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liInt roducti on

G¢KS YSIyAy3a 2F YSIHyAy3d FyR K2g G2 RS

been one of the great mysteries of intelligencartificial a otherwise. It has been an issue

g AUK

from the earliest days of philosophy and logic, and it has become an engineering issue with the

advent of computerized question answering systems, information retrieval systems, machine

translation, speech understandingatelligent agents, and other applications of natural

fly3adzz3S LINRPOSaaAy3asr (y26ftSRIS NBLINBaSHIl

(W.Woods p:75]).

There are manydifferent approaches toprocessingnatural languageMany of thean are
statistical based onthe analysis of word combination frequenciés the texts. Some
approaches are grammaand syntaxaware. Thoughvirtually noapproachesave substantial
focus on the actuaimeaningof the text Thisis unfortunate, becauseavithout focus on
meaning there is little understanding, amod understanding of a request, question, or a

problem isextremely helpfulwhen it comes to finding the answer or a solution.

Natural language understandin@NLU)is arelatively smallsubtopic of natural language
processingdealingwith machinereading comprehensiof8]. Even thoughiNLUtechnologes
often workwith conceptqrather thanjust words), mosbf the traditionalways of representing
knowledgedo not contain any informatioron the dinternal structure! of the concepts. For
example, a traditional semantic network can tell whether two cq@iseare in a specific
relation, but there iso (quantitative) information on the concept and relatiomefinitions or
eveninformation onto which degree theseconcepts are ithe relation. Thismakes itnearly
impossibleto work on the level of theoncept meaning, because computenseed numbers,

and if they are to work with the meaning,nustbe represented quantitatively

But is it really important to work on theonceptmeaning level? Herg may be appropriat

A2

to cite the words of T.Winograd[4:1]: 62 S | A& dzyS GKI 0 F  0O2 Y Ldzi SNI O

! By internal structure here is meant something defining the esseneecohcept or a relation, defining how it

is different (or similar) to the other concepts and relations.
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gAOK f1y3dz-3S dzyt Saa AG OF y .0htouSe\dné hegdBtoll KS &
be more realistic than Al researchers were in the early seventies, but some istepe

direction ofmodeling of the meaningveretaken,e.g.starting fromL. Zadeh5].

2 K2 KlFIayQid SELSNASYOSR I @2A0S8S AyiSNFIOS 3Si
A8yi8y08 R28ayQi Y| wére kngué thatisBrfiedoh the wofls were S & 2 T
GO2YLX SiG St @, ithquid Bavd. tiied Sorad othér candidate words, hopefully with a

better result.

It seems obvioughat every achievementin the field of computerunderstandingof the
meanings of the wordand phrasesan yield benefits when it comes to the possibilities of the
software Itislikelytobetrue e Sy A F (GKS aYSIHyAy3é RcbldanKS &2 NF

be afraction, a tiny projection of whathe wordsactually mean tas humans.

This projet does not attemptto solve thegreatmystery of meaninginstead, i focuses ora
tiny subset: modeling meaning of simple spatial directions expressed in natural language,

and analyzing their comprehensibility computationally.



2Reseamdh em

2.1 Problem statement

The problem statementfor this projectcould be formulated approximately likbe following

There is a need for a model allow to quantitatively work with meaning (or its
approximation) of simple words from spatial domain, and computationdhyerpret and
analyze comprehensibility of short phrasesde ofthese words. Té model should be able

to supportdevelopment ofaresearch prototypeof an intelligent navigation assistant.

2.2 Usecase: intelligent ravigation assistant

[ SGQa &l Nglia s easeR@ Zdnpdatiokal understanding of spatial direction

expressed in natural languagan intelligent navigation assistant.

Within this project, intelligent navigation assistastseenas software integrated into a car
GPS or a mobile phonkat communicates with the user using natural language interface and

assists her with navigatierelated tasks.

~

[ SG§ Q& A Y 3 iogeSsdrivingza kai iddhdinidallg” of a town, ahér hands are tied.
Driver: AfStreet to the | eft, P8 anderstandgtimatyoumnweane ? 0 G
second to the left, because the first left will only get you into the water.

Navigator/ GPS: ANo waydmt 60GPDnkei ghlights the street w

you make sure youdre talking about the same street.

Driver: A Ok ay, tddhatkthai clfe on the other side of the river,
can we then get back?0

Navigator/ GPS: ANo, weol | need to drive around the wt

Driver: iokay, |l etds park then, I thought there was

on the righto.

Navigator/GPS: Highlights the garage and marks the directions.
Driver: Only this expensive one?

Navigator/GPS: Highlights a cheaper garage, but that is quite far away.

Driver: ACan | maybe park somewhere on this hill 20

8



Navigator/ GPS: AFirst street t o t he ri ghrmorrowi t 6 s fr
morningd. The route and a free parking spot are displ
Even in 2015when seltdriving carshave been aroundome townsfor a while,this dialog

reads ascience fictionObviously, this science fictiamould be very useful in reality, because

in this examplehe navigator softwareseems tounderstandthe driver. Indeedwe can see

thaty A3 G2NRa ljdzSaldAz2ya | yR | goalgsobthekriver id8 a K1 NJ
the meaningof her questions andequests(rather than on matching wordspoken by the

userto astandardlist of predefinedcommands. It isfairly easy to se¢hat the systemhaving

similar capabilitiesvould be of much highewalueto the user, compared to theystems

available today (like navigation software for cars andbite phones). This is because the

software would be able to answer her questions and help solve her problems with
incomparably higher accuradyis obvious thatinderstandngthe questionsgreatly increases

guality of the answers, and understanding thblems highly improves the ability to fiima

correctsolutiors.

Below is avery appoximate list of research fieldglevant for developing a system liki@s.

Table2-1. Relevant research fields fortiieA y 1 St € AISy G yIF@AIFGA2Yy FaaArai
Functionality Research areas
Communication with natural language Natural language understanding (NL

natural language processing (NLP), v

recognition, speech synthesis

Reasoning abilities f@olving problemsand | Automated  reasoning, = commonsens

answering questions reasoning
Navigation skills GPS, navigation, spatial reasoning
Learning and acquiring new concepts Semantic technologies, machine learning

2.3 Project goals

Thisproject focuses on a tiny sabt of the mentioned researctelds, namely attempting to
model the meaning of phrases and individual waliaen the spatial domaipand interpreting

and understanding phrases computationallyis somewhat difficult to place this focus area
9



within one research field. It would be more or less correct to say that it mostly lies within
natural language understanding@nd touches up on commonsense reasoning and spatial

reasoning.
Thegoalsfor the projectare:

- Perform analysis of related work, with focus different knowledge representations,
and analyze their strengths and weaknesses when it comes to working with cencept
on the level of their meanings.

- Design and evelop natural language understanding frameworkapable of
interpreting and computationally analyzing the meaning of spatial directions
expressed in natural language

- Implement aresearchprototype of an intelligent navigation assistarwith some
functionality like in the one described abo\2.2), illustrating capalhties of the

framework

10



SAnal ysilsatcefd rwor k

Whenone speaks olunderdanding natural languageeommonsense reasoning, and working
on the level of concept meaninggne of the questions that arises immediately is the question

of knowledge represemttion.

This chapter is a review of significant workshe fields of natural language understanding

and commonsense reasoning withowledge representation in focus.
3.1 Dawn of NLU and micro-worlds

One of the first natural language understanding progra®§ A T Sy o I dzY{@p&vasa 9 f A T I ¢
relatively simpleprogram configured by scripts of which the mosamousg I & G R2 OG 2 NX
simulatinga Rogerian psychotherapistDoctor was sometimes able to provide startlingly

humanlike interactons even if the question was outside of the small knowledge base:

My head hearts
Why do you say your head hearts?

My mother hates me

Who else in your family hates you?

The program was implemented using relatively simpé¢tern matchingtechniques against

keywords

D.. 2 0 NRSHOBENI/] is another early NLU program that could solve word problems

found in high school algebra books.

Ailf the number of customers Tom gets is twice the squ
of advertisemen ts he runs, and the number of advertisements is 45, then what
is the number of customers Tom gets?0

D.Bobrowcommentsi KI & a{ ¢! 59b¢é¢ O2y aAiRNEs dg@iNRsa | &
little knowledge about the meaning of the words as is compatibla Whi¢ goal of finding the
solutiort.1 § SELX FAya GKIFG GKS &SYFyiAO ydapiR&t Ay

arithmetic functions 7:155].

11



T.Winograd & { |[4 B h $ystem founderstanding Englisht A YA Y 3 FI NI KSNJ K
Iy RSTUDENT T. Winograd writes 41]: a2 S | aadzyS GKIFd | 02 YLz
NEFazyltrofeé ¢gAGK fFy3Adza 3S dzyt Saa Ad OFyYy dzy RSN
T. Winogradarguesii K fiA 1619¢ ' yR da{ 0dzRSy (¢ 3IABS AYLINBaaj
carefully and severely limit the type of understanding they are trying to achieve. He means

that the solutions they provide are too speclrpose B:167].

SHRDLUas a reasoning engiafowingA &t 02 NBYSYOoSNJ 6GKS 3I2Ffaz R
actions and plandt can reply in English sentences, and ask for clarifications, when it cannot

interpret the sentence with the knowledge already available

pick up a bi g red block.

OK.

grasp the pyramid.

I DONO6 T UNDERSTAND WHICH PYRAMI D YOU MEAN.
the blue pyramid is mine.

| UNDERSTAND.

does a steeple

SORRY, | DONO6T KNOW THE WORD ASTEEPLEO.
a fisteepled is a stack which contains two green cu
| UNDERSTAND.

are there any steeples now?
NO.

why did you do that?

BECAUSE YOU ASKED ME TO.

The demonstration oSHRDL At the time wasverysuccessful and led to a lot of subsequent

Alresearch.

However the research optimism was soon lost, ardRDL$eems to nevehave made it out
of its émicro-worldé. H. Dreyfusmentionsin [9:12] that, for example{ | w5[ ! Qa 02y OSL
owning cannot be easily expandedyondSHRDLbecauseA i R2 Say Qi dzy RSNER G y

cannot deal with meanings

12



H.9monarguesthat SHRDLMWasy 2 G NBI f t & YSIyid (G2 068 SELI YRS
050FdzaS 2F I GFAESR NBLINBASydahion2 vz d 1 D AV3S INE:
AYLX @ 6@ FAYRAYI (GKS LINE OSRdAzNE |, @ddaspohdingzLI |y
G2 aoA3 [MBOB2lof 201 ¢

QX

Indeed, the procedural knowledge not easily expandablg@artly because the procedures

have to bewritten by humansT. Winogradnentionshimself in one ohis lateremails[11]:
G¢CKSNES NB FdzyRIFYSyGlt 3dzZ ¥a 0SG6SSy GKS g4I @&
it is that goes on in our brains. | don't think that current research has made much progress in
crossing that gulf, and the relevantesoce may take decades or more to get to the point where

the initial ambitions becomeealistic.

T. Winograd continues to work on knowledge representation in the later years. He departs
FNRY dat NPOSRdAzZNB & | & [1HBndidgethe vith ID.(Bbboyr th@dy2leslgnR | (0 | €
frameA YA LIANBR Yw[ X F aYy2¢f SHBSaAmwSthINEE SFHINI A S
LINE OSRdzNI £ 1y2¢f SRIAS 4 A 0K .IMuchNaket, iR andntetview 2 ¥ R S
with A. Norberg 14], T. Winogradmentions thatKRL was an overcomplicated attempt to

come up with a universal language easy for reading and writing programs, with rich semantics

of logic languages, anthat could bedprocessedike human memory, so you could have

realistic Al programés KRLitself R A Rhav@riuchfuture.

In any caseSHRDLU was a major achievemerthattime. Thisproject considersSHRDLU as
an inspirationand aims to implementa sort of computational understadingin the micre
world of spatial directions Unlike SHRDLU, thougthis project aims touse knowledge

representationallowing toeasilyextend beyondhis domain.
3.2 Commonsense knowledgand taxonomies

The language subsetvorked on in this project inclue both general purpose words and
simplespatialconcepts describindirections, movementsand general purpose word¥hese
naturally fall in the category of commonsense knowledeilection of facts and information

that an ordinary person is expecteal knowé [15].

13



A wide group ofapproaches todescribingcommonsense knowledgen particular énd
categoriz semantic informationin general) are based on some sort otaxononical

representations, like semanticetworks, frames, and description logics

3.2.1 ConceptNet ancsemantic networks

G¢KS IANBS| LKAf2aBKSHIPD 2 NDR¥F¥NBY 0/0W3 HdYi | NR
drew what might qualify as the first semantic netwé6f6:471]. According tq17], modern

semantic networksvere developedy R. Simmons and R. Quillian in the early sixties

[ SG Q& GdzNY 2 dzNJ tMef] & Segmami2 netwaikg OZ 2 WIOSYR y 3 f 20 a
computers should know abbuhe world, especially when understanding text written by
LJS 2 L[Xg]S ¢

[ swallow )

cheesecake

Fig.3-1. An illustration of a small section of ConceptNRSpeer et g21].

14



Fig.3-2. Excerpt fronConceptNetH.Liu and PSingh[19]

H. Liu and PSingh20:10-12] discuss various graph reasoning methods that can bpaed

over ConceptNet data:
- Computingconceptualsimilarity:

Aappl eor eed lappl ed (76 %)

=13

buy foodo ~ fipurchase grocerieso (69%)

=13

big dogo ~ fAanimal o (53%)

- Context finding:

=13

go to bedodo yields fAitake off c¢clothes, 0 fAigo to sl eep,

=1}

|l ay wthgog 6 Acl ose eye, 0 fiturn of f light, 0 Adream, 0 f
snore. o

=13

- Inference chaining

=13

buy foeddihave f-codeat f-o>0diof eel f-ol Rdeel sl-eepyo
Afall asl eep. o

- Conceptuabnalogy (structural)

fcoucho insofa, 0 Achair, o onbed, 0 Nseat

There are other projects implementing reasoning engines on top of ConceptNet.

R Speeret al. [2]] describeAnalogySpace. Pursuing the goal of drawing conclusions from

15



analogiesjt utilizessingular value decomposition tecigue to reduce the dimensionality of

knowledge in ConceptNet. According to the authors, AnalogySpace allows to generalize

ConceptNet knowledge and make it more available to applications, particularly in the area of

natural language.

0.1 .
person/CapableOf E“human!ﬁ:apahle{]r
*breathe gffice work
fclose door _
*catch a gold Use cIForfﬁJrqlwe at home
0.05 ie shoiash
{ Felgifts
+hat
=
5 0 4 person/Desires
© Hemoney 7]
& Treproduce
N ' +drink wine
flood ivc:te “Know thie truth
Py
005 walk on mgsmthgm%eﬁﬂwer
Twalk on water
threathe water
0157 005 005

Desirability

01

Fig.3-3. AnalogySpace projected onto its first two components, with some concepts and features labeled.

Robert Speer et §21].

3.2.2 Somechallengingand meaningrelated problems

[§GQa GF18

| of the 2hipllengesi with 2h¥ $raditional semantic network

representation when it comes to working with meaning and reasoning with natural language
conceptsFig.3-1 andFig.3-2 are used as illustrations:

1. Issues with predicate quantifiers. Are all cakes sweet? Or only some cakes?

2.9l dzA g1 £ SyO0S 27

I a

dirbal given contexa

0KS YSFIyAy3a

Ay

IABSy Oz

3. Fuzziness degrees. To what extent are cakes swee??y” Ssfehac going to be

equally full afterd S I {

ONBLF | FFadé

16

by R

§SH

RAYYSNE K



4. Uncertainty handlingz K 0 Qa G KS b &aduld yaint afteil waking K it
the morning?

5. wStlGA2y 0Sis6SSy oFairld FyR 02YL}R2as
O2y OStJit #38SR SI NI 2¢£K

6. / 2YLIRRAAGAZ2Y 2F O2y0OSLIia Ayd2 LIKNIaSaod 52¢

P
O
No
<
O«
(0p))

context, or not?Can art 2 @ &oflédw a recipé to dbake something or not?

7. Concept definitions. How i SI NI 8¢ RSTAYSRK | 24&Lankad @Y 2!
compui SNJ SI aAf& RSOARS GKSGKSNI AG Aa &SI NI &:

8. Exact interpretation of the relations. Many of the relations in semantic networks
computers cannot really handle. People often go to bed early so they easier wake up
inthe morning (reld A 2y aa2d0AQB 0A2yhTeéo0d . dzi oKIFG Ol
DA@SY 2yS 32Sa (G2 o0SR fI13GSs R2Sa AdG YSIy
GKS Y2NYAY3AK ¢KIFIG 2yS 62yQi 61 1S dzLJ Ay (K

It is quite difficult to aswer questions like this based on the information available in the
network. Many things are too vague or ambiguous for a computer, many are lacking in this

representation, especially fromguantitative standpoint.

3.2.3 From semantic networks to description logics

Some of these challenges have been researched for a long Asleng as 40 years ago,

W. Woods writes about someof the issueswith semantic network representatiom his

Fl Y2dza LI LISNJI G22]Hrpartedhr, e disclissep igsyed withk interpretation,

issues with predicate quantifiers and mentions problems withhandling probabilistic
information and uncertainty degreesde is challenging the basic of semantic network
methodology for attempting to represt in a single mechanism both the ability to model the
associative connections, and the ability to store factual knowledge (by assemblies of pointers

to other facts).He writes[22:15: 6 hy S a K2 dzf R | SSLJ Aigh thet’syciRa (0 K I {
representation is possible is merely an item of faith, an unproven hypothesis used as the basis

of the methodology. It is entirely conceivable that no such single representation is possible

Ly KAa d&aS/I| yY2RW. IVooksgxRlairs Ik §adt, dhére was generally nothing really
AaSYlLYGAO Ay aaSYFryidAO ySig2Njaés FyR L FSti
G2 (0KS&aS 20aSNWI GA2ya GKIF G He dischsBeSnSaticutas LI LIS N

17



semantictags and linkags, extensios that could help to solve some of the issues raised in
G2 KFEdQa .Ay | [AYy]E

In the late seventies early eighties the issues raised on imprecisions and ambiguities in
semantic networks trigger a lot of resed around knowledge representation frameworks.

KRL[13] was mentioned earlierR. Brachmananalyzes taxonomic links in hgpera 2 K I

ISAis andla Yy (28] éand argues thafthere are almost amany meanings for the 48 link as

there are knowledgeepresentation systends He works on KLONE framework[24],

adesigned to overcome semantic indistinctness in semantic network representations and to
explicitly represent aweptual information as a structured inheritance netwfR5]. This
NEaSIFNOK GNAIISNBR | gK2tS FlLYhbd® FFYycEséane

eventually gave rise to a new fiehdw referred to asdescription logic$2:82].

3.2.4 Logic-based commonsens&nowledge

Description logics are a family fdrmal knowledge representation languagedesigned to
overcome lack of formal logisased semantics of frames and semantic netwofR].
Description logics play an important role as a theoretical foundation for ontology languages
and the Semantic WebVarious formal reasoners exist for diffent description logic

languageg27].

Using logidbased representations for representing and reasoning with commonsense
knowledge was first described in d.0/ F NI Ked Qa Ofl aaAOlf LI LISNI 6
{ Sy i8.8ut how wellsuited are logidhased approacés for this?

Cyc is a project assembling a comprehensive ontology and knowledge base of commonsense
knowledge formulated in the languag@ycl. that is based onpredicate calculus[29]. It
contains definitions of 239,000 concepts aadvhole2,093,000 fact$30]. The project has

been described ast 2 y Sthe2most controversial endeavors of the artificial intelligence
KA a ([2LRaE

H. Liu and PSingh[20] argue for why representing commonsense knowledge using formal

logicmay benot such a god idea:

- Precise definition of terms and interrelationships require a lot of additign&al 2 3 A O f
a0l T ¥ 2aftaBkiofff RE dzy G A y 3 [20B]Y LI SEAG & ¢
18
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- /1 2YY2yaSyasS (y2¢ft SRIS Aa RSTPecaldlmmie® | yR ¢
LINPOfSY 0StASPGAYT GKIG aoANRaAa Oly TFfteéezé S
K2 Olyy20 Fte¢e¢sr YR GKIF{G [Ra@asl NRa oA 0K 0NEP
The way commonsense knowledge is categorized is largely definedrbgns, and
they categorize concepts in a very special ways, drawing fuzzy boundaries and using
resemblancdor grouping[20:6]

- While logical reasoning is deductive, commonsense (huimduced) reasoning is
largelya A Yy R daDdudti SakRd empirical, where (ovggeneralizations from known
SELISNASYyOSa LY IR I LINBPYAYSY(d NRf Sé

- Authoring knowledge for logibased systems like Cyc is manual work that needs to be

done by logiciand20:7]

The last argument by HLiu and PSinghis of ultimate importance, and can be expanded. If

the system is tolearn (acquire new knowledge) in any way, the formal ldgased
representation seems problematic: how would the systemlitgenerate strict logical rules,

even theoretically? This problem is very similar to the problem with procedural knowledge
representation used by SHRDLU: the system works well as long as it has the procedures

written by humans, but how can we teach thessym to write new procedures for itself?

[ SG Qa théjBablands Srientioned in3.2.2 and see whether a description loghased
representation would help answering them. Well, it appears that we would have negithg

j dzS & (i A& \all cmkesosweet? Or only some cakes?5 SAONA LIIA2y f23A04
quantifiers to deal with this. We could haaésoused circumscription to make the reasoner

treat all cakes as sweet, unlesgecificallystated otherwise. Wheit comes to the rest of the

guestions, description logic representation wotddveprobably not helgd us a lot.

3.2.5 Otherinteresting studies

Wod tdzaiSea20a1 @& Ay[3Kdhdlenged the/standard dpdachitoSaitad 2 vy ¢
word meaning, where each lexeme is associated with a number of word senses. He argues,
F2NJ SEF YLX S5 faKhoforwdayk SO0y DB LB S 6l RSIjdz2 6 St & | O
2F GKS o YSIyAy3a (HKdsti I NSAAx@SWoaFdG @die IOV HE IR
g | t #lé istraducesyualiastructure of words including:

The relation between anlgiect and its constituent partgJonstitutiverole)
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That which distinguishes it within a largeomhain Formalrole)
Its purpose and functionTlicrole)

Factors involved in its origin or "bringing it abo&gentiverole).

For exampleTelicNRt S 2F a0K22f g2dzZ R 0S aFerRazoleé G A 2y | f
g2dzZ R 0S Gedalakivie Rexiyoms édigcussed ithe light of issues likeiSAé and

concept inheritance if33].

It should &so be noted that there is certain amount ofstudy on addingcapabilities like
fuzzinessand uncertainty handling tosemantic network and description logased
representations[34, 35, 36, 37, 38], can be mentionechere. However, each suggested
extensionattempts to solve one little inapability of the generally accepted representation,

leaving out many other open questions.

3.2.6  Summary

[ SGQa Gdz2NYy thelpkdblénmismedtioied iB3/2.2 (B8& far we have briefly touched
upon problems 4. Not thatthere was a conventional solution tall of those, but some
approaches were discussed/hen it comes to problems-8, wS K I @S y@rie clGS&ts v
approachng them, and this is not accidental. This has to do with the fact that proble#®s 5
are concerned with @ncept and relation meanings, or, in other words, concept and relation
internalstructureand conceptomposition while none of the representations we have looked

at so farpossessnformation like this. This will be further discusse®in.

3.3 Latest advances ofNLU in spatial reasoning

This sections a sort of a digredssting someof the mostinteresting cutting edgeworkson

applications oNLU tospatialreasoning problems

T. Kollaret al. [39 describe avery interestingapproachfor directing robots by natural
languageTheir systeniirst parses input phrasanto a sequence o8DCsdpatial description
clause$, containing a figure (the subject of the sentence), @erb (an adion to take), a
landmark(an object in the environment), andspatial relation(a geometric relation between
the landmark and the figureYhen, given thenformation about the environmental geometry

and detected visible objectg mapsthese SDCs togtes objects or pathsgroundings, using
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different techniquesand constructgrobabilistic graphical modé€grounding graphto infer

the most probable path through the environment

V < Continue to walk

SDC SR straight

5:5DC -V . going
'SR < through
L < one door
A v

SDC F L you
SR - until
_ ¥V come
L < 8SDC

‘SR ‘to 'F < an intersection
L 5DC SR < just past

'L+ awhiteboard
(a) Ground Truth

Continue to walk straight

SDC - going
SR < through
SDC
S 'L < one door
SDC SR until
L - you come to an intersection
SDC - SR <_just past
'L < awhite board

(b) Automatic

Fig.3-4. Example of gatial description clauses) ground truth b) Automatically generated from natural
language inpufl. Kollar et aJ39]

It is interesting how the semantics & LJ- G A £ LINBLRaAlGA2ya ist A1 S &
modeled. They us features that ardunctions of the geometry of the path and landmark.
Using these featureghe prepositionsare learnedusing Naive Bayes classifidghe dataset

used containdrand-drawn positive and negative examples:
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High scoring examples Low scoring examples

past” } 3 j T~ [F C 8 L K \
w SIS LAZ0S Il
e | N0 ] o= A

Fig.3-5. Positive and negative examples to learn the spatial preposifiorollar et al[39]

S. Tellex and Roy[40] discussanother appication of NLUo spatial reasoningvideo search.

This paper also discusstie features used tdearningspatialprepositiorsin more details

(a)

Fig.3-6. Frames from two clips returned for thaerydacross the kitchea.S. Tellex and IRoy[40]

S. Hemachandrat al[41] present an approach allowing the robots to follow natural language

directions without anypreviousknowledge of the environment.

= 55 “
e D
(byt=4

Fig370 +Aadzad ftATFGAZ2Y 2F (GKS S@2ftdziazy 2F (GKS asSvylryaio
GKS 1AGOKSYy GKI G A aircld? and Argdifileth ar&as dehote Isaingiéd ar{d Visitédfregions,
respectively, each coled according to its type (lab: green, hallway: yellow, kitchdue). The robot (a) first
samples possible locations of the kitchen and moves towards them, (b) then observes the hallway and refines its
estimateusindil KS G R2g6y ¢ NBft I ek Fipally théPodok (B) SeRches the attéabkitctizh and
declares it has finished following the directi®.Hemachandret al. [4]]
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Theresearcherause a hierarchical framework based arDCG distributed correspodence
graph) to convert natural language information topobabilistic graphical model expressing
the correspondence between linguistic elements from the command and toeiesponding
groundings. This learned model is later used1yhe semantic map inferencelgorithm
hypothesizing the existence and location of coherent regi@ml 2) belief space planner
reasoning directly over the map and behavior distributions to solve for a policy insitagion

learning

The works mentioned in this section show somehd# latest advances of NLU applications to
spatial reasoning problem3o achieve these impressive results, a large numbedeénced
techniquesvery different from formal logicare put together.Stateof-the-art machine
learning algorithms probabilistic graphical models and particle filters are heavily used.

Everything handles abolgarningthe probabilities because this works great when there is:
a) Little information (about robot environment)
b) Little knowledge (about what user commaraiguallymean)

Our project, focusing on the modeling of therd and phraseneaning, takes a very different
approach (understanding in full thah foreseeable futurehis will yieldmuch less impressive
results when it comes to what the computer cdo, but hopingthat this will change at some

point when the computer will be able ttnow more).

3.4 Fuzzy semantics

This chapter is a review te theories thatthe rest of the project will be building upon. To

start, it is necessary to go back to the beginnofighe sevaties.

3.4.1 Quantitative fuzzy semantics

In1971, in his paper on Quantitative Fuzzy Sematiiid. Zadehasksa / 'y G KS Fdzl T Ay
YSIyYAY3 68 GNBFGSR ljdzt yiAGEGAGSE RS G €81 ad
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Young Clum:/m middle uge Middle-oged

| J———

T T T

20 30 40 50 60 Age

Fig.3-80 / KI NI OiG SNRGIOE &S -#iBS &d Ry BESWRER R (A8 Zadelible & SiGa o
[ SGQa Bg38aIar &St time in our research reviethere is agraphthat visualizes

a certainquantitative relation betweenconceptsd , 2 dzy 3¢ = &/ f 2 465a AIRR{ YSA RR
I 3SRé yR a! ASé D

In 1972, L. Zadeh42] suggestgossibility ofusing fuzzy sets for modeling linguistic hedges

(e.g averye, amore or less, omucte, cessentially, cslightly€). He suggests that hedges can be

viewed as operatorsthat act on the fuzzy set representing tmeeaningof its operand(e.g.

2LISNY 62N GOSNBE FOOGAY3I 2y I Y SeveyalopedtiosFor a G I £ f
manipulating the fuzzy setcgmplementation, intersection, normalization, concentration,

dilation, fuzzificatioretc.).

G. Lakoff provides a useful illustration on how the fuzzy hedges 48tk
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SORT OF TALL ~—s. ‘ - (
' VERY TALL
PRETTY TALL
TALL <—RATHER TALL
Q - ;-_w_--_ . . J; o It w o B ;
5'3" 85" 5" 59" 51 81 '3 &5’

Fig 3-9. Some examples of modifier valuations using Zadeh functi@rsakoff43]
In 1975, L. Zadeh introducasoncept oflinguistic variable[44]. Values these variables take

arewords or sentences in a natural or artificlahguagee.g.cage is a linguistic variable if its

values argyoung @hot young, énot very oldand not very youn§g S G O ®

In 1978,L. Zadelpresentsa meaning representation ya3 dz 3 S [45}. v [4%; 46] he
suggestsa computational approach to fuzzy quantifie(Bke éseveraf, dfewe, dmany,
dapproximately five etc.).

fuzzy numbers
(mosti@la 'i1tle more

M thah a half)
I ___________
7~mosl
a g=be
p—- 3 l11te more
than  a haif
s} 05 'Q v

Fig.3-10. The intersection/product syllogism with fuzzy quantifiersate#[46]
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3.4.2 Test-scoresemantics

In 1983 L.Zadehis expandingthe idea offuzzyword meaning oto propositions,introducing

test-score semanticp47], and, later iN48], knowledge representation based on fuzzy logic
He argues thafuzzy logiaepresentation is more appropriate for commonsense reasoning
compared to more traditionalepresentationgsemantic networks, frames, predicate calculus

etc.), becausedf itsinherentability to handle uncertainty and imprecision

In this model, a proposition is viewed as a system iaiplicitly defined elastic (fuzzy)
constraints whose domain is the collection of fuzzy relatioirs so-called explanatory
database C2 NJ SEF YLX ST LINRLRAAGAZY aW2l y Aage &2 dzy 3
(implicit in the proposition) anattractivenessthat need to be constraied. The explanatory

database would contain these relations (wheres membership degréee

POPULATION [Name; Age; ¢ Attractive]

YOUNG [ Alge; ¢

According to L. Zade48], to represent the meaning of the proposition, it is nesary to
construct atest procedurethat tests, scores, and aggregates the elastic constraints, yielding
an overall test score. This test score serves aseasure of compatibility between the
proposition andhe explanatory databaseand themeaningof the proposition is represented

by the test procedurétself.

L. Zadehlmentions in[47] that there is no way to automatically construct the test procedure
and explanatory databas¢hatit would required & dzo a G | Y 0 A | rétanding of BafuialS NJ dzy R
fly3dz-3Sa FyR (y2¢6f SRIS NBLNBaASyidlidiAzy (GKIy

3.4.3 ComputingWith Words

LY wmMdpc>E [ ® %I RSK YSydrazya I ySEWWRIY.RKRR2f 238
idea is that words are usedstead of numbers for computing and reasonif@r example,

one problem for CWW could be this one:

| have to be at the airport about an hour before departure. Usually it takes
about forty five minutes to get to the airport from my home. | would like to
be pretty sure that | arrive at the airport in time. At what time should |

leave my home?
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CWW methodology is based on @eneralized Constrairitanguage(GQ@) [50, 51], and is
rootedin [47]. CWWis further discussed ifb0, 51, 52, 53, 54]. CWWprocess iperformedin

2 steps:1) precisiation of natural language a) computing with precisiated language.

In CWW, poposition is viewed as generalized constrainof form X isr R where X is the

constrained variable; is constraint type, andRis the constraining relationThe meanig of

the proposition isthen defined (precisiated) by specifying, Randr [54:66-67]. For example,
LINRLIZAAGA2Y Gw20SNI possibilisticbristéaint ithyvarigbeX beéhy S 6 SR |
RobertQa K & @I&tionRo SAy 3. adl £ € €

Generalized constraintare a powerful way of conveying fuzzy informatidike human

perceptions. L. Zadeh definepBmaryconstraints[53, 54]:

1 PossibilisticX is RPoss(X=uF ur(u), where R is a fuzzy set in a spase{u} andpris
the membership function dR Ris the possibility distribution oK
1 ProbabilisticX isp RXis a random variable, and R is its probability distribution

1 Veristic X isv R. Ver(X=u) &w), where Ver(X=u)s the truth-value of(X=u)

Fig.3-11visualizeglifferent types o LINS OA & A | GA 2y & #57. &l LILWIINREA YLl S
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PRECISIATION OF “approximately a,” *a

s-precisiation singleton

interval

probability distribution
g-precisiation <

possibility distribution

fuzzy graph

p =

e bimodal distribution
1= T -~ ]
\ 0 1 1

=X
GCL-based (maximal generality)

*2 g-precisiation XisrR
_V_‘l

Iy

generalized constraint

Fig.3-11. Hierarchy of precisimns of *a (approximately a).. Zadelj51]

CWW is a very interesting methodolofgcusing on enabling worbdased computations.

However, it does leavenanyopenquestions, for example:

1 The precisiation step is completely depesrd on humans for choosing R, and
constructing the explanatory databa$g4:185].

1 There is no attempt made to somehow formalizg automatically relateimplicit
variables (liket | 3 ® évords in natural language (like@ ¥ 8z

1 Proposition meaning is not defined in any quantifiable way (which makes it impossible
for a system to analyze whether it is comprehensible)

1 Nothing is said about how to handle the knowledge that is evolving, changing,

expanding over time in this regsentation.
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4 Met hoondd framewor k des.i

Thismasterproject is based on joint resear¢h] focusing ormodeling concept meanings and
computationalcomprehension of phrasesThe approachrelies on some of the techniques
descrbed by LZadeh in5, 42, 46|, but is very different when it comes to overall knowledge
representation, modeling phrase meaning, etc. In particular, the approach &tampt to

challenge the issuamentioned in3.2.2 andat the end 0f3.4.3

This chapter describesentralideas of the approach and the parts relevant forstmaster

project.
4.1 Approach overview

The approachs based on fuzzy logic, agood fitfor working with different levels of truthness
and concepts with unclear boundaries, phenomena commonly occurring in knowledge coming

from natural language, and commonsense knowledge in parti¢aijr

All knowledgeis encoded iffuzzy propertiegwith values ranging fromeroto one), each of

them encoding an independent piece of information.

Sructuring knowledge andlealing withits context sensitivityis modeled with contexs.
Context is defined as a coordinate systefith one axis encodingne independeniproperty.
If the context hasN properties,then the knowledge in this context is described asuazy

regionin anN-dimensional unit hypercuhe

Phrases, words and other nnmal language constructs are modeled as region transforms, or
meaningoperators For example, interpretation of a phrase is a transformation ofsixgrce
region(the region before interpretation) by the corresponding phrase operator, yielding the

resulting region(the region after interpretation).

Computationalinterpreting is viewed as choosing the interpretation that makes the most

sense, using different heuristics.
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Meaning of an operatorcan be assessedluring its composition. Overall phrase
comprehengon can be evaluatedhen the phrase operator is being applied. Tterh source

andresultingregionsare considered along witlother factors (e.g. phrase mood).

Simplified schematics of the phrase interpretation is giverrig4-1.

Input phrase words

Resolving
ambiguities of
the structure

Grammatical — Phrase syntactic mmm | Operator application describing
forms structure Lo order unclear parts
Operator| Application of l
Blockoperators meaning modifier words
analysis word context
I Sequence of word
operators
Operator meaning
analysis
Phrase operatar Interpretation Target region Phrase compre_hen5|b|hty
phrase context current context analysis
Done next
Source region phrase

current context

Fig.4-1. Smplified schematics of phrase interpretation

Please note: this is a model drawing. Only some parts of this model are implemented in this

master project. This idiscussed in more detail in sectidi.3

4.2 Representationbasics

4.2.1 Properties, context and regions

[ S éuime thathe state, or knowledgeof our systemcan becompletelydescribed with a
finite number of independent real paraeters (properties. Values of ach propertyrange

from zeroto one, so thatone corresponds to maximal presence of the property, amlo
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corresponds to its complete absence. For example, if we would like to ncadlspeed, we
O2dZA R dzaS LINB¥ISNI-ENBRE @ Pxy &a YSIy ay2a FlLad

ala Flrad a AG 3StGacoo

We are going to call some of the propertigssic propertiesMany of the basic properties will

Ay Ot dzRS @I f dzSa G KI G Ol goftwak FRexadp&)firia dobotidcs NO S A @
car withabuilt-:A'y NI yISTFAYRSNE LINRaISNIeréeivad NkectyTheh S RA
sameistruéF 2 NJ 0 KS LINE LISNI & & NBystenihds@Buikid dloekS ¢ = | & f 2

The rest of the properties we are going to adlived They can be defineda otherconcepts

e.g. using the model described later in this section.

Contextis a coordinate system consisting afesthat represent values of currently relevant
properties one axis per property-or example, when talkingbout movement speed, two of
the relevant propertiew2 dz2t R 6 S aNBf I GA GBS RAAGIYOSE YR GN

Ly (KS oORdjhitSdysiene can define a fuzzy shape: a region. Each point of the

region is assigned a value frareroto one, describing thisJ2 A y 1 Qa RS3INBS 27F YS

Regionscan be usedo expresshe meaning of different conceptsFor example, using axes
ands6 ANBt F GABS GAYSE YR aNBtFGABS RAaGEyOSe
GFF ade¢ | RQR-2 manibership degree is depicted with color intenkity

! For simplicity of the exampledirect use offispeedis avoided as it is a more complex concept.

2t is interesting to compare thevay regions ar@rganized withL. Zadefis CWW %3, 54]. In CWW figuring out
that fiyoungd has to do with the implicit variabl@aged would be a part of manual precisiation step. In the
proposed approach concept defiion (e.g. ffastd) already specifies how exactly it fisonstraining the

variable(s) (e.gidistance, fitimeo (Fig.4-2), or iquickness (Fig.4-3).
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fast (t,s) slow (t,s)

1 1

0.8 0.8

06 ® 06
[45] 5]
(&) (&)
| o) | ==
8 8
0 0

T 0.4 T 04

02 0.2

0 0

0 02 04 06 08 1 0 02 04 06 08 1
time, t time, t

Fig42/ 2y OSLJia aFflLadé yR aatz2gé
Based on existing regions, new (derived) propertiags be introducedFor example, based on
the regionO2 NNB & LJI2 Y RA Yy 3 (i 2Figi#4-B Sve Cad ifittb&ucdliia newFpropeitye 6
GlidzA O1lySaaédad LG Aa yI (dzNT f(xakionAigi-8)deve§ulioK S O f
the degreesof membership2 ¥ A G a O2 NN joid (Edlok iftehsitNdFgM 2y Q &
left).

1 T T T T T T T T T

09r 1

08T 1

071 1

0.6 1

05T 1

membership, m

0.4r 1

031 1

0.2 1

01r 1

D i i i i I I I i i
0 01 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1

quickness, q
Figd3®d /2y OSLIi aFlaidé Ay O2yi0SEG 6AGK 2y S LINE
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As long ashis relation holdsye are going taall such regiomeferenceregion of a property.

[ SGQa y26 AYOUNRRdAZOS | ySg 02y OSLIi aY2RSNI (St
(0), and define a region in this context, described by the functrmderatelyPaed(q)(Fig.
4-4).

moderatelyPaced (q)
1 T T T T 7T T T

08 \
0.7
06 \

05 \

membership {m)

0.4 \
0.3

0.2

01r / : \\.\

quickness, q
Figd-4d / 2y OSLIi aY2RSNYGSte LI OSRE

Please note that as long as we only have one property in this context, we areYtkig)for

the degree of membership (instel of using color intensity, as in the previous example).

[ SGQa y2¢ &4SS K2g (KA 3, tNUB Aravduslyabstnzell dalugs yf O 2 2 N.
LINE LIS NI @  &-hxizbnBid.4/35ta lde érawn from the degrees of memberghof the

02y OS L GFLFadse 6 O 2ZFig2 NJ2, Aeff)ii SBedahsé & of 2his,

¢ QQ1 OO QWD iclo'Q @il be function composition of "QOii and

GEQQI OO0 QMuED BOVET RA Y I & ¢ FizyodIQMRD/E i oh@QS\ awill T dzy O G A
transform membership degree of eapbint of the concept Qi i B in accordance with the

rule given by £ Q' Qi OO0 QMeED hy®RQ G KA & O2N

in the context with axe$io (Fig.4-5).

A

NBaLRYyRa G2 (GKS
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fast --> moderatelyPaced
1 -

0.9
vig fast(s.t)
0.7

§ o\

0.5 moderatelyPaced(fast(s,t))

distance, s

0.4

0.3

0.2

0.1

O J
0 01 0.2 0.3 04 05 06 07 08 09 1
time, t

Figds5d al LIWAY3I aY2RSNIGStetl OSRéE o101 G2 NBTS
CKAE (1AYR 2F YIFILWLAY3I Aa 3ISYSNIf 2LISNI GA2YyZ |
axes, thus, mapping different pieces of information into the samee(egfce) context for

processing.

4.2.2 Operators

Region transforms, ooperators playkey role inthe proposed approach. This section 15 a

example of modeling two function words as operators and using them to create new concepts.

We can define the operatorchi B 8 L2 Y RA Y3 (2 (KS¢é @2 NRawheed ¢ f A
x is the value of a propertyF{g.4-6). This is similar th.%. RSKQa & 02 Y[BEIS.YSy Gl & .
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09 1

08r 1

07 1

p, m2

06 1

051 1

04 1

03 1

target membershi

02 b

oar 1

0 I I L I I L I I I
] 01 02 0.3 0.4 0.5 0.6 0.7 0.8 09 1

source membership, m1

Fig.d6.h LISNI 0 2NJ ay2ié

Usingoperatoti Y 2 0 ¢ = ¢S OF Yy RSTAYSot(fast)(Fig4s7) O2y OSLIG aaf

fast slow = not(fast)

membership, m
= o o o ] =
Cad B & [=2] | o0
T T T T T T
i i i i i i
membership, m
=] =] =] =] [=] =]
Cad E= o [=7] | (=]
T T T T T T
1 1 1 1 1 1

[
Fa
T
I
=
3
T
L

D i i 1 1 D 1 1 i i
0 02 0.4 0.6 08 1 0 02 04 0.6 08 1

quickness, q quickness, q

Fig.4-7. slow = not(fast)

Mapping this back to our reference contewe get:t € @G iild (Fig.4-8)
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fast --> slow

fast(s.t)

not(fast((s.t))

0 01 02 03 04 05 06 0.7 08 09 1
time, t

Fig.4-8. Mappingslow = not(fastpack to reference context
28 OFy RSTAYS &+ SNE O QG INR Eid #9). (T8 i sinfilar 0S5 G KA
L.%2F RSK Q3422610 S NEB ¢

e
o =]
T T
] 1

, m2
=
~

=
=3
T
i

target membership
o = o o
ra (] = n
T T T
I 1 I

=
—
T
I

I
01 02 0.3 04 0.5 06 07 0.8 09 1
source membership, m1

==
=

Fig.4-9® hLISNI G 2NJ da OSNE ¢

Applied to regiortfaste, wedl get region corresponding tavery fast.
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fast veryF ast = very(fast)
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Fig.4-10. veryFast = very (fast).

Mapping this back to our reference context, we getQ i "@xo i I

fast veryFast

0.9

o
™

e
=

fast(s,t) very(fast(s.t))

distance, s
© o o ©°
w E=N (8} (=]

o
[N}

0.1

0 0.2 04 06 08 1 0 02 04 06 08 1
time, t time, t

Fig.4-11. Mapping veryFast = very(fast) back to reference context

4.3 Modeling meaning

This sectionbuilds on top ofthe ideas described above create models of meanings of

natural Bnguage constructs.

37



4.3.1 Meaningof phrasesand words

As it was mentioned earlier, we assume that the knowledge of the system at any time can be
described with a number of independent parameters, and that phrases are modeled as

operators transfornng this knowledge.

Then,beforeinterpretinga newphrase we have a certain projection of the system state onto
a given context: let us call source region $SAfter interpreting, the state will change, and so
will its projection onto that context. Let us call thisw projectionresultingregionRi. Now, if
the source statevas S, the resultingstate after interpretation would also be different, say,
R.. Thus, each set of possible source regi¢8 has a corresponding set oksulting

regions{R}.

Thenphrase meaingin a given contextan be defined aan operator transforming every
source region to a correspondimngsultingregion. In other words, phrase meaniogn beseen

asmapping YO Y .

We are going to call the subspacentaining region modifications resulting from the phrase
interpretation phrase contextin other wordsthis is the subspace that thehraseoperator
works in To contrast with phrase contexturrent conext is the context that describes the

knowledge of the system.

Phrase operators can be defined agomposition of smaller operators that correspond to
g2NRa YR 62NR O2YoAyldAz2yao [ SiQa GF1S | 2

Many of the words, unlikelprases, can only be uséagether with other words. They certainly
havesomemeaning, but this meaning is in a way incomplete until the word is put together

with the other words. This fact can be modeled using parameterizati@ndsvcan beseenas
parameterizedoperators Theyhavea defaultbehavior described by a certain regions 2 NR Q &
internal context When put together with other wordglike modifiers) this region may be

adjusted by hose For example} OF NJ NB OSA JA y SartsOrdWhy itk omet RNRA & S
average speed. If itrecei® 2 YYI YR GRNRAR QOGS FlLadéz GKS &ALISSR ¢
modifiestne region2 ¥ G KS 2LISNI §2NJ GRNAGS¢d Ly OFasS 27
GSNE ¢ thedgibrbfithe A LIS NI { 2thal, id @ kuén (imodifies theegion of the

2 LISNI G2 NgdBRNA 3S¢ 0
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walk walkFast walkVeryFast
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Fig.4-12. dwWalke -> cwalk fasg -> cwalk very fast

We will callsuch composite@perators resulting from interacton of twoor several modifying

operatorsblockoperators.

4.3.2 Partsof speech

Theproblemofd St SOGAY3 &adaA Gl 6tS yYyR dzyAGSNRAIFf @0 dzAf
kinds of meanings is extremely complex. Though, every natural language is one stbution

this problem.[ S @&éddsiderhow some ofthed 0 dzA f RAy 3 o0f 201 4d¢ cdmd SR A Y

be modeled.

Qualitative adjectivega f I NGHIS éf>f ¢ 32 Qpératoy, tdfrr&ponding to a qualitative
adjective, may be modeled as a projection operatoor® concretely,O® & 0 & , where
00 is identity operator) & is projection operator, andb & and® & are the membership
functions in corresponding region subspac@sc substitutes & @ for some particular
membership®  8If the context has @ axis directly corresponding to the adjective, then
dimensionality ofy will be one, otherwis& more than oneHereit is assumedhat the source
region is giverasa set of independent regions with membersHipnctions & and ¢ (instead
of one multidimensional regio?), and this is how the contexts are implemented within this

master project.

1 This topic is discussed in more detailsliri§-16].
2To some extent, this can also be applied to some adverbs.

3 These representations are to some extarterchangeablegome more details on this are provided h15].
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Some examples of modeling qualitative adjectives as operatge given in sectiod.2.1 In
particular,the imagedor operatorsa F | a (1 €  I{tye Regidrsthiat2hé @djective operats

project), are shown onFig.4-2.

Conceptuallynounscan be modeledis objects that have a set of qualities. If the object did
not exist from before, thenhe axesspecific fort would beadded tothe context,immediately
AYAGAL £ AT SR farihis KondepnSmideRISpFunatiingas ifa set of qualitative

adjectiveshas beerappliedto the contex).

This project models nouns in a simplified way2 NJ SEI YLIX ST y2dzyad aONR&:
G RS R!a® yhbdéled using just one axis denoting the numberaafdsleadingfrom a
specificlocationonamapd 4 KA & LINE WSiNGodgle Stieet &/ievdZBtatiis usedin

the software prototype).

Verbscan be modeled as words that wowkith time axis,often with its small partand also

create a special action context.

This project models verbs in a simplified wihyey are seeras a collection of axes thaeyork

with. For exampl& & ¢i$ deflnédas a verbworkingwith | ES& aljdza Ol yS&aaé o
& R A NB. Ohe &x&of Wwathe verbis affecting these axes depends on the advéibis used

GAUK o0dagl ] YdzOK &fexcgSNEIZ ol f1 az2dziKSIaié

AdverbsGeneral discussion on modeling adverbsus of scope of this projectThis project
Y2RSfa | ROSNba d¢af266NES OFVaGBMOIA | ¢ RAzZMIRKIS!
NAIKGE AY |FtheyANBI AFSPBRIFFIBYO2YOAYIl GA2Y 2F 2L
I R2SOGABSe s dukéntyIimpléememedike a siingle shift of the membership

function along thex-axis Fig.4-13andFig.4-14).

! These nouns are not implemented in the software yet, though, the axis reflecting the number of possible
directions is updated according to the location on the map.

2 Current implementation only supports combining verbs with adverbs

3 There is one more siplificationto the aurrent version of the software: to work with directions, another verb

is currently used instead @fvalko (this avoids a subtle problem with unwanted axis overwriting that is not yet
fixed).
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Membership, m

Membership, m

FLILIX AOIF GAZ2Yy 2F

0,999

AaFF &0 8N

[ \ Walk
0,8
0,6 /
0,4 / \
0,2 / \
0,199 0,399 0,599 0,799
Quickness, q
Fig4-13.2 I £ 1 00ST2NB
1
W7 k fa%ter
0,8
0,6 / \
0,4 / \
0,2
i / \
0,199 0,399 0,599 0,799
Quickness, q

Fig.4-14. Walk faster

0,999

Function wordsGeneral discussion on modeling function worsisut of scope of this project.

Modeling conjunctions is discussed in more detail§lii5]. W2 NR

earlier in this section,an®2 y OS LJG & &y 2 (i discusgedn sécEbSAE @Fig. 46 NB

andFig.4-9).
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4.4 Interp reting phrases
4.4.1 Overall process

This section briefly discusses the overall protegphrase interpretation. Please consider the
schematics(Fig.4-15). This is the same drawing B&.4-1, providedherel 3 Ay T2 NJ NB I |

convenience.

Input phrase words

Resolving
ambiguities of
the structure

Grammatical — Phrase syntactic mmm | Operator application describing
forms structure — order unclear parts
Operator, Application of l
Blockoperators meaning modifier words
analysis word context
I Sequence of word
operators
Operator meaning
analysis
Phrase operatar Interpretation Target region Phrase compre_hen5|b|hty
phrase context current context analysis
Done next
Source region phrase

current context

Fig.4-15. Smplified schematics of phrase interpretation.

First, when a new phrase comes ihe syntactic structure of the phrasshould beobtained
from the grammatical forms of wordas much as it is possiblen other words this means
determining theorder ofapplicationof operators and blocloperatorsto one anotherln case

whenthe syntacticstructure is ambiguoughe possille optionsneed to berememberedso

! Please note: Only some parts of the progdescribed here are implemented in this master project. The details

are described in sectioh.4.3
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that the corresponding operators carater be compared based on theirclarity

(comprehensibility score Determiningphrase comprehensibility is discussedéttion4.4.2

After, the sequental application of operators to one anothé done More precisely, the
operators that modify the internal context of another operator, do that (yielding block
operators), while the operatorsvorkingwith the externalcontext of the narrative, form a line
in the order of applicationResult is the phrase operator: composition of sevenaird and

block operatorsQonstruction of the phrase operatancludes its analysis for meaningfulness.

After that, the phraseoperator is applied to thesource region irthe current context(by
sequential application afvord andblock operators from the line)-he result of this application
is the resulting region. Given both source andresulting regions, overall phrase
comprehensibilityis assessed (sectiagh4.?). If there are several possible interpretations of
the phrase (severalphrase operators), the best optionis chosenaccording to the
comprehensibilityscore. If noe of the interpretations reaclhe threshold, he phrasemay

be consideed unclear Other options of handling this are discussed1:16-17].

The ability to analyze different interpretations from comprehensibility point of videns to
deal with situatiors when syntactic structure of the sentea cannot be completely restored
from word order and grammatical form@ike when using a voice interfaggnd whenfor

restoringit peoplewould alsoneed to resort tosemantics.

4.4.2 Assessing comprehensibility

This section describes some techniques andisdéhat are used to determine whether a
statement or a phrase makes sense, and that can be used to decide which of the possible

interpretations is the right one

The most basic type of sensibility assessmeam be checkingvhether the words used to
assenble a phrase operator are actually compatiple particular, in terms of their axe&or
S E I Y UastSehicléimakessense, because 2 1 K | R2SOGAGS a¥Fladé | yR
Ay Ot dzRS daljdza Ol ySaaé | EAslong abbth dddicep® Ravait&kddA NJ RS
GAOUK (GKAA LINRLISNI&d hy GKS 20KSNJ KFIyRX aFl al

! Choosing between several interpretations is not implemented in the current version of the software.
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y2dzy aoflylSité KFa NBIffe y20KAy3a (G2 R2 gA0K

axis, something that can easily be detected by tofvgare.
[ S iakeZ look atetectng other types of incomprehension and meaningless phrases

A region that has no points with high enough degree of membership (say, 0.95) can
correspond to acontradiction Indeed, this situation would mean that there no property
combination in the context that definitely corresponds to our concept. For example, if we
consider hypothetical concepnd(slow, fastywithandRSFA Y SR &A YA T I NJ G2 %I
[42:11], a typical contradictin can be seenHg.4-16).

and (slow,fast) = slow * fast

membership, m
= = T =T = R — = T =
(5] Ll =Y o [=3] = oo w
T T T T T T T T

=
=y
T

1] 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 09 1
quickness, q

o

Fig.4-16. Contradiction
On the other hand, if almost all the points of the context belong to a region, this usually does
not make much sense either, dgprovides no informatiod a A & Ol y .FdB exhmpke,i KA y 3 ¢
if we considera hypothetical conceptor(slow, fast) with or defined asé i ph ¢

EE€DHDEAC 2E € aq |, thisis the situationKig.4-17).
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or (slow, fast) = 1 - (1-slow) * {1-fast)

1 T T

membership, m
o o o o o
P (%] £ o [=3]
T T T T T
1 [l 1 [l 1

=
-
T
i

01 02 0.3 04 0.5 0.6 0.7 08 09 1
quickness, q

=]
o

Fig.4-17. Lack of information

Another potentially useful heuristics has to do with the fact that normally new phrases provide

YS6 AYF2NXNIGA2YSY Ay 20KSNJ g2NRaxz OKIy3aS &2

projectionsof verbf A 1 S O2y OSLJia aolf1¢ YR aaidlyR a
aRA & GFiguage 6

walk stand still
1 T T T
0.8 0.8
@ 0. @ 0.6}
3 %
= =
8o, H 04t
= =
0.2 027
0
1] 0z 0.4 06 08 1 0 02 04 0.6 08 1
time, t time, t

Fig418d a2 Ff1¢ FyR aaidlyR atGAaffé
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Fig419.62 14 b aFlFadSNE YR aaidlyR adAatfté b
LT 6S FLILX & 2LISNI 02N aFlFadSNx (2 G4KSasS 02yO0S
gKAE S aaidlyR &aidAtt Tl adofpidssion A 2 DS AT ielor8K SEA B Y
08 2LISNI G2NJ a¥Fl aiBgNEL). S, affer coripadiyy the BegidisieFc8rO G 0
O2y Of dzRS (KI G LIKNIasS aadlyR adAatt FlLaadSNE Yl

In many cases, new information not only changes our knovdethgt often is expected to
precisiate it rather than making it more vague. This is especially the case when a system is

receiving some instructions.

For example, if we are trying to direct a robot, and the region describing it is transformed from
G{2YSHER b9¢ (2 d&!yesKSNB SEOSLII {2 &igsa2mi VYI &
ly SEOSLIiAzYy (2 GKA& O2dAZ R 0SS | aLSOALE LIKNI

YIn the current versiorof the software this comparison of membership functions is implemented over one

dimensional axeproperties(like fiquickness).
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