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1 Introduction 

ά¢ƘŜ ƳŜŀƴƛƴƎ ƻŦ ƳŜŀƴƛƴƎ ŀƴŘ Ƙƻǿ ǘƻ ŘŜŀƭ ǿƛǘƘ ƳŜŀƴƛƴƎ ƛƴ ŦƻǊƳŀƭ ŀƴŘ ƴŀǘǳǊŀƭ ǎȅǎǘŜƳǎ Ƙŀǎ 

been one of the great mysteries of intelligence - artificial or otherwise. It has been an issue 

from the earliest days of philosophy and logic, and it has become an engineering issue with the 

advent of computerized question answering systems, information retrieval systems, machine 

translation, speech understanding, intelligent agents, and other applications of natural 

ƭŀƴƎǳŀƎŜ ǇǊƻŎŜǎǎƛƴƎΣ ƪƴƻǿƭŜŘƎŜ ǊŜǇǊŜǎŜƴǘŀǘƛƻƴΣ ŀƴŘ ŀǊǘƛŦƛŎƛŀƭ ƛƴǘŜƭƭƛƎŜƴŎŜ ƛƴ ƎŜƴŜǊŀƭέ. 

(W. Woods [2:75]). 

There are many different approaches to processing natural language. Many of them are 

statistical, based on the analysis of word combination frequencies in the texts. Some 

approaches are grammar- and syntax-aware. Though, virtually no approaches have substantial 

focus on the actual meaning of the text. This is unfortunate, because without focus on 

meaning there is little understanding, and good understanding of a request, question, or a 

problem is extremely helpful when it comes to finding the answer or a solution.  

Natural language understanding (NLU) is a relatively small subtopic of natural language 

processing, dealing with machine reading comprehension [3]. Even though NLU technologies 

often work with concepts (rather than just words), most of the traditional ways of representing 

knowledge do not contain any information on the άinternal structureέ1 of the concepts. For 

example, a traditional semantic network can tell whether two concepts are in a specific 

relation, but there is no (quantitative) information on the concept and relation definitions, or 

even information on to which degree these concepts are in the relation. This makes it nearly 

impossible to work on the level of the concept meanings, because computers need numbers, 

and if they are to work with the meaning, it must be represented quantitatively. 

But is it really important to work on the concept meaning level? Here it may be appropriate 

to cite the words of T. Winograd [4:1]: ά²Ŝ ŀǎǎǳƳŜ ǘƘŀǘ ŀ ŎƻƳǇǳǘŜǊ Ŏŀƴƴƻǘ ŘŜŀƭ ǊŜŀǎƻƴŀōƭȅ 

                                                   

1 By internal structure here is meant something defining the essence of a concept or a relation, defining how it 

is different (or similar) to the other concepts and relations. 

http://en.wikipedia.org/wiki/Reading_comprehension
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ǿƛǘƘ ƭŀƴƎǳŀƎŜ ǳƴƭŜǎǎ ƛǘ Ŏŀƴ ǳƴŘŜǊǎǘŀƴŘ ǘƘŜ ǎǳōƧŜŎǘ ƛǘ ƛǎ ŘƛǎŎǳǎǎƛƴƎέ. Of course, one needs to 

be more realistic than AI researchers were in the early seventies, but some steps in the 

direction of modeling of the meaning were taken, e.g. starting from L. Zadeh [5].  

²Ƙƻ ƘŀǎƴΩǘ ŜȄǇŜǊƛŜƴŎŜŘ ŀ ǾƻƛŎŜ ƛƴǘŜǊŦŀŎŜ ƎŜǘǘƛƴƎ ƻƴŜ ƻŦ ǘƘŜ ǿƻǊŘǎ ǘƻǘŀƭƭȅ ǿǊƻƴƎΣ ǎƻ ǘƘŀǘ ǘƘŜ 

ǎŜƴǘŜƴŎŜ ŘƻŜǎƴΩǘ ƳŀƪŜ ŀƴȅ ǎŜƴǎŜΚ LŦ ǘƘŜ ǎƻŦtware knew that some of the words were 

άŎƻƳǇƭŜǘŜƭȅ ƛƴŎƻƳǇŀǘƛōƭŜέ, it could have tried some other candidate words, hopefully with a 

better result. 

It seems obvious that every achievement in the field of computer understanding of the 

meanings of the words and phrases can yield benefits when it comes to the possibilities of the 

software. It is likely to be true eǾŜƴ ƛŦ ǘƘŜ άƳŜŀƴƛƴƎέ ƻŦ ǘƘŜ ǿƻǊŘǎ ǘƻ ǘƘŜ ŎƻƳǇǳǘŜǊ would only 

be a fraction, a tiny projection of what the words actually mean to us humans. 

This project does not attempt to solve the great mystery of meaning. Instead, it focuses on a 

tiny subset: modeling meaning of simple spatial directions expressed in natural language, 

and analyzing their comprehensibility computationally. 
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2 Research problem 

2.1 Problem statement 

The problem statement for this project could be formulated approximately like the following. 

There is a need for a model allowing to quantitatively work with meaning (or its 

approximation) of simple words from spatial domain, and computationally interpret and 

analyze comprehensibility of short phrases made of these words. The model should be able 

to support development of a research prototype of an intelligent navigation assistant. 

2.2 Use case: intelligent navigation assistant 

[ŜǘΩǎ ǎǘŀǊǘ ōȅ ŘŜǎŎǊƛōƛng a use case for computational understanding of spatial directions 

expressed in natural language: an intelligent navigation assistant.  

Within this project, intelligent navigation assistant is seen as software integrated into a car 

GPS or a mobile phone that communicates with the user using natural language interface and 

assists her with navigation-related tasks. 

[ŜǘΩǎ ƛƳŀƎƛƴŜ ŀ ǎƛǘǳŀǘƛƻƴ: one is driving a car in the middle of a town, and her hands are tied.  

Driver: ñStreet to the left, can I go there?ò GPS understands that you mean 

second to the left, because the first left will only get you into the water.  

Navigator/GPS: ñNo, thatôs one-wayò. GPS highlights the street with red so 

you make sure youôre talking about the same street. 

Driver: ñOkay, Iôd like to check that cafe on the other side of the river, 

can we then get back?ò 

Navigator/GPS: ñNo, weôll need to drive around the whole townò. 

Driver: ñOkay, letôs park then, I thought there was a garage here somewhere 

on the rightò. 

Navigator/GPS: Highlights the garage and marks the directions.  

Driver: Only this expensive one?  

Navigator/GPS: Highlights a cheaper garage, but that is quite far away.  

Driver: ñCan I maybe park somewhere on this hill?ò 
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Navigator/GPS: ñFirst street to the right, itôs free until 9 tomorrow 

morningò. The route and a free parking spot are displayed. 

Even in 2015, when self-driving cars have been around some towns for a while, this dialog 

reads as science fiction. Obviously, this science fiction would be very useful in reality, because 

in this example the navigator software seems to understand the driver. Indeed, we can see 

that ƴŀǾƛƎŀǘƻǊΩǎ ǉǳŜǎǘƛƻƴǎ ŀƴŘ ŀƴǎǿŜǊǎ ŀǊŜ ǎƘŀǊǇƭȅ ŦƻŎǳǎŜŘ ƻƴ ǘƘŜ ǊŜŀƭ goals of the driver and 

the meaning of her questions and requests (rather than on matching words spoken by the 

user to a standard list of predefined commands). It is fairly easy to see that the system having 

similar capabilities would be of much higher value to the user, compared to the systems 

available today (like navigation software for cars and mobile phones). This is because the 

software would be able to answer her questions and help solve her problems with 

incomparably higher accuracy. It is obvious that understanding the questions greatly increases 

quality of the answers, and understanding the problems highly improves the ability to finding 

correct solutions.    

Below is a very approximate list of research fields relevant for developing a system like this. 

Table 2-1. Relevant research fields for the άƛƴǘŜƭƭƛƎŜƴǘ ƴŀǾƛƎŀǘƛƻƴ ŀǎǎƛǎǘŀƴǘέ ǳǎŜ ŎŀǎŜΦ 

Functionality Research areas 

Communication with natural language Natural language understanding (NLU), 

natural language processing (NLP), voice 

recognition, speech synthesis 

Reasoning abilities for solving problems and 

answering questions 

Automated reasoning, commonsense 

reasoning 

Navigation skills GPS, navigation, spatial reasoning 

Learning and acquiring new concepts Semantic technologies,  machine learning  

2.3 Project goals 

This project focuses on a tiny subset of the mentioned research fields, namely attempting to 

model the meaning of phrases and individual words from the spatial domain, and interpreting 

and understanding phrases computationally. It is somewhat difficult to place this focus area 
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within one research field. It would be more or less correct to say that it mostly lies within 

natural language understanding, and touches up on commonsense reasoning and spatial 

reasoning. 

The goals for the project are:  

-  Perform analysis of related work, with focus on different knowledge representations, 

and analyze their strengths and weaknesses when it comes to working with concepts 

on the level of their meanings. 

-  Design and develop natural language understanding framework, capable of 

interpreting and computationally analyzing the meaning of spatial directions 

expressed in natural language. 

-  Implement a research prototype of an intelligent navigation assistant with some 

functionality like in the one described above (2.2), illustrating capabilities of the 

framework. 
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3 Analysis of related work 

When one speaks of understanding natural language, commonsense reasoning, and working 

on the level of concept meanings, one of the questions that arises immediately is the question 

of knowledge representation.  

This chapter is a review of significant works in the fields of natural language understanding 

and commonsense reasoning with knowledge representation in focus. 

3.1 Dawn of NLU and micro-worlds 

One of the first natural language understanding programs, WŜƛȊŜƴōŀǳƳΩǎ ά9ƭƛȊŀέ [6], was a 

relatively simple program configured by scripts of which the most famous ǿŀǎ άŘƻŎǘƻǊέ 

simulating a Rogerian psychotherapist. άDoctorέ was sometimes able to provide startlingly 

human-like interactions, even if the question was outside of the small knowledge base: 

-  My head hearts  

-  Why do you say your head hearts?  

-  My mother hates me  

-  Who else in your family hates you?  

The program was implemented using relatively simple pattern matching techniques against 

keywords. 

D. .ƻōǊƻǿΩǎ άSTUDENTέ [7] is another early NLU program that could solve word problems 

found in high school algebra books. 

ñIf the number of customers Tom gets is twice the square of 20% of the number 

of advertisemen ts he runs, and the number of advertisements is 45, then what 

is the number of customers Tom gets?ò     

D. Bobrow comments ǘƘŀǘ ά{¢¦59b¢έ ŎƻƴǎƛŘŜǊǎ ǿƻǊŘǎ ŀǎ ǎȅƳōƻƭǎΣ ŀƴŘ άmakes do with as 

little knowledge about the meaning of the words as is compatible with the goal of finding the 

solutionέ. IŜ ŜȄǇƭŀƛƴǎ ǘƘŀǘ ǘƘŜ ǎŜƳŀƴǘƛŎ ƳƻŘŜƭ ƛƴ ά{¢¦59b¢έ ƛǎ ōŀǎŜŘ ƻƴ Ŝǉǳŀƭƛǘy and five 

arithmetic functions [7:155]. 
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T. WinogradΩǎ {Iw5[¦ [4] is a system for understanding English, ŀƛƳƛƴƎ ŦŀǊǘƘŜǊ ǘƘŀƴ ά9ƭƛȊŀέ 

ŀƴŘ άSTUDENTέ. T. Winograd writes [4:1]: ά²Ŝ ŀǎǎǳƳŜ ǘƘŀǘ ŀ ŎƻƳǇǳǘŜǊ Ŏŀƴƴƻǘ ŘŜŀƭ 

ǊŜŀǎƻƴŀōƭȅ ǿƛǘƘ ƭŀƴƎǳŀƎŜ ǳƴƭŜǎǎ ƛǘ Ŏŀƴ ǳƴŘŜǊǎǘŀƴŘ ǘƘŜ ǎǳōƧŜŎǘ ƛǘ ƛǎ ŘƛǎŎǳǎǎƛƴƎέ. 

T. Winograd argues ǘƘŀǘ ά9ƭƛȊŀέ ŀƴŘ ά{ǘǳŘŜƴǘέ ƎƛǾŜ ƛƳǇǊŜǎǎƛǾŜ ǇŜǊŦƻǊƳŀƴŎŜǎΣ ōŜŎŀǳǎŜ ǘƘŜȅ 

carefully and severely limit the type of understanding they are trying to achieve. He means 

that the solutions they provide are too special-purpose [8:167]. 

SHRDLU has a reasoning engine allowing ƛǘ ǘƻ ǊŜƳŜƳōŜǊ ǘƘŜ ƎƻŀƭǎΣ ŘƛǎŎǳǎǎ ŀƴŘ άŎŀǊǊȅ ƻǳǘέ ƛǘǎ 

actions and plans. It can reply in English sentences, and ask for clarifications, when it cannot 

interpret the sentence with the knowledge already available. 

-  pick up a bi g red block.  

-  OK. 

-  grasp the pyramid.  

-  I DONôT UNDERSTAND WHICH PYRAMID YOU MEAN. 

-  the blue pyramid is mine.  

-  I UNDERSTAND. 

-  does a steeple  

-  SORRY, I DONôT KNOW THE WORD ñSTEEPLEò. 

-  a ñsteepleò is a stack which contains two green cubes and a pyramid. 

-  I UNDERSTAND. 

-  are there any steeples now?  

-  NO. 

-  why did you do that?  

-  BECAUSE YOU ASKED ME TO. 

The demonstration of SHRDLU at the time was very successful and led to a lot of subsequent 

AI research.  

However, the research optimism was soon lost, and SHRDLU seems to never have made it out 

of its άmicro-worldέ. H. Dreyfus mentions in [9:12] that, for example, {Iw5[¦Ωǎ ŎƻƴŎŜǇǘ ƻŦ 

owning cannot be easily expanded beyond SHRDLU because ƛǘ ŘƻŜǎƴΩǘ ǳƴŘŜǊǎǘŀƴŘ ƻǿƴƛƴƎ ŀƴŘ 

cannot deal with meanings. 
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H. Simon argues that SHRDLU was ƴƻǘ ǊŜŀƭƭȅ ƳŜŀƴǘ ǘƻ ōŜ ŜȄǇŀƴŘŜŘ ōŜȅƻƴŘ ƛǘǎ άōƭƻŎƪ ǿƻǊƭŘέ 

ōŜŎŀǳǎŜ ƻŦ ŀ άŦƛȄŜŘ ǊŜǇǊŜǎŜƴǘŀǘƛƻƴέΦ IŜ ƳŜŀƴǎ ǘƘŀǘ ǘƘŜ ǎȅǎǘŜƳ ǎƻƭǾŜd άǇƛŎƪ ǳǇ ŀ ōƛƎ ǊŜŘ ōƭƻŎƪέ 

ǎƛƳǇƭȅ ōȅ ŦƛƴŘƛƴƎ ǘƘŜ ǇǊƻŎŜŘǳǊŜ άǇƛŎƪ ǳǇέ ŀƴŘ ƛƴǾƻƪƛƴƎ ƛǘ ǿƛǘƘ ǘƘŜ ǇŀǊŀƳŜǘŜǊ, corresponding 

ǘƻ άōƛƎ ǊŜŘ ōƭƻŎƪέ [10:1062]. 

Indeed, the procedural knowledge is not easily expandable, partly because the procedures 

have to be written by humans. T. Winograd mentions himself in one of his later emails [11]: 

ά¢ƘŜǊŜ ŀǊŜ ŦǳƴŘŀƳŜƴǘŀƭ ƎǳƭŦǎ ōŜǘǿŜŜƴ ǘƘŜ ǿŀȅ ǘƘŀǘ {Iw5[¦ ŀƴŘ ƛǘǎ ƪƛƴ ƻǇŜǊŀǘŜΣ ŀƴŘ ǿƘŀǘŜǾŜǊ 

it is that goes on in our brains. I don't think that current research has made much progress in 

crossing that gulf, and the relevant science may take decades or more to get to the point where 

the initial ambitions become realisticέ. 

T. Winograd continues to work on knowledge representation in the later years. He departs 

ŦǊƻƳ άtǊƻŎŜŘǳǊŜǎ ŀǎ ǊŜǇǊŜǎŜƴǘŀǘƛƻƴ ŦƻǊ Řŀǘŀέ [12], and together with D. Bobrow they design 

frame-ƛƴǎǇƛǊŜŘ Yw[Σ ŀ άYƴƻǿƭŜŘƎŜ wŜǇǊŜǎŜƴǘŀǘƛƻƴ [ŀƴƎǳŀƎŜέ [13] aiming to άƛƴǘŜƎǊŀǘŜ 

ǇǊƻŎŜŘǳǊŀƭ ƪƴƻǿƭŜŘƎŜ ǿƛǘƘ ŀ ōǊƻŀŘ ōŀǎŜ ƻŦ ŘŜŎƭŀǊŀǘƛǾŜ ŦƻǊƳǎέ.  Much later, in an interview 

with A. Norberg [14], T. Winograd mentions that KRL was an overcomplicated attempt to 

come up with a universal language easy for reading and writing programs, with rich semantics 

of logic languages, and that could be άprocessed like human memory, so you could have 

realistic AI programsέ. KRL itself ŘƛŘƴΩǘ have much future. 

In any case, SHRDLU was a major achievement at the time. This project considers SHRDLU as 

an inspiration and aims to implement a sort of computational understanding in the micro-

world of spatial directions. Unlike SHRDLU, though, this project aims to use knowledge 

representation allowing to easily extend beyond this domain. 

3.2 Commonsense knowledge and taxonomies 

The language subset worked on in this project includes both general purpose words and 

simple spatial concepts describing directions, movements, and general purpose words. These 

naturally fall in the category of commonsense knowledge: άcollection of facts and information 

that an ordinary person is expected to knowέ [15].  
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A wide group of approaches to describing commonsense knowledge in particular (and 

categorize semantic information in general) are based on some sort of taxonomical 

representations, like semantic networks, frames, and description logics.  

 ConceptNet and semantic networks 

ά¢ƘŜ ƎǊŜŜƪ ǇƘƛƭƻǎƻǇƘŜǊ tƻǊǇƘȅǊȅ όŎΦ ноп-305 !Φ5ΦύΣ ŎƻƳƳŜƴǘƛƴƎ ƻƴ !ǊƛǎǘƻǘƭŜΩǎ /ŀǘŜƎƻǊƛŜǎΣ 

drew what might qualify as the first semantic networkέ [16:471]. According to [17], modern 

semantic networks were developed by R. Simmons and R. Quillian in the early sixties.  

[ŜǘΩǎ ǘǳǊƴ ƻǳǊ ŀǘǘŜƴǘƛƻƴ ǘƻ /ƻƴŎŜǇtNet, a semantic network, άŎƻƴǘŀƛƴƛƴƎ ƭƻǘǎ ƻŦ ǘƘƛƴƎǎ 

computers should know about the world, especially when understanding text written by 

ǇŜƻǇƭŜέ [18]. 

 

Fig. 3-1. An illustration of a small section of ConceptNet. R. Speer et al [21]. 
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Fig. 3-2. Excerpt from ConceptNet. H. Liu and P. Singh [19] 

H. Liu and P. Singh [20:10-12] discuss various graph reasoning methods that can be performed 

over ConceptNet data: 

-  Computing conceptual similarity: 

ñappleò ~ ñred appleò (76%) 

ñbuy foodò ~ ñpurchase groceriesò (69%) 

ñbig dogò ~ ñanimalò (53%) 

-  Context finding: 

ñgo to bedò yields ñtake off clothes,ò ñgo to sleep,ò ñsleep,ò ñlie down,ò 

ñlay down,ò ñclose eye,ò ñturn off light,ò ñdream,ò ñbrush tooth,ò and 

ñsnore.ò 

-  Inference chaining: 

ñbuy foodò -> ñhave foodò - > ñeat foodò - > ñfeel fullò - > ñfeel sleepyò - > 

ñfall asleep.ò 

-  Conceptual analogy (structural): 

ñcouchò - > ñsofa,ò ñchair,ò ñbed,ò ñseatò 

There are other projects implementing reasoning engines on top of ConceptNet. 

R. Speer et al. [21] describe AnalogySpace. Pursuing the goal of drawing conclusions from 
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analogies, it utilizes singular value decomposition technique to reduce the dimensionality of 

knowledge in ConceptNet. According to the authors, AnalogySpace allows to generalize 

ConceptNet knowledge and make it more available to applications, particularly in the area of 

natural language. 

 

Fig. 3-3. AnalogySpace projected onto its first two components, with some concepts and features labeled. 
Robert Speer et al [21]. 

 Some challenging and meaning-related problems 

[ŜǘΩǎ ǘŀƪŜ ŀ ƭƻƻƪ ŀǘ ǎƻƳŜ of the challenges with the traditional semantic network 

representation when it comes to working with meaning and reasoning with natural language 

concepts. Fig. 3-1 and Fig. 3-2 are used as illustrations: 

1. Issues with predicate quantifiers. Are all cakes sweet? Or only some cakes?  

2. 9ǉǳƛǾŀƭŜƴŎŜ ƻŦ ǘƘŜ ƳŜŀƴƛƴƎǎ ƛƴ ŀ ƎƛǾŜƴ ŎƻƴǘŜȄǘΦ 5ƻŜǎ άǎŀǘƛǎŦȅ ƘǳƴƎŜǊέ ƳŜŀƴ ǘƘŜ ǎŀƳŜ 

ŀǎ άŜŀǘέ in a given context? 

3. Fuzziness degrees. To what extent are cakes sweet? Is ƻƴŜΩǎ stomach going to be 

equally full after άŜŀǘ ōǊŜŀƪŦŀǎǘέ ŀƴŘ άŜŀǘ ŘƛƴƴŜǊέΚ 
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4. Uncertainty handling. ²ƘŀǘΩǎ ǘƘŜ Ǉƻǎǎƛōƛƭƛǘȅ ǘƘŀǘ one would yawn after waking up in 

the morning? 

5. wŜƭŀǘƛƻƴ ōŜǘǿŜŜƴ ōŀǎƛŎ ŀƴŘ ŎƻƳǇƻǎŜŘ ŎƻƴŎŜǇǘǎΦ Iƻǿ ŘƻŜǎ ŎƻƴŎŜǇǘ άŜŀǊƭȅέ ǊŜƭŀǘŜ ǘƻ 

ŎƻƴŎŜǇǘ άƎŜǘ ǘƻ ōŜŘ ŜŀǊƭȅέΚ 

6. /ƻƳǇƻǎƛǘƛƻƴ ƻŦ ŎƻƴŎŜǇǘǎ ƛƴǘƻ ǇƘǊŀǎŜǎΦ 5ƻŜǎ άǎǿŜŜǘ ǇŜǊǎƻƴέ ƳŀƪŜ ǎŜƴǎŜ ƛƴ ŀ ƎƛǾŜƴ 

context, or not? Can an άƻǾŜƴέ άfollow a recipeέ to άbakeέ something or not? 

7. Concept definitions. How is άŜŀǊƭȅέ ŘŜŦƛƴŜŘΚ Iƻǿ ƛǎ άƳƻǊƴƛƴƎέ ŘŜŦƛƴŜŘΚ Can a 

compuǘŜǊ Ŝŀǎƛƭȅ ŘŜŎƛŘŜ ǿƘŜǘƘŜǊ ƛǘ ƛǎ άŜŀǊƭȅέ ƻǊ άƳƻǊƴƛƴƎέ ŀǘ ŀ ƎƛǾŜƴ ǘƛƳŜΚ 

8. Exact interpretation of the relations. Many of the relations in semantic networks 

computers cannot really handle. People often go to bed early so they easier wake up 

in the morning (relaǘƛƻƴ άaƻǘƛǾŀǘƛƻƴhŦέύΦ .ǳǘ ǿƘŀǘ Ŏŀƴ ŀ ŎƻƳǇǳǘŜǊ ƛƴŦŜǊ ŦǊƻƳ ǘƘƛǎΚ 

DƛǾŜƴ ƻƴŜ ƎƻŜǎ ǘƻ ōŜŘ ƭŀǘŜΣ ŘƻŜǎ ƛǘ ƳŜŀƴ ǘƘŀǘ ƻƴŜ ŘƻŜǎƴΩǘ ǿŀƴǘ όƴŜŜŘύ ǘƻ ǿŀƪŜ ǳǇ ƛƴ 

ǘƘŜ ƳƻǊƴƛƴƎΚ ¢Ƙŀǘ ƻƴŜ ǿƻƴΩǘ ǿŀƪŜ ǳǇ ƛƴ ǘƘŜ ƳƻǊƴƛƴƎΚ ¢Ƙŀǘ ƻƴŜ ǿƻƴΩǘ Ŝŀǘ ōǊŜŀƪŦŀǎǘΚ 

It is quite difficult to answer questions like this based on the information available in the 

network. Many things are too vague or ambiguous for a computer, many are lacking in this 

representation, especially from a quantitative standpoint.  

 From semantic networks to description logics 

Some of these challenges have been researched for a long time. As long as 40 years ago, 

W. Woods writes about some of the issues with semantic network representation in his 

ŦŀƳƻǳǎ ǇŀǇŜǊ ά²ƘŀǘΩǎ ƛƴ ŀ [ƛƴƪέ [22]. In particular, he discusses issues with link interpretation, 

issues with predicate quantifiers, and mentions problems with handling probabilistic 

information and uncertainty degrees. He is challenging the basic of semantic network 

methodology for attempting to represent in a single mechanism both the ability to model the 

associative connections, and the ability to store factual knowledge (by assemblies of pointers 

to other facts). He writes [22:15]: άhƴŜ ǎƘƻǳƭŘ ƪŜŜǇ ƛƴ ƳƛƴŘ ǘƘŀǘ ǘƘŜ ŀǎǎǳƳǇtion that such a 

representation is possible is merely an item of faith, an unproven hypothesis used as the basis 

of the methodology. It is entirely conceivable that no such single representation is possibleέ.  

Lƴ Ƙƛǎ άaŜŀƴƛƴƎ ŀƴŘ [ƛƴƪǎέ [2] W. Woods explains: In fact, there was generally nothing really 

ǎŜƳŀƴǘƛŎ ƛƴ άǎŜƳŀƴǘƛŎ ƴŜǘǿƻǊƪǎέΣ ŀƴŘ L ŦŜƭǘ ǘƘŜ ǘŜǊƳ ƛǘǎŜƭŦ ǿŀǎ ŀ ƳƛǎƴƻƳŜǊΦ Lǘ ǿŀǎ ƛƴ ǊŜǎǇƻƴǎŜ 

ǘƻ ǘƘŜǎŜ ƻōǎŜǊǾŀǘƛƻƴǎ ǘƘŀǘ L ǿǊƻǘŜ ǘƘŜ ǇŀǇŜǊ ά²ƘŀǘΩǎ ƛƴ ŀ [ƛƴƪΦέ He discusses, in particular, 
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semantic tags and link tags, extensions that could help to solve some of the issues raised in 

ά²ƘŀǘΩǎ ƛƴ ŀ [ƛƴƪέ. 

In the late seventies - early eighties the issues raised on imprecisions and ambiguities in 

semantic networks trigger a lot of research around knowledge representation frameworks. 

KRL [13] was mentioned earlier. R. Brachman analyzes taxonomic links in his paper ά²Ƙŀǘ 

IS-A is and IǎƴΩǘέ [23], and argues that άthere are almost as many meanings for the IS-A link as 

there are knowledge-representation systemsέ. He works on KL-ONE framework [24], 

άdesigned to overcome semantic indistinctness in semantic network representations and to 

explicitly represent conceptual information as a structured inheritance networkέ [25]. This 

ǊŜǎŜŀǊŎƘ ǘǊƛƎƎŜǊŜŘ ŀ ǿƘƻƭŜ ŦŀƳƛƭȅ ƻŦ ƴŜǿ ǎȅǎǘŜƳǎ ǘƘŀǘ ŎŀƳŜ ǘƻ ōŜ άY[-hb9 ŦŀƳƛƭȅέΣ ŀƴŘ 

eventually gave rise to a new field now referred to as description logics [2:82]. 

 Logic-based commonsense knowledge 

Description logics are a family of formal knowledge representation languages, designed to 

overcome lack of formal logic-based semantics of frames and semantic networks [26]. 

Description logics play an important role as a theoretical foundation for ontology languages 

and the Semantic Web. Various formal reasoners exist for different description logic 

languages [27]. 

Using logic-based representations for representing and reasoning with commonsense 

knowledge was first described in J. aŎ/ŀǊǘƘȅΩǎ ŎƭŀǎǎƛŎŀƭ ǇŀǇŜǊ άtǊƻƎǊŀƳǎ ǿƛǘƘ /ƻƳƳƻƴ 

{ŜƴǎŜέ [28]. But how well-suited are logic-based approaches for this? 

Cyc is a project assembling a comprehensive ontology and knowledge base of commonsense 

knowledge formulated in the language CycL, that is based on predicate calculusέ [29]. It 

contains definitions of 239,000 concepts and a whole 2,093,000 facts [30]. The project has 

been described as άƻƴŜ ƻf the most controversial endeavors of the artificial intelligence 

ƘƛǎǘƻǊȅέ [31:275]. 

H. Liu and P. Singh [20] argue for why representing commonsense knowledge using formal 

logic may be not such a good idea: 

-  Precise definition of terms and interrelationships require a lot of additional άƭƻƎƛŎŀƭ 

ǎŎŀŦŦƻƭŘƛƴƎέ, a task of άŘŀǳƴǘƛƴƎ ŎƻƳǇƭŜȄƛǘȅέ [20:5] 

http://en.wikipedia.org/wiki/CycL
http://en.wikipedia.org/wiki/Predicate_calculus
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-  /ƻƳƳƻƴǎŜƴǎŜ ƪƴƻǿƭŜŘƎŜ ƛǎ ŘŜŦŜŀǎƛōƭŜ ŀƴŘ ǾŜǊȅ ŎƻƴǘŜȄǘ ǎŜƴǎƛǘƛǾŜΦ άPeople have no 

ǇǊƻōƭŜƳ ōŜƭƛŜǾƛƴƎ ǘƘŀǘ άōƛǊŘǎ Ŏŀƴ ŦƭȅΣέ ŜǾŜƴ ǘƘƻǳƎƘ ǘƘŜȅ ƪƴƻǿ ǘƘŀǘ άǇŜƴƎǳƛƴǎ ŀǊŜ ōƛǊŘǎ 

ǿƘƻ Ŏŀƴƴƻǘ ŦƭȅέΣ ŀƴŘ ǘƘŀǘ άōƛǊŘǎ ǿƛǘƘ ōǊƻƪŜƴ ǿƛƴƎǎ Ŏŀƴƴƻǘ ŦƭȅΦέ [20:6] 

The way commonsense knowledge is categorized is largely defined by humans, and 

they categorize concepts in a very special ways, drawing fuzzy boundaries and using 

resemblance for grouping [20:6] 

-  While logical reasoning is deductive, commonsense (human-induced) reasoning is 

largely άƛƴŘǳŎǘƛǾŜΣ abductive, and empirical, where (over-)generalizations from known 

ŜȄǇŜǊƛŜƴŎŜǎ Ǉƭŀȅǎ ŀ ǇǊƻƳƛƴŜƴǘ ǊƻƭŜέ [20:6] 

-  Authoring knowledge for logic-based systems like Cyc is manual work that needs to be 

done by logicians. [20:7] 

The last argument by H. Liu and P. Singh is of ultimate importance, and can be expanded. If 

the system is to learn (acquire new knowledge) in any way, the formal logic-based 

representation seems problematic: how would the system itself generate strict logical rules, 

even theoretically? This problem is very similar to the problem with procedural knowledge 

representation used by SHRDLU: the system works well as long as it has the procedures 

written by humans, but how can we teach the system to write new procedures for itself? 

[ŜǘΩǎ ǊŜǾƛǎŜ the problems mentioned in 3.2.2 and see whether a description logic-based 

representation would help answering them. Well, it appears that we would have managed the 

ǉǳŜǎǘƛƻƴ м άAre all cakes sweet? Or only some cakes?έ 5ŜǎŎǊƛǇǘƛƻƴ ƭƻƎƛŎǎ ƘŀǾŜ ǇǊŜŘƛŎŀǘŜ 

quantifiers to deal with this. We could have also used circumscription to make the reasoner 

treat all cakes as sweet, unless specifically stated otherwise. When it comes to the rest of the 

questions, description logic representation would have probably not helped us a lot.  

 Other interesting studies 

WΦ tǳǎǘŜƧƻǾǎƪȅ ƛƴ Ƙƛǎ άDŜƴŜǊŀǘƛǾŜ ƭŜȄƛŎƻƴέ [32] challenges the standard approach to the lexical 

word meaning, where each lexeme is associated with a number of word senses.  He argues, 

ŦƻǊ ŜȄŀƳǇƭŜΣ ǘƘŀǘ ǘƘŜ ŎƻƴŎŜǇǘ άfast motorwayέ Ŏŀƴƴƻǘ ōŜ ŀŘŜǉǳŀǘŜƭȅ ŀŎŎƻǳƴǘŜŘ ƻƴ ǘƘŜ ōŀǎƛǎ 

ƻŦ ǘƘŜ о ƳŜŀƴƛƴƎǎ ǘƘŀǘ ŀǊŜ ƎƛǾŜƴ ǘǿƻ ŀ ǿƻǊŘ άfastέ ŀǎ ƛƴ άŦŀǎǘ ǘȅǇƛǎǘέΣ άŦŀǎǘ ŎŀǊέΣ ŀƴŘ άŦŀǎǘ 

ǿŀƭǘȊέΦ He introduces qualia structure of words including: 

-  The relation between an object and its constituent parts (Constitutive role) 
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-  That which distinguishes it within a larger domain (Formal role) 

-  Its purpose and function (Telic role) 

-  Factors involved in its origin or "bringing it about" (Agentive role). 

For example, Telic ǊƻƭŜ ƻŦ ǎŎƘƻƻƭ ǿƻǳƭŘ ōŜ άŜŘǳŎŀǘƛƻƴŀƭ ƛƴǎǘƛǘǳǘƛƻƴέΣ ǿƘƛƭŜ ƛǘǎ Formal role 

ǿƻǳƭŘ ōŜ άōǳƛƭŘƛƴƎέΦ Generative Lexicon is discussed in the light of issues like άIS-Aέ and 

concept inheritance in [33]. 

It should also be noted that there is a certain amount of study on adding capabilities like 

fuzziness and uncertainty handling to semantic network and description logic-based 

representations [34, 35, 36, 37, 38], can be mentioned here. However, each suggested 

extension attempts to solve one little incapability of the generally accepted representation, 

leaving out many other open questions.    

 Summary 

[ŜǘΩǎ ǘǳǊƴ ƻǳǊ ŀǘǘŜƴǘƛƻƴ ǘƻ the problems mentioned in 3.2.2. So far we have briefly touched 

upon problems 1-4. Not that there was a conventional solution to all of those, but some 

approaches were discussed. When it comes to problems 5-8, wŜ ƘŀǾŜƴΩǘ ŜǾŜƴ come close to 

approaching them, and this is not accidental. This has to do with the fact that problems 5-8 

are concerned with concept and relation meanings, or, in other words, concept and relation 

internal structure and concept composition, while none of the representations we have looked 

at so far possess information like this. This will be further discussed in 3.4. 

3.3 Latest advances of NLU in spatial reasoning 

This section is a sort of a digress listing some of the most interesting cutting edge works on 

applications of NLU to spatial reasoning problems. 

T. Kollar et al. [39] describe a very interesting approach for directing robots by natural 

language. Their system first parses input phrases into a sequence of SDCs (spatial description 

clauses), containing a figure (the subject of the sentence), a verb (an action to take), a 

landmark (an object in the environment), and a spatial relation (a geometric relation between 

the landmark and the figure). Then, given the information about the environmental geometry 

and detected visible objects, it maps these SDCs to places, objects or paths (groundings), using 
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different techniques, and constructs probabilistic graphical model (grounding graph) to infer 

the most probable path through the environment. 

 

Fig. 3-4. Example of spatial description clauses. a) ground truth b) Automatically generated from natural 
language input T. Kollar et al [39] 

It is interesting how the semantics of ǎǇŀǘƛŀƭ ǇǊŜǇƻǎƛǘƛƻƴǎ ƭƛƪŜ άǘƻέΣ άǘƘǊƻǳƎƘέΣ άǇŀǎǘέ is 

modeled. They use features that are functions of the geometry of the path and landmark. 

Using these features, the prepositions are learned using Naïve Bayes classifier. The dataset 

used contains hand-drawn positive and negative examples: 
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Fig. 3-5. Positive and negative examples to learn the spatial prepositions. T. Kollar et al. [39] 

S. Tellex and D. Roy [40] discuss another application of NLU to spatial reasoning: video search. 

This paper also discusses the features used to learning spatial prepositions in more details. 

  

Fig. 3-6. Frames from two clips returned for the query άacross the kitchen.έ S. Tellex and D. Roy [40] 

S. Hemachandra et al [41] present an approach allowing the robots to follow natural language 

directions without any previous knowledge of the environment. 

 

Fig. 3-7Φ ±ƛǎǳŀƭƛȊŀǘƛƻƴ ƻŦ ǘƘŜ ŜǾƻƭǳǘƛƻƴ ƻŦ ǘƘŜ ǎŜƳŀƴǘƛŎ ƳŀǇ ƻǾŜǊ ǘƛƳŜ ŀǎ ǘƘŜ Ǌƻōƻǘ Ŧƻƭƭƻǿǎ ǘƘŜ ŎƻƳƳŀƴŘ άƎƻ ǘƻ 
ǘƘŜ ƪƛǘŎƘŜƴ ǘƘŀǘ ƛǎ Řƻǿƴ ǘƘŜ ƘŀƭƭǿŀȅΦέ {Ƴŀƭƭ circles and large filled-in areas denote sampled and visited regions, 

respectively, each colored according to its type (lab: green, hallway: yellow, kitchen: blue). The robot (a) first 
samples possible locations of the kitchen and moves towards them, (b) then observes the hallway and refines its 

estimate using ǘƘŜ άŘƻǿƴέ ǊŜƭŀǘƛƻƴ ǇǊƻǾƛŘŜŘ ōȅ ǘƘŜ ǳǎer. Finally, the robot (c) reaches the actual kitchen and 
declares it has finished following the direction. S. Hemachandra et al. [41] 
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The researchers use a hierarchical framework based on a DCG (distributed correspondence 

graph) to convert natural language information to a probabilistic graphical model expressing 

the correspondence between linguistic elements from the command and their corresponding 

groundings. This learned model is later used by 1) the semantic map inference algorithm 

hypothesizing the existence and location of coherent regions, and 2) belief space planner 

reasoning directly over the map and behavior distributions to solve for a policy using imitation 

learning. 

The works mentioned in this section show some of the latest advances of NLU applications to 

spatial reasoning problems. To achieve these impressive results, a large number of advanced 

techniques very different from formal logic are put together. State-of-the-art machine 

learning algorithms, probabilistic graphical models and particle filters are heavily used. 

Everything handles about learning the probabilities, because this works great when there is: 

a) Little information (about robot environment) 

 b) Little knowledge (about what user commands actually mean)  

Our project, focusing on the modeling of the word and phrase meaning, takes a very different 

approach (understanding in full that, in foreseeable future this will yield much less impressive 

results when it comes to what the computer can do, but hoping that this will change at some 

point when the computer will be able to know more). 

3.4 Fuzzy semantics 

This chapter is a review of the theories that the rest of the project will be building upon. To 

start, it is necessary to go back to the beginning of the seventies.  

 Quantitative fuzzy semantics 

In 1971, in his paper on Quantitative Fuzzy Semantics [5], L. Zadeh asks: ά/ŀƴ ǘƘŜ ŦǳȊȊƛƴŜǎǎ ƻŦ 

ƳŜŀƴƛƴƎ ōŜ ǘǊŜŀǘŜŘ ǉǳŀƴǘƛǘŀǘƛǾŜƭȅΣ ŀǘ ƭŜŀǎǘ ƛƴ ǇǊƛƴŎƛǇƭŜΚέ  
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Fig. 3-8Φ /ƘŀǊŀŎǘŜǊƛȊŀǘƛƻƴ ƻŦ άȅƻǳƴƎέ, άŎƭƻǎŜ ǘƻ ƳƛŘŘƭŜ-ŀƎŜέ ŀƴŘ άƳƛŘŘƭŜ-ŀƎŜŘέ ŀǎ ŦǳȊȊȅ ǎŜǘǎΦ L. Zadeh [5] 

[ŜǘΩǎ ŎƻƴǎƛŘŜǊ Fig. 3-8. For the first time in our research review, there is a graph that visualizes 

a certain quantitative relation between concepts ά¸ƻǳƴƎέΣ ά/ƭƻǎŜ ǘƻ ƳƛŘŘƭŜ ŀƎŜέΣ άaƛŘŘƭŜ-

ŀƎŜŘέΣ ŀƴŘ ά!ƎŜέΦ 

In 1972, L. Zadeh [42] suggests possibility of using fuzzy sets for modeling linguistic hedges 

(e.g. άveryέ, άmore or lessέ, άmuchέ, άessentiallyέ, άslightlyέ). He suggests that hedges can be 

viewed as operators that act on the fuzzy set representing the meaning of its operand (e.g. 

ƻǇŜǊŀǘƻǊ άǾŜǊȅέ ŀŎǘƛƴƎ ƻƴ ŀ ƳŜŀƴƛƴƎ ƻŦ άǘŀƭƭ ƳŀƴέύΦ IŜ ŀƭǎƻ ƛƴǘǊƻŘǳŎŜǎ several operations for 

manipulating the fuzzy sets (complementation, intersection, normalization, concentration, 

dilation, fuzzification etc.). 

 

G. Lakoff provides a useful illustration on how the fuzzy hedges work [43]: 
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Fig. 3-9. Some examples of modifier valuations using Zadeh functions. G. Lakoff [43] 

In 1975, L. Zadeh introduces a concept of linguistic variables [44]. Values these variables take 

are words or sentences in a natural or artificial language, e.g. άageέ is a linguistic variable if its 

values are άyoungέΣ άnot youngέ, άnot very old and not very youngέ ŜǘŎΦ 

In 1978, L. Zadeh presents a meaning representation laƴƎǳŀƎŜ άtw¦Cέ [45]. In [45, 46] he 

suggests a computational approach to fuzzy quantifiers (like άseveralέ, άfewέ, άmanyέ, 

άapproximately fiveέ etc.).  

 

Fig. 3-10. The intersection/product syllogism with fuzzy quantifiers. L. Zadeh [46] 
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 Test-score semantics 

In 1983, L. Zadeh is expanding the idea of fuzzy word meaning onto propositions, introducing 

test-score semantics [47], and, later in [48], knowledge representation based on fuzzy logic. 

He argues that fuzzy logic representation is more appropriate for commonsense reasoning, 

compared to more traditional representations (semantic networks, frames, predicate calculus 

etc.), because of its inherent ability to handle uncertainty and imprecision. 

In this model, a proposition is viewed as a system of implicitly defined elastic (fuzzy) 

constraints, whose domain is the collection of fuzzy relations in so-called explanatory 

database. CƻǊ ŜȄŀƳǇƭŜΣ ǇǊƻǇƻǎƛǘƛƻƴ άWƻŀƴ ƛǎ ȅƻǳƴƎ ŀƴŘ ŀǘǘǊŀŎǘƛǾŜέ Ƙŀǎ ǘǿƻ ǾŀǊƛŀōƭŜǎΥ age 

(implicit in the proposition) and attractiveness, that need to be constrained. The explanatory 

database would contain these relations (where  ˃is membership degree):  

POPULATION [Name; Age; ɛAttractive]  

YOUNG [Age; ɛ]  

According to L. Zadeh [48], to represent the meaning of the proposition, it is necessary to 

construct a test procedure that tests, scores, and aggregates the elastic constraints, yielding 

an overall test score. This test score serves as a measure of compatibility between the 

proposition and the explanatory database, and the meaning of the proposition is represented 

by the test procedure itself.  

L. Zadeh mentions in [47] that there is no way to automatically construct the test procedure 

and explanatory database, that it would require άǎǳōǎǘŀƴǘƛŀƭƭȅ ōŜǘǘŜǊ ǳƴŘŜrstanding of natural 

ƭŀƴƎǳŀƎŜǎ ŀƴŘ ƪƴƻǿƭŜŘƎŜ ǊŜǇǊŜǎŜƴǘŀǘƛƻƴ ǘƘŀƴ ǿŜ ƘŀǾŜ ŀǘ ǘƘƛǎ ƧǳƴŎǘǳǊŜέΦ 

 Computing With Words 

Lƴ мффсΣ [Φ ½ŀŘŜƘ ƳŜƴǘƛƻƴǎ ŀ ƴŜǿ ƳŜǘƘƻŘƻƭƻƎȅ ά/ƻƳǇǳǘƛƴƎ ²ƛǘƘ ²ƻǊŘǎέ (CWW) [49]. The 

idea is that words are used instead of numbers for computing and reasoning. For example, 

one problem for CWW could be this one:  

I have to be at the airport about an hour before departure. Usually it takes 

about forty five minutes to get to the airport from my home. I would like to 

be pretty sure that I arrive at the airport in time. At what time should I 

leave my home?  
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CWW methodology is based on a Generalized Constraint Language (GCL) [50, 51], and is 

rooted in [47]. CWW is further discussed in [50, 51, 52, 53, 54]. CWW process is performed in 

2 steps: 1) precisiation of natural language and 2) computing with precisiated language.  

In CWW, proposition is viewed as a generalized constraint of form X isr R, where X is the 

constrained variable, r is constraint type, and R is the constraining relation. The meaning of 

the proposition is then defined (precisiated) by specifying X, R and r [54:66-67]. For example, 

ǇǊƻǇƻǎƛǘƛƻƴ άwƻōŜǊǘ ƛǎ ǘŀƭƭέ Ŏŀƴ ōŜ ǾƛŜǿŜŘ ŀǎ ŀ possibilistic constraint with variable X being 

RobertΩǎ ƘŜƛƎƘǘ, and relation R ōŜƛƴƎ άǘŀƭƭέ.  

Generalized constraints are a powerful way of conveying fuzzy information like human 

perceptions.  L. Zadeh defines 3 primary constraints [53, 54]: 

¶ Possibilistic: X is R. Poss(X=u) = µR(u), where R is a fuzzy set in a space U={u}, and µR is 

the membership  function of R. R is the possibility distribution of X 

¶ Probabilistic: X isp R. X is a random variable, and R is its probability distribution 

¶ Veristic: X isv R. Ver(X=u) = µR(u), where Ver(X=u) is the truth-value of (X=u) 

Fig. 3-11 visualizes different types of ǇǊŜŎƛǎƛŀǘƛƻƴǎ ƻŦ άŀǇǇǊƻȄƛƳŀǘŜƭȅ ŀέ [51]. 
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Fig. 3-11. Hierarchy of precisiations of *a (approximately a). L. Zadeh [51] 

CWW is a very interesting methodology focusing on enabling word-based computations. 

However, it does leave many open questions, for example: 

¶ The precisiation step is completely dependent on humans for choosing X, R, and 

constructing the explanatory database [54:185]. 

¶ There is no attempt made to somehow formalize, or automatically relate implicit 

variables (like άŀƎŜέ) to words in natural language (like άȅƻǳƴƎέ). 

¶ Proposition meaning is not defined in any quantifiable way (which makes it impossible 

for a system to analyze whether it is comprehensible). 

¶ Nothing is said about how to handle the knowledge that is evolving, changing, 

expanding over time in this representation.  
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4 Method and framework design 

This master project is based on joint research [1] focusing on modeling concept meanings and 

computational comprehension of phrases. The approach relies on some of the techniques 

described by L. Zadeh in [5, 42, 46], but is very different when it comes to overall knowledge 

representation, modeling phrase meaning, etc. In particular, the approach is an attempt to 

challenge the issues mentioned in 3.2.2, and at the end of 3.4.3. 

This chapter describes central ideas of the approach and the parts relevant for this master 

project. 

4.1 Approach overview 

The approach is based on fuzzy logic, as a good fit for working with different levels of truthness 

and concepts with unclear boundaries, phenomena commonly occurring in knowledge coming 

from natural language, and commonsense knowledge in particular [48]. 

All knowledge is encoded in fuzzy properties (with values ranging from zero to one), each of 

them encoding an independent piece of information. 

Structuring knowledge and dealing with its context sensitivity is modeled with contexts. 

Context is defined as a coordinate system with one axis encoding one independent property. 

If the context has N properties, then the knowledge in this context is described as a fuzzy 

region in an N-dimensional unit hypercube. 

Phrases, words and other natural language constructs are modeled as region transforms, or 

meaning-operators. For example, interpretation of a phrase is a transformation of the source 

region (the region before interpretation) by the corresponding phrase operator, yielding the 

resulting region (the region after interpretation). 

Computational interpreting is viewed as choosing the interpretation that makes the most 

sense, using different heuristics. 
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Meaning of an operator can be assessed during its composition. Overall phrase 

comprehension can be evaluated when the phrase operator is being applied. Then both source 

and resulting regions are considered along with other factors (e.g. phrase mood). 

Simplified schematics of the phrase interpretation is given on Fig. 4-1. 

Phrase syntactic 
structure

Grammatical 
forms

Operator application 
order

Sequence of word-
operators

Input phrase words

Phrase operator, 
phrase context

Source region, 
current context

Target region, 
current context

Phrase comprehensibility 
analysis 

Block-operators

Resolving 
ambiguities of 
the structure, 

describing 
unclear parts  

Done, next 
phrase

Operator meaning 
analysis

Operator 
meaning 
analysis

Interpretation

Application of 
modifier words, 
word context

 

Fig. 4-1. Simplified schematics of phrase interpretation 

Please note:  this is a model drawing. Only some parts of this model are implemented in this 

master project. This is discussed in more detail in section 4.4.3. 

4.2 Representation basics 

 Properties, context and regions 

[ŜǘΩǎ assume that the state, or knowledge of our system can be completely described with a 

finite number of independent real parameters (properties). Values of each property range 

from zero to one, so that one corresponds to maximal presence of the property, and zero 



31 

 

corresponds to its complete absence. For example, if we would like to model car speed, we 

ŎƻǳƭŘ ǳǎŜ ǇǊƻǇŜǊǘȅ άǉǳƛŎƪƴŜǎǎέ1Φ ά½ŜǊƻέ ǿƻǳƭŘ ƳŜŀƴ άƴƻǘ Ŧŀǎǘ ŀǘ ŀƭƭέ ŀƴŘ άƻƴŜέ ǿƻǳƭŘ ƳŜŀƴ 

άŀǎ Ŧŀǎǘ ŀǎ ƛǘ ƎŜǘǎέύΦ  

We are going to call some of the properties basic properties. Many of the basic properties will 

ƛƴŎƭǳŘŜ ǾŀƭǳŜǎ ǘƘŀǘ Ŏŀƴ ōŜ ŘƛǊŜŎǘƭȅ άǇŜǊŎŜƛǾŜŘέ ōȅ ǘƘŜ software. For example, for a robot or a 

car with a built-ƛƴ ǊŀƴƎŜŦƛƴŘŜǊΣ ǇǊƻǇŜǊǘȅ άǊŜƭŀǘƛǾŜ ŘƛǎǘŀƴŎŜέ can be perceived directly. The 

same is true ŦƻǊ ǘƘŜ ǇǊƻǇŜǊǘȅ άǊŜƭŀǘƛǾŜ ǘƛƳŜέΣ ŀǎ ƭƻƴƎ ŀǎ ǘƘŜ system has a built-in clock. 

The rest of the properties we are going to call derived. They can be defined via other concepts, 

e.g. using the model described later in this section.  

Context is a coordinate system consisting of axes that represent values of currently relevant 

properties, one axis per property. For example, when talking about movement speed, two of 

the relevant properties wƻǳƭŘ ōŜ άǊŜƭŀǘƛǾŜ ŘƛǎǘŀƴŎŜέ ŀƴŘ άǊŜƭŀǘƛǾŜ ǘƛƳŜ.  

Lƴ ǘƘŜ ŎƻƴǘŜȄǘΩǎ coordinate system we can define a fuzzy shape: a region. Each point of the 

region is assigned a value from zero to one, describing this ǇƻƛƴǘΩǎ ŘŜƎǊŜŜ ƻŦ ƳŜƳōŜǊǎƘƛǇΦ  

Regions can be used to express the meaning of different concepts2. For example, using axes t  

and s όάǊŜƭŀǘƛǾŜ ǘƛƳŜέ ŀƴŘ άǊŜƭŀǘƛǾŜ ŘƛǎǘŀƴŎŜέύ ǿŜ Ŏŀƴ ŜȄǇǊŜǎǎ ǊŜƎƛƻƴǎΣ ŘŜǎŎǊƛōƛƴƎ ŎƻƴŎŜǇǘǎ 

άŦŀǎǘέ ŀƴŘ άǎƭƻǿέ όFig. 4-2, membership degree is depicted with color intensity). 

                                                   

1 For simplicity of the examples, direct use of ñspeedò is avoided, as it is a more complex concept. 

2 It is interesting to compare the way regions are organized with L. Zadehôs CWW [53, 54]. In CWW figuring out 

that ñyoungò has to do with the implicit variable ñageò would be a part of manual precisiation step. In the 

proposed approach concept definition (e.g. ñfastò) already specifies how exactly it is ñconstrainingò the 

variable(s) (e.g. ñdistanceò, ñtimeò (Fig. 4-2), or ñquicknessò (Fig. 4-3). 
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Fig. 4-2. /ƻƴŎŜǇǘǎ άŦŀǎǘέ ŀƴŘ άǎƭƻǿέ 

Based on existing regions, new (derived) properties can be introduced. For example, based on 

the region ŎƻǊǊŜǎǇƻƴŘƛƴƎ ǘƻ ǘƘŜ ŎƻƴŎŜǇǘ άŦŀǎǘέ όFig. 4-2), we can introduce a new property 

άǉǳƛŎƪƴŜǎǎέΦ Lǘ ƛǎ ƴŀǘǳǊŀƭ ǘƻ ŀǎǎǳƳŜ ǘƘŜ ǾŀƭǳŜǎ ƻŦ άǉǳƛŎƪƴŜǎǎέ (x-axis on Fig. 4-3) be equal to 

the degrees of membership ƻŦ ƛǘǎ ŎƻǊǊŜǎǇƻƴŘƛƴƎ ǊŜƎƛƻƴΩǎ points (color intensity on Fig. 4-2, 

left).  

 

Fig. 4-3Φ /ƻƴŎŜǇǘ άŦŀǎǘέ ƛƴ ŎƻƴǘŜȄǘ ǿƛǘƘ ƻƴŜ ǇǊƻǇŜǊǘȅ άǉǳƛŎƪƴŜǎǎέ 
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As long as this relation holds, we are going to call such region reference region of a property. 

[ŜǘΩǎ ƴƻǿ ƛƴǘǊƻŘǳŎŜ ŀ ƴŜǿ ŎƻƴŎŜǇǘ άƳƻŘŜǊŀǘŜƭȅtŀŎŜŘέ ŎƻƴǘŀƛƴƛƴƎ ƻƴƭȅ ƻƴŜ ŀȄƛǎ άǉǳƛŎƪƴŜǎǎέ 

(q), and define a region in this context, described by the function moderatelyPaced(q) (Fig. 

4-4). 

 

Fig. 4-4Φ /ƻƴŎŜǇǘ άƳƻŘŜǊŀǘŜƭȅ ǇŀŎŜŘέ 

Please note that as long as we only have one property in this context, we are using Y-axis for 

the degree of membership (instead of using color intensity, as in the previous example). 

[ŜǘΩǎ ƴƻǿ ǎŜŜ Ƙƻǿ ǘƘƛǎ ǊŜƎƛƻƴ ƭƻƻƪǎ ƛƴ ŎƻƻǊŘƛƴŀǘŜǎ s, t. We previously assumed values of 

ǇǊƻǇŜǊǘȅ άǉǳƛŎƪƴŜǎǎέ όx-axis on Fig. 4-3) to be drawn from the degrees of membership of the 

ŎƻƴŎŜǇǘ άŦŀǎǘέ όŎƻƭƻǊ ƛƴǘŜƴǎƛǘȅ ƻƴ Fig. 4-2, left). Because of this, 

άέὨὩὶὥὸὩὰώὖὥὧὩὨὪὥίὸίȟὸ  will be function composition of Ὢὥίὸίȟὸ and 

άέὨὩὶὥὸὩὰώὖὥὧὩὨήΣ ȅƛŜƭŘƛƴƎ ŀ ŦǳƴŎǘƛƻƴ ƭƛƪŜ άάέὨὩὶὥὸὩὰώὖὥὧὩὨίȟὸέΦ ¢Ƙƛǎ ŦǳƴŎǘƛƻƴ will 

transform membership degree of each point of the concept  Ὢὥίὸίȟὸ in accordance with the 

rule given by άέὨὩὶὥὸὩὰώὖὥὧὩὨήΣ ŀƴŘ ǘƘƛǎ ŎƻǊǊŜǎǇƻƴŘǎ ǘƻ ǘƘŜ ŎƻƴŎŜǇǘ άƳƻŘŜǊŀǘŜƭȅ ǇŀŎŜŘέ 

in the context with axes ίȟὸ (Fig. 4-5).  
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Fig. 4-5Φ aŀǇǇƛƴƎ άƳƻŘŜǊŀǘŜƭȅtŀŎŜŘέ ōŀŎƪ ǘƻ ǊŜŦŜǊŜƴŎŜ ŎƻƴǘŜȄǘΦ 

¢Ƙƛǎ ƪƛƴŘ ƻŦ ƳŀǇǇƛƴƎ ƛǎ ƎŜƴŜǊŀƭ ƻǇŜǊŀǘƛƻƴΣ ŀƭƭƻǿƛƴƎ ǳǎ ǘƻ άŜȄǇŀƴŘέ ŀƴȅ ŀȄƛǎ Ǿƛŀ ƛǘǎ ǊŜŦŜǊŜƴŎŜ 

axes, thus, mapping different pieces of information into the same (reference) context for 

processing. 

 Operators 

Region transforms, or operators, play key role in the proposed approach. This section is an 

example of modeling two function words as operators and using them to create new concepts.  

We can define the operator corǊŜǎǇƻƴŘƛƴƎ ǘƻ ǘƘŜ ǿƻǊŘ άƴƻǘέ ƭƛƪŜ ǘƘƛǎΥ ὲέὸὼ ρ ὼ, where 

x is the value of a property (Fig. 4-6). This is similar to L. ½ŀŘŜƘΩǎ άŎƻƳǇƭŜƳŜƴǘŀǘƛƻƴέ [42:10]. 
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Fig. 4-6. hǇŜǊŀǘƻǊ άƴƻǘέ 

Using operator άƴƻǘέΣ ǿŜ Ŏŀƴ ŘŜŦƛƴŜ ŀ ƴŜǿ ŎƻƴŎŜǇǘ άǎƭƻǿέ ŀǎ not(fast) (Fig. 4-7) 

 

Fig. 4-7. slow = not(fast) 

Mapping this back to our reference context, we get: ὲέὸὪὥίὸίȟὸ  (Fig. 4-8) 
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Fig. 4-8. Mapping slow = not(fast) back to reference context 

²Ŝ Ŏŀƴ ŘŜŦƛƴŜ ά±ŜǊȅέ ŀǇǇǊƻȄƛƳŀǘŜƭȅ ƭƛƪŜ ǘƘƛǎΥ ὺὩὶώὼ ὼ (Fig. 4-9). This is similar to 

L. ½ŀŘŜƘΩǎ άǾŜǊȅέ [42:23]. 

 

Fig. 4-9Φ hǇŜǊŀǘƻǊ άǾŜǊȅέ 

Applied to region άfastέ, weΩll get region corresponding to άvery fastέ. 
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Fig. 4-10. veryFast = very (fast). 

Mapping this back to our reference context, we get: ὺὩὶώὪὥίὸίȟὸ  

 

Fig. 4-11.  Mapping veryFast = very(fast) back to reference context 

4.3 Modeling meaning 

This section builds on top of the ideas described above to create models of meanings of 

natural language constructs. 
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 Meaning of phrases and words 

As it was mentioned earlier, we assume that the knowledge of the system at any time can be 

described with a number of independent parameters, and that phrases are modeled as 

operators transforming this knowledge. 

Then, before interpreting a new phrase we have a certain projection of the system state onto 

a given context: let us call it source region S1. After interpreting, the state will change, and so 

will its projection onto that context. Let us call this new projection resulting region R1. Now, if 

the source state was S2, the resulting state after interpretation would also be different, say, 

R2. Thus, each set of possible source regions {Si} has a corresponding set of resulting 

regions {Ri}. 

Then phrase meaning in a given context can be defined as an operator transforming every 

source region to a corresponding resulting region. In other words, phrase meaning can be seen 

as mapping ὛᴼὙ . 

We are going to call the subspace containing region modifications resulting from the phrase 

interpretation phrase context. In other words, this is the subspace that the phrase operator 

works in. To contrast with phrase context, current context is the context that describes the 

knowledge of the system. 

Phrase operators can be defined as a composition of smaller operators that correspond to 

ǿƻǊŘǎ ŀƴŘ ǿƻǊŘ ŎƻƳōƛƴŀǘƛƻƴǎΦ [ŜǘΩǎ ǘŀƪŜ ŀ ƭƻƻƪ ŀǘ Ƙƻǿ ǘƘŜǎŜ Ŏŀƴ ōŜ ƳƻŘŜƭŜŘΦ 

Many of the words, unlike phrases, can only be used together with other words. They certainly 

have some meaning, but this meaning is in a way incomplete until the word is put together 

with the other words. This fact can be modeled using parameterization: words can be seen as 

parameterized operators. They have a default behavior described by a certain region in ǿƻǊŘΩǎ 

internal context. When put together with other words (like modifiers), this region may be 

adjusted by those. For example, ŀ ŎŀǊ ǊŜŎŜƛǾƛƴƎ ŎƻƳƳŀƴŘ άŘǊƛǾŜέ starts moving with some 

average speed. If it received ŎƻƳƳŀƴŘ άŘǊƛǾŜ ŦŀǎǘέΣ ǘƘŜ ǎǇŜŜŘ ǿƻǳƭŘ ōŜ ŘƛŦŦŜǊŜƴǘΥ ǿƻǊŘ άŦŀǎǘέ 

modifies the region ƻŦ ǘƘŜ ƻǇŜǊŀǘƻǊ άŘǊƛǾŜέΦ Lƴ ŎŀǎŜ ƻŦ ǘƘŜ ŎƻƳƳŀƴŘ άŘǊƛǾŜ ǾŜǊȅ ŦŀǎǘέΣ ǿƻǊŘ 

άǾŜǊȅέ ƳƻŘƛŦƛŜǎ the region of the ƻǇŜǊŀǘƻǊ άŦŀǎǘέ that, in its turn, modifies the region of the 

ƻǇŜǊŀǘƻǊ άŘǊƛǾŜέ όFig. 4-12). 
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Fig. 4-12. άWalkέ -> άwalk fastέ -> άwalk very fastέ   

We will call such composite operators resulting from interaction of two or several modifying 

operators block-operators. 

 Parts of speech 

The problem of ǎŜƭŜŎǘƛƴƎ ǎǳƛǘŀōƭŜ ŀƴŘ ǳƴƛǾŜǊǎŀƭ άōǳƛƭŘƛƴƎ ōƭƻŎƪǎέ ŦƻǊ ŎƻƴǎǘǊǳŎǘƛƴƎ ŀƭƭ ǇƻǎǎƛōƭŜ 

kinds of meanings is extremely complex. Though, every natural language is one solution to 

this problem. [ŜǘΩǎ consider how some of the άōǳƛƭŘƛƴƎ ōƭƻŎƪǎέ ǳǎŜŘ ƛƴ ƴŀǘǳǊŀƭ ƭŀƴƎǳŀƎŜ can 

be modeled1. 

Qualitative adjectives (άƭŀǊƎŜέΣ άǘŀƭƭέΣ άǎƛƳǇƭŜέ)2. Operator, corresponding to a qualitative 

adjective, may be modeled as a projection operator. More concretely, Ὅὢἅὖὣ, where 

Ὅὢ  is identity operator, ὖὣ is projection operator, and ὢὼ and ὣώ are the membership 

functions in corresponding region subspaces. ὖὣ substitutes ὣώ for some particular 

membership ὣᶻώȢ If the context has an axis directly corresponding to the adjective, then 

dimensionality of y will be one, otherwise ς more than one. Here it is assumed  that the source 

region is given as a set of independent regions with membership functions ὢ and ὣ (instead 

of one multidimensional region3), and this is how the contexts are implemented within this 

master project. 

                                                   

1 This topic is discussed in more details in [1:15-16]. 

2 To some extent, this can also be applied to some adverbs.  

3 These representations are to some extent interchangeable (some more details on this are provided in [1:15]. 



40 

 

Some examples of modeling qualitative adjectives as operators were given in section 4.2.1. In 

particular, the images for operators άŦŀǎǘέ ŀƴŘ άǎƭƻǿέ (the regions that the adjective operators 

project), are shown on Fig. 4-2. 

Conceptually, nouns can be modeled as objects that have a set of qualities. If the object did 

not exist from before, then the axes specific for it would be added to the context, immediately 

ƛƴƛǘƛŀƭƛȊŜŘ ǿƛǘƘ ǘƘŜ άŘŜŦŀǳƭǘέ for this concept membership functions (as if a set of qualitative 

adjectives has been applied to the context).  

This project models nouns in a simplified way. CƻǊ ŜȄŀƳǇƭŜΣ ƴƻǳƴǎ άŎǊƻǎǎƛƴƎέΣ άŎƻǊƴŜǊέ ŀƴŘ 

άŘŜŀŘ ŜƴŘέ1 are modeled using just one axis denoting the number of roads leading from a 

specific location on a map όǘƘƛǎ ǇǊƻǇŜǊǘȅ ƛǎ άōǳƛƭǘ-ƛƴέ in Google Street View API that is used in 

the software prototype). 

Verbs can be modeled as words that work with time axis, often with its small part, and also 

create a special action context. 

This project models verbs in a simplified way: they are seen as a collection of axes they work 

with. For exampleΣ άǿŀƭƪέ is defined as a verb working with ŀȄŜǎ άǉǳƛŎƪƴŜǎǎέ όǎǇŜŜŘύ ŀƴŘ 

άŘƛǊŜŎǘƛƻƴέ. The exact way the verb is affecting these axes depends on the adverbs2 it is used 

ǿƛǘƘ όάǿŀƭƪ ƳǳŎƘ ǎƭƻǿŜǊέΣ άǿŀƭƪ ǎƻǳǘƘŜŀǎǘέ3 etc.)  

Adverbs. General discussion on modeling adverbs is out of scope of this project. This project 

ƳƻŘŜƭǎ ŀŘǾŜǊōǎ άǎƭƻǿŜǊέΣ άŦŀǎǘŜǊέΣ ŀƴŘ ŀŘǾŜǊō-ƭƛƪŜ ŎƻƴǎǘǊǳŎǘǎ άŦǳǊǘƘŜǊ ƭŜŦǘέ ŀƴŘ άŦǳǊǘƘŜǊ 

ǊƛƎƘǘέ ƛƴ ŀ ǎƛƳǇƭƛŦƛŜŘ ǿŀȅΥ they ŀǊŜ ǎŜŜƴ ŀǎ ŀ ŎƻƳōƛƴŀǘƛƻƴ ƻŦ ƻǇŜǊŀǘƻǊ άƳƻǊŜέ Ҍ άǉǳŀƭƛǘŀǘƛǾŜ 

ŀŘƧŜŎǘƛǾŜέΣ ǿƘŜǊŜ άƳƻǊŜέ ƛǎ currently implemented like a simple shift of the membership 

function along the X-axis (Fig. 4-13 and Fig. 4-14). 

                                                   

1 These nouns are not implemented in the software yet, though, the axis reflecting the number of possible 

directions is updated according to the location on the map. 

2 Current implementation only supports combining verbs with adverbs 

3 There is one more simplification to the current version of the software: to work with directions, another verb 

is currently used instead of ñwalkò (this avoids a subtle problem with unwanted axis overwriting that is not yet 

fixed).  
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Fig. 4-13. ²ŀƭƪ όōŜŦƻǊŜ ŀǇǇƭƛŎŀǘƛƻƴ ƻŦ άŦŀǎǘŜǊέύ 

 

Fig. 4-14. Walk faster 

Function words. General discussion on modeling function words is out of scope of this project. 

Modeling conjunctions is discussed in more details in [1:15]. WƻǊŘ άƳƻǊŜέ was mentioned 

earlier in this section, and ŎƻƴŎŜǇǘǎ άƴƻǘέ ŀƴŘ άǾŜǊȅέ ǿŜǊŜ discussed in section 4.2.2 (Fig. 4-6 

and Fig. 4-9). 
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4.4 Interp reting phrases 

 Overall process 

This section briefly discusses the overall process1 of phrase interpretation. Please consider the 

schematics (Fig. 4-15). This is the same drawing as Fig. 4-1, provided here ŀƎŀƛƴ ŦƻǊ ǊŜŀŘŜǊΩǎ 

convenience. 

Phrase syntactic 
structure

Grammatical 
forms

Operator application 
order

Sequence of word-
operators

Input phrase words

Phrase operator, 
phrase context

Source region, 
current context

Target region, 
current context

Phrase comprehensibility 
analysis 

Block-operators

Resolving 
ambiguities of 
the structure, 

describing 
unclear parts  

Done, next 
phrase

Operator meaning 
analysis

Operator 
meaning 
analysis

Interpretation

Application of 
modifier words, 
word context

 

Fig. 4-15. Simplified schematics of phrase interpretation. 

First, when a new phrase comes in, the syntactic structure of the phrase should be obtained 

from the grammatical forms of words as much as it is possible. In other words, this means 

determining the order of application of operators and block-operators to one another. In case 

when the syntactic structure is ambiguous, the possible options need to be remembered so 

                                                   

1 Please note: Only some parts of the process described here are implemented in this master project. The details 

are described in section 4.4.3. 
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that the corresponding operators can later be compared based on their clarity 

(comprehensibility) score. Determining phrase comprehensibility is discussed in section 4.4.2. 

After, the sequential application of operators to one another is done. More precisely, the 

operators that modify the internal context of another operator, do that (yielding block 

operators), while the operators working with the external context of the narrative, form a line, 

in the order of application. Result is the phrase operator: composition of several word and 

block operators. Construction of the phrase operator includes its analysis for meaningfulness. 

After that, the phrase operator is applied to the source region in the current context (by 

sequential application of word and block operators from the line). The result of this application 

is the resulting region. Given both source and resulting regions, overall phrase 

comprehensibility is assessed (section 4.4.2). If there are several possible interpretations of 

the phrase (several phrase operators), the best option is chosen according to the 

comprehensibility score. If none of the interpretations reach the threshold, the phrase may 

be considered unclear. Other options of handling this are discussed in [1:16-17]. 

The ability to analyze different interpretations from comprehensibility point of view allows to 

deal with situations when syntactic structure of the sentence cannot be completely restored 

from word order and grammatical forms (like when using a voice interface), and when for 

restoring it people would also need to resort to semantics.  

 Assessing comprehensibility 

This section describes some techniques and ideas that are used to determine whether a 

statement or a phrase makes sense, and that can be used to decide which of the possible 

interpretations is the right one1. 

The most basic type of sensibility assessment can be checking whether the words used to 

assemble a phrase operator are actually compatible, in particular, in terms of their axes. For 

ŜȄŀƳǇƭŜΣ άfast vehicleέ makes sense, because ōƻǘƘ ŀŘƧŜŎǘƛǾŜ άŦŀǎǘέ ŀƴŘ ƴƻǳƴ άǾŜƘƛŎƭŜέ ǿƻǳƭŘ 

ƛƴŎƭǳŘŜ άǉǳƛŎƪƴŜǎǎέ ŀȄƛǎ ŀǎ ǇŀǊǘ ƻŦ ǘƘŜƛǊ ŘŜŦƛƴƛǘƛƻƴ ŀǊŜŀǎ, as long as both concepts have to do 

ǿƛǘƘ ǘƘƛǎ ǇǊƻǇŜǊǘȅΦ hƴ ǘƘŜ ƻǘƘŜǊ ƘŀƴŘΣ άŦŀǎǘ ōƭŀƴƪŜǘέ ŘƻŜǎ ƴƻǘ ǊŜŀƭƭȅ ƳŀƪŜ ǎŜƴǎŜΣ ōŜŎŀǳǎŜ 

                                                   

1 Choosing between several interpretations is not implemented in the current version of the software. 
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ƴƻǳƴ άōƭŀƴƪŜǘέ Ƙŀǎ ǊŜŀƭƭȅ ƴƻǘƘƛƴƎ ǘƻ Řƻ ǿƛǘƘ άǉǳƛŎƪƴŜǎǎέΣ ŀƴŘ ǘƘŜǊŜŦƻǊŜ ǿƻǳƭŘ ƴƻǘ ƘŀǾŜ ǘƘƛǎ 

axis, something that can easily be detected by the software. 

[ŜǘΩǎ take a look at detecting other types of incomprehension and meaningless phrases.  

A region that has no points with high enough degree of membership (say, 0.95) can 

correspond to a contradiction. Indeed, this situation would mean that there is no property 

combination in the context that definitely corresponds to our concept. For example, if we 

consider hypothetical concept and(slow, fast), with and ŘŜŦƛƴŜŘ ǎƛƳƛƭŀǊ ǘƻ ½ŀŘŜƘΩǎ άǇǊƻŘǳŎǘέ 

[42:11], a typical contradiction can be seen (Fig. 4-16). 

 

Fig. 4-16. Contradiction 

On the other hand, if almost all the points of the context belong to a region, this usually does 

not make much sense either, as it provides no information όάƛǘ Ŏŀƴ ōŜ ŀƴȅǘƘƛƴƎέύ. For example, 

if we consider a hypothetical concept or(slow, fast), with or defined as έὶάρȟάς

ὲέὸὲέὸάς ὲzέὸάς , this is the situation (Fig. 4-17). 
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Fig. 4-17. Lack of information 

Another potentially useful heuristics has to do with the fact that normally new phrases provide 

ƴŜǿ ƛƴŦƻǊƳŀǘƛƻƴΣ ƛƴ ƻǘƘŜǊ ǿƻǊŘǎΣ ŎƘŀƴƎŜ ǎƻƳŜǘƘƛƴƎ ƛƴ ƻǳǊ ƪƴƻǿƭŜŘƎŜΦ [ŜǘΩǎ ŎƻƳǇŀǊŜ ǘƘŜǎŜ 

projections of verb-ƭƛƪŜ ŎƻƴŎŜǇǘǎ άǿŀƭƪέ ŀƴŘ άǎǘŀƴŘ ǎǘƛƭƭέ ƻƴ ŀ ŎƻƴǘŜȄǘ ǿƛǘƘ ŀȄŜǎ άǘƛƳŜέ ŀƴŘ 

άŘƛǎǘŀƴŎŜέ όFig. 4-18). 

 

Fig. 4-18Φ ά²ŀƭƪέ ŀƴŘ άǎǘŀƴŘ ǎǘƛƭƭέ 
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Fig. 4-19. ά²ŀƭƪέ Ҍ άŦŀǎǘŜǊέ ŀƴŘ άǎǘŀƴŘ ǎǘƛƭƭέ Ҍ άŦŀǎǘŜǊέ 

LŦ ǿŜ ŀǇǇƭȅ ƻǇŜǊŀǘƻǊ άŦŀǎǘŜǊέ ǘƻ ǘƘŜǎŜ ŎƻƴŎŜǇǘǎΣ άǿŀƭƪ ŦŀǎǘŜǊέ ǿƛƭƭ ǊŜǎǳƭǘ ƛƴ ŀ ŘƛŦŦŜǊŜƴǘ ǊŜƎƛƻƴΣ 

ǿƘƛƭŜ άǎǘŀƴŘ ǎǘƛƭƭ ŦŀǎǘŜǊέ ǿƛƭƭ ǎǘŀȅ ǘƘŜ ǎŀƳŜΣ ōŜŎŀǳǎŜ άcompressionέ ƻǾŜǊ ǘƛƳŜ ŀȄƛǎ Ǉerformed 

ōȅ ƻǇŜǊŀǘƻǊ άŦŀǎǘŜǊέ ǿƛƭƭ ƘŀǾŜ ƴƻ ŜŦŦŜŎǘ όFig. 4-19). So, after comparing the regions1, we can 

ŎƻƴŎƭǳŘŜ ǘƘŀǘ ǇƘǊŀǎŜ άǎǘŀƴŘ ǎǘƛƭƭ ŦŀǎǘŜǊέ ƳŀƪŜǎ ƴƻ ǎŜƴǎŜΣ ƛƴŘŜŜŘΦ 

In many cases, new information not only changes our knowledge, but often is expected to 

precisiate it rather than making it more vague. This is especially the case when a system is 

receiving some instructions.  

For example, if we are trying to direct a robot, and the region describing it is transformed from 

ά{ƻƳŜǿƘŜǊŜ b9έ ǘƻ ά!ƴȅǿƘŜǊŜ ŜȄŎŜǇǘ {²έΣ ƛǘ Ƴŀȅ ōŜ ŀ ǎƛƎƴ ƻŦ ƳƛǎǳƴŘŜǊǎǘŀƴŘƛƴƎ όFig. 4-20). 

!ƴ ŜȄŎŜǇǘƛƻƴ ǘƻ ǘƘƛǎ ŎƻǳƭŘ ōŜ ŀ ǎǇŜŎƛŀƭ ǇƘǊŀǎŜ άŦƻǊƎŜǘ ƛǘΣ L ǿƛƭƭ ŜȄǇƭŀƛƴ ŦǊƻƳ ǘƘŜ ōŜƎƛƴƴƛƴƎέΦ 

                                                   

1 In the current version of the software this comparison of membership functions is implemented over one-

dimensional axes-properties (like ñquicknessò). 






































































