useful

to be able to resolve a promise with a new value at any time, and not have this as-

pect pre-decided upon the promise’s creation. This way of saving resolve and reject

to global variables is pretty common, and for this reason, a new convenience method

Promise.withResolvers [22] was introduced to the ECMAScript Language Specifica-

tion 2024 [27]. The Promise.withResolvers makes it much simpler to create a promise

and save its resolve and reject functions for further use; see the code in Listing 7.1

and compare it to Listing 5.2. Both methods work well in the constructor of the

FlushablePromise class, although the Promise.withResolvers method requires one

additional line to assign all three variables to this.

Listing 7.1: Promise.withResolvers().

1 let { promise , resolve , reject } = Promise.withResolvers ();

54

7.5 Optimizations for events in GUIs

In this thesis, when describing event coalescing strategies, debouncing and throttling

have been at the center of the discussion. These are widely known and often employed to

mitigate a surplus of function calls to the same function. The term debouncing is derived

from keyboard debouncing. When we press a key on a keyboard once, two key presses

might be recorded within a timeframe of one or two milliseconds. It is not possible for

a human to press a key so rapidly, and so we attribute such repeated events, known as

keybounces, to the physical or electrical properties of the keyboard. If a keybounce is

recorded, we debounce the events and turn them into one keypress instead, and that is

where the term debouncing stems from [41].

In database visualization GUIs, event coalescing strategies are also employed to make

sure the workload does not get too big and the loading of visualizations does not lag [14].

They employ debouncing to ignore new interactions until the database management sys-

tem finishes processing the queries it is currently loading, and they use throttling because

the screen itself cannot refresh at a higher rate than 60-100Hz, therefore they limit the

number of events handled by the application to not proceed this rate [14]. Another event

coalescing strategy employed in database visualization tools is early termination, aborting

ongoing computations if they are superseded by new interaction events [14].

ReactiveX is “An API for asynchronous programming with observable streams” [2]

implemented across several languages, including Java, Swift, .NET and JavaScript. The

implementations of this API employ the “Observer” pattern, the “Iterator” pattern,

and functional programming to improve event handling programming [2]. The Observer

pattern is a software design pattern for describing event-based control flow. This pattern

defines interactions between observers and subjects, where the subjects alert the registered

observers of changes [53]. The Iterator pattern is the idea of implementing an iterator for

a datatype, for users of the datatype to able to traverse the elements as they please [34].

ReactiveX uses these patterns together with functional programming to treat streams

of asynchronous events like one would treat an array, for example [3]. To treat many

incoming calls to the same function, RxJS [11], the JavaScript implementation of Reac-

tiveX, has numerous event filtering operators [5]. These include debounce and throttle,

sample which emits an event in a set time interval, distinct that checks if an event is

distinct as opposed to the previously emitted event before emitting it, and many other

functions.

55

7.6 Human-computer interaction

In this thesis, we discuss fixing problems that result in a bad user experience, with a focus

on event handling and an assumed negative effect on users when the response time to an

event is too slow. In this section, we review some research on the topic of human-computer

interaction and especially response times.

7.6.1 Documented effect of delay in human-computer interac-

tion

Research on human-computer interaction indicates that delays can disrupt workflow,

leading to stress, resentment, and even reduced performance in users [38, 58, 13]. When

investigating delays in human-computer interaction research, we often study the system-

response times (SRTs), which is the time measured from the user’s input until the com-

puter is done processing this input and able to process new input [58, 57]. A wide

range of studies from the 80s and 90s have found that increased wait times can lead to

frustration, perceived anxiety, and impatience [58]. These studies operated with much

longer delays than we are used to in the present day, as SRTs could last up to 32 sec-

onds [59, 18, 56], while now delays generally last between a couple of hundred milliseconds

to 2.5 seconds [58].

The paper “Behavioral and emotional consequences of brief delays in human-computer

interaction” [58] describes a study investigating the effect of delays in modern human-

computer interactions. Participants of the study performed tasks in a computer game,

under normal conditions and conditions where the game would freeze for a duration

between 500 and 2800 milliseconds. Reaction times and error rates were measured to

examine the behavioral performance effect of delays, and the emotional effect was docu-

mented by a questionnaire presented to the participants [58].

The researchers found that the delays significantly affected behavioral performance.

The tasks performed directly after a delay showed a considerable decrease in performance,

but returned to normal in the following tasks. This showed that the effect of the delay

on the subsequent tasks was short-lived. The participants’ general game performance

was also negatively affected. As for the emotional effect of the delays, the participants

liked the games with delays a lot less. The study concluded that even brief delays can

have considerable negative effects on behavioral performance and the emotional state of

a user [58].

56

7.6.2 Response times

For long it was an “established fact” that response times above 100 milliseconds were too

long, but there was little research to back this up [21]. In the paper “Is 100 Milliseconds

Too Fast?” [21], the authors researched whether it was true that users would notice

a delay if it was over 100 milliseconds. They did this by having participants perform

simple interactions with GUI elements such as typing, a menu bar and buttons, and

they included delays deliberately, increasing them by five milliseconds every time the

participant answered that they did not notice a delay. They found that while it varied

for the different GUI tasks, the threshold for noticing delays ranged from 150 to 195

milliseconds.

57

Chapter 8

Discussion and Future Work

In this thesis, we have outlined a new type of JavaScript promise with the ability to ask

upstream promises to resolve immediately. We have shown multiple examples where it

improves the user experience and allows for a safe and modular implementation of event-

handling delay strategies such as debouncing. We have also extended the λp calculus [49]

with the flushing ability to precisely specify the semantics of this feature, to get a better

understanding of how it would work if it were a functionality of a real promise, and also

to be able to reason about how the flushing ability affects the properties of promises.

In Section 6.2, we saw a real-world example of flushable promises improving both the

functionality and the modularity of an application; while it could be implemented without

flushable promises, we would argue that flushable promises improve the readability of the

code, the modularity of the different components, and lessen the possibility of errors in

the application.

While the FlushablePromise class works for the intended purpose of alerting an

earlier promise to resolve with a given value, there is still room for further improvement

and work. Listed below are some possible improvements and research for future work on

the flushable promise idea.

Flushable promises in HotDrink The next step in the development of flushable

promises is to implement them in HotDrink, as flushable promises would be especially

useful in HotDrink, and one of the key motivations for developing flushable promises

was to fix the issue of waiting for a promise “upstream” to resolve, without knowing

which promise to resolve. HotDrink uses promises for “variable activations”, which are

58

representations of variables’ values after each user interaction. There was unfortunately

not enough time to implement flushable promises in HotDrink, as HotDrink has a large

code base and uses promises in a complicated manner. Furthermore, HotDrink uses async

and await to chain operations, which only work with regular promises.

async/await In Section 6.2, the downside to the FlushablePromise class that it is not

being compatible with async and await was mentioned. A further goal is to implement

async and await that work for objects of the FlushablePromise class. As discussed in

Section 2.2.5, await is very similar to yield, thus a generator would be a good place

to start for the implementation of await for flushable promises. Babel, a well-known

transpiler for introducing new syntax in JavaScript, may also be employed to transpile

statements with async and await into flushable promise method calls.

Promises/A+ specification The Promise/A+ specification is a specification of the

then method of promises [19], with the aspiration of providing a framework that one’s

own implementation of promises should adhere to if we would want to chain separate

types of promises, as discussed in Section 7.3. The FlushablePromise class is not an

implementation of a new promise, but rather a wrapper class, as the promise functionality

itself works fine for its purpose. However, the rules discussed in Section 4 are made with

the idea that it is a regular promise with the added functionality of flushing, and it

would be interesting to attempt to implement a flushable promise from scratch, using the

Promises/A+ specification and the λfp calculus as a basis.

Expansion of λfp As mentioned in Section 4.3, we could neither define the rule for the

static promise method Promise.all, nor show an implementation of it with our existing

rules. It would be interesting to look at this some more, as well as other promise methods

such as Promise.race and Promise.any. Especially in the attempt to implement flush-

able promises as its own type of promise and not a promise wrapper class like discussed

above, it would be useful to formalize all aspects of the functionality, and derive the

implementation from the formalization.

Usability study In this thesis we have made some claims of why flushable promises

would work better in certain situations than regular promises, including concerning the

understandability of the implementation. We have not conducted any user tests to check

whether this is true, and it would be useful to be able to see how understandable the

59

concept of flushable promises are for developers, and if their use is perceived as intuitive

or not.

A potential ECMAScript proposal Although in this thesis we have mostly discussed

flushable promises’ usefulness in libraries such as HotDrink, which have complicated

networks of dependent promises, it is not unthinkable that there are other use areas

where their functionality is useful as well. To this end, we think this thesis might lay

the groundwork and may be a contender for an addition to the ECMA-262 language

standard [27].

60

Bibliography

[1] Jest 29.7. https://jestjs.io. [Online; accessed May 2024].

[2] ReactiveX. http://reactivex.io/, . [Online; accessed May 2024].

[3] ReactiveX. https://reactivex.io/intro.html, . [Online; accessed May 2024].

[4] Difference between async/await and ES6 yield with generators. https:

//stackoverflow.com/questions/36196608/difference-between-async-

await-and-es6-yield-with-generators, 2019. [Online; accessed May 2024].

[5] Filtering. https://www.learnrxjs.io/learn-rxjs/operators/filtering, 2020.

[Online; accessed May 2024].

[6] Boligl̊anskalkulator. https://www.dnb.no/lan/kalkulator/boliglan, 2024. [On-

line; accessed april 2024].

[7] Billige flybilletter - Søk og sammenlign flyreiser online | momondo, May 2024.

URL: https://www.momondo.no. [Online; accessed May 2024].

[8] async - Rust, May 2024.

URL: https://doc.rust-lang.org/std/keyword.async.html. [Online; accessed May 2024].

[9] await - Rust, May 2024.

URL: https://doc.rust-lang.org/std/keyword.await.html. [Online; accessed May 2024].

[10] Future in std::future - Rust, May 2024.

URL: https://doc.rust-lang.org/std/future/trait.Future.html. [Online; accessed May

2024].

[11] RxJS. https://github.com/ReactiveX/rxjs, 2024. [Online; accessed May 2024].

[12] Saba Alimadadi, Di Zhong, Magnus Madsen, and Frank Tip. Finding broken

promises in asynchronous JavaScript programs. Proc. ACM Program. Lang., 2

61

https://jestjs.io
http://reactivex.io/
https://reactivex.io/intro.html
https://stackoverflow.com/questions/36196608/difference-between-async-await-and-es6-yield-with-generators
https://stackoverflow.com/questions/36196608/difference-between-async-await-and-es6-yield-with-generators
https://stackoverflow.com/questions/36196608/difference-between-async-await-and-es6-yield-with-generators
https://www.learnrxjs.io/learn-rxjs/operators/filtering
https://www.dnb.no/lan/kalkulator/boliglan
https://www.momondo.no
https://doc.rust-lang.org/std/keyword.async.html
https://doc.rust-lang.org/std/keyword.await.html
https://doc.rust-lang.org/std/future/trait.Future.html
https://github.com/ReactiveX/rxjs

(OOPSLA), oct 2018. doi: 10.1145/3276532.

URL: https://doi.org/10.1145/3276532.

[13] Raymond E. Barber and Henry C. Lucas. System response time operator productiv-

ity, and job satisfaction. Commun. ACM, 26(11):972–986, nov 1983. ISSN 0001-0782.

doi: 10.1145/182.358464.

URL: https://doi.org/10.1145/182.358464.

[14] Leilani Battle, Philipp Eichmann, Marco Angelini, Tiziana Catarci, Giuseppe San-

tucci, Yukun Zheng, Carsten Binnig, Jean-Daniel Fekete, and Dominik Moritz.

Database Benchmarking for Supporting Real-Time Interactive Querying of Large

Data. pages 1571–1587, 06 2020. doi: 10.1145/3318464.3389732.

[15] Roman Belov. Kotlin 1.1 Released With JavaScript Support, Coroutines, and More

| The Kotlin Blog, May 2017.

URL: https://blog.jetbrains.com/kotlin/2017/03/kotlin-1-1. [Online; accessed May

2024].

[16] Bruce Belson, Jason Holdsworth, Wei Xiang, and Bronson Philippa. A Survey of

Asynchronous Programming Using Coroutines in the Internet of Things and Embed-

ded Systems. ACM Trans. Embed. Comput. Syst., 18(3), jun 2019. ISSN 1539-9087.

doi: 10.1145/3319618.

URL: https://doi.org/10.1145/3319618.

[17] Trevor Burnham. Async JavaScript: Build More Responsive Apps with Less Code.

Pragmatic Bookshelf, 2012. ISBN 9781937785277.

[18] T. W. Butler. Computer response time and user performance during data entry.

AT&T Bell Laboratories Technical Journal, 63(6):1007–1018, 1984. doi: 10.1002/

j.1538-7305.1984.tb00110.x.

[19] Brian Cavalier and Domenic Denicola. Promises/A+ Promise Specification. https:

//promisesaplus.com, 2014. [Online; accessed May 2024].

[20] B. Cherny. Programming TypeScript: Making Your JavaScript Applications Scale.

O’Reilly Media, 2019. ISBN 9781492037620.

URL: https://books.google.no/books?id=Y-mUDwAAQBAJ.

[21] James R. Dabrowski and Ethan V. Munson. Is 100 Milliseconds Too Fast? In CHI

’01 Extended Abstracts on Human Factors in Computing Systems, CHI EA ’01, page

317–318, New York, NY, USA, 2001. Association for Computing Machinery. ISBN

62

https://doi.org/10.1145/3276532
https://doi.org/10.1145/182.358464
https://blog.jetbrains.com/kotlin/2017/03/kotlin-1-1
https://doi.org/10.1145/3319618
https://promisesaplus.com
https://promisesaplus.com
https://books.google.no/books?id=Y-mUDwAAQBAJ

1581133405. doi: 10.1145/634067.634255.

URL: https://doi.org/10.1145/634067.634255.

[22] Chris de Almeida. proposal-promise-with-resolvers. https://github.com/tc39/

proposal-promise-with-resolvers, 2024. [Online; accessed May 2024].

[23] Domenic Denicola. Promises/A+ Compliance Test Suite. https://github.com/

promises-aplus/promises-tests, 2017. [Online; accessed May 2024].

[24] Romario Diaz. Promises/A+ and thenables. https://medium.com/

@RomarioDiaz25/promises-a-and-thenables-664073939cf3, 2023. [Online;

accessed May 2024].

[25] Ecma. ECMAScript® 2015 Language Specification. = https://262.ecma-

international.org/6.0/,, June 2015.

[26] Ecma. ECMAScript 2023 Language Specification, 2023.

URL: https://tc39.es/ecma262/2023/. [Online; accessed May 2024].

[27] Ecma. ECMAScript 2025 Language Specification . =

https://tc39.es/ecma262/multipage/, 2024. [Online; accessed May 2024].

[28] Roman Elizarov, Mikhail Belyaev, Marat Akhin, and Ilmir Usmanov. Kotlin corou-

tines: design and implementation. Onward! 2021, page 68–84, New York, NY,

USA, 2021. Association for Computing Machinery. ISBN 9781450391108. doi:

10.1145/3486607.3486751.

URL: https://doi.org/10.1145/3486607.3486751.

[29] Ian Elliot. JavaScript ASYNC. I/O Press, November 2017.

[30] Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Semantics engineering

with PLT Redex. Mit Press, 2009.

[31] Gabriel Foust, Jaakko Järvi, and Sean Parent. Generating reactive programs for

graphical user interfaces from multi-way dataflow constraint systems. SIGPLAN

Not., 51(3):121–130, oct 2015. ISSN 0362-1340. doi: 10.1145/2936314.2814207.

URL: https://doi.org/10.1145/2936314.2814207.

[32] John Freeman, Jaakko Järvi, Wonseok Kim, Mat Marcus, and Sean Parent. Helping

programmers help users. SIGPLAN Not., 47(3):177–184, oct 2011. ISSN 0362-1340.

doi: 10.1145/2189751.2047892.

URL: https://doi.org/10.1145/2189751.2047892.

63

https://doi.org/10.1145/634067.634255
https://github.com/tc39/proposal-promise-with-resolvers
https://github.com/tc39/proposal-promise-with-resolvers
https://github.com/promises-aplus/promises-tests
https://github.com/promises-aplus/promises-tests
https://medium.com/@RomarioDiaz25/promises-a-and-thenables-664073939cf3
https://medium.com/@RomarioDiaz25/promises-a-and-thenables-664073939cf3
=
https://tc39.es/ecma262/2023/
=
https://doi.org/10.1145/3486607.3486751
https://doi.org/10.1145/2936314.2814207
https://doi.org/10.1145/2189751.2047892

[33] John Freeman, Jaakko Järvi, and Gabriel Foust. Hotdrink: a library for web user

interfaces. SIGPLAN Not., 48(3):80–83, sep 2012. ISSN 0362-1340. doi: 10.1145/

2480361.2371413.

URL: https://doi.org/10.1145/2480361.2371413.

[34] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design

Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Profes-

sional, 1 edition, 1994. ISBN 0201633612.

URL: http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/

0201633612/ref=ntt at ep dpi 1.

[35] Raju Gandhi. JavaScript next: Your complete guide to the new features introduced

in JavaScript, starting from ES6 to ES9. APRESS, New York, NY, October 2019.

ISBN 978-1-4842-5394-6. doi: 10.1007/978-1-4842-5394-6 14.

URL: https://doi.org/10.1007/978-1-4842-5394-6 14.

[36] Jack Ganssle. A Guide to Debouncing. Sept 2004.

[37] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. The Essence of

JavaScript, page 126–150. Springer Berlin Heidelberg, 2010. ISBN 9783642141072.

doi: 10.1007/978-3-642-14107-2 7.

URL: http://dx.doi.org/10.1007/978-3-642-14107-2 7.

[38] Jan L. Guynes. Impact of system response time on state anxiety. Commun. ACM,

31(3):342–347, mar 1988. ISSN 0001-0782. doi: 10.1145/42392.42402.

URL: https://doi.org/10.1145/42392.42402.

[39] Philipp Haller, Aleksandar Prokopec, Heather Miller, Viktor Klang, Roland Kuhn,

and Vojin Jovanoic. Futures and Promises, May 2024.

URL: https://docs.scala-lang.org/overviews/core/futures.html. [Online; accessed

May 2024].

[40] Robert H. Halstead. MULTILISP: a language for concurrent symbolic computation.

ACM Trans. Program. Lang. Syst., 7:501–538, 1985.

URL: https://api.semanticscholar.org/CorpusID:1285424.

[41] S. Hansen and T. V. Fossum. Event Based Programming. May 2010.

[42] Christopher T. Haynes, Daniel P. Friedman, and Mitchell Wand. Obtaining corou-

tines with continuations. Computer Languages, 11(3):143–153, 1986. ISSN 0096-

0551. doi: https://doi.org/10.1016/0096-0551(86)90007-X.

URL: https://www.sciencedirect.com/science/article/pii/009605518690007X.

64

https://doi.org/10.1145/2480361.2371413
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1
https://doi.org/10.1007/978-1-4842-5394-6_14
http://dx.doi.org/10.1007/978-3-642-14107-2_7
https://doi.org/10.1145/42392.42402
https://docs.scala-lang.org/overviews/core/futures.html
https://api.semanticscholar.org/CorpusID:1285424
https://www.sciencedirect.com/science/article/pii/009605518690007X

[43] Muzzamil Hussain. Mastering JavaScript Promises. Packt Publishing, 2015. ISBN

978-1-78398-550-0.

[44] Edwin L Hutchins, James D Hollan, and Donald A Norman. Direct manipulation

interfaces. Human–Computer Interaction, 1(4):311–338, 1985.

URL: https://worrydream.com/refs/Hutchins 1985 - Direct Manipulation Interfaces.pdf.

[45] Jaakko Järvi, Mat Marcus, Sean Parent, John Freeman, and Jacob N. Smith. Prop-

erty models: from incidental algorithms to reusable components. In Proceedings

of the 7th International Conference on Generative Programming and Component

Engineering, GPCE ’08, page 89–98, New York, NY, USA, 2008. Association for

Computing Machinery. ISBN 9781605582672. doi: 10.1145/1449913.1449927.

URL: https://doi.org/10.1145/1449913.1449927.

[46] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. Advances in dataflow

programming languages. ACM Comput. Surv., 36(1):1–34, mar 2004. ISSN 0360-

0300. doi: 10.1145/1013208.1013209.

URL: https://doi.org/10.1145/1013208.1013209.

[47] Steve Klabnik and Carol Nichols. The Rust Programming Language. February 2024.

URL: https://doc.rust-lang.org/book/ch10-02-traits.html. [Online; accessed May

2024].

[48] B. Liskov and L. Shrira. Promises: linguistic support for efficient asynchronous

procedure calls in distributed systems. SIGPLAN Not., 23(7):260–267, jun 1988.

ISSN 0362-1340. doi: 10.1145/960116.54016.

URL: https://doi.org/10.1145/960116.54016.

[49] Magnus Madsen, Ondřej Lhoták, and Frank Tip. A Model for Reasoning about

JavaScript Promises. 1(OOPSLA), Oct 2017. doi: 10.1145/3133910.

URL: https://doi.org/10.1145/3133910.

[50] Christopher D Marlin. Coroutines: a programming methodology, a language design

and an implementation. Number 95. Springer Science & Business Media, 1980.

[51] MDN Web Docs. Promise.prototype.finally() - JavaScript — MDN.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/

Global Objects/Promise/finally, 2024. [Online; accessed May 2024].

[52] Ana Lúcia De Moura and Roberto Ierusalimschy. Revisiting coroutines. ACM

Trans. Program. Lang. Syst., 31(2), feb 2009. ISSN 0164-0925. doi: 10.1145/

65

https://worrydream.com/refs/Hutchins_1985_-_Direct_Manipulation_Interfaces.pdf
https://doi.org/10.1145/1449913.1449927
https://doi.org/10.1145/1013208.1013209
https://doc.rust-lang.org/book/ch10-02-traits.html
https://doi.org/10.1145/960116.54016
https://doi.org/10.1145/3133910
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/finally
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/finally

1462166.1462167.

URL: https://doi.org/10.1145/1462166.1462167.

[53] Gleb Naumovich. Using the observer design pattern for implementation of data flow

analyses. SIGSOFT Softw. Eng. Notes, 28(1):61–68, nov 2002. ISSN 0163-5948. doi:

10.1145/634636.586107.

URL: https://doi.org/10.1145/634636.586107.

[54] Daniel Parker. JavaScript with Promises. O’Reilly Media, Sebastopol, CA, October

2014.

[55] John Resig, Bear Bibeault, and Josip Maras. Secrets of the JavaScript Ninja. Man-

ning Publications Co., USA, 2nd edition, 2016. ISBN 1617292850.

[56] Florian Schaefer. The Effect of System Response Times on Temporal Predictability

of Work Flow in Human-Computer Interaction. Human Performance, 3(3):173–186,

1990. doi: 10.1207/s15327043hup0303\ 3.

URL: https://doi.org/10.1207/s15327043hup0303 3.

[57] Ben Shneiderman. Response time and display rate in human performance with

computers. ACM Comput. Surv., 16(3):265–285, sep 1984. ISSN 0360-0300. doi:

10.1145/2514.2517.

URL: https://doi.org/10.1145/2514.2517.

[58] André J. Szameitat, Jan Rummel, Diana P. Szameitat, and Annette Sterr. Be-

havioral and emotional consequences of brief delays in human–computer interaction.

International Journal of Human-Computer Studies, 67(7):561–570, 2009. ISSN 1071-

5819. doi: https://doi.org/10.1016/j.ijhcs.2009.02.004.

URL: https://www.sciencedirect.com/science/article/pii/S1071581909000329.

[59] Stuart Martin Weiss, George Boggs, Mark Lehto, Sogand Shodja, and David J.

Martin. Computer System Response Time and Psychophysiological Stress II. Pro-

ceedings of the Human Factors Society Annual Meeting, 26(8):698–702, 1982. doi:

10.1177/154193128202600805.

URL: https://doi.org/10.1177/154193128202600805.

[60] WHATWG. HTML Living Standard. https://html.spec.whatwg.org/, 2024.

[61] WHATWG. Fetch Living Standard. https://fetch.spec.whatwg.org, 2024.

66

https://doi.org/10.1145/1462166.1462167
https://doi.org/10.1145/634636.586107
https://doi.org/10.1207/s15327043hup0303_3
https://doi.org/10.1145/2514.2517
https://www.sciencedirect.com/science/article/pii/S1071581909000329
https://doi.org/10.1177/154193128202600805
https://html.spec.whatwg.org/
https://fetch.spec.whatwg.org

Appendix A

Remaining Promise λ Rules

Below are the remaining rules of the λfp calculus not presented in Chapter 4. The

rules [E-OnReject-Rejected], [E-Reject-Pending], [E-Reject-Settled], and

[E-Link-Rejected] are not presented, as they are conceptually similar to other rules.

E-Context

e ↪→ e′

⟨σ, ψ, f, r, π, φ, δ, E[e]⟩ → ⟨σ′, ψ′, f ′, r′, π′, φ′, δ′, E[e′]⟩

E-OnResolve-Fulfilled

a ∈ Addr a ∈ dom(σ) ψ(a) = F(v) a′ ∈ Addr

a′ /∈ dom(σ) ψ′ = ψ[a′ 7→ F(v)] σ′ = σ[a′ 7→ {}]

f ′ = f [a′ 7→ Nil] r′ = r[a′ 7→ Nil] π′ = π ::: (F(v), λ, a′)

⟨σ, ψ, f, r, π, φ, δ, E[a.onResolve(λ)]⟩ → ⟨σ′, ψ′, f ′, r′, π′, φ, δ, E[a′]⟩

E-Resolve-Settled

a ∈ Addr a ∈ dom(σ) ψ(a) ∈ {F(v′),R(v′)}

⟨σ, ψ, f, r, π, φ, δ, E[a.resolve(v)]⟩ → ⟨σ, ψ, f, r, π, φ, δ, , E[undef]⟩

E-Resolve-Pending

a ∈ Addr a ∈ dom(σ) ψ(a) = P

f(a) = (λ1, a1) · · · (λn, an) π′ = π ::: (F(v), λ1, a1) · · · (F(v), λn, an)
ψ′ = ψ[a 7→ F(v)] f ′ = f [a′ 7→ Nil] r′ = r[a′ 7→ Nil]

⟨σ, ψ, f, r, π, φ, δ, E[a.resolve(v)]⟩ → ⟨σ, ψ′, f ′, r′, π′, φ, δ, , E[undef]⟩

67

E-Link-Fulfilled

a1 ∈ Addr a1 ∈ dom(σ)

a2 ∈ Addr a2 ∈ dom(σ) ψ(a1) = F(v) π′ = π ::: (F(v), default, a2)

⟨σ, ψ, f, r, π, φ, δ, E[a1.link(a2)]⟩ → ⟨σ, ψ, f, r, π′, φ, δ, E[undef]⟩

E-Loop-Fulfilled-Lambda

π = (F(v′), λr, a) :: π
′

⟨σ, ψ, f, r, π, φ, δ⟩ → ⟨σ, ψ, f, r, π′, φ, δ, a.resolve(λr(v
′))⟩

E-Loop-Rejected-Lambda

π = (R(v′), λr, a) :: π
′

⟨σ, ψ, f, r, π, φ, δ⟩ → ⟨σ, ψ, f, r, π′, φ, δ, a.resolve(λr(v
′))⟩

E-Loop-Fulfilled-Default

π = (F(v′), default, a) :: π′

⟨σ, ψ, f, r, π, φ, δ⟩ → ⟨σ, ψ, f, r, π′, φ, δ, a.resolve(v′)⟩

E-Loop-Rejected-Default

π = (R(v′), default, a) :: π′

⟨σ, ψ, f, r, π, φ, δ⟩ → ⟨σ, ψ, f, r, π′, φ, δ, a.resolve(v′)⟩

68

	Introduction
	Background
	Event coalescing strategies
	Debouncing
	Throttling
	Implementing debouncing and throttling in JavaScript

	Asynchronous programming in JavaScript
	The JavaScript event loop
	Callbacks
	Promises
	Generator functions
	Programming with async and await
	Promises and event coalescing strategies

	Multi-way dataflow constraint systems
	Event coalescing in HotDrink

	Flushable Promises
	A simple circle area picker
	Flushable promises
	Using flushable promises

	Extending p calculus with flushing capabilities
	Expressions and state in fp
	Rules in fp
	The semantics of Promise.all in fp

	Implementation
	The FlushablePromise constructor
	then(onFulfilled, onRejected)
	Type parameters
	Achieving the flushing functionality
	Chaining the promise
	Linking two promises

	catch(onRejected) and finally(onFinally)
	flush()
	resolve and reject
	all, race and any

	Evaluation
	Testing the flushable promise
	Fixing a travel planner

	Related Work
	Coroutines
	Suspending functions in Kotlin

	Asynchronous programming in other languages
	Futures in Scala
	The introduction of promises

	Promises/A+ specification
	Promise.withResolvers
	Optimizations for events in GUIs
	Human-computer interaction
	Documented effect of delay in human-computer interaction
	Response times

	Discussion and Future Work
	Bibliography
	Remaining Promise Rules

