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Abstract

With the recent increase in energy production generated by offshore wind

farms, regular maintenance is important for wind farm owners to ensure

that they remain operational. Currently, maintenance tasks are performed

by service vessels driven by fossil fuels and the work they perform may

take several days to complete. To minimise the environmental impact of

ship operations, emission-free vessel operations are possible by connecting

vessels to the power grid. To achieve this, it is important to strategically

determine the locations for charging infrastructure. This thesis presents a

location routing problem with a multi-period planning horizon to consider

the routes of electric vessels while determining the locations of potential

charging stations to offer strategic insights to wind farm owners. As

a solution method, a matheuristic algorithm is proposed. The routing

of vessels is determined with an adaptive large neighbourhood search

(ALNS) metaheuristic which is passed to an integer program (IP) to find

the optimal placement of charging stations based on the vessel routing

variables. The algorithm is tested on newly generated instances and

performs well for both small and large instance sizes. Furthermore, the

matheuristic is compared to an exact approach to validate its performance.

These findings indicate that the proposed approach is effective and offers

wind farms owners a tool to strategically site the infrastructure of charging

units.
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Chapter 1

Introduction

With the impending climate crisis, the European Green Deal (European

Commission, 2019) aims for a total reduction in greenhouse gas emissions

and a carbon-neutral society by 2050. In alignment with these objectives,

renewable energy sources are contributing increasingly to the energy

mix each year. The offshore wind industry, in particular, has experienced

significant growth with a global installed capacity of 64.3 GW (Hutchinson

& Zhao, 2023). Furthermore, the International Energy Agency (IEA)

projects that, to achieve carbon neutrality by 2050, the global installed

capacity of offshore wind must reach 80 GW by 2030, with an annual

installation rate of 70 GW from 2031 to 2050 (International Energy

Agency, 2021).

One well-established challenge in the development of offshore wind

power is the substantial investment cost. However, the global levelised

cost of energy (LCOE) for offshore wind experienced a 44 % reduction in

the period from 2009 to 2019, making it able to compete with existing

fossil fuel energy technologies (European Commission, 2020). The harsh

weather and environmental conditions to which offshore wind installations

are exposed to necessitate regular maintenance of systems, turbines, and

components to ensure optimal energy production and smooth operation.

Currently, maintenance is carried out using service vessels and helicopters

powered by diesel, resulting in emissions from green house gases (GHGs)

due to diesel combustion (Ren et al., 2021). Transitioning to electric service

vessels could substantially reduce maintenance-related emissions, thereby

greening the value chain of offshore wind farms. This decarbonisation

effort also aligns with the climate goals established by the European Green

Deal and the United Nations sustainability goals 7, 13 and 14 (United

Nations Department of Economic and Social Affairs, 2023).

Electric service vessels represent a sustainable strategy for decarbon-
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ising the offshore wind industry. This initiative is an important part of

the Ocean Charger project, led by VARD (VARD, 2023) in which the

University of Bergen is a partner. The Ocean Charger initiative aims to

develop, test, validate, and commercialise new technological solutions for

energy transfer to battery-powered ships offshore over a three-year period

(VARD, 2023). Batteries seem the most promising technology for zero or

low-emission vessels, forming the foundation of the Ocean Charger project.

The project seeks to ensure emission-free vessel operations without the

need for additional energy sources through connecting vessels to the power

grid in wind farms.

One of the University of Bergen’s contributions to the Ocean Charger

project is aimed at the planning phase of offshore wind farms, focusing on

the optimisation of infrastructure used by vessels such as the placement

of charging units.

On-site charging stations are essential for electric vessels since the

journey between the port and the wind farm consumes most of the

battery’s charge. The restricted range of electric service vessels, determined

by the battery capacity, underlines the need for a charging infrastructure

 Lebkowski (2020). This issue is amplified offshore, where access and

energy sources are limited. Therefore, planning efficient routes for service

vessels and determining ideal locations for charging stations are important

for reducing overall costs and extending the operational range of the

vessels. To the author’s knowledge, no such planning problem have been

researched in the literature. Consequently, this thesis seeks to address

the following research question: How can ideal locations for charging

stations be determined, and efficient routes for service vessels be planned

to minimise total costs?
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Literature Review

In the location routing problem (LRP), the concepts of determining

locations for arbitrary types of facilities (depots, hubs, factories, etc.) and

the routing of vehicles servicing a set of customers are combined. The LRP

consists of two heavily researched problems: the facility location problem

and the vehicle routing problem. The facility location problem (FLP)

involves selecting optimal locations for one or more facilities to minimise

costs or maximise service efficiency. This issue is prevalent in various

sectors such as manufacturing, distribution, and public services, and was

initially studied by Weber & Friedrich (1929). The vehicle routing problem

(VRP), on the other hand, concerns the optimal assignment of routes to

vehicles to serve a specified set of customers. The primary goal is usually

to minimise total route cost or distance while considering constraints like

vehicle capacities, customer demands, and route durations. This problem

was formally introduced by Dantzig & Ramser (1959), who described it in

the context of a truck dispatching scenario. The interdependence of the

strategic and tactical problems was highlighted fifty years ago (Maranzana,

1964; Von Boventer, 1961; Webb, 1968). According to Prodhon & Prins

(2014), the first authors to directly address the LRP were Watson-Gandy

& Dohrn (1973) through modelling decreasing sales with the distance to

a depot with a non-linear profit function. The result of not combining the

planning horizons of strategic and tactical problems when location and

routing decisions are being made may be very suboptimal (Salhi & Rand,

1989; Salhi & Nagy, 1999).

The literature on problem variants of the LRP is extensive. Over the

years, these problems have become increasingly complex, tackling a variety

of scenarios and considering different physical characteristics. However,

only a fraction of recent works have addressed the multi-period LRP, which

is more commonly known as periodic location routing problem (PLRP)
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(Mara et al., 2021). The drawback of only addressing one planning period

was highlighted by Salhi & Nagy (1999) and will lead to a sub-optimal

solution to the planning problem.

Prodhon (2008) introduced the PLRP, which extends the periodic

vehicle routing problem (PVRP) to include strategic decisions. In short,

the PVRP is a VRP with added frequency constraints where customers

must be visited over multiple time periods (Francis et al., 2008). Formally,

the PLRP involves determining facility locations, customer visiting pat-

terns, customer-to-facility assignments, and vehicle routes over multiple

periods to minimize total costs consisting of facility opening, vehicle

fixed, and routing costs. Furthermore, customers may be to different

facilities over the whole planning period (Prodhon & Prins, 2014; Drexl

& Schneider, 2015).

Recent research involving the PLRP considering an offshore logistics

context has been done by Amiri et al. (2018, 2019). Amiri et al. (2018)

presents the maritime fleet sizing mix periodic location routing problem

with time windows (MFSMPLRPTW). The MFSMPLRPTW is based

on the supply vessel planning (SVP) problem which is combination of

the fleet composition problem and the PVRP. The SVP problem involves

determining the best fleet composition required to service a specific

group of offshore installations from a single onshore supply depot, while

minimising total costs and providing reliable service. Simultaneously, it

includes planning the weekly routes and vessel schedules (Halvorsen-Weare

et al., 2012). Amiri et al. (2018) extends the SVP problem to an LRP

by considering a set of suppliers and determining the best locations of

onshore bases through minimising costs.

Amiri et al. (2019) build upon their MFSMPLRPTW problem by

proposing the two-echelon fleet composition mix periodic location-routing

problem with time windows (2E-FCMPLRPTW). The 2E-FCMPLRPTW

extends the MFSMPLRPTW by considering three dependent operation

levels with heterogeneous fleets of road vehicles and supply vessels. The

objective is to minimise total costs while determining the best number

and type of road vehicles and supply vessels, the ideal locations of onshore

base and the most efficient routes and voyages along with their schedules.

Although the MFSMPLRPTW and 2E-FCMPLRPTW present vari-

ants of LRPs in an offshore setting, these novel problems do not consider

electric vehicles and focus solely on onshore location planning.

The electric location routing problem with time windows and partial

recharging (ELRP-TWPR) is presented by Schiffer & Walther (2017).

This is the first model that integrates a full range of recharging possibilities
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while simultaneously determining the locations of charging stations and

planning routes for a fleet of electric vehicles. An exact solution is presented

which minimises the total travelled distance. Due to the NP-hard nature

of the problem, results are presented only for small instances of the electric

vehcile routing problem with time windows (EVRPTW) as created by

Schneider et al. (2014).

Schiffer & Walther (2018) introduce the location routing problem

with intra-route facilities (LRPIF), formalising the concept of locating of

facilities en-route, known as intra-route facilities. The LRPIF extends the

ELRP-TWPR by allowing recharging and reloading rate of freight to be

non-linear. An ALNS metaheuristic is proposed to solve large instances

and results for the EVRPTW and ELRP-TWPR are shown.

Since the main focus of this thesis is the ideal locations for charging

stations, it is required that facilities are the origins and destinations of

routes. Therefore, the approach of LRPIF can not be applied directly to

the offshore planning problem.

In conclusion, different models and applications for the PLRP and

the electric LRP have been previously discussed in the literature. Electric

vehicles in logistics fleets, city logistics, and offshore settings in the oil

and gas industry are also addressed. However, LRPs set in offshore wind

farms are not common. In the following chapter, a multi-period LRP in

an offshore setting is presented to fill this research gap.
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Chapter 3

Problem Description

This chapter introduces the multi-period LRP. In Section 3.1, the planning

challenges faced by wind farm owners in offshore wind logistics is addressed.

Subsequently, in Section 3.2, the planning problem is formalised with

strategic and operational requirements, presented as a mixed-integer

program (MIP).

3.1 Problem setting

In the offshore wind sector, efficient logistics are important for minimising

the costs associated with transportation of personnel and equipment,

as well as for maintenance and repair operations. The logistics involve

complex planning and execution due to factors like weather conditions

and the need for specialised vessels. Wind farm owners contract a fleet

of vessels to perform maintenance and repairs on offshore wind turbines

(OWTs), while adhering to additional operational constraints such as a

maintenance schedule and weather windows. This setting is similar to city

logistics and logistics networks, however the problem has some specific

characteristics:

1. Offshore logistics operations are often planned well in advance, with

a focus on scheduled maintenance and installation activities. Similar

to logistics networks, these operations tend to follow repetitive

patterns, particularly for maintenance schedules. The demand for

personnel and equipment can be better estimated over the long

term due to the planned nature of offshore wind farm operations

and monitoring of system components.

2. The spatial distribution of offshore wind farms and the locations of
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onshore bases and ports vary significantly. This distribution affects

the routing and scheduling of vessels, similar to how customer

locations impact city logistics. However, the distances involved in

offshore logistics are typically greater which affect the number of

turbines a vessel can service in a trip.

3. Offshore logistics operations are heavily impacted by the environ-

ment and weather conditions. Adverse weather conditions, particu-

larly high wave heights and strong wind speeds, restrict the access

of service vessels to OWTs and limit the transfer of personnel from

vessels to the OWTs (Ren et al., 2021).

Additional operational complexity arises with the usage of electric

service vessels. Due to the smaller energy density of batteries, electric

service vessels have a limited range of travel compared to vessels propelled

by fossil fuels. This is not helped by the large spatial distribution of

offshore wind farms which further decrease the number of OWTs a service

vessel can visit during a trip. To mitigate using combustion engines

or emptying the battery when travelling to site, a strategic network of

charging stations has to exist.

In this setting, a wind farm owner faces strategic and operational

decisions:

1. At the strategic level, a wind farm owner needs to decide where

to build charging stations given a set of potential locations. The

placement of charging stations is inter-dependent on routes of ves-

sels, thus placement greatly impacts daily operations, costs, and

the feasibility of maintenance schedules. Variation in maintenance

schedules due to failure of different components in OWTs may lead

to greater costs if the charging network determination does not take

into account a longer time horizon.

2. At the operational level, the wind farm owner determines the service

routes of the vessel fleet. When using an electric fleet, the wind

farm owner must account for shorter travel distances to meet time

restrictions of the maintenance schedule.

The planning period is divided into several time windows, each repres-

enting a working day with a specific length. Once one time window ends,

the next one begins immediately. It is assumed that during the transition

between time windows, all vessels are refuelled, and other necessary re-

sources, such as parts and components, are replenished. The maximum
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number of available time windows is determined by the planning horizon,

which marks the end of the planning period. Additionally, not all time

windows need to be utilised if the maintenance schedule can be completed

in a shorter time frame.

Before proceeding with the formalisation of the problem in the next

section, a few key assumptions are made,

• A homogeneous fleet of vessels is assumed, such that every vessel

has the same characteristics, e.g. battery charge capacity, energy

consumption rate and average velocity,

• The energy consumption rate and average velocity are assumed to

be constant,

• A vessel can be used at most once during a time window and must

wait until the next time window before it is available again,

• Every vessel is assumed to be fully equipped and has enough crew

onboard to to perform any maintenance task,

• Every vessel must return to the charging station it originated from

(Nagy & Salhi, 2007),

• It is assumed that both weather and sea are calm because high wave

heights and strong winds restrict the access of service vessels to

OWTs and hinder personnel transfer from the vessel to the OWT

(Ren et al., 2021),

• All turbines must be visited at most once, in any order, during the

planning period.
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3.2 Mathematical model

The following section defines the MIP for the multi-period LRP. The

notation used is defined in Table 3.1. Let G be a graph, where G = (N ,A)

with a set of all nodes N = I ∪ OD and a set of arcs A = {(i, j) : i, j ∈
N , i ≠ j}. Let I be a set of turbine nodes and OD be a set of origin nodes

and destination nodes for the potential charging stations. The origins are

labeled from 1 to ϕ, where ϕ is the total number of origin nodes, and

the destinations are labeled from ϕ + 1 to ϕ + δ, where δ is the total

number of destination nodes. Let K be a set of vessels. For each arc (i, j) a

distance Dij between node i and node j is given. The transportation time

associated with each arc (i, j) is calculated using average velocity v as

Tij = Dijv
−1. The set T holds the time windows represented by [Tp, Tp],

where p ∈ P = {1, 2, . . . , π} denotes the p-th time window. The planning

horizon is given by Tmax = Tπ, where π is the number of time windows.

The time it takes to service a turbine is given by the time demand at each

node is given by Wi. For the potential charging station nodes, Wi is set to

zero. For each vessel a battery capacity Q is considered. The energy used

to travel from node i to node j is formulated as a linear relation between

the distance Dij and the energy consumption rate R. The binary decision

variable xijk determines whether an arc (i, j) is used by vessel k. If the

arc (i, j) is used, xijk = 1. Otherwise, if arc (i, j) is not used, xijk = 0.

To determine whether a charging station is built at node j, the binary

decision variable yj is used. If a charging station is built at node j, yj = 1,

otherwise yj = 0. The binary variable bkp determines if vessel k uses time

window p. If vessel k uses time window p, bkp = 1. Otherwise, bkp = 0.

The time of arrival of a vessel k at node i is given by tik. Furthermore,

the remaining battery capacity of a vessel k when arriving at node i is

represented by eaik. Conversely, the remaining battery capacity of a vessel

k when departing node i is given by edik. Binary variables dikp and ajkp
limit vessel usage to one trip per time window. If origin i is departed by

vessel k in time window p ∈ P , dikp = 1, otherwise dikp = 0. Binary ajkp
is analogously defined. Costs are divided into sailing costs Cij , fixed costs

for using a vessel Fk and fixed costs for building a charging station Gj.
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Table 3.1: Notation used for the mathematical formulation of the multi-

period LRP

Symbol Description

I Set of turbine nodes

OD Set of origins {1, 2, . . . , ϕ} and destinations {ϕ+ 1, ϕ+ 2, . . . , δ} for
the potential charging stations

No Set of turbine nodes plus origin nodes o ∈ {1, 2, . . . , ϕ}
Nd Set of turbine nodes plus destination nodes d ∈ {ϕ+1, ϕ+2, . . . , ϕ+δ}
N Set of turbine nodes plus origin and destination nodes

K Set of all vessels

T Set of time window parameters [Tp, Tp]

P Set of time windows, {1, 2, . . . , π}

Gj Fixed costs for building charging station j

Fk Fixed costs for using vessel k

Cij Cost of sailing from node i to node j

Wi Demand at node i

Tij Transportation time of arc (i, j)

Dij Distance from node i to node j

Q Charge capacity

R Energy consumption per distance unit travelled of a vessel

Tp Upper bound of time window p ∈ P
Tp Lower bound of time window p ∈ P
Tmax The planning horizon

π Number of time windows

ϕ Number of origin nodes

δ Number of destination nodes

xijk Binary: Arc (i, j) is travelled by vessel k

yj Binary: Charging station is sited at node j

zk Binary: If vessel k is used

bkp Binary: If vessel k uses time window p ∈ P
tik Arrival time at node i of vessel k

eaik Remaining battery capacity of vessel k when arriving at node i

edik Remaining battery capacity of vessel k when departing from node i

dikp Binary: If origin i is departed by vessel k in time window p ∈ P
ajkp Binary: If destination j is departed by vessel k in time window p ∈ P

Note: The table is subdivided as follows: sets/parameters/decision vari-

ables/auxiliary variables.
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minimize
Z

Z =
∑
j∈E

Gjyj +
∑
k∈K

Fkzk +
∑
k∈K

∑
i∈No,i ̸=j

∑
j∈Nd

Cijxijk (1)

subject to∑
k∈K

∑
j∈Nd,i ̸=j

xijk = 1, ∀i ∈ I, (2)∑
i∈I,i ̸=j

xijk ≤ 1, ∀j ∈ {ϕ + 1, ϕ + 2, . . . , ϕ + δ}, k ∈ K, (3)∑
j∈Nd,i ̸=j

xijk =
∑

j∈No,i ̸=j

xjik, ∀k ∈ K,∀i ∈ I, (4)∑
j∈I

xj(i+δ)k =
∑
j∈I

xijk, ∀i ∈ {1, 2, . . . , ϕ},∀k ∈ K, i ̸= j, (5)

ϕ∑
i=1

∑
j∈I

∑
k∈K

xijk ≤ |K| · π, (6)∑
i∈I

∑
k∈K

xijk ≤ yj|I|, ∀j ∈ {ϕ + 1, ϕ + 2, . . . , ϕ + δ}, (7)∑
i∈No

∑
j∈Nd

xijk ≤ zk(|I|+ 1), ∀k ∈ K, i ̸= j, (8)∑
p∈P

bkp = 1, ∀k ∈ K, (9)∑
p∈P

bkpTp ≤ tik, ∀i ∈ N ,∀k ∈ K, (10)∑
p∈P

bkpTp ≥ tik, ∀i ∈ N ,∀k ∈ K, (11)

dikp ≥ xijk − (1− bkp) ∀i ∈ {1, 2, . . . , ϕ},∀j ∈ I, ∀k ∈ K,
∀p ∈ P , (12)

ajkp ≥ xijk − (1− bkp) ∀i ∈ I,∀j ∈ {ϕ + 1, ϕ + 2, . . . , ϕ + δ},
∀k ∈ K,∀p ∈ P , (13)

ϕ∑
i=1

dikp ≤ bkp ∀k ∈ K,∀p ∈ P , (14)

ϕ+δ∑
j=ϕ+1

ajkp ≤ bkp ∀k ∈ K,∀p ∈ P , (15)

tjk ≥ tik + (Wi + Tij)xijk,

− Tmax(1− xijk), ∀i ∈ No,∀j ∈ Nd,∀k ∈ K, i ̸= j, (16)
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eajk ≤ edik − xijkDijR,

+ Q(1− xijk), ∀i ∈ No,∀j ∈ Nd,∀k ∈ K, i ̸= j, (17)

edik = Q, ∀i ∈ {1, 2, . . . , ϕ},∀k ∈ K, (18)

edik = eaik, ∀i ∈ I,∀k ∈ K, (19)

tik ≥ 0, ∀i ∈ N , ∀k ∈ K, (20)

eaik ≥ 0, ∀i ∈ N , ∀k ∈ K, (21)

edik ≥ 0, ∀i ∈ N , ∀k ∈ K, (22)

xijk ∈ {0, 1}, ∀i ∈ No,∀j ∈ Nd,∀k ∈ K, (23)

yj ∈ {0, 1}, ∀j ∈ {ϕ + 1, ϕ + 2, . . . , ϕ + δ}, (24)

bkp ∈ {0, 1}, ∀k ∈ K,∀p ∈ P , (25)

dikp ∈ {0, 1}, ∀i ∈ {1, 2, . . . , ϕ},∀k ∈ K,∀p ∈ P , (26)

ajkp ∈ {0, 1}, ∀j ∈ {ϕ + 1, ϕ + 2, . . . , ϕ + δ},
∀k ∈ K,∀p ∈ P . (27)

The objective function (1) minimises the total costs associated with

construction of charging stations, operation of vessels and sailing costs.

Single assignment is obtained by constraints (2) and ensures that each

turbine is only visited once. Single assignment is relaxed for charging

stations by constraints (3). Constraints (4) ensure that the vessel that

leaves the turbine is the same vessel that visits the turbine. Trips are forced

to start and end at the same charging station, enforced by constraints

(5). Constraint (6) ensures the feasibility of time windows. Vessels are

restricted to charge only at charging stations given by constraints (7).

Constraints (8) tracks if vessel k is used. Time constraints are given by

(9)-(11). While constraints (9) indicates that only one of the available time

windows is used per vessel, constraints (10) and (11) enforces feasibility

of time windows for all nodes. Vessel trip restrictions are determined in

(12)-(15). Constraints (12) and (13) link origins and destinations of tours

to time windows. There can be at most one departure and arrival in a time

window given by constraints (14) and (15), for any given vessel. Arrival

times are given by constraints (16). The remaining battery capacity of a

vessel at arrival is determined by (17). Constraints (18) ensures that a

vessel leaves a station with full battery capacity. While servicing a turbine

no energy loss occurs, as guaranteed by constraints (19). Arrival times

are defined for the positive values by constraints (20). Constraints (21)

and (22) ensures that energy values are within the battery capacity range.

Finally, binary variables are defined in constraint (23)-(27).
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Chapter 4

Solution Approach

In this chapter, a solution approach is presented for solving instances of the

multi-period LRP presented in Chapter 3. To solve the described problem,

a matheuristic algorithm is used. In the algorithm, the advantages of

a mathematical optimisation solver are utilised in combination with a

metaheuristic framework to efficiently produce solutions.

In recent years, the notion of combining metaheuristics and math-

ematical programming (MP) has gained popularity (Puchinger & Raidl,

2005; Raidl, 2006). This hybridisation is called a ‘matheuristic’ and can

be defined in two ways according to a ‘master-slave’ concept (Maniezzo

et al., 2010). Maniezzo et al. (2010) states that, either 1) a metaheuristic

is the ‘master’ and controls when to call the MP, or 2) the MP takes on

the role as the ‘master’ and is in control of the metaheuristic algorithm.

In performing the repair step in the ALNS-framework the usage of a

MIP solver is gaining attraction as these solvers consistently improve in

performance with each new version released (Robert E. Bixby, 2012). In

the presented algorithm, the first approach of the matheuristic framework

is used, where the metaheuristic acts as the master, controlling when to

call the MP. This choice leverages the strengths of the metaheuristic to

guide the overall search process while capitalizing on the advancements

in MIP solvers to enhance the repair steps.

The presented algorithm, referred to as ALNSM, is based on the

algorithm proposed by Heidari & Hemmati (2023). The routing variables

stated in Section 3.2 are managed by the metaheuristic procedure ALNS.

Subsequently, the non-routing variables are solved by a MIP solver, while

taking the routing variables into account.

The algorithm is outlined in Algorithm 1. First, an initial solution is

constructed and assigned to s in line (2) and assigned to the best solution

sbest in line (3). The search is initiated in line (5) and continues until ηmax



16 Solution Approach

number of iterations is reached. The escape-algorithm is called every ηesc

number of iterations, in line (7). A heuristic is selected and applied to

the candidate solution s′ in line (10) and (11). The candidate solution

is passed to the MIP solver in line (12). In line (15), sbest is updated

if the candidate solution s′ is feasible and improves the best solution.

The candidate solution is accepted in line (18) if it meets the acceptance

criterion. After ηseg number of iterations, in line (23), the scores of each

heuristic are updated. Finally, the best found solution sbest is returned in

line (28) when the stop condition is met.

Algorithm 1 ALNS-based matheuristic

Input: All parameters, a of operators H
1: InitialiseParameters()

2: s← InitialSolution() (Section 4.1)

3: sbest ← s

4: ι← 0

5: while ι < ηmax and ι− ιimp < ηmax
noi do

6: if modulo(ι, ηesc) then

7: s′ ← escape(s) (Section 4.4)

8: end if

9: s′ ← s

10: select h ∈ H
11: apply heuristic h to s′

12: pass s′ to MIP solver (Section 4.5) and determine station assignment

13: if s′ is feasible then

14: if f(s′) < f(sbest) then

15: sbest ← s′

16: ιimp ← ι

17: end if

18: if accept(s ′, s) then

19: s← s′

20: end if

21: updateScores()

22: end if

23: if modulo(ι, ηseg) = 0 then

24: updateWeights()

25: end if

26: ι← ι+ 1

27: end while

28: return sbest
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The construction of the initial solution is given in Section 4.1, followed

by the explanation of the ALNS-framework in Section 4.2. The escape-

algorithm is presented in Section 4.4 and the IP that determines the

station assignment is described in Section 4.5.

4.1 Initial solution

It is widely accepted in the optimisation community that generating

an initial solution is an important step, given that subsequent solutions

depend on previous solutions and ultimately tracing back to the initial

solution (Sarhani et al., 2023). However, biasing the initial solution may

be dangerous and may lead to premature convergence (Sean Luke, 2013).

A construction heuristic is employed to create an initial solution. The

initial solution is not allowed to be infeasible concerning time windows or

battery charge level. Since the ALNSM does not allow infeasible solutions,

an infeasible initial solution would never be improved and thus a good

solution cannot be generated with the ALNSM. The construction heuristic

works as follows:

1. Assign each turbine to its closest charging station with regards to

distance.

2. For each charging station and its assigned turbines,

2.1. Create a new route

2.2. Add turbines to new route as long as it is feasible

2.3. If the new route is not feasible, discard it, and repeat Step 2.1.

4.2 Adaptive large neighbourhood search

algorithm

The main part of the ALNSM is based off of the work of Ropke &

Pisinger (2006) who propose the adaptive large neighbourhood search

framework. The structure of the ALNS-framework is shown in Algorithm 2.

The ALNS is an innovative heuristic method used primarily for solving

complex combinatorial optimization problems. Ropke & Pisinger (2006)

extend the large neighbourhood search (LNS) proposed by Shaw (1998)

by incorporating adaptive mechanisms to enhance the search process.

The LNS operates by systematically breaking down and subsequently
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reconstructing the current solution through ‘destroy’ and ‘repair’ heuristics.

The ‘destroy’ heuristic removes components of the existing solution, while

the ‘repair’ heuristic rebuilds the solution to its full form, potentially

improving upon the previous solution.

The ALNS uses the same principle as LNS of using ‘destroy’ and ‘repair’

methods to improve solutions. However, where a careful consideration

of heuristics used in LNS is needed depending on the problem instance,

the ALNS employs an adaptive mechanism to choose between multiple

available destroy and repair heuristics. This adaptive mechanism is called

‘roulette wheel selection’. In roulette wheel selection each heuristic is

assigned a weight such that it can be selected with a certain probability.

If there are k heuristics with assigned weights ωi, i ∈ {1, 2, . . . , k}, the

probability of heuristic i being selected is given by

ωi∑k
j=1 ωj

. (4.1)

To avoid manually determining the weights of all heuristics, a dynamic

adaptation method is used. The weights are adjusted based on their past

performance, thus encouraging the exploration of more effective heuristics

during the search. The search is divided into ‘segments’ to prevent it

from getting stuck in a local optima and allows the algorithm to explore

different parts of the solution space. Each heuristic is assigned a score to

keep track of its performance during a ‘segment’ of the search. After each

segment s, the weights ωi,s of heuristics i are adjusted by

ωi,s+1 = ωi,s (1− r) + r
σi

θi
, (4.2)

based on their contribution to improving the solution. The contribution

is assessed with the score σi and the number of times θi the heuristic was

used in segment s. The smoothing factor r controls the speed at which

the weights are adjusted based on the heuristic’s effectiveness.

Whether to accept a new solution created by the ‘destroy’ and ‘repair’

heuristics is determined by the acceptance criterion. By accepting worse

solutions temporarily, one may avoid local optima and encourage more

exploration of the solution space. A simple acceptance criterion would be a

‘hill climber’ accept method proposed by Shaw (1998) in the original paper

on LNS, where only better solutions than the global best are accepted. The

most popular acceptance criteria comes from the popular metaheuristic

framework simulated annealing (SA). The acceptance criteria in SA is

based on the concept of annealing from metallurgy. Let σ′ be a temporary
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solution, which is accepted with respect to the current solution σ with the

probability e
−∆E

T where −∆E is the difference in objective value between

the temporary solution and the current solution and T is the temperature.

Initially, the temperature is set to a large non-zero value T0 which is

reduced progressively according to cooling schedule c, where 0 < c < 1,

during the search process.

Santini et al. (2018) presents a large computational study which shows

that the acceptance criteria SA, threshold accepting (TA) and record-to-

record (RRT) perform best in the ALNS-framework compared to others.

The acceptance criterion used in the ALNSM algorithm is explained in

Section 4.3.

Algorithm 2 ALNS-Framework

Input: Initial solutions s

1: function ALNS

2: sbest ← s

3: repeat

4: s′ ← s

5: remove q items from s′

6: reinsert removed items into s′

7: if (accept)(s′, s) then

8: s← s′

9: end if

10: if (f(s′) < f(sbest)) then

11: sbest ← s′

12: end if

13: update parameters for selection

14: until stop condition is met

15: return sbest
16: end function

4.2.1 Solution representation

The solution representation used in the ALNSM is a two dimensional

vector. The first row of this vector denotes the route for each tour, using

zero as a delimiter between tours. It is read from left to right, with each

non-zero number representing a visited turbine. The second row of the

vector denotes the charging stations for these tours, defining both the

start and end locations of each tour. An example solution is presented in
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111
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Figure 4.1: Solution representation of an example solution

Solution representation of an example solution used in the ALNSM.

The top array holds the routes of the vessel where vessels are separated

by the number zero. The bottom array tracks which charging station

assigned to the start and end of each route in the top array. Each

shade of gray belong to the same route.

Figure 4.1, where I is the set of turbines I ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9} and

R is the set of potential charging stations R ∈ {1, 2, 3}.
This solution indicates that the first tour, originating from charging

station 1, covers turbine nodes 1, 2, and 3. The second tour, starting at

charging station 1, visits nodes 4 through 7, and the third tour, beginning

again at station 1, services nodes 8 and 9. Charging station 2 and 3 are

absent from the solution and thus remain unbuilt.

4.2.2 Operators

In this section, the operators utilized in the ALNSM are introduced.

To determine the routing strategy for the fleet of vessels, four types

of operators are implemented: Random-Remove, Cost-Random-Remove,

Cluster-Random-Remove, and Greedy-Insert. Each operator focuses on

the sequence of visits to turbine nodes with different methodologies

involving both random and cost-based selection criteria. This enables

exploration of the solution space in an efficient manner.

• Random-Remove: The Random-Remove operator removes q ∈
[1, qmax] nodes randomly from all tours in the solution.

• Cost-Random-Remove: The Cost-Random-Remove operator removes

q ∈ [1, qmax] nodes from the solution according to the highest con-

tributing cost. Nodes are removed with Shaw removal using removal

costs of each node as the selection criteria (Shaw, 1998). This intro-

duces diversity to the greedy nature of the operator and helps the

ALNSM explore a wider solution space.

• Cluster-Random-Remove: The Cluster-Random-Remove operator

removes q ∈ [1, qmax] nodes from the solution based on a similarity
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measure. First, it picks a node randomly and then iteratively removes

q similar nodes using Shaw removal (1998).

• Greedy-Insert: The Greedy-Insert operator iteratively inserts re-

moved nodes one by one into the solution. First, it finds where it is

feasible to insert, and then inserts the node according to its least

cost contributing position. If no feasible inserts are found, a new

tour is opened and the node is inserted. The charging station from

which this new tour originates is chosen randomly.

4.3 Acceptance Criterion

The ALNSM algorithm adopts the RRT acceptance criterion based on

the findings of Santini et al. (2018), which suggest it is the preferred

approach when implementing the ALNS-framework. Originally proposed

by Dueck (1993), the goal is to accept a new solution if it deviates from

the best found solution by a deviation D. That is, let sbest be the best

found solution (the record), then a new solution s′ is accepted if it is

smaller than sbest +D. The definition of the deviation D is borrowed from

Hemmati & Hvattum (2017) and is defined as

D = 0.2

(
ηmax − ι

ηmax

)
sbest, (4.3)

where ηmax is the maximum number of iterations performed by the ALNSM

and ι is the current iteration number. The definition of D is linear which

converges to zero at the end of the search: this approach simplifies tuning

by reducing the number of parameters by one, while maintaining the

quality of the solution (Santini et al., 2018).

4.4 Escape algorithm

To escape local optima an escape algorithm is used. In Algorithm 1, after

ηesc iterations the escape algorithm is applied to the solution. In this

algorithm, q nodes are selected to be removed from the solution where q

is equal to qesc. Then, the removed nodes are randomly inserted one by

one at the first feasible position in the solution. If no feasible insertion is

possible a new tour is created and assigned a station at random. The new

solution is passed to the ALNSM regardless of its quality. The escape

algorithm is outlined in Algorithm 3.
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Algorithm 3 Escape algorithm

Input: solution s, q nodes to remove

1: for i = 1 to q do

2: Remove a node at from random from s

3: end for

4: for each removed node do

5: Insert iteratively at the first feasible position in s

6: if no feasible insertion is possible then

7: Create a new tour in s

8: Pick a station as origin randomly

9: end if

10: end for

11: return s

4.5 Station assignment model

The following section defines the IP used in the ALNSM to determine the

optimal assignment of charging stations of a tour. Let I be a set of tours

and J a set of potential charging stations. For each pair of tour i and

charging station j a sailing cost TF ij from charging station j to the first

node in tour i and from the last node in tour i to charging station j is

incurred. The binary decision variable xij determines whether tour i is

assigned to charging station j. If tour i is assigned to charging station j,

xij = 1. Otherwise, if tour i is not assigned to charging station j, xij = 0.

To determine if charging station j is built, the binary decision variable

yj is used. If charging station j is built, yj = 1, otherwise yj = 0. The

notation introduced is summarized in Table 4.1.

minimize
Z

Z =
∑
i∈I

∑
j∈J

TF ijxij +
∑
j∈J

Fjyj (1)

subject to∑
j∈J

xij = 1, ∀i ∈ I, (2)∑
i∈I

xij ≤ yj|I| ∀j ∈ J , (3)

xij ∈ {0, 1} ∀i ∈ I,∀j ∈ J , (4)

yj ∈ {0, 1} ∀j ∈ J . (5)
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Table 4.1: Notation used for the mathematical formulation of the station

assignment model

Symbol Description

I Set of tours

J Set of charging stations

TF ij To-and-from costs for tour i to charging station j

Fj Fixed costs for building charging station j

xij Binary: If tour i is assigned to charging station j

yj Binary: If charging station j is built

Note: The table is subdivided as follows: sets/parameters/decision variables.

The objective (1) minimises the total costs associated with to-and-

from costs and building costs of charging stations. Constraints (2) ensures

that a tour is assigned only one station. A station can only be built if it

is assigned to a tour given by constraints (3). Binary variables are defined

by constraint (4)-(5).
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Chapter 5

Computational Results

In this chapter, computational results for the ALNSM are presented.

Details regarding the computational environment and the definition of

the algorithm parameters can be found in Section 5.1.To determine the

performance of the algorithm, several instances have been designed in

Section 5.2. To evaluate the quality of solutions produced by the ALNSM,

smaller instances have been created which can be solved in a reasonable

time using the commercial solver Gurobi. Furthermore, the efficiency and

robustness of the ALNSM algorithm is tested in Section 5.3 on a set of

large instances of the multi-period LRP.

5.1 Computational Environment and Para-

meter Setting

The numerical experiments regarding the mathematical formulation of the

multi-period LRP are run on the Geophysical Insitute’s computing system

named Cyclone. Cyclone is a Dell PowerEdge R740 Server configuration

with Intel Xeon Gold 6140M 2.3GHz and 1.5 TB RAM running a CentOS

7 linux operating system (Geophysical Institute, 2018). The model is

implemented with Gurobi 11.0.0 in a Python 3.11.5 environment, with the

solver configured to utilize up to 8 threads. The ALNSM is implemented

as a single thread code in the same Python environment. Numerical

experiments are conducted on a Macbook Pro with an Apple M1 chip and

16 GB RAM with macOS Ventura 13.5.1. The final parameter setting is

used for all numerical experiments.

To identify good parameter settings for the ALNSM algorithm, the

method detailed in Ropke & Pisinger (2006) is followed. First, an initial

parameter setting is found through test runs on a diverse and sufficiently
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large subset of large problem instances. Second, each parameter is varied

while the others are fixed. The heuristic is run 10 times for each parameter

setting and instance, and the deviation of the average best solution from

the best found solution for the instance using the best setting is calculated.

The setting with the lowest overall average deviation, ∆λ, across all

instances is selected as the optimal setting. The subset of instances

used for parameter setting are c2-100-8-6-s, c6-100-8-10-s, c10-100-10-8-

s, c14-100-8-6-l, r1-100-8-6-s, r5-100-8-10-s, r9-100-10-8-s, r13-100-8-6-l,

rc3-100-8-8-s, rc7-100-10-6-s, rc13-100-8-6-l and rc17-100-8-10-l.

Table 5.1 shows the final setting for the parameters and the derivation

process. The parameters that were selected are highlighted in bold. The

ALNSM parameters in the table are as follows: the maximum number

of iterations without an improvement of the global best solution ηmax
noi ,

the number of iterations before the escape-algorithm is called ηesc, the

smoothing factor r in Eq. (4.2), the maximum number of turbines which

be removed by an operator qmax, the number of turbines to remove in the

escape-algorithm qesc, the scoring parameters (σ1, σ2, σ3) used in Eq. (4.2).

For the parameter ηesc, the first and second setting resulted in a tie. The

larger value was chosen to allow for more intensification between each call

to the escape-algorithm. The ALNSM is stopped after 12500 iterations to

achieve a balanced compromise between computational time and solution

quality given the programming environment. The number of iterations in

each segment ηseg is set to 100.

5.2 Generation of Instances

To the author’s knowledge there does not exist any instances for the multi-

period LRP that concerns the problem setting in Section 3.1. Therefore,

two new sets of instances are presented in this section. The results for

the new instances are presented in Section 5.3.

Two sets of instances are created: a set of 72 large instances with 100

turbines each, and a set of 72 smaller instances with number of turbines

being 5, 10 and 15. The instances are classified by their geographical

distribution and belong to one of the three groups: random (r), clustered

(c), and mixed (rc). The locations of turbines for instances that belong to

the Random group are randomly generated according to a uniform distri-

bution. However, a minimum distance between each turbine is enforced to

reflect the real-world spacing of turbines due the turbine rotor diameter.

The locations of turbines for instances in the Clustered group are
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Table 5.1: Parameter setting for the ALNSM

Parameter Setting 1 Setting 2 Setting 3

ηmax
noi 7000 9000 10000

∆λ 0.263 0.241 0.287

ηesc 700 800 900

∆λ 0.260 0.260 0.274

r 0.3 0.4 0.6

∆λ 0.266 0.268 0.288

qmax 0.3 0.4 0.5

∆λ 0.463 0.357 0.311

qesc 0.75|I| 0.9|I| 1|I|
∆λ 0.313 0.314 0.291

(σ1, σ2, σ3) (5, 2.5, 1) (6, 2, 0.5) (5, 3, 9)

∆λ 0.305 0.292 0.303

Notes : The table presents the parameter settings alongside their corresponding

overall average deviations, denoted as ∆λ [%]. The selected settings for each

parameter are highlighted in bold.

generated in the following way. The number of clusters is chosen according

to ⌈
√
n ⌉ where n is the number of turbines of the current instance. Cluster

centres are picked randomly according to a uniform distribution. The

locations of turbines are generated according to a normal distribution

and scaled around each cluster centre, while keeping a minimum distance

to other turbines.

The locations of turbines for instances in the Mixed group utilities

both approaches described above. The ratio of clustered turbine locations

to random locations is set to 70 %. A minimum distance between turbine

locations is enforced.

The time windows are divided into short and longer planning horizons.

For small instances, i.e. 5, 10 and 15 turbines, the short and long planning

horizon is set to 3 time windows and 7 time windows respectively. Larger

instances have planning horizons of 5 time windows and 8 time windows.

Within each group, instances differ in geographical location, number

of potential charging stations, number of vessels, and number of time

windows.

The locations of the potential locations for charging stations are
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generated from a uniform distribution. However, to make the instances

more realistic the locations are generated within the smallest bounding

box that covers all turbines. Furthermore, each charging station must be

a minimum distance away from other charging stations and turbines.

The fleet of vessels is assumed homogeneous and the technical spe-

cifications used to determine average velocity, battery capacity and con-

sumption rate is based on the REM Energy CSOV (Rem Offshore AS,

2021). To determine the consumption rate the propeller law is used,

P ∝ kV c. (5.1)

The propeller law relates the required power P of a vessel to its speed

V , where c is set to at least 3 (MAN Energy Solutions, 2018). Because of

the nonlinear relationship between speed and power, even a slight decrease

in speed results in a substantial decrease in power. Assuming that k is

constant between speeds we have that the ratio between PV and PVmax is,

PV

PVmax

=

(
V

Vmax

)3

⇒ PV = PVmax

(
V

Vmax

)3

(5.2)

However, Berthelsen & Nielsen (2021) argues that c is closer to 2

at lower speeds in (5.1). This results in that (5.1) underestimates the

required power because of a shallower slope. To make modelling easier

the relationship in (5.1) is assumed. Equation (5.2) and Figure A.1 is

used to calculate the consumption rate R of a vessel. For simplicity, a

slow steaming average velocity of 5 knots is chosen which results in the

consumption rate R being 0.0167 kWh/m (See Figure A.2).

The generated instances are available at https://github.com/simento

rseth/multi period lrp instances/.

5.3 Results for the Multi-period LRP

In this section, the results for the model formulated in Section 3.2 are

presented. The results are divided into two parts based on instance size

and solution approach. For small instances, both the Gurobi optimisation

solver and the ALNSM heuristic are employed to evaluate their perform-

ance and accuracy. Furthermore, for large instances, only the matheuristic

is used to obtain feasible solutions within a reasonable time frame due to

the computational complexity of the planning problem. Additionally, two

routes for small instances are inspected to gain insight into the routing

and siting capabilities of the matheuristic.

https://github.com/simentorseth/multi_period_lrp_instances/
https://github.com/simentorseth/multi_period_lrp_instances/
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Results for instance size 5, 10, and 15 are presented in Table 5.2,

Table 5.3, and Table 5.4, respectively. Following Schiffer & Walther (2017),

a time limit of 7200 seconds is imposed for solving smaller instances.

Therefore, optimal solutions are not guaranteed for instances with a

computational time of 7200 seconds. Figure 5.1 shows the average running

time in seconds for each instance size (5, 10, and 15) using Gurobi. The

computational difficulty of the planning problem is apparent due to

the rapid increase in computational time for an increasing number of

turbines. Furthermore, Gurobi failed to find a feasible solution for 10

instances shown in Table 5.4, further emphasising the complexity of the

problem. For the solutions obtained using Gurobi, the objective value λ

and computational time t are stated. λ is stated as ‘-’ for instances where

Gurobi failed to find a solution. For the solutions found by the ALNSM,

the following metrics are provided: the best found objective value λb, the

percentage gap ∆b between λ and λb, the average objective value out of
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Figure 5.1: Average running time with respect to number of turbines

Average running time for each instance size solved using Gurobi. For each instance

size (5, 10, and 15), 24 instances are solved, and the running time is averaged over

these 24 instances.



30 Computational Results

10 runs λa, the percentage gap ∆a between λ and λa, and the average

running time ta is stated. The gaps ∆b and ∆a are calculated by dividing

the respective difference by λ.

Firstly, for instances with 5 turbines, the ALNSM nearly matches

the performance of the mathematical model, with ∆b at 0.27 % and ∆a

at 0.29 %. Given the small size of these instances, Gurobi quickly finds

optimal solutions with an average computational time of 0.41 seconds.

In comparison, the ALNSM generates feasible solutions for all instances,

averaging a running time of 2.55 seconds. This difference is expected as

the Gurobi engine is written in the C programming language (Gurobi

Optimization LLC, 2024).

For instances with 10 turbines, there is a significant increase in com-

putational time for solutions found using Gurobi. The ALNSM generates

feasible solutions for all instances, with an average running time of 7.89

seconds. On the other hand, Gurobi’s average running time is 4498 seconds,

with some instances potentially not reaching optimal solutions due to the

imposed time limits. Compared to instances with 5 turbines, the ALNSM

performs slightly worse, with ∆b at 1.29 % and ∆a at 1.54 %. Despite this,

the heuristic improves Gurobi’s solution for instance c6-10-3-4-l, which is

highlighted in bold.

Lastly, for instances with 15 turbines, Gurobi runs for 7200 seconds

for all instances and fails to find feasible solutions for 10 instances. The

ALNSM improves Gurobi’s solutions for four instances and obtains feasible

solutions for all instances, with an average computational time of 15.79

seconds. Across all instances, the gaps ∆b and ∆a are 0.67 % and 1.11 %,

respectively.

Overall, the average performance of solutions provided by Gurobi and

the ALNSM are detailed in Table 5.5. For small instances, the ALNSM

performs well with a ∆b of 0.75 % and a ∆a of 0.96 % in a short running

time. The algorithm’s performance is thus validated, and results from

large instances are used to evaluate the robustness of the matheuristic.

Results for large instances are presented in Table 5.6. The following

metrics are provided: the best found objective value λb, the average

objective value of 10 runs λa, the percentage gap between λb and λa, and

the average running time ta. To evaluate the robustness of the heuristic

algorithm the gap ∆a between the best found solution λb and λa is

used. The ALNSM shows an average gap of 5.44 % over all 72 instances.

Furthermore, over all instances the average of ta is 269.02 seconds. This

indicates that the matheuristic performs quite well, despite only having a

small set of heuristics available.
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Table 5.2: Results for instances with 5 turbines for the multi-period LRP

Gurobi ALNSM

Instance λ t λb ∆b λa ∆a ta

c1-5-2-2-s 13456.73 0.30 13456.70 0.00 13456.70 0.00 0.90

c2-5-2-3-s 13996.50 0.45 13996.60 0.00 13996.60 0.00 0.93

c3-5-3-2-s 13706.09 0.38 13706.10 0.00 13706.10 0.00 3.93

c4-5-3-3-s 13479.58 0.61 13479.50 0.00 13479.50 0.00 3.94

c5-5-2-2-l 14474.22 0.37 14474.20 0.00 14474.20 0.00 0.93

c6-5-2-3-l 13891.05 0.48 13891.00 0.00 13903.15 0.09 0.98

c7-5-3-2-l 13831.62 0.38 13831.70 0.00 13831.70 0.00 3.94

c8-5-3-3-l 14535.65 1.05 14535.70 0.00 14535.70 0.00 2.70

r1-5-2-2-s 15190.50 0.17 15439.90 1.64 15439.90 1.64 0.97

r2-5-2-3-s 14684.85 0.44 14684.90 0.00 14684.90 0.00 0.93

r3-5-3-2-s 14158.97 0.28 14159.00 0.00 14159.00 0.00 4.42

r4-5-3-3-s 14873.41 0.38 15403.80 3.57 15403.80 3.57 4.38

r5-5-2-2-l 14481.44 0.30 14481.40 0.00 14481.40 0.00 0.92

r6-5-2-3-l 15359.46 0.34 15359.50 0.00 15359.50 0.00 1.10

r7-5-3-2-l 14867.44 0.32 14867.50 0.00 14867.50 0.00 3.58

r8-5-3-3-l 13625.42 0.63 13690.10 0.47 13690.10 0.47 4.04

rc1-5-2-2-s 13087.11 0.33 13087.00 0.00 13087.00 0.00 0.87

rc2-5-2-3-s 14034.51 0.37 14034.50 0.00 14034.50 0.00 0.91

rc3-5-3-2-s 14942.71 0.21 14942.70 0.00 14942.70 0.00 4.39

rc4-5-3-3-s 14179.03 0.50 14186.10 0.05 14253.42 0.52 4.85

rc5-5-2-2-l 15375.42 0.36 15375.50 0.00 15375.50 0.00 0.93

rc6-5-2-3-l 14233.50 0.36 14330.60 0.68 14330.60 0.68 0.94

rc7-5-3-2-l 15188.62 0.39 15188.60 0.00 15188.60 0.00 4.36

rc8-5-3-3-l 14544.75 0.52 14544.70 0.00 14544.70 0.00 5.27

Average 0.41 0.27 0.29 2.55

Notes : λ, objective value found by Gurobi; t (s), running time using Gurobi; λb, best

objective value found by the ALNSM; ∆b (%), gap between λ and λb; λa, average

objective value of 10 runs; ∆a (%), gap between λ and λa; ta (s), average running

time of 10 runs using the ALNSM.

Although the matheuristic generally handles most instances well, there

are some cases where the algorithm shows no improvement. Instances

with ∆a values of 0.00 did not improve the initial solution, which occurs in

only eight out of 72 instances. This may be due to an insufficient number

of iterations in the search or a limited set of operators for the routing

variables.
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Table 5.3: Results for instances with 10 turbines for the multi-period LRP

Gurobi ALNSM

Instance λ t λb ∆b λa ∆a ta

c1-10-3-3-s 16006.04 1401 16294.20 1.80 16294.20 1.80 8.01

c2-10-3-4-s 15133.27 7200 15213.30 0.53 15246.49 0.75 7.49

c3-10-4-3-s 15356.39 3823 15360.20 0.02 15360.20 0.02 8.57

c4-10-4-4-s 18345.63 1814 19098.60 4.10 19098.60 4.10 9.37

c5-10-3-3-l 14826.90 1222 14826.70 0.00 14826.70 0.00 5.92

c6-10-3-4-l 18266.14 7200 18258.90 -0.04 18258.90 -0.04 7.90

c7-10-4-3-l 14781.72 4008 14817.50 0.24 14817.50 0.24 8.55

c8-10-4-4-l 18143.33 7200 18156.00 0.07 18169.12 0.14 10.16

r1-10-3-3-s 18332.54 719.91 18661.50 1.79 18678.04 1.88 10.06

r2-10-3-4-s 17898.23 7200 17953.30 0.31 17953.30 0.31 7.25

r3-10-4-3-s 17214.96 132.24 18102.40 5.16 18102.40 5.16 9.15

r4-10-4-4-s 19649.82 7200 19649.60 0.00 19649.60 0.00 7.31

r5-10-3-3-l 18430.88 4096 18610.90 0.98 18706.69 1.50 8.41

r6-10-3-4-l 17701.57 2302 17701.30 0.00 17701.30 0.00 6.24

r7-10-4-3-l 16314.37 6922 16316.30 0.01 16316.30 0.01 8.39

r8-10-4-4-l 18144.98 7200 18163.20 0.10 18163.20 0.10 9.10

rc1-10-3-3-s 16254.02 2913 16262.30 0.05 16265.81 0.07 5.74

rc2-10-3-4-s 17529.87 5104 18757.40 7.00 18758.90 7.01 6.82

rc3-10-4-3-s 17464.57 1404 17464.60 0.00 17464.60 0.00 8.71

rc4-10-4-4-s 16600.28 2916 17959.10 8.19 18071.48 8.86 8.61

rc5-10-3-3-l 16647.10 6272 16647.00 0.00 16647.00 0.00 6.43

rc6-10-3-4-l 17956.94 7200 18085.50 0.72 18844.91 4.94 7.13

rc7-10-4-3-l 16288.88 5293 16288.70 0.00 16288.70 0.00 7.04

rc8-10-4-4-l 16789.91 7200 16790.00 0.00 16790.00 0.00 7.05

Average 4498 1.29 1.54 7.89

Notes : λ, objective value found by Gurobi; t (s), running time using Gurobi; λb, best

objective value found by the ALNSM; ∆b (%), gap between λ and λb; λa, average

objective value of 10 runs; ∆a (%), gap between λ and λa; ta (s), average running

time of 10 runs using the ALNSM.
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Table 5.4: Results for instances with 15 turbines for the multi-period LRP

Gurobi ALNSM

Instance λ t λb ∆b λa ∆a ta

c1-15-4-4-s - 7200 18696.90 - 18718.67 - 11.85

c2-15-4-5-s 17514.90 7200 17524.40 0.05 17536.88 0.13 15.52

c3-15-5-4-s 16661.17 7200 16026.40 -3.81 16041.73 -3.72 16.15

c4-15-5-5-s 18569.10 7200 19315.00 4.02 19380.56 4.37 18.88

c5-15-4-4-l 18945.90 7200 18986.40 0.21 19012.68 0.35 15.17

c6-15-4-5-l 20215.54 7200 20353.20 0.68 20394.78 0.89 14.26

c7-15-5-4-l 16568.53 7200 16438.00 -0.79 16490.24 -0.47 17.28

c8-15-5-5-l 20311.79 7200 20406.90 0.47 20467.33 0.77 18.60

r1-15-4-4-s - 7200 22822.10 - 22822.10 - 16.06

r2-15-4-5-s - 7200 25397.50 - 25397.50 - 11.47

r3-15-5-4-s - 7200 19916.20 - 19916.34 - 18.80

r4-15-5-5-s 21757.76 7200 21827.60 0.32 21879.14 0.56 19.32

r5-15-4-4-l - 7200 21361.40 - 21485.44 - 15.80

r6-15-4-5-l 22142.08 7200 22316.00 0.79 22376.70 1.06 16.36

r7-15-5-4-l - 7200 21216.30 - 21278.69 - 12.83

r8-15-5-5-l 20172.16 7200 20720.70 2.72 21360.43 5.89 17.39

rc1-15-4-4-s - 7200 22033.00 - 22138.19 - 16.57

rc2-15-4-5-s - 7200 22509.00 - 22509.00 - 10.26

rc3-15-5-4-s - 7200 19200.20 - 19235.28 - 14.43

rc4-15-5-5-s 20248.24 7200 21777.20 7.55 21856.06 7.94 19.50

rc5-15-4-4-l 19654.07 7200 19226.70 -2.17 19258.75 -2.01 15.12

rc6-15-4-5-l 19787.43 7200 20100.00 1.58 20124.12 1.70 13.47

rc7-15-5-4-l - 7200 19961.90 - 20221.16 - 16.88

rc8-15-5-5-l 20949.99 7200 20474.30 -2.27 20561.70 -1.85 16.98

Average 7200 0.67 1.11 15.79

Notes : λ, objective value found by Gurobi; t (s), running time using Gurobi; λb, best

objective value found by the ALNSM; ∆b (%), gap between λ and λb; λa, average

objective value of 10 runs; ∆a (%), gap between λ and λa; ta (s), average running time

of 10 runs using the ALNSM. Better solutions found by the ALNSM are highlighted

in bold. λ is stated as ‘-’ for instances where Gurobi failed to find a solution.

Table 5.5: Average results for small instances for the multi-period LRP

Gurobi ALNSM

t ∆b ∆a ta

Overall Average 3899.34 0.75 0.96 8.74

Notes : t (s), running time using Gurobi; ∆b (%), gap between λ and λb; ∆a (%), gap

between λ and λa; ta (s), average running time of 10 runs using the ALNSM.
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Table 5.6: Results for instances with 100 turbines for the multi-period LRP

Instance λb λa ∆a ta Instance λb λa ∆a ta

c1-100-8-6-s 48464.2 74719.23 54.17 217.74 r13-100-8-6-l 53191.1 54985.87 3.37 267.01

c2-100-8-6-s 88449.9 88449.9 0.00 190.81 r14-100-8-6-l 54099.7 55051.85 1.76 188.65

c3-100-8-8-s 51746.8 58615.6 13.27 230.97 r15-100-8-8-l 56578.9 57606.68 1.82 217.98

c4-100-8-8-s 47699.2 48294.45 1.25 235.78 r16-100-8-8-l 58566.5 59546.19 1.67 263.53

c5-100-8-10-s 49356.9 50226.75 1.76 197.46 r17-100-8-10-l 55446.6 56709.39 2.28 229.72

c6-100-8-10-s 51580.8 52727.02 2.22 168.85 r18-100-8-10-l 60141 62038.43 3.15 221.74

c7-100-10-6-s 43561.7 43881.93 0.74 287.19 r19-100-10-6-l 54733.2 55796.33 1.94 435.21

c8-100-10-6-s 105557 105557 0.00 250.52 r20-100-10-6-l 50892.1 52203.52 2.58 295.59

c9-100-10-8-s 49160.2 49790.17 1.28 293.53 r21-100-10-8-l 60152.9 61656.43 2.50 465.43

c10-100-10-8-s 51781.9 52550.22 1.48 372.63 r22-100-10-8-l 55915.4 56919.99 1.80 342.37

c11-100-10-10-s 49531.4 50467.45 1.89 310.11 r23-100-10-10-l 60724.8 69112.12 13.81 452.35

c12-100-10-10-s 46181.1 47026.44 1.83 285.07 r24-100-10-10-l 62357.9 63333.53 1.56 465.10

c13-100-8-6-l 46173.9 47819.25 3.56 219.95 rc1-100-8-6-s 45105.6 45749.21 1.43 198.44

c14-100-8-6-l 42164 42989.73 1.96 204.52 rc2-100-8-6-s 117682.2 117682.2 0.00 163.97

c15-100-8-8-l 50696 51603.84 1.79 209.76 rc3-100-8-8-s 58338.2 59437.27 1.88 253.10

c16-100-8-8-l 44661 45055.33 0.88 217.70 rc4-100-8-8-s 51974.5 52524.83 1.06 175.09

c17-100-8-10-l 47954.6 49540.32 3.31 205.38 rc5-100-8-10-s 57562 58986.78 2.48 256.49

c18-100-8-10-l 46862.3 47466.28 1.29 223.07 rc6-100-8-10-s 56407.1 57675.61 2.25 257.56

c19-100-10-6-l 36163.3 37040.85 2.43 258.51 rc7-100-10-6-s 118716 118716 0.00 389.92

c20-100-10-6-l 42779.1 43394.58 1.44 267.03 rc8-100-10-6-s 45766.9 109900.44 140.13 267.43

c21-100-10-8-l 54433.7 55497.58 1.95 365.81 rc9-100-10-8-s 50036.1 50753.43 1.43 312.69

c22-100-10-8-l 48906.3 49683.58 1.59 370.27 rc10-100-10-8-s 55066.4 55670.97 1.10 389.12

c23-100-10-10-l 44221.9 44999.14 1.76 262.49 rc11-100-10-10-s 59768.3 60739.3 1.62 432.71

c24-100-10-10-l 46351 47284.12 2.01 281.19 rc12-100-10-10-s 51611.5 52545 1.81 267.11

r1-100-8-6-s 116804.1 116804.1 0.00 190.75 rc13-100-8-6-l 50081.8 50842.5 1.52 148.01

r2-100-8-6-s 116101.6 116101.6 0.00 185.97 rc14-100-8-6-l 51291.5 51987.47 1.36 209.14

r3-100-8-8-s 54301.9 55585.57 2.36 180.46 rc15-100-8-8-l 52958.1 53651.88 1.31 165.72

r4-100-8-8-s 55070.6 80036.41 45.33 227.89 rc16-100-8-8-l 52293.4 52975.72 1.30 207.27

r5-100-8-10-s 56409.1 57693.17 2.28 172.68 rc17-100-8-10-l 55291.6 56288.75 1.80 210.92

r6-100-8-10-s 58183.8 60203.95 3.47 255.13 rc18-100-8-10-l 51823.5 52902.78 2.08 193.54

r7-100-10-6-s 135397.3 135397.3 0.00 275.81 rc19-100-10-6-l 50221.3 51280.78 2.11 305.69

r8-100-10-6-s 124826.8 124826.8 0.00 321.00 rc20-100-10-6-l 48994.8 49992.73 2.04 334.28

r9-100-10-8-s 54931.3 56063.08 2.06 311.99 rc21-100-10-8-l 54138.4 55050.53 1.68 284.89

r10-100-10-8-s 57021.8 65754.79 15.32 363.24 rc22-100-10-8-l 54743.5 55663.51 1.68 331.67

r11-100-10-10-s 56821.5 57489.63 1.18 320.79 rc23-100-10-10-l 52222.8 53048.58 1.58 273.05

r12-100-10-10-s 57774.3 59105.04 2.30 288.77 rc24-100-10-10-l 53131.4 54001.08 1.64 275.86

Average 5.44 269.02

Notes : λb, best objective value found by the ALNSM; λa, average objective value of 10 runs; ∆a (%), gap between λb and λa;

ta (s), average running time of 10 runs using the ALNSM.
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Figure 5.2 shows the running time of the ALNSM with respect to the

problem complexity. The problem complexity is defined as the product of

the number of turbines, the number of charging stations, the number of

vessels and the number of time windows. The geographical distributions

‘Clustered’, ‘Ramdom’, ‘Mixed’ of the large instances are plotted. For

each problem complexity and distribution, average running times are

aggregated by average for each geographical distribution. The average

running times show significant variability depending on the problem

characteristics. However, there is only a slight upward trend in running

times across all distributions. Most solutions fall within the range of

180 to 360 seconds, indicating that while the overall computational time

performance varies, it remains relatively consistent.
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Figure 5.2: Average running time with respect to problem complexity

Average running times for the geographical distribution of large instances. For each

problem complexity, the average running time is aggregated by average for each

distribution ‘Clustered’, ‘Ramdom’, and ‘Mixed’, respectively.

Solution visualisations are provided for the instances c2-5-2-3-s and

r3-10-4-3-s to examine the routing and siting capabilities of the ALNSM.
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Figure 5.3 and Figure 5.4 present the optimal solution for instance c2-5-2-

3-s found by using Gurobi and the ALNSM, respectively. For the instance

r3-10-4-3-s, the solution found by Gurobi is shown Figure 5.5 and the

solution generated by the ALNSM is displayed in Figure 5.6. Additional

visualisations of solutions for remaining instance sizes and distributions

are provided in Appendix B.

Since both solution approaches obtain an optimal solution for instance

c2-5-2-3-s, the only difference lies in the routing direction of the vessels. In

Figure 5.3, vessel routes are determined in a clockwise manner. Conversely,

in Figure 5.4 routes are oriented anticlockwise. The routing direction of

the vessels does not affect the solution, as both clockwise and anticlockwise

routes cover the same set of nodes and have identical total distance and

time requirements.
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Figure 5.3: Solution for instance c2-5-2-3-s solved by Gurobi
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Figure 5.4: Solution for instance c2-5-2-3-s solved by the ALNSM

For instance r3-10-4-3-s, the ALNSM does not find the optimal solution

and shows a 5.16 % gap between its best solution and the one found by

Gurobi. This difference is clear to see in Figure 5.6, where turbine 4 is

visited as a sub-tour and the trip visiting turbines 3, 2, and 5 is longer than

the solution found by Gurobi. However, the ALNSM effectively handles

sub-tour elimination in the other trips. Similar to instance c2-5-2-3-s, the

routing directions differ in the solutions generated with Gurobi routing

clockwise and the ALNSM routing anticlockwise.
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Figure 5.5: Solution for instance r3-10-4-3-s solved by Gurobi
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Figure 5.6: Solution for instance r3-10-4-3-s solved by the ALNSM



Chapter 6

Conclusion

In this thesis, a multi-period LRP in the offshore wind industry is pro-

posed which considers the routing of electric maintenance vessels and the

placement of offshore charging units. The aim is to minimise the total cost

while meeting maintenance demands of OWTs. Offshore charging units al-

lows a homogeneous fleet of maintenance vessels to be operational without

returning to an onshore base to recharge. A mathematical formulation for

the proposed planning problem is presented. Due to the computational

difficulty of problem, a matheuristic algorithm is developed to efficiently

solve larger instances. The presented heuristic uses common metaheuristic

operators iteratively within an ALNS framework to determine the rout-

ing variables and uses a commercial solver to determine the placement

of charging stations with respect to the resulting routing variables. To

ensure that the matheuristic produces good solutions, a set of 72 smaller

instances are generated. Additionally, 72 larger instances are generated

to evaluate the robustness and stability of the proposed algorithm. These

new instances cover three different geographical distributions such that

the algorithm can handle various scenarios effectively. Despite a very

limited set of available heuristics in the ALNS framework, the solution

approach achieves good results in a short time span for both small and

large instances. This indicates promising performance, and the algorithm

could potentially find even better solutions with a more varied set of

heuristics. Notably, the solution approach improved upon the solutions

found by the commercial solver for small instances.

An analysis of the matheuristic’s ability to effectively route vessels

and site charging stations is performed. In most cases, the algorithm is

able to eliminate sub-tours effectively and find good solutions for small

instances.

In conclusion, this thesis contributes to the field of location routing by
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considering offshore logistics in offshore wind farms. A multi-period LRP is

proposed and solved for 144 newly generated instances by a matheuristic

algorithm which provide insights for siting charging infrastructure to

offshore wind farm owners.

6.1 Future research

The limitations of the proposed ALNSM algorithm include the lack of

implemented operators. Expanding the set of available heuristics would

enhance the exploration of the solution space, leading to greater diversi-

fication and intensification during the search process. Both inter-route

and intra-route specific heuristics could be considered. Moreover, taking

advantage of the specific characteristics of the multi-period LRP problem

is likely to improve the performance of the solution approach. By incor-

porating problem-specific operators, it may be possible to discover better

solutions than those presented in this thesis.

A statistical analysis of the various components of the algorithm could

be conducted to assess the significance of each element. This process would

involve systematically removing individual components and observing

their impact on overall performance.

Furthermore, evaluating the algorithm’s performance on real-world

instances would be valuable. Wind farm owners would gain managerial

insights from real-world applications, potentially driving further devel-

opment of electric maintenance vessels and charging station technology.

Conducting case studies would provide practical insights into the effect-

iveness and robustness of the matheuristic, and into its performance

under real-world conditions. Such studies would also help identify any

potential limitations or areas for improvement that may not be evident

in theoretical environments.
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Power and Consumption Rate

Estimation Curves
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Figure A.1: Estimated power for the REM Energy CSOV
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Figure A.2: Estimated consumption rate for the REM Energy CSOV
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Route Visualisation

B.1 Additional instances with 5 Turbines
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Figure B.1: Solution for instance r5-5-2-2-l solved by ALNSM
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Figure B.2: Solution for instance r5-5-2-2-l solved by Gurobi
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Figure B.3: Solution for instance rc7-5-3-2-l solved by ALNSM
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Figure B.4: Solution for instance rc7-5-3-2-l solved by Gurobi
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B.2 Additional instances with 10 Turbines
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Figure B.5: Solution for instance c5-10-3-3-l solved by ALNSM
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Figure B.6: Solution for instance c5-10-3-3-l solved by Gurobi
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Figure B.7: Solution for instance rc3-10-4-3-s solved by ALNSM
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Figure B.8: Solution for instance rc3-10-4-3-s solved by Gurobi
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