
A Model of Type Theory in Cubical Sets
Marc Bezem1, Thierry Coquand2, and Simon Huber2

1 Department of Informatics, University of Bergen
Postboks 7800, N-5020 Bergen, Norway
bezem@ii.uib.no

2 Department of Computer Science and Engineering, University of Gothenburg
SE-412 96 Göteborg, Sweden
{thierry.coquand, simon.huber}@cse.gu.se

Abstract
We present a model of type theory with dependent product, sum, and identity, in cubical sets.
We describe a universe and explain how to transform an equivalence between two types into
an equality. We also explain how to model propositional truncation and the circle. While not
expressed internally in type theory, the model is expressed in a constructive metalogic. Thus it
is a step towards a computational interpretation of Voevodsky’s Univalence Axiom.

1998 ACM Subject Classification F.4.1 Mathematical Logic, F.3.2 Semantics of Programming
Languages

Keywords and phrases models of dependent type theory, cubical sets, univalent foundations

Digital Object Identifier 10.4230/LIPIcs.TYPES.2013.107

La théorie singulière classique utilise des simplexes;
dans la suite de ce chapitre, nous aurons besoin d’une
définition équivalente, mais utilisant des cubes; il est
en effet évident que ces derniers se prêtent mieux que

les simplexes à l’étude des produits directs, et, a
fortiori, des espaces fibrés qui en sont la généralisation.

(J. P. Serre, Thèse, Paris,1951 [21])

1 Introduction

In [16], Voevodsky proposes a new axiom in dependent type theory: the Univalence Axiom.
This opens up for many improvements for the encoding of mathematics in type theory in
general: function extensionality, identification of isomorphic structures, etc.

In order to preserve the good computational properties of type theory it is crucial that
postulated constants have a computational interpretation. Concerning univalence, this is an
important open problem. One way of attacking this problem is by constructing a model of the
new axiom, in type theory itself, or at least in a constructive metalogic. The computational
interpretation can then be obtained through the semantics, for example, by evaluating a
term of type N (natural numbers) in the model.

The model of type theory with the Univalence Axiom given by Voevodsky [16] is based
on Kan simplicial sets. A problem with a constructive approach to Kan simplicial sets is
that degeneracy is in general undecidable [3]. This problem makes it impossible to use the
Kan simplicial set model as it is to obtain a computational interpretation of univalence.

We present a model of dependent type theory in cubical sets. This can be seen as a
generalization of Bishop’s notion of set [4]. While not expressed internally in type theory,

© Marc Bezem, Thierry Coquand, and Simon Huber;
licensed under Creative Commons License CC-BY

19th International Conference on Types for Proofs and Programs (TYPES 2013).
Editors: Ralph Matthes and Aleksy Schubert; pp. 107–128

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TYPES.2013.107
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

108 A Model of Type Theory in Cubical Sets

this model is expressed in a constructive metalogic. It can be seen as a simplification and a
constructive version of the Kan simplicial set model of type theory [16, 1].

The first combinatorial description of homotopy groups by Kan used cubical sets [15];
see [7], [27] for a more recent account. Our presentation of cubical sets amounts to have
a formal representation of cubes seen as continuous maps [0, 1]I → X, where I is a finite
set of symbols, instead of using only continuous maps [0, 1]n → X. If I = x1, . . . , xn such
a continuous map u can be seen as a function of x1, . . . , xn which vary in the unit interval.
We can then consider for instance u(xi = 0), which is the quantity u where we set xi to
be 0, or we can introduce a new symbol y and consider u to be a quantity as a function of
x1, . . . , xn, y, which is actually independent of y. We formalize this by defining a cubical set
to be a covariant presheaf on a suitable base category, where objects are finite sets of symbols
and maps are substitution. This opens connections with the theory of nominal sets [20, 19].

Following e.g. [11], we can give a model of type theory where a context is interpreted by a
cubical set. Like for the classical model based on simplicial sets where one restricts the model
to Kan fibrations, we restrict our model by requiring a certain Kan structure on dependent
types. Like in Kan’s original paper [15], such a Kan structure requires fillers of open boxes.
However, in order for this structure to be preserved–in a constructive metalogic–under all
type forming operations, in particular Π, a certain uniformity condition is required on the
choice of the fillers. This structure is essential for validating the elimination rule of identity
types.

The strengthening of the Kan condition is natural given the reformulation of the notion
of cubical sets that we present in the first section, and the connection mentioned above with
nominal sets.

In this paper we present the semantics of dependent products, sums and identity types.
We also show how to interpret the universe, but only sketch one special case how one
could define the Kan structure on the universe. We also only describe how to transform an
equivalence between two small types into a path between these types. Based on the model
described in the first version of this paper (a nominal version of it) C. Cohen, A. Mörtberg
and the last two authors have implemented a type checker1. This implementation supports
computing with the Univalence Axiom and Kan operations for the universe.

The paper is structured as follows. In the next two sections we introduce the category of
names and substitutions and we define cubical sets. In Section 4 we explain the presheaf
semantics of type theory in the special case of cubical sets. In the next two sections we define
the uniform Kan condition and we give examples of cubical sets. In Section 7 we show that
Kan cubical sets are a model for dependent types. In the last section we show how identity
types can be interpreted in the Kan cubical set model, and describe the universe as a cubical
set (and only indicate how Kan fillings can be given), and how to transform an equivalence
into an equality of types. Finally, we explain how to represent in our model spaces up
to homotopy such as the sphere, and the operation of propositional truncation, giving in
particular a new computational interpretation of the axiom of description [26, Introduction].

2 The category of names and substitutions

We start by fixing a countable discrete set of names or symbols, hereafter called the name
space, such that 0 and 1 are not names.

1 Available at: http://github.com/simhu/cubical

http://github.com/simhu/cubical

M. Bezem, T. Coquand, and S. Huber 109

I Definition 1. The category C of names and substitutions has as objects all finite decidable
subsets of the name space, denoted by I, J,K, A morphism f : I → J is a map
I → J ∪ {0, 1} such that f(i) = f(j) iff i = j whenever f(i) and f(j) are in J .

Notice that {0, 1} is disjoint from J since J is a set of names. We say that i is in the domain
of f , or that f(i) is defined, if f(i) is an element of J .2 So the condition for f being a
morphism can be reformulated by saying that f is injective on its domain.

Clearly, 1I : I → I defined by 1I(i) = i for all i ∈ I is a morphism. If f : I → J and
g : J → K are morphisms, we define the composition g ◦ f by (g ◦ f)(i) = g(f(i)) if i is in
the domain of f , and (g ◦ f)(i) = f(i) if f(i) = 0, 1. Clearly, g ◦ f : I → K is a morphism.
We shall write fg for the composition g ◦ f , so first f and then g. It is not difficult to see
that composition is associative and that 1If = f = f1J . Hence C is a category. From now
on, we may simply write 1 instead of 1I .

Every f : I → J has a unique extension to a map I∪{0, 1} → J∪{0, 1} that is the identity
on {0, 1}, and this canonical extension respects composition. Together with I 7→ I ∪ {0, 1}
we get a functor C → Set.

We think of f : I → J as a substitution with renaming, where the only values we can
substitute are 0 and 1. In particular we have for any x in I two substitutions (x = b) : I →
I − x, for b = 0, 1, defined by (x = b)(y) = y if y 6= x and (x = b)(x) = b. These are the face
maps. Thus there are 2n face maps when I has n elements, that is, in dimension n (where
simplicial sets have n+ 1 face maps).

We say that a map f : I → J is a degeneracy map iff all elements in I are in the
domain of f . For instance, if I ⊆ J the canonical inclusion I → J defines a degeneracy
map. If x is not in I the inclusion map I → I, x will be written as ιx. We have two face
maps (x = 0), (x = 1) : I, x → I and we have ιx(x = 0) = ιx(x = 1) = 1I , which is one
example of a cubical identity. There are many more cubical identities, often implicit in the
notations. We also have the following result (cf. simplicial sets): every morphism f has a
unique decomposition f = gh where g is a composite of face maps and h is a degeneracy
map.

If f : I → J is defined on x, we write f − x : I − x→ J − f(x) for the map defined by
(f − x)(y) = f(y) if y is in I − x.

If f : I → J and x is not in I and y is not in J , we can extend f to a map (f, x = y) :
I, x→ J, y by sending x to y.

3 Cubical sets

I Definition 2. A cubical set is a covariant functor C → Set.

Let X be a cubical set. Then we have sets X(I) and set maps (called restrictions) X(I)→
X(J), u 7−→ uf for any morphism f : I → J , such that u1 = u and u(fg) = (uf)g. Another
notation for uf would be X(f)(u).

A cubical set X is a presheaf on the category Cop. Any finite set of directions I represents
by the Yoneda embedding y : Cop → SetC a cubical set yI, which can be thought of as a formal
representation of [0, 1]I . An element of X(I) can then be seen as a formal representation of
a “continuous” map [0, 1]I → X, and it is natural to call an element of X(I) an I-cube.

2 In a previous attempt, we have been considering the category of finite sets with maps I → J + 2 (i.e.
the Kleisli category for the monad I + 2). This category appears on pages 47–48 in Pursuing Stacks
[10] as “in a sense, the smallest test category”.

TYPES 2013

110 A Model of Type Theory in Cubical Sets

For finite sets of names we will write commas instead of unions and often omit curly
braces; e.g. we write I, x for I∪{x}, I−x for I−{x}, and X(x1, . . . , xn) for X({x1, . . . , xn}).

We think of u in X(I) as meaning that u may depend on the names in I, and only on those
names; we think of uf in X(J) as the element we obtain by performing the substitution f
on u, possibly combined with renaming and/or adding variables. An element of X() represents
a point, an element ω of X(x) a line connecting the points ω(x = 0) and ω(x = 1) in X().
An element in X(x, y) represents a square. We then follow some notations similar to the
ones in first-order logic by writing u = u(x1, . . . , xn) when u is in X(x1, . . . , xn). This is
similar to saying that u may depend at most on the names x1, . . . , xn. In doing so we always
implicitly assume that the names x1, . . . , xn are pairwise distinct; the order of the names
in X(x1, . . . , xn) does not matter. Applying a face map will now be expressed by actually
performing the substitution. For example, we have that u(x = 0) is in X(y) whenever u is in
X(x, y):

u(0, 1)
u(x,1) // u(1, 1) u(0, 0)

u(x,0) // u(1, 0)

u(x, y) u(x, 0)

u(0, 0)
u(x,0)

//

u(0,y)

OO

u(1, 0)

u(1,y)

OO

u(0, 0)
u(x,0)

//

u(0,0)

OO

u(1, 0)

u(1,0)

OO

If v is an I − x cube of X then we can consider vιx which is an I-cube of X (we recall
that ιx : I − x → I is the canonical inclusion). The map v 7−→ vιx is injective (we have
vιx(x = 0) = v) and it is natural to identify v and vιx, thus considering X(I − x) to be a
subset of X(I). An example is the degenerate right square above.

If u is in X(I) and x is in I, there may exist a v in X(I − x) such that u = vιx = v.
Intuitively, this means that x “does not occur” in u, or that u is “independent” of x. One
sometimes uses the notation x#u to express this relation. In general, this relation does not
need to be decidable.

If X is a cubical set and a and u are two points (∅-cube) of X we can define a new cubical
set IdX a u by taking an element in (IdX a u)(I) to be an I, x-cube ω of X where x is a
fresh variable (i.e. x /∈ I), such that ω(x = 0) = a and ω(x = 1) = u. The name x is “bound”
in this operation so that another I, x′-cube ω′ is equal to ω iff ω′(x′ = x) = ω. We introduce
a new binding operation 〈x〉ω which defines this I-cube of IdX a u. One way to make this
notion precise is to assume a choice function on the set of names which selects a fresh name
for any finite subset and define 〈x〉ω to be ω(x = xI) where xI is the fresh name given by
the choice function. (This is the solution suggested in [22].)

The corresponding category with the same objects and morphisms I → J ∪ {0} has been
already considered as the category of partial injections. It has been shown by Staton that the
category of covariant presheaves over this category is equivalent to the category of nominal
sets with one restriction operation (see [20, exercise 9.7]). Using the same method, we can
associate in a canonical way a nominal set to any cubical set. A category equivalent to to
the category of cubical sets is presented in [19].

M. Bezem, T. Coquand, and S. Huber 111

4 Cubical sets as a presheaf model

We will now recall how cubical sets, as does any presheaf category, give rise to a model of
dependent type theory. We use Dybjer’s notion of category with families (CwF) to devise
such a model [9, 8, 11]. We stress the fact that such a structure is described by a generalized
algebraic theory [5]. To give a CwF is to give:
1. interpretations (as sets) for the sorts of contexts, context morphisms (substitutions),

types and terms;
2. operations;
3. checking equations.
This amounts to validate the rules given in Figure 1. Note that we use polymorphic notation
to increase readability as in [5, 9]; e.g. without this convention we should have written
pΓ,A for the first projection p : Γ.A → Γ. Also, we leave the type parameters implicit, e.g.
(Aσ)δ = A(σδ) tacitly assumes the premises σ : ∆→ Γ, δ : Θ→ ∆ and Γ ` A. These points
are also stressed in [25, Sec. 1] and [9].

We will now describe how cubical sets give rise to such a structure. This construction
works for any presheaf category and is described in [11, Sec. 4]. Instead of using contravariant
presheaves, we use covariant presheaves and write composition in diagram order.

A context Γ, written Γ `, is interpreted by a cubical set, and context morphisms
σ : ∆ → Γ are interpreted as cubical set maps (i.e. natural transformations), that is we
have (σβ)f = σ(βf) if β is a I-cube of ∆. A dependent type Γ ` A is given by sets Aα
for each I-cube α of Γ together with maps (also called restrictions) Aα→ Aαf, u 7−→ uf

for each f : I → J , satisfying u1 = u and u(fg) = (uf)g. Another way to express this is
to say that A is a covariant presheaf on the category of elements of Γ, where the category
of elements of Γ is given by objects (I, α) with α ∈ Γ(I), and morphisms f : (I, α)→ (J, β)
given by f : I → J in C such that β = αf . A section (or term) Γ ` a : A is defined by
giving an element aα in Aα for each I-cube α of Γ in such a way that (aα)f = a(αf) for
any f : I → J . The empty context () is given by the cubical set with exactly one I-cube for
each I. Given Γ ` A and σ : ∆→ Γ we define ∆ ` Aσ by (Aσ)α = A(σα) and the induced
maps; likewise, substitution in a term Γ ` a : A is given by (aσ)α = a(σα). If Γ ` A, we
define the cubical set Γ.A by taking as I-cubes of Γ.A pairs (α, u) with α an I-cube of Γ
and u in Aα. For f : I → J we define (α, u)f = (αf, uf). The first projection p : Γ.A→ Γ,
p(α, u) = α becomes thus a context morphism, and the second projection q(α, u) = u a
section Γ.A ` q : Ap corresponding to the first de Bruijn index. For Γ ` A, σ : ∆→ Γ and
∆ ` u : Aσ we give (σ, u) : ∆→ Γ.A by (σ, u)β = (σβ, uβ). This concludes the description of
the CwF without type formers.

We now describe how to interpret Π and Σ. If Γ ` A and Γ.A ` B, we define the type
Γ ` ΠAB as follows. For each I-cube α of Γ, an element w of (ΠAB)α is a family (wf)
indexed by f : I → J such that

wf ∈
∏

u∈Aαf

B(αf, u)

is a dependent function and (wf (u))g = wfg(ug) for g : J → K and u ∈ Aαf . We define
the family wf in (ΠAB)αf by putting (wf)g = wfg, which completes the definition of
Γ ` ΠAB. Given Γ.A ` b : B we interpret Γ ` λ b : ΠAB by ((λ b)α)f (u) = b(αf, u) for u
in Aαf . Application Γ ` app(w, u) : B[u] (where [u] = (1, u) : Γ → Γ.A) of Γ ` w : ΠAB

to Γ ` u : A is given by app(w, u)α = (wα)1(uα). We get app((λ b), u)α = ((λ b)α)1(uα) =
b(α, uα) = (b[u])α.

TYPES 2013

112 A Model of Type Theory in Cubical Sets

Γ `
1 : Γ→ Γ

σ : ∆→ Γ δ : Θ→ ∆
σδ : Θ→ Γ

Γ ` A σ : ∆→ Γ
∆ ` Aσ

Γ ` t : A σ : ∆→ Γ
∆ ` tσ : Aσ

() `
Γ ` Γ ` A

Γ.A `
Γ ` A

p : Γ.A→ Γ
Γ ` A

Γ.A ` q : Ap

σ : ∆→ Γ Γ ` A ∆ ` u : Aσ
(σ, u) : ∆→ Γ.A

Γ.A ` B
Γ ` Π A B

Γ.A ` B Γ.A ` b : B
Γ ` λb : Π A B

Γ ` w : Π A B Γ ` u : A
Γ ` app(w, u) : B[u]

Γ.A ` B
Γ ` Σ A B

Γ.A ` B Γ ` u : A Γ ` v : B[u]
Γ ` (u, v) : Σ A B

Γ ` w : Σ A B

Γ ` w.1 : A
Γ ` w : Σ A B

Γ ` w.2 : B[w.1]

1σ = σ1 = σ (σδ)ν = σ(δν) [u] = (1, u)

A1 = A (Aσ)δ = A(σδ) u1 = u (uσ)δ = u(σδ)

(σ, u)δ = (σδ, uδ) p(σ, u) = σ q(σ, u) = u (p, q) = 1

(Π A B)σ = Π (Aσ) (B(σp, q)) (λb)σ = λ(b(σp, q))

app(w, u)δ = app(wδ, uδ) app(λb, u) = b[u] w = λ(app(wp, q))

(Σ A B)σ = Σ (Aσ) (B(σp, q)) (w.1)σ = (wσ).1 (w.2)σ = (wσ).2

(u, v)σ = (uσ, vσ) (u, v).1 = u (u, v).2 = v (w.1, w.2) = w

Figure 1 Rules of MLTT.

The definition of dependent sums is easier: Γ ` ΣAB for Γ ` A and Γ.A ` B is defined
by sums in each stage, i.e. for an I-cube α in Γ, (ΣAB)α consists of pairs (u, v) with u in
Aα and v in B(α, u). Restrictions are defined component-wise: (u, v)f = (uf, vf) where
f : I → J . If Γ ` w : ΣAB and wα = (u, v), then (w.1)α = u and (w.2)α = v.

We can then verify all the equations of Figure 1.

5 The uniform Kan condition

Using these notations we can formulate the Kan condition (cf. [15]) and our strengthening
as follows. Let X be a cubical set. First we define the notion of an open box in X, the
equivalent of a horn in a simplicial set. Let I be a finite set of names and let J, x ⊆ I. The
variable x must not be in J and will be the direction in which the box is open. For every
y ∈ J , the open box will have two faces, one with y = 0 and one with y = 1. Let O+(J, x)
consist of pairs (x, 0) and (y, b) for y ∈ J, b = 0, 1. In the same way we define O−(J, x), but
with (x, 1) instead of (x, 0). The idea for both is that one face in the direction x is missing.
We use O(J, x) to denote either O+(J, x) or O−(J, x). An open box, denoted by ~u, is a family
of elements (faces) uyb in X(I − y) for each (y, b) ∈ O(J, x) such that

uyb(z = c) = uzc(y = b)

M. Bezem, T. Coquand, and S. Huber 113

for all (y, b), (z, c) ∈ O(J, x) with y 6= z. The latter condition may be phrased as: the faces
of an open box are adjacent-compatible. If f : I → K is defined on J, x, we write ~uf for the
open box indexed by O(f(J), f(x)) with components (~uf)(fy)b = uyb(f − y) in X(K − f(y)).

For X to be a (constructive) Kan cubical set, we require to be given operations X↑ and
X↓ for every J, x ⊆ I such that X↑~u and X↓~u are both in X(I). Here ~u is an open box
with ux0 and ux1 in X(I − x) in the respective cases X↑~u and X↓~u. (From now on we will
always tacitly assume that the open box ~u is of the right type with respect to X↑, X↓.) The
operations X↑, X↓ are to be thought of as a filling their respective open boxes. Therefore we
require for all (y, b) ∈ O(J, x):

(X↑~u)(y = b) = uyb (X↓~u)(y = b) = uyb

The new uniformity condition is: if f : I → K is defined on J, x, we require:

(X↑~u)f = X↑(~uf) (X↓~u)f = X↓(~uf)

We refer to the combined condition as the uniform Kan condition for cubical sets, or the
Kan condition for short.

If we only consider the case where I = J, x, that is, no other variables in I, and without
the uniformity conditions, we get back the usual notion of Kan cubical sets [15, Sec. 4]
(adapted to our notion of cubical sets). Similar uniformity conditions have been considered
for semisimplicial sets in [2]. For a suggestive description of how to define combinatorially
πn(X,u) for each point u of X if X satisfies the Kan property, see [27].

If X is a Kan cubical set with operations X↑, X↓, we define new operations (see the
figure below)

X+~u = (X↑~u)(x = 1) X−~u = (X↓~u)(x = 0)

representing transport in the open box in the direction in which it is open.

·
X+(ux0,uy0,uy1) // · · ux1 // ·

X↑(ux0, uy0, uy1) X↓(ux1, uy0, uy1)

·
ux0

//

uy0

OO

·

uy1

OO

·
X−(ux1,uy0,uy1)

//

uy0

OO

·

uy1

OO

Let Γ be a cubical set (which does not need to satisfy the Kan condition) and Γ ` A
a type over Γ. A Kan structure on Γ ` A is given by operations Aα↑ and Aα↓ for each
α ∈ Γ(I) and J, x ⊆ I, such that Aα↑~u and Aα↓~u are both in Aα for every open box ~u.
Here open box means that uyb ∈ Aα(y = b) for all (y, b) ∈ O(J, x), and that these faces
are adjacent-compatible. Aα↑, Aα↓ must satisfy the same Kan conditions as X↑, X↓ above.
The usual Kan conditions are obtained by simply substituting Aα for X. Since f : I → K

interacts with α, we reformulate the uniformity conditions:

(Aα↑~u)f = Aαf↑(~uf) (Aα↓~u)f = Aαf↓(~uf)

If Γ ` A has a Kan structure with operations Aα↑, Aα↓, we define as before

Aα+~u = (Aα↑~u)(x = 1) Aα−~u = (Aα↓~u)(x = 0)

TYPES 2013

114 A Model of Type Theory in Cubical Sets

Notice that if Γ ` A has a Kan structure, then the map p : Γ.A→ Γ is a Kan fibration as
in [15, 27].

For Γ ` A with Kan structure and a line α in Γ(x) connecting points ρ0 to ρ1 one can
define a map of cubical sets Aρ0 → Aρ1 as follows. First, consider Aρi as a cubical set with
set of points Aρi, set of lines Aρiιx, and so on. In general, we define AρiιI by taking ιI to be
the unique morphism ∅ → I; restrictions are induced by Γ ` A. Then, the map Aρ0 → Aρ1 is
defined by a 7→ Aα+a. The equivalence a 7→ Aα+a works uniformly and does not distinguish
cases in which a is degenerate or not. One can show that this map is an equivalence (see
Section 8.2 and 8.4). This is in contrast to Kan simplicial sets where classical logic is essential
to define such an equivalence [3].

6 Examples of cubical sets

In this section we elaborate the following examples of cubical sets: discrete cubical sets; the
unit interval I; polynomial rings; the cubical nerve N of the group Z2 with two elements;
the exponential N I. A noticeable difference between simplicial sets and our cubical sets is
that, while N is Kan, N I is not. This is important motivation for the main result of the next
section, implying that BA is a Kan cubical set if both A and B are.

Every set A gives rise to the discrete cubical set KA via the constant presheaf, i.e.
(KA)(I) = A for each I and all restrictions are the identity map A→ A. Note that in an
open box ~u all the components have to be equal, say u, and this u is also the (unique) filler
u = KA↑~u making the discrete cubical set trivially into a Kan cubical set.

6.1 Unit interval
Recall the canonical extension of a map f : J → K in C to a set map J ∪ {0, 1} → K ∪ {0, 1}
that is the identity on {0, 1}. Together with mapping objects J of C to J ∪ {0, 1}, canonical
extension actually forms a functor C → Set. This covariant functor is called the unit interval,
denoted by I. We explore: I() = {0, 1} (I has two points); I(x) = {0, 1, x} (I has three
lines, only x is non-degenerate); I(x, y) = {0, 1, x, y} (I has four degenerate squares, see the
display below); and so on. The square x varies in direction x, but is constant in direction y,
and hence degenerate. Similarly for objects of higher dimension in I. This completes the
description of the unit interval as a cubical set. Note that I ∼= y{x} for a name x (where y
denotes the Yoneda embedding) is another way to describe the interval.

I(x, y) : 0
0

0
0

1
1

1
1

0
0

1
1

1
0

1
0

6.2 Polynomial rings
A particularly natural example of a cubical set, suggested by Aczel, is based on polynomials
over a commutative ring R. We let R[I] as usual denote the ring of polynomials with
coefficients in R and variables in (at most) I. For x /∈ I and p ∈ R[I], we define pιx = p ∈
R[I, x]. For x ∈ I and p ∈ R[I], we define p(x = 0) ∈ R[I − x] as p with 0 ∈ R substituted
for x. Likewise, p(x = 1) ∈ R[I − x] is p with 1 ∈ R substituted for x. It is easily verified
that this defines a cubical set, which we denote by R[_]. In the following paragraph we show
that R[_] has Kan structure.

For simplicity, we first take I = x, J and J = y, z. After that, the general case can be done
by an easy induction on |J |. Let ~u be an open box indexed by O+(J, x). The construction of
filling an open box can be described as iterated orthogonal linear interpolation, in which we

M. Bezem, T. Coquand, and S. Huber 115

stepwise approximate the filler p, one direction per step, ending with the direction in which
the box is open. Define pz = (1− z)uz0 + zuz1. Then pz(z = 0) = uz0, pz(z = 1) = uz1, so
pz has the right faces in direction z. Now define:

pyz = pz + (1− y)(uy0 − pz(y = 0)) + y(uy1 − pz(y = 1))

This step is typical for the induction case. Per construction, pyz has the right faces in the
direction y. We verify that pyz still has the right faces in the direction z. For b = 0, 1 we
have

pyz(z = b) = pz(z = b) + (1− y)(uy0(z = b)− pz(z = b)(y = 0))
+ y(uy1(z = b)− pz(z = b)(y = 1))

= uzb + (1− y)(uy0(z = b)− uzb(y = 0)) + y(uy1(z = b)− uzb(y = 1))
= uzb.

In the last step above we have used that an open box has adjacent-compatible faces, such
that uyc(z = b) = uzb(y = c). It remains to define the filler p = pxyz by

pxyz = pyz + (1− x)(ux0 − pyz(x = 0))

and to verify the p has all the same faces as ~u. The latter is similar to the verification of pyz
and is left to the reader. We note that the construction of the filler p is completely uniform,
and hence R[_] has Kan structure.

We can also fill closed boxes by adding a term x(ux1−pyz(x = 1)) to pxyz above. Another
consequence of linear interpolation is that the cubical set R[_] is contractible.

6.3 Cubical nerve
Recall that a morphism f : J → K in C is a function f : J → K ∪ {0, 1} such that for every
y ∈ K there exists at most one x ∈ J with f(x) = y. Hence every morphism f : J → K

defines a function {0, 1}K → {0, 1}J through precomposition with f . We can view {0, 1}J
as a product of posets 0 ≤ 1, and hence as a category with unique morphisms. Then every
morphism f : J → K defines a functor {0, 1}K → {0, 1}J , as the precomposition preserves
the order. We denote this functor also by f .

Given a small category D, we define its cubical nerve ND as follows. The sets ND(J)
are functors {0, 1}J → D. For every morphism f : J → K, its function ND(J)→ ND(K) is
defined by precomposition with the functor f . Note that the unit interval is not the cubical
nerve of the poset 0 ≤ 1: they have similar sets of points and lines, but N(0 ≤ 1) has two
more squares, both non-degenerate in two directions:

N(0 ≤ 1)(x, y) : 0
0

0
0

0
0

1
1

1
0

1
0

1
1

1
1

0
0

1
0

1
0

1
1

An element of ND(J) can be viewed as a (hyper)cube with the edges labelled by morphisms
of D and vertices labelled by objects of D, such that all paths commute (or equivalently, all
triangles commute). This completes the description of the cubical nerve of a category.

Consider the group of two elements as a category (groupoid) with one object ? and
two morphisms 0, 1 : ? → ? where 0 is the identity of ?. Let N be the nerve of this
groupoid: N has one point and two lines, again denoted by ? and 0, 1. Note that ?ιx = 0
and 1 ◦ 1 = 1 + 1 = 0. The squares of N are listed as follows, where we only show the lines:

N(x, y): 00
00 10

01 01
10 10

10 11
00 01

01 00
11 11

11

TYPES 2013

116 A Model of Type Theory in Cubical Sets

Being the nerve of a groupoid, N is Kan (see the next section).
We now show thatN I is not Kan. By the Yoneda Lemma we haveN I(J) ∼= ((yJ×I)→ N),

the latter denoting a set of natural transformations. Defining p ∈ N I(J) means defining
maps (index K omitted) p : yJ(K)→ (I(K)→ N(K)) for all K, such that (pfu)g = pfg(ug)
for every f : J → K, g : K → L, and u ∈ I(K).

We explore the points of N I and define p ∈ N I() by, first p1() : I() → N() : 0, 1 7→ ?.
Then, pιx : I(x) → N(x) : 0, 1 7→ ?ιx = 0 is forced by naturality, but for pιxx there is a
choice. If we choose 0, we must make the same choice for all names x in the name space.
The choice 1 for all names x in the name space would give the only other point. In higher
dimensions all arguments are degenerate, determining the function values, and naturality is
compatible with each of the two choices above. We now fix p with pιxx = 0.

Next we explore lines from p to p in N I, say in direction i, and define ` : p→ p in N I(i)
by `(i=b)g = pg for all b = 0, 1 and g : ∅ → K. For `(i=x) : I(x) → N(x) there is a choice.
For the moment we put `(i=x)c = `c for all c ∈ I(x). Note that we must make the same
choices `0, `1, `x for all names x in the name space. On the next level, there is no choice left.
First, `(i=b)g = pg for b = 0, 1 and g = ιxιy. Moreover, `(i=x)ιy , `(i=y)ιx : I(x, y) → N(x, y)
are completely determined by the choices of `0, `1, `x. Even more so, naturality limits the
choice on the lower level. This can be seen by applying `(i=x)ιy and `(i=y)ιx to both x and y
in I(x, y). This results in the four squares (NB: `x = `y):

0`x
`x

0 0`1
`0

0 `0
0
0`1 `y

0
0`y

Since the squares have to commute we get `0 = `1. In higher dimensions all values are
determined by naturality, and naturality is compatible with each of the four possible choices
(recall that objects in I can be non-degenerate in at most one direction). This yields in total
four lines from p to p in N I.

In order to show that N I is not Kan, consider lines p, ` : p → p, where p is degenerate
(p0 = px = p1 = 0) and ` is defined by `0 = `1 = 0, `x = 1. Consider an open box as in the
picture below, left:

p // p 0 0 // 0 ?
`′0 // ? 1 1 // 1 ?

`′1 // ?

p
p

//

p

OO

p

`

OO

0
0

//

0

OO

0

0

OO

?
0

//

0

OO

?

0

OO

0
0

//

y

OO

0

y

OO

?
0

//

0

OO

?

1

OO

Assume we could fill the box. Call the closing (dotted) line above `′. Applying the first
square to the second results in the third square, yielding `′0 = 0. Applying the first square to
the fourth results in the last square, yielding `′1 = 1. This contradicts `′0 = `′1 for any line
p→ p. Hence the above box has no filler.

6.4 The nerve of a groupoid is Kan
Let G be a groupoid, and N its cubical nerve. We sketch a proof that N is Kan. Take
I = x, J, z in C, with J = y1, . . . , yk (k ≥ 0). Taking one variable z instead of z1, . . . , zn
simplifies the presentation, but is otherwise inessential.

Let ~u be an open box indexed by O(J, x), that is, adjacent-compatible faces ux0 ∈ N(I−x)
and uyb in N(I − y). We have to define u ∈ N(I) with faces as given by the open box. For
this we define closing faces ux1,uz0,uz1, such that they are adjacent-compatible with the

M. Bezem, T. Coquand, and S. Huber 117

open box, and show that all squares commute. This will define u in a unique way. Thereafter
we shall verify the uniformity condition.

If J = ∅ (k = 0), the open ‘box’ is a degenerate line ux0 in direction z. We close by
taking ux1 = uz0 = uz1 = ux0, and u is the doubly degenerate square. If J 6= ∅ (k > 0),
we observe that all the points of u are already given by the open box, so that we can limit
attention to the edges. Moreover, if J consists of more than one variable, all edges are also
already present in the open box, which makes the definition of the closing faces particularly
simple. This can be seen as follows. For b = 0, 1, the faces uy1b contain all edges in which
y1 = b, and the faces uy2b contain all edges in which y2 = b. In particular, the two faces uy2b

contain all edges in direction y1. Hence, the four faces uy1b, uy2b together contain all edges.
The groupoid structure guarantees that all squares of the closing face commute.

The most interesting case to elaborate is I = x, y, z, J = y, where we have to define
the edges in ux1 in direction y. This situation is depicted below, left, with the new edges
as defined right. The new edges make essential use of the inverses in the groupoid and are
uniquely defined.

// g−1
0 ·g1·g2 //__

//

??
g0

__

g1
//

g2
??

ux0

��

//

OO

��

OO

x

��

y //

z

OO

g3��

g4 //

g5 ��

OO

//

OO OO

g−1
3 ·g4·g5

//

OO

The new squares uzb commute as per construction. Moreover, the new square ux1 commutes
since it can be projected down to the commuting square ux0 along edges that are invertible.
A similar argument can be used if J contains more variables. This completes the construction
of u ∈ N(I).

Uniformity will be shown to be a consequence of the uniqueness of u constructed above,
and the following easy lemma. This lemma can be useful in other places as well.

I Lemma 3. For all morphisms f : I → K in C defined on x we have (i) (x = b)(f − x) =
f(f(x) = b) and (ii) ιxf = (f − x)ιfx.

Now let u = N↑(ux0, uy0, uy1) and u′ = N↑(ux0(f − x), uy0(f − y), uy1(f − y)). We have
to show u′ = uf . By the lemma we have ux0(f − x) = uf(f(x) = 0) and uyb(f − y) =
uf(f(y) = b). This means that u′ and uf agree on the open box defining u′, so they are
equal by uniqueness. Again, a similar argument can be used if J contains more variables.
This completes the proof sketch that the cubical nerve of a groupoid is Kan.

7 The Kan cubical set model

In this section we will give a refinement of the model given in Section 4. The Kan cubical set
model is given as follows: contexts and context morphisms are interpreted as in Section 4,
i.e. by cubical sets and morphisms between cubical sets; a type is given by a type Γ ` A in
the sense of Section 4 together with a Kan structure; terms are given as in Section 4. The
Kan structure on types is needed in order to justify the elimination rules for the identity
types (cf. Section 8.2).

TYPES 2013

118 A Model of Type Theory in Cubical Sets

It is crucial to note that the Kan structure is part of a type in the Kan cubical set model.
Two types Γ ` A and Γ ` B which have a Kan structure can be equal as cubical sets, but
not with their Kan structure. Thus we have to check whether the equations between types
in Figure 1 are preserved for their Kan structure.

The definition of the model is such that it follows the model described in Section 4, but
additionally we have to define how the Kan structure is given on the types. This is done in
the proofs of the following theorems.

I Theorem 4. If Γ ` A has a Kan structure and σ : ∆→ Γ, then also ∆ ` Aσ has a Kan
structure. Moreover the definition is such that A1 = A and (Aσ)τ = A(στ) as types with
Kan structures.

Proof. For an I-cube α of ∆ recall that (Aσ)α = A(σα) as cubical sets; we define the
filling operations in (Aσ)α to be those in A(σα), i.e. we set (Aσ)α↑~u = A(σα)↑~u. With this
definition it is clear that A1 and A have the same filling operations, and similarly for the
other equation. J

7.1 Dependent product
I Theorem 5. If both Γ ` A and Γ.A ` B have Kan structures, then so does Γ ` ΠAB.
Moreover the definition of the Kan structure is such that (ΠAB)σ = Π(Aσ)(B(σp, q)).

Proof. We present the argument in the case J = ∅, the general case is not essentially more
difficult. Also, as the cases ↑, ↓ are perfectly symmetric, we restrict attention to ↑. We denote
the direction of filling with a subscript to ↑, ↓,−,+. Let C = ΠAB.

First we will define Cα+
xw ∈ Cα(x = 1) for α an I-cube of Γ, x ∈ I, and w in Cα(x = 0).

This amounts to define a family of dependent functions (Cα+
xw)f in

∏
u∈Aα(x=1)f B(α(x =

1)f, u) for all f : I − x→ K, such that(
(Cα+

xw)f (u)
)
g = (Cα+

xw)fg(ug). (1)

We will first define (Cα+
xw)f for f = 1: I − x→ I − x. For this let u ∈ Aα(x = 1). We use

the Kan fillings to map u down to Aα−x u, apply w (at 1: I − x→ I − x) and map the result
up:

(Cα+
xw)1(u) = B(α,Aα↓xu)+

x (w1(Aα−x u)) (2)

which is in B(α(x = 1), u) as (Aα↓xu)(x = 1) = u. So we have defined (Cα+w)1 for arbitrary
α and w.

For general f : I − x→ K we let z be fresh w.r.t. K and set:

(Cα+
xw)f = (Cα(f, x = z)+

z wf)1 (3)

By the uniformity conditions, this definition does not depend on the choice of z, and we also
get by uniformity and (2)(

(Cα+
xw)1(u)

)
f = (Cα(f, x = z)+

z wf)1(uf). (4)

Note that (3) suffices to get the uniformity conditions for Cα+
xw; (3) together with (4), yields

(1) and thus an element in Cα(x = 1), concluding the definition of Cα+
xw.

Next we define Cα↑xw ∈ Cα; we do so again by first defining (Cα↑xw)f for f = 1: I → I.
Let γ ∈ Aα, u0 = γ(x = 0) and u = γ(x = 1); the definition of (Cα↑xw)1(γ) ∈ B(α, γ) has

M. Bezem, T. Coquand, and S. Huber 119

to satisfy:

(Cα+
xw)1 : u 7−→ (Cα+

xw)1(u)

(Cα↑xw)1 : γ 7−→ (Cα↑xw)1(γ)

w1

OO

: u0

OO

7−→ w1(u0)

OO

Let y be a fresh name; using the uniform Kan filling for Γ ` A in Aα with J = {y} (denoted
by Aα↓x,y) we construct

θ = Aα↓x,y(u, γ,Aα↓xu),

resulting in a square:

u
u // u

θ

u0

γ

OO

θ(x=0)
// Aα−x u

Aα↓xu

OO

With λ = B(α,Aα↓xu)↑x(w1(Aα−x u)) we get an open box in B(α, θ)

(Cα+
xw)1(u)

(Cα+
xw)1(u) // (Cα+

xw)1(u)

w1u0
wιy (θ(x=0))

// w1(Aα−x u)

λ

OO

where the line on the right hand side is by the defining equation (2). Using the Kan structure
of Γ.A ` B for J = {x} we define

(Cα↑xw)1(γ) = B(α, θ)−y,x
(
λ,wιy (θ(x = 0)), (Cα+

xw)1(u)
)

with λ as above. Using the uniformity conditions for Γ ` A and Γ.A ` B, this definition is
such that(

(Cα↑xw)1(γ)
)
f = (Cαf↑fxw(f − x))1(γf)

for f : I → K defined on x.
Now, if f : I → K is defined on x, we define (Cα↑w)f = (Cαf↑fxw(f − x))1. If f is not

defined on x, we can write f = (x = b)f ′ for some f ′ : I − x → K. Then we can simply
define (Cα↑xw)f = wf ′ for b = 0, and (Cα↑xw)f = (Cα+

xw)f ′ for b = 1. This defines the
element Cα↑w in Cα which satisfies the uniformity conditions.

To verify that the Kan structure of Π(Aσ)(B(σp, q)) (as defined above) is equal to the
Kan structure for (ΠAB)σ (as defined in the proof of the preceding theorem), assume that
above α = σβ for σ : ∆→ Γ; then Cα = ((ΠAB)σ)β and in equation (2) we have

B(σβ,A(σβ)↓xu)+
x (w1(A(σβ)−x u)) = (B(σp, q))(β, (Aσ)β↓xu)+

x (w1((Aσ)β−x u))

and the right hand side is the definition of
(
Π(Aσ)(B(σp, q))+

xw
)

1(u). Similarly for the other
parts of the definition. J

Notice that we make essential use of the uniformity conditions in the above proof in order
to verify that the fillers we define are indeed elements in the dependent product. Moreover,
in the general case the fillings used from Γ ` A are only with J such that |J | ≤ 1.

TYPES 2013

120 A Model of Type Theory in Cubical Sets

7.2 Sum type
I Theorem 6. If Γ ` A and Γ.A ` B have Kan structures, then so does Γ ` ΣAB. Moreover
the definition of the Kan structure is such that (ΣAB)σ = Σ(Aσ)(B(σp, q)).

Proof. Given an open box ~p in (ΣAB)α with pyb = (uyb, vyb) for any (y, b) ∈ O+(J, x) we
first fill u = Aα↑~u in Aα, and then set

(ΣAB)α↑~p = (u,B(α, u)↑~v).

This clearly satisfies the uniformity condition as they are satisfied for Γ ` A and Γ.A ` B.
Moreover, if α = σβ for σ : ∆→ Γ, we get u = (Aσ)β↑~u and

B(σβ, u)↑~v = (B(σp, q))(β, u)↑~v,

yielding (ΣAB)σ = Σ(Aσ)(B(σp, q)). J

8 Extensions

8.1 Inductive types
We can interpret inductive types by adding the corresponding constructors in each dimension.
In the case of inductive definitions without parameters this results in a discrete Kan cubical
sets (see Section 6). E.g. the booleans Γ ` N2 are defined by N2α = {true, false} for each
α ∈ Γ(I), and restrictions being the identity map. As in Section 6 one defines a Kan structure.
We interpret the constants Γ ` true : N2 by trueα = true, and similar for Γ ` false : N2. To
interpret the elimination principle

Γ.N2 ` C Γ ` d0 : C[true] Γ ` d1 : C[false] Γ ` b : N2

Γ ` if b then d0 else d1 : C[b]

we define (if b then d0 else d1)α = d0α for bα = true, and (if b then d0 else d1)α = d1α for
bα = false.

8.2 Identity type
We describe the interpretation of Γ ` IdA a b given Γ ` A and Γ ` a : A and Γ ` b : A. Given
an I-cube α in Γ we define (IdA a b)α to be the set of elements 〈x〉ω where ω is in Aαιx
and x is a fresh variable not in I, such that ω(x = 0) = aα and ω(x = 1) = bα. The latter
situation is conveniently described by ω : aα→x bα. We recall that ιx denotes the canonical
injection I → I, x. The element 〈x〉ω is the equivalence class of I, x-cubes of Aαιx, x not
in I, where ω is identified with ω(x = x′) if x′ is not in I. This operation 〈x〉ω binds the
name x. (One could define 〈x〉ω to be ω(x = xI) where xI is a name not in I obtained by a
choice function.) If f is a substitution I → K we choose a variable y not in K, extend f to
(f, x = y) : I, x→ K, y and define (〈x〉ω)f to be 〈y〉ω(f, x = y), preserving equivalence.

I Theorem 7. If Γ ` A has a Kan structure, then so does Γ ` IdA a b whenever we have
Γ ` a : A and Γ ` b : A. Moreover the definition is such that (IdA a b)σ = IdAσ aσ bσ as
types with Kan structures.

Proof. Let α be an I-cube of Γ and J, x ⊆ I. After a suitable renaming, we can conve-
niently denote an open box for (IdA a b)α by a vector 〈y〉~ω with components 〈y〉ωzc in
(IdA a b)α(z = c), for all (z, c) ∈ O(J, x).

M. Bezem, T. Coquand, and S. Huber 121

We define, with aα, bα the faces in the direction y, omitting subscripts J ,

(IdA a b)α↑x〈y〉~ω = 〈y〉(Aα↑x,y(~ω, aα, bα))

which shows that Γ ` IdA a b satisfies the Kan condition for J, x if Γ ` A satisfies the
Kan condition for (J, y), x. The situation in case J = ∅ is depicted below. The uniformity
condition follows from the uniformity of Γ ` A. J

aα
Aα+

x,y(ω0,aα,bα)
// bα 〈y〉ω1

Aα↑x,y(ω0, aα, bα) (IdA a b)α↑x〈y〉ω0

aα
ω0

//

aα

OO

bα

bα

OO

〈y〉ω0

OO

We give the interpretation of Γ ` Ref a : IdA a a given Γ ` a : A. For any set of directions
I, and any I-cube ρ, we have to give a line aρ→ aρ. For this, we choose a direction x not in
I and we define (Ref a)ρ = 〈x〉aριx, which can also simply be written (Ref a)ρ = 〈x〉aρ.

Next we show that we can interpret an elimination operator for the identity type. Suppose
Γ ` a : A, Γ ` b : A, Γ ` u : IdA a b and Γ.A ` P and Γ ` v : P [a]. We will define an
operator

Γ ` T(u, v) : P [b].

Let ρ be some I-cube of Γ. Then uρ is of the form 〈x〉ω for some path ω : aρ→x bρ, x not
in I, ω ∈ Aρ. The I, x-cube (ρ, ω) in Γ.A is then a path [a]ρ→x [b]ρ and we define (see the
picture below)

T(u, v)ρ = P (ρ, ω)+vρ where 〈x〉ω = uρ

The condition (T(u, v)ρ)f = T(u, v)(ρf) follows from the uniformity condition on the Kan
filling operations.

bρ [b]ρ T(u, v)ρ

ω ρ, ω P (ρ, ω)↑vρ

aρ

OO

[a]ρ

OO

vρ

OO

We have that P (ρ, ω)↑vρ is a line connecting vρ and T(u, v)ρ. In particular for u = Ref a,
this gives an interpretation of an operator

Γ ` H(v) : IdP [a] v T(Ref a, v)

by taking H(v)ρ = 〈x〉P (ριx, aρ)↑vρ. The computation rule for identity is thus only validated
by a path to v via H(v)3.

3 The validity of the computation rule for identity corresponds to considering only fibrations that are
regular in the sense of Hurewicz [14].

TYPES 2013

122 A Model of Type Theory in Cubical Sets

Γ ` A Γ ` a : A Γ ` b : A
Γ ` IdA a b

Γ ` a : A
Γ ` Ref a : IdA a a

Γ ` a : A Γ ` b : A Γ ` u : IdA a b Γ.A ` P Γ ` v : P [a]
Γ ` T(u, v) : P [b]

Γ ` a : A Γ.A ` P Γ ` v : P [a]
Γ ` H(v) : IdP [a] v T(Ref a, v)

Γ ` a : A
Γ ` center (a,Ref a) : ΠT (IdTp(a,Ref a) q) where T = ΣA (IdApap q)

Figure 2 Rules for Id-types.

We finally show that, given Γ ` a : A, the type Γ ` T = Σ A (IdAp ap q) is contractible.
For this we have to find a center of T and a path to this center for any element of T . That
is, we have to find two sections Γ ` t : T and Γ.T ` u : IdTp tp q. We define t = (a,Ref a).
Let ρ be some I-cube of Γ and let (v, 〈x〉α) be some element of Tρ. So v is an element of Aρ
and α is a line connecting aρ and v in some direction x not in I. We introduce a direction y
not in I, x and define:

u(ρ, (v, 〈x〉α)) = 〈y〉(Aρ+
x,y(aρ, aρ, α), 〈x〉Aρ↑x,y(aρ, aρ, α))

The fact that the filling operations commute with substitution ensures that this defines a
section Γ.T ` u : IdTp tp q.

We summarize the rules we interpret in the Kan cubical set model in Figure 2, where
we left out the equations that the operations commute with substitutions, e.g. (IdA a b)σ =
IdAσ aσ bσ.

N.A. Danielsson has checked formally in Agda that these properties are enough to develop
all basic propositions of univalent mathematics; this Agda development4 is accompanying
the paper [6].

Let us define the more common elimination operator of C. Paulin-Mohring [18] from the
above operations—with the difference that its computation rule only holds propositionally,
and not as usual definitionally. In order not to make the notation too heavy we’ll use informal
reasoning in type theory; note that the definition can be given internally in type theory and
we don’t refer to the model; this definition follows N.A. Danielsson’s Agda development (loc.
cit.). First note that using the transport operation T one can define composition p◦q : IdAa c
of two identity proofs p : IdAa b, q : IdAb c, as well as inverses p−1 : IdAb a. With H one can
derive IdIdAa a(p−1 ◦ p) (Ref a).

Let A be a type, a : A, and C(b, p) a type given b : A, p : IdAa b, such that v : C(a,Ref a);
for b : A and p : IdAa b we define J(a, v, b, p) : C(b, u). We can consider C as a dependent type
over T = (Σx : A)IdAa x via C(w.1, w.2) for w : T . As we showed in the last paragraph, T is
contractible with center (a,Ref a), and thus we get a witness app(h, (b, p)) : IdT (a,Ref a) (b, p)
for h = λu, u as in the above paragraph; now with T (w.r.t. the type C(w.1, w.2) for w : T)
we can define

J(a, v, b, p) = T(app(h, (a,Ref a))−1 ◦ app(h, (b, p)), v).

4 Available at: http://www.cse.chalmers.se/~nad/

http://www.cse.chalmers.se/~nad/

M. Bezem, T. Coquand, and S. Huber 123

Now if p = Ref a, we get that app(h, (a,Ref a))−1 ◦ app(h, (b, p)) is propositionally equal to
Ref(Ref a), and thus using T and H again one gets a witness of IdC(a,Ref a) v J(a, v, a,Ref a).

Even though J doesn’t satisfy the judgmental equality, the model validates a new operation
mapOnPaths which behaves well w.r.t. judgmental equality. Its rule given Γ ` A, Γ ` B,
Γ ` u : A and Γ ` v : A is

Γ ` ϕ : A→ B Γ ` p : IdA u v

Γ ` mapOnPaths(ϕ, p) : IdB (app(ϕ, u)) (app(ϕ, v))

where A → B is the non-dependent function space ΠA(Bp). Given ρ in Γ(I) we define
mapOnPaths(ϕ, p)ρ = 〈x〉 (ϕρ)1ω for pρ = 〈x〉ω. This satisfies the equations

mapOnPaths(id, p) = p

mapOnPaths(ϕ ◦ ψ, p) = mapOnPaths
(
ϕ,mapOnPaths(ψ, p)

)
mapOnPaths(ϕ,Ref a) = Ref(app(ϕ, a))
mapOnPaths(λ(bp), p) = Ref b

where now ϕ ◦ ψ denotes ordinary function composition and λ(bp) is constant.
Notice that some of these equations do not hold if the identity type is defined as an

inductive family, as in [17].

This interpretation of identity satisfies function extensionality (left to the reader).

8.3 Description of a universe
We now describe the interpretation of U as a universe of Kan cubical sets. We give U only
as a cubical set (following [12, 23]) and only indicate how an operation similar to the Kan
fillings can be given. The full proof that U has a Kan structure will be presented in the
forthcoming [13].

Recall that the Yoneda embedding is denoted by y. An element A of U(I) is a type
yI ` A with Kan structure such that for each f : I → J the set Af is small (we use subscripts
to keep the notation separate from the restrictions). Given such a yI ` A and f : I → J the
restriction Af of A by f is defined to be yJ ` A(yf), where yf : yJ → yI is the substitution
induced by f ; thus (Af)g = Afg. This defines U as a cubical set.

Note that the points of U are simply the (small) uniform Kan cubical sets. More precisely,
since ∅ is initial in C, any A in U(∅) becomes a cubical set when we define A(I) as Af for
the unique f : ∅ → I. A line in U between points A and B can be seen as a “heterogeneous”
notion of lines, cubes, . . . a→ b where a is an I-cube of A and b an I-cube of B.

As a first step towards proving that this cubical set satisfies the Kan condition we show
how to compose an A and B in U(I) with x ∈ I assuming A(x = 1) = B(x = 0); we define
C = comp(A,B) ∈ U(I) such that C(x = 0) = A(x = 0), C(x = 1) = B(x = 1), and for
f : I → J defined on x, Cf = comp(Af,Bf). (Compare this to the composition of relations.)

We define the sets Cf , f : I → J by case distinction on f(x); in case f(x) = 0, we can
write f = (x = 0)f ′ and we have to set Cf = Af as we have to satisfy Cf = (C(x = 0))f ′ =
(A(x = 0))f ′ = Af ; similarly, if f(x) = 1, we set Cf = Bf . In case, f is defined on x, an
element of Cf is any pair (a, b) such that a ∈ Af and b ∈ Bf with a(x = 1) = b(x = 0) in
Af(x=1) = A(x = 1)(f−x) = B(x = 0)(f−x) = Bf(x=0).

We still have to define the restrictions Cf → Cfg for g : J → K; in the first two cases
from above, the restrictions are induced by Af and Bf respectively. In case f is defined on
x, we look at g(f(x)): if g(f(x)) = 0, we set (a, b)g = ag; if g(f(x)) = 1, we set (a, b)g = bg;
and if g is defined at f(x), we define (a, b)g = (ag, bg).

TYPES 2013

124 A Model of Type Theory in Cubical Sets

It remains to define the Kan fillings for C; it suffices to give them for C1 as Cf is either
determined by Af , Bf , or comp(Af,Bf)1; so let J, x′ ⊆ I with x′ /∈ J , and ~u be a open
box in C1, i.e. uyc ∈ C(y=c) for (y, c) ∈ O+(J, x′) with uyc(z = d) = uzd(y = c). Note
that for y 6= x, uyc = (ayc, byc) with ayc ∈ A1 and byc ∈ B1 with ayc(x = 1) = byc(x = 0).
We want to define u = C1↑~u. There are three cases. First, in case x = x′, we set
ax0 = ux0 ∈ C(x=0) = A(x=0); this yields an open box ~a in A1 which we can fill to
a = A1↑~a ∈ A1. Now setting bx0 = a(x = 1) yields an open box ~b in B1 which we can fill to
get b = B1↑~b ∈ B1. Note that b(x = 0) = a(x = 1) and thus we can set u = (a, b).

Second, in case x 6= x′ with x ∈ J , we construct an element v ∈ A(x=1) = B(x=0) first. For
(y, c) ∈ O+(J −x, x′) define vyc = ayc(x = 1) (which is also equal to byc(x = 0)). It is readily
checked that this defines an open box in A(x=1) = B(x=0) and thus we get v = A(x=1)↑~v.
Now set ax1 = bx0 = v; this yields open boxes ~a and ~b in A1 and B1, respectively. Thus we
can take u = (A1↑~a,B1↑~b).

Finally, in case x /∈ J , we directly have open boxes ~a and ~b in A1 and B1, respectively.
Setting u = (A1↑~a,B1↑~b) gives an element in C1 since

(A1↑~a)(x = 1) = A(x=1)↑(~a(x = 1)) = B(x=0)↑(~b(x = 0)) = (B1↑~b)(x = 0).

This concludes the definition of C = comp(A,B).

8.4 Equivalence and equality of types
We explain in this section how to transform any equivalence σ : A→ B between two small Kan
cubical sets to a path A→ B in U , as defined in the previous section. Let us recall the notion
of equivalence between types (cf. [24, Definition 4.4.1]) using informal notation. For a type
A we define the proposition of being contractible isContrA to be (Σa : A)(Πx : A) IdA a x.
The fiber fibσ b of a map σ : A→ B over b : B is defined as (Σx : A) IdB app(σ, x) b. A map
σ : A→ B is an equivalence if all its fibers are contractible, i.e. if

(Πb : B) isContr(fibσ b).

This amounts to give ϕ : (Πb : B)(Σx : A) IdB app(σ, x) b and ψ : (Πb : A)(Πu :
fibσ b) Idfibσ b app(ϕ, b) u. If we now assume that A and B are Kan cubical sets (which
corresponds to types in the empty context), this definition unfolds to the following data: a
map σ : A→ B is an equivalence if there is a map δ : B → A and a map assigning to b a line
b′ : σδb→ b, and a transformation of any equality ω : σa→ b, where a (resp. b) is an I-cube
of A (resp. B) to a “square” (really a pair of an I, x-cube of A and an I, x, y-cube of B)

a
ω∗ // δb

σa
σω∗ //

ω

��

σδb

b′

��
b

b
// b

We define from this a path C between A and B in the direction x. For any substitution
f : {x} → I we have to define a set Cf together with substitution maps Cf → Cfg. If

M. Bezem, T. Coquand, and S. Huber 125

f(x) = 0 we take Cf = A(I) and if f(x) = 1 we take Cf = B(I). If f(x) = y then we define
Cf to be the set of pairs (a, b) where a is an (I − y)-cube of A and b is an I-cube of B and
b(y = 0) = σa. It can be then be checked in an elementary way that if σ is an equivalence,
then this “heterogeneous” notion of cube has the uniform Kan property.

In pictures, the main difficult case is to complete an open box

σa0 // b0

��
σa1 // b1

to a square

a0

��

σa0 //

��

b0

��
a1 σa1 // b1

For this, using the fact that σ is an equivalence, we transform the open box in an open box
in A

a0 // δb0

��
a1 // δb1

and since A is Kan, it can be filled to a box

a0 //

��

δb0

��
a1 // δb1

and we can then fill the box in B

a0

��

σa0 //

��

""

b0

��

��
σδb0

��

// b0

��
σδb1 // b1

a1 σa1 //

<<

b1

__

TYPES 2013

126 A Model of Type Theory in Cubical Sets

Since our model is constructive, this gives a way to effectively transport properties and
structures on a Kan cubical set to one which is equivalent. In particular we can effectively
transport properties and structures of a groupoid to one which is categorically equivalent.

We have only described here a weak corollary of the Axiom of Univalence, but the
complete Axiom can be validated in this model as well5 and will be presented in a forthcoming
publication.

8.5 Propositional reflection
We can describe the operation of Kan “completion”. Given a cubical set X we add operations
X+, X↑, X−, X↓ in a free way, i.e. considering these operations as constructors. At the same
time one defines the restrictions of the added operations, resulting in an inductive-recursive
definition. The uniformity condition determine what the restrictions of these elements should.
In this way we get a new cubical set Y , satisfying by definition the Kan extension property,
with a map X → Y . Furthermore, if Z is Kan, and we have a map σ : X → Z there is a map
Y → Z extending σ. This map is furthermore unique if we impose it to commute with the
Kan operations. In general however, the maps of Kan cubical sets do not need to commute
with the Kan operations.

The same idea can be used to define inhX, the proposition stating that X is inhabited.
Besides adding constructors (inhX)+, (inhX)↑, (inhX)− and (inhX)↓, we also add a con-
structor αx(u0, u1) connecting formally along the dimension x any two I-cubes u0 and u1
(with x not in I) and constructors for the Kan filling and composition operations. Thus each
I-cube u in inhX is of one of the forms: either u an I-cube of X; a formal Kan filling, e.g.
(inhX)↑~u with ~u an open box in inhX; or of the form αx(u0, u1) with ui in (inhX)(I − x).
At the same time we define the restrictions

αx(u0, u1)(x = 0) = u0 αx(u0, u1)(x = 1) = u1

and, if f is defined on x with y = f(x),

αx(u0, u1)f = αy(u0(f − x), u1(f − x)).

This satisfies the required induction principle of inhX: if we have a map ϕ : X → Y , we can
extend this to a map ϕ̃ : propY × inhX → Y where propY is (Πy0 y1 : Y) IdY y0 y1. For
p ∈ (propY)(I) and u ∈ (inhX)(I) we define ϕ̃(p, u) in Y (I) by induction on u. The difficult
case is when u is αx(u0, u1) with x ∈ I and ui ∈ (inhX)(I − x). By induction hypothesis, we
already defined vi = ϕ̃(p(x = i), ui) ∈ Y (I − x). Applying p(x = 0) to both v0 and v1 gives
a path 〈x〉ω, where ω ∈ Y (I) connecting v0 to v1 along x, and we set ϕ̃(p, u) = ω. Note that
the choice of p(x = 0) ∈ (propY)(I − x) above is not canonical.

We can also define the spheres. For instance S1 will be the Kan completion of the cubical
set generated by a point base and a loop loop.

We can then define ∃ A B to be inh(Σ A B). If Σ A B is a proposition we have an
inhabitant of ∃ A B → Σ A B and this can be seen as a generalization of the axiom of
description since if A set, B proposition and B is satisfied by at most one element of A then
Σ A B is a proposition.

5 The algorithms can be found in the implementation available at http://github.com/simhu/cubical.

http://github.com/simhu/cubical

M. Bezem, T. Coquand, and S. Huber 127

Acknowledgments. The research for this paper has been started while the first two authors
were members of the Institute for Advanced Study in Princeton, as part of the program
Univalent Foundations of Mathematics. We are grateful for the generous support by the IAS
and the Fund for Math.

The last two authors acknowledge financial support from the ERC: The research leading
to these results has received funding from the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement nr. 247219.

The authors wish to thank Jean-Philippe Bernardy, Cyril Cohen, Andy Pitts and Michael
Shulman for stimulating discussions on the topic of this paper. The clear presentation of [27]
provided an important help.

References
1 Steve Awodey and Michael Warren. Homotopy theoretic models of identity types. Mathe-

matical Proceedings of the Cambridge Philosophical Society, 146:45–55, 2009.
2 Bruno Barras, Thierry Coquand, and Simon Huber. A generalization of Takeuti-Gandy

interpretation. To appear in Mathematical Structures in Computer Science, 2013.
3 Marc Bezem and Thierry Coquand. A Kripke model for simplicial sets. Preprint, 2013.
4 Erret Bishop. Foundations of constructive analysis. McGraw-Hill Book Co., New York,

1967.
5 John Cartmell. Generalised algebraic theories and contextual categories. Annals of Pure

and Applied Logic, 32:209–243, 1986.
6 Thierry Coquand and Nils Anders Danielsson. Isomorphism is equality. Indagationes

Mathematicae, 24(4):1105–1120, 2013.
7 Sjoerd Crans. On combinatorial models for higher dimensional homotopies. PhD thesis,

Universiteit Utrecht, 1995.
8 Pierre-Louis Curien. Substitutions up to isomorphisms. Fundamenta Informaticae, 19:51–

85, 1993.
9 Peter Dybjer. Internal type theory. In Types for Programs and Proofs, pages 120–134.

Lecture Notes in Computer Science, Springer, 1996.
10 Alexander Grothendieck. Pursuing stacks. Manuscript, 1983.
11 Martin Hofmann. Syntax and semantics of dependent types. In A.M. Pitts and P. Dybjer,

editors, Semantics and logics of computation, volume 14 of Publ. Newton Inst., pages 79–
130. Cambridge University Press, Cambridge, 1997.

12 Martin Hofmann and Thomas Streicher. Lifting Grothendieck universes. Unpublished Note.
13 Simon Huber. A model of type theory in cubical sets. Licentiate thesis, University of

Gothenburg, 2014.
14 Witold Hurewicz. On the concept of fiber space. Proc. Nat. Acad. Sci. U. S. A., 41:956–961,

1955.
15 Daniel M. Kan. Abstract homotopy. I. Proc. Nat. Acad. Sci. U. S. A., 41:1092–1096, 1955.
16 Chris Kapulkin, Peter LeFanu Lumsdaine, and Vladimir Voevodsky. The simplicial model

of univalent foundations. Preprint, http://arxiv.org/abs/1211.2851, 2012.
17 Per Martin-Löf. An intiutionistic theory of types: Predicative part. In H. E. Rose and

J. Shepherdson, editors, Logic Colloquium ’73, pages 73–118. North–Holland, Amsterdam,
1975.

18 Christine Paulin-Mohring. Inductive Definitions in the System Coq - Rules and Properties.
In Marc Bezem and Jan Friso Groote, editors, Proceedings of the conference Typed Lambda
Calculi and Applications, number 664 in Lecture Notes in Computer Science, 1993.

19 Andrew M. Pitts. An equivalent presentation of the Bezem-Coquand-Huber category of
cubical sets. Manuscript, http://arxiv.org/abs/1401.7807, September 2013.

TYPES 2013

http://arxiv.org/abs/1211.2851
http://arxiv.org/abs/1401.7807

128 A Model of Type Theory in Cubical Sets

20 Andrew M. Pitts. Nominal Sets: Names and Symmetry in Computer Science, volume 57
of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2013.

21 Jean-Pierre Serre. Homologie simgulière des espaces fibrés. Applications. Thèse, Paris,
1951.

22 Allen Stoughton. Substitution revisited. Theoretical Computer Science, 59:317–325, 1988.
23 Ross Street. Cosmoi of internal categories. Trans. Amer. Math. Soc., 258:271–318, 1980.
24 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations

of Mathematics. http://homotopytypetheory.org/book, Institute for Advanced Study,
2013.

25 Vladimir Voevodsky. The equivalence axiom and univalent models of type theory. Talk at
CMU, February 2010.

26 Alfred N. Whitehead and Bertrand Russell. Principia Mathematica. Cambridge University
Press, 2nd edition, 1925.

27 Richard Williamson. Combinatorial homotopy theory. Preprint, 2012.

http://homotopytypetheory.org/book

	Introduction
	The category of names and substitutions
	Cubical sets
	Cubical sets as a presheaf model
	The uniform Kan condition
	Examples of cubical sets
	Unit interval
	Polynomial rings
	Cubical nerve
	The nerve of a groupoid is Kan

	The Kan cubical set model
	Dependent product
	Sum type

	Extensions
	Inductive types
	Identity type
	Description of a universe
	Equivalence and equality of types
	Propositional reflection

