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Abstract  

This case study addresses fault reactivation and linkage between distinct extensional 

episodes with variable stretching direction. Using 2-D and 3-D seismic reflection data 

we demonstrate how the Vesterdjupet Fault Zone, one of the basin-bounding normal 

fault zones of the Lofoten margin (north Norway), evolved over c. 150 Myr as part of 

the North Atlantic rift. This fault zone is composed of NNE-SSW- and NE-SW-

striking segments that exhibit a zigzag geometry. The structure formed during Late 

Jurassic and Early Cretaceous rifting from selective reactivation and linkage of 

Triassic faults. A rotation of the overall stress field has previously been invoked to 

have taken place between the Triassic and Jurassic rift episodes along the Lofoten 

margin. A comparison to recent physical analogue models of non-coaxial extension 

reveals that this suggested change in least principal stress for the Lofoten margin may 

best explain the zigzag-style linkage of the Triassic faults, although alternative 

models cannot be ruled out. This study underlines the prediction from physical 

models that the location and orientation of early phase normal faults can play a 

pivotal role in the evolution of subsequent faults systems in multi-rift systems.  
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1. Introduction  

The evolution of normal faults (initiation, propagation, linkage) is traditionally 

described as the progressive incidental coalescence of growing fault segments that 

started off as geometrically and kinematically independent structures. This process 

has been documented for both outcrop and seismic studies (e.g. Peacock and 

Sanderson, 1991; Cartwright et al., 1996; McLeod et al., 2000; Young et al., 2001) as 

well as modeling studies (e.g. Scholz et al., 1993; Crider and Pollard, 1998; Cowie et 

al., 2000). Linkage through propagation of initially unrelated faults has recently been 

referred to as the ‘isolated fault model’ (Walsh et al., 2003). The alternative ‘coherent 

fault model’ describes how a soft-linked fault array can form as a system that is 

kinematically linked since initiation (Morley et al., 1999; Walsh et al., 2002, 2003). 

The coherent fault model can explain how a pre-existing, large fault at depth can be 

reactivated in such a way that, at surface, new faults develop that are soft-linked (e.g. 

Giba et al., 2012; Jackson and Rotevatn, 2013). 

Propagation and linkage of faults involves the destruction of relay ramps. Such 

overlap zones between normal faults are formed and obliterated throughout the 

formation of a normal fault zone (Peacock and Sanderson, 1991; Childs et al., 1995); 

this is a continuous process that occurs without a change in the overall extension 

vector, and regardless of whether the fault system forms via the isolated or the 

coherent fault model. Physical models simulating uniform extension typically yield 

mostly parallel structures with minor lateral steps (Keep and McClay, 1997; Henza et 

al., 2011). The parallel geometries of faults growing under uniform extension was 

observed in nature by Acocella et al. (2000), who stated that in their study area, the 

combined length of parallel normal faults would have to be less than fourteen times 

their strike-normal separation in order for the faults to interact.  

In contrast, physical models simulating the effects of various degrees of non-coaxial 

extension revealed that, after a change in the direction of extension, widely spaced 

first phase faults would link up to produce fault systems with strong zigzag or cross-
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cutting plan-view geometries (Henza et al., 2011). While the pivotal role of (oblique) 

reactivation has now been investigated extensively in physical models (see also 

Dubois et al., 2002), natural examples from the geological record are rare. This mode 

of linking fault segments may explain some types of zigzag fault patterns as 

commonly seen in rift systems (e.g. Freund and Merzer, 1976; Lepvrier et al., 2002; 

Jackson et al., 2002; Morley et al., 2004, 2007; Bergh et al., 2007; Whipp et al., 

2014).   

This study investigates the c. 100 km long Mesozoic Vesterdjupet Fault Zone (VFZ; 

Blystad et al., 1995) which forms the main border fault to the North Træna Basin. 

The spatio-temporal relationship between its constituent segments is presently not 

well known. Bergh et al. (2007) argue that differently striking fault populations of the 

Lofoten margin reflect distinct rift pulses (see also: Eig and Bergh, 2011 and Færseth, 

2012). More specifically, they suggest that the NNE-SSW-striking segments of the 

VFZ predate NE-SW-striking segments, with the latter forming transfer faults linking 

the former. In contrast, Wilson et al. (2006) suggest that the differently striking 

segments of Mesozoic normal faults of the Lofoten margin could have formed 

simultaneously as conjugate sets under a uniform stress field, locally perturbed by an 

inherited Caledonian basement grain or a transfer zone.  

We have mapped the hanging wall to the VFZ in detail using an extensive database of 

old, reprocessed as well as recently acquired 2-D and 3-D seismic reflection surveys. 

The VFZ and its constituent parts have been reactivated repeatedly; the tectonic style 

of the Triassic and Jurassic rift episodes has therefore been overprinted by Cretaceous 

rifting. Specific structures within its hanging wall, on the other hand, record only 

these earlier rift episodes, after which activity on them ceased. We assume that these 

abandoned hanging wall faults and the precursors to the VFZ evolved similarly prior 

to Cretaceous rifting. The abandoned hanging wall faults are therefore used as 

proxies for the evolution of the proto-VFZ during the Triassic and Jurassic rift 

episodes. 
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Our results show that each subsequent Mesozoic rift episode is associated with 

reactivation of structures from the foregoing episode, as well as inception of new 

faults. We thus support the model of Bergh et al. (2007), and demonstrate how the 

VFZ, with its characteristic zigzag plan-view geometry, formed by reactivation and 

linkage of Triassic faults during subsequent rift events in the Late Jurassic and Early 

Cretaceous. By comparing the results of this case study to recent physical models 

simulating coaxial- and non-coaxial extension, we aim to carry insights from such 

analogues to the understanding of natural rifts. We present several scenarios for the 

origin of zigzag geometries of segmented normal faults and discuss alternative 

models for fault growth and the influence of a change in extension direction. 

2.    Geological Setting  

2.1 The Lofoten segment of the Norwegian passive continental 

margin

The Norwegian passive continental margin forms part of the eastern side of the 

greater North Atlantic, which evolved during Palaeozoic-Mesozoic continental rifting 

and eventual breakup in early Cenozoic times. This complex tectonic history resulted 

from divergent plate motions between Eurasia and Laurentia during breakup of 

Pangea (Doré, 1992), which in the North Atlantic was largely accomplished by a rift 

along the Caledonian suture (Doré, 1992; Torsvik and Cocks 2003).  

The Lofoten-Vesterålen margin segment is bordered to the southwest and northeast 

by the continental continuations of oceanic transform zones (Mosar et al., 2002). To 

the southwest, the Bivrost Lineament separates it from the greater Vøring Basin and 

the Trøndelag platform, whereas to the northeast the margin segment is bordered by 

the Senja Fracture Zone, which forms part of the western Barents Sea transform 

margin (Doré et al., 1997; Olesen et al., 2002). This study focuses on the shelfal area 

west of the Lofoten Islands (Fig. 1; herein referred to as the Lofoten margin).  
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The contractional phase of the Caledonian Orogeny was replaced by a phase of 

orogenic collapse and exhumation of thickened crust in Devonian times (Andersen et 

al., 1991; Fossen, 2000), which lasted until the Permian in the Lofoten area (Hames 

and Andresen, 1996), at which time it was facilitated by the development of a 

metamorphic core complex (Hames and Andresen, 1996; Steltenpohl et al., 2004; 

Henstra and Rotevatn, 2014). Subsequently the area between Greenland and Norway 

experienced recurring episodes of rifting that alternated with periods of relative 

tectonic quiescence or uplift (Lundin and Doré 1997; Brekke, 2000; Faleide et al., 

2008).  

Fig. 1. Structural element map of the Lofoten-Vesterålen segment of the Norwegian passive 

continental margin. Modified after Blystad et al. (1995). 
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The late Permian to earliest Cretaceous interval of the Lofoten margin is subdivided 

into two main rift episodes (Hansen et al., 1992; Hansen et al., 2012; Færseth, 2012), 

very similar to the Northern North Sea and Mid Norwegian margin: i) a latest 

Permian to Early Triassic episode and ii) a Middle Jurassic to earliest Cretaceous 

episode. In the Lofoten Margin, another rift event occurred towards the end of the 

Early Cretaceous (Hansen et al., 1992; Blystad et al., 1995; Løseth, H., Tveten, 1996; 

Doré et al., 1999; Tsikalas et al., 2001).  

The initial framework of Hansen et al. (1992), in which two distinct periods of rifting 

are recognized in the Early Cretaceous, has been adopted by several more recent 

studies (Koch and Heum 1995; Brekke 2000, Tsikalas et al., 2001, Surlyk, 2003). 

However, two alternative schools of thought exist; following Doré (1992), Lundin 

and Doré (1997), Doré et al. (1999) and Hansen et al. (2012), the Early Cretaceous is 

characterised by a period of rifting that began in the Valanginian. Rifting cessation is 

associated with a middle Cenomanian erosional event. Færseth (2012) on the other 

hand argues that the Lower Cretaceous itself resembles post-rift basin-fill, with fine-

grained marine sediments infilling sediment-starved, inactive half-grabens inherited 

after Late Jurassic rifting. Our results indicate that the nature of the lower part of the 

Lower Cretaceous fits the model of Færseth (2012), but that the upper part of the 

Lower Cretaceous records an important rift episode during which Triassic and 

Jurassic faults were reactivated and linked up to form large, segmented fault zones.   

A final rift episode occurred in Campanian to Palaeogene across the Norwegian 

continental shelf (Skogseid et al., 2000; Færseth and Lien, 2002; Gernigon et al., 

2003). In the Lofoten margin widespread fault block rotation resulted in reinvigorated 

activity along the major basin bounding fault systems that govern the half-graben 

architecture of the Lofoten margin (Tsikalas et al., 2001; Færseth, 2012; Hansen et 

al., 2012).  
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2.2    Evolution of the regional stress regime during the 

Mesozoic  

The Permo-Triassic rift episode of the northern North Atlantic is characterised by E-

W directed extension (Mosar et al., 2002; Coward et al., 2003; Faleide et al., 2010). 

For the Lofoten margin specifically, NNE-trending structures of this age have been 

documented both onshore (Steltenpohl et al., 2004; Wilson at al., 2006) and offshore 

(Hansen et al., 1992; Færseth, 2012; Hansen et al., 2012).  

For the Lofoten margin a change in extension direction has been invoked for the Late 

Jurassic to Early Cretaceous rift episode based on the development of NE-SW- to E-

W-striking faults in addition to continued activity of NNE-SSW-striking ones 

(Tsikalas et al., 2001; Bergh et al., 2007), similar to other areas of the Norwegian 

continental shelf (Færseth et al., 1997; Clifton et al., 2000). This suggests that since 

the Permo-Triassic rift episode, the extensional stress field vector had rotated c. 30-

50° clockwise. This stress rotation was also invoked by Faleide et al. (2008), who 

emphasise its regional, NE Atlantic-Arctic nature. Alternatively, Færseth (2012) and 

Hansen et al. (2012) interpret inception of NE-SW- to E-W-striking faults in the 

Lofoten margin during the Late Jurassic to Early Cretaceous to represent linkage of 

NNE-SSW-striking segments and see no evidence for an overall regional stress 

rotation.  

A change in the direction of absolute plate motions occurred c. 85 Ma (Torsvik et al., 

2001b). This has been suggested to have caused (another) change in the regional 

stress regime, towards NW-SE to NNW-SSE directed extension, during the 

Campanian-Palaeocene rift episode and continental break-up in the Eocene (Mosar et 

al., 2002). The timing and orientation of this change in extension direction is agreed 

upon by different workers; it resulted in activity of NE- to ENE-trending faults in the 

Lofoten margin (Tsikalas et al., 2005; Wilson et al., 2006; Bergh et al., 2007; 

Færseth, 2012). 
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2.3    The North Træna Basin and the Vesterdjupet Fault Zone 

The North Træna Basin is a prominent half-graben (Fig. 2), bounded by the VFZ and 

the Marmæle Spur to the east and the East Røst Fault Zone (ERFZ; sensu Hansen et 

al., 2012; Fig. 1) to the northwest, which separates the basin from the Røst High. The 

ERFZ is smaller, both in length (17 km) and offset (500 m), than the VFZ which 

measures a total length of 100 km, and a maximum offset of almost 3500 m. South of 

the Marmæle Spur, the VFZ juxtaposes the North Træna Basin against the southern 

Ribban Basin. The southern extension of the VFZ is buried deeply underneath the 

Upper Cretaceous Træna Basin proper and is not well imaged where it meets the SW- 

Fig. 2. Composite geoseismic section (A-A’) across the North Træna Basin; location is indicated in 

Figure 3. Stratigraphic subdivision largely follows that of Hansen et al. (1992). With the exception of 

the mid-Albian, all Mesozoic and Palaeogene events are tied to well data; see text for details. 
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Fig. 3. Chart of stratigraphic sequences and events of the North Træna Basin. This chart is based 

on the sequences encountered by the shallow cores (Hansen et al., 1992), combined with seismic 

stratigraphy. 1: Triassic-lower Jurassic (Åre Fm.); 2: middle Jurassic (Melke Fm.); 3: upper 

Jurassic (Spekk Fm.); 4: Valanginian-Aptian (Lyr/Lange Fm.); 5: lower Albian (Lange Fm.); 6: 

upper Albian (Lange Fm.); 7: Cenomanian-Turonian (Lange Fm.); 8: Santonian (Nise Fm.); 9: 

Campanian-Maastrichtian (Springar Fm.); 10: Palaeocene (Tang Fm.). See text for full discussion.  
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trending Lofoten Ridge (Blystad et al., 1995; Færseth, 2012; Hansen et al., 2012). To 

the north the fault zone loses displacement into a series of splays over the Utrøst 

Ridge. Both the Marmæle Spur and the Røst High connect to the Utrøst Ridge, a 

Cretaceous high (Blystad et al., 1995) lying to the north of the North Træna Basin. 

A lack of well data hampers our understanding of the tectonostratigraphy of the 

Lofoten-Vesterålen margin. Shallow boreholes were drilled by the Norwegian 

continental shelf institute (IKU) in the early 1990s to address this. The stratigraphic 

subdivision as established by IKU (Hansen et al., 1992) is used as a starting point of 

this study. Figure 3 provides an overview of the tectono-sequences and events based 

on boreholes and additional seismic observations.  

Earliest Triassic sediments rest on crystalline basement in most of the area. This 

contact has a clear seismic expression and forms the lower boundary to an isopachous 

interval observed on seismic (Fig. 2). The upper portion of this interval consists of the 

uppermost Triassic and Lower Jurassic Åre Fm. A Middle Jurassic erosional surface 

has cut down to the Lower Jurassic (Fig. 3).  

The Middle Jurassic is present across the basin; where drilled, the Middle Jurassic 

sequence is overlain by Cretaceous strata, meaning that the Upper Jurassic is absent. 

Away from the drilled area, however, the Jurassic sequence expands (Fig. 2) and an 

additional, presumably Upper Jurassic sequence is present between the Middle 

Jurassic and Base Cretaceous seismic horizons (Fig. 3). This sequence was penetrated 

further to the NE, in the northern Ribban Basin (Hansen et al., 1992). 

Barremian age sediments overly the Base Cretaceous seismic horizon where drilled 

(Hansen et al., 1992). This contact is regionally known as the Cimmerian 

unconformity, which formed as a result of a widespread erosional or non-depositional 

event around early Valanginian times (Brekke, 2000). On seismic we observe that 

older strata onlap the Base Cretaceous away from the well location. These strata are 

conformable with the drilled Barremian sediments and are thus interpreted to be part 

of the same sequence, albeit older (Fig. 3). A correlation to the Lower Cretaceous 
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* for a well to seismic tie the reader is referred to Figure 5 in paper 3 (page 87) 

outcrops of Andøya has been proposed (Hansen et al., 2012), suggesting older 

portions of this onlapping sequence may be of Valanginian age. At the drilled 

location, the Barremian is overlain by shales of Aptian and Albian age (Hansen et al., 

1992). On a seismic line that was acquired over the location of the well* the 

Barremian and Aptian shales are conformable. An unconformity is recognized on 

seismic to the SW of the well that, in the well, would separate the Aptian shales from 

the Upper Albian shales. Biostratigraphic data indicate that this lacuna spans the 

Early Albian (Hansen et al., 1992). The Upper Albian interval is isopachous and can 

be traced on seismic across the North Træna basin (Fig. 2). Away from the drilled 

location there are areas where an additional, wedge-shaped stratigraphic interval is 

observed between the Barremian-Aptian and Upper Albian successions of the well 

(Fig. 2). It is suggested that this wedge is of Early Albian age, and that it formed at 

the same time as the Aptian-Albian hiatus of the drilled location (Hansen et al., 

1992). An (Upper) Albian age is also assigned to the lower portion of well 6711/04-

U-01, based on the presence of a biostratigraphic assemblage that is similar to that of 

the Albian upper part of 6710/03-U-01.  

The top of this Albian sequence is marked by a stratigraphic break, dated as middle 

Cenomanian (the Lower Cenomanian is absent or condensed). This break is 

associated with an unconformity that is observable on seismic data (Fig. 2; Hansen et 

al., 1992). The Upper Cretaceous consists of three sequences separated by two low-

angle unconformities (Fig. 3).  

3.    Data & Methods 

The seismic database used in the present study (Fig.4) includes pre-stack time-

migrated 2-D and 3-D reflection seismic surveys. The line spacing of 2-D seismic 

data varies from 1 to 7 km; most surveys consist of lines oriented NW-SE, 

perpendicular to the coastline, with some NE-SW-oriented tie lines. The total length  
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of 2-D lines used is approximately 2000 km. Two 3-D reprocessed reflection seismic 

surveys that cover areas of c. 700 km2 (NH9604; survey I) and 1500 km2 (TBN99; 

survey II) are also used. The surveys have an inline and crossline spacing of 12.5 m; 

inlines are orientated E-W (survey I) and WNW-ESE (survey II), approximately 

perpendicular to fault strike, and cross-lines are orientated N-S and NNE-WSW 

respectively, approximately parallel to fault strike. The dominant frequency around 

the Base Cretaceous is c. 25 Hz. With an interval velocity of 3000 m/s the vertical 

resolution of the Upper Mesozoic is c. 60 m. 

One of the objectives of this study is to resolve temporal activity along the VFZ in 

order to determine its spatiotemporal evolution. Normal fault activity controls 

Fig. 4. Base map showing the reflection seismic and well database used in this study; black lines 

and grey boxes refer to 2-D and 3-D reflection seismic data, respectively. Locations of cross 

sections shown in other figures are indicated in annotated solid black lines. Maximum extent of 

mapping (the area of interest) is indicated by the dotted black line. The stippled line indicates the 

location of the VFZ at Base Cretaceous level.  
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changes in the location and amount of accommodation (e.g. Ravnås et al., 2000). This 

is reflected in changes in the distribution and architecture of syn-tectonic strata, thus 

the sedimentary record of the hanging wall can be used to unravel the tectonic history 

of a segmented fault system (Prosser, 1993; Young et al., 2001). Seismic observations 

of stratigraphic thickening towards a structure directly indicate syn-tectonic 

sedimentation. Where applicable, expansion indices (Thorsen, 1963) have been 

calculated; these are used to quantify growth history of faults by comparing thickness 

of stratigraphic sequences between foot- and hanging wall (e.g. Groshong, 1999; 

Jackson and Rotevatn, 2013).  

4. Tectonostratigraphy of the greater North Træna Basin

4.1 Structural framework 

The Base Triassic horizon is recognized on seismic only in certain areas. The Base 

Cretaceous, on the other hand, forms a conspicuous seismic reflection throughout 

most of the North Træna Basin. It typically forms the contact between the Middle 

Jurassic and the Lower Cretaceous (Fig. 3), and thus often records cumulative strain 

of both the Late Jurassic and the Early Cretaceous rift episodes.  

The overall WNW-dipping VFZ is comprised of a NE-SW-oriented central segment 

flanked by two NNE-SSW-oriented segment to the north and south (Fig. 5A). The 

three segments range from 15 to 60 km in length (Fig. 1), with throws averaging 2 km 

and with a throw maximum of 3.5 km (for the Base Cretaceous horizon) near the 

Marmæle Spur (Fig. 5B). The fault zone displays significant along-strike variability 

in structural style and distribution of total strain (Fig. 5A). Along the central segment, 

(Cretaceous) displacement is largely localized onto a single fault; elsewhere it is 

distributed across several faults that bound fault terraces of 10 – 15 km length and 0.4 

to 3 km width (Fig. 5A). The NW edge of the basin is formed by the ESE-dipping 

ERFZ. This fault zone consists of a series of splays that come together in the NNE 

(Fig. 1), where its throw reaches a maximum of 750 m. Further to the NNE the ERFZ 

continues for 50 km across the Utrøst Ridge and forms the eastern border of the Røst 



49

High (Hansen et al., 2012). Large portions of the fault zone and its foot- and hanging 

wall have been eroded following Palaeogene uplift. 

4.2   Triassic – Lower Jurassic tectonostratigraphy of the 

North Træna Basin

The Base Triassic horizon and the Triassic-Jurassic isopach are strongly affected by 

younger tectonic and erosional events. As a consequence of the high level of 

uncertainty, fault polygons have not been created for this horizon. Thickness changes 

in the Triassic-Jurassic occur mostly gradual over tens of kilometres (Fig. 7A); some 

more abrupt changes can be linked to the presence of faults. Separating Early Triassic 

fault offset from more recent tectonic imprints has proven to be one of the main 

challenges of this study.  

Triassic fault 1 of Figure 8 is characterized by strong differences in thickness of the 

Triassic – Lower Jurassic succession between foot- and hanging wall (Figs. 5C and 

8). Moreover, the Triassic – Lower Jurassic interval exhibits thickening towards that 

fault. The Middle Jurassic, on the other hand, is an isopachous package of parallel 

reflections and exhibits no difference in thickness across the fault. The base of the 

Middle Jurassic resembles an angular unconformity at the footwall crest. The 

stratigraphic thickening of the Triassic – Lower Jurassic interval points at 

accommodation being generated by fault movement during deposition. Naturally, the 

hanging wall received most of the syn- and post-rift Triassic and Lower Jurassic  

Fig. 5 (following page). (A) TWTT map of the Base Cretaceous horizon. This horizon is gridded 

from interpretations performed on various 2-D and 3-D seismic reflection surveys; the 

interpretation grid (inset map) is shown as a measure of mapping resolution. (B) B-B’ shows the 

NNE-SSW-striking northern segment that is characterized by a series of parallel terraces. (C) C-C’ 

shows the NE-SW-striking central segment where the VFZ consists of one single fault plane. (D) D-

D’ shows the NNE-SSW-striking southern segment, where the VFZ is represented by two distinct 

fault planes.stratigraphic wells. 
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Fig. 6. Depth converted structure maps for several Mesozoic events. The confidence of the Base 

Triassic horizon is low. Wells in black are used as starting point for that specific event. Contour 

spacing is 100 m. To the north, most of the horizons have been eroded in Palaeogene times. The SW 

border of these horizon maps is a picking limit; horizons plunge deep and seismic resolution is 

insufficient for reliable mapping. (A) The base Triassic horizon was drilled by 6710/3-U-3 and is 

tied to 3-D survey I by 2-D lines. The Base Triassic is only mapped in the hanging wall to the VFZ. 

(B) The Base Cretaceous was drilled by 6710/3-U-1 and is mapped also on the footwall of the VFZ 

and into the Ribban Basin. (C) The base Albian horizon was drilled by 6710/3-U-1 and is only 

mapped in the hanging wall to the VFZ. (D) The middle Albian has not been tagged by any well and 

is only mapped in the hanging wall to the VFZ. (E) The middle Cenomanian was drilled by 6710/3-

U-1 and can be traced around the VFZ into the Ribban Basin. (F) The Base Palaeogene has been 

tagged by wells to the south of the study area (e.g. 6610/7-1; Eidvin et al., 1998). 
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Fig. 7. Isopach maps for the Mesozoic succession. The Base Triassic horizon is uncertain, for which 

reason the Triassic-Jurassic color scheme is faded. Fault offset of this isopach has not been mapped in 

detail, for which reason faults are indicated by lines rather than fault polygons. For the Cretaceous, 

each interval is shown together with corresponding fault planes as mapped in Figure 5. (A) Triassic-

Jurassic: areas of syn-tectonic sedimentation are hatched, see text for detailed explanation. (B) 

Valanginian-Aptian: this interval is interpreted resemble passive infill of the underfilled Late Jurassic 

basins. (C) Lower Albian. (D) Upper Albian. (E) Upper Cretaceous. 
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sediments; this contrast is reinforced by Middle Jurassic uplift erosion, which 

removed some of the Triassic - Lower Jurassic from the footwall. Subsequently, the 

transgressive Middle Jurassic sequence was deposited equally over the eroded 

surface. Offset of the Middle Jurassic must have occurred at a later stage. The areal 

extent of growth strata observed in the Lower Triassic and Upper Jurassic intervals 

(e.g. Figs. 5 and 8) is mapped and indicated on Figure 7A. The presence of fault-

bounded depocentres in these intervals together explain most of the thickness changes 

of the Triassic-Jurassic isopach. Using growth strata as a proxy for syn-tectonic 

sedimentation, the location and orientation of Triassic faults can be resolved. The 

ERFZ, certain portions of the VFZ and several faults were active during the Early 

Triassic rift episode (Fig. 7A). These Triassic faults strike NNE-SSW, are up to c. 20 

km long with a maximum displacement of 300 m. 

The northern segment of the VFZ locally displays growth in the lower Triassic 

portion of the hanging wall (Figs. 2, 5B and 7A). This growth is not as pronounced as 

that seen in Figure 8; the fault that must have formed the depocentre here may have 

been small compared to other Triassic faults. Nevertheless, this indicates that a NNE-

SSW-striking Triassic fault existed as precursor to the northern segment. Parts of the 

hanging wall of the southern segment are also characterized by growth of the Lower 

Triassic interval. Lower Triassic thickening as seen in Figure 5D suggests that 

Triassic fault 1 (Fig. 5C and 8) continues to the south. These growth strata indicate 

that at least part of the southern VFZ segment first developed in Triassic times. 

Unlike the northern and southern segments, the NE-SW-striking central segment of 

the VFZ displays no thickening of the Triassic – Lower Jurassic succession in its 

hanging wall (Figs. 5C and 8). This suggests that, at that time, a precursor to this 

segment had not yet formed.  

There is a certain correlation between the occurrence of Triassic faults on the one 

hand and the presence of underlying Palaeozoic sediments on the other; where 

Palaeozoic sediments  underlie the Mesozoic, faults of Triassic age (and younger) are 

abundant (Figs. 2 and 9A).  
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Fig. 8. Geoseismic section E-E’ across a series of faults in the North Træna Basin. Syn-tectonic 

‘growth’ wedges indicate the faults were active in the Upper Jurassic. Note thickening of Triassic strata 

on the fault in the centre of the section (2), and unconformities that bear evidence of erosion of its 

footwall during Middle Jurassic (3) and Cretaceous (4) times. The VFZ to the right (5) shows syn-

rotational deposition for both the Upper Jurassic and uppermost Albian intervals. Map location is 

indicated in Figure 10A. Note sharp angles between different portions of the cross-section, necessary to 

display faults at more or less perpendicular angles. 
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Fig. 9. Summary figure showing the structural framework of the North Træna Basin as it evolved 

across the various rift episodes. (A) Triassic fault framework, taken from Figure 7A. (B) Late 

Jurassic fault framework. Fault polygons reflect those faults that are onlapped by Cretaceous 

sediments (Fig. 7B); lines reflect faults juxtaposed by Upper Jurassic strata (Fig 7A). (C) 

Depocentres of the Valanginian-Aptian intra/rift period. (D) Faults that were active during the Late 

Albian; the Late Jurassic fault polygons are included in grey. (E) Activity of the central segment of 

the VFZ as it occurred in late Cretaceous times; fault polygons of foregoing rift episodes are included 

in grey. See text for full discussion. 
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4.3  Middle Jurassic – lowermost Cretaceous tectono-

stratigraphy of the North Træna Basin

The Middle Jurassic is an isopachous interval with parallel reflections throughout the 

study area and is offset by numerous faults (Fig. 2). The Upper Jurassic, where 

present, is typically composed of growth strata (e.g. Fig. 8). These Upper Jurassic 

wedges are c. 10-15 km long, 5 km wide with a maximum thickness of 750 m. The 

overlying Valanginian-Aptian is characterised by abrupt thickness variations (from 0 

to 450 m; Fig. 7B), but strata do not show thickening into faults that offset the Middle 

Jurassic. Instead, reflections are parallel and onlap/drape partly eroded Jurassic strata 

and exposed fault planes (Figs. 2, 5C, D and 8).  

As described in the geological setting, different views exist on the timing of rifting at 

the Jurassic-Cretaceous transition. Given the syn-rift nature of the Upper Jurassic and 

the intra-rift nature of the Middle Jurassic and Valanginian-Aptian, we agree with 

Færseth (2012) that the lower part of the Lower Cretaceous resembles passive infill 

Fig. 10. Late Jurassic reactivation of a Triassic fault. (A) Triassic-Jurassic isopach with fault 

polygons. 5 km grid is included for comparison between A and B. (B) Valanginian-Aptian isopach 

and associated fault polygons record Late Jurassic rift episode; note the right-stepping, en echelon 

array that has developed over Triassic Fault 1. See text for details. (C) Three-dimensional 

representation of the reactivated fault; the Valanginian-Aptian isopach map is projected onto the 

Base Cretaceous time structure map.  
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of extensional basins formed during the Late Jurassic (see also Prosser, 1993). Faults 

that formed during the Late Jurassic rift episode are therefore identified from 

mapping fault-bounded Upper Jurassic and Valanginian-Aptian depocentres (Fig. 7A, 

B). The combined structural framework is shown in Figure 9B. The basins that 

formed in response to these faults must have remained sediment starved during the 

Late Jurassic, especially to the northwest (Fig. 9B) as most of the basin-fill occurred 

during the Valanginian-Aptian transgressive cycle (Figs. 7B and 9C; see also Fig. 8).  

Late Jurassic faults that formed away from pre-existing Triassic faults strike NE-SW 

to ENE-WSW  (Figs. 7A, 8, 9B and 10B). In the vicinity of Triassic faults, however, 

the Jurassic faults exhibit various orientations. Triassic fault 1, for example, is 

overlain by a right-stepping soft-linked array of NNW-SSE-striking faults (Fig. 9A, 

B). Middle Jurassic strata, which predate Late Jurassic activity, have been eroded 

partly from the footwall of Triassic fault 1 (Fig. 8). Projecting the top of the Middle 

Jurassic in the footwall towards the fault plane yields a throw of c. 250 ms TWTT (c. 

375 m), which must have developed during Late Jurassic extension in addition to 

Early Triassic offset. This indicates Triassic fault 1 was reactivated during Late 

Jurassic extension (Fig. 10).  

The northern segment of the VFZ is juxtaposed to a long, NNE-trending half-graben 

filled with more than a kilometre of Upper Jurassic (syn-rift) to Aptian (intra-rift) 

sediments (Figs. 2, 5B). The Valanginian-Aptian isopach map shows a series of 

depocentres along the northern segment (Fig. 7B). The largest of these is positioned 

adjacent to the centre of the segment. Since the Valanginian-Aptian fills in Jurassic 

rift topography, it can be concluded that a single, composite hanging wall depocentre 

had formed along the length of the northern segment in Late Jurassic times (Fig. 9B).  

Upper Jurassic growth strata exist in the hanging wall to the central segment (Fig. 8), 

whereas reflections of the underlying Triassic-Lower Jurassic are continuous and 

parallel with no indication of fault activity (Figs. 5C and 8; see previous section). 
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This suggests that a transfer fault between the precursors to the northern and southern 

segment first developed at this time.  

NE-SW-striking faults observed in the hanging wall of the southern segment are also 

present in the footwall, as a more or less continuous trend (Figs. 5A, 7A and 9B). 

Growth of Upper Jurassic strata in Figure 5D indicates that Late Jurassic fault activity 

did occur along the southern segment of the VFZ. Such Upper Jurassic wedges are, 

however, only small along the southern segment (Fig. 9B) and the Valanginian-

Aptian isopach is thin or absent. This indicates that Late Jurassic fault activity did not 

produce a continuous fault there.  

4.4    Lower Albian tectonostratigraphy of the North Træna 

Basin 

The location of the principal depocentres of the Lower Albian interval is generally 

similar to the preceding interval (Fig. 7B and C). The thickness of the Lower Albian 

varies from 0 to 800 m; such thickness changes occur gradually over a distance of 15 

– 20 km. The vast majority of Late Jurassic faults are truncated, or draped, by the 

Base Albian horizon (Fig. 6C) and the remaining rift topography is effectively filled 

in by the Lower Albian (Figs. 2 and 8). Only the VFZ and the ERFZ offset the Lower 

Albian (Figs. 2 and 8). Middle Jurassic to Lower Albian strata exhibit no difference 

in thickness between foot- and hanging wall of the ERFZ (Fig. 11), suggesting that 

the fault was largely inactive during this time.  

In the northern part of the basin, the Lower Albian takes the shape of a prominent 

wedge that thins progressively westward, from up to a kilometre thick adjacent to the 

VFZ, to less than 100 m in the middle of 3-D survey I (Fig. 2). Despite this 

thickening of the Lower Albian towards the fault, its reflections are non-rotational, 

indicating onlap and stratigraphic progradation. This geometry can be explained as a 

result of compaction of underlying mud-rich Jurassic-Cretaceous successions, 

producing subsidence adjacent to the VFZ without fault activity. 
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Fig. 11. Geoseismic section F-F’. Expansion index plot across the ERFZ; see text for details. Nine 

horizons have been included for calculating expansion indices (a-e: intra-Upper Albian; f: mid-

Albian; g: Base Albian; h: Base Cretaceous; i: Base Jurassic).   
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4.5  Upper Albian tectonostratigraphy of the North Træna 

Basin

4.5.1   Late Albian activity of the ERFZ

The ERFZ tips out laterally to the south (Fig. 6D), and vertically it terminates within 

the Upper Albian succession. 3-D survey I provides a unique opportunity to study 

fault activity as individual reflections in its hanging wall can be mapped around the 

southern fault tip, onto the footwall. Six intra-Albian events (‘a’-‘f’; Fig. 11) have 

been mapped locally for calculating expansion indices. Expansion indices are greatest 

just above the mid-Albian horizon with an expansion factor >3. Thickening 

diminishes upward. This tells us that accommodation was generated just prior to (or 

during) deposition of the interval between ‘e’ and ‘f’. There is significant thickening 

of Upper Albian strata over the ERFZ (Fig. 7D), yet there is no stratigraphic growth 

in its hanging wall. 

The absence of growth strata indicates that the North Træna Basin subsided 

uniformly over a large area as a graben rather than a half-graben, suggesting 

simultaneous activity of both the western (ERFZ) and eastern (VFZ) border faults. 

Thicker strata in the hanging wall are therefore probably the result of a higher 

sedimentation rate in the deeper hanging wall. Later during the Late Albian, activity 

of the ERFZ ceased, as evidenced by the termination of the ERFZ within the Upper 

Albian. An alternative interpretation of the fault movement recorded by the expansion 

indices is differential compaction of sediments across this Palaeozoic-Triassic fault. 

In the hanging wall of the ERFZ, a thick wedge of Palaeozoic sediments is present 

(Figs. 2 and 9A) that is most likely absent in the footwall. Compaction of these 

sediments could explain an increased subsidence rate east of the ERFZ, without any 

extension. This would fit with the lack of observations Upper Albian growth strata 

that would follow from extensional rotation of the ERFZ. On the other hand, if 

compaction of Palaeozoic sediments creates differential subsidence across the ERFZ, 

this should also have occurred to a certain degree when the underlying Mesozoic 
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sequences were being deposited. These have more or less similar thicknesses on 

either side of the ERFZ; differential compaction seems therefore unlikely to be the 

cause of renewed activity. 

4.5.2    Late Albian activity of the VFZ

A continuous depocentre existed along the length of the fault zone in Late Albian 

times (Fig. 7D). Unfortunately, expansion indices cannot be calculated as the footwall 

of the VFZ does not contain Lower Cretaceous strata. The seismic expression of the 

upper part of this interval along the northern segment comprises a series of vertically 

stacked westward thinning wedges (Fig. 12). Reflections are discontinuous and 

exhibit downlapping in westerly direction, along with erosional surfaces. Upper 

Albian strata have been drilled up-dip, which were interpreted to have been deposited 

in an outer shelf environment. The wedges adjacent to the VFZ are therefore 

interpreted to reflect deposition of locally derived sediment in a high energy, deep 

marine environment. The development of a hanging wall depocentre filled in by 

locally derived sediment means that relief between foot- and hanging wall became 

enhanced; this suggests activity of the northern segment at this time (see also: 

Prosser, 1993). This is confirmed by the presence of syn-rotational strata in the 

uppermost Albian interval towards the southern tip of the northern segment (Fig. 8). 

NNE-trending structures have existed there since the Early Triassic rift episode (Fig. 

9); it is likely that these were reactivated. 

In the hanging wall to the southern segment of the VFZ, the Upper Albian is in 

stratigraphic contact with the Middle Jurassic in places. Whereas the Valanginian – 

Aptian and Lower Albian successions are thin or absent west of the southern segment 

(Fig. 7B and C), Upper Albian sediments are deposited more widely (Fig. 7D). The 

southern portion of the basin had thus maintained a platform setting during Late 

Jurassic to Middle Albian times, with little to no extensional faulting generating 

accommodation since Triassic times. The fact that a more continuous Upper Albian 

depocentre  exists along the southern segment suggests that it became active at this  
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Fig. 12. Detail of seismic line A-A’ with onlap-, downlap- and erosional contacts within the Upper 

Albian, Upper Cretaceous and Palaeogene close to the VFZ.  



63

time. The southern segment is truncated at the top by the middle Cenomanian horizon 

and that both foot- and hanging wall are draped by Cenomanian and younger 

sediments (Fig. 5D). The Upper Albian depocentre must thus have formed between 

middle Albian and Cenomanian times. It is therefore concluded that activity of the 

southern segment is restricted to the Late Albian. It likely reactivated the Triassic 

NNE-SSW-trending structure that existed there (Triassic fault 1 and its southern 

extension; Fig. 5C and D). 

The central segment consists of a single fault plane (Fig. 5C) juxtaposing a 1-2 km 

thick, Upper Albian package (Fig. 7D). The thickness of this package shows no 

change at the transition to the adjacent fault segments; it thus seems plausible that all 

segments of the VFZ had linked up, forming a through-going feature towards the end 

of the Albian.  

4.6 Upper Cretaceous tectonostratigraphy of the North Træna 

Basin

The Cenomanian-Santonian intra-rift succession is characterized by onlap of the Base 

Cenomanian (Fig. 12). Depocenters of this interval are non-fault bounded and occur 

over the hanging wall depocentres (Fig. 2) hinting at compaction-driven subsidence. 

Minor offset of the Base Cenomanian horizon is observed for the central segment of 

the VFZ (Fig. 5C). This was likely accomplished by local reactivation during the 

Campanian-Palaeogene rift episode.  

5. Discussion

5.1 Mesozoic structural inheritance in the North Træna Basin

5.1.1 The Early Triassic rift episode 

A direct link between Palaeozoic extensional structures and Mesozoic rift faults has 

been postulated for the Lofoten margin by Olesen et al. (2002) and Eig (2012). 
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Triassic faults preferentially formed over the Palaeozoic substratum (Figs. 2 and 9A); 

we speculate that this is caused by the Palaeozoic sediments being rheologically 

weaker than the crystalline basement.  The N-S trending ERFZ is often considered to 

reflect the main Triassic fault trend (e.g. Bergh et al., 2007; Hansen et al., 2012); 

however, although some minor movement took place in the Triassic (Triassic fault 2 

in Fig. 10A), this fault is herein dated as a predominantly Late Albian feature that 

most likely reactivated a deep-seated Palaeozoic structure (Fig. 11).  

5.1.2 The Middle-Late Jurassic rift episode

The Late Jurassic faults of the North Træna Basin exhibit a predisposition to 

reactivate Triassic structures. Triassic fault 1 was reactivated in Late Jurassic times 

(Figs. 8 and 10), as documented by the deposition of syn-rotational Upper Jurassic 

strata. It follows that faults formed through reactivation typically form right-stepping 

en echelon fault arrays striking NNW-SSE, N-S and NNE-SSW; non-reactivated 

faults strike NE-SW to E-W (Fig. 10).  

The development of en-echelon fault arrays as a result of the oblique reactivation of 

pre-existing structures has been documented in scaled lab experiments (Clifton et al., 

2000; Keep and McClay, 1997). Their results closely resemble the structural style of 

the Late Jurassic rift episode depicted in Figure 10. It is also a key feature of the 

coherent fault model. We therefore conclude that certain NNE-trending Triassic 

faults propagated upward during Late Jurassic extension, together with the inception 

of ENE-WSW- and E-W-striking faults. 

5.1.3 The Late Albian rift episode

Except for the timing of linkage, our model for the evolution of the VFZ (Fig.13) 

agrees with that of Bergh et al. (2007), Eig and Bergh (2011) and Færseth (2012), 

who also concluded that the NE-SW-striking central segment is younger than the 

NNE-SSW-striking southern and northern segments. Rather than having evolved 
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simultaneously, the central segment 

formed as a transfer fault between 

reactivated older fault segments.   

Late Albian displacement along the 

central segment of the VFZ, as well as 

the northern and southern segments, was 

influenced by the pre-Cretaceous 

structural grain but through contrasting 

mechanisms. The northern and southern 

segments, on the other hand, formed by 

(oblique) reactivation and linkage 

through breaching narrow (<2 km; Fig. 

9B) relays between ancestral 

Triassic/Jurassic faults at depth. In 

contrast, the Late Jurassic transfer fault 

that breached the broad (c. 11 km; Fig. 

5A) ramp that separates the northern and 

Fig. 13. Schematic representation of the 

physiography of the North Basin in Early 

Triassic, Middle Jurassic, Late Jurassic, Late 

Aptian and Late Albian times. The structural 

framework for the Early Triassic (a), Late 

Jurassic (c) and Late Albian (e) are taken from 

Figure 9 (the outline of Figure 9 is given in 

(b). Note how Early Triassic faults assume a 

NNE-SSW orientation, while late Jurassic 

faults strike NE-SW predominantly. The VFZ, 

that emerged as a through-going fault zone 

towards the Late Albian, exploited both 

Triassic and Jurassic fault trends.  
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southern segments formed (and was later reactivated) as a single structure. This may 

explain the lateral difference in morphology (Fig. 5), with the central segment 

evolving as a single fault plane whereas the northern segment and, to a lesser degree, 

the southern segment are composed of a series of faults and terraces. Reactivation 

producing more complex fault geometries than orthogonal reactivation has been 

observed in physical models (Keep and McClay, 1997; Henza et al., 2011), numerical 

models (Brune, 2014) and in natural rifts (Morley et al., 2004). 

5.1.3 The Campanian-Palaeocene rift episode 

We demonstrate how the locus of activity along the VFZ during the final rift episode 

was on the central segment, which had become the centre of the fault zone. In a 

similar study, Faure Walker et al. (2009) observed the removal of an original deficit 

of throw of a linkage zone during normal fault evolution. These workers argued that a 

position at the centre of an active, recently linked fault guarantees a high strain rate. 

The same kinematic argument was presented by Gupta and Scholz (2000), who stated 

that the displacement maximum is likely to be the last place to accumulate strain; this 

is particularly true for the VFZ. The stress regime had also changed favorably for 

activity along NE-trending structures (Mosar et al., 2002). 

5.2 The origin of segmented faults with zigzag geometry in 

physical models 

A series of analogue experiments in which wet clay models were subjected to two 

successive phases of extension with a 45° difference in extension direction were 

conducted by Henza et al. (2011). In these experiments, secondary structures 

nucleated at an angle to first-phase structures during second-phase extension, thus 

promoting fault linkage (Fig. 14). Depending on the relative magnitude of extension 

between the two phases the resultant linked fault systems were dominated by either 

first-phase or second-phase segments. Linkage during non-coaxial extension thus  
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occurs irrespective of length and separation of original first-phase structures, 

producing faults with strong zigzag or cross-cutting geometries. 

  

Fig. 14. Schematic representation of the structural evolution of the North Træna Basin and the 

VFZ through the Mesozoic based on Figure 9 (below), compared to clay experiments of multi-

stage extension by Henza et al. (2011; above). In the specific clay experiment depicted here, two 

phases of extension were applied; the second phase double the magnitude of the first. E1 and E2

indicate extension directions 1 and 2. The clay model maps have been rotated (120 degrees) to 

match the attitude of structures to those of the North Træna Basin, for better comparison. (A) 

The physical model at the end of extension phase one (above) compared to the structural 

framework at the end of the Early Triassic rift episode (below). (B) The physical model halfway 

extension phase two (above) compared to the structural framework at the end of the Late 

Jurassic rift episode (below). (C) The physical model at the end of extension phase two (above) 

compared to the structural framework at the end of the Late Albian rift episode (below). 
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In experiments that lacked a change in extension direction, faults typically grew 

laterally at the tips. Linkage occurred incidentally when growing, parallel faults 

began to overlap and interact. With no pre-existing structure to be reactivated, these 

faults are best described as having formed following the isolated fault model. One 

important characteristic of experiments simulating coaxial (uniform) extension is that 

overlapping faults only link up when their strike-normal spacing is relatively modest; 

Fig. 15. Collection of data quantifying the aspect ratio of two parallel, linked faults; their 

combined length (‘a’; x-axis) is plotted against the width of their strike-normal separation (‘b’; y-

axis). The graph contains data from physical analogue models (McClay et al., 2002; Athmer et al., 

2010 and Henza et al., 2011) and natural rifts (Acocella et al., 2000). Single phase refers to co-

axial extension, multiphase refers to non-coaxial extension. The stippled line indicates the 14:1 

aspect ratio between combined fault length and separation. 
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linked systems retained an overall parallel appearance (Henza et al., 2011; see also 

Keep and McClay 1997; McClay et al., 2002).  

Figure 15 provides empirical data from physical models to illustrate the relationship 

between the combined length of two linked, first-phase faults and their strike-normal 

separation (respectively ‘a’ and ‘b’; Fig. 15). The graph reveals a strong split between 

results from coaxial and non-coaxial extension models. A boundary between both 

groups can be drawn along the 14:1 line (Fig. 15). It can thus be concluded that 

overlapping, parallel faults, which started off as isolated features, did not link up 

during coaxial extension if their separation exceeded c. 8% of their combined length. 

A critical length for linkage of parallel fault segments was also obtained from 

analysis of segmented normal faults in Upper Pleistocene to Holocene basalts on 

Iceland (Acocella et al., 2000). Given their young age, these faults likely developed 

under uniform (coaxial) extension. The linear best-fit line of the Icelandic data 

overlaps with the results of experiments simulating coaxial extension (Fig. 15). Data 

from the natural faults in Iceland display a larger spread than the physical models; 

nevertheless, these workers also suggested a minimal combined segment length of 14 

times their separation in order for interaction to occur. 

5.3 Models explaining the plan-view geometry of the 

Vesterdjupet Fault Zone  

5.3.1 Fault linkage following the isolated fault model 

Fault systems evolving following the isolated fault model, without a change in the 

extension vector or inherent weaknesses in the substratum, tend to be rather linear as 

shown in the previous section. For the VFZ, the length of the connected southern and 

northern segment is 114 km (Figs. 1 and 5A) and their separation c. 11 km (Fig. 5A). 

This yields a ratio of roughly 10:1; when scaled, the VFZ plots within the domain of 

non-coaxial extension (Fig. 15).  
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Local deflection of least principal stress may be caused by interaction of overlapping 

faults (Morley et al., 1990; Brune, 2014). In the North Træna Basin, at least one 

example of such a local perturbation of the least principal stress vector is observed. In 

the overlap area between Triassic faults 1 and 2 (Figs. 9A, B and 10A, B), the plan-

view network of relatively small Late Jurassic faults resembles that of a convergent, 

overlapping transfer zone as described by Morley et al. (1990). If we assume that for 

natural rifts the same critical relationship of 14:1 exists between fault length and 

segment separation, as the work of Acocella et al. (2000) suggests, then the spacing 

of the Triassic precursors of the northern and southern segments of the VFZ would be 

too wide (10:1) for the stress field to be perturbed in such a way that it promotes 

interaction between these faults (Fig. 16A). Speculating further under this 

assumption, the fact that segment linkage did occur in Late Jurassic to Early 

Fig. 16. Different models that can explain the 

emergence of zigzag plan-view geometry of 

normal faults which evolve during multiphase 

rifting. (A) Two faults developing according 

to the isolated fault model; their length and 

separation is such that they do not interact as 

extension progresses. (B) Two faults 

developing according to the isolated fault 

model; as the direction of extension changes 

favourably for a transfer fault to develop, the 

faults link up. (C) A pre-existing structure at 

depth is reactivated obliquely; although the 

faults at surface appear soft-linked, they are 

in fact hard-linked at depth and will likely link 

when extension increases. 
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Cretaceous times implies i) a more widespread, favourable change in the orientation 

of least principal stress (Fig. 16B) and/or ii) the presence of inherent weaknesses in 

the basement (Fig. 16C). 

5.3.2 Stress rotation 

The VFZ has a plan-view expression that is very similar to the end result of clay 

model C from Henza et al. (2011), which is therefore chosen as analogue. Three 

different stages of model C are compared to the multiphase evolution of the North 

Træna Basin (Fig. 14). Despite the limitations of scaled analogue experiments, the 

clay model model, and its controlled environment, reveals that the zigzag geometry of 

the VFZ could be explained as a consequence of a change in extension direction 

between rift episodes. 

A rotation of the sub-regional stress field has been invoked between the Early 

Triassic and Late Jurassic rift episodes (e.g. Faleide et al., 2008). The favourable, c. 

30°-50° clockwise rotation of the least principal stress suggested by these workers 

could explain the linkage of relatively wide-spaced Triassic faults in the manner 

observed in physical models of non-coaxial extension. Sub-regional rotations of the 

stress field are often invoked in order to explain non-collinear fault populations in the 

Norwegian passive margin (e.g. Færseth et al., 1997; Doré et al., 1997; Davies et al., 

2001). Reeve et al. (2015) argue that such major rotations in extension direction are 

not always required to explain different fault populations developing simultaneously 

as intra-basement weaknesses can often account for local perturbations of the stress 

field. Although the observation of a difference in orientation between Jurassic and 

Triassic faults is also made in the present study (Fig. 9A, B), there exists no 

independent evidence for stress rotation in the Lofoten margin between the Triassic 

and Jurassic rift episodes (Mosar et al., 2002; Færseth, 2012). For the VFZ this means 

that, although the invoked regional stress rotation offers an elegant explanation for 

the zigzag geometry of the VFZ, it cannot be proven independently at this point and 
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the possibility of more local stress perturbations facilitating fault linkage should not 

be discarded.  

5.3.3 Influence of basement weaknesses 

We have not found evidence which either proves or disproves that the Triassic 

precursors to the VFZ were influenced by basement weaknesses as Wilson et al. 

(2006) suggest. If the Triassic faults did in fact develop along a NE-trending 

basement weakness, their linkage in Late Jurassic to Early Cretaceous times can be 

explained as reactivation of an already kinematically linked fault system (Fig. 16C). 

Such a setting in which extension over a buried weakness zone influences the 

geometry of subsequent normal faults was recreated in the physical analogue models 

of Hus et al. (2005). Faults developed over a weakness zone that linked up even if 

their combined length was only eight times their separation. 

NE-trending Caledonian basement lineaments, known onshore, are suggested to have 

influence Mesozoic rifting (e.g. Doré et al., 1997; Wilson et al., 2006). There are, 

however, indications that no such pre-existing structural grain exists underneath the 

North Træna Basin. The VFZ at the eastern edge of the basin is underlain by a 

crystalline basement dome that forms part of a metamorphic core complex (Henstra 

and Rotevatn, 2014). This exhumed lower crust typically lacks any tectonic imprint 

of Caledonian age in the Lofoten area (Hames & Andresen 1996; Steltenpohl et al., 

2006). It is therefore possible that the Triassic precursors to the VFZ nucleated as 

isolated features in a substrate without zones of weakness. In that case, their linkage 

in Late Jurassic to Early Cretaceous times can be explained by comparison to models 

of non-coaxial extension that also lack a pre-rift structural grain.  

6.     Summary and conclusions  

A detailed model for the polyphase evolution of a major rift border fault is provided 

based on interpretation of 2-D and 3-D seismic data over the North Træna Basin.  
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• During the Early Triassic rift episode, E-W-directed extension resulted in the 

development of NNE-SSW-striking faults. In the subsequent Late Jurassic and 

Early Cretaceous rift episodes, ENE-WSW- to E-W-striking faults formed 

while certain Triassic faults were reactivated. The presence and geometry of 

Triassic structures influenced the style of Late Jurassic fault growth, which in 

turn controlled the architecture of the Cretaceous VFZ. 

• A comparison to physical analogue models of non-coaxial extension reveals 

several similarities: i) the orientation of early structures dominate the geometry 

of late stage linked faults and ii) the late stage establishment of a single fault 

zone with zigzag geometry from the previously linked fault framework. 

• Given the relatively wide strike-perpendicular spacing of the original segments 

and the likely homogenous nature of crystalline basement, we suggest that a 

previously invoked stress rotation in Jurassic times introduced non-coaxial 

extension between the Triassic and later rift episodes. This lead to the 

observed zigzag-style linkage. 

Our analysis of the VFZ contributes to the wider understanding of normal fault 

growth in multi-rift systems and highlights the role of pre-existing fault segments and 

their reactivation in controlling the overall geometry of large, basin-bounding fault 

zones formed over multiple phases of extension.  
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