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Abstract 

 

The Historical1 simulation (1960-2000) and the RCP8.5 scenario (2060-2100) from the 

NorESM are used to investigate trends in extreme precipitation, as well as the impact from 

vertical velocity, specific humidity, divergence and temperature on the precipitation formation. 

The calculations are performed over the Indian catchments Godavari and Krishna, and are 

restricted to the monsoon season (June-September). Precipitation from the APHRODITE 

observations are used to validate the NorESM precipitation, and the vertical velocity, specific 

humidity, divergence and temperature are validated against the NCEP1 reanalysis. The 

calculated trends in extreme precipitation show that both the yearly mean intensity and the 

yearly number of events will increase in the future, by approximately 30 % and 40 % (90 % 

over Krishna), respectively. Using linear regression analysis, the vertical velocity is found to 

be the most important factor in the formation of extreme precipitation with a correlation of 0.66 

over Godavari and 0.47 over Krishna. Along with the specific humidity, most of the 

precipitation amounts can be accounted for by only including these two parameters, while the 

temperature is assumed to be less important. A simple model is also applied to estimate 

precipitation under the assumption that an air parcel follows the moist adiabatic lapse rate. This 

estimated precipitation is underestimated, and the extreme precipitation has its maximum 

values 20 mm below the NorESM extreme values. This shows the importance of including 

diabatic terms such as radiative cooling, which increases the condensation rate of an air parcel.  
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1. Introduction 

The Indian monsoon is a yearly phenomenon that affects more than one billion people (Turner 

and Annamalai, 2012).  It contains large amounts of precipitation, and is responsible for 74.2 

% of the annual rainfall in India (Attri and Tyagi, 2010). Over the years, the monsoon has 

been very reliable, and the farmers have used their experience to schedule the times of sowing 

and harvesting. With earlier monsoon onset dates and delays in monsoon offset dates in the 

future (Kitoh et al., 2013), the farmers will have less control over the precipitation cycle, and 

either the crops will dry out due to a lack of expected water, or they will be destroyed by 

sudden intense precipitation. Both outcomes cause an enormous challenge to the food 

availability and will affect the Indian economy. 

The Indian monsoon occurs during the northern hemisphere summer months (June-

September) and develops from pressure differences between the Asian continent and its 

surrounding oceans. Because the heat capacities are different between soil and water, the 

increased solar insolation during late Spring and Summer heats up the continent more than the 

ocean, developing a pressure gradient from ocean to land. This pressure gradient causes an 

atmospheric circulation where moist air is transported cross-equatorial from the Indian Ocean 

into the Asian continent (Figure 1.1., a). Due to the presence of orography by i.e. the Western 

Ghats and the Himalayas, and to the heating over the continent, the incoming air is forced to 

ascend, in which it cools before condensation and finally precipitation occurs. As the air 

condensates it releases latent heat, which warms the air and increases the pressure aloft. This 

latent heat release is absent over the ocean, in which the upper-level pressure will be lower 

than over the continent. This creates a pressure gradient from the continent to the ocean aloft, 

which develops into a return flow (Figure 1.1, b).  

The above description of the Indian monsoon is the basic theory that has been proposed all the 

way back to Halley in 1686. A more complicated version includes the effect by the Tibetan 

Plateau, which is highly debated. Ueda and Yasunari (1998) suggests that the plateau 

contributes with diabatic heating to the upper levels of the troposphere, which enhances the 

meridional temperature gradient and makes it possible to extend through most of the column. 

This result would lead to a stronger monsoonal flow. However, an experiment performed by 

Boos and Kuang (2010), where in one case the topography of the plateau was completely 

removed, and in another the plateau was replaced with a narrow mountain range, showed that 

the Tibetan Plateau is important for the nearby areas as the precipitation and upper-level 
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temperatures weakened without its presence, while it has minor influence on the large scale 

Indian monsoon circulation. Due to the complexity of the monsoon, there is also a suggestion 

that the monsoon is caused by the seasonal northward shift of the intertropical convergence 

zone (ITCZ), as the temperature gradient cannot explain all the aspects of the monsoon by 

itself (Privé and Plumb, 2007).    

 

Figure 1.1: The mean winds during the Summer monsoon for a) 1000 hPa, and b) 200 hPa 

superimposed on topography. The elevation has units of km. The figure is retrieved from 

Houze et al. (2007).  

 

Today’s research has much of its focus shifted towards how the monsoon will change in the 

future. Ueda et al. (2006) investigated how an increase in greenhouse gases will affect the 

Asian Summer Monsoon. Due to a resulting increase in atmospheric temperatures, the water 

vapour content will enhance as well (as warmer air can hold more water vapour), and the 

precipitation amounts will increase. However, due to the absorption of solar insolation by the 
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greenhouse gases, the temperature in the middle troposphere will also enhance, stabilizing the 

vertical profile and weaken the circulation.  

Concerning the water vapour content via the Clausius-Clapeyron relation, O’Gorman and 

Muller (2010) found that the (saturation) column water vapour will increase with ~8 % K-1 at 

30 °N. Pall et al. (2007) further coupled this to the future change in extreme precipitation, 

concluding that the extreme precipitation was closer to the Clausius-Clapeyron constraint than 

to the change in mean precipitation (change in mean precipitation data tends to equal zero or 

have opposite sign compared to higher percentile data). Pall also suggests that the deviations 

in the calculations of extreme precipitation change compared to Clausius-Clapeyron scaling 

comes from dynamic factors such as a change in the circulation. 

In this thesis, the change in 6-hourly extreme precipitation intensity during monsoonal months 

between the climatological means of the periods 1960-2000 and 2060-2100 is studied. An 

event is classified as extreme if its value exceeds the 99.5 percentile of all data in its grid 

point. Two catchments within India are investigated; Godavari and Krishna (see fig.1.2), 

which are the catchments areas of two of the biggest rivers in India. By using multiple linear 

regression, the dependence of extreme precipitation on meteorological parameters is 

investigated, and the change in the vertical profile of both dynamic and thermal variables with 

increased greenhouse gases is compared to the change in extreme precipitation. Finally, the 

complexity in the creation of extreme precipitation is investigated by using a simple model 

only including moist adiabatic ascent. These analyses and comparisons will provide sufficient 

information to answer the main research questions:  

 

 Which meteorological parameters are most important in the formation of extreme 

precipitation during the monsoon? 

 Which meteorological parameters will be most important in the formation of extreme 

precipitation during the monsoon in a climate affected by increased greenhouse gases? 

 How complex is the process of creating extreme precipitation, i.e. is the process as 

simple as only involving moist adiabatic ascent?  
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Figure 1.2: The two regions studied in India: 1) Godavari and 2) Krishna. 

 

Chapter 2 goes through the theory of the Clausius-Clapeyron relation, the calculation of 

vertical velocity, the column integrated water vapour, and convective available potential 

energy. Chapter 3 gives the relevant statistics used in the thesis. A description of the applied 

data is shown in Chapter 4, followed by the validation data in Chapter 5. In Chapter 6, the 

results regarding the means and changes in extreme precipitation, and in the meteorological 

parameters, are presented, before the simplified precipitation model is presented in Chapter 7. 

Chapter 8 contains discussion including a multiple regression analysis, and finally Chapter 9 

and 10 gives a summary with concluding remarks and possible further work, respectively.  
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2. Theory 

2.1 CLAUSIUS CLAPEYRON RELATION 

The Clausius-Clapeyron equation is given by  

𝑑𝑒𝑠
𝑑𝑇

=
𝐿𝑣
𝑇∆𝑉

                                                                        (2. 1) 

where Lv is the latent heat of evaporation, es is the saturation vapor pressure, T is the 

temperature and V is the molecular volume. If we integrate Equation 2.1, and introduce the 

ideal gas law  

𝑒𝑠 ∙ 𝑉 = 𝑅𝑣 ∙ 𝑇                                                                  (2. 2) 

where Rv is the gas constant for water vapor, we get  

𝑙𝑛 (
𝑒𝑠1
𝑒𝑠2
) =

𝐿𝑣
𝑅𝑣
(
1

𝑇1
−
1

𝑇2
)                                                      (2. 3) 

 

Given that 𝑇1=273 K and 𝑒𝑠2(273𝐾) = 6.11ℎ𝑃𝑎, the equation becomes 

𝑒𝑠(𝑇) = 6.11ℎ𝑃𝑎 ∙ exp(
𝐿𝑣
𝑅𝑣
∙ (

1

273𝐾
−
1

𝑇
))                                            (2.4) 

which gives an exponential relationship between water vapour and temperature (Wallace and 

Hobbs, 2006).  

In the atmosphere, the range of temperatures studied are relatively small, and to a good 

approximation Equation 2.1 together with Equation 2.2 can be applied as  

∆𝑒𝑠
𝑒𝑠

=
𝐿𝑣
𝑅𝑣𝑇2

∙ ∆𝑇                                                           (2.5) 

(Wallace and Hobbs, 2006), giving an approximately linear relationship between the 

fractional rate of change of water vapour and the suggested temperature change (see Figure 

2.1). For a 1 K increase at T=300 K, using 𝐿𝑣 = 2.5 ∙ 106 J kg-1 and 𝑅𝑣 = 461 J K-1 kg-1, the 

relative change in water vapour, obtained by multiplying Equation 2.5 by 100%, show an 

increase of ~6%.  
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Figure 2.1: For a small temperature range, the relative change in water vapour content due 

to a 1 K increase in temperature is approximately linear through the Clausius-Clapeyron 

relation. 

 

2.2 VERTICAL VELOCITY 

The vertical velocity can be calculated through three different methods; the kinematic method, 

the adiabatic method, and through the omega equation. In this thesis, the vertical velocity is 

calculated using the kinematic method, which means that it is only dependent on divergence 

of the horizontal winds.  

The continuity equation is given by  

𝜕𝜌

𝜕𝑡
= −∇(𝜌�⃗�)                                                                  (2.6) 

where ρ is the density of the air, t is time, �⃗� = (𝑢, 𝑣, 𝑤) is the velocity vector, and ∇=

(
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧
). Assuming that ρ is constant, the equation transforms into 

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
= 0                                                            (2.7) 

Using the hydrostatic equation 

𝜕𝑝

𝜕𝑧
= −𝜌𝑔                                                                      (2.8) 
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and that  

𝜔 =
𝑑𝑝

𝑑𝑡
=
𝑑𝑝

𝑑𝑧

𝑑𝑧

𝑑𝑡
=
𝑑𝑝

𝑑𝑧
∙ 𝑤                                                       (2.9) 

Equation 2.7 transforms into  

𝑑𝑢

𝑑𝑥
+
𝑑𝑣

𝑑𝑦
+
𝑑𝜔

𝑑𝑝
= 0                                                         (2. 10) 

where u is the horizontal velocity in the x (zonal) direction, v is the horizontal velocity in the 

y (meridional) direction, ω is the vertical velocity in pressure coordinates and p is the pressure 

level. Rearranging the equation, it becomes 

𝑑𝜔

𝑑𝑝
= −(

𝑑𝑢

𝑑𝑥
+
𝑑𝑣

𝑑𝑦
)                                                        (2. 11) 

which can be approximated as: 

𝜔𝑘 = 𝜔𝑘−1 + (
𝑑𝑢

𝑑𝑥
+
𝑑𝑣

𝑑𝑦
) ∙ (𝑝𝑘−1 − 𝑝𝑘)                                   (2. 12) 

where k=1 : K, and K is the final level of the pressures. The vertical velocity at the surface, 

ω0, is sat equal to zero. 

The second term in Equation 2.12 is called the divergence term. Since the pressure difference 

is taken between k and k-1, this term is located in the middle of each two layers, while ω is 

located at each layer. It will therefore be an uncertainty in this term, which will accumulate 

upwards in the atmosphere, and the calculated 𝜔𝑘 might be too high or too low due to this 

numerical uncertainty. To solve this issue, the O’Brien adjustment factor (O'Brien, 1970) is 

applied. The O’Brien adjustments factor is based on selecting a pressure level high up where 

the vertical velocity is set to a prescribed value (usually zero). It is also assumed that the 

uncertainty/error is distributed uniformly over all the divergence estimates, i.e. for all levels.  

The corrected ω will then be: 

𝜔𝑘
′ = 𝜔𝑘 −

𝑘 ∙ (𝑘 + 1)

𝐾 ∙ (𝐾 + 1)
∙ (𝜔𝐾 − 𝜔𝑇)                                 (2. 13) 

where 𝜔𝑇=0 is the vertical velocity at the selected top pressure level. This will give a very 

low correction near the ground, but it will increase upward in the atmosphere (O'Brien, 1970). 

To include topography in the vertical velocity we have to add a terrain-induced omega-term. 

This is done following Sinclair (1994): 
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𝜔𝑇𝑜𝑡𝑎𝑙,𝑘(𝑝) = 𝜔𝑘
′ +𝜔𝑠 ∙ (

𝑝𝑘 − 𝑝𝑡
𝑝𝑠 − 𝑝𝑡

)
𝑡𝑎𝑛 (𝛾∙

𝜋
4
)

                          (2. 14) 

where 𝑝𝑘 is the pressure at level k, 𝑝𝑡 = 100 ℎ𝑃𝑎 is the selected pressure level at the top of 

the column, 𝑝𝑠 is the surface pressure level and 𝛾 is a parameter between 0 and 2 to decide 

how fast 𝜔𝑠 will reach zero upward in the atmosphere. 𝛾 is chosen to obtain the best results 

when estimating precipitation amount in the full model, but in general we have that 𝛾 = 1 

gives a linear decrease, 𝛾 < 1 gives a slow decrease, while 𝛾 > 1 gives a rapid decrease. For 

γ=2 we get the same results as with no topography. 𝜔𝑠 is the topography-generated near-

surface omega, and is calculated based on the slope of the topography and the near surface 

winds (us and vs, taken as the mean horizontal winds in the bottom two layers): 

𝜔𝑠 = −𝜌𝑠𝑔 ∙ 𝑉𝑠⃗⃗⃗ ⃗ ∙ 𝛻𝑧𝑠 = −
𝑝𝑠𝑔

𝑅𝑑𝑇
∙ (
𝑑𝑢𝑠
𝑑𝑥

+
𝑑𝑣𝑠
𝑑𝑦
)                      (2. 15) 

where g is the gravitational acceleration, T is near surface temperature, 𝜌𝑠 is the surface air 

density, and 𝑅𝑑 is the gas constant of dry air (Sinclair, 1994).  

 

2.3 INTEGRATED WATER-VAPOR TRANSPORT AND 

HORIZONTAL DIVERGENCE 

The integrated water vapour transport is calculated using the horizontal velocity, 𝑣ℎ⃗⃗⃗⃗⃗=(u,v), 

and the specific humidity, q: 

𝑇𝑟 = √(∫ 𝑢 × 𝑞
𝑝𝑡

𝑝𝑠

 𝑑𝑝)

2

+ (∫ 𝑣 × 𝑞
𝑝𝑡

𝑝𝑠

 𝑑𝑝)

2

                            (2. 16) 

ps and pt are the pressures at the surface and at the top of the integrated column, respectively. 

To calculate these integrals the trapeze method is used 

∫ 𝑓(𝑥)
𝑛

1

𝑑𝑥 ≈ (𝑛 − 1) [
𝑓(1) + 𝑓(𝑛)

2
]                                    (2.17) 

To improve the result, the integral is divided into equally spaced levels in between level 1 and 

n, before adding them together to receive the final value: 

∫ 𝑓(𝑥)
𝑛

1

𝑑𝑥 ≈
𝑛 − 1

2
[𝑓(1) + 2𝑓(𝑖 + 1) + ⋯+ 2𝑓(𝑛 − 1) + 𝑓(𝑛)]           (2.18) 

(Adams and Essex, 2009). 
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From Equation 2.10 the horizontal divergence is given by 

𝛻 ∙ 𝑣ℎ⃗⃗⃗⃗⃗ = −
𝑑𝜔

𝑑𝑝
=
𝑑𝑢

𝑑𝑥
+
𝑑𝑣

𝑑𝑦
.                                             (2. 19) 

Positive divergence is referred to as an increase in volume and is associated with downdrafts. 

Negative divergence, or convergence, is referred to as a decrease in volume and is associated 

with updrafts (Harwood, 2006).   

 

2.4  CONVECTIVE AVAILABLE POTENTIAL ENERGY 

Convective available potential energy (CAPE) is the available energy stored between the level 

of free convection (LFC) and the equilibrium level (EL) in the atmosphere. The LFC is the 

height where the parcel gets warmer than the environment, and the EL is the height where the 

temperature of the parcel equals that of the environment above the LFC (Markowski and 

Richardson, 2011). The CAPE increases as the difference between an air parcel and the 

surrounding air increases, and is proportional to the kinetic energy that can be added to the 

vertical velocity by buoyancy. If the CAPE grows large enough (typically > 2500 J/kg) and is 

released, single-cell convection can occur, creating large amounts of precipitation for a short 

time (Markowski and Richardson, 2011).  

To calculate CAPE it is important to use the virtual temperature (virtual potential 

temperature) instead of temperature (potential temperature) because the moisture increases the 

CAPE by about 10 percent, as well as reducing the Convective Inhibition (CIN) (Markowski 

and Richardson, 2011). This may lead to a total different result from the same calculation 

excluding moisture effects. CIN is defined as negative CAPE, and equals the energy required 

to lift a parcel of air to its LFC. The CIN is necessary for the build-ups of energy for deep 

convection to occur, but if the CIN becomes too large (i.e. >100 J kg-1) the air parcel may not 

be able to reach its LFC and the deep convection will be absent (Wallace and Hobbs, 2006).  

The equation used to calculate CAPE is given by 

𝐶𝐴𝑃𝐸 = ∫
𝑔

𝜃
∆𝜃𝑣(𝑧)𝑑𝑧

𝑧=𝑧(𝐸𝐿)

𝑧=𝑧(𝐿𝐹𝐶)

                                              (2. 20) 

where z(EL) and z(LFC) are the heights of the equilibrium level and the level of free 

convection, respectively, g is the gravitational constant, θ is the potential temperature and 
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∆𝜃𝑣(𝑧) is the change in virtual potential temperature between the two levels (Stull, 1988). By 

using the hydrostatic equation (Equation 2.8) (Wallace and Hobbs, 2006), the CAPE formula 

in pressure coordinates will be 

𝐶𝐴𝑃𝐸 = ∫
1

𝜌𝜃
∆𝜃𝑣(𝑝)𝑑𝑝

𝑝(𝐿𝐹𝐶)

𝑝(𝐸𝐿)

                                            (2. 21) 

θ and θv is found using the equations 

𝜃 = 𝑇 ∙ (
𝑝0
𝑝
)
0.286

                                                        (2. 22) 

and 

𝜃𝑣 = 𝜃 ∙ (1 + 0.61 ∙ 𝑤)                                                  (2. 23) 

where p0 is the reference pressure and w is the mixing ratio (Stull, 1988), which in this case is 

assumed equal to the specific humidity, q (Wallace and Hobbs, 2006). The density, ρ, is 

calculated at each pressure level using the ideal gas law per unit mass: 

𝜌 =
𝑝

𝑅𝑣𝑇
                                                                 (2.24) 

with p being the pressure level, T the temperature at that level, and Rv the gas constant for 

water vapour. 
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3. Statistics 

Several statistical procedures have been applied within this master thesis. To calculate the 

historical trends both linear regression and the Sen’s slope test were performed, and linear 

regression was used to study the variability in extreme precipitation. The Mann-Kendall trend 

test, the bootstrapping method and the F-test were used to calculate the significance of the 

aforementioned trends.  

3.1. LINEAR REGRESSION 

In linear regression, you calculate the relationship between a dependent variable and one or 

several independent variables. The regression equation is given by 

𝑌 =
𝜕𝑌

𝜕𝑋1
∙ 𝑋1 +

𝜕𝑌

𝜕𝑋2
∙ 𝑋2 +⋯+

𝜕𝑌

𝜕𝑋𝑛
∙ 𝑋𝑛 + 𝑏0                                     (3.1) 

where 𝑋1, … , 𝑋𝑛 indicate each of the independent variables and 𝑏0 is the y-intercept value. If 

n=1, Equation 3.1 turns into a linear equation on the form 

𝑌 =
𝜕𝑌

𝜕𝑋
∙ 𝑋 + 𝑏0                                                                (3.2) 

The multiple linear regression is performed both directly from Equation 3.1 and as a 

standardized equation using the formula  

𝑋𝑆𝑇𝐷,𝑛 =
𝑋𝑖 − 𝜇

𝑆𝐷(𝑋)
                                                                          (3.3) 

for each n. Here 𝑋𝑖 is each element in variable X, μ is the mean of variable X and SD(X) is 

the standard deviation of X. This standardization is also performed on the dependent variable, 

Y. When using standardized variables in the regression they are all expressed in units of 

standard deviations, and it is thus easier to say something about which is the most important 

factor in inducing variability in the dependent variable. The results we get from Equation 3.1 

only gives us the value for that specific factor and its unit, and it is thus hard to compare it to 

the other factors. The one limitation when using the regression values is that the factors have 

to be independent, i.e. they cannot be correlated with one another.  
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3.2. SEN’S SLOPE 

The Sen’s slope is an alternative way of calculating the trend in the data. In this statistic, you 

calculate the slope b by taking the median (50th percentile) of all slopes given by  

𝑦𝑗 − 𝑦𝑖

𝑥𝑗 − 𝑥𝑖
,         {

𝑗 = 1: 𝑛
𝑖 = 1: 𝑛

   𝑗 ≠ 𝑖                                          (3.4) 

where all sample pairs have been used. When b is calculated, one can calculate the y-intercept 

by taking the median of 𝑦𝑖 − 𝑏𝑥𝑖 (Sen, 1968). By taking the median of all the calculated 

slopes within the dataset, the benefit of the model is that it is quite robust against the outliers 

(Hirsch et al., 1982).  

 

3.3. SIGNIFICANCE TESTING 

When a dataset is statistical significant it means that the calculated p-value is less than the 

chosen significance level, where the significance level is the probability of rejecting a null-

hypothesis that is true. As an example, if your null hypothesis states that the change in a 

variable is greater than zero, it will be significant if both ends of your confidence interval 

(which are selected by the significance level) are greater than zero.  

The significance tests in this thesis have been performed using the non-parametric Mann-

Kendall- and Bootstrapping trend tests and the parametric F-test. The reason for choosing 

non-parametric tests for parts of the significance testing is that the data are not necessarily 

normally distributed, and in addition the selected methods are more robust against outliers. A 

study performed by Yue and Pilon (2004) also concluded that non-parametric tests for non-

normal distributed data have a higher power than parametric tests do, which means that the 

non-parametric tests have higher probability of correctly rejecting the null hypothesis when it 

is false. However, when using the linear regression analysis to calculate extreme precipitation 

variability in Section 8.1, the estimated values are very close to being normally distributed 

and the F-test is therefore applied. 

3.3.1. Mann-Kendall Trend Test 

The Mann-Kendall trend test is a test of the significance of the trend found via the calculation 

of the Sen’s slope. For each (xi,yi) throughout the dataset, you compare it to the next pair 

(xi+1,yi+1). For each of these comparisons you get a value S equal to 1, 0, or -1: 
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𝑆 = {

1,           (𝑥𝑖 , 𝑦𝑖) > (𝑥𝑖+1, 𝑦𝑖+1)

0,            (𝑥𝑖 , 𝑦𝑖) = (𝑥𝑖+1, 𝑦𝑖+1) 

−1,        (𝑥𝑖 , 𝑦𝑖) < (𝑥𝑖+1, 𝑦𝑖+1)
                                    (3.5) 

Finally, you add up all these S’s and use them in the calculation of the standard test statistic 

Zs: 

𝑍𝑠 =

{
 
 

 
 
𝑆 − 1

𝜎
      𝑓𝑜𝑟 𝑆 > 1

0             𝑓𝑜𝑟 𝑆 = 0
𝑆 + 1

𝜎
     𝑓𝑜𝑟 𝑆 < 1

,                                          (3.6) 

where  

𝜎2 =
𝑛(𝑛 − 1)(2𝑛 + 5) − ∑ 𝑡𝑖(𝑡𝑖 − 1)(2𝑡𝑖 + 5)

18
                        (3.7) 

n is the total number of data points, and ti is the number of ties (xi=xi+1 or yi=yi+1) to the extent 

of i. If |𝑍𝑠| > 𝑍𝛼/2, where α is the significance level, then the trends is implied to be 

significant.  A strength of this test is that outliers do not affect Zs as it does not depend on the 

data values, only their relationships with another. 

3.3.2. Bootstrapping 

Bootstrapping is a useful technique in cases where it is difficult or even impossible to 

measure all individuals in a population, i.e. mean size of fish in an area, average age of all 

people in the world, etc. To solve this issue, bootstrapping uses a resample technique, which 

means that a sample J of size N is selected from the population, and from J a new sample I of 

the same size N is created through sampling with replacement. For example, if the lengths of 

several fish are (in cm) [15 22 18 27 25 30 45], than one resample might be [22 25 30 18 25 

45 22]. This resampling is performed a high number of times, i.e. between 1000 and 10 000 

times, and for each sample the relationship you are interested in is calculated (the mean, 

difference between two populations, etc.).  Finally, all the values calculated are represented in 

a histogram, presenting the most likely value (the value calculated most times through all 

resamples).   

To calculate the confidence interval (CI) of these data, the percentile method has been used. 

This method use the percentile of the data as the upper and lower limits of the CI, i.e. n*(1-

α/2) and n*(α/2), respectively, where n is the number of resamplings and α is the significance 

level.  
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3.3.3. F-test for Regression 

Assuming the regression data has an F-distribution, the F-test can be used to calculate the 

significance between two variables. The null-hypothesis, H0, is given by 

H0:   
𝜕𝑌

𝜕𝑋1
 = 

𝜕𝑌

𝜕𝑋2
 = ... = 

𝜕𝑌

𝜕𝑋𝑝−1
 = 0, 

i.e. all the slopes in Equation 3.1 vanish, and the dependent variable Y only depends on the 

intercept value. The alternative hypothesis, H1, is that the dependent variable Y depends on at 

least one of the dependent variables:  

H1:   
𝜕𝑌

𝜕𝑋𝑗
 ≠ 0, for at least one value of j. 

Assuming that the null-hypothesis is true, the F-test is calculated by 

𝐹 =
∑ (𝑦�̂� − �̅�)

2/(𝑝 − 1)𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦𝑖)̂2/(𝑛 − 𝑝)
𝑛
𝑖=1

                                                (3.8) 

Here n is the number of observations, p is the number of regression parameters (including the 

intercept value b0), y is the observed dependent value and �̂� the calculated (regressed) value. 

The sum in the numerator is called the explained sum of squares (ESS), while the sum in the 

denominator is called the sum of squares for errors (SSE). (p-1) and (n-p) is the degrees of 

freedom of the ESS and the SSE, respectively.  

The value obtained for F in Equation 3.8 can be located in an F-table along with its two 

degrees of freedom, and thus the confidence interval and the p-value can be calculated. If the 

value F lays outside the confidence interval (or the p-value > 0.05, assuming a significance 

level of 5 %) the null-hypothesis is rejected which implies some degree of dependency 

between the dependent and independent variable(s).    

3.4. VALIDATON STATISTICS 

3.4.1. Precipitation 

For each month, j, the mean over all values per grid point is calculated: 

𝑃𝑟̅̅ ̅(𝑖, 𝑗) =
1

𝑇
∑𝑃𝑟𝑗 (𝑖, 𝑡)

𝑇

𝑡=1

                                              (3.9) 

where T is the number of values in one month. From Equation 3.9, the mean over all grid 

points per month is calculated, leaving us with one value per month: 
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𝑃𝑟̅̅ ̅(𝑗) =
1

𝐼
∑𝑃𝑟̅̅ ̅(𝑖, 𝑗)

𝐼

𝑖=1

                                                          (3.10) 

where I is the number of grid points.  

Finally, the result from Equation 3.10 is used to calculate the relative difference between the 

observed and the modelled data:  

𝑃𝑟𝑟𝑒𝑙.𝑑𝑖𝑓𝑓 =
𝑃𝑟̅̅ �̅�𝑜𝑑(𝑗) − 𝑃𝑟̅̅ �̅�𝑏𝑠(𝑗)

𝑃𝑟̅̅ �̅�𝑏𝑠(𝑗)
∙ 100%                                 (3.11) 

3.4.2. Temperature and Horizontal Divergence 

For the validation of horizontal divergence and temperature, the vertical component of the 

data has to be included in the calculations. Here it is shown for divergence, but the same 

equations applies for temperature.  

For each month, j, the mean over all values per grid point, i, per pressure level, k, is 

calculated: 

𝐷𝑖𝑣̅̅ ̅̅ ̅(𝑖, 𝑘, 𝑗) =
1

𝑇
∑𝐷𝑖𝑣𝑗 (𝑖, 𝑘, 𝑡)

𝑇

𝑡=1

                                              (3.12) 

where T is the number of values in one month. From Equation 3.12, the mean over all grid 

points per pressure level per month is calculated: 

𝐷𝑖𝑣̅̅ ̅̅ ̅(𝑘, 𝑗) =
1

𝐼
∑𝐷𝑖𝑣̅̅ ̅̅ ̅(𝑖, 𝑘, 𝑗)

𝐼

𝑖=1

                                                  (3.13) 

where I is the number of grid points.  

Finally, the result from Equation 3.13 is used to calculate the difference between the observed 

and the modelled data:  

𝐷𝑖𝑣𝑑𝑖𝑓𝑓 = 𝐷𝑖𝑣̅̅ ̅̅ ̅𝑚𝑜𝑑(𝑘, 𝑗) − 𝐷𝑖𝑣̅̅ ̅̅ ̅𝑜𝑏𝑠(𝑘, 𝑗)                                         (3.14) 

and the relative difference: 

𝐷𝑖𝑣𝑟𝑒𝑙.𝑑𝑖𝑓𝑓 =
𝐷𝑖𝑣̅̅ ̅̅ ̅𝑚𝑜𝑑(𝑘, 𝑗) − 𝐷𝑖𝑣̅̅ ̅̅ ̅𝑜𝑏𝑠(𝑘, 𝑗)

|𝐷𝑖𝑣̅̅ ̅̅ ̅𝑜𝑏𝑠(𝑘, 𝑗)|
∙ 100%                             (3.15) 
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3.4.3. Mean absolute percentage error 

The mean absolute percentage error is used as an estimate for the accuracy between observed 

and forecasted/modelled values. If A is the actual value, P is the predicted value, n is the total 

number of time steps, t, and k represent the pressure level, then 

𝑀𝐴𝑃𝐸(𝑘) =
1

𝑛
∑|

𝐴(𝑡, 𝑘) − 𝑃(𝑡, 𝑘)

𝐴(𝑡, 𝑘)
|

𝑛

𝑡=1

∙ 100%                            (3.16) 
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4. The data 

4.1. NORESM 

The following text is retrieved from Bentsen et al. (2013) unless otherwise stated. 

In this thesis, atmospheric data from climate simulations contributed by the core version of 

the Norwegian Earth System Model (NorESM1-M) to the Coupled Model Intercomparison 

Project Phase 5 (CMIP5) has been used to investigate historic and future parameters over 

India. These data has a horizontal resolution equal to 2 degrees and the vertical structure is 

divided into 26 levels with the top level being at 2.917 hPa.  

The NorESM is based on the Community Climate System Model version 4 (CCSM4), but 

differs in that NorESM uses an isopycnic coordinated ocean general circulation model; the 

atmospheric part is modified by the chemical-aerosol-cloud-radiation interface developed for 

the Oslo version of the Community Atmosphere Model (CAM4-Oslo); and the 

biogeochemical ocean module comes from the HAMburg Ocean Carbon Cycle (HAMOCC) 

model.  

To use NorESM to model future changes in climate, it is important to use observed values of 

solar radiation, volcanic activity, and atmospheric concentrations of i.e. greenhouse gases and 

aerosols in the simulations to gain the most accurate and reliable results. The model has thus 

been `spun up` for 700 years with the atmosphere, ice and land component having their initial 

conditions from the CCSM4 model, and the ocean component was initialized with zero 

velocities and temperature and salinity values from the Polar Science Centre Hydrographic 

Climatology (PHC) 3.0. At year 700, the spin-up results was set as initial conditions for the 

simulations starting in the year 1850, and three historical simulations were run. The run for 

the period 1850-2012 is used in this thesis (named Historical1).  

From the year 2005, four different Representative Concentration Pathways (RCPs) were run: 

RCP2.6, RCP4.5, RCP6.0 and RCP8.5. These are different scenarios where the radiative 

forcing, emission rates and emission concentrations are key parameters, and each of the 

numbers in their names stands for their approximate radiative forcing by the year 2100 (in 

Wm-2). RCP2.6, -4.5, and -6.0 are all scenarios where the emission concentrations stabilizes 

when approaching 2100, while RCP8.5 continues with a linear increase (Wayne, 2013). In 

NorESM, all RCPs, except RCP4.5, runs until 2100, whilst RCP4.5 continues until 2300. The 
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structure of the model run can be seen in Figure 4.1. For the investigation of future data, the 

RCP8.5 scenario is used in this thesis.  

 

Figure 4.1: A schematic representation of the different simulations and scenarios in the 

NorESM. At the bottom is the spin-up timeline, and further up, from 1850 and onwards is the 

calendar timeline (Fig.1, Bentsen et al., 2013). 

 

4.2. APHRODITE 

APHRODITE (Asian Precipitation Highly-Resolved Observational Data Integration Towards 

Evaluation) is a gauge based data set containing daily and climatological (monthly) 

precipitation data over Asia for the period 1951-2007. The data in APHRODITE is collected 

from APHRODITE’s own database; from data collected by other projects; and from daily 

global data (Yatagai et al., 2012). The data has a grid point resolution of 0.25°-0.5° (Yasutomi 

et al., 2011), and due to the use of rain gauges, the data only cover land areas. 
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Figure 4.2: Rain gauge distribution over the areas Monsoon Asia, Middle East and Northern 

Eurasia in the year 1998. Red dots are stations from APHRODITE’s individual data 

collection, blue dots are from the GTS network, and black dots are from precompiled datasets 

(Fig.1, Yatagai et al., 2012). As can be observed, approximately all data over India are from 

the individual data collections of APHRODITE.  

 

4.3. NCEP1 REANALYSIS 

In a reanalysis, observational data are assimilated and adapted to a numerical weather 

prediction model (Uppala et al., 2005). The National Centers for Environmental Prediction 

(NCEP) Reanalysis 1 project consist of instantaneous data of air temperature, geopotential 

height, relative and specific humidity, omega, and horizontal velocities (u and v). The 

motivation for the project was to investigate the climate change and thus improve the 

forecasts (Kalnay et al., 1996).   

The reanalysis contains 6-hourly, daily and monthly observations from 1948 to present, in 

addition to monthly means over the period 1981-2010. It covers the entire globe and has a 

horizontal resolution of 2.5° × 2.5°, and contains 17 pressure levels (1000, 925, 850, 700, 

600, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20 and 10 hPa). For the vertical velocity, 

the vertical extent stops at 100 hPa (ESRL, 2015).  
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The observational data in the NCEP1 project is collected from organizations all over the 

world, and is collected from rawinsondes, ships, buoys, ocean stations, aircrafts, constant-

pressure balloons, surface land synoptic data, and from satellites (Kalnay et al., 1996). In this 

thesis, the vertical velocity, winds, specific humidity and temperature have been used for 

validation with NorESM data.  
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5. Validation 

Initially, five catchments of India were included in this thesis; Godavari, Krishna, 

Brahmaputra, Indus and Ganges. Due to poor data-simulations compared with observations 

and reanalysis data, only Godavari and Krishna will be analysed further. 

5.1. PRECIPITATION 

The NorESM1-M (hereafter only called NorESM) Historical1 simulated precipitation data is 

validated against the observationally based APHRODITE data. The validation is based on 

daily precipitation data from June to September over the years 1960-2000, and includes both 

an investigation of mean data and of the extreme events (defined as the events above the 99.5 

percentile precipitation), as well as the trends in extreme precipitation over the historic period 

1960-2000. The reason for not validating for 6-hourly data as this is used throughout the 

thesis, is due to the lack of observations at this time scale. To calculate the differences 

between the modelled and the observed data, equations 3.9 through 3.11 is used.  

In general, most of the precipitation over India during the monsoon falls along the west coast 

and along the southern side of the Himalayas (Figure 5.1). Comparing APHRODITE to 

NorESM, the locations with highest amounts of precipitation are underestimated in NorESM, 

while for the places with smaller amounts of precipitation NorESM overestimates the 

precipitation. On the other hand, the resolution in NorESM is much coarser than in the 

APHRODITE dataset, resulting in a less detailed precipitation pattern for NorESM and 

possible exclusion of local effects in the simulations.  

 

Figure 5.1: Total amount of precipitation (mm) through the months June to September over the period 

1960-2000 for left) APHRODITE, and right) NorESM data. 
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5.1.1 Mean data 

The validation over Godavari and Krishna is presented in Table 5.1 and 5.2, respectively. In 

Godavari, the mean precipitation is overestimated over all monsoon months except June, 

which is underestimated by 32 %. The largest deviation is found in September with 50 % 

more precipitation than in APHRODITE. For the 99.5 percentile precipitation, NorESM is 

underestimated in all months, with September having the largest deviation of -44.3 %. The 

validation for Krishna shows that the model overestimates the precipitation over the whole 

period for both the mean and the 99.5 percentile precipitation. The mean precipitation is 

nearly doubled in July and August compared to APHRODITE, while in July the values are 

overestimated close to 2.5 times. For the 99.5 percentile the deviations are smaller, with a 

range between 3 % (August) and 18 % (June).  

 

Table 5.1: Daily validation data in Godavari during the monsoon months (June-September) 

over the period 1960-2000. The APHRODITE observations are used for comparison with the 

NorESM Historical1 simulation. 

Month: Mean pr. 

APHRODITE 

[mm day-1]: 

Mean pr. 

NorESM 

[mm day-

1]: 

Rel. 

difference 

mean pr. 

[%]: 

Mean 99.5 

percentile pr. 

APHRODITE 

[mm day-1]: 

Mean 99.5 

percentile pr. 

NorESM  

[mm day-1]: 

Rel. difference 

99.5 percentile 

pr. [%]: 

Jun 4.8 3.2 -32.2 76.7 60.5 -21.2 

Jul 8.3 9.1 9.7 81.3 56.2 -30.8 

Aug 8.2 11.1 35.4 80 65.7 -17.9 

Sep 5.2 7.8 50 70.8 39.5 -44.3 

 

Table 5.2: Daily validation data in Krishna during the monsoon months (June-September) 

over the period 1960-2000. The APHRODITE observations are used for comparison with the 

NorESM Historical1 simulation. 

Month: Mean pr. 

APHRODITE 

[mm day-1]: 

Mean pr. 

NorESM 

[mm day-1]: 

Rel. 

difference 

mean pr. 

[%]: 

Mean 99.5 

percentile pr. 

APHRODITE 

[mm day-1]: 

Mean 99.5 

percentile pr. 

NorESM 

[mm day-1]: 

Rel. difference 

99.5 percentile 

pr. 

[%]: 

Jun 3.5 4.1 15.1 54.1 63.8 18 

Jul 5.3 10.4 94.4 55.1 58.9 6.9 

Aug 4.5 10.8 140.3 55.4 57.1 3.1 

Sep 4.3 8.2 90.2 42.4 46.2 9 
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5.1.2 Trends 

The linear regression and the Sen’s slope trend tests are used together with the bootstrapping 

and Mann-Kendall significance-testing methods, respectively, to compare the trends over the 

period 1960-2000 in yearly mean extreme precipitation and the yearly number of extreme 

precipitation events between the APHRODITE observations and the NorESM Historical 1 

simulation. The relative trends are calculated taking the mean over the relation between each 

yearly value relative to the climatological mean. The results are presented in Table 5.3 and 

5.4. For both the yearly extreme precipitation intensity and the yearly number of extreme 

events, the values are not significantly different between the observations and estimates. The 

relative trend in yearly extreme intensity show good agreement between the observed and 

simulated values for both regions and for both of the statistical methods. For the yearly 

number of extreme events, however, Krishna has too strong relative trends compared to the 

observations, while Godavari shows a too weak relative trend for the linear regression 

calculation, and a too strong relative trend for the Sen’s slope. 

 

Table 5.3: Trends and relative trends in the yearly mean daily extreme precipitation intensity 

over the period 1960-2000, retrieved from the APHRODITE observations and the NorESM 

Historical1 simulation (in parenthesis). Linear regression analysis and the Sen’s slope are 

different statistical methods used to calculate trends, where the relative trend is calculated 

taking the mean over the relation between each yearly value relative to the climatological 

mean. CImin and CImax are the lower and upper 5 % significance level for the trends within the 

99.5 percentile, and are calculated using the bootstrap method and the Mann-Kendall trend 

test along with the linear regression and the Sen’s slope, respectively.  

Region: Linear 

regression 

 CImin lin. 

regression 

 CImax lin. 

regression 

Sen’s slope  CImin  

Sen’s slope 

 CImax 

Sen’s slope 

Trend [mm/(1960-2000 period)]: 

Godavari 1.4 
(-0.3) 

-1.4 
(-0.9) 

4.1 
(0.2) 

2.3 
(-0.4) 

-0.9 
(-1) 

4.6 
(0.3) 

Krishna 0.3 
(0) 

-2.1 
(-0.5) 

2.7 
(0.5) 

0.4 
(-0.1) 

-2.1 
(-0.6) 

2.8 
(0.4) 

Relative trend [%]: 

Godavari 1.8 
(-2.1) 

-1.9 
(-6.1) 

5.6 
(1.5) 

3.0 
(-2.7) 

-1.2 
(-6.8) 

6.1 
(1.7) 

Krishna 0.6 
(0.3) 

-4.0 
(-3.3) 

4.7 
(3.9) 

0.8 
(-0.5) 

-3.9 
(-3.9) 

5.0 
(2.6) 
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Table 5.4: Trends and relative trends in the yearly number of daily extreme precipitation 

events over the period 1960-2000 from the APHRODITE observations and the NorESM 

Historical1 simulation (in parenthesis). Linear regression analysis and the Sen’s slope are 

different statistical methods to calculate trends, where the relative trend is calculated taking 

the mean over the relation between each yearly value relative to the climatological mean. 

CImin and CImax are the lower and upper 5 % significance level for the trends within the 99.5 

percentile, and are calculated using the bootstrap method and the Mann-Kendall trend test 

along with the linear regression and the Sen’s slope, respectively. 

Region:  Linear 

regression 

 CImin lin. 

regression 

 CImax lin. 

regression 

Sen’s slope CImin  

Sen’s slope 

CImax  

Sen’s slope 

Trend [no events/(1960-2000 period)]: 

Godavari -1.8 
(-0.1) 

-3.1 
(-0.8) 

-0.6 
(0.5) 

-1.8 
(-0.3) 

-3.3 
(-0.9) 

0 
(0) 

Krishna -1.6 
(-0.6) 

-3.6 
(-1.1) 

0.4 
(-0.1) 

-2.4 
(-0.6) 

-4.5 
(-1.1) 

0 
(0) 

Relative trend [%]: 

Godavari -12.1 
(-5.4) 

-20.6 
(-29.1) 

-4.2 
(17.8) 

-11.6 
(-12.7) 

-21.9 
(-32.4) 

0 
(0) 

Krishna -8.7 
(-20.7) 

-19.0 
(-39.8) 

1.4 
(-1.5) 

-13.1 
(-21) 

-24.6 
(-39.6) 

0 
(0) 

 

5.2. VERTICAL VELOCITY 

The vertical velocity is not a given value in the NorESM dataset. Therefore, it has to be 

calculated using given values of horizontal winds, pressure and temperature through equations 

2.12 - 2.15. To validate the vertical velocity during the monsoon months (June-September), 

the first task is to find out if adding the terrain-induced ω-term (last term in Equation 2.14) 

will improve the results. To test the quality of the calculated vertical velocity the reanalysed 

vertical velocity from NCEP1 is compared to calculations of vertical velocity (see eq. 2.12-

2.15) with and without topography over the years 1960-1965 using reanalysed values of 

horizontal winds, pressure and temperature. The best-fit topography term is found for γ=1.9. 

Taking the 6-hourly area averaged vertical velocity within each catchment, the correlation 

between the reanalysed and the calculated vertical velocity (with and without topography) is 

calculated for each pressure level. The mean absolute percentage error (eq. 3.16) is also 

calculated for each of the calculated vertical velocities (with and without topography induced 

velocities). The calculation method with the highest correlations and the lowest mean absolute 

percentage error is selected for the calculation of vertical velocities in the NorESM 

simulations in the second part of validation and in the further investigations.  
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For both regions, the correlation between the reanalysis omega and the calculations are very 

similar regardless if the topography is included or not. Both Godavari and Krishna shows high 

correlations between 700-200 hPa, with values of ~0.8-0.9 and ~0.7-0.8, respectively (Figure 

5.2). Regarding the mean absolute percentage error, the calculations with and without the 

topography term gives approximately equal results (Table 5.5 and 5.6), but the calculation of 

vertical velocity excluding topography shows slightly lower values and will be the preferred 

method through the thesis.  

Next, we compare 6-hourly NorESM calculated vertical velocity values to the reanalysed 

NCEP1 vertical velocity over the whole period of interest (1960-2000). This is again done in 

two parts: As the main interest for precipitation are times with upward velocities, the vertical 

velocity-data with upward velocities (ω < 0) is collected within each catchment, including 

only the pressure levels common for both datasets (925, 850, 700, 600, 500, 300, 250, 200, 

150 and 100 hPa). Then the mean over the times with upward velocities is calculated, leaving 

us with a mean upward velocity value for each pressure level. This is performed for both the 

NCEP1 and NorESM datasets, thus allowing us to compare the vertical velocities in each 

pressure level. The same procedure is repeated for upward values of vertical velocity during 

the extreme precipitation events, which are selected using the NCEP1 reanalysed 99.5 

percentile precipitation and the 6-hourly NorESM 99.5 percentile precipitation estimates.  

When comparing NorESM to NCEP1 data, the vertical velocity at the mean days (Fig. 5.3, a 

and c) is overestimated in NorESM by about 40 % for Godavari and 60 % for Krishna 

between 500-300 hPa. For the levels below 700 hPa the vertical velocity is modelled too low. 

For the extreme days, the vertical velocity in NorESM is overestimated over the complete 

vertical profile for both regions (Fig. 5.3, b and d). Near the top and bottom, the difference is 

close to zero while it has its maximum at 500 hPa. Please note, that as observed in Figure 5.3, 

the NCEP1-vertical velocity values are very similar independent of using data from the mean 

or from the extreme events. This may be due to very low extreme precipitation values in the 

NCEP1 dataset, and thus the selection of extreme dates may not be coinciding with the 

highest amounts of vertical velocity. This also affects the specific humidity, the horizontal 

winds, and the temperature in Section 5.3 through 5.5.    
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a)

 

b)

 

Figure 5.2: The correlation coefficients for each pressure level between 6-hourly NCEP1 

reanalysed vertical velocity data and NCEP1 calculated vertical velocity data excluding 

topography (see Equation 2.13) for a) Godavari, and b) Krishna. The data is selected for the 

months June-September over the period 1960-1965.  

 

Table 5.5: Mean absolute percentage error 

for Godavari between the 6-hourly 

NCEP1- and the NorESM Historical1 

vertical velocity during the monsoon 

months (June-September) over the period 

1960-1965. 

Pressure 

level 

[hPa]: 

Mean abs. 

error w/no 

topography 

[%]: 

Mean abs. error 

w/topography 

[%]: 

1000 18.1 19.5 

925 4.3 4.6 

850 23.5 23.3 

700 8.2 8.4 

600 0.6 0.4 

500 2.5 2.1 

400 2.1 2.4 

300 6.1 6 

250 0.2 0.5 

200 7.9 7.9 

150 6.8 6.8 

100 2.7 1.8 

Table 5.6: Mean absolute percentage error 

for Krishna between the 6-hourly NCEP1- 

and the NorESM Historical1 vertical 

velocity during the monsoon months (June-

September) over the period 1960-1965. 

 

Pressure 

level 

[hPa]: 

Mean abs. 

error w/no 

topography 

[%]: 

Mean abs. error 

w/topography 

[%]: 

1000 9.9 10.9 

925 56.5 57.3 

850 21.5 21.9 

700 2.4 2.5 

600 1.3 1.5 

500 8.5 8.5 

400 0.2 0.3 

300 7.8 7.5 

250 6.5 6.6 

200 14.2 14.2 

150 18.2 18.1 

100 17 18.4 
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The correlation between NCEP1 and NorESM Historical1 vertical velocity also shows similar 

results regardless of using mean- or extreme events data. However, Godavari has some larger 

agreement between them compared to Krishna. Krishna has a correlation of 0.74 for mean 

data against 0.76 for extreme data, while Godavari has 0.92 against 0.90, respectively.   

a)

 

b)

 

c)

 

d)

 

Figure 5.3: Monthly climatological mean (June-September) over the period 1960-2000 for 

upward vertical velocities (ω < 0). a) and b) are calculations for Godavari, and c) and d) are 

calculations for Krishna. Left column includes all data while the second column are for data 

during extreme precipitation events selected by NorESM - Historical1 simulation and the 

NCEP1 reanalysis.  
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5.3. INTEGRATED WATER VAPOUR TRANSPORT 

The 6-hourly integrated water vapour transport is calculated using Equation 2.16 through 

2.18, and both the mean and extreme data are investigated. To gain values during extreme 

events, dates defined by the 99.5 percentile of the 6-hourly NCEP1 reanalysis precipitation is 

used to select the horizontal winds and the specific humidity in the NCEP1 reanalysis. The 

same procedure is performed for the NorESM Historical1 data, except here the dates of the 

99.5 percentile of the NorESM Historical1 precipitation is used to select each of the variables. 

The relative difference between the timely mean integrated water vapour transport calculated 

in NorESM and NCEP1 is calculated for both mean data and for data during extreme 

precipitation, with the bootstrapping technique used for significance testing. These results, in 

addition to the mean value per month for the each of the datasets, are presented in Table 5.7 

and 5.8. It is worth noting that the data in “All months” is not calculated taking the mean over 

the monthly means, but by taking the mean over the unsorted data.  

In general, the relative differences are smaller for the mean data than they are during extreme 

precipitation events. Considering all months, the mean data in Godavari is underestimated by 

22 %, while the data during extreme events is significantly overestimated by 91%. The 

differences between the months show that the mean data has a range in the relative difference 

from -13 % for June to 47 % for September, with only August and September having 

significant results. The data during extreme events has significant values for all months, 

ranging from 47 to 203 %, where July and September are the months with the smallest and 

largest bias, respectively. 

 

Table 5.7: Mean values and relative differences between 6-hourly NorESM Historical1 and 

NCEP1 calculated integrated water vapour transport for both mean data and for data during 

99.5 percentile precipitation events over Godavari. Data covering June-September over the 

period 1960-2000 is used.  

 

NorESM –  

mean data  

[kg m-1 s-1]: 

NCEP1 –  

mean data  

[kg m-1 s-1]: 

Relative  

difference  

[%]: 

NorESM – 

99.5 pctl prec.  

dates [kg m-1 s-1]: 

NCEP1 –  

99.5 pctl prec.  

dates [kg m-1 s-1]: 

Relative  

difference  

[%]: 

Jun 213.2 245.5 -13.2 446.8 252.9 76.6 

Jul 329.1 288.1 14.2 474 321.9 47.2 

Aug 371.6 254.9 45.8 540.5 262.8 105.6 

Sep 259.1 176.4 46.9 530 174.9 203 

All months 294.2 241.7 21.7 518.7 271.5 91 
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For Krishna the biases are smaller than they are for Godavari. The integrated water vapour 

transport calculated for NorESM Historical1 and NCEP1 when including all months for the 

mean data show approximately equal amounts, and the relative difference thus equals zero 

although the solution is insignificant. The data during extreme precipitation events is 

simulated too large, and is significantly overestimated by 41 %. For the monthly mean data, 

June is significantly underestimated by 31 %, while the remaining months are overestimated 

between 3 and 16%, though either of them are significant. The data during extreme 

precipitation events ranges between 20 and 94 %, where only August and September have 

significantly larger values. This larger overestimation during extreme precipitation events 

compared to the mean data may again be due to the bad relationship between precipitation and 

the remaining variables in the NCEP1 reanalysis. 

 

Table 5.8: Mean values and relative differences between 6-hourly NorESM Historical1 and 

NCEP1 calculated integrated water vapour transport for both mean data and for data during 

99.5 percentile precipitation events over Krishna. Data covering June-September over the 

period 1960-2000 is used. 

 

NorESM –  

mean data  

[kg m-1 s-1]: 

NCEP1 –  

mean data  

[kg m-1 s-1]: 

Relative  

difference  

[%]: 

NorESM – 

99.5 pctl prec. 

dates [kg m-1 s-1]: 

NCEP1 –  

99.5 pctl prec. 

dates  

[kg m-1 s-1]: 

Relative  

difference  

[%]: 

Jun 239.8 345.7 -30.7 445.4 371.6 19.9 

Jul 442.3 431.6 2.5 608.1 486.1 25.1 

Aug 468.8 405.3 15.7 658.9 422.2 56.1 

Sep 279.6 249.7 12 488.9 252.1 93.9 

All months 359.2 359.1 0 588.2 416.2 41.4 

 

5.4. DIVERGENCE 

The horizontal divergence is calculated using Equation 2.19, and to calculate the mean 

vertical profile Equation 3.12 and 3.13 are used. Again, the 6-hourly NorESM Historical1 

data is compared to the NCEP1 reanalysis data, and for the extreme events the 99.5 percentile 

precipitation times from each of the datasets are used. The differences and relative differences 

over the vertical profile are calculated taking the mean of Equation 3.14 and 3.15, 

respectively, and due to different pressure sections in the two data sets, only the common 

pressure levels (925, 850, 700, 600, 500, 300, 250, 200, 150 and 100 hPa) has been applied. 
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The bootstrapping technique (Section 3.3.2) is used to calculate the significance in the 

differences and relative differences between the two datasets.  

For both regions, the validation of mean data shows better results than for the data during 

times of extreme precipitation. The differences between NorESM and NCEP1 for mean data 

are in the order of 10-6-10-8 s-1, while for the 99.5 percentile precipitation events they are 

approximately 10-5 -10-6 s-1 (see Figure 5.4 and 5.5, and Table 5.9 and 5.10). This larger 

deviation in the data during extreme precipitation dates are due to the error in extreme 

precipitation found in the NCEP1 data (see Section 5.2).  

In general, both the convergence and divergence is overestimated/stronger in NorESM 

Historical1 compared to the NCEP1 data. This can explain the overestimation of the vertical 

velocity found in Section 5.2, as the two parameters are strongly connected (Equation 2.12).  

 

Table 5.9: The 6-hourly mean divergence over Godavari during mean- and 99.5 percentile 

precipitation times for NorESM Historical1 and the NCEP1 data during the monsoon months 

over the period 1960-2000. In addition, the difference and relative difference in divergence 

between each of the datasets is presented. 

Pressure 

levels 

[hPa]: 

Mean 

div. 

NCEP1 

[s-1]: 

Mean 

div. 

NorESM 

[s-1]: 

Difference 

mean div. 

[s-1]: 

Rel. 

difference 

mean div. 

[%]: 

Divergence 

- 99.5 pctl 

prec. times, 

NCEP1  

[s-1]: 

Divergence 

- 99.5 pctl 

prec. times, 

NorESM 

 [s-1]: 

Difference 

divergence, 

99.5 pctl 

prec. times 

[s-1]: 

Rel. 

difference 

divergence, 

99.5 pctl 

prec. times 

[%]: 

1000 -3.4E-06 -3.8E-06 -4.0E-07 12.5 -3.4E-06 -2.2E-05 -1.9E-05 589.8 

925 -4.2E-06 -4.2E-06 5.3E-08 1.2 -4.1E-06 -3.1E-05 -2.7E-05 687.6 

850 -2.3E-06 -1.2E-06 1.0E-06  -47.1 -2.7E-06 -1.6E-05 -1.3E-05 516.7 

700 -1.3E-08 -6.1E-07 -5.9E-07 119 5.4E-07 -1.1E-05 -1.1E-05 662.7 

600 5.8E-07 -2.8E-07 -8.6E-07 -174.1 9.4E-07 -6.9E-06 -7.9E-06 -1,894.9 

400 6.5E-07 2.6E-07 -3.8E-07 -61.6 5.0E-07 -1.2E-06 -1.7E-06 544 

300 6.9E-07 5.4E-07 -1.4E-07 - 5.6 5.5E-07 5.1E-06 4.5E-06 233.2 

250 8.9E-07 8.5E-07 -3.2E-08 9.8 8.8E-07 1.8E-05 1.7E-05 77.1 

200 2.4E-07 1.3E-06 1.1E-06 592.9 -2.4E-07 2.3E-05 2.4E-05 7,282.8 

150 7.6E-08 4.8E-06 4.7E-06 1,511.7 -5.2E-07 3.4E-05 3.5E-05 14,926 
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Table 5.10: The 6-hourly mean divergence over Krishna during mean- and 99.5 percentile 

precipitation times for NorESM Historical1 and the NCEP1 data during the monsoon months 

over the period 1960-2000. In addition, the difference and relative difference in divergence 

between each of the datasets is presented. 

Pressure 

levels 

[hPa]: 

Mean 

div. 

NCEP1 

[s-1]: 

Mean 

div. 

NorESM 

[s-1]: 

Difference 

mean div. 

[s-1]: 

Rel. 

difference 

mean div. 

[%]: 

Divergence 

- 99.5 pctl 

prec. times, 

NCEP1 

 [s-1]: 

Divergence 

- 99.5 pctl 

prec. times, 

NorESM 

 [s-1]: 

Difference 

divergence, 

99.5 pctl 

prec. times 

[s-1]: 

Rel. 

difference 

divergence, 

99.5 pctl 

prec. times 

[%]: 

1000 -1.4E-06 -4.5E-06 -3.1E-06 -241.7 -1.3E-06 -1.7E-05 -1.6E-05 -1,412 

925 -8.7E-07 -3.9E-06 -3.0E-06 -419.3 -5.0E-07 -2.2E-05 -2.1E-05 -5,662.5 

850 -1.8E-06 -6.2E-07 1.2E-06 67.8 -1.4E-06 -1.8E-05 -1.7E-05 -1,440.7 

700 3.8E-07 5.2E-07 1.4E-07 -677.2 7.6E-07 -9.3E-06 -1.0E-05 -2,029.7 

600 5.7E-07 -3.9E-07 -9.5E-07 -162.6 4.4E-07 -6.1E-06 -6.6E-06 -2,222.7 

400 -6.7E-08 -3.6E-07 -3.0E-07 -269.7 -5.6E-07 -2.2E-06 -1.7E-06 -263.3 

300 6.7E-07 3.5E-07 -3.2E-07 -47.8 7.3E-07 5.0E-06 4.3E-06 470.1 

250 1.6E-06 1.7E-06 1.3E-07 4.3 1.4E-06 2.0E-05 1.9E-05 1068.1 

200 1.4E-06 2.4E-06 1.1E-06 119.3 8.9E-07 2.6E-05 2.5E-05 2722.6 

150 7.6E-07 4.9E-06 4.2E-06 358.4 9.6E-07 2.8E-05 2.7E-05 2787.1 

 

  



P a g e  | 33 

 
 

 

Figure 5.4: Validation profiles of mean horizontal divergence over Godavari showing the 

difference between 6-hourly NorESM Historical1 and NCEP1 data during monsoon months 

over the period 1960-2000. The extreme data in NorESM and NCEP1 is selected at the times 

of the 99.5 percentile precipitation from the NorESM simulation and NCEP1 reanalysis, 

respectively. 

 

Figure 5.5: Validation profiles of mean horizontal divergence over Krishna showing the 

difference between 6-hourly NorESM Historical1 and NCEP1 data during monsoon months 

over the period 1960-2000. The extreme data in NorESM and NCEP1 is selected at the times 

of the 99.5 percentile precipitation from the NorESM simulation and NCEP1 reanalysis, 

respectively. 
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5.5. TEMPERATURE 

The validation of temperature is performed comparing the 6-hourly mean temperature profile 

over the period 1960-2000 for the NorESM data with the 6-hourly NCEP1 reanalysis 

temperature for each catchment. In addition, the mean temperature profiles during the 99.5 

percentile precipitation times in each of the datasets are compared (see Section 3.4.2 for 

equations). As for the vertical velocity and the horizontal divergence, only the common 

pressure levels (925, 850, 700, 600, 500, 300, 250, 200, 150 and 100 hPa) are included in the 

calculations. The results are presented in Table 5.11 and 5.12, and the differences in Figure 

5.6 and 5.7.   

From Figure 5.6 and 5.7 it is observable that the largest errors over the profile is found for the 

temperature during the 99.5 percentile precipitation events. For both regions, the largest 

relative difference is found at the 600 hPa layer. Here the mean data of the NorESM data is 

estimated to be approximately 110 % overestimated, with a mean value of 8 °C (NorESM) 

compared to 4 °C (NCEP1), and the data during 99.5 percentile precipitation events is 

significantly overestimated by 95-96 %, depending on the region. The smallest bias is on the 

other hand found between 850-925 hPa and 200-250 hPa.  

The mean temperature of the NCEP1 reanalysis in Table 5.11 and 5.12 is the same for both 

mean precipitation events as during events within the 99.5 percentile precipitation. This is due 

to the error in extreme precipitation found in the NCEP1 data (see Section 5.2). 
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Table 5.11: The 6-hourly mean temperature over Godavari during mean- and 99.5 percentile 

precipitation times for NorESM and the NCEP1 data during the monsoon months over the 

period 1960-2000. In addition, the difference and relative difference in temperature between 

each of the datasets is presented.  

Pressure 

level 

[hPa]: 

Mean 

temp.,  

NCEP1 

[°C]: 

Mean 

temp., 

NorESM 

[°C]: 

Difference 

mean 

temp. 

[°C]: 

Rel. 

difference 

mean 

temp. 

[%]: 

Temp. - 

99.5 pctl 

prec. 

times, 

NCEP1 

[°C]: 

Temp. - 

99.5 pctl 

prec. 

times, 

NorESM 

 [°C]: 

Difference 

temp., 

99.5 pctl 

prec. 

times 

[°C]: 

Rel. 

difference 

temp., 

99.5 pctl 

prec. 

times 

[%]: 

1000 28.3 26.3 -2.0 -6.8 28.2 23.6 -4.6 -15.5 

925 24.3 25.2 0.9 3.9 24.3 22.8 -1.5 -5.5 

850 19.7 18.9 -0.9 -4.3 19.8 18.4 -1.4 -6.4 

700 10.5 14.0 3.6 34.1 10.5 14.2 3.7 35.2 

600 4.3 8.6 4.3 107.4 4.3 8.1 3.8 95.9 

400 -12.8 -11.8 1 8.1 -12.7 -10.3 2.5 19.4 

300 -26.6 -20 6.7 25.0 -26.5 -17.4 9.0 34.1 

250 -36.5 -38.0 -1.5 -4.1 -36.4 -35.1 1.4 3.7 

200 -48.1 -47.0 1 2.1 -48.1 -44.9 3.2 6.7 

150 -62.8 -71.2 -8.4 -13.4 -62.7 -72.0 -9.3       -14.8 

Table 5.12: The 6-hourly mean temperature over Krishna during mean- and 99.5 percentile 

precipitation times for NorESM and the NCEP1 data during the monsoon months over the 

period 1960-2000. In addition, the difference and relative difference in temperature between 

each of the datasets is presented. 

Pressure 

level 

[hPa]: 

Mean 

temp., 

NCEP1 

[°C]: 

Mean 

temp., 

NorESM 

[°C]: 

Difference 

mean 

temp. 

[°C]: 

Rel. 

difference 

mean 

temp. 

[%]: 

Temp. - 

99.5 

pctl 

prec. 

times, 

NCEP1 

[°C]: 

Temp. - 

99.5 pctl 

prec. 

times, 

NorESM 

 [°C]: 

Difference 

temp., 

99.5 pctl 

prec. 

times 

[°C]: 

Rel. 

difference 

temp., 

99.5 pctl 

prec. 

times 

[%]: 

1000 27.5 25.0 -2.5 -9 27.2 22.3 -4.9 -17.9 

925 23.5 23.8 0.3 1.3 23.2 21.3 -1.9 -7.9 

850 18.8 17.6 -1.1 -5.9 18.6 16.7 -1.9 -9.9 

700 9.9 13.1 3.2 31.9 10.0 12.9 2.9 29 

600 3.7 7.8 4.1 111.9 3.6 7.0 3.4 92.6 

400 -13.7 -12.4 1.2 9.1 -13.7 -10.5 3.2 23.2 

300 -27.7 -20.5 7.1 25.7 -27.6 -17.6 10.0 36.2 

250 -37.4 -38.7 -1.2 -3.3 -37.5 -34.7 2.8 7.2 

200 -49.1 -47.8 1.3 2.6 -49.1 -44.2 5.0 10 

150 -63.8 -71.9 -8.1 -12.7 -63.7 -69.9 -6.2 -9.7 
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Figure 5.6: Validation profiles of the mean temperature over Godavari showing the 

difference between 6-hourly NorESM Historical1 and NCEP1 data during monsoon months 

over the period 1960-2000. The extreme data in NorESM and NCEP1 is selected at the times 

of the 99.5 percentile precipitation from the NorESM Historical1 simulation and NCEP1 

reanalysis, respectively. 

 

Figure 5.7: Validation profiles of the mean temperature over Krishna showing the difference 

between 6-hourly NorESM Historical1 and NCEP1 data during monsoon months over the 

period 1960-2000. The extreme data in NorESM and NCEP1 is selected at the times of the 

99.5 percentile precipitation from the NorESM Historical1 simulation and NCEP1 reanalysis, 

respectively. 
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6. Results 

This chapter presents the precipitation simulated by the NorESM in both historic and future 

perspectives, in addition to calculations of vertical velocity, divergence, water vapour 

transport and convective available potential energy. The purpose is to connect all the variables 

to find which of them are more important in the generation of extreme precipitation.  

6.1. 6-HOURLY EXTREME PRECIPITATION EVENTS 

6.1.1. NorESM Historical1 simulation 

In accordance with the observations the NorESM has most of the precipitation in the 

catchments Godavari and Krishna occurring during the monsoonal months June-September 

(see Figure 6.1). The highest mean amounts are found in August (657 mm) and September 

(492 mm), with the amounts in August being more than twice the value of July (248 mm). 

The comparison to observations can be found in Table 5.1 and 5.2.  

 

Figure 6.1: Average precipitation rate per month over the period 1960-2000 for the regions 

Godavari and Krishna. The data is taken from NorESMs’ Historical1 6-hourly simulation. 

When studying the intensity of the extreme events (defined as the 6-hourly events exceeding 

the 99.5 percentile over the period 1960-2000) there is a small difference between the selected 

months (Figure 6.2 and 6.3). August is the month with slightly higher intensity and the 
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highest number of extreme days, while June has the fewest number of extreme events. For 

June, July and September the mean intensity is approximately the same (~32 mm/6hr).  

To what extent the NorESM is under or overestimating 6-hourly extremes is not known, as 

there are no observed 6-hourly precipitation to compare against. However, the validation of 

the daily data in Section 5.1 indicates that the model is underestimating the extremes in 

Godavari while the results for Krishna was satisfactory (Table 5.1 and 5.2).

 

Figure 6.2: Mean intensity of 6-hourly 

extreme precipitation (bars) and total 

number of extreme events (line) over the 

years 1960-2000 for Godavari. The data is 

retrieved from the NorESM Historical1 

simulation. 

 

Figure 6.3: Mean intensity of 6-hourly 

extreme precipitation (bars) and total 

number of extreme events (line) over the 

years 1960-2000 for Krishna. The data is 

retrieved from the NorESM Historical1 

simulation. 

The change in yearly mean extreme precipitation amounts and in the yearly number of 

extreme precipitation events over the period 1960-2000 is calculated using both linear 

regression analysis (Section 3.1) and by calculating the Sen’s slope (Section 3.2). The 

significance is tested using the bootstrapping method (Section 3.3.2) together with the linear 

regression trend data, and by using the Mann-Kendall trend test (Section 3.3.1) along with the 

Sen’s slope trend data. The relative trends are calculated taking the mean over the relation 

between each yearly value relative to the climatological mean. 

A decrease in the number of extreme precipitation events per year is detected, but the trend is 

not significant (Table 6.2). For Godavari the trend has a decrease of approximately 1-2 events 

over the period while Krishna has a decrease of 1 event, or equivalently a decrease of 6-16 % 

and 11 %, respectively, depending on the applied statistical method.  For the yearly mean 

precipitation intensity, there is an insignificant decrease of approximately 1 mm (~2 %) per 

event for Godavari, while Krishna shows nearly no decrease at all (~0.5 mm, Table 6.1).  
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Table 6.1: Trends and relative trends in the yearly mean 6-hourly extreme precipitation 

intensity over the period 1960-2000, retrieved from the NorESM Historical1 simulation. 

Linear regression analysis and the Sen’s slope are different statistical methods used to 

calculate trends, where the relative trend is calculated taking the mean over the relation 

between each yearly value relative to the climatological mean. CImin and CImax are the lower 

and upper 5 % significance level for the trends within the 99.5 percentile, and are calculated 

using the bootstrap method and the Mann-Kendall trend test along with the linear regression 

and the Sen’s slope, respectively.  

Region: Linear 

regression 

 CImin lin. 

regression 

 CImax lin. 

regression 

Sen’s slope  CImin  

Sen’s slope 

 CImax 

Sen’s slope 

Trend [mm/(1960-2000 period)]: 

Godavari -0.6 -1.3 0.2 -0.8 -1.6 0 

Krishna -0.2 -1.0 0.5 -0.5 -1.3 0.1 

Relative trend [%]: 

Godavari -1.7 -3.9 0.6 -2.4 -4.7 0 

Krishna -0.8 -3.3 1.6 -1.5 -4.0 0.3 

 

Table 6.2: Trends and relative trends in the yearly number of 6-hourly extreme precipitation 

events over the period 1960-2000 from the NorESM Historical1 simulation. Linear regression 

analysis and the Sen’s slope are different statistical methods to calculate trends, where the 

relative trend is calculated taking the mean over the relation between each yearly value 

relative to the climatological mean. CImin and CImax are the lower and upper 5 % significance 

level for the trends within the 99.5 percentile, and are calculated using the bootstrap method 

and the Mann-Kendall trend test along with the linear regression and the Sen’s slope, 

respectively. 

Region:  Linear 

regression 

 CImin lin. 

regression 

 CImax lin. 

regression 

Sen’s slope CImin  

Sen’s slope 

CImax  

Sen’s slope 

Trend [no events/(1960-2000 period)]: 

Godavari -0.7 -2.9 1.6 -1.7 -3.3 0.4 

Krishna -1.2 -3.0 0.7 -1.3 -3.3 0.8 

Relative trend [%]: 

Godavari -6.0 -25.8 13.7 -15.7 -30.1 3.6 

Krishna -10.5 -27.0 5.3 -11.2 -29.1 6.7 

 

6.1.2. RCP8.5 

The relative change in number of extreme events and in the mean extreme precipitation 

intensity between the NorESM RCP8.5 scenario for the period 2060-2100 and the NorESM 

Historical1 simulation for the period 1960-2000 is calculated. Both the historic and future 

number of extreme dates is calculated by counting the number of events above a threshold 

value selected by using percentiles based on the historic data. For the extreme precipitation 

intensity, the historic extreme values are selected relative to a historic extreme threshold, 
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while the future extreme values are selected relative to a future extreme threshold. Then the 

timely mean is calculated for both the historic and the future values, before taking the mean of 

the relative difference between them. Four different time-steps have been compared; 6-hour, 

daily, 10-days and monthly data. In addition, all the calculations are applied to the 95, 99, and 

the 99.5 percentiles. The results are presented in Table 6.3 and 6.4. 

There are significant increases in both the number of extreme days and in the mean extreme 

precipitation intensity between the two periods (see Figure 6.4 and 6.5). The only exception is 

in the 6-hourly 95 percentile where Godavari has a significant decrease of -22 % and Krishna 

has an insignificant decrease of -5%. For the 6-hourly 99.5 percentile data, the number of 

days increases with 42 % for Godavari, while the values nearly doubles for Krishna with a 95 

% increase. For the change in mean extreme precipitation intensity the values rises with 30 % 

and 34 % in Godavari and Krishna, respectively. Between the two regions, Krishna has a 

larger change than Godavari does for all percentiles and time-periods, except for the 10-day 

change in the mean extreme precipitation data in the 99 and 99.5 percentile.  

 

 

 

Figure 6.4: Relative change in the mean extreme precipitation intensity between the RCP8.5 

scenario over the period 2060-2100 and the Historical1 simulation over the period 1960-

2000 for the 99.5 percentile.  
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Figure 6.5: Relative change in the number of extreme precipitation events between the 

RCP8.5 scenario over the period 2060-2100 and the Historical1 simulation over the period 

1960-2000 for the 99.5 percentile. 

 

It is interesting to study how the relative change in the number of extreme events and in the 

mean extreme precipitation intensity depends on the percentiles. For the 6-hourly data, there 

are small differences between relative changes in the 95, 99 and 99.5 percentiles, but they 

tend to increase with percentile. However, for the 97.5 and 98.5 percentiles, the relative 

changes drops to approximately half the value of the 95 and 99 percentiles (see Figure 6.6 and 

6.7), and the same is observed from the 99.5 to the 99.9 percentile for the change in the mean 

extreme precipitation. The monthly data is the only period in which the relative change 

decreases as the events become more extreme (Table 6.3 and 6.4).  

In general, for all time distributions except the monthly data, the relative change between the 

future and historic data in both the mean extreme intensity and in the number of extreme 

events in the 99.5 percentile increases with increasing time step. From the 10-day period to 

the monthly period the relative difference decreases sharply.
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Figure 6.6: Relative change between the 

NorESM RCP8.5 scenario over the period 

2060-2100 and the NorESM Historical1 

simulation over the period 1960-2000 in 

mean extreme precipitation intensity (top) 

and in the number of extreme precipitation 

events (bottom) for the 6-hourly data in 

Godavari. 

 

Figure 6.7: Relative change between the 

NorESM RCP8.5 scenario over the period 

2060-2100 and the NorESM Historical1 

simulation over the period 1960-2000 in 

mean extreme precipitation intensity (top) 

and in the number of extreme precipitation 

events (bottom) for the 6-hourly data in 

Krishna. 

 

Table 6.3: The relative change in 6-hourly extreme precipitation intensity between the 

NorESM RCP8.5 scenario over the period 2060-2100 and the NorESM Historical1 simulation 

over the period 1960-2000. Four different time-distributions and three different percentiles 

are presented. CImin and CImax are the lower and upper limits for the trends within the 5 % 

significance level, respectively, and forms the confidence interval (CI). 

 

 95 pctl 99 pctl 99.5 pctl 

Region 

Rel. 

difference 

 [%]: 

CImin 

[%]: 

CImax 

[%]: 

Rel. 

difference 

 [%]: 

CImin 

[%]: 

CImax 

[%]: 

Rel. 

difference  

[%]: 

CImin 

[%]: 

CImax 

[%]: 

6-hour 

Godavari 20.1 9.5 32.7 29 17.2 42.7 29.9 18.4 43.5 

Krishna 28 18.2 39.3 32.6 22.9 44.1 34.4 23.4 48.3 

Daily 

Godavari 17 8.6 28.1 21.4 10.5 35.1 20.7 9.2 35.7 

Krishna 21.7 11 34.7 26.1 14.3 41.6 29.6 16.5 46.6 

10-Days 

Godavari 17.6 8.4 28.1 28 14.3 44.4 32.4 16.9 49.1 

Krishna 22.9 7.3 44 25.6 7.5 51 31.6 11.2 62.3 

Monthly 

Godavari 11 0.5 25.2 9.2 -4.2 26.4 6.8 -8.9 24.7 

Krishna 18.4 2.9 38.3 16.6 2.5 36 15.6 0.9 36.4 



P a g e | 44 

 

Table 6.4: The relative change in the number of 6-hourly extreme precipitation events 

between the NorESM RCP8.5 scenario over the period 2060-2100 and the NorESM 

Historical1 simulation over the period 1960-2000. Four different time-distributions and three 

different percentiles are presented. CImin and CImax are the lower and upper limits for the 

trends within a 5 % significance level, respectively, and forms the confidence interval (CI). 

 95 pctl 99 pctl 99.5 pctl 

Region 

Rel. 

difference 

 [%]: 

CImin 

[%]: 

CImax 

[%]: 

Rel. 

difference 

 [%]: 

CImin 

[%]: 

CImax 

[%]: 

Rel. 

difference 

 [%]: 

CImin 

[%]: 

CImax 

[%]: 

6hour 

Godavari -22.3 -31 -13.1 15.8 6.8 24.9 41.8 28.3 55.3 

Krishna -5.3 -15 3.1 52.2 30 68.5 94.8 59.7 122.1 

Daily 

Godavari 30.6 19.1 39.7 82.7 70 96.3 119.3 105.3 133.3 

Krishna 47.7 34.6 61.3 122.3 84.7 157.3 186 123.3 238.7 

10-Days 

Godavari 60.7 26.7 96 116.7 83.3 146.7 155.6 100 222.2 

Krishna 129.3 101.3 159.3 283.3 203.3 363.3 261.1 122.2 405.6 

Monthly 

Godavari 83.3 56.3 112.5 75 8.3 175 33.3 -50 116.7 

Krishna 131.3 85.4 181.3 216.7 66.7 375 166.7 133.3 200 

 

6.2. INTEGRATED WATER VAPOR TRANSPORT AND 

 DIVERGENCE 

The horizontal divergence profile and integrated water vapour transport is calculated using 

6-hourly data from the NorESM Historical1 simulation and the NorESM RCP8.5 scenario. 

The extreme data is selected at the times of the 99.5 percentile precipitation during the 

monsoon months over the periods 1960-2000 (historical) and 2060-2100 (future). The 

divergence is calculated using Equation 2.19, while the water vapour transport is 

calculated using Equation 2.16-2.18, where the upper level of the atmosphere is set to 100 

hPa. The calculations of divergence are time and area averaged, leaving a vector with one 

value per pressure level, while the integrated water vapour transport only are time 

averaged.  

For the divergence profile, the difference between values on extreme and mean 

precipitation events is calculated for both future and historic values, as well as the 

difference between future and historic values on extreme and mean precipitation days. The 

vertical profiles for Godavari and Krishna are presented in Figure 6.8 and 6.10, 
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respectively, and their differences in Figure 6.9 and 6.11. In Table 6.5 and 6.6 the relative 

differences within the mean divergence and convergence over the atmospheric column is 

presented, and by using the bootstrap method they are all found to be statistically 

significant.  

The divergence profiles show maximum convergence at approximately 950 hPa and 

maximum divergence at 150 hPa, with the transition from convergence to divergence in 

Krishna occurring at approximately 400 hPa for the historic and future mean data, and at 

approximately 300 hPa during historic and future extreme precipitation events. For 

Godavari the transition is lower towards the ground; at 470 hPa for historic and future 

mean data, and at 400 hPa for historic and future extreme precipitation events.  

Despite the fact that the convergence occurs over a larger portion of the atmosphere than 

the divergence, the total amount of divergence over the profile is stronger with 

approximately 250 % larger values. Over Krishna, this relationship will stay 

approximately constant in the future for both mean data and for data on extreme 

precipitation events, as both the divergence and convergence will decrease with ~13-14 % 

in the mean data and increase with 42-44 % during extreme precipitation events, 

respectively (Table 6.6). In Godavari, the relationship will decrease for the mean data in 

the future as the divergence decreases by 20 % and the convergence by 16 %, while for 

the extreme precipitation events, the difference will stay more or less constant, as the 

convergence and divergence will increase by 4 % and 3 %, respectively (Table 6.5).  

Table 6.5: The relative differences between the future (2060-2100) and historic (1960-2000) 

values, and between data during events with extreme precipitation (99.5 pctl) and mean data, 

in 6-hourly mean convergence and divergence over Godavari is presented. The Historical1 

simulation and the RCP8,5 scenario of the NorESM data has been used in the calculation. All 

data are significant.  

 

Rel. difference, 

RCP8.5-

Historical1, mean 

data [%]: 

Rel. difference, 

RCP8.5-

Historical1, 99.5 

pctl [%]: 

Rel. difference, 

99.5 pctl-mean 

data, Historical1 

[%]: 

Rel. difference, 

99.5 pctl-mean 

data, RCP8.5 

[%]: 

Mean 

convergence 
-15.6 4.2 1056.6 1291.9 

Mean 

divergence 
-19.5 3.2 941.7 1224.2 
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Table 6.6: The relative differences between the future (2060-2100) and historic (1960-2000) 

values, and between data during events with extreme precipitation (99.5 pctl) and mean data, 

in 6-hourly mean convergence and divergence over Krishna is presented. The Historical1 

simulation and the RCP8,5 scenario of the NorESM data has been used in the calculation. All 

data are significant. 

 

Rel. difference, 

RCP8.5-

Historical1, mean 

data [%]: 

Rel. difference, 

RCP8.5-

Historical1, 99.5 

pctl [%]: 

Rel. difference, 

99.5 pctl-mean 

data, Historical1 

[%]: 

Rel. difference, 

99.5 pctl-mean 

data, RCP8.5 

[%]: 

Mean 

convergence 
-14.4 44.4 226.7 368.8 

Mean 

divergence 
-13.4 42.2 324.1 462.2 

 

 

For the change in the divergence profile between events with extreme precipitation and 

mean events, it is found that the convergence and divergence is stronger during extreme 

precipitation events for both the historic and future period, which makes it favourable to 

produce precipitation as more air is lifted and can reach saturation. The results also 

showed that this difference will be stronger in the future period than it was during the 

historic. Krishna had an increase of approximate 370 % and 460 % stronger convergence 

and divergence during the future period, respectively, against 230 % and 320 % higher 

convergence and divergence during the historic period, respectively. For Godavari, the 

increase between data on extreme precipitation events and the mean data in the historic 

period is estimated to be 1050 % and 950 % for convergence and divergence, respectively, 

while during the future period, the difference will be 1300 and 1200 %, respectively.  
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Figure 6.8: The mean horizontal divergence profiles for Godavari over the periods 1960-

2000 (left) and 2060-2100 (right) using 6-hourly NorESM data. The Historical1 simulation is 

used for the historical data, while the RCP8.5 scenario is used for the future data. 

 

 

Figure 6.9: Left) The difference between the horizontal divergence at times with extreme 

precipitation and at times with mean precipitation for both future and historic data. Right) 

The difference in the horizontal divergence between the future and historic period for both 

normal and extreme precipitation times. The calculations are performed for 6-hourly data in 

Godavari during the monsoon months over the periods 1960-2000 and 2060-2000. 
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Figure 6.10: The mean horizontal divergence profiles for Krishna over the periods 1960-2000 

(left) and 2060-2100 (right) using 6-hourly NorESM data. The Historical1 simulation is used 

for the historical data, while the RCP8.5 scenario is used for the future data. 

 

 

Figure 6.11: Left) The difference between the horizontal divergence at times with extreme 

precipitation and at times with mean precipitation for both future and historic data. Right) 

The difference in the horizontal divergence between the future and historic period for both 

normal and extreme precipitation times. The calculations are performed for 6-hourly data in 

Krishna during the monsoon months over the periods 1960-2000 and 2060-2000. 
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During events of extreme precipitation, the wind arrows at the level of maximum convergence 

(950 hPa) is plotted along with the integrated water vapour transport. As we can see from 

Figure 6.12 through 6.15, there is a clear convergence pattern over each of the catchments. 

The moisture is mainly transported from the Bay of Bengal, but a large contribution from the 

Indian Ocean is also apparent. The values at the origin of the moisture is about 700 kg m-1 s-1 

for the historic data, while it exceeds 900 kg m-1 s-1 for the RCP8.5 scenario during extreme 

events. The values over Krishna and Godavari are smaller, with approximately 500 kg m-1 s-1 

during the historical simulation and approximately 700 kg m-1 s-1 during the RCP8.5 scenario. 

This implies an increase in moisture transport between the two periods, with a significant 

relative change of 26% for Godavari and 35% for Krishna (Figure 6.16 and 6.17, and Table 

6.5). 

 

 

  

 

Figure 6.12: The 6-hourly integrated water 

vapour transport at the events of extreme 

precipitation over Godavari (black solid 

line over India) in the period 1960-2000. 

The NorESM Historical1 simulation 

during the monsoon months are used in the 

figure. The arrows indicate the horizontal 

winds at the level of maximum 

convergence, i.e. 950 hPa. 

 

Figure 6.13: The 6-hourly integrated water 

vapour transport at the events of extreme 

precipitation over Godavari (black solid 

line over India) in the period 2060-2100. 

The NorESM RCP8.5 scenario during the 

monsoon months has been used in the 

figure. The arrows indicate the horizontal 

winds at the level of maximum 

convergence, i.e. 950 hPa. 
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Figure 6.14: The 6-hourly integrated water 

vapour transport at the events of extreme 

precipitation over Krishna (black solid line 

over India) in the period 1960-2000. The 

NorESM Historical1 simulation during the 

monsoon months are used in the figure. 

The arrows indicate the horizontal winds 

at the level of maximum convergence, i.e. 

950 hPa. 

 

Figure 6.15: The 6-hourly integrated water 

vapour transport at the events of extreme 

precipitation over Krishna (black solid line 

over India) in the period 2060-2100. The 

NorESM RCP8.5 simulation during the 

monsoon months are used in the figure. 

The arrows indicate the horizontal winds 

at the level of maximum convergence, i.e. 

950 hPa.

 

 

 

There is also an increase in the moisture transport at times with extreme precipitation 

compared to times of mean precipitation (Figure 6.18-6.21). The pattern is very similar for 

both regions and during both periods, with the largest difference found over the Bay of 

Bengal and over the Himalayas.  Krishna has the lowest difference during the historical period 

with 52 % stronger extreme events, while in the future the values on extreme precipitation 

events are 70 % higher than on normal days. For Godavari the difference in moisture transport 

between extreme and mean events are more even between the historic and future periods, with 

a relative increase of 74 and 78 %, respectively. All changes in moisture transport between 

future and historic values, and between values during extreme precipitation events and mean 

events, are significant.  
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Table 6.7: The mean values of 6-hourly integrated water vapour transport for mean events 

and during events with extreme precipitation (99.5 percentile) for both the Historical1 

simulation and the RCP8.5 scenario. The relative differences between future and historic 

values, as well as between extreme and mean data, in which all are significant, are also 

shown. 

Region 

Historical1 

mean  

[kg m-1 s-1]: 

Historical1 

99.5 pctl  

[kg m-1 s-1]: 

Rel. 

difference 

99.5 pctl 

data – 

mean data 

Historical1  

[%]: 

RCP8.5 

mean 

[kg m-1 s-1]: 

RCP8.5 

99.5 pctl 

[kg m-1 s-1]: 

Rel. 

difference 

99.5 pctl 

data -mean 

data 

RCP8.5  

[%]: 

Rel. 

difference 

Historical1

-RCP8.5, 

99.5 pctl 

data [%]: 

Krishna 359.2 542 52 442.4 756.5 69.8 35.1 

Godavari 294.2 508.7 73.7 368.6 657 78 25.8 

 

 

 

Figure 6.16: Relative change in the 6-

hourly integrated water vapour transport 

between the RCP8.5 (2060-2100) and the 

Historical1 (1960-2000) data over 

Godavari (black solid line over India) 

during extreme precipitation events in the 

monsoon months. Yellow and red colours 

indicate an increase, while blue and purple 

indicate a decrease. 

 

Figure 6.17: Relative change in the 6-

hourly integrated water vapour transport 

between the RCP8.5 (2060-2100) and the 

Historical1 (1960-2000) data over Krishna 

(black solid line over India) during 

extreme precipitation events in the 

monsoon months. Yellow and red colours 

indicate an increase, while blue and purple 

indicate a decrease. 

 



 

 
 

 

Figure 6.18: Relative difference in 6-

hourly integrated water vapour content 

between events with extreme precipitation 

and events with normal precipitation for 

Godavari (black solid line over India) over 

the period 1960-2000 using the Historical1 

simulation. 

 

Figure 6.19: Relative difference in 6-

hourly integrated water vapour content 

between events with extreme precipitation 

and events with normal precipitation for 

Godavari (black solid line over India) over 

the period 2060-2100 using the RCP8.5 

scenario. 

 

 

 

Figure 6.20: Relative difference in 6-

hourly integrated water vapour content 

between events with extreme precipitation 

and events with normal precipitation for 

Krishna (black solid line over India) over 

the period 1960-2000 using the Historical1 

simulation. 

 

Figure 6.21: Relative difference in 6-

hourly integrated water vapour content 

between events with extreme precipitation 

and events with normal precipitation for 

Krishna (black solid line over India) over 

the period 2060-2100 using the RCP8.5 

scenario. 
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6.3 VERTICAL VELOCITY 

The vertical velocity is calculated from Equation 2.12 and 2.13, and the time- and area 

average is calculated to obtain the vertical profile. Both data during mean events and during 

99.5 percentile precipitation events are used in this section, where the data from the 

Historical1 simulation is used over the period 1960-2000 and the data from the RCP8.5 

scenario is used for the period 2060-2100.  The significance is calculated using the bootstrap 

method. 

In Figure 6.22 and 6.24 the profiles of the vertical velocity is presented for both mean 

precipitation and extreme precipitation events, and for both the Historical1 simulation and the 

RCP8.5 scenario. During mean precipitation events, the vertical velocity has low values close 

to zero. For the extreme precipitation events, however, the ascent has values up to -0.5 Pa s-1 

with a maximum at 400 hPa. 

The difference between the future and historical vertical velocity, and between the vertical 

velocity at times with extreme precipitation and at times with mean precipitation, is 

calculated. The results are presented in Figure 6.23 and 6.25, with negative values indicating 

an increase (due to the vertical velocity being calculated in pressure-units).  

Between Krishna and Godavari, the differences are negligible. Near the top and bottom of the 

profiles, the differences between future and historic data, as well as between extreme and 

normal events, are close to zero. For the rest of the profile, the figures show that the vertical 

velocities during extreme precipitation events will be significantly stronger in the future than 

they were in the past, while during mean events they will stay the same (Figure 6.23 and 6.25, 

right picture). The vertical velocity will also be significantly stronger during extreme 

precipitation events contra mean events, with the largest difference found for the future data 

(Figure 6.23 and 6.25, left) 
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Figure 6.22: The profiles of 6-hourly vertical velocity data (ω) over Godavari for both mean- 

and extreme precipitation events. The left plot show the profile for the Historical1 simulation 

over the period 1960-2000 and the right for the RCP8.5 scenario over the period 2060-2100. 

The mean data over the monsoon months has been applied. 

 

Figure 6.23: Left) The difference between vertical velocity values during mean- and extreme 

precipitation events, calculated for both future (2060-2100) and historic (1960-2000) data. 

Right) The difference between future and historic vertical velocity values (ω) during normal- 

and extreme precipitation events. 6-hourly NorESM Historical1 and RCP8.5 data for 

Godavari is used over the monsoon months. 
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Figure 6.24: The profiles of 6-hourly vertical velocity data (ω) over Krishna for both mean- 

and extreme precipitation events. The left plot show the profile for the Historical1 simulation 

over the period 1960-2000 and right for the RCP8.5 scenario over the period 2060-2100. The 

mean data over the monsoon months has been applied. 

 

Figure 6.25: Left) The difference between vertical velocity values during mean- and extreme 

precipitation events, calculated for both future (2060-2100) and historic (1960-2000) data. 

Right) The difference between future and historic vertical velocity values (ω) during normal- 

and extreme precipitation events. 6-hourly NorESM Historical1 and RCP8.5 data for Krishna 

is used over the monsoon months.
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6.4 CONVECTIVE AVAILABLE POTENTIAL ENERGY 

The convective available potential energy (CAPE) is calculated for both mean- and extreme 

precipitation events using Equation 2.21 through 2.24. This calculation is performed using the 

Historical1 simulation over the period 1960-2000 and the RCP8.5 scenario for the period 

2060-1000. Taking the area average over the calculations within each catchment, the 

difference in CAPE between extreme precipitation- and normal events, and between future 

and historic values, is performed (Table 6.8 and 6.9). The height of LFC and EL is found to 

be approximately 950 and 400 hPa, respectively, using a Skew-T log-P diagram (Millersville 

University, 2007).  

The amounts of CAPE during extreme precipitation events are found to be ~1860 J/kg for 

historic data and ~2000 J/kg for future data, which is ~10 % higher than the values on a 

normal day for Krishna and ~13 % higher for Godavari. The correlation between CAPE and 

precipitation shows the highest correlation on a normal precipitation day (0.4) compared to on 

an extreme day (0.1-0.2). The difference in CAPE between future and historic values is 

significant at a ~7.9 percent increase for both regions and for both normal and extreme days. 

For the mean data, the correlation is equal to 0.4 for both historic and future data, while for 

the extreme precipitation events the future data is approximately 0.1 higher (Table 6.10). 

Table 6.8: Calculated CAPE for historic 

(1960-2000) and future (2060-2100) data; 

during mean- and extreme precipitation 

events; and the relative difference between 

them. The calculations are performed with 

6-hourly NorESM Historical1 and RCP8.5 

data over Godavari. 

Data Historical Future 

Rel. 

diff 

 [%] 

All data 

[J kg-1] 
1651 1782 7.9 

Extreme 

events  

[J kg-1] 

1868 2005 7.4 

Rel. diff 

[%] 
13.2 12.6 - 

Table 6.9: Calculated CAPE for historic 

(1960-2000) and future (2060-2100) data; 

during mean- and extreme precipitation 

events; and the relative difference between 

them. The calculations are performed with 

6-hourly NorESM Historical1 and RCP8.5 

data over Krishna. 

Data Historical Future 

Rel. 

diff 

 [%] 

All data 

[J kg-1] 
1686 1820 7.9 

Extreme 

events  

[J kg-1] 

1857 2005 7.9 

Rel. diff 

[%] 
10.2 10.2 - 
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Table 6.10: The correlation between area averaged 6-hourly convective available potential 

energy (CAPE) during mean and extreme precipitation events within each catchment, as well 

as for historic (1960-2000) and future (2060-2100) data during the monsoon months. 

Region Historical1 RCP8.5 

Mean data 

Godavari 0.4 0.4 

Krishna 0.4 0.4 

Extreme precipitation events 

Godavari 0.1 0.2 

Krishna 0.1 0.2 

 

6.5  TEMPERATURE DISTRIBUTION AND CHANGE 

In this section, we investigate the temperature profile at events with mean precipitation and 

for events with extreme precipitation. The 6-hourly temperature profile averaged over both 

time and grid points within each catchment is calculated for the Historical1 simulation over 

the period 1960-2000 and for the RCP8.5 scenario over the period 2060-2100.  

The typical temperature profiles for mean data and during events with extreme precipitation 

events for both historic and future data is presented in Figure 6.26 and 6.27. The profiles are 

very similar for both regions, with a temperature of approximately 300 K (27 °C) near the 

ground before it decreases upwards in the atmosphere and becomes negative at approximately 

500 hPa.  

The results for Krishna show that at 300 hPa the temperature is 2.6 K and 3.9 K higher for 

historical and future data, respectively, during an extreme event compared to mean 

precipitation events. The same pattern is seen for Godavari, but the values are slightly higher; 

2.2 K for historic and 3.4 K for future data (Figure 6.28 and 6.29). 

For the difference between the future and historic values the same pattern is found for each 

profile; the complete vertical profile becomes warmer in the future, but the upper part of the 

atmosphere will warm more than the lower part. The maximum heating occurs at 200 hPa, 

and is 5.6 K for the mean data and 7.5 K during extreme precipitation events. Hence, this 

uneven distribution is largest for events of extreme precipitation.  
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Figure 6.26: The mean 6-hourly temperature profile during the monsoon months for mean 

data and during events with extreme precipitation for left) the Historical1 simulation (1960-

2000), and right) the RCP8.5 scenario (2060-2000) over Godavari. 

 

 

Figure 6.27: The mean 6-hourly temperature profile during the monsoon months for mean 

data and during events with extreme precipitation for left) the Historical1 simulation (1960-

2000), and right) the RCP8.5 scenario (2060-2000) over Krishna. 
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Figure 6.28: Left) Difference in temperature profile between days with extreme precipitation 

and days with mean precipitation. Right) Difference in temperature profile between the 

RCP8.5 scenario (2060-2100) and the Historical1 simulation (1960-2000). Both plots are for 

6-hourly data during the monsoon months over Godavari.  

 

 

Figure 6.29: Left) Difference in temperature profile between days with extreme precipitation 

and days with mean precipitation. Right) Difference in temperature profile between the 

RCP8.5 scenario (2060-2100) and the Historical1 simulation (1960-2000). Both plots are for 

6-hourly data during the monsoon months over Krishna.
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7. A Simple Precipitation Estimate 

With the achieved results in the previous chapter, a simple precipitation estimate is used to 

investigate how much of the NorESM extreme precipitation that can be understood in terms 

of simple moist adiabatic ascent. The NorESM 6-hourly temperature data is used to calculate 

the saturation vapour pressure through the Clausius-Clapeyron relation, which, along with the 

pressure levels, is further used to calculate the specific humidity at saturation. To obtain the 

condensation rate, the change in specific humidity with pressure level is multiplied with the 

vertical velocity: 

𝑑𝑞𝑠
𝑑𝑡

= 𝜔 ∙
𝑑𝑞𝑠
𝑑𝑝

= 𝜔 ∙
𝑞𝑠𝑇

𝑝
∙
𝐿𝑣𝑅𝑑 − 𝑐𝑝𝑅𝑣𝑇

𝑐𝑝𝑅𝑣𝑇2 + 𝑞𝑠𝐿𝑣2
                                      (7.1) 

where ω is the vertical velocity, 𝑞𝑠 is the specific humidity, T is temperature, 𝐿𝑣 is the latent 

heat of vaporization, 𝑅𝑑 𝑎𝑛𝑑 𝑅𝑣 are the gas constants for dry and moist air, respectively, and 

𝑐𝑝 is the specific heat capacity at constant pressure. To calculate the condensation, the times 

where 
𝑑𝑞𝑠

𝑑𝑡
< 0 are selected (i.e. upward velocities and 

𝑑𝑞𝑠

𝑑𝑝
> 0), as the content of specific 

humidity decreases as it transforms into liquid water. 

Finally, to obtain the precipitation rate from moist adiabatic ascent under the assumption that 

all condensed water fall out immediately, the mass weighted integrated condensation rate is 

calculated: 

𝑃𝑟 =  −
1

𝑔
∫  
𝑑𝑞𝑠
𝑑𝑡

𝑑𝑝

𝑝

𝑝0

                                                         (7.2) 

The extreme precipitation amounts and the number of extreme events are calculated the same 

way as for the NorESM simulations, i.e. defined as the 6-hourly events exceeding the 99.5 

percentile of the historic and future values, while for the number of extreme events in the 

future they are calculated relative to the historic percentile.  

A comparison between the NorESM historic mean and extreme precipitation and the moist 

adiabatic estimate is presented in Figure 7.1 and 7.3, and in addition the correlation between 

the two are given. The results show that the extreme precipitation from the moist adiabatic 

estimate is underestimated by approximately 20 mm compared to values from the much more 

complicated NorESM-model, both for the historic and future data. Using only the dates with 
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an extreme event from NorESM, a correlation of 0.4 for Krishna and 0.5 for Godavari is 

found, while looking at all events the correlation increased to 0.8 in both regions. For the 

future scenario, the correlations are similar (Figure 7.2 and 7.4). The correlations may be 

higher when including all precipitation data because the deviations between NorESM and the 

simple precipitation model are largest for extreme events.  

The difference between future and historic extreme precipitation intensity is slightly smaller 

compared to NorESM-values, while for the number of extreme events the trends from the 

simple precipitation estimate is highly overestimated. For Godavari, the relative change in 

intensity has an increase of 25 % using the moist adiabatic model, while it is 30 % for 

NorESM, and for Krishna the results show 29 % against 34 %, respectively. The trends in the 

number of extreme events show twice the increase for Krishna (95 % against 175 %) and 

three times the increase for Godavari (41 % against 120 %) in the simple estimate compared 

to NorESM. To sum up, the simple precipitation estimate predicts about the same increase in 

extreme precipitation amount, but a higher number of events. 

A possible solution for the underestimated precipitation in the simple moist adiabatic estimate 

is due to the exclusion of diabatic processes such as radiative cooling of the air. In the 

NorESM simulation, air is mixed into the ascending air parcel from the surroundings, and if 

this air is cooler than the parcel the condensation rate increases. In the simple precipitation 

model the air follows the moist adiabatic lapse rate and is isolated from its surroundings. This 

air will thus be warmer than in the NorESM simulation and will have a lower condensation 

rate, resulting in less precipitation. The assumption that the air in the simple model always is 

saturated may be an explanation for the high number of extreme events in the future, as the 

moisture is estimated to increase in accordance with the global warming.   
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Figure 7.1: Comparison of 6-hourly NorESM Historical1 simulated precipitation to 6-hourly 

moist adiabatic generated precipitation calculated with variables from Historical1 in 

Godavari.  

 

 

Figure 7.2: Comparison of 6-hourly NorESM RCP8.5 scenario precipitation to 6-hourly 

moist adiabatic generated precipitation calculated with variables from RCP8.5 in Godavari.  
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Figure 7.3: Comparison of 6-hourly NorESM Historical1 simulated precipitation to 6-hourly 

moist adiabatic generated precipitation calculated with variables from Historical1 in 

Krishna.  

 

 

Figure 7.4: Comparison of 6-hourly NorESM RCP8.5 scenario precipitation to 6-hourly 

moist adiabatic generated precipitation calculated with variables from RCP8.5 in Krishna. 
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8. Discussion 

In Section 6.2, the results shows that the divergence is stronger than the convergence during 

the monsoon. Physically this means that more air is removed aloft than is supplied at the 

ground, resulting in a lower pressure over the mean vertical profile. In conjunction with the 

large monsoon circulation, this lower pressure results in a stronger meridional pressure 

gradient, which will enhance the circulation.  

For the detected mean vertical divergence profile, there is clearly a connection to the extreme 

precipitation. Studying the difference between values during mean and extreme precipitation 

events, the convergence at 950 hPa and the divergence at 150 hPa is stronger during extremes, 

indicating more ascending air. In conjunction with the estimated increase in the future 

extreme precipitation amounts there are also estimated an increase in the divergence profile. 

These results coincides well with the results obtained in the vertical velocity calculations as it 

is found that the upward velocity is larger during extreme events and the values during 

extreme events will be stronger in the future.  

The integrated water vapour transport into the area of convection is of course also crucial for 

the precipitation to occur, and as observed in Figure 6.12-6.15 the integrated water vapour 

comes from the Bay of Bengal and the large scale monsoon flow into the two regions. In the 

future, this transport will increase by approximately 25-30% over Godavari and 30-40 % over 

Krishna, which facilitates more precipitation if it condenses out. In addition, the figures 

presenting the difference in moisture transport between extreme and mean precipitation events 

(Figure 6.18-6.21) indicate that the transport is approximately twice that of the mean amounts 

during extreme-events. The increased circulation along with the increased temperatures may 

explain why the integrated water vapour transport increases. First of all, due to the Clausius-

Clapeyron relation (Section 2.1) the air can contain more moisture with increasing 

temperatures, thus being able to increase the water vapour flux from ocean to air through 

evaporation. Secondly, as the circulation increases, stronger winds will blow over the ocean 

and increase the stress against the sea surface. This results in spray (mixing of water droplets 

into the air) which in turn evaporates, increasing the humidity and decreasing the temperature 

of the air (Smith, 1989).  

The temperature profile is on the other hand working against convection. During extreme 

events, the temperature near the ground becomes cooler while the upper levels become 

warmer, resulting in a more stable, and less convective, column of air. The cooling in the 
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lower layers may be due to the evaporation from the ground during precipitation, while the 

heating above may result from condensation. Some of this heating and cooling through the 

atmosphere might also be explained by cloud radiative heating (CRH). Johansson et al. (2015) 

studied the effect on CRH by different types of clouds during the monsoon months over India. 

The result showed that alto- and nimbostratus clouds along with deep convection warms the 

middle troposphere, while cooling the upper troposphere. At the base of the tropical 

tropopause layer (TTL) (transition layer between troposphere and stratosphere (Fueglistaler et 

al., 2009)) the cirrus clouds heats up the air and also plays an important role in the transport of 

air from the troposphere to the stratosphere. At the surface, stratiform clouds and deep 

convection cause significantly cooling, due to the net cloud radiative effect (CRE) being 

negative.  

The same pattern is observed between historic and future data. The divergence and 

convergence tends to become stronger during extreme events in the future (especially for 

Krishna, but also weakly for Godavari), as well as an enhancement in the vertical velocity, 

which both are favourable for enhanced precipitation. In the temperature profile, however, it 

is observed an increase in stabilization between the future and the historic values, but 

compared to the difference between extreme and normal precipitation events, now the change 

is positive over the whole column, which is a direct result of the global warming. The higher 

temperature increase aloft may be a result from increased atmospheric moisture aloft and 

possible higher cloud amounts due to the effects from the CRH explained in the previous 

paragraph.  

From the equations in Section 2.4, CAPE depends on both moisture content and on the 

temperature profile. DeMott and Randall (2004) found that the trends in CAPE are primarily 

driven by same-signed changes in low-level moisture, while the temperature profile plays a 

secondary role and has a more random impact on the precipitation. This implies that the more 

stable temperature profile estimated in the future has less impact on the creation of CAPE 

than the estimated increase in moisture, which is observed as the CAPE will increase in the 

future too. The calculated values of CAPE during extreme precipitation events over the period 

2060-2100 barely exceeds 2000 J kg-1, which is an increase of 8 % compared to historic 

values and 10-13 % higher than on mean precipitation events. These values are low compared 

to the expected values of strong and extreme convection, which are typically around 4000 J 

kg-1 (Wallace and Hobbs, 2006). However, because of continuous convection over long 
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periods during the monsoon, the CAPE may not be able to obtain very large amounts as the 

convective activity removes it before it manage to reach the large values.  

Summing up, the results show that the divergence, the vertical velocity and the moisture 

transport are working as drivers for the extreme precipitation, while the temperature is 

working against it. Because extreme precipitation events does happen, this implies that the 

temperature has a smaller influence than the other variables. The same result was found in a 

research by Sørland (2015) where the correlation between temperature and extreme 

precipitation was found to equal -0.17 at 950 hPa and 0.03 at 750 hPa.  

 

8.1 THE IMPACT OF VERTICAL VELOCITY AND 

MOISTURE ON THE PRECIPITATION AMOUNTS 

To investigate which of the remaining variables, i.e. vertical velocity and water vapour, the 

extreme precipitation is most dependent on, a multiple linear regression procedure is 

performed. Based on Equation 3.1 and 3.3, the relationship between 6-hourly extreme 

precipitation (99.5 percentile, taken from the gridpoints inside each catchment), vertical 

velocity and specific humidity has been calculated: 

𝑃𝑟𝑟𝑒𝑔𝑟𝑒𝑠𝑠 =
𝜕𝑃𝑟

𝜕𝜔max𝑐𝑜𝑟𝑟
∙ 𝜔max𝑐𝑜𝑟𝑟 +

𝜕𝑃𝑟

𝜕𝑞𝑖𝑛𝑡
∙ 𝑞𝑖𝑛𝑡 + 𝑏0                                     (6.1) 

where 𝜔max𝑐𝑜𝑟𝑟 indicate that we use the vertical velocity at the level of maximum correlation 

with the precipitation (700 hPa for the Historical1 simulation, and 600 hPa for the RCP8.5 

scenario), and 𝑞𝑖𝑛𝑡 indicate that we use the column integrated specific humidity. Prregress is the 

precipitation calculated using regression analysis, Pr is the precipitation obtained from 

NorESM-data, and 𝑏0 is the y-intercept value. To get coinciding data between the 

independent variables and the extreme precipitation, the extreme precipitation data has been 

accumulated for non-overlapping periods.  

8.1.1 NorESM Historical simulation 

The results from the multiple linear regression can be seen in Table 8.1 through 8.4. The 

highest correlation between Pr and Prregress is found over Godavari, with a value of 0.66. In 

addition, the correlation between the specific humidity and the vertical velocity is almost non-

existent (-0.09), and we can thus assume independence between the variables. Both the 
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correlation between Pr and each of the independent variables, as well as the standardized 

regression coefficients, show that the extreme precipitation intensity variability depends 

mostly on the vertical velocity variability. This variable has both the highest absolute 

correlation (0.58) and the standardized regression coefficients indicates that a 1 standard 

deviation in the vertical velocity gives a 0.55 STD change in precipitation. 

 

Table 8.1: The correlation between the 6-hourly 99.5 percentile Historical1 precipitation and 

the regression-calculated precipitation, the specific humidity and the vertical velocity at the 

coinciding times, respectively. The data in brackets are the confidence intervals for the 5% 

significance level calculated using the bootstrap method. The data is for Godavari over the 

period 1960-2000. 

Variable: Pr q ω 

Pr 1   

Prregress 0.66 [0.59,0.72]   

q 0.36 [0.28,0.45] 1  

ω -0.58 [-0.64,-0.52] -0.09 [-0.19, 0] 1 

 

 

Table 8.2: The correlation between the 6-hourly 99.5 percentile Historical1 precipitation and 

the regression-calculated precipitation, the specific humidity and the vertical velocity at the 

coinciding times, respectively. The data in brackets are the confidence intervals for the 5% 

significance level calculated using the bootstrap method. The data is for Krishna over the 

period 1960-2000. 

Variable: Pr q ω 

Pr 1   

Prregress 0.47 [0.39,0.54]   

q 0.33 [0.26,0.41] 1  

ω -0.44 [-0.51,-0.36] -0.41 [-0.48, -0.34] 1 

 

For Krishna, the same relationship among the variables is found, but the values are lower than 

they are for Godavari. The correlation between Pr and Prregress has a value of 0.47, but due to a 

correlation of -0.41 between the vertical velocity and the specific humidity they show 

dependence and therefore it is not possible to properly identify which of the variables that 

influences the precipitation the most.  
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Table 8.3: Multiple linear regression values for the 6-hourly Historical1 simulation over 

Godavari. The values used as input are 6-hourly gridpoint data over the period 1960-2000. 

qint is the integrated specific humidity over the atmospheric column while ωmax corr is the 

vertical velocity at the level of maximum correlation with the precipitation. b-weight is the 

change in precipitation per variable-unit, while β-weight is the standardized, unit-less 

change. bmin and bmax (βmin and βmax) CI defines the confidence interval for the 5% 

significance level, respectively, calculated using the F-test. Together with the p-value, the CI 

tells if the weightings are significant. 
𝒅𝑷𝒓

𝒅𝒒𝒊𝒏𝒕
 and 

𝒅𝑷𝒓

𝒅𝝎𝒎𝒂𝒙 𝒄𝒐𝒓𝒓
  are the change in extreme 

precipitation with a change in specific humidity and vertical velocity, respectively, while b0 is 

the intercept value. 

Variable b-weight  bmin CI bmax CI 

𝒅𝑷𝒓

𝒅𝒒𝒊𝒏𝒕
 [
𝒎𝒎
𝒌𝒈

𝒌𝒈

] 6.32E+04  5.09E+04  7.55E+04  

𝒅𝑷𝒓

𝒅𝝎𝒎𝒂𝒙 𝒄𝒐𝒓𝒓
 [
𝒎𝒎
𝑷𝒂

𝒔

] -27.6   -30.6  -24.6  

b0 -15.2 -22.9 -7.5 

 β-weight [SD/SD] βmin CI [SD/SD] βmax CI [SD/SD] p-value 

𝒅𝑷𝒓

𝒅𝒒𝒊𝒏𝒕
 0.3 0.3 0.4 <0.001 

𝒅𝑷𝒓

𝒅𝝎𝒎𝒂𝒙 𝒄𝒐𝒓𝒓
 -0.6 -0.6 -0.5 <0.001 

b0 0 -0.1 0.1 <0.001 
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Table 8.4: Multiple linear regression values for the 6-hourly Historical1 simulation over 

Krishna. The values used as input are 6-hourly gridpoint data over the period 1960-2000. qint 

is the integrated specific humidity over the atmospheric column while ωmax corr is the vertical 

velocity at the level of maximum correlation with the precipitation. b-weight is the change in 

precipitation per variable-unit, while β-weight is the standardized, unit-less change. bmin and 

bmax (βmin and βmax) CI defines the confidence interval for the 5% significance level, 

respectively, calculated using the F-test. Together with the p-value, the CI tells if the 

weightings are significant. 
𝒅𝑷𝒓

𝒅𝒒𝒊𝒏𝒕
 and 

𝒅𝑷𝒓

𝒅𝝎𝒎𝒂𝒙 𝒄𝒐𝒓𝒓
  are the change in extreme precipitation with a 

change in specific humidity and vertical velocity, respectively, while b0 is the intercept value. 

Variable b-weight bmin CI bmax CI 

𝒅𝑷𝒓

𝒅𝒒𝒊𝒏𝒕
 [
𝒎𝒎
𝒌𝒈

𝒌𝒈

] 3.01E+04  1.72E+04  4.29E+04  

𝒅𝑷𝒓

𝒅𝝎𝒎𝒂𝒙 𝒄𝒐𝒓𝒓
 [
𝒎𝒎
𝑷𝒂

𝒔

] -14.7  -17.9  -11.6  

b0 9.5 2.3 16.7 

 β-weight [SD/SD] βmin CI [SD/SD] βmax CI [SD/SD] p-value 

𝒅𝑷𝒓

𝒅𝒒𝒊𝒏𝒕
 0.2 0.1 0.3 <0.001 

𝒅𝑷𝒓

𝒅𝝎𝒎𝒂𝒙 𝒄𝒐𝒓𝒓
 -0.4 -0.4 -0.3 <0.001 

b0 0 -0.1 0.1 0.0096 

 

 

 

 

 

 

 



P a g e | 70 

 

In contrast to the lower correlation between the modelled and the regressed extreme 

precipitation, Krishna is more affected by a change in specific humidity and vertical velocity 

than Godavari is. This may be due to the correlation between the specific humidity and the 

vertical velocity in Krishna, which is absent over Godavari. Because the correlation is 

negative it means that with increasing vertical velocity (a more negative value) an increase in 

the specific humidity is expected, which both are favourable for enhanced precipitation. For 

Godavari we find that an increase in the vertical velocity with 1 ms-1 leads to an increase in 

extreme precipitation of 28 mm/6h, while for Krishna it is 15 mm/6h. Looking at the specific 

humidity, a typical change in the order of 1×10-4 leads to an increase of 6 mm/6h over 

Godavari, while for Krishna the same increase will give approximately 3 mm/6h higher 

extreme precipitation. Even though Godavari seems to be the region that is most affected, 

including the intercept value, Krishna is overall the region with the highest change in 

precipitation in conjunction with a one-unit change in vertical velocity and specific humidity, 

giving a value of 28 mm/6h, contra Godavari with 19 mm/6h.  

 

8.1.2 RCP8.5 

For the future extremes, Godavari still has the highest correlation (0.64) between the modelled 

and the regressed extreme precipitation. The dependence between the specific humidity and 

the vertical velocity in Krishna has increased to a correlation of -0.19 (Table 8.6), while for 

Godavari they can be assumed non-correlated with a value of  

-0.06 (Table 8.5). Again, the vertical velocity is the most influencing variable as seen both in 

the standardized regression coefficients and in the correlation with the extreme precipitation.  

 

Table 8.5: The correlation between the 6-hourly 99.5 percentile RCP8.5 precipitation and the 

regression-calculated precipitation, the specific humidity and the vertical velocity at the 

coinciding times, respectively. The data in brackets are the confidence intervals for the 5% 

significance level calculated using the bootstrap method. The data is for Godavari over the 

period 2060-2100.  

Variable Pr q ω 

Pr  1   

Prregress 0.64 [0.58,0.69]   

q 0.40 [0.31,0.47] 1  

ω -0.52 [-0.60,-0.44] -0.06 [-0.18,0.06] 1 
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Table 8.6: The correlation between the 6-hourly 99.5 percentile RCP8.5 precipitation and the 

regression-calculated precipitation, the specific humidity and the vertical velocity at the 

coinciding times, respectively. The data in brackets are the confidence intervals for the 5% 

significance level calculated using the bootstrap method. The data is for Krishna over the 

period 2060-2100. 

Variable Pr q ω 

Pr 1   

Prregress 0.49 [0.42,0.56]   

q 0.26 [0.19,0.33] 1  

ω -0.46 [-0.53,-0.38] -0.19 [-0.29,-0.09] 1 

 

In accordance with the historical values, Krishna shows the largest change in precipitation 

with a one-unit change in specific humidity and vertical velocity compared to Godavari (34 

mm/6hr against 10 mm/6hr, respectively). At a first glance, it might seem that the sensitivity 

of extreme precipitation intensity to specific humidity and vertical velocity has decreased over 

Godavari and increased over Krishna for future data compared to historic (Table 8.3 and 8.4 

compared to Table 8.7 and 8.8, respectively). However, the results of the historic and future 

regression analysis are not significantly different, and we thus assume there is no change 

between them.  
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Table 8.7: Multiple linear regression values for the 6-hourly RCP8.5 scenario over Godavari. 

The values used as input are 6-hourly gridpoint data over the period 2060-2100. qint is the 

integrated specific humidity over the atmospheric column while ωmax corr is the vertical 

velocity at the level of maximum correlation with the precipitation. b-weight is the change in 

precipitation per variable-unit, while β-weight is the standardized, unit-less change. bmin and 

bmax (βmin and βmax) CI defines the confidence interval for the 5% significance level, 

respectively, calculated using the F-test. Together with the p-value, the CI tells if the 

weightings are significant. 
𝒅𝑷𝒓

𝒅𝒒𝒊𝒏𝒕
 and 

𝒅𝑷𝒓

𝒅𝝎𝒎𝒂𝒙 𝒄𝒐𝒓𝒓
  are the change in extreme precipitation with a 

change in specific humidity and vertical velocity, respectively, while b0 is the intercept value. 

Variable b-weight bmin CI bmax CI 

𝒅𝑷𝒓

𝒅𝒒𝒊𝒏𝒕
 [
𝒎𝒎
𝒌𝒈

𝒌𝒈

] 7.22E+04  5.66E+04  8.79E+04  

𝒅𝑷𝒓

𝒅𝝎𝒎𝒂𝒙 𝒄𝒐𝒓𝒓
 [
𝒎𝒎
𝑷𝒂

𝒔

] -28.9  -33.5  -24.4  

b0 -25.9 -38.4 -13.4 

 β-weight [SD/SD] 
βmin CI  

[SD/SD] 
βmax CI [SD/SD] p-value 

𝒅𝑷𝒓

𝒅𝒒𝒊𝒏𝒕
 0.37 0.3 0.4 <0.001 

𝒅𝑷𝒓

𝒅𝝎𝒎𝒂𝒙 𝒄𝒐𝒓𝒓
 -0.50 -0.6 -0.4 <0.001 

b0 0 -0.1 0.1 <0.001 
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Table 8.8: Multiple linear regression values for the 6-hourly RCP8.5 scenario over Krishna. 

The values used as input are 6-hourly gridpoint data over the period 2060-2100. qint is the 

integrated specific humidity over the atmospheric column while ωmax corr is the vertical 

velocity at the level of maximum correlation with the precipitation. b-weight is the change in 

precipitation per variable-unit, while β-weight is the standardized, unit-less change. bmin and 

bmax (βmin and βmax) CI defines the confidence interval for the 5% significance level, 

respectively, calculated using the F-test. Together with the p-value, the CI tells if the 

weightings are significant. 
𝒅𝑷𝒓

𝒅𝒒𝒊𝒏𝒕
 and 

𝒅𝑷𝒓

𝒅𝝎𝒎𝒂𝒙 𝒄𝒐𝒓𝒓
  are the change in extreme precipitation with a 

change in specific humidity and vertical velocity, respectively, while b0 is the intercept value. 

Variable b-weight bmin CI bmax CI 

𝒅𝑷𝒓

𝒅𝒒𝒊𝒏𝒕
 [
𝒎𝒎
𝒌𝒈

𝒌𝒈

] 3.15E+04  1.54E+04  4.77E+04  

𝒅𝑷𝒓

𝒅𝝎𝒎𝒂𝒙 𝒄𝒐𝒓𝒓
 [
𝒎𝒎
𝑷𝒂

𝒔

] -20.2  -24.5  -15.9  

b0 10.1 -1.8 22.1 

 
β-weight 

 [SD/SD] 

βmin CI  

[SD/SD] 

βmax CI 

 [SD/SD] 
p-value 

𝒅𝑷𝒓

𝒅𝒒𝒊𝒏𝒕
 0.2 0.1 0.3 <0.001 

𝒅𝑷𝒓

𝒅𝝎𝒎𝒂𝒙 𝒄𝒐𝒓𝒓
 -0.4 -0.5 -0.3 <0.001 

b0 0 -0.1 0.1 0.098 
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The scatterplots in Figure 8.1 through 8.4 presents the same results as in Chapter 6, i.e. a 

higher content of specific humidity (moisture) will give an increased amount of precipitation, 

and similar for an increase in upward vertical velocity. The scatterplots also show that the 

precipitation obtained using regression analysis has lower values than the precipitation 

simulated by the NorESM (maximum regressed precipitation is approximately 50 mm/6h 

while the maximum precipitation in NorESM is approximate 70 mm/6hr for the Historical1 

simulation, and respectively 60 and 90 mm/6hr for the RCP8.5 scenario). An explanation to 

this may be related to the exclusion of stability in the regression estimate.  As mentioned in 

Section 2.4, it is necessary to have an amount of CIN such that the air can build up enough 

energy (CAPE) to obtain heavy amounts of precipitation. As we found in Section 6.4 the 

amounts of CAPE are a bit higher during extreme events, and the exclusion of this term may 

be enough not to achieve large enough amounts for the extreme cases.  

 

 

 

Figure 8.1: Scatterplot of 6-hourly NorESM Historical1 simulated extreme precipitation (y-

axis) in Godavari contra a) integrated specific humidity, b) vertical velocity (omega), and c) 

extreme precipitation calculated from multiple linear regression. The black solid line 

indicates the least-square line of the scatter-data. Note that negative omega indicates ascent. 
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Figure 8.2: Scatterplot of 6-hourly NorESM RCP8.5 scenario extreme precipitation (y-axis) 

in Godavari contra a) integrated specific humidity, b) vertical velocity (omega), and c) 

extreme precipitation calculated from multiple linear regression. The black solid line 

indicates the least-square line of the scatter-data. Note that negative omega indicates ascent. 

 

 

Figure 8.3: Scatterplot of 6-hourly NorESM Historical1 simulated extreme precipitation (y-

axis) in Krishna contra a) integrated specific humidity, b) vertical velocity (omega), and c) 

extreme precipitation calculated from multiple linear regression. The black solid line 

indicates the least-square line of the scatter-data. Note that negative omega indicates ascent. 
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Figure 8.4: Scatterplot of 6-hourly NorESM RCP8.5 scenario extreme precipitation (y-axis) 

in Krishna contra a) integrated specific humidity, b) vertical velocity (omega), and c) extreme 

precipitation calculated from multiple linear regression. The black solid line indicates the 

least-square line of the scatter-data. Note that negative omega indicates ascent. 
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9. Summary and Conclusions 

Throughout this thesis, the change in extreme precipitation, defined as the 99.5 percentile 

precipitation, between the period 1960-2000 and 2060-2100 is investigated. The Historical1 

simulation from the NorESM is used for the historic values, while the RCP8.5 scenario from 

the same model covers the future period. Using values of temperature, horizontal winds and 

specific humidity, in addition to the calculated vertical velocity from the NorESM data, an 

attempt to explain why extreme precipitation occurs, in addition to the reason for the change 

in precipitation over the two periods, is done.   

Over the last 40 years of the 19th century the yearly monsoonal extreme precipitation intensity 

and the yearly number of events with extreme precipitation is found to have a decrease, 

though no significant values are detected. However, comparing the mean yearly values of this 

period to the mean yearly values of the last 40 years in the 20th century, the trends show that 

both the mean intensity and the number of events will increase in the future. For the trends in 

the number of events per year there is a clear pattern where the trends become larger both 

with increasing periods (6-hour, day, 10-days), except for the monthly trends in which there 

are a drop in the trend compared to the other periods, and for increasing percentiles. For the 

yearly mean intensity, however, the values are found to be more even across different time 

periods, while an increase with percentiles are observed.   

From the linear regression analysis, it is assumed that the vertical velocity and the specific 

humidity are the most important meteorological parameters in the formation of extreme 

precipitation during the monsoon. The vertical velocity has correlations of 0.44 and 0.58 with 

the extreme precipitation in the historic period over Godavari and Krishna, respectively, while 

the specific humidity has some lower correlations (0.40 and 0.30, respectively). The 

coefficients obtained from the equations of extreme precipitation variability also indicates that 

the vertical velocity is the most influencing parameter. Because the extreme precipitation 

occurs despite the stable temperature profiles during these events, the temperature is believed 

to have a minor impact on the formation compared to the vertical velocity and the specific 

humidity. In the future, all meteorological parameters will increase in magnitude, i.e. stronger 

vertical velocities, higher temperatures (with more stable profiles), and higher amounts of 

moisture, but the relationship between them related to their influence on the formation of 

extreme precipitation remains unchanged.  
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The simple model that only includes moist adiabatic ascent show that this simplification will 

result in too low precipitation amounts, especially within the 99.5 percentile. A possible 

explanation is the exclusion of diabatic cooling of the surrounding air, which increases the 

condensation rate in NorESM but not for the moist adiabatic estimate. However, the extreme 

precipitation trend in intensity show approximately the same values as in the NorESM, while 

the number of events is highly overestimated. The reason for a much higher rate of extreme 

events in the simple model compared to the NorESM may be that we assume the air to always 

be saturated in the simple model, and therefore it is able to produce precipitation much more 

often.  
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10. Future Work 

As briefly mentioned in the introduction to Chapter 5, the thesis originally contained three 

other catchment areas; Brahmaputra, Ganges and Indus, but due to the poor performance of 

the NorESM model compared to APHRODITE and NCEP1, they were excluded. 

Brahmaputra was eliminated already in the validation of estimated precipitation due to a large 

overestimation in NorESM, while Ganges and Indus showed very weak correspondence with 

the NCEP1 vertical velocity. It will thus be interesting to know why Brahmaputra obtains too 

high precipitation amounts, and why the vertical velocity in Indus and Ganges show weak 

correlation with the observed vertical velocity despite the precipitation being satisfactory.  

This thesis is based on a change in atmospheric variables resulting from the RCP8.5 scenario. 

Performing the same study on scenarios such as the RCP4.5 or the RCP6, it would be 

interesting to see how much the relative change in precipitation between future and historic 

periods would change, and if the vertical velocity and specific humidity still would be the 

dominating terms for the explanation of extreme precipitation variability. From the results 

obtained in Section 6.1.2, it would also be interesting to investigate why there is a drop in the 

relative change in precipitation intensity between the 95 and 99 percentile, as well as in the 

99.9 percentile, as observed in Figure 6.6 and 6.7.  

In terms of the global warming, the microphysics within clouds will also be affected. As more 

pollution occurs, the amount of aerosols in the atmosphere will increase, working as cloud 

condensation nuclei (CCNs, particles for water vapour to grow/condense on). Along with the 

estimated increase in water vapour in the atmosphere, an exploration of the type of processes 

occurring between water vapour and aerosols (e.g. condensation rate, collision between 

droplets) would be interesting regarding the effects on cloud amount and –depth, which will 

affect the radiation budget on the earth.  
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