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ABSTRACT 
 

The experimental work within this thesis is a continued investigation of tertiary recovery by 

injection of supercritical CO2 and CO2-foam under miscible conditions for enhanced oil recovery 

in fractured limestone. Secondary recovery methods in heterogeneous and fractured reservoirs 

can leave two-thirds of the oil behind, drawing attention to alternative injection schemes. CO2 

injection is a widely established technique within the oil industry, and has been in use for over 

40 years. When CO2 achieves a supercritical state, it has the properties of a gas but behaves 

similar to a liquid. Above the minimum miscibility pressure, interfacial tension between CO2 and 

the oil is eliminated, making the phases miscible. Since CO2 has much lower viscosity than water 

and oil, the gas-oil mobility ratio becomes unfavorable. Fingering and channeling of gas through 

the oil is a direct result of this, and is often considered a major problem for fractured reservoirs.  

 

Combining CO2 with water in a water-alternating-gas (WAG) process can significantly reduce 

mobility of CO2 and delay CO2 breakthrough. Further reduction in gas mobility may be achieved 

through implementation of foam. This can be done in two ways: 1) simultaneous injection of 

CO2 and surfactant, called co-injection. 2) surfactant-alternating-gas (SAG). 

 

A total of 13 experiments were conducted as tertiary injection methods on outcrop limestone 

cores in this thesis. Single CO2 and co-injection of CO2 and surfactant tests were conducted in 

both whole and fractured cores. One of these was a tertiary injection with integrated CO2 and 

CO2-foam on the same core. Tertiary WAG and SAG injections, mostly integrated on the same 

core, were performed to evaluate its effect on oil recovery. Injection methods were studied for 

both whole and fractured cores to observe the impact of fractures on different injection 

strategies. Experimental setups were designed to maintain conditions (90 bar and 35 oC) such 

that the CO2 would become supercritical and miscible with n-Decane.  

 

Results from experiments showed that pure CO2 injection had the same final recovery in whole 

and fractured cores, while co-injection in whole cores recovered less than in fractured cores. No 

significant difference was found between recovery in tertiary WAG and SAG, with 13.4 % of 

OOIP and 12.5 % of OOIP, respectively. The two most promising tertiary injection methods were 

integrated WAG and SAG with 32.4 % of OOIP, as well as integrated CO2 and co-injection with 

36.2 % of OOIP.  

 

The experimental work in this thesis shows that by combining several injection strategies, in 

integrated EOR, more residual oil can potentially become mobilized that may not have been 

possible through utilization of each method individually. The timing of switching from CO2 to 

CO2-foam proved to be crucial at CO2 breakthrough to maximize ultimate recovery. 
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INTRODUCTION 
 

The rate of replacement, by new discoveries, to the already produced reserves has been steadily 

declining these past few decades (Manrique, et al., 2010). Meeting energy demands in coming 

years requires focused efforts on recovering remaining oil resources from known reservoirs. 

Fractured reservoirs pose problems during production of oil through conventional recovery 

methods, such as water injection and pressure depletion, leaving more than half of the original 

oil in place behind. Therefore, more advanced methods are required to mobilize the oil from 

reservoirs that have already been subjected to secondary recovery methods.  

 

Enhanced oil recovery (EOR) in declining oil fields, by the use of CO2, pioneered in West Texas in 

1974. CO2 was considered the best choice as an injection fluid because of its ability to mix with 

the oil and extract more of the oil from the reservoir (Chordia & Trivedi, 2010). After its success, 

this production mechanism has become a major contributor to the increased oil production and 

economic gain in the United States to this day. By 2012, approximately 65 million tons of CO2 

was purchased by the industry for EOR purposes (NEORI, 2012). There were more than 100 CO2 

injection projects producing over 250,000 barrels of oil per day in the U.S. CO2 is also the largest 

source of U.S. greenhouse gas emissions. By injecting CO2 and producing oil, storage of CO2 for 

reduced gas emissions will benefit the environment (Lee & Kam, 2013). 

 

Many CO2 EOR projects implement continuous CO2 injection, yielding additional recoveries 

between 5-10 % OOIP for immiscible floods and 10-20 % OOIP for miscible floods (NETL, 2011). 

Large amounts of CO2 must be recycled in the production wells due to the large mobility of CO2 

adding to the costs. 

 

Continuous CO2 injection has a higher utilization factor in comparison to water-alternating-gas 

(WAG). For this reason, many fields would convert from continuous CO2 injection to WAG in 

order to cut back on the use of CO2 (Zhou, et al., 2012). More than 90 % of projects existing in 

the U.S. implement WAG. Another reason for switching from CO2 to WAG is because a more 

stable displacement front occurs during WAG since the CO2 is much lighter than oil and water 

(Christensen, et al., 2001).  

 

 The process of CO2 and WAG injection has attracted more attention over the years. Although 

these methods have proven themselves as profitable, critical problems occur with insufficient 

displacement of oil (Salehi, et al., 2014). Notable advantages in WAG become impaired by 

gravity segregation as a result of density differences in gas and oil. Throughout the years, 

chemical EOR methods have emerged.  

 



X 
 

The use of foam for mobility control of CO2 has been implemented in several fields (Turta & 

Singhal, 2002). The difference from continuous CO2 and WAG was that a foaming agent would 

be injected together with the CO2. Most notably, foam-assisted WAG was successfully 

completed in the North Sea, Snorre Field in 1994 (Aarra, et al., 2002). Foam was intended to 

propagate through the reservoir formation and improve sweep efficiency. There are challenges 

within the utilization of EOR techniques, especially considering low oil prices combined with 

relatively constant chemical cost. Such factors directly influence whether or not a certain 

injection scheme should be implemented (NETL, 2011). A large number of lab-scale research 

projects have been conducted as well as pilot test on CO2 foams. Much of this indicates that 

there is a large potential within mobility reduction of CO2 by chemical additive. 

 

The work within this thesis will focus on investigating enhanced oil recovery methods that have 

been widely used in the field, namely miscible CO2 and WAG injection, and compare or combine 

these with emerging injection strategies that involve in situ foam generation. Since a large 

percentage of the world’s hydrocarbon reserves are found in carbonates, especially in the U. S. 

and Middle East (Ahr, 2008), experiments are performed in limestone cores, a type of carbonate 

rock. In the field, this rock contains natural fractures as a result of overburden sediments and 

geo-mechanical stress. Therefore, the cores have been cut to resemble the presence of 

fractures.  

 

Most reservoirs have undergone secondary waterflooding, therefore all experiments in this 

thesis are conducted as tertiary injections. Results from experiments are divided into two 

sections where the first one looks at miscible WAG and SAG as integrated enhanced oil 

recovery. Water can reduce mobility of CO2 and delay breakthrough for a limited period of time. 

The aim of adding a SAG injection at the end is to see if foam can counteract the main 

challenges of WAG, such as gravity segregation, by further reducing CO2 mobility. The second 

section of results compares pure CO2 injection with CO2-foam through co-injecting CO2 and 

surfactant. These two methods are then combined as integrated enhanced oil recovery to 

directly test the potential of foam by switching from CO2 to CO2-foam during the experiment. 

Finally, all injection strategies are compared in terms of their tertiary recovery. The aim is to 

evaluate the performance of different injection strategies and determine best suited method 

based on highest ultimate recovery and lowest amount of pore volume injected to achieve this 

recovery. 
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1 | CARBONATE RESERVOIRS AND PRODUCTION 
 
1.1 | CARBONATE RESERVOIRS 
 

Carbonate is a mutual term referring to rock types made from calcite and dolomite minerals. 

Limestone (consisting of calcite) and dolostone (consisting of dolomite) make up 90 % of all 

carbonate reservoirs worldwide (Ahr, 2008). Carbonates hold more than half of the world’s oil 

and gas reserves. The Middle East, for instance, has most of their hydrocarbons within 

carbonates (Schlumberger, 2014). Shallow shelf carbonates hold 22 % of the OOIP in the United 

States (Manrique, et al., 2007). 

 

Porosity is the void space or the fraction of pores that occupies a rock. Permeability is a measure 

of how effectively fluids are transported through the pore network for a rock. Combined, these 

properties give an indication of whether or not the reservoir has the ability to store and produce 

hydrocarbons (Zolotukhin & Ursin, 2000). Porosity and permeability measurements can be 

reliable for small sandstone plugs, but carbonate plugs may need to be larger in magnitude to 

achieve results that can be representative of a field (Ahr, 2008). 

 

Carbonate fields are naturally fractured with heterogeneous porosity and permeability 

distributions (Manrique, et al., 2007). Fractures are naturally occurring discontinuities in a rock, 

owing to deformation or physical diagenesis. Fractures are also produced by mechanical 

stresses after the rocks have been lithified and may be associated with features such as folds 

and faults. A reservoir develops several generations of fractures with most of them closed 

through cementation or compaction. Closed fractures can impede flow through certain parts of 

the reservoir. Some fractures will remain open, specifically the ones that have a parallel 

orientation to maximum stress conditions. These are also the ones that will have the greatest 

impact on reservoir properties as permeability increases. Dolomitic rocks tend to fracture more 

easily than limestone, and fine-grained rocks fracture more easily than coarse-grained rocks. 

Thin beds are more prone to fracturing than thick beds (Ahr, 2008). Once fractures are 

introduced, the displacement process no longer depends on fluid properties alone (Uleberg & 

Høier, 2002). In a fractured reservoir, total porosity and permeability consist of both matrix and 

fracture components. It is necessary to determine relative contributions from both in order to 

assess reservoir performance (Ahr, 2008). 

 

There are four important petrophysical parameters that need to be accounted for in fractured 

reservoirs. These are (a) fracture permeability, (b) fracture porosity, (c) fluid saturations (in 

fractures) and (d) recovery factor (expected). Fracture permeability and fracture width decrease 
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exponentially with depth and confining pressure. Fracture porosity is a small percentage of total 

reservoir porosity, but due to connected fractures, the small fracture volume can contribute 

significantly to total permeability (Ahr, 2008). 

 

A carbonate field with low porosity and permeability, initially, may have its permeability 

increased by fracturing. Injected fluids tend to flow through the fracture network and bypass 

the oil in the matrix. For this reason, a more porous carbonate reservoir rock, containing a 

fracture network, could become swept unevenly. This leads to an early breakthrough of injected 

fluids in the producing wells, resulting in low recovery factors. It is apparent that fracturing is of 

major importance to reservoir properties if present (Manrique, et al., 2007). 

 

Formation wettability is a crucial factor that controls fluid distribution in the reservoir. Whether 

a reservoir has a water-wet or oil-wet preference could significantly influence production 

performance. Most carbonate reservoirs have wettabilities ranging from mixed-wet to oil-wet 

(Alotaibi, et al., 2010). 

 

1.2 | PRODUCTION IN FRACTURED RESERVOIRS 
 

Reservoirs with low matrix permeability cannot be produced economically without the presence 

of fractures. Production characteristics in fractured reservoirs are different from conventional 

reservoirs. Because of this, production strategy and reservoir performance will vary (Allan & 

Sun, 2003). 

I. Fracture networks have high transmissivity, which refers to the transport of fluids 

between matrix blocks across fractures (Frampton, 2014). This causes a very low 

pressure drop around the producing well. In contrast to un-fractured reservoirs, 

pressure drop becomes insignificant in the production process. 

II. Fluid expansion, gravity drainage and imbibition are processes that will continue to 

transport oil from matrix blocks into the fractures while producing. 

III. Gas-to-oil ratio is lower in fractured reservoirs during the production because the oil 

liberates gas, which will follow the fracture pathways upwards instead of horizontally. 

The consequence is an extended gas cap or a secondary gas cap on top of the reservoir. 

IV. Water production is only a function of production rate, and independent of the reservoir 

rock characteristics and fluid properties. 

V. The bubble point does not vary in a fractured reservoir as PVT properties change 

throughout production. 
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2 | ENHANCED OIL RECOVERY (EOR) 

2.1 | PRIMARY RECOVERY 
 

Reservoirs contain natural pressures caused by various forces, such as: (1) Expanding natural 

gas, (2) gravitational force, (3) buoyancy force from surrounding water, and (4) forces from 

compaction of reservoir rocks (Donaldson, et al., 1989). When a well is drilled for production or 

exploration, oil will flow through the porous media and into the wells. Sufficient pressures make 

the oil rise towards the surface, but if initial pressures are too low or fall during production, 

artificial lifting methods such as pumping are applied. Utilizing natural or artificial pressures as 

means of producing oil is referred to as primary recovery (Brown, 2002), and generally produces 

less than 30 % of the oil in a reservoir (Kokal & Al-Kaabi, 2010). 

 

There are different mechanisms of primary recovery. One type is the solution gas drive; 

occurring as pressures are lowered during production and gas is liberated from the oil. The 

expanding bubbles of gas push the oil towards the producing well. Another is the gas cap drive; 

taking place when a reservoir has a gas cap on top, and expands as oil is being produced. In this 

way, it acts as an additional driving force. Lastly, there is the water drive, where pressures in an 

aquifer, connected to the reservoir, may be sufficient to drive the oil out during production 

(Brown, 2002). 

 

2.2 | SECONDARY RECOVERY 
 

After reservoir pressure has been reduced until it no longer induces movement of 

hydrocarbons, other measures must be considered. Primary recovery has a tendency to leave 

much of the oil behind. Therefore, secondary recovery methods are used in most fields (Brown, 

2002). These methods include flooding the reservoir with water or gas. A variety of different 

gases could be used: natural gas, CO2, nitrogen and air (Skarestad, 2012). Oil produced after 

secondary recovery is normally 30-50 % of original oil in place (Kokal & Al-Kaabi, 2010).  

Waterflooding has been in use for decades with the purpose of displacing oil into producing 

wells and to maintain reservoir pressure. There are especially two negative aspects of 

waterflooding. One is that water does not sweep oil from the reservoir efficiently as it moves 

through the pores. The performance of waterflooding is often dependent on the formation 

wettability. A water-wet reservoir has water coating the pore walls. During waterflooding, water 

enters the pores along the coated walls as it displaces the oil in a spontaneous imbibition 

process (Alotaibi, et al., 2010). Imbibition refers to displacement of the non-wetting phase (oil) 

by the wetting phase (water). Immiscibility between water and oil leads to snap-off of oil 
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droplets which become trapped by capillary forces in the center of the pores. Another issue is 

that water can bypass certain parts of the reservoir due to heterogeneity (such as fractures) 

that inhibit flow. With large parts of the reservoir remaining un-swept, recovery becomes 

inefficient (Shehata, et al., 2014). 

 

The pressure decrease following primary recovery may be partially restored by injecting gas. In 

this instance, gas from the production wells are recompressed and injected into selected wells 

for pressure support. The most beneficial application of the natural gas is the gas drive method. 

Gas is injected into the reservoir under pressure and sweeps the oil from injector to producer 

continuously. Injection of gas is favorable if the reservoir has a gas cap. In this way, the gas cap 

expands as more gas is injected, expelling the oil (Donaldson, et al., 1989). However, the low 

viscosity of gas leads to a high mobility ratio between gas and oil. This results in an early 

breakthrough of gas in the production well and makes volumetric sweep efficiency less 

favorable compared to that of waterfloods. This is mainly caused by channeling of gas through 

preferred pathways and gas fingering through the oil. However, injecting gas into a dipping 

reservoir may counteract these problems and improve the sweep by gravity stable displacement 

(Skarestad, 2012). 

 

2.3 | TERTIARY RECOVERY 
 

When secondary recovery methods have been exhausted to a point where they are no longer 

economical, supplementary energy is required (Stosur, et al., 2003). Enhanced oil recovery is 

defined as processes that seek to improve recovery of hydrocarbon from a reservoir after the 

primary production phase. That implies that both secondary and tertiary recovery processes 

belong in enhanced oil recovery (Terry & Rogers, 2014). Tertiary recovery processes generally 

refers to injection strategies involving miscible flooding, chemical flooding and thermal flooding 

processes. 

 

The challenge lies in mobilizing oil trapped in pores already swept and reaching un-swept parts 

of the reservoir. Mobilization of oil is controlled by viscous forces and interfacial tension in 

pores filled with water and oil. The fraction of oil recovered is a function of a dimensionless 

parameter called the capillary number, Nvc, which is a function of both viscous and capillary 

forces. Viscous forces depend on fluid viscosity, flow velocity and flow path length. Capillary 

forces depend on interfacial tension and pore geometry. So by altering any of these parameters, 

the residual oil saturation can be decreased (Fulcher, et al., 1985). A capillary number greater 

than 10-5 is generally required to mobilize oil droplets after a waterflood. Tertiary methods have 

been developed with the objective of either increasing the viscous force of injected fluid, or 

decreasing the interfacial tension between the fluid injected and the reservoir oil (Terry & 
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Rogers, 2014). With oil still remaining after primary and secondary recovery methods, 70-75 % 

of the remaining oil is a considerable target for EOR processes. 

2.4 | CO2 
 

2.4.1 | PHYSICAL AND CHEMICAL PROPERTIES 

 

CO2 is in the global spotlight because it is the largest source of U.S. greenhouse gas emissions. 

CO2-driven EOR has provided an increase in hydrocarbon production, while capturing and 

storing CO2 underground in geological structures. These are major reasons why the utilization of 

CO2 in EOR processes has become more prevalent in recent years (Lee & Kam, 2013). 

 

CO2 is preferable to other gases because of its ability to become a supercritical phase at typical 

reservoir pressure and temperature conditions. This gas is also less expensive than other 

similarly miscible fluids (NETL, 2010). The density of CO2 approaches that of liquid water, but 

behaves like a gas. By using superciritcal CO2 in an EOR project, the displacement front becomes 

more stable, thus naturally counteracting gravity segregation and viscous fingering to a greater 

extent, in contrast to other gases (Lee & Kam, 2013). 

 

In Figure 2.4.1 (a), all the possible phases, within their respective temperature and pressure 

boundaries, can be observed. CO2 exist as a gas at normal temperatures below the critical point. 

At low temperatures, and at pressures above the sublimation line, CO2 takes the shape of a 

solid. It may transfer into vapor if the decrease in pressure is sufficient. At temperatures 

between -56.5 Co (triple point) and 31.1 Co (critical point) an increase in pressure can turn vapor 

into a liquid state. 

 

The critical point is at 31.1 Co and 71.9 bar. When increasing both temperature and pressure 

beyond this point, CO2 enters a supercritical state. The phase transitions solid-gas, solid-liquid 

and liquid-gas require a release or an adsorption of heat. Moving between phases such as 

supercritical- liquid or supercritical gas, heat release is not a necessity, making the use of CO2 

that much more advantageous (IPCC, 2005). 
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Figure 2.4.1(a): Pressure vs. temperature diagram for carbon dioxide. CO2 can vary between 

solid, vapor, liquid, gas and supercritical phases (IPCC, 2005). 

 

When CO2 is injected into a reservoir, it becomes soluble with the residual crude oil because 

lighter hydrocarbons from the oil dissolve in the CO2 while CO2 also dissolves in the oil. 

However, this is mainly achieved with a high CO2 density in addition to the oil containing many 

light components. Miscibility between CO2 and oil can only occur above a certain pressure, 

which in turn depends on density of the fluids (NETL, 2010). Therefore, it is important to have 

an idea of how density of CO2 varies with temperature and pressure, as displayed in the figures 

below. 

 

The density of CO2 within the supercritical region can be set as a function of temperature and 

pressure, as shown in figure 2.4.1 (b). Density decreases with increasing temperatures and falls 

more steeply with lower pressures. For high pressures the decline in density is almost a linear 

function. As the CO2 crosses the supercritical boundary, the density declines more sharply with 

increasing temperatures. 
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Figure 2.4.1 (b): Density vs. temperature diagram for carbon dioxide at fixed pressures (NIST, 

2011). 

 

In figure 2.4.1 (c), we can observe the density change with increasing pressure at a constant 

temperature. As CO2 becomes more compressed under high pressures, density increases. This 

trend is slow at first but as phase transitions take place, density increases sharply. 

 

 
Figure 2.4.1 (c): Density vs. pressure for carbon dioxide at constant temperatures (NIST, 2011). 

 

 

 



19 
 

The dissolution of CO2 in water is known to have a certain impact on the pH of water. Chemical 

reactions between CO2 and water produce carbonic acid, which lowers the pH significantly. This 

is seen from the chemical reaction: CO2 (aq) + H2O ↔ H2CO3 (aq), where the product is known as 

carbonic acid (IPCC, 2005). Figure 2.4.1 (d) is presented below with pH as a function of CO2 

concentration in sea water. It shows how an increase in the weight percentage of CO2 in water 

will lower pH in a steep linear curve. 

 

 
Figure 2.4.1 (d): pH vs. CO2 concentration in sea water by weight (IPCC, 2005). 

 

2.4.2 | CO2 INJECTION IN FRACTURED RESERVOIRS 

 

Both laboratory and field studies have established that CO2 can be an efficient oil-displacing 

agent (Holm, 1974). The main recovery mechanisms known to occur during gas injection for 

naturally fractured reservoirs are listed below. Several factors determine the relative 

significance of each mechanism, including permeability of the matrix, level of fracturing, fluid 

properties, injection rate and reservoir conditions (Shojaei & Jessen, 2015). 

 

Gravity Drainage: This is an important process in fractured reservoirs when recovering oil by gas 

injection from low permeability matrix blocks. The density difference between gas in the 

fracture and oil in the matrix results in oil drainage from the matrix. Gravitational forces would 

have to exceed the capillary forces in order for this to occur. Recovery has been found to 

increase with higher influence of gravitational forces. Increasing the injection rate results in 

higher pressures, which affects the viscous flow, leading to a less gravity dominated process 

(Chordia & Trivedi, 2010). 

 

Molecular Diffusion: Under miscible or near-miscible conditions, diffusion is often considered to 

be the most important production mechanism in fractured reservoirs (Hoiteit & Firoozabadi, 

2006). Diffusion is the process where molecules, ions or other small particles mix 
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spontaneously, moving from a region of high concentration to a region of lower concentration 

(Crussler, 2009). If CO2 and oil are in contact, with a sharp interface between them, they will 

slowly diffuse into one another, causing the fluids to become a diffuse mixed zone (Perkins & 

Johnston, 1963). For small and low permeable matrix blocks, with high capillary pressure, 

gravity drainage becomes less effective, turning diffusion into the dominating process. The 

effects of diffusion are less predominant in large scale bypassing because of gravity segregation 

(Chordia & Trivedi, 2010). The impact of molecular diffusion plays a more significant role in 

fractured reservoirs, contrary to conventional reservoirs, because of the large fracture surface 

area available, increasing the characteristic time for diffusion to take place (Shojaei & Jessen, 

2015). 

 

Water-Shielding: High water saturation in a porous media is known to affect the diffusion 

process because of water barriers shielding the oil from the CO2. This may limit the contact 

between CO2 and the oil. In water-wet media, this phenomenon is especially severe (Eide, 

2014). 

 

Miscible Displacement: A CO2 displacement may be miscible or immiscible (Skarestad, 2012). In 

a petroleum reservoir miscibility is the physical condition between fluids that allows them to 

mix in all proportions with no interface. If the interfacial tension between oil and gas is 

eliminated, all of the oil will be swept and residual oil saturation will be reduced to zero (Holm, 

1986). 

 

There are two types of miscible displacements: first-contact and multi-contact (Holm, 1986). 

These are illustrated in a ternary diagram, shown in Figure 2.4.2 (b) below. In each corner of the 

diagram components are at 100 % saturation. First-contact means that any amount of solvent 

(gas) injected will exist as a single phase with the oil in the reservoir (Holm, 1986). In the 

diagram this is represented by the dilution path from I2-J3 outside of the two-phase region. 

Miscibility can also occur by a multi-contact process, where gas and oil mix in repeated contacts. 

When the phase compositions formed in each contact move towards a critical point, miscibility 

can be achieved. This happens through processes called vaporizing and condensing gas drive. In 

figure 2.4.2 (b) this is illustrated by the dilution paths I2-J1 and I1-J2, respectively. (Johns & 

Dindoruk, 2013). 
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Figure 2.4.2 (a): Production of oil by miscible injection (NETL, 2010). 

 

 
Figure 2.4.2 (b): Modified figure from (Mathiassen, 2003).Ternary diagram showing different 

dilution paths related to their respective displacement process. 

 

A miscible displacement becomes effective in producing hydrocarbons because mechanisms 

such as mixing and reduced interfacial tension between gas and oil occur, as shown in Figure 

2.4.2 (a). Through mixing, oil viscosity is reduced and, thereby, relative permeability of the oil is 

increased. When CO2 contacts the oil, swelling occurs, causing the oil to expand and move 

towards the producing well. Observations suggest that when the oil and gas mix, drainage rates 

become higher in the oil zone, driving the excess oil towards the fractures (Chordia & Trivedi, 

2010). Mixing during a miscible injection is due to convection, diffusion and mechanical 

dispersion. Uneven fluid flow or a concentration gradient will cause increased mixing, referred 

to as dispersion (Perkins & Johnston, 1963). A concentration gradient controls the diffusion 

process while velocity variations cause mechanical dispersion (Kamalipour, et al., 2014). 

 

Immiscible Displacement: This type of displacement has a more limited degree of mass transfer 

between the gas and oil phases. Although gas will extract some components from the oil, true 

immiscibility is regarded as a limit where solubility of oil in the gas phase is negligible. An 
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immiscible gas flood is outperformed by a miscible one in terms of production because gas is 

less likely to bypass or finger through the oil. The displacement efficiency improves as the gas 

flood becomes more miscible (Johns & Dindoruk, 2013). 

 

Minimum Miscibility Pressure (MMP): The lowest pressure required to reach miscibility 

between two phases is known as the Minimum Miscibility Pressure (MMP). The two phase 

region is dependent on pressure. A displacement that is immiscible at a specific pressure may 

become miscible at a higher pressure (Skarestad, 2012). The slim tube experiment provides a 

measurement of MMP. The experimental setup consist of a long tubes of small radiuses packed 

with unconsolidated sand. This tube is saturated with oil at reservoir conditions. Gas is then 

injected at a constant rate using a high pressure pump. Figure 2.4.2 (c) illustrates recovery of oil 

at 1.2 hydrocarbon pore volumes when injecting CO2. As pressure increases the recovery starts 

to level off, which is defined as the point of minimum miscibility pressure. In the ternary 

diagrams, previously shown in Figure 2.4.2 (b), the MMP occurs where the critical tie line passes 

through the crude composition (Skarestad, 2012). 

 

 
Figure 2.4.2 (c): Minimum Miscibility Pressure is achieved at the end point production in a slim-

tube experiment (Skarestad, 2012). 

 

2.4.3 | CO2-FOAM 

 

CO2 Injection has been in use for over 40 years and has been considered an economically 

successful recovery technique. Even though CO2 flooding is often used as a tertiary method, it 

still does not recover most of the oil from the reservoir. Typically, 10-20 % of the OOIP is swept 

by miscible CO2 flood, while immiscible CO2 floods have recoveries as low as 5 – 10 % of OOIP. 

Consequently, the remaining hydrocarbons lie in the range of 35-65 % of OOIP when the CO2 

flood is complete (NETL, 2011). 

 

The low oil recoveries can be ascribed to two major reasons. (1) The density of pure CO2 under 

high pressure is lower than oil, causing gravity override and early CO2 breakthrough as a result. 
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This leads to large amounts of oil remaining un-swept in the lower regions. (2) The viscosity of 

supercritical CO2 is also much lower than typical values for both oil and brine. Because of this, 

unfavorable mobility ratios can be expected to occur, thus promoting fingering of CO2 through 

the oil. This has several important implications such as: early breakthrough, high CO2 utilization, 

delayed CO2 production, depressed oil production rates and low oil recovery efficiency (NETL, 

2011). 

 

Mobility control of CO2 aims to reduce large differences in density and viscosity between CO2 

and other fluids. Injecting CO2 as a supercritical phase together with a foaming agent, 

generating in situ foam, can be a very efficient recovery method (NETL, 2011). Another reason 

to inject CO2 as foam is its ability to overcome subsurface heterogeneity. This is because foam is 

more sensitive to capillary pressure. A number of CO2-foam field applications have showed that 

this method could delay the breakthrough of injected fluids while enhancing oil production 

dramatically (Lee & Kam, 2013) 

 

2.5 | FOAM 
 

2.5.1 | DEFINITION 

 

Foam is comprised of a gas dispersed in a continuous liquid phase (Schramm, 2005). The 

liquid is generally water but could also be hydrocarbon-based fluids or acids. Foam can be 

generated as a result of liquid disturbance where the liquid contains a small amount of 

foaming agent, known as surfactant, while contacting a gas. A foaming agent is necessary to 

better generate foam and keep it stable. Without it, foams are unstable and quickly break down 

(Sheng, 2013). Pockets of trapped gas are packed tightly together at large gas fractions so 

that they form polyhedral rather than spherical cells. These cells are separated by thin films 

of surfactant-solubilized water, known as lamellae, as shown in Figure 2.5.1. The junction 

that connects three lamellae is referred to as a plateau border (NETL, 2011). 

 

Characterization of foam is done through foam quality and bubble size. Foam quality is 

expressed as the percentage of gas volume present in the foam. Typical foam quality 

ranges from 75% to 90% (Lake, 1989). Bubble size refers to the average diameter and 

distribution of bubble sizes. There is a correlation between the quality of foam and its 

bubble size. As bubble sizes become larger, foams become less stable, resulting in a lower 

foam quality (Sheng, 2013). 
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Figure 2.5.1: A container filled with gas and liquid, with surfactant solution, generates foam if 

mixed. Gas bubbles are separated by thin liquid films (lamellae) stabilized by surfactants 

(Schramm, 2005). 

 

2.5.2 | ADVANTAGES 

 

Foams can be injected into reservoirs to achieve mobility control or to block and divert flow 

(Schramm, 2005). Gas injected into a porous oil-saturated media, without the possibility of foam 

generation, can quickly flow to the producing well. This will leave a lot of the oil untouched. 

Foam addresses the issue regarding low viscosity of the gas, which renders a high mobility ratio 

between oil and gas. By creation of foam with the injected gas, the gas becomes more viscous 

which lowers its velocity. The addition of surfactants helps generate foam in situ, but also 

improves displacement efficiency (Sheng, 2013). 

 

The advantage of foam is especially apparent in heterogeneous and fractured reservoirs, such as 

carbonates. Foams are stronger in high permeability layers because of lower capillary pressure, 

compared to layers with lower permeability where capillary pressure is higher (Yan, et al., 

2006). Non-wetting gas will preferably stay in high permeability channels, which helps to divert 

flow into lower permeability layers. Decrease in gas mobility indirectly diminishes gravity 

segregation if the pressure in the injection well can be increase. Thus, foam will drive the gas to 

other parts of the porous media, naturally increasing the sweep efficiency (Sheng, 2013). 

 

Selecting the proper surfactant for generating foam, under reservoir conditions, is considered a 

major challenge. The economic feasibility of foam flooding is largely determined by the amount 

of surfactant needed in order to generate and propagate foam. As a reservoir undergoes foam 

flooding, the amount of adsorbed surfactant can be of great importance. Therefore, selecting a 
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surfactant with acceptable adsorption levels, under reservoir conditions, is crucial (Schramm, 

2005). 

 

2.5.3 | FOAM STATES 

 

Co-injection, of surfactant and gas, into a porous medium is subjected to mechanisms of in 

situ lamella creation. When foam flows through a porous media, three different situations 

may arise, as Figure 2.5.3 (a) shows. In the first situation (A) there are no foam films 

present, originally. This could be the case in a high capillary pressure formation, strongly 

oil-wet rock or highly oil saturated rock, where foams are destabilized and broken down. 

Consequently, two-phase flow of gas and liquid continues without foam. The formation is 

left with a high saturation of water as it fills the smaller pores (Lee & Kam, 2013). 

 

 
Figure 2.5.3 (a): Different foam regimes occur depending on the presence of foam films (Lee & 

Kam, 2013). 

 

In the second instance (B), a moderate increase in foam viscosity, followed by a moderate 

increase in the pressure gradient, will result in the formation of weak foams. In the last situation 

(C), significant amounts of very fine-textured foams are present. These are referred to as strong 

foams and can increase the effective foam viscosity (or decrease mobility of gas) additionally 

once they have been generated. Strong foam can drastically increase the pressure gradient (Lee 

& Kam, 2013). In coreflood experiments, foam generation is defined by the transition between 

weak foam to strong foam. Figure 2.5.3 (b) illustrates the pressure vs. time (A) and pressure vs. 

injection rate (B) for a Berea sandstone core. Different injection rates have been used with a 

constant foam quality of 80 %. What stands out is how sudden the increase in pressure drop 

occurs once generation of foam starts. The figure also shows in what ranges of pressure drop 

the weak and strong foams occur. 
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Figure 2.5.3 (b): (A) Pressure drop vs. time and (B) pressure drop vs. injection rate for a coreflood 

experiment where foam is generated (Lee & Kam, 2013). 

 

2.5.4 | GENERATION MECHANISMS 

 

Major lamella creation mechanisms include snap-off, lamella division and leave behind 

(Ransohoff & Radke, 1988). These concepts are displayed in Figure 2.5.4, where gas flows 

through a porous media, displacing a liquid. 

 

Snap-off (a) occurs when gas intrudes through a pore space, resulting in a thinning by the 

narrow pore throat until it snaps into two. This mechanism occurs repeatedly at the same 

site, affecting a large portion of the flow field. Snap-off creates discontinuity in the gas 

phase as well as formation of lamella. The generated bubbles may block the pathway of gas 

behind it, naturally reducing the permeability of the gas. This is regarded as the most 

dominating foam generation mechanism (Liontas, et al., 2013). 

 

Lamella division (b) is another mechanism where lamella (pre-generated foam) flows 

through a point, branching out, which will separate the lamella into two. This process also 

occurs repeatedly at the same site. At high flow velocities, both snap-off and lamella 

division occur simultaneously (Liontas, et al., 2013). 

 

Leave-behind (c) happens when two gas menisci intrude saturated pores from different 

directions, effectively trapping liquid and leaving lamella behind. As the number of lamella 

increase, more pathways become blocked, thus reducing permeability of gas. This mechanism is 

especially relevant in low velocity regimes and generates weak foams. It has been concluded 

that foams generated entirely by leave-behind gave a fivefold reduction in gas permeability. On 
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the contrary, snap-off gave a hundred-fold reduction in gas permeability (Ransohoff & Radke, 

1988). 

 
Figure 2.5.4: Schematics of mechanisms for foam generation including a) snap-off, b) lamella 

division and c) leave-behind (Liontas, et al., 2013). 

 

2.5.5 | STABILITY 

 

Foams are not thermodynamically stable, meaning that they eventually will collapse over time. 

Stability of foam is dependent on a number of factors presented by (Sheng, 2013), which will be 

discussed. 

 

Effect of Oil: A major concern regarding foam injection in reservoirs is the stability of foam in 

the presence of oil. In order to achieve good mobility control, it is important that foam remains 

stable when contacting the oil (Simjoo, et al., 2013). As the oil spreads on the foam film, the film 

tends to break as the oil displaces the original liquid film. What is left behind is an unstable oil 

film which breaks easily. Foam destabilization by oil can happen in several ways: (1) Surfactants 

partitioning in the oil phase, reducing the surfactant concentration at the gas-water interface. 

(2) Oil spreads on the foam lamellae, displacing the interface originally stabilizing the foam 

(Farajzadeh, et al., 2012). (3) Oil generating emulsions which allows drops to break out and 

rapture the stabilizing interface. (4) Oil droplets blocking certain parts of the porous media 

where bubble snap-off is inhibited, thus preventing foam generation to occur. Lighter oils are 

known to destabilize foam the most. Foams with intermediate to low tolerance for oil may be 

adequate if injected into low oil saturation zones for mobility control (Schramm, 2005). 
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Surfactants: Stable foams are caused by the presence of a foaming agent at the gas-liquid 

surface. Surfactants will lower the interfacial energy at the liquid-gas interface once it is 

adsorbed. This will make it easier to form and maintain a large interfacial area constituted by 

many gas bubbles in a liquid. It also results in an increase in interfacial viscosity, which further 

substantiates stability. Foaming ability reaches its maximum at or above the critical micelle 

concentration of surfactants (Schramm, 2005). 

 

Wettability: Foams are observed to be less stable when contacting crude oil in the presence of 

an oil-wet surface compared to the same crude oil in the presence of a water-wet surface 

(Suffridge, et al., 1989). 

 

Disjoining Pressure: This is an additional pressure within a film which supports or stabilizes the 

film. It is denoted Π(d) and depends on the film thickness, d, as shown in Figure 2.5.5 (b). There 

are attractive forces between oil-water and solid-water surfaces, as well as repulsive forces 

between oil-water and solid-water surfaces, as can be seen in Figure 2.5.5 (a) (Skauge, 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

Positive values of Π(d) represent repulsive film forces, and negative values of Π(d) imply 

attractive film forces. At a certain film thickness, referred to as the critical film thickness, dcrit, 

the film will become so unstable that it collapses (Skauge, 2013). 

 

Liquid Drainage: After foam generation there is a tendency for the liquid, which constitutes the 

film, to drain as gravitational forces act upon it. This can be seen from Figure 2.5.5 (c). As liquid 

starts moving downwards, bubble shapes transition from approximately spherical to polyhedral 

shapes. At this stage, capillary forces compete with gravitational forces. Along the plateau 

borders, gas-liquid interfaces are more curved, generating a lower pressure. Higher pressures 

reside along the thin film region, and this pressure difference causes liquid to flow towards the 

Figure 2.5.5 (a): Profile of the 
disjoining pressure with film 
thickness (Skauge, 2013). 

Figure 2.5.5 (b): Illustration of water film thickness 
between the oil phase and solid phase (Skauge, 
2013).  



29 
 

plateau borders. This results in a thinning of the films while generating a motion in the foam 

(Schramm, 2005). 

 

 
Figure 2.5.5 (c): Illustration of thickening and thinning of the films during a liquid drainage (Schramm, 

2005). 

 

Bubble Sizes and Diffusion: Foams are generally more stable if bubble sizes are uniformly 

distributed. Foam that has a bubble size distribution of mostly smaller sizes is representative of 

stable foam. Small gas bubbles have a higher pressure than larger bubbles. This pressure 

difference results in a chemical difference, causing gas to diffuse through liquid from small 

bubbles to larger bubbles. Consequently, bubbles will merge together (Sheng, 2013). 

 

Pressure and Temperature: Higher pressure helps stabilize foams because this results in smaller 

bubbles. However, if a certain pressure is exceeded foams may collapse. Liquid films also 

become larger and thinner, which slows down liquid drainage. With increasing temperatures, 

surfactants become more soluble in the liquid phase. High temperatures increase liquid 

drainage of the films, meaning that foam becomes destabilized (Sheng, 2013). 

 

Limiting Capillary Pressure: If the capillary pressure, in a porous media, surpasses a 

«limiting» value then the foam becomes unstable. This limiting capillary pressure is a 

strong function of the wetting phase and rock morphology. Foam coalescence occuring at 

this limit, in a porous media, has been found to be close to the rupture pressure of a foam 

film (Farajzadeh, et al., 2012). 

 

2.5.6 | FLOW BEHAVIOR 

 

There are several mathematical relations that can be used to describe the foam flow behavior, 

as presented by Bertin et al. (1998). These are foam viscosity, foam relative permeability and 

the mobility reduction factor.  
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Apparent Viscosity: The apparent viscosity of foam, µf, is a function of both bubble density (nf) 

and real velocity of foam (νf). It is calculated by a combination of gas permeability and Darcy’s 

law. The expression is written as: 

 

µf =  µg + 
αnf

νf
c  2.5.1 

 

Here, α is a proportional constant and a function of surfactant properties. And c is the empirical 

exponent with a theoretical value of 1/3. Viscosity of foam is known to be much higher than 

both water and gas (Bertin, et al., 1998). 

 

Relative Permeability: Generated foam leads to reduced gas relative permeability as foams 

block flow paths of least resistance in a porous media. The following equation has been 

presented to describe relative permeability of foam, krf: 

 

krf =  𝑘𝑟𝑔
0 𝑆̅

𝑓

𝑛𝑔  2.5.2 

  

Here, 𝑘𝑟𝑔
0  is the relative permeability of gas at connate water saturation, Swc. The gas exponent 

is represented by ng. The saturation of foam (Sf) in Equation 2.5.2 is expressed as: 

 

S̅f =  𝑋𝑓(1 − 𝑆𝑤̅) 2.5.3 

  

Xf = Sf/Sg is the fraction (surfactant-to-gas) of the foam phase that is flowing. Water saturation in 

equation (2.5.3) is expressed as 𝑆𝑤̅  (Kovscek, et al., 1995). 

 

Mobility Reduction Factor: In field scale application, the parameters related to surfactant 

concentration, oil saturation, water saturation and capillary number are considered to have the 

most significant effect on foam flow behavior. These can all be correlated through the mobility 

reduction factor, Mrf, (Kovscek, 1998), expressed as: 

 

𝑀𝑟𝑓 =  
1

1 +  𝑀𝑟𝐹𝑠𝐹𝑤𝐹𝑜𝐹𝑐
 

2.5.4 

 

Here, Mr is the reference mobility reduction factor. This means that the factor is calculated for a 

system with a reference values for surfactant concentration, water saturation, oil saturation and 

capillary number. Fs, Fw, Fo and Fc are mobility reduction factor components for surfactant 

concentration, water saturation, oil saturation and capillary number, respectively. The mobility 

reduction factor indicates to what extent mobility of gas has been reduced. 
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2.6 | WATER-ALTERNATING-GAS (WAG) 
 

2.6.1 | GENERAL DESCRIPTION 

 

Mobility control is also possible without the use of foams. WAG injection was introduced as a 

method to control the mobility of a gas injection by the use of water, thereby stabilizing the 

displacement front. Water and gas are injected in alternating slugs, displacing the oil in a 

reservoir. Microscopic displacement of oil by gas is usually more efficient than for a water 

injection. WAG becomes a better alternative because it combines improved displacement of the 

gas flooding with an improved macroscopic sweep of water injection. In addition to mobility 

control, the use of WAG is also environmentally favorable when it comes to reinjection of gas 

for storage purposes (Christensen, et al., 2001). Figure 2.6.1 illustrates the use of alternating 

water and gas slugs as an enhanced oil recovery process. 

 

 
Figure 2.6.1: Schematics of a water-alternating-gas flood for enhanced oil recovery (Zahoor, et 

al., 2011). 

 

2.6.2 | WAG DESIGN 

 

WAG injection is normally applied as an enhanced oil recovery method in the late stages of field 

production, after primary and secondary recovery has been conducted. WAG has been utilized 

successfully in many field trials, most of which are in Canada and the U.S. (Christensen, et al., 

2001). 

 

Immiscible/miscible: The WAG process can either be immiscible or miscible. Deciding on which 

should be used is reportedly based on availability and economic considerations. From a total of 

60 projects reviewed by Christensen (2001), 79 % were applying miscible WAG injection, mostly 

at onshore reservoirs. The majority of these projects were re-pressurized so that reservoir 
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pressure exceeds minimum miscibility pressure of the fluids. Immiscible WAG has been used 

where gravity-stable gas injection is inapplicable because of limited gas resources, unfavorable 

dipping angles or reservoir heterogeneity. The first gas slug in a WAG injection could potentially 

dissolve into the oil, causing a favorable change in the fluid viscosity/density relations at the 

displacement front. As a result of this, the displacement can become near-miscible (Christensen, 

et al., 2001). 

 

Injection Gas: The gases used in a WAG are divided into groups: CO2, hydrocarbons and non-

hydrocarbons. Although it is an expensive gas, CO2 possesses certain properties which make it 

eligible when aiming for a miscible process. Corrosion is often a negative aspect of applying CO2, 

but nearly impossible to avoid. From the 60 projects reviewed by Christensen (2001), 28 were 

using CO2 as the gas of choice in their WAG process. Due to the availability of hydrocarbon gas 

directly from production, all offshore projects use it in their WAG injections. It has been 

reported that 24 out of 60 reviewed fields were using hydrocarbon gas. Every WAG flood has its 

optimal amount of gas needed for injection, and exceeding this limit means gas will be recycled, 

gaining limited extra recovery. WAG with CO2 in a miscible process shows an average improved 

oil recovery of 10% OOIP, whereas hydrocarbon and nitrogen gases in an immiscible process 

have improved recoveries of 8% OOIP (Christensen, et al., 2001). 

 

Injection Pattern: The most utilized pattern for WAG onshore is the five-spot injection pattern. 

The same pattern is not necessarily applied offshore due to the expensive drilling and data 

collection that is required compared to onshore projects. Four injection wells are placed in a 

box-like shape, with the producing well in the center (Dai, et al., 2013), as can be seen from 

Figure 2.6.2.  

 
Figure 2.6.2: Schematics of a five-spot well pattern consisting of four injection wells and a 

production well in the center (Dai, et al., 2013). 
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WAG Ratio: It is crucial to find the optimum WAG ratio before beginning the injection process. 

In field applications, the most used WAG ratio is 1:1, meaning that the gas and water cycles are 

equal. It is influenced by the rock’s wetting state (Zahoor, et al., 2011). Water-wet bead packs 

have shown optimum WAG ratio of 0:1 (gas injection), while oil-wet packs imply that 1:1 is the 

optimum WAG ratio (Rogers & Grigg, 2001). Typical cycle times range from months to a year 

(NETL, 2011). Recovery efficiency has been proven to be a function of both the injection rate 

and the WAG ratio (Al-Shuraiqi, et al., 2003). Injecting below the optimum WAG ratio (more gas 

than water) creates viscous instability. On the contrary, injecting above the optimum WAG ratio 

(more water than gas) has a tendency to stabilize the process, but lower the efficiency of 

displacement as production becomes prolonged (Rogers & Grigg, 2001). 

 

2.6.3 | FACTORS INFLUENCING INJECTIVITY 

 

Some simple relations will be presented that provides insight into the advantages of WAG 

injection. 

 

Recovery Factor: There are three contributions to the oil recovery factor, Rf: 

 

𝑅𝑓 =  𝐸𝑣 ∗ 𝐸ℎ ∗  𝐸𝑚  2.6.1 

 

Here, Ev is the vertical sweep, Eh the horizontal sweep and Em the microscopic sweep. In 

literature, Ev and Eh is referred to as macroscopic sweep. Recovery can be enhanced by 

improving one or all of the three factors. The horizontal displacement efficiency is largely 

affected by the stability of the displacement front, which in turn depends on the mobility of the 

fluids (Christensen, et al., 2001). 

 

Horizontal Displacement Efficiency: This displacement efficiency is largely affected by gas and 

oil, mobility ratio (Amin, et al., 2012) defined as: 

 

𝑀 =  

𝑘𝑟𝑔
µ𝑔

⁄

𝑘𝑟𝑜
µ𝑜

⁄
 

 

2.6.2 

The equation involves relative permeabilities, 𝑘𝑟𝑔 and 𝑘𝑟𝑜 for gas and oil, respectively. It also 

includes viscosities, µ𝑔 and µ𝑜 of gas and oil, respectively. With a mobility ratio of M > 1, the 

displacement becomes unfavorable as the gas will finger or channel through the oil, leading to 

an early gas breakthrough. In addition to mobility ratio, heterogeneity, such as high permeable 

layers in the reservoir, may also cause the sweep to become inefficient. 
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Miscible gas injection has good microscopic sweep efficiency but poor macroscopic sweep 

efficiency because of viscous fingering and gravity over-ride (Al-Shuraiqi, et al., 2003). In 

addition, it is expensive to apply. On the contrary, water flooding is cheap and less prone to 

gravity segregation and unstable displacement fronts. The downside, however, is the large 

volumes of residual oil left behind, which makes it a less than optimal injection strategy.  

 

Gravity Segregation: During a gas injection cycle, gas may tongue upwards and away from the 

wells, while water moves downwards during a water injection cycle. Fluids will segregate, like 

Figure 2.6.3 illustrates, once there is a significant vertical permeability and because of density 

differences between the respective fluids (Johns & Dindoruk, 2013). 

 
Figure 2.6.3: During a WAG, gas may move upwards and water may move downwards, owing to 

the nature of their densities (Johns & Dindoruk, 2013). 

 

 

Vertical Sweep Efficiency: This depends on both viscous and gravitational forces, expressed by 

the viscous/gravity ratio (Christensen, et al., 2001): 

 

𝑅𝑣 𝑔⁄ =  (
𝑣µ𝑜

𝑘𝑜𝑔𝛥𝜌
) (

𝐿

ℎ
) 

2.6.3 

  

Here, v = Darcy velocity, µo = oil viscosity, L = distance between wells, ko = oil permeability, g = 

gravitational force, Δρ = fluid density difference, h = height of displacement zone. This ratio of 

viscous to gravity forces is the prime variable when assessing the efficiency of WAG injection 

(Rogers & Grigg, 2001). Properties affecting vertical sweep include reservoir dip angle, 

permeability differences and porosity. Increasing porosity and permeability downwards is 

advantageous to WAG as it is favorable in stabilizing the front (Christensen, et al., 2001). 

Laboratory and simulation results have found that oil becomes trapped by water that would 

otherwise be contacted by CO2 during the WAG injection. And water-wet cores have proven a 

higher degree of oil trapping than oil-wet cores (Jackson & Andrews, 1985). This causes gravity 
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forces dominate water-wet tertiary floods while viscous fingering controls oil-wet tertiary floods 

(Amin, et al., 2012). 

 

Heterogeneous Permeability: Most reservoirs, especially carbonates, have non-uniform pore 

size distribution as well as variable interconnectivity. Due to the nature of these phenomena, a 

certain level of heterogeneous permeability is expected. This can severely affect the WAG 

injection process and, ultimately, the recovery efficiency. This effect worsens with an increasing 

vertical/horizontal permeability ratio, because gravity segregation becomes more dominant 

(Zahoor, et al., 2011). 

 

Trapped-gas Saturation: This is one of the key parameters when assessing injectivity and 

displacement efficiency in a miscible WAG injection. There is entrapment of gas in high 

permeability layers, diverting water towards layers of lower permeability. Mobilization of 

residual oil is heavily dependent on the amount of gas trapping. Initial water saturation before 

water flooding, as well as wettability, will influence oil-saturation reduction and gas trapping 

(Rogers & Grigg, 2001). 

 

Bypassing Mechanisms: A clear understanding of important bypassing mechanisms is needed to 

be able to interpret experimental results, as explained by Stern (1991). These include: 1) 

dispersive and (2 capillary-induced bypassing, as well as 3) viscous fingering  

 

1) Dispersive bypassing occurs in single-phase flow, at the mixing zone between oil and solvent. 

If the viscosity ratio between oil and solvent is unfavorable, more extensive bypassing occurs. 

This mechanism is dependent on flow rate, but not on core length.  

 

2) Capillary-induced bypassing is similar to dispersive bypassing, and occurs in tertiary 

displacements since the solvent has to first displace water to contact the oil. As the solvent 

enters the largest pores first in a water-wet system, preferred high conductivity paths will be 

developed during formation of the oil bank, which leads to pore-level bypassing of the oil. This 

mechanism is reduced if flow rate or viscosity of the solvent is increased.  

 

3) Viscous fingering is a result of macroscopic heterogeneities as well as mobility contrasts 

between oil and solvent. Because of core-scale heterogeneities, the solvent finds a preferred 

path that most of the solvent flows through. The result is limited additional oil recovered. This 

bypassing mechanism can be counteracted through mixing between solvent and oil, reducing 

mobility contrast at the displacement front.  
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2.6.4 | OPERATIONAL CHALLENGES 

 

WAG is more challenging that pure gas or water injection due to the constant alteration of fluids 

throughout the injection process. Some common problems from different fields will be 

discussed next. Several fields have experienced early gas breakthrough due to channeling or 

override. Another serious problem is the loss of miscibility, leading to lower recovery than 

expected. Reduced injectivity has been experienced, meaning a rapid pressure drop in the 

reservoir, which will influence production. Corrosion often occurs in WAG projects applied as 

tertiary recovery methods. This means that the production of a reservoir continues in older 

facilities, which it may not have been designed for in the first place. A WAG project was delayed 

on Ekofisk due to formation of hydrates, plugging the injector (Christensen, et al., 2001). 

 

Water-alternating-gas is a proven recovery technique that normally renders better results 

compared to continuous CO2 and water injection. However, WAG floods still leave behind 

approximately one-third to two-thirds of the oil that a waterflood does (NETL, 2011). From field 

experience, it is apparent that WAG is not an optimal strategy, and it us worth considering other 

alternatives for further improvements within enhanced oil recovery. 

 

2.7 | SURFACTANT-ALTERNATING-GAS (SAG) 
 

2.7.1 | GENERAL DESCRIPTION 

 

Foam is formed on the contact of the gas with surfactant, and viscosity of the injected gas is 

reduced. Although foam can improve sweep efficiency, direct injection of pre-generated foam 

would not be practical because of its poor injectivity. Field experience suggests that injectivity 

can be improved through alternating slugs of gas and surfactant, resulting in foam creation 

inside the porous medium (Farajzadeh, et al., 2015). This is referred to as surfactant-alternating-

gas (SAG), and is operationally similar to WAG. SAG injection is one of the methods commonly 

used to counter problems related to early breakthrough caused by override, fingering and 

channeling of gas (Salehi, et al., 2014). 

 

SAG injection has several advantages over co-injection. For one, water and gas contact is 

reduced in surface facilities and pipes, preventing the corrosive effects of acidic gases (when 

contacting water) such as CO2. SAG may promote foam formation in the near-well region. By 

displacing water from the near-well region, using gas, injectivity can improve as gas mobility 

rises. Loss of surfactant due to adsorption is a central factor when considering the economic 

feasibility of SAG injection. Thus, understanding the adsorption process is critical in evaluating 

transport of chemicals. SAG is a function of gas-to-surfactant ratio at certain temperature and 
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pressure. Before SAG can be optimized, the concentration of surfactant must be optimized 

(Salehi, et al., 2014). 

 

2.7.2 | RESPONSES FROM SAG 

 

Injection of gas and surfactant in repetitive cycles will cause the capillary pressure near the well 

to move up and down, which proves to be favorable for generating foam in situ. When gas is 

injected in the wellbore area, stable foams will be generated near the wellbore if surfactant has 

been pre-injected. During a continuous CO2 and surfactant injection an exponential decrease of 

injection pressure occurs, suggesting that the CO2 is displacing fine-textured foams. This will 

eventually dry out the region near the wellbore. Regions away from the wellbore ends up 

having stable foams, while the regions near the wellbore are without foams. For a SAG process, 

the opposite occurs: foams are stable in the wellbore region. This describes the basis of why 

SAG improves injectivity (Lee & Kam, 2013). 

 

The gas-oil ratio (GOR) of a SAG process has been proven to be 10 times smaller than the GOR 

for a WAG process in the producing well (Lee & Kam, 2013). Figure 2.7.2 is from the EMU unit in 

Texas, comparing oil production rates for SAG, WAG and a waterflood. For the SAG injection, 13 

cycles of CO2 and surfactant were injected. Based on the decline curves, SAG has performs 

better than both WAG and wateflooding by improving sweep efficiency. 

 
Figure 2.7.2: Oil production rate (BPD) vs. PV injected for SAG (red), WAG (green) and a 

waterflood (blue) from the EMU unit in Texas. Decline analysis curves have been drawn. 

Modified from (Lee & Kam, 2013). 
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2.7.3 | SAG DESIGN 

 

It is necessary to consider certain factors before choosing the appropriate foam injection 

strategy. The options are surfactant-alternating-gas, co-injection or pre-formed foam. Operating 

fields often consider reservoir pressure, permeability and expected duration of surfactant 

injection as very important. SAG is mainly used in high pressure formations with low 

permeability ranging from medium to low surfactant concentrations (Turta & Singhal, 2002). 

 

Injection Gas: In previous field pilots several injection gases have been utilized for surfactant-

alternating-gas processes. Most fields in the U.S. have been applying CO2 as this is the most 

available gas, but also due to the possibility of achieving miscibility with the oil. For fields in the 

North Sea, hydrocarbon miscible gas is most widely applied. Some field pilots in China (Shengli 

and Sabei) have successfully completed SAG using nitrogen. Flue gas (N2, CO2) was used at some 

point, but was essentially replaced by CO2 by the 1980s. Implementation of miscible CO2 in SAG 

projects, and EOR processes in general, has been increasing steadily over the past two decades 

(NETL, 2011). 

 

Surfactant Optimization: Choosing the proper surfactant is critical in CO2 foam flooding. The 

surfactant needs to be soluble in brine in order to have it stabilize CO2-in-brine emulsions. As 

the temperature in a reservoir increases, the surfactant tends to become less soluble in brines, 

increasing the total amount of dissolved ions (NETL, 2011). 

Different types of surfactants are used depending on the reservoir formation rock. This is to 

prevent large amounts of surfactants to adsorb to the surface of the rocks. A cationic surfactant, 

for instance, has a positively charged head group and negatively charged counterion. This one 

cannot be used in a sandstone formation as the positively charged head would attract towards 

the negatively charged sandstone surface. It could, however, be used in a carbonate formation 

as the surfaces have a positive charge. For sandstone, it is common to use anionic, nonionic and 

amphoteric surfactants. Several surfactants have been tested in the lab and deemed as viable 

candidates for foam generation. The “Chaser CD 1045” has been implemented by several field 

pilot tests. It has been evaluated by many sources which describe it as an excellent foaming 

agent for CO2 SAG processes (NETL, 2011). 
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Another important aspect is the surfactant concentration needed in order to successfully reduce 

the mobility of the gas. Figure 2.7.3 (a) illustrates mobility reduction of gas in Berea sandstone. 

At concentrations around 0.001 wt%, lamellae is not stabile enough and foam cannot be 

generated. At 0.01 wt%, mobility is reduced by 75% and a further reduction is seen at 0.03-0.04 

wt%. From 0.1-0-5 wt% there is almost no change (NETL, 2011). 

 

 

 

Figure 2.7.3 (a): CO2-in-brine foam with 80% quality. 

The surfactant is called Varion CAS. Mobility 

reduction as surfactant concentration increases 

(NETL, 2011). 

 

The surfactant concentration also has importance in relation to mass adsorbed when injected 

into a reservoir. Figure 2.7.3 (b) shows how mass of adsorbed surfactant (mg/cc) increases with 

concentration (ppm). From 100 to 1000 ppm, the adsorbed mass increases steeply. However, in 

the range of 1000 to 3000 ppm, the value of adsorbed mass is relatively constant. At around 

3000 ppm, it starts increasing again. This is because surfactant becomes insoluble in water at 

this point (Salehi, et al., 2014). The concentration of 1500 ppm was considered optimal for a 

specific SAG injection process, conducted by Salehi et al. (2014), because no drastic changes 

occurred in this area. 

 

SAG Ratio: The amount of oil recovered in a SAG process is highly related to the surfactant-to-

gas ratio. The, already mentioned, study done by Salehi et al. (2014) explains why this is the 

case. A SAG injection was conducted in the lab on a conventional sand pack core at fixed 

injection rate of 0.2 cc/min.  Increasing the surfactant volume could, for instance, mean ratios of 

2:1, 3:1 or 4:1. The oil recovery factor has been observed to decrease with increasing surfactant 

slugs. This is attributed to early breakthrough of surfactant solution. Increasing surfactant 

volume and reducing the fraction of gas in the injection fluid would mean that there will be less 

gas to contact the surfactant, and generate foam. In this case, oil recovery is affected directly by 

the earlier breakthrough time, like Figure 2.7.3 (c) and (d) illustrates (Salehi, et al., 2014). 

Figure 2.7.3 (b): Adsorption isotherm for a 
surfactant on silica at 70 oC and 144.74 x 105 
Pa (Salehi, et al., 2014). 
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Figure 2.7.3 (c) shows how a higher cumulative surfactant needed per pore volume injected for 

both ratios 3:1 and 2:1 compared to 1:1, which is more balanced. Figure 2.7.3 (d) shows that 

ratios 3:1 and 2:1 have earlier breakthrough of surfactant solution, as well as lower recovery 

efficiency compared to 1:1. 

 

Increasing gas volume means that the SAG ratio could be 1:2, 1:3 or 1:4, for example. As the 

proportion of gas increases in the solution, it can disperse more of the solution phase in the gas, 

effectively reducing the macroscopic sweep efficiency. With early breakthrough of gas, as seen 

in Figure 2.7.3 (e) and (f), oil recovery will decrease as a consequence. Maximum efficiency was 

achieved at a ratio of 1:1 as both the macroscopic and microscopic efficiencies are high (Salehi, 

et al., 2014). 

 

 

 

 

 

Figure 2.7.3 (c): Increasing surfactant volume. 
Cumulative surfactant produced vs. PV injected 
for SAG ratios 1:1, 2:1 and 3:1 (Salehi, et al., 
2014). 

Figure 2.7.3 (e): Increasing gas fraction. 
Cumulative surfactant produced vs. PV injected 
for SAG ratios 1:1, 1:2 and 1:3 (Salehi, et al., 
2014). 

Figure 2.7.3 (d): Increasing surfactant volume. 
Recovery factor vs. PV injected for SAG ratios 1:1, 
2:1 and 3:1.  

Figure 2.7.3 (f): Increasing gas fraction.  
Recovery factor vs. PV injected for SAG ratios 1:1, 
1:2, 1:3 (Salehi, et al., 2014). 
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Fixed-Rate or Fixed-Pressure: Fluids can be injected at fixed injection rates or fixed injection 

pressure. It has been reported by Shan & Rossen (2002) that SAG injection is optimized at fixed 

maximum-allowable injection pressure for a homogeneous reservoir. This is to minimize both 

gravity override, injection time, and keep the increase in injection well pressure at a minimum. 

Injecting gas at maximum pressure allows for effects of gravity slumping for surfactant to 

partially reverse. Because of density differences in surfactant and gas, gravity may pull the 

surfactant solution downwards, causing gas to override it. The process of fixed injection 

pressure is also very insensitive to foam properties (Shan & Rossen, 2002). For heterogeneous 

reservoirs, Renkema & Rossen (2007) concluded that a maximum-fixed-pressure also renders 

the best results. However, different slug injection strategies were recommended. 

 

It has been concluded that foam processes using SAG at fixed injection pressures are not 

affected by gravity override as much as continuous foam injection or SAG at fixed injection 

rates. Rather, gravity override can be overcome without reaching excessive injection pressures 

(Shan & Rossen, 2002). 

 

Single- or Multi-Cycle: Slug sizes and the number of slugs are important design considerations 

for SAG field application. The term single-cycle SAG refers to a process where one slug of 

surfactant is injected, followed by one large slug of gas. In this case, an extra volume of 

surfactant must be injected to account of adsorption and to keep the surfactant slug ahead of 

the gas front. The other process is called multi-cycle SAG or simply just SAG. This is where slugs 

of surfactant are alternated with slugs of gas in two or more cycles (Renkema & Rossen, 2007). 

 

Simulation results, based on fractional flow theory from (Shan & Rossen, 2002), suggests that 

SAG with fewer, larger slugs gives a somewhat better sweep efficiency compared to many 

smaller slugs. In a two-SAG-cycle process, surfactant would fill the lower portion of the reservoir 

where water saturation was 100 %, and unswept by gas. This essentially becomes an underride 

zone for the surfactant, promoting gravity segregation between surfactant and gas. The result is 

that a large portion of the injected surfactant may end up unused in the underride zone. In the 

single-cycle SAG, the piston-like sweep helps to push surfactant ahead, optimizing surfactant 

propagation in the reservoir. These cases were concluded for a homogeneous reservoir model 

(Shan & Rossen, 2002). 

 

In simulations done by Renkema & Rossen (2007), single cycle SAG with maximum-fixed 

pressure has also proven to outperform multi-cycle SAG for a heterogeneous reservoir. They 

suggest injecting one big slug of surfactant followed by one big slug of gas. Field experience also 

suggest that SAG injection in both CO2 and hydrocarbon miscible flooding yields better results 

when using smaller duration of the injection cycles in a multi-cycle SAG (Turta & Singhal, 2002). 
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2.7.4 | FOAM SELECTION AND RESERVOIR CONDITIONS 

 

So far, it is clear that the selection of the appropriate foam injection strategy largely depends on 

the reservoir conditions. In order for SAG to be a natural choice as mobility control foam, 

several factors need to be considered. The desired distance of foam propagation must be longer 

than 20 meters. In addition, reservoir pressure should be higher than 30 bars. If the reservoir 

pressure is lower than 30 bars, permeability should also be low, preferentially under 200 mD. If 

these conditions deviate, then co-injection might be a better option (Turta & Singhal, 2002). 
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3 | LITERATURE SURVEY 

This chapter will focus on previous laboratory investigations and field scale experiences 

within WAG and foam processes. 

 

3.1 | EOR ON FIELD SCALE 
 

3.1.1 | MISCIBLE CO2-FLOODING 

 

CO2 injection has been the leading EOR process applied in carbonate reservoirs in the United 

States since the 1980s. In the U.S. 105 active CO2 floods have been reported and 63 are in 

carbonates (Manrique, et al., 2010). CO2 flooding has been successful in both mature fields, 

meaning fields where peak production has been reached (Halliburton, 2015), and waterflooded 

reservoirs. The utilization of CO2 in EOR processes has steadily gained popularity in the United 

States (especially the Permian Basin) due to its abundant availability (Manrique, et al., 2007). 

Another contributor is the economic viability of CO2 compared to other recovery alternatives. 

Figure 3.1.1 shows how oil production increases over the years while miscible CO2 becomes 

more prevalent. 

 

 
Figure 3.1.1: Increase in oil production over the years by use of gases in enhanced oil recovery in 

the U.S. (Koottungal, 2010). 

 

The first large scale projects, which used tertiary miscible CO2-flooding, were conducted in 1972 

at two locations in the Permian Basin in West Texas. These were the SACROC field in Scurry and 

the North Crosset field in Crane and Upton (Melzer, 2012). For the SACROC field, recovery was 

estimated at 5.75 % of OOIP, which was not considered economic with the oil price at the time 

(Graue & Blevins, 1978). A number of successful CO2 EOR field tests were completed in 1972-
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1987 (Brock & Bryan, 1989). Among these, some were pure CO2 miscible floods and others were 

CO2-WAG. Incremental recoveries ranged from about 7-22% of OOIP (Brock & Bryan, 1989). The 

rest were re-cycling of injected CO2, referred to as immiscible huff-n’puff. This recovery method 

was not as effective as miscible CO2 or WAG, but was considered a cheap alternative for 

companies that could not handle large up-front investments. 

 

As long as CO2 is available it will continue to remain the most sound recovery choice for 

carbonate reservoirs. Recoveries from immiscible and miscible gas flooding vary between 5–20 

% OOIP, with an average of 10 % and 6 % incremental recovery, respectively. Although recovery 

by gas flooding is economical, 55 % of the oil is left after a miscible gas flood (Manrique, et al., 

2007). The large amount of oil left behind is caused by phenomena such as gas channeling, 

reservoir heterogeneity, dispersion and gravity effects (Johns & Dindoruk, 2013). In more recent 

years, most fields do not use gas injection alone, but rather water-alternating-gas in their field 

processes (Manrique, et al., 2007). 

 

3.1.2 | WAG INJECTION 

 

WAG injection has been widely applied since the late 1950s. The first field application was 

initiated by Mobil in 1957, in the North Pembian field in Alberta, Canada. They reported no 

injectivity abnormalities (Rogers & Grigg, 2001). A study was done on WAG field projects in the 

period of 1957-1994 (Christensen, et al., 2001), and included a total of 60 cases. The findings are 

summarized in Figure 3.1.2. Of the projects included in the survey, 79% were miscible WAG 

treatments, using either hydrocarbon gases or CO2 (Figure 3.1.2, A). In 38 % of the cases, the 

reservoir rock was limestone, dolomite or other carbonate types (Figure 3.1.2, B). As much as 88 

% of the projects were conducted in onshore fields, as these are mainly in the U.S. (Figure 3.1.2, 

C). Very few of the reviewed cases were considered unsuccessful, with recoveries ranging 

between 5-20% (Christensen, et al., 2001). 

 

 
Figure 3.1.2: WAG field applications for (A) number of gas displacement mechanisms, (B) 

reservoir rock types and (C) number of onshore/offshore fields (Christensen, et al., 2001). 
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The miscible flood pilot in West Texas, San Andres dolomite is an example of a successful WAG 

treatment. A recovery of about 50 % by water injection was obtained during the 1970s. WAG 

was then implemented at a later time with an incremental recovery of 20 %, and a total 

recovery of around 70 % OOIP for this pilot. This is above average for most fields (Johns & 

Dindoruk, 2013). 

 

WAG has been applied to several fields on the Norwegian Continental Shelf: Statfjord, Gullfaks, 

Snorre and Brage are a few examples (Statoil, 2008). Pilots were initiated in 1994 on both 

Snorre and Brage, which have proven that WAG is both technically and economically successful 

(Utseth, 1996). 

 

It has been reported that 90 % of domestic tertiary CO2 field projects in the United States 

implement WAG (Manrique, et al., 2007). The remaining fields employ gravity drainage, double 

displacement, gas cycling and huff-and-puff processes. WAG is less effective in tight reservoirs 

and water-sensitive reservoirs. In such cases, continuous CO2 injection is more favorable. In 

West Texas, gas injection is sometimes tapered (TWAG), which means that a large slug of CO2 is 

delivered initially and once gas breaks through the production well, it is changed to water-

alternating-gas with a ratio that increases incrementally. This variable WAG has since been used 

by most operators. 

 

The typical potential for WAG injection compared to water injection is at 5-10 % increase in 

recovery (Manrique, et al., 2007). From experience, WAG renders better recovery than 

continuous CO2 injection, but still leaves behind 1/3 to 2/3 of the oil from the waterflooding 

that preceded it (NETL, 2011). 

 

3.1.3 | FOAM: CO-INJECTION AND SAG 

 

Foam, as an EOR technique, was first applied in the Siggins field in Illinois, USA in 1964 (Holm, 

1970). Air was used as the injection gas together with “O.K Liquid” as the surfactant. Both co-

injection and SAG was tried in this field. During the SAG process, mobility of air was reduced by 

more than 50 %, stopping the channeling of air towards the producing well. Although an 

improvement was observed in the injection profile, no incremental oil was produced. 

 

The first use of CO2-foam was in a SAG process in the Willmington field in California, USA in 1984 

(Turta & Singhal, 2002). A mixture of CO2 and N2 was injected together with an “Alipal CD-128” 

foaming agent. Eight cycles of gas and surfactant were injected. Results showed that gas 
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reaching the top high-permeable layer was significantly reduced. The overall goal for this project 

was achieved as channeling of injected fluids was effectively mitigated. 

 

Five field tests were conducted by ExxonMobil in two reservoirs (Turta & Singhal, 2002), using 

foam: McElmo Creek, Utah and East Mallet Unit, Texas. Both co- and SAG injections were tried 

in these fields as the main problem was related to thief zones. The McElmo Creek field had a 

wide range of permeabilities (0.01-1000 mD) with 19 layers. During co-injection, excessive 

reduction in injectivity was experienced. SAG injection performed better as the reduction in CO2 

mobility was significantly larger. 

 

A field application survey done by Sheng (2013) included 60 projects around the world that 

involved foam. More than half of the fields were applying steam-foam, while the rest 

implemented CO2-foam. Steam-foam was mostly used in California and Venezuela, 

predominantly in sandstone with only a few in carbonates. CO2 was present in more than 50 % 

of the projects. From the previously mentioned survey, about 2/3 were SAG injection and 1/3 

were co-injection of gas and water. 

 

In the North Sea, the Snorre field underwent foam-assisted water-alternating-gas (FAWAG), This 

became the largest instance of foam application in the oil industry, and a breakthrough for foam 

as an EOR method. Results showed a delay in gas breakthrough and that the gas-oil-ratio was 

reduced significantly compared to the preceding gas cycles without foam. The cost of this 

recovery process was 1M USD while the value of oil recovery was 25-40M USD with oil prices 

from 2002 (Aarra, et al., 2002). 

 

3.2 | EOR ON CORE SCALE 
 

3.2.1 | WAG 

 

In 1958, Caudle and Dyes proposed that injecting water and gas simultaneously would 

result in greater recovery compared to waterflooding or a pure miscible flood. This was the 

first WAG-related experimental work, according to Aarra et al. (2002). 

 

Optimization of the CO2-WAG process has been studied on carbonate cores under reservoir 

conditions (Amin, et al., 2012). A series of tertiary WAG injections were conducted at 

various ratios, where 1:1 was considered most efficient. The effect of miscible CO 2-WAG 

injection on three phase relative permeability has also been investigated for carbonate 

cores (Duchenne, et al., 2014). With an injection ratio of 1:1, high recovery efficiency was 

estimated. 
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3.2.2 | FOAM 

 

Many gas injection projects are facing problems that involve inefficient utilization of gas, 

poor sweep efficiency and low increased oil recovery. This is mainly caused by channeling, 

fingering and gravity segregation. These phenomena are often attributed to low viscosity 

and density of the injected fluid, as well as heterogeneity of the reservoir. By use of in situ 

foam generation, achieved through co-injection of gas and surfactant, or surfactant-

alternating-gas, these drawbacks can be mitigated (Farajzadeh, et al., 2012).  

 

In 1958, Bound and Holbrook patented the gas-drive process, using surfactant to improve 

sweep efficiency by generation of foam (Boud & Holbrook, 1958). Foam mechanisms and 

flow behavior has been studied extensively since then. 

 

In situ foam propagation was studied for co-injection in carbonate cores (Wassmuth, et al., 

2001). In both the foam-generation and foam-propagation regions, water saturation was 

found to decrease with increasing foam quality. Co-injection by use of CO2 and surfactant 

has been found to improve the sweep efficiency in carbonate cores (Zuta & Fjelde, 2010). 

Simjoo et al. (2012) examined foam stability in the presence of oil for selected commercial 

surfactants. This displayed a rapid decay at first, followed by stabile foam and then a 

second decay over a relatively long period. 

 

Foam flow and mobility control, for increased sweep efficiency, has been studied in 

fractured carbonate networks (Fernø, et al., 2014). Co-injection of surfactant and gas 

reduced mobility of gas more effectively than SAG. With increasing gas fractions, shear-

thinning behavior occurred during co-injection. Flooding experiments in heterogeneous and 

naturally fractured rocks have shown that foam can block gas flow effectively in the 

fracture pathways of the sample (Yan, et al., 2006), (Ocampo, et al., 2014).  

 

Comparisons have been made between both immiscible and miscible CO2-foam injections 

as tertiary recovery methods (Eide, et al., 2012), (Haugen, et al., 2014). Miscible injections 

were much more efficient than immiscible ones at oil-wet conditions, in fractured 

carbonates. CO2-foam performed best after a waterflood as opposed to after a pure CO2 

flood.  

 

SAG injection into carbonate rocks have been studied (Gandomkar, et al., 2012), 

demonstrating an increase in microscopic sweep efficiency, which is caused by in situ foam 

generation. Gas displacement efficiency has been reported by others to improve during a 

SAG injection (Albrecht & Marsden, 1970), (Yaghoobi, et al., 1998), (Salehi, et al., 2014). 
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The success of gas diversion in a SAG process has been shown to depend on steady-state 

(constat saturation) foam behavior at very high foam quality (Xu. & Rossen, 2003). 

 

Salehi, et al. (2014) showed the importance of optimization of surfactant type and 

concentration as well as SAG ratio to get optimal recovery results. SAG, with no previous 

injections, recovered more oil than waterflooding, gas injection and WAG.  

 

The experimental work within this thesis will focus on comparison of co-injection of CO2 and 

surfactant, WAG and SAG in fractured carbonate core plugs, as tertiary recovery methods. It is a 

continued investigation of previous foam experiments in fractured carbonate (Svenningsen, 

2011), (Haugen, et al., 2012), (Opdal, 2014), (Steinsbø, et al., 2015) at the Department of Physics 

and Technology at UiB. 
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4 | EXPERIMENTAL SETUP AND PROCEDURES 
 

4.1 | FLUID PROPERTIES AND ROCK MATERIAL 
This section presents an overview of properties of fluids and rock material that has been 

used to conduct experiments. 

 

4.1.1 | FLUIDS 

 

 

Table 4.1 - Fluids used in experimental work. These include brine, gas, alkane and surfactants. Sources 

from (NIST, 2011). 

 

 

Fluid 

 

Composition 

 

Density 

(g/ml) 

 

Viscosity 

(cP) 

 

Condition 

 

Chalk Brine 

 

 

Distilled water 

50 g/cm3 - NaCl 

50 g/cm3 - CaCl2 ∙ 2H2O 

0.05 cm3 - NaN3 

 

1.05 

 

1.09 

 

20 oC 

 

ES Brine 

(Brine C) 

 

 

Distilled water 

22.80 g/cm3 - NaCl  

2.76 g/cm3 - MgCl2 ∙ 6H2O  

5.83 g/cm3 - CaCl2 ∙ 2H2O  

0.46 g/ cm3 - KCl  

  

 

 

0.94 * 

± 0.01 

 

 

 

n/a 

 

 

 

 

 

CO2 

 

 

> 99.999 % CO2  

 

0.662 

 

0.051 

 

35 oC, 90 bar 

 

n-Decane 

 

C10H22 

Purity ≥ 99 % 

0.730 

0.723 

0.726 

0.913 

0.818 

0.818 

20 oC, 1 bar 

35 oC, 1 bar 

35 oC, 90 bar 

 

Petrostep C-1 

(AOS C14-16) 

 

 

Chalk Brine 

1.29 wt% Petrostep C1 

 

1.01 * 

± 0.01 

 

n/a 

 

 

Surfonic 

L24-22 

ES Brine 

1 wt% Sulfonic L24-22 

0.95 * 

± 0.01 

n/a  
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* These values were measured in the lab. 

 

4.1.2 | EDWARD LIMESTONE 

 

All experiments have been done using 1.5” diameter Edward limestone core plugs. These 

outcrop rocks are a sub-group of carbonate and are considered to be strongly water-wet. 

Because the limestone has trimodal pore sizes, vugs and microporosity, the porosity and 

permeabiity distribution becomes quite heterogeneous (Eide, et al., 2012). This is illustrated by 

Figure 4.1.2 (A). Porosities and permeabilities that were prepared for this thesis were in the 

range 21-26 % and 13–30 mD, respectively.  Porosities and permeabilities from Haugen et al. 

(2014) were in the range ϕ = 19-26% and K = 5-32 mD, respectively.  

 

 
 

Figure 4.1.2 (A): Permeability vs. porosity for a set of prepared Edward limestones. These are matched 

with data are taken from Haugen et al. (2014). 
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Figure 4.1.2 (B): Pore throat distribution of three Edwards limestone samples (Tipura, 2008).  
(C): Pore size distribution by correlation of NMR T2 relaxation time distribution to pore diameter. Dashed 
curves show pore diameter distribution for three core samples when relaxivity constant is defined by 
small pore throat (short T2). The solid line presents the same cores scaled with largest pore throats (long 
T2). (Tipura, 2008). Results were achieved by mercury injection into pores. 
 

In Figure 4.1.2 (B) and (C), data from pore throat distribution and pore diameter 
distribution, respectively, in limestone samples are presented by Tipura (2008). Figure 4.1.2 
(C), illustrates the trimodal pore size distributions found in limestone (Eide, 2014). Based on thin 
sections from a limestone core, pore radii and diameter distributions, porosity and permeability 
measurementss, the Edwards limestone was characterized as a highly heterogeneous, bioclastic 
grain stone Tipura (2008). Data were obtained from mercury injection methods and MRI 
measurements.  
 

4.1.3 | PREPARATION AND FRACTURING OF CORES 

 

Sample preparation methods have great influence on the generated data; therefore it is vitally 

important to document detailed procedures. 

 

The coreflooding experiments are a representation of the field. Therefore, the core must be 

saturated with oil, and porosity and absolute permeability must be measured. The cores are 

then cut in half to simulate the presence of a fracture. This section will explain further details. 

 

Limestone cores were cut to a certain length using a circular saw with a diamond coated blade. 

These were then washed to remove smaller particles left on the sample. Next, the cores were 

set to dry in room temperature for 24 hours before being placed in a heating cabinet of 60 oC 

for 2-5 days. Once the cores are dry, they were taken out and weighed. Accurate length and 

diameter were measured with a caliper. 
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Porosity Measurement: By saturating the cores under vacuum, weight difference before and 

after saturation could be used to calculate porosity. The cores were place inside a glass bulb, 

which is connected to another spherical glass bulb on top, separated by a valve. This contains a 

fluid that was used to saturate the core. Both glass bulbs were separately connected to a 

condensing chamber that was connected to a vacuum pump. If brine is the saturating fluid, both 

the sample and the brine would be vacuumed, but if decane is the saturating fluid, only the 

sample would be vacuumed.  

 

The condensing chamber was cooled using liquid nitrogen so that any brine sucked in by the 

pump became trapped there. The pressure transducer indicates (in torr) how close the system is 

to vacuum. About 200 mtorr was sufficient, and the valve underneath the fluid was opened to 

let the fluid down to the sample. The fluid would then spontaneously imbibe into the core. The 

setup is displayed in Figure 4.1.3. 

 

 
Figure 4.1.3: Experimental setup used for porosity measurements (Opdal, 2014). 

After the core was saturated, it was weighed again. Porosity (ϕ) was then calculated using the 

following equation:  

 

ϕ = 
𝑊𝑠−𝑊𝑑

𝜌𝑉𝑏
 4.1.1 

 

where Ws = weight of saturated sample, Wd = weight of dry sample, ρ = density of the fluid and 

Vb = bulk volume of the sample. 

 

Permeability Measurement: With constant flow of brine or decane through the core, 

permeability could be calculated by Darcy’s law. The core was mounted in a coreholder and a 

confining pressure was applied. A pump, controlled by a computer, was connected to the 
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coreholder so that fluid could be pumped through the core. Differential pressure across the core 

was recorded by a pressure transducer. Figure 4.1.4 gives an overview of the setup. 

 

 
Figure 4.1.4: Illustration of the setup used for permeability measurements (Opdal, 2014). 

 

Darcy’s law is given by: 

 

𝑄 =  
𝐾 ∙ 𝐴

µ
∙

𝛥𝑃

𝐿
 

 

4.1.2 

where Q = flow rate (cm3/s), K = absolute permeability (Darcy), A = cross section of core (cm2), µ 

= viscosity of fluid (cP), ΔP = pressure difference across core (atm) and L = length of core (cm). 

 

A few different flow rates (Q) were used to induce different pressures (ΔP). These were then 

plotted as Q vs. ΔP, using Equation 4.1.2, and a trend line could be fit through the data points. 

 

Some cores were initially saturated with brine and then drained until irreducible water 

saturation (Swi), using n-Decane. Drainage was conducted with a constant pressure drop equal 

to 2 bar/cm to avoid capillary end effects and to reach sufficiently low saturations. 5 pore 

volumes of n-Decane were injected in both directions of the core to achieve uniform saturation 

distribution. 

 

Fracturing: In core and at field scale, injected fluids have a higher flow velocity in fractures than 

in the matrix (Haugen, et al., 2014). The cores are fractured to investigate how well foam 

reduces mobility and divert the injected fluids from fractures and into the matrix blocks. The 

cores were split in two longitudinally. It was necessary to weigh the cores again because the saw 
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removed a small portion of the volume. The weight difference before and after cutting was used 

to find a new fractured pore volume (PVfrac): 

 

𝑃𝑉𝑓𝑟𝑎𝑐 =  𝑃𝑉 ∙
𝑊𝑓𝑟𝑎𝑐

𝑊𝑠
 

 

 

4.1.3 

where PV is the initial pore volume, Wfrac is the weight of the core after fracturing and Ws is the 

initial weight of the core.  

 

Core Assembly (With Spacer): All fractured cores that were drained to irreducible water 

saturation contained a spacer. Figure 4.1.5 illustrates the final process before the core can be 

placed in the coreholder, and an experiment can start. (A)-(B): The two halves of the core were 

separated by a plastic spacer, of 1 mm thickness, to create a fracture space.  (C)-(D): Aluminum 

was wrapped around the core to isolate it so that injected CO2 would not come in contact with 

the sleeve inside the coreholder. Since CO2 is acidic in contact with water, the rubber sleeve will 

dissolve without the aluminum foil. (E): The inlet and outlet of the coreholder were attached to 

the core using aluminum tape. It was important to keep the seal tight so that no gas escaped. 

 

 
 

 

 

 

A B 
C D 

D 

Figure 4.1.5: (A)-(B) Spacer is placed between the core pieces. (C)-(D) Aluminum foil is used to 
wrap the core and keep the pieces in place. (E) Aluminum tape is used to attach the core to the 
inlet and outlet before placing it in the coreholder. 
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Core Assembly (No Spacer): All cores that were saturated with 100 % n-Decane contained no 

spacer. These cores were also an alignment of two stacked cores. Figure 4.1.6 shows a 

procedure of how the cores were assembled before each experiment. (A) After the cores had 

been cut by a circular diamond coated saw, (B)-(C) they were filed to make the surfaces in the 

fracture rougher. This was done because smooth surfaces in a fracture are not realistic. Next, 

(D)-(F) two cores were stacked as one core, with one fracture aligned vertically and one fracture 

aligned horizontally to achieve a non-uniform fracture system. 

 

 
Figure 4.1.6: (A) the core has been separated longitudinally. (B)-(C) fracture surfaces of the core are filed 

down to make them rougher. (D)-(E) two cores are stacked with one fracture aligned vertically. and one 

fracture aligned horizontally. (F) the two cores are completely wrapped in aluminum foil. 
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4.2 | SETUP AND PROCEDURES 
 

This section provides a detailed overview of equipment, experimental design and procedures 

used for co-injection, WAG and SAG in carbonate core plugs. All injection methods were 

performed as a tertiary recovery scheme. 

 

4.2.1 | SETUP 

 

The setup shown in figure 4.2.1 is from the laboratory at the Department of Physics and 

Technology at UiB.  

 
Figure 4.2.1: Illustration apparatus used in the experimental setup. The apparatus inside the heating 

cabinet is marked by the strong dotted lines. Modified from Opdal (2014). 

 

 

 

 

A B 
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4.2.2 | EQUIPMENT 

 

 Heating cabinet to conduct the experiment in. 

 Accumulator for pressurization of CO2 by water. 

 Quizix QX-1500 pump (A) for injecting water into the accumulator and pressurizing CO2. 

 Quizix QX-1500 pump (B) for injecting surfactant or decane. 

 Manometer for measurement of pressure in the accumulator. 

 Hassler core holder 

 2 x ESI 250 pressure gauges for measurement of differential pressure between inlet and 

outlet of the core. 

 Pressure transducer for application of confinement pressure to the core holder by 

injection of pump oil into the sleeve. 

 CO2 tank to supply the accumulator. 

 Back pressure regulator (BPR), pressurized by nitrogen, to maintain a high pressure in 

the system. 

 Swagelock tubings, fittings and valves. 

 Computer to control Quizix pumps and for pressure readings. 

 

4.2.3 | PROCEDURES 

 

This section will refer to the experimental setup in Figure 4.2.1. 

 

CO2 was pressurized to approximately 92 bar in a heating cabinet of 35 oC to get the CO2 to a 

supercritical state. Pressurization was done by injection of distilled water at the bottom of the 

accumulator. Once the desired pressure was achieved, the quizix pump was set to constant 

pressure of 92 bar to stabilize the supercritical CO2 for 24-48 hours. A syringe was used to fill the 

pressure gauges with distilled water. The fluid in the pump was exchanged with decane, which 

was injected into the tubings. The inlet of the core holder had to be flooded with decane before 

mounting the core inside the core holder. Fractured cores had to be mounted with the fracture 

aligned vertically to eliminate gravity effects during the experiments.  

 

When the experiment is conducted at high pressures, the fluid becomes compressed. This 

means that the amount of injected fluid (at high pressure) does not match the produced fluid at 

ambient pressure, downstream of the BPR. To account for this, a pressurization factor (Fp) is 

estimated. Decane was injected through the core and bypass, using pump B. First, valve 6 and 9 

were open while all other valves were closed. Then decane was pressurized to 90 bar though 

the bypass, until valve 11. The amount of decane used to pressurize the bypass is denoted 

Vo,bypass. Second, valve 8 and 10 were opened while valve 9 was closed. The system was then 
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pressurized to 90 bar again. A confinement pressure of 110 bar was applied to the core, 

mounted with a pressue transducer. The amount of decane used to pressurize the coreholder is 

denoted as Vo,core. Since Vo,bypass is part of Vo,core, this must be subtracted to get the final 

pressurized volume (Vo,system): 

 

𝑉𝑜,𝑠𝑦𝑠𝑡𝑒𝑚 =  𝑉𝑜,𝑐𝑜𝑟𝑒 −  𝑉𝑜,𝑏𝑦𝑝𝑎𝑠𝑠 

 

4.2.1 

The volumes between valve 8 to the core and valve 10 to the core, are referred to as dead 

volumes (Vo,dead). These contain oil before the experiment starts and must be excluded from the 

final production volume. 

 

The spacer between the two core pieces, in a fractured core, contains a volume (Vfrac) which will 

be filled with decane, and should also be excluded from production.  

 

The pressurization factor (Fp) can be calculated as:  

 

𝐹𝑝 =  
𝑆𝑂 + 𝑉𝑜,𝑑𝑒𝑎𝑑 + 𝑉𝑓𝑟𝑎𝑐

𝑆𝑂 + 𝑉𝑜,𝑑𝑒𝑎𝑑 +  𝑉𝑓𝑟𝑎𝑐 + 𝑉𝑜,𝑠𝑦𝑠𝑡𝑒𝑚
 

4.2.1 

 

where So is the volume of oil which the core was saturated with, initially. The pressurization 

factor is multiplied with the produced volume. Generally, Fp is calculated to 0.95 for these 

experiments. 

 

Waterflooding:  

 

The fluid in pump B was changed from decane to brine. This was then injected through the 

bypass, displacing the oil, to prepare for a waterflooding. By opening valve 13, nitrogen was let 

into the BPR and pressurized to around 90 bar. Valve 9 was then closed and valves 8 and 10 

were opened. Starting time of the experiment was noted at the moment brine was let through 

valve 8. 

 

WAG and Foam:  

 

Both WAG and foam floodings were conducted using CO2 at miscible conditions. In these 

experiments, the core holder was mounted vertically and cores contained no spacer. After a 

completed waterflood, a sequence of gas and water slugs was injected into the core. A WAG 

ratio of 1:1 was used for all experiments. The rate varied in a few different experiments: 5, 10 

and 25 ml/h, but was kept constant throughout each one. CO2 was injected by use of pump A, 
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while brine was injected using pump B. First, a gasflooding was started by closing valve 6 and 

opening valve 5. When a certain fraction of the pore volume (0.15 PV) had been injected, valve 

6 was closed and valve 5 was opened. Then the same amount of brine was injected before 

switching back to CO2, and so on. The injection of alternating slugs continued until oil 

production from the core stopped.  

 

Production from the core continued by use of alternating slugs of surfactant (pump B) and gas 

(pump A) with a ratio of 1:1. SAG was accomplished operationally in the same way as the WAG. 

 

Co-injection experiments were completed in co-operation with fellow master student, Henriette 

Horjen. Co-injection was also conducted after a waterflooding. Surfactant and brine were 

injected simultaneously with both valves 5 and 6 open. A foam quality of 80 % was used for all 

co-injections. Petrostep C-1 was used as the surfactant together with chalk brine. Injection rate 

was 5 ml/h in total to keep the velocity of the displacement front low. The seperate injection 

rates were 4 ml/h for CO2 and 1 ml/h for the surfactant. 
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5 | RESULTS AND DISCUSSION 
 

Results from experimental work will be presented and discussed in this chapter. A total of 27 

1.5” Edward limestone cores were prepared. Of the 13 experiments conducted, 6 were tertiary 

CO2/co-injections. These were carried out together with fellow master student, Henriette 

Horjen. The other 7 were tertiary WAG/SAG injections. 

 

5.1 | CORE PROPERTIES 
 

This section lists all cores with their respective core properties (Table 5.1). 

 

Permeability was plotted against porosity in an earlier section (see Figure 4.1.2). This provides a 

good illustration of the wide range of properties that exist for the Edwards limestone rock, 

provided in Table 5.1. These data suggest that the Edward limestone is relatively 

heterogeneous, and one reason is that this rock contains macropores (5-10 µm), transitional 

pores (0.01-0.02 µm) and micropores (0.8-2 nm). Hence, the typical pore size distribution of an 

Edward limestone is trimodal (Dullien, 1979). Another reason is that pore spaces mainly consist 

of moldic pores, and have interparticle porosity that has been reduced by recrystallization of 

calcite (Haugen, et al., 2014). Vugs in the limestone can provide more permeable paths for fluid 

to flow through (Eide, 2014), causing permeability measurements to vary. 

 

A variety of core assemblies have been prepared for experiments: whole, fractured and stacked 

cores (see Table 5.1). Whole cores have been used as a reference to observe differences in oil 

production and differential pressure from fractured cores. It is more likely that a limestone 

reservoir contains fractures; therefore experiments are mainly conducted on fractured cores. By 

stacking cores, a larger system can be created, which might provide results that are more 

representative of the field. Shorter cores mean that there are higher risks of having capillary end 

effects distort experimental data by delaying production of fluids. Additionally, the smaller the 

sample, the faster the breakthrough of fluids will occur (Chou, 1991). 
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Table 5.1 – Properties of all the Edward limestone core plugs that were prepared. The cores are 

either whole, fractured or stacked. 

 

Core 

 

State 

 

Length 

(cm) 

 

Dia. 

(cm) 

 

PV/PVfrac 

(ml) 

 

Porosity 

(%) 

 

K/Kfrac 

(mD) 

 

 

So 

 

#2 Whole 7.10 3.75 18.6 23.7 28.32 0.77 

#3 Whole 7.00 3.75 17.3 22.4 19.31 0.76 

#4 Frac. 7.20 3.75 17.4 23.5 17.30 0.76 

#5 Frac. 7.20 3.80 18.6 22.7 28.60 1.00 

#6 Frac. 7.10 3.75 18.0 23.2 19.10 1.00 

#7 Frac. 6.70 3.75 16.8 22.7 23.40 1.00 

#8 Frac. 6.70 3.80 16.9 22.2 21.10 1.00 

#9 Frac. 6.80 3.80 18.1 23.5 21.85 0.72 

#10 Frac. 6.70 3.75 16.7 24.3 26.21 0.79 

#11 Frac. 7.10 3.80 17.7 22.6 27.24 0.83 

#12 Frac. 7.20 3.75 16.8 22.8 21.01 0.70 

#13 Frac. 9.00 3.80 23.4 22.9 22.16 0.76 

#14 Frac. 9.35 3.80 27.3 25.8 43.81 0.75 

L5 Whole 6.80 3.85 18.4 23.0 26.00 1.00 

L6 Whole 6.70 3.80 15.8 21.0 23.10 1.00 

LS2 Whole 10.0 3.75 25.0 22.6 15.21 1.00 

LS3 Whole 10.0 3.75 24.5 22.2 20.01 1.00 

LS4 Frac. 9.90 3.75 29.9 30.0 78.00 1.00 

LS6 Frac. 7.60 3.85 16.2 22.4 13.44 1.00 

LS8 -- 7.45 3.80 -- 23.7 36.02 1.00 

LS9 Frac. 7.60 3.85 22.2 22.7 78.00 1.00 

LS10 -- 7.10 3.80 -- 22.5 22.17 1.00 

LS14 -- 7.20 3.80 -- 23.3 23.48 1.00 

ST1 Stacked 14.60 3.80 31.8 20.5 729.67 1.00 

ST2 Stacked 14.95 3.85 37.5 23.7 112.91 1.00 

ST3 Stacked 14.95 3.90 41.7 25.9 676.25 1.00 

ST4 Stacked 14.95 3.80 33.4 21.9 -- 1.00 

Stacked cores are an alignment of two fractured cores that have been assigned average porosity and 

permeability values. Length and PVfrac are also added up.  
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5.2 | INJECTION METHODS 
 

The objective of the experimental work in this chapter is to test the performance of different 

injection strategies in limestone cores, with emphasis on those that are fractured. Methods, 

shown in Table 5.2, will then be compared and contrasted to each other to evaluate its 

prospects and drawbacks. All tertiary methods involve the use of supercritical CO2 above 

minimum miscibility pressure to achieve first-contact miscibility between CO2 and n-Decane. 

Fosse (2012) simulated MMP at 37.8 oC to 77.4 bar, which means that all experiments in this 

thesis, at 35 oC and 89-95 bar, are well above the MMP.  

 

A pure CO2 injection is expected to perform well in terms of microscopic sweep efficiency, 

compared to a waterflood (Kokal & Al-Kaabi, 2010). However, this method has been proven to 

have disadvantages for heterogeneous and fractured reservoirs as the CO2 is likely to channel 

through fracture pathways because of its low viscosity (Uleberg & Høier, 2002). Therefore, brine 

was injected together with CO2 in a WAG process to test if the mobility of CO2 would be 

reduced, and macroscopic sweep improved.  

 

WAG injection is also a cost-efficient way to achieve similar or better ultimate recovery as pure 

CO2 injection while cutting back on CO2 utilization. Since brine has a limited effect on CO2 

mobility reduction, experiments were conducted using foam. Several field pilots have proven 

that replacing brine with surfactant, in a co-injection or SAG process, reduces mobility of CO2 

more effectively than WAG (Ocampo, et al., 2014). Most experiments listed in Table 5.2 are a 

combination of two tertiary injection methods: CO2 and co-injection or WAG and SAG.  
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Table 5.2 – Experimental conditions for each core is summarized in this table. All cores were 

waterflooded before implementing tertiary recovery methods. Cores #2-#14 were flooded horizontally, 

while the rest were flooded vertically. 

 

Core 

 

State 

 

EOR method 

 

P (bar) 

 

T(oC) 

 

Rate 

(ml/h) 

 

Injection 

direction 

 

EOR by miscible CO2 and co-injection 

 

 

Horizontal 

#2 Whole Pure CO2 92 35 5  

#3 Whole CO2-foam 91 35 5  

#4 Frac. CO2-foam 93 35 5  

#10 Frac. Pure CO2 95 35 5  

#12 Frac. Pure CO2 + 

CO2-foam 

92 35 5  

#14 Frac. CO2-foam 95 35 5  

 

EOR by miscible WAG and SAG 

 

 

Vertical 

L5 Whole WAG+SAG 92 35 5 Top-bot. 

L6 Whole WAG+SAG 92 35 5 Top-bot. 

LS2 Whole WAG+SAG 89 35 25 Top-bot. 

LS3 Whole WAG+SAG 90 35 10 Top-bot. 

ST1 Stacked WAG+SAG 89 35 10 Top-bot. 

ST2 Stacked WAG+SAG 90 35 10 Bot.-top 

ST3 Stacked SAG 95 35 10 Bot.-top 

 

A schematic overview of the flooding sequences is shown in Figure 5.2.1. Four branches of 

experiments have been conducted: WF + CO2 + Co-injection, WF + Co-injection, WF + WAG + 

WAG and, WF + SAG. 
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Figure 5.2.1: Overview of the flooding sequence in the different coreflood experiments. These branch out 

into the two main groups: CO2/co-injection and WAG/SAG. 

 

A summary of parameters that differ between the two types of experiments can be seen in 

Table 5.3. A spacer has initially been used in co-injection experiments to see how foam performs 

in high permeable fractures with very low pressure drops. In other experiments, utilization of 

spacers were abandoned because large fracture volumes may not be representative of the field, 

as overburden pressure is likely to severely compact it.  In co-injection experiments, cores were 

flooded to irreducible water saturations, since this can be found in most water-wet fields. For 

WAG/SAG, initial saturations were kept at 100 % oil saturated to be able to better observe 

production trends and evaluate the performance of these injection strategies.  

 

Surfactants have been changed from Petrostep C-1, in co-injections, to Surfonic L24-L22 as well 

as an increase of injection rates from 5 to 10 ml/h. Although 5 ml/h was initially selected 

because the velocity of the displacement front would be more stable, it was changed to 10 ml/h 

in the later experiments to achieve experimental results faster. Co-injections were accomplished 

horizontally, because gravity needed not be accounted for. As for WAG and SAG, a larger 

coreholder was needed to fit stacked cores, and this would only fit in the heating cabinet if 

mounted vertically. Hence, gravity became a factor that has to be discussed for the results that 

have been obtained during these experiments. 
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Table 5.3 – Parametrical differences summarized for experiments.   

Experiments 

Type 

Injection 

Rate 

Spacer Stacked Initial 

Saturation 

Inj. 

Direction 

Surfactant 

CO2/co-

injection  

5  Yes No Irreducible 

water 

Horiz. AOS C14-16 

(anionic) 

 

WAG/SAG 

 

10 & 25 

 

No 

 

Yes 

 

100% oil 

 

Vertical 

 

Surfonic  

L24-22 

(non-ionic) 

 

 

5.3 | TERTIARY WAG AND SAG INJECTION WITH SUPERCRITICAL CO2 
 

Fluids were injected alternately in these experiments. Surfonic L24-22 (in Table 4.1), a non-ionic 

surfactant, was used for SAG injections. A fluid injection ratio of 1:1, meaning equal volumes of 

injected fluids, and slug sizes of 0.15 pore volumes were applied in both WAG and SAG. Injection 

ratio for SAG was chosen based on the experiments done by Salehi et al. (2014), where 1:1 was 

shown to be optimal. WAG injection ratio has also been proven to be optimal at 1:1, as 

concluded by Amin et al. (2012). In addition, 1:1 is commonly used in most fields that apply 

WAG (Amin, et al., 2012).  

 

A waterflooding, WAG and SAG has been completed in the same core for both whole and 

fractured ones. The WAG process is a popular injection strategy in the field, and has almost 

always been applied as a tertiary recovery method (Aarra, et al., 2002). For this reason, it is 

conducted in these experiments before completing a SAG injection. One tertiary SAG 

experiment was carried out to directly compare with WAG. All fractured cores in this section 

consisted of two stacked cores (see Figure 4.1.6). All experiments were run at 90-95 bars with 

35 oC, making CO2 first-contact miscible with the oil (n-decane). Different injection rates of 5, 10 

and 25 ml/h were used (Table 5.2), with no spacer volume in the fractures. Confining pressures 

of 140 bars were applied. 

 

5.3.1 | BASELINE: WAG AND SAG COMBINED IN WHOLE CORES 

 

Fluids are injected from the top of the vertically positioned core to the bottom. Two different 

injection rates have been used: 25 ml/h for core LS2 and 10 ml/h for LS3. This was to see how 

injection rates would affect differential pressure and ultimate recovery. Results of these 

experiments are plotted in Figure 5.3.1. The last point of the WAG in LS2 has been extrapolated 

to match the last point of the WAG in LS3. 
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Figure 5.3.1 (a): Waterflood, WAG and SAG have been performed on two whole cores (LS2 and LS3). 

Residual oil saturation vs. pore volumes injected has been plotted; with their respective differential 

pressures shown beneath.  

 
Figure 5.3.1 (b): Oil production rate (ml/h) vs. PV injected (frac.) for waterflood, WAG and SAG in cores 

LS2 and LS3. 

WF WAG SAG 
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Table 5.4 – Production data for cores from figure 5.2.1. Oil saturation and recovery factor after each 

method is listed as well as total recovery. 

Core So,initial 

[frac.] 

So,WF 

[frac.] 

RF,WF 

[%OOIP] 

So,WAG 

[frac.] 

RF,WAG 

[%OOIP] 

So,SAG 

[frac.] 

RF,SAG 

[%OOIP] 

RF,total [%OOIP] 

LS2 1.00 0.53 47.1 0.30 22.8 0.28 2.3 72.2 

LS3 1.00 0.61 39.4 0.28 33.4 0.23 4.3 76.6 

 

Because the Edwards limestone is strongly water-wet, a sharp decrease in oil saturation can be 

seen during waterflooding in Figure 5.3.1 (a)-(b) as water spontaneously imbibes into the cores 

and produces oil from the smaller pores. This means that most of the residual oil is trapped in 

the center of the small pores. A higher capillary entry pressure is required to mobilize these oil 

droplet compared to the larger pores, with lower water saturation and lower capillary pressure 

(Chatzis, 1983). As a result, LS2 and LS3 end up with recoveries of 47.1% and 39.4% of OOIP 

during waterflooding, respectively. WAG further increases recovery by 22.8% and 33.4% of OOIP 

for LS2 and LS3, respectively.  

 

From these results (Table 5.4) it is apparent that the injection rate of 25 ml/h in core LS2 

produced oil more efficiently during WAG as it takes less time for the production curve to even 

out. However, a lower recovery than core LS3 can be observed, which has 10 ml/h. The higher 

WAG injection rate did not lead to a higher ultimate recovery in this case, although a larger 

differential pressure can be observed, as flow rate and pressure are directly proportional. It is a 

possibility that WAG mostly produces residual oil from the large pores, while oil in the small 

pores, shielded by water, is held back by stronger capillary forces. This effect would be higher 

for LS2 since the water saturation is higher after waterflood. 

 

Previous experimental observations of flow rate and core length effects on WAG have been 

done (Rogers & Grigg, 2001). These imply that a decrease in recovery with increased flow rate 

indicates that dispersive bypassing or fingering is dominant. If the rate is lowered the velocity of 

the WAG front may be more stable and have better sweep efficiency since occurrence bypassing 

is lowered, leaving more time for diffusive mixing between CO2 and oil. The pressure difference 

between the two cores is not as significant as for the SAG process.  

 

Continuing with a SAG, viscous forces are increased (since pressure increases), but it does not 

seem to have a significant effect on displacement efficiency in the core since very limited oil is 

recovered. There could be a high degree of water-shielding, leading to a low potential for the 

succcessive SAG flood. Laboratory SAG floods often show a late peak in apparent viscosity 

reduction. An example is found in experiments conducted by Ma et al. (2013) where the 

maximum pressure drop occurs significantly later than the gas breakthrough. So a slow 
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generation of strong foam is a considerable option as to why the SAG injection, in both cores 

LS2 and L3, shows a general lack of effectiveness.  

 

The pressure difference is much larger for a SAG process than for WAG in core LS2. A rapid 

pressure rise can be observed when CO2 becomes more discontinuous as surfactant saturation 

increases within the core. The pressure increase could also become slightly delayed if surfactant 

adsorbs to the limestone surface within the pore spaces. The increased flow rate in LS2 shows a 

higher degree of foam generation. Because this foam generation happes quickly due to a high 

flow rate, a large amount of lamella creation as well as rupturing may occur as it could take time 

for the foam to stabilize. LS3 has a more linear and steady increase in pressure, which could 

indicate stablilized foam and might also explain why recovery is slightly higher in this case. 

 

Capillary end effects can lead to pressure drops that maintain wet foam conditions at the core 

outlet, while parts of the core, closer to the inlet, contain dry conditions (Kapetas, et al., 2014). 

The macroscopic sweep efficiency seems to remain the same as during the WAG, but a lowering 

of interfacial tension between injection fluids and the oil can lead to slight improvements in 

microscopic sweep in LS2 and LS3 during SAG (Farajzadeh, et al., 2012). Since reduction of 

residual oil saturation in cores LS2 and LS3 are similar, uncertainties in production readings 

could mean that their performances are vertually identical.  

 

5.3.2 | WAG AND SAG COMBINED IN FRACTURED CORES 

 

Fluids are injected from the top of vertical core ST1 to the bottom. In core ST2, direction is 

reversed: fluids are injected from the bottom to the top. The rate for both cores is 10 ml/h 

(Table 5.2). Results are plotted in Figure 5.3.2 (a), showing a clear difference in recovery 

during WAG, depending on direction of injected fluids. The measured fracture permeability 

before each of the experiments showed that ST1 had Kfrac = 729 mD, while ST2 had Kfrac = 

112 mD (Table 5.1). When a core is re-assembled and stacked together with another core, 

the fractures can have slightly different volumes and orientations. Some cores might have 

small pieces missing from when it was cut by the circular saw. This permeability contrast 

can also reflect the degree of capillary continuity between the stacked core plugs. So it is 

natural that permeability can vary significantly, although changes in parameters are small.  
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Figure 5.3.2 (a): Waterflood, WAG and SAG have been performed on fractured cores (ST1 and ST2). 

Residual oil saturation vs. injected pore volume has been plotted; with their respective differential 

pressures shown beneath. The last point in the WAG curve of ST2 has been extrapolated to match the last 

point in the WAG curve for ST1. No pressure curves are available for ST2 in this region.  

 

 
Figure 5.3.2 (b): Oil production rate (ml/h) vs. pore volumes injected (frac.) for cores ST1 and ST2. 

WF

WAG SAG
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Table 5.5 – Production data for cores from figure 5.2.1. Oil saturation and recovery factor after each 

method is listed as well as total recovery. 

Core So,initial  

[frac.] 

So,WF  

[frac.] 

So,WAG  

[frac.] 

So,SAG  

[frac.] 

RF,total  

[% OOIP] 

ST1 1.00 0.43 0.29 0.03 75.1 

ST2 1.00 0.43 0.13 0.01 57.3 

 

Table 5.5 shows the reduction in oil saturation units for each core. Recoveries in ST2 proved to 

be lower in both WAG and SAG compared to ST1. This leads to a large difference in ultimate 

recovery. 

 

The recovery process in core ST2 is possibly a display of poor macroscopic displacement 

efficiency. During the WAG, the density difference between CO2 and brine could promote 

gravity segregation (Grigg & Schechter, 1998). This is controlled by the mobility ratio 

between gas-water and gas-oil, which depends on relative permeability of the gas. 

Breakthrough occurs shortly after production start in core ST2 in Figure 5.3.2 (a). Since the 

displacement process in ST2 is not gravity stable, matrix intrusion from the fracture 

becomes restricted by the unstable displacement front and viscous bypassing could occur. 

In the experiment with core ST1, the WAG front seems to become stabilized by gravity. The 

later breakthrough of the displacement front at 2.5 PV confirms this, and a much higher 

recovery can be observed.  

 

Significant differences can be observed between the two pressure curves in ST1 and ST2. 

Differential pressure in core ST2 is lower than ST1 during the waterflood, and there is no 

clear indication that a gravity unstable front affects the imbibition process, since oil 

recovered is about the same. As the WAG injection starts, the differential pressure in ST1 

surpasses that of ST2 and stays higher in general, which means that CO2 and water is 

intruding into the matrix of the core to a larger extent than in ST2. This would mean that 

fluids are mostly flowing through the fractures in core ST2, rather than into the matrix. This 

is the case for both the WAG and the SAG injections. 

 

The lower fracture permeability in ST2 is expected to induce a higher differential pressure 

than in core ST3. This occurs for the first 1.5 PV injected after production start, but a 

decrease in pressure can be observed as end point production is reached in ST2. This 

confirms that mobility reduction of CO2 during WAG is ineffective for a gravity unstable 

injection. Grigg & Schechter (1998) achieved excellent displacement efficiency by gravity 

drainage of CO2 (from top-bottom) in a vertical limestone core. This shows the importance of 

having gravity stable CO2, even in WAG injections.  
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The subsequent SAG injection in core ST2 has a relatively unstable pressure curve compared to 

in core ST1. Here too, a higher differential pressure should occur in ST2 because of its much 

lower fracture permeability. This implies that, although foam is generated in ST2 because of the 

sudden increase in pressure, it does not stabilize enough to sweep the core evenly. It is likely 

that both water-shielding as well as viscous fingering occurs, significantly lowering the potential 

for oil mobilization. 

 

5.3.3 | COMPARISON: WHOLE AND FRACTURED CORES  

 

The aim of this section is to compare fractured cores to the baseline experiments 

previously shown, both in terms of oil production and pressure responses. The whole core, 

LS3 (Figure 5.3.1), has been plotted together with the fractured core, ST1 (Figure 5.3.2), for 

comparison in Figure 5.3.3 (a).  

 

Table 5.6 shows reductions in oil saturation after each injection method. The waterfloods in 

whole and fractured cores are very similar, and are within range of previous recovery rates 

in limestone (Haugen, et al., 2014). More oil is recovered during the WAG in whole core, 

LS3, with a lowered oil saturation of 0.33, compared to fractured core, ST1, with 0.29. By 

studying Figure 5.3.3 (b), oil production rate can be observed as higher at the start of ST1 than 

for LS3, which means that WAG in the fractured core is more efficient than in the whole core at 

the beginning of production, as less pore volumes are required to mobilize oil. After 

approximately 2.8 PV injected, production rate drops down from 1.5 ml/h to less than 0.5 ml/h 

for ST1. This high production rate could be coupled with the fact that CO2, flowing in the 

fracture, has a higher degree of contact with the oil along the fracture walls, which could lead to 

more diffusive mixing between CO2 and oil.  

 

Another possibility is as to why oil production is accelerated in the fractured core, could be 

related to the entrapment of gas, which diverts water into the matrix from the fracture. 

Improvement from the waterflood happens when CO2 (non-wetting phase) is being bypassed by 

the water (wetting phase). This will lead to entrapment of CO2 in a discontinuous, immobile 

state. With increasing volume of trapped CO2, injected fluids will have lower relative mobility 

(Surguchev, et al., 1992). This can lead to diversion of water into the matrix, and could be what 

is observed in Figure 5.3.3 (b) for the first period of the WAG injection in core ST1.  
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Figure 5.3.3 (a): Residual oil saturation vs. pore volumes injected for fractured (ST1) and whole (LS3) cores 

for comparison. Differential pressures are shown in blue (LS3) and red (ST1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.3.3 (b): Oil production rate vs. PV injected for core LS3 and ST1 during WAG and 
SAG. Waterfloods are not shown. 
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Table 5.6 – Production data for cores from figure 5.3.3 (a). Delta residual oil saturation 

for each core is presented after waterflooding, WAG and SAG, as well as the total oil 

saturation reduction. 

Core So,initial 

[frac.] 

ΔSo,WF 

[frac.] 

ΔSo,WAG 

[frac.] 

ΔSo,SAG 

[frac.] 

ΔSo, total  

[frac.] 

ST1 1.000 0.428 0.294 0.030 0.751 

LS3 1.000 0.390 0.330 0.039 0.766 

 

The high production rate could also be a result of equal velocity for gas and water for a short 

period of time in a gas-water mixture zone, which typically occurs in a WAG process at the early 

production stage in the field, leading to optimum conditions for oil displacement by WAG in 

heterogeneous reservoirs (Surguchev, et al., 1992). However, this may not be as likely to 

happen in at core scale due to the constricted time span of the experiment. After breakthrough 

of CO2, the following slugs will propagate where CO2 has already contacted the oil, propagating 

along the path where capillary pressure is lowest. The sharp drop in production rate in fractured 

core, ST1, can be explained by segregation of CO2 and brine in the fracture, as discussed in 

Section 2.6.3. 

 

SAG recovery appears to be the same for both cores, since there are uncertainties in reading 

production off the imbibition cell. At production start of SAG, for both cores, there is a spike in 

the oil production rate, followed by a steep decline. This reflects the low potential for recovery 

after a WAG. 

 

Gas entrapment is a phenomenon that can possibly explain why differential pressure behaves a 

certain way during WAG in Figure 5.3.3 (a). The WAG displacement mechanism is a combination 

of imbibition and drainage, caused by the cyclic nature of the process (Rogers & Grigg, 2001). It 

combines imbibition from the waterflood and the drainage from the continuous CO2 injection, 

which is why it is able to significantly improve on the secondary waterflood and the reason why 

differential pressure is observed to fluctuate. Since the viscosity of CO2 is lower than water, 

differential pressure is expected to peak as the slug of CO2 exits the core and the slug if water 

behind it has entered the core. A slug of CO2 followed by a slug of water will likely prevent the 

next slug of CO2 to follow the same path as the first slug of CO2, thereby contacting more of the 

porous media and resulting in a steady increase of fluctuating differential pressure. This is more 

pronounced in the whole core, LS3, than in the fractured core, ST1, but still observable in both 

cases. 
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5.3.4 | TERTIARY WAG VS. TERTIARY SAG IN FRACTURED CORES 

 

This section will focus on direct comparison between WAG and SAG as tertiary recovery 

methods. Fluids were injected as gravity unstable (upwards) through both cores ST2 and ST3 at 

10 ml/h. These experiments can be used to investigate if foam generation counteracts fluid 

segregation under conditions where an unstable front is likely to occur. 

 

Tertiary WAG gives a slightly higher incremental recovery compared to tertiary SAG. WAG 

recovers 13.4 % of OOIP while SAG recovers 12.5 % of OOIP, as listed in Table 5.7. The most 

noticeable observation in this case, compared SAG in previous sections, is how low the pressure 

is from the start of production until breakthrough. It is approximately the same differential 

pressure as for the preceding waterflood, which indicates that foam has not been effectively 

generated to decrease CO2 mobility. This explains the reason why early breakthrough occurs 

and why almost no additional oil is recovered thereafter. 

 

It is possible that the injected slug volumes are too small so that the first surfactant slug does 

not sufficiently pre-saturate the core before CO2 is injected. If gas mobility is not reduced during 

gas injection, the entire SAG process is likely to fail as the gas could end up in the override zone 

before the next surfactant slug is injected (Zaganeh, et al., 2009), which may very well be what 

is seen in core ST3. As more surfactant is injected, large differential pressures occur in ST3 as 

CO2 disperse in the surfactant solution, generating in situ foam. This is, however, not sufficient 

to mobilize the oil. Capillary end effects, as discussed in Section 5.3.1, for LS2 and LS3, may also 

be a considerable factor for low recovery in this case as well. With wet foam conditions 

maintained at the outlet of the core, it would be possible to explain why the differential 

pressure keeps increasing even after oil production from ST3 ceases. The waterflooding of ST3 is 

significantly higher than for ST2, which will affect the SAG process by form of water-shielding 

effects. This is a possible explanation as to why WAG recovers slightly more oil in ST2.  

 

The differential pressure is lower for the WAG compared to SAG throughout the experiment. 

This arises as a direct result of flow resistance in the core, which appears to be very small in the 

WAG process. The ratio of viscous to gravity forces is one of the primary factors that influence a 

WAG. And since the gravity forces will dominate in a tertiary WAG flood of a strongly water-wet 

system, macroscopic sweep becomes worsened by viscous bypassing occurring between CO2 

and the oil (see Section 2.6.3). Water-shielding effects are present throughout the WAG, so that 

CO2 has to displace water before contacting oil, which could cause capillary-induced bypassing 

in core ST2. 
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Knowing that the displacement processes in both WAG and SAG are gravity unstable, this may 

very well be the most significant factor, causing early breakthrough of fluids and inefficient 

ultimate recoveries. 

 
Figure 5.3.4: Recovery factor vs. PV injected for tertiary WAG and tertiary SAG processes. Differential 

pressure is plotted for ST2 (red) and ST3 (blue). 

 

 

Table 5.7 – Recovery factors after waterflood, tertiary WAG (ST2) and tertiary SAG 

(ST3). Total recovery for each core is also shown. 

Core Rf,WF  

[%OOIP] 

Rf,WAG  

[%OOIP] 

Rf,SAG  

[%OOIP] 

Rf,total  

[%OOIP] 

ST2 42.9 13.4 --- 56.3 

ST3 50.6 --- 12.5 63.1 

 

 

 

 

 

 

 

Waterflood 

SAG 

WAG 

ST2 and ST3: Gravity unstable 
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5.4 | TERTIARY CO-INJECTION OF SUPERCRITICAL CO2 AND SURFACTANT 
 

The experimental data analyzed in this section were obtained in co-operation with fellow 

master student, Henriette Horjen. 

 

These experiments were conducted by injecting surfactant and CO2 simultaneously into the 

core. Petrostep C-1, listed in Table 4.1, was selected as the surfactant, based on previous 

successful foam experiments (Haugen, et al., 2012). It has also been used in field pilots for 

diversion in fractured reservoirs (Ocampo, et al., 2014). This AOS surfactant exhibited high 

longevity in the presence of oil in experiments by Simjoo et al. (2013). Core properties from 

Table 5.1 show that these cores were all drained to irreducible water saturation. Pressures of 

90-95 bars with a temperature of 35 oC were applied, achieving a first-contact miscible 

displacement process. These experiments were performed horizontally to eliminate gravity 

effects; this is also why the fractures in the cores were aligned vertically. All fractured cores 

contained a plastic spacer with a certain spacer volume. Injections were run at 5 ml/h and an 

overburden pressure of 100-105 bars was applied. 

 

5.4.1 | BASELINE: CO2 AND CO2-FOAM IN WHOLE CORES 

 

Pure CO2 (#2) and CO2-foam (#3) were injected into two whole cores to establish baseline 

experiments. Next, three experiments (#4, #10 and #12) were run on fractured cores to 

investigate foam effects on oil production and compare them to whole cores. Figure 5.4.1 (a) 

shows the resulting oil production from cores #2 and #3.  

 

During the water injection, the brine imbibes spontaneously into the strongly water-wet core 

(Alotaibi, et al., 2010). A high, constant oil production rate can be observed (5.4.1 (b)), 

eventually leading to clean water cut (Figure 5.4.1 (a)) after water breaks through at the core 

outlet. Initial oil saturation in cores #2 and #3 was reduced by around 0.28 and 0.25 saturation 

units, respectively. For pure CO2 injection, a steep decrease in oil saturation could be observed 

as production began. Core #2 had its oil saturation lowered by 0.13 saturation units, all of which 

was recovered after 1 PV. CO2 is believed to achieve fist-contact miscibility with the decane 

within the core. The oil is displaced by viscous forces, with gravity drainage as the main driving 

mechanism. Diffusion is also believed to important factor to determine displacement efficiency 

at core scale. 
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Figure 5.4.1 (a): Oil saturation vs. pore volumes for pure CO2 injection and co-injection into whole 

limestone core plugs after waterfloods. Pure CO2 in core #2 has been extrapolated to match the last point 

of CO2-foam in core #3. 

 

 
Figure 5.4.1 (b): Oil production rate vs. PV injected for #2 (CO2) and #3 (CO2-foam). 
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Table 5.8 – Production data for whole cores from figure 5.3.1. Delta residual oil 

saturation for each core is presented after waterflooding, CO2 and CO2-foam, as well as 

the total oil saturation reduction. 

Core So,initial 

[frac.] 

ΔSo,WF 

[frac.] 

ΔSo,CO2  

[frac.] 

ΔSo,Co-inj. 

[frac.] 

ΔSo, total  

[frac.] 

#2 1.00 0.28 0.13 --- 0.41 

#3 1.00 0.25 --- 0.16 0.41 

 

Once CO2 has reached the outlet of the core, continuous injection will likely not recover more 

oil in core #2 as it will follow the least resistant path already containing CO2. This is why 

production in core #2 completely evens out at breakthrough after 1 PV. During co-injection, oil 

production was observed to be slower than for pure CO2 injection, in terms of PV injected 

required to recover the same amount of oil.  

 

Results from Haugen et al. (2014): 

When comparing these results with Haugen et al. (2014), incremental recovery of pure CO2 

injection is higher, with residual oil saturation of 0.19. Haugen injected for 10 pore volumes 

to achieve this final recovery, and there was a long period of time with very little extra oil 

produced. In figure 5.4.1 (a), CO2 injection was stopped between 4-5 pore volumes, and 

then extrapolated to match the last point of CO2-foam. It is possible that the same amount 

of oil could have been recovered here if injection had continued.  

 

Results from Svenningsen (2011): 

Reductions in residual oil saturation units by Svenningsen (2011), in two whole cores, were 

around 0.20 by supercritical tertiary CO2 injection. This does not match well with core #2. 

However, another core had a reduction of 0.12 residual oil saturation units, which is in the 

same for area for Svenningsen as core #2, although connate water saturation was 0.40. 

During tertiary supercritical foam experiments, reduction of oil saturation in one of the 

cores was 0.13, which is less than core #3. So for Svenningsen, pure tertiary CO 2 injection 

performed better than CO2-foam in whole cores. This is the same result obtained for whole 

cores #2 and #3. 

 

When CO2 has a lower mobility, as in CO2-foam, it is expected to perform better than a pure CO2 

injection, where mobility is higher and likely to reach breakthrough earlier. Therefore, it is not 

straight forward to explain the trend seen in Figure 5.4.1 (a), where the opposite occurs: CO2 

injection performs better than CO2-foam. This could mean that the generated foam does not 

have time to reach steady state, as the length of the core is rather short. Differential pressure 

can be observed to increase steadily throughout the co-injection process as foam is being 
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generated. As mentioned in previous sections, this could mean that the texture of the foam is 

becoming finer with a greater amount of lamellae per unit length (Yan, et al., 2006). Oil is being 

produced throughout the pressure increase because viscous forces become stronger and able to 

sweep more of the oil.  

 

Observations made in experiments by Chou (1991) indicated that foam reduction factor in the 

last section of the core continued to increase over time, with constant injection rate. This is 

seen as common in weak CO2-foam with low flow rates, even if surfactant concentration is as 

high as 1 wt %. High differntial pressures can be generated even for weak foams, according to 

Chou (1991). This could be the case for foam in core #3, in addition to the nature of the water-

wet limestone that can cause capillary end-effects to hold surfactant solution back, meaning 

that the oil being diplaced by foam has to displace the surfactant solution before leaving the 

core. 

 

Both the efficiency of the waterflood and the pure CO2 injection was found, by Eide (2014), to 

depend on the exact pore size distribution (see Section 4.1.2), ranging significantly between 

limestone samples. Therefore, the efficiency of a CO2 injection may show better recovery than a 

CO2-foam injection in a whole core, depending on the effect of small scale heterogeneities 

within the sample. 

 

After the waterflood, core #3 has higher initial oil saturation than core #2. Oil has been proven 

to be detrimental to foam as it spreads on the film until it ruptures (Simjoo, et al., 2013). This is 

a factor that can delay generation and stabilization of foam, and can also be a contributing 

explanation as to why recovery is slower than during CO2 injection. Because of a constant 

injection of surfactant solution, the CO2 has to go through water films in order to contact oil. 

This water-shielding effect can slow down the recovery process in early production stages.  

 

As the surfactant propagates through core #3, it is adsorbed on the limestone surface. Layers of 

adsorbed surfactant can influence relative permeability of water by transitioning to a more 

water-wet system. Since co-injection is performed at constant water fractional flow of 0.2 (80% 

foam quality), a build-up of water saturation can occur within the core between foam fronts and 

delay foam propagation (Wassmuth, et al., 2001), which could be related to the slow production 

in core #3. 

 

The low overburden pressure in these experiments could have made fluid bypass the core along 

the sleeve, as the aluminum foil wrapped around it causes less resistance to fluid flow. This may 

also explain why more pore volumes are required for co-injection to reach the same end point 

recovery as CO2 injection. 
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5.4.2 | CO2 AND CO2-FOAM IN FRACTURED CORES 

 

This section compares reduction in residual oil saturation of pure CO2 injection (#10) with co-

injection (#4 and #13) in fractured cores. Results are presented in Figure 5.4.2 (a) and 5.4.2 (b).  

 

From Figure 5.4.2 (a), it is apparent that CO2-foam, by co-injection in core #4, has slightly better 

oil recovery compared to that of continuous CO2 injection in core #10. As listed in Table 5.9, co-

injections in cores #4 and #13 have reductions of 0.24 and 0.21 oil saturation units, respectively. 

This is a higher production by foam in #4 compared to pure CO2 in core #10, with a reduction of 

0.21 oil saturation units, which is the same as in core #13. After breakthrough in during pure 

CO2 injection, no significant additional oil production takes place. At around 3.8 PV in Figure 

5.4.2 (a), slightly more oil is produced for core #10 by CO2, which is unexpected because it is 

unlikely that CO2 will contact additional oil after breakthrough. This could be explained by 

uncertainties in measurements.  

 

The displacement process in pure CO2 injection is likely to have very little contribution from 

viscous forces, as gas channels through the high permeable fracture in the center of the core. 

This has been confirmed by Eide (2014) through CT-imaging and MRI-imaging of oil production 

of a fractured core. It can also be observed from the low differential pressure, which indicates 

limited flow resistance. For an Edward limestone rock, that has low matrix permeability and 

high fracture permeability, molecular diffusion tends to become a dominating oil recovery 

mechanism during the pure CO2 injection (Shojaei & Jessen, 2015).  
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Figure 5.4.2 (a): Residual oil saturation vs. PV injected for pure CO2 injection (#10) and co-injection (#4 

and #13) in fractured cores. Differential pressure is shown for CO2 (black) and CO2-foam (green). 

 

 
Figure 5.4.2 (b): Oil production rate (ml/h) vs. PV injected (frac.) for cores #10 (CO2-foam) and #4 (CO2). 

Pure CO2 (#10) 

Co-Injection (#4 and #10) 

Waterflood 
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Table 5.9 – Production data for fractured cores from figure 5.4.2 (a). Delta residual oil 

saturation for each core is presented after waterflooding, CO2 and CO2-foam, as well as 

the total oil saturation reduction. 

Core So,initial 

[frac.] 

ΔSo,WF 

[frac.] 

ΔSo,CO2  

[frac.] 

ΔSo,Co-inj. 

[frac.] 

ΔSo, total  

[frac.] 

#4 0.76 0.13 --- 0.24 0.37 

#13 0.76 0.14 --- 0.21 0.36 

#10 0.79 0.23 0.21 --- 0.44 

 

Oil production rate in Figure 5.4.2 (b) becomes accelerated when CO2-foam is introduced to 

core #4 and #13. This rate eventually evens out and overlaps with production rate for pure 

CO2 in core #10. The fracture permeability within core #4 could be as high as two orders of 

magnitude larger than the matrix permeability. It is clear that entrapment of CO2 within 

water film occurs at the early stage of production, which is why the oil rate peak in CO 2-

foam is higher than for pure CO2. After breakthrough of CO2, diversion of fluid from the 

fracture and into the matrix occurs to a more limited extent and the rate can be observed 

to level out in Figure 5.4.2 (b).  

 

Co-injection in core #4 showed slightly better potential than pure CO2 injection, but since 

the same recovery was observed for co-injection in core #13, this difference could be 

attributed uncertainty as well as to the heterogeneous nature of limestone. However, the 

oil production was slightly accelerated in both core #4 and #13 in the early production 

phase compared to core #10. 

 

5.4.3 | COMPARISON: WHOLE AND FRACTURED CORES 

 

In section 5.4.1 observations were made that pure CO2 and CO2-foam performed similarly 

in whole cores, while in section 5.4.2 there was an observable difference between oil 

production in pure CO2 and CO2-foam for fractured cores. This section will compare and 

contrast CO2 and CO2-foam as recovery methods in whole and fractured cores. Combined 

plots of the earlier figures have been made in Figures 5.4.3 (a) and 5.4.3 (b).  

 

There is slight difference in oil production between fractured and whole cores for both 

pure CO2 and CO2-foam. This difference is more pronounced in the recovery efficiency of 

CO2-foam in the whole and fractured cores (Figure 5.4.3 (b)), contrary to CO2 in whole and 

fractured cores (Figure 5.4.3 (a)). Because the core plugs are relatively short, diffusion 

becomes an important factor that determines recovery during CO2 injection at laboratory 

scale.  
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Both cores have a short transient period of production after CO2 breakthrough in Figure 

5.4.3 (a). However, after 2 PV, additional oil is recovered for the fractured core. This is 

normally not expected to happen, and could be a matter of uncertainty in measurements.  

 
Figure 5.4.3 (a): Comparison of tertiary CO2 injection in whole (#2) and fractured (#10) core. This plot 

shows tertiary recovery (OOIP) vs. PV injected (frac.). Waterfloods have been omitted so that the curves 

start from zero. 

 

According to Figure 5.4.3 (a), there is no difference in the efficiency at which oil is recovered by 

CO2 injection in the presence of fractures. During the first PV injected, data points completely 

overlap for the two cores. Since recovery mechanisms in whole cores are dominated by viscous 

displacement through gravity drainage as well as diffusion, a higher displacement is expected 

compared to fractured cores. Pressure drop induced in the whole core, by viscous forces, is 

higher than in the fractured core. In section 5.4.1, various reasons for the low displacement in 

the whole were discussed.  

 

Figure 5.4.3 (b) has a more pronounced difference in tertiary recovery for whole and 

fractured cores. Viscous displacement occurs in porous media by co-injection, generating in 

situ foam which lowers apparent viscosity of CO2. Differential pressures between the whole 

(#3) and fractured (#4) cores indicate that viscous forces are strong in the whole core, while 

weak in the fractured core. Investigations conducted on foam generation by Chou (1991) 

showed that strong foam can be generated at low pressure gradients. The same observation can 

be made in figure 5.4.3 (b), where  differential pressure in the whole core rises up to around 

2 bars, compared to a much lower differential pressure in the fractured core. Yet, the 

Whole (#2) 

Frac. (#10) 
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amount of recovered oil is significantly higher and more efficient for the fractured one. In 

addition to the given explanation, it could also be that either fluid has bypassed core #3 or 

the steadily increasing pressure could indicate that steady state has yet to be reached. The 

trend in Figure 5.4.3 (b) suggests that foam is favorable in fractured cores, since a larger 

contact area is available, as opposed to a whole core where foam will sweep the core along 

the cross-section only. 

 
Figure 5.4.3 (b): Comparison of tertiary CO2-foam co-injection in whole (#3) and fractured core (#4). This 

plot shows tertiary recovery (OOIP) vs. PV injected (frac.). Waterfloods have been omitted so that the 

curves start from zero. 

 

5.4.4 | INTEGRATED EOR: CO2 AND CO2-FOAM IN FRACTURED CORES 

 

Experiments with CO2 and CO2-foam have been discussed separately in the previous 

sections. This section will expand on the utilization of these two techniques by combining 

them in a fractured core (#12) to investigate whether or not this strategy can improve 

recovery even further. The experiment conducted on core #12, at a rate of 5 ml/h, has been 

plotted together with a previous experiment by Opdal (2014) on core AC_1, which had an 

injection rate of 10 ml/h. Foam was generated in both cores by using Petrostep C-1 as the 

surfactant. Pure CO2 injection in core #10 has been added to better observe the effect of 

switching to foam. Properties of the cores are compared in Table 5.10 and this shows their 

Frac. (#4) 

Whole (#3) 
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similarity. The main difference between the two lies in injection rate, oil type and slightly 

different sizes. AC_1 is also a multi-fracture system of two different fractured cores, with no 

spacer volume, which leads to lower fracture permeability. Results are plotted in Figure 5.4.4 (a) 

and Figure 5.4.4 (b). 

 
Figure 5.4.4 (a): Oil recovery as a fraction of OOIP vs. pore volumes injected for a waterflood, CO2 and 

CO2-foam in fractured cores. Core #12 is plotted together with core AC_1 from Opdal (2014) for 

comparison. Pure CO2 in Core #10 has been plotted to directly see the effect of switching to foam.  

 

 
Figure 5.4.4 (b): Oil production rate vs. pore volumes injected during waterflood, CO2 and CO2-foam in 

cores #10, #12 and AC_1. A production spike occurs once CO2 hits the core. The same spike happens when 

CO2 and surfactant are introduced to generate in situ foam. 

Waterflood 

CO2 

Co-Injection 
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Table 5.10 – Core properties and oil types are given for fractured cores #10, #12 and AC_1. 

Core Rock Length 

[cm] 

PVfrac 

[ml] 

Porosity 

[%] 

Kfrac 

[mD] 

Swi  

[frac.] 

Oil Type 

#10 Limestone 6.70 16.67 24.26 --- 0.21 Decane 

#12 Limestone 7.20 16.80 22.80 --- 0.30 Decane 

AC_1 Limestone 9.70 21.40 21.90 85 ± 57 0.237 Paraffin 

 

 

Table 5.11 – Production data for fractured cores from figure 5.4.4 (a). Delta residual oil 

saturation for each core is presented after waterflooding, CO2 and CO2-foam, as well as 

the total oil saturation reduction. 

Core So,initial 

[frac.] 

ΔSo,WF 

[frac.] 

ΔSo,CO2  

[frac.] 

ΔSo,Co-inj. 

[frac.] 

ΔSo, total  

[frac.] 

#10 0.79 0.23 0.21 --- 0.44 

#12 0.70 0.20 0.14 0.11 0.45 

AC_1 0.76 0.28 0.28 0.05 0.60 

 

 

A waterflood was completed for core #12, which reduced oil saturation with 0.196 units. AC_1 

had its oil saturation reduced by 0.28. Then a subsequent CO2 injection was initiated, producing 

0.14 saturation units for #12, while 0.8 units were produced for AC_1. CO2 injection lasted 

longer in core AC_1 than #12, since an early transition was made in core to foam in core 

#12. The CO2 injection is over a very short time span compared to the earlier CO2 

experiments, and it is not likely that CO2 would have been able to produce more oil if the 

process continued. This can be observed from pure CO2 injection in core #10, where very 

limited additional oil is produced after breakthrough.  

 

Several parameters were different, and it is not clear which one contributes the most to AC_1 

achieving higher oil production. It could be because of a higher differential pressure than for 

#12, induced by lower fracture permeability. This is a significant factor since CO2 breakthrough 

will be slower than in core #12. At the inlet part of core of AC_1, CO2 will produce oil by viscous 

forces at the beginning, until breakthrough of CO2. Then the main displacement mechanism 

turns to molecular diffusion, causing production of the rest of the oil. On the contrary, diffusion 

is likely the only displacement mechanism in core #12 because nothing prevents CO2 from 

channeling through the fracture. 

 

Figure 5.4.4 (b) displays oil production rate in core #12. CO2 injection and CO2-foam can both be 

observed as peaks once injection fluids hit the core, continuing oil production where 
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waterflooding left off. CO2-foam has a decline in production rate at 4.3 PV before its maximum 

oil production rate at 4.5 PV. A similar observation can be made from the recovery curve in 

Figure 5.4.4 (a), where oil production starts to even out at 4.2-4.3 PV before speeding up and 

starts to even out again at 4.5 PV. This could be attributed to effects of surfactant adsorption 

and detrimental effects of oil on foam stability. Experiments have confirmed the instability of 

foam in the presence of oil (Simjoo, et al., 2013). The decrease in oil saturation as more fluid is 

injected, as well as surfactant saturation, could be the reason for the small increase in oil 

production at the start, before the curve flattens out again. 

 

Viscous-induced forces are created in the system as foam generation takes place inside the 

core. This is an important additional mechanism to diffusion. There are also effects of swelling 

of oil and reduction of interfacial tension of gas-oil and water-oil by surfactant. Because of these 

processes, oil recovery increases further in core #12 than what can be seen for core #10. 

Although core AC_1 has a higher ultimate recovery than core #12 by running the CO2 injection 

for a longer period of time, before switching to foam, it is also a different fracture system with a 

higher degree of viscous displacement. The sequence that was conducted in core #12, with no 

viscous displacement during CO2 injection, seems to be an efficient way to produce the oil in 

terms of CO2 usage and maximizing the ultimate recovery. 

 

 

 

5.5 | COMPARISON OF SUPERCRITICAL CO2 EOR INJECTION STRATEGIES 

 

Several different injection strategies have been studied and discussed in this thesis. While 

certain recovery methods clearly out-perform others, some of the techniques that have been 

looked at have inconclusive recovery potential due to gravity effects and uncertainties in the 

way some experiments were conducted. In this section, the main focus will be to compare every 

method that has been shown so far. Figure 5.5 contains all the recovery curves from previous 

figures, but modifications have been made so that all curves start from zero by subtracting pore 

volumes and recovery of the waterfloods. Only tertiary plots are included and dotted lines are 

drawn to mark the recovery plateau and to match the end points of every curve. 

 

It is important to note that parameters are varying between experiments related to CO2/co-

injection and WAG/SAG experiments (Table 5.3). The main differences are: flow rate, use of 

spacer, single and stacked cores, core length, initial oil saturations, and surfactant types. These 

parameters could all influence oil production. 
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Figure 5.5: Tertiary recovery factor vs. pore volumes injected. Previously shown recovery methods have 

been plotted together: SAG, pure CO2, WAG, co-injection and combined CO2 + co-injection. All curves 

have been modified to start from zero and dotted lines are drawn to matching end points.  

 

 

Table 5.12 – Recovery factors for each tertiary method shown in Figure 5.5. 

Injection Method Core Rf,WF 

[% OOIP] 

Tertiary Recovery 

[% OOIP] 

CO2+Co-Injection #12 41.3 36.2 

WAG+SAG ST1 42.8 32.4 

Co-Injection #4 36.2 29.4 

Pure CO2 #10 29.4 26.7 

SAG ST3 50.6 12.5 

 

 

 

The weakest tertiary recovery method appears to be the SAG, with the earliest breakthrough 

and the lowest total recovery of 12.5 % of OOIP. As stated in previous sections, the direction of 

injection in this experiment proved disadvantageous since gravity forces as well as capillary 

forces inhibited fluid from intruding into pores. In addition, the density differences between CO2 
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and surfactant possibly lead to CO2 disappearing in an over-ride zone, causing the production to 

cease after breakthrough. Because gravity has to be accounted for, this result may not be 

representative of an actual SAG injection, which makes realistic comparisons with other 

strategies difficult. There are different surfactant types in the two foaming strategies of SAG and 

co-injection. Perhaps the anionic surfactant, used in co-injection, is more compatible with the 

core size as well as experimental conditions.  

 

Second lowest in terms of total recovery was the pure CO2 injection, although an improvement 

can be seen when compared with SAG. This method was governed by diffusion as its main 

production mechanism, which seems effective to a certain extent because it improves 

microscopic sweep. However, it falls short in light of co-injection and WAG. With injection of 

WAG and SAG on the same core, pure CO2 injection is exceeded in terms of efficiency at early 

stages of production, as well as in the final recovery process. Co-injection has a higher oil 

production rate after breakthrough occurs compared to that of WAG, and at no point does the 

recovery curve of WAG surpass the co-injection recovery curve. This poses the question 

whether or not it is worth implementing combined WAG and SAG since co-injection arguably 

out-performs this strategy in terms of overall efficiency. It could be considerable if WAG/SAG is 

less costly overall. 

 

Lastly, tertiary CO2 followed by co-injection extracts the highest oil volume, with a total of 36.2 

% of OOIP recovered. That is 3.8% OOIP more than WAG/SAG and 6.8% OOIP more than co-

injection, which are the only two strategies that are able to compete with it. CO2 injection, 

before initiating co-injection, shows a slightly more efficient recovery curve than the WAG 

process, but less efficient than co-injection. 
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5.6 | UNCERTAINTIES AND CALCULATIONS 

 
Every instrument that has been used throughout the experiments contains an uncertainty, and 

by combining these in calculations, the magnitude of uncertainty can be assigned to important 

values obtained from raw data. 

 

 

Instrumental Uncertainties: 

 

Pressure gauge (max 250 bar):  ± 0.1% of full scale. 

Pressure gauge (max 40 bar):  ± 0.1% of full scale. 

QX Pump, injection rate:   ± 5% ml/h 

QX Pump, PV injected:   ± 0.5 ml 

Caliper:     ± 0.01 mm 

Core Weight:     ± 0.01 g 

Imbibition cell measurements: ± 0.05 ml 

 

 

Uncertainty Equations: 

 

The uncertainty, 𝜎𝑦, of a value, y, is given by the equation: 

 

𝜎𝑦 = √∑ (
𝜕𝑦

𝜕𝑥𝑖
∗ 𝜎𝑥𝑖

)
2𝑛

𝑖=1

 

 

 

5.6.1 

 

Where i = 1, …., n, 𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) and xi  is an independent variable with independent 

uncertainty, 𝜎𝑥𝑖
.  

 

 

Calculating Porosity Uncertainty: 

 

Porosity is calculated by Equation 4.1.1, which also can be written as pore volume divided by 

bulk volume: ϕ = Vp/Vb. Bulk volume is written as: 𝑉𝑏 =  𝜋 ∙ 𝑟2 ∙ 𝐿, where r is the radius of the 

core and L is the length of the core. Pore volume is written as  𝑉𝑝 =  
𝑚

𝜌
 , where m is the weight 

difference between saturated core and dry core, 𝜌 is the density of the saturating fluid. 
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In order to calculate the uncertainty of porosity, bulk volume and pore volume uncertainties 

must be calculated separately. 

 

Bulk volume uncertainty, 𝜎𝑉𝑏,𝑐𝑜𝑟𝑒
, is calculated by input of variable into Equation 5.6.1 and 

deriving it: 

 

𝜎𝑉𝑏,𝑐𝑜𝑟𝑒
= √(

𝜋 ∗ 𝐷 ∗ 𝐿

2
∗ 𝜎𝐷)

2

+ (
𝜋 ∗ 𝐷2

4
∗ 𝜎𝐿)

2

 

 

5.6.2 

 

where D is the diameter of the core and L is the length. 

 

Pore volume uncertainty, 𝜎𝑉𝑝
, is given by equation:  

 

𝜎Vp
= √(

1

𝜌𝑓𝑙𝑢𝑖𝑑
∗ 𝜎𝑚𝑠𝑎𝑡

)

2

+ (
−1

𝜌𝑓𝑙𝑢𝑖𝑑
∗ 𝜎𝑚𝑑𝑟𝑦

)

2

+ (−
𝑚𝑠𝑎𝑡 − 𝑚𝑑𝑟𝑦

𝜌
𝑓𝑙𝑢𝑖𝑑
2

∗ 𝜎𝜌𝑓𝑙𝑢𝑖𝑑
)

2

 

 

5.6.3 

 

Where 𝜎𝑚𝑠𝑎𝑡
 is the uncertainty in weight of saturated core, 𝜎𝑚𝑑𝑟𝑦

 is the uncertainty in weight of 

dry core and 𝜌𝑓𝑙𝑢𝑖𝑑 is the density of saturating fluid. 

 

Finally, combining these two gives the uncertainty of porosity: 

 

𝜎∅ = √(
𝜕∅

𝜕𝑉𝑝
∗ 𝜎𝑉𝑝

)

2

+ (
𝜕∅

𝜕𝑉𝑏
∗ 𝜎𝑉𝑏

)
2

 

 

5.6.4 

 

 

Calculating Permeability Uncertainty: 

 

Permeability is calculated using Darcys law, given in Equation 4.1.2. The uncertainty, 𝜎𝐾 is 

calculated using the following equation: 

 
 

𝜎𝐾 = √(
𝜇 ∗ 𝐿

𝐴 ∗ ∆𝑝
∗ 𝜎𝑄)

2

+ (
𝑄 ∗ 𝐿

𝐴 ∗ ∆𝑝
∗ 𝜎𝜇)

2

+ (
𝑄 ∗ 𝜇

𝐴 ∗ ∆𝑝
∗ 𝜎𝐿)

2

+ (−
𝑄 ∗ 𝜇 ∗ 𝐿

𝐴2 ∗ ∆𝑝
∗ 𝜎𝐴)

2

+ (−
𝑄 ∗ 𝜇 ∗ 𝐿

𝐴 ∗ (∆𝑝)2 ∗ 𝜎∆𝑝)
2

 

 

5.6.5 

 

where is uncertainties of the Darcy equation are given as: flow rate, 𝜎𝑄, viscosity of fluid, 𝜎𝜇, 

length of core, 𝜎𝐿, cross-section of core, 𝜎𝐴, differential pressure, ∆𝑝. 
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Calculating Oil Saturation Uncertainty: 

 

Uncertainty of oil saturation, 𝜎𝑆𝑜
, is calculated using the following equation: 

 

𝜎𝑆𝑜
= √(𝜎𝑆𝑜𝑖

)
2

+ (−
1

𝑉𝑝
∗ 𝜎𝑉𝑜,𝑝

)

2

+ (
𝑉𝑜,𝑝

𝑉𝑝
2

∗ 𝜎𝑉𝑝
)

2

 

 

 

5.6.6 

where uncertainties are given as: initial oil saturation, 𝜎𝑆𝑜𝑖
, and displaced volume of oil, 𝜎𝑉𝑜,𝑝

. 

 

Example Values: 

 

An example will be given where core properties of core #10 has been used, where uncertainties 

of bulk volume, pore volume, porosity, permeability and irreducible water saturation has been 

calculated using the equations above. These uncertainties are assumed to be representative of 

other cores as well. 

 

 

 

 

Source of Experimental Errors 

 

All experimental work has uncertainties that can affect the accuracy of measurements. The 

most significant factors will be mentioned here. 

 

Laminated Fractures: All cores that were used in CO2 and co-injection experiments were flooded 

to irreducible water saturation and then cut in half by a circular saw (see Section 4.1.3). After 

Table 5.11 – Example properties from core 

#10 with uncertainties. 

Parameter Value 

Length (cm) 6.70 ± 0.01 

Diam. (cm) 3.75 ± 0.01 

Vb (g) 74.0 ± 0.4 

Vp (ml) 18.60 ± 0.01 

Porosity (%) 23.7 ± 0.4 

Perm. (mD) 28.32 ± 0.07 

Swi (frac.) 0.21 ± 0.01 
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being cut, very small grains of the limestone were coating the fracture areas of the core. The 

limestones were washed with decane, which may have led these small grains filling pore spaces, 

resulting in laminated fracture walls. This may have made it harder for fluids to intrude into the 

matrix along the fracture. 

 

Back Pressure Regulator:  After each waterflooding, some of the produced oil would get trapped 

in the BPR. This varied from 0.5 - 1 ml, which could significantly affect the ultimate recovery. 

Therefore, oil had to be added to the production curves afterwards. 

 

Cylinder Readings: Reading the menisci between the oil-water interfaces was sometimes 

difficult, especially if emulsions occurred in the cylinder. 

 

Core Properties: There are uncertainties in measurements such as porosity and permeability, 

which depend on other factors that contain uncertainties. 

 

ESI Measurements: There were fluctuations in the ESI gauges during permeability 

measurements and during ongoing experiments. Because of this, uncertainties occur in the 

actual pressure measurement. 

 

QX Pump: Pressures shown by the QX pump did not always correlate with ESI pressures, 

amounting to a certain pressure difference between the two. 

 

Tubing Leakages: When pressurizing the system, different pressurization factors would be 

measured, meaning that there were leakages in the connections between tubings. 

 

Correlating ESI to Production: Delay between the production measurement and the pressure 

readings, meant that pressures had to be moved forward in time to match production curves. 

Therefore, it was necessary to know the length travelled by the fluids from the core to the 

cylinder. Uncertainties in these values would affect correlation between time of pressures and 

production. 
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6 | CONCLUSION AND FUTURE WORK 
 

6.1 | CONCLUSION 
 
The experimental work within this thesis was a continued investigation of tertiary recovery by 

injection of supercritical CO2 and CO2-foam under miscible conditions for enhanced oil recovery 

in fractured limestone. 

 

Pure CO2 injection showed a significant improvement from a waterflood, with recovery of 26.7% 

OOIP as a tertiary injection method in fractured limestone cores. 

 

Water-alternating-gas (WAG) injection proved to be a useful way to reduce mobility of CO2 and 

improve recovery compared to pure CO2 injection. Reduction of CO2 usage in combination with 

storage of CO2, within the core, makes WAG an economical choice. 

 

Co-injection of surfactant and CO2 accelerated oil production, compared with both pure CO2 and 

WAG injections, by foam generation to reduce the mobility of the injected gaseous phase. A 

higher tertiary recovery was also achieved, with 29.4% OOIP. This shows that foam delays CO2 

breakthrough more effectively than WAG.  

 

Integrated EOR by initiating SAG, after WAG end point production, increased total oil recovery 

compared to tertiary co-injection. The pressure difference shows that foam was generated in 

situ throughout the SAG injection, which shows that mobility of CO2 was further reduced by 

SAG. 

 

More residual oil can become mobilized through integrated EOR of CO2 and CO2-foam that may 

not have been possible through utilization of each method individually. The timing of switching 

from CO2 to CO2-foam proved to be effective at CO2 breakthrough to maximize ultimate 

recovery. This method had the overall best performance compared to all the others, producing 

36.2 % OOIP. This was higher than integrated WAG and SAG, which produced 32.4% OOIP. 

 

SAG mobilized some additional oil when integrated with WAG, recovering slightly more than co-

injection. However, early breakthrough of surfactant occurred. This could be a result of an 

insufficiently large pre-injected slug of surfactant and water-shielding effect of high water 

saturation. Gravity stable CO2 injections in both WAG and SAG were important to avoid viscous 

fingering and achieve a high as possible ultimate recovery. Oil production did not prove to be 

more efficient or higher in whole cores compared to fractured cores. 
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6.2 | FUTURE WORK 
 

 Additional experiments needs to be conducted to verify tertiary SAG as a viable injection 

strategy. 

 

 Performing SAG and co-injection on longer cores, preferably of 2” diameter, could yield 

results more representative of the field. 

 

 Screening of surfactants, to find the one that is best suited for certain experimental 

conditions, can help optimize the recovery efficiency of SAG and co-injection. 

 

 Using larger slugs in WAG and SAG might perform better than injection of small slugs. 

 

 It could be worth testing other ways to generate foam in situ, such as single-cycle SAG to 

see if one large slug of pre-injected surfactant is better. 

 

 Visualize complicated injection strategies such as WAG and SAG by use of MRI or PET/CT. 
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7 | ABBREVIATIONS AND NOMENCLATURE 

 

OOIP  Oil Originally in Place 

EOR  Enhanced Oil Recovery 

IEOR  Integrated Enhanced Oil Recovery 

WF  Waterflood 

SAG  Surfactant-Alternating-Gas 

WAG  Water-Alternating-Gas 

BPR   Back Pressure Regulator 

MMP  Minimum Miscibility Pressure 

MRI  Magnetic Resonance Imaging  

PV  Pore volume 

Mrf  Mobility Reduction Factor 

wt%  Weight percent of surfactant 

A  Cross section area of core [cm2] 

L   Length of core [cm]  

K   Absolute permeability of matrix in sample [mD] 

Kfrac   Fracture permeability of sample [mD] 

Krf  Foam relative permeability 

𝑚𝑑𝑟𝑦  Weight of dry core 

 
𝑚𝑠𝑎𝑡  Weight of saturated core 
 
M   Mobility Ratio 

Δp   Pressure drop  

Q   Flow rate [cm3/s] 
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Rf   Recovery factor [OOIP] 

Ev, Eh, Em Vertical, horizontal and microscopic sweep efficiency, respectively 

Siw  Irreducible water saturation 

Sor  Residual oil saturation 

Sor  Foam saturation 

𝛱  Disjoining pressure [N/m2] 

𝜇𝑓  Apparent viscosity [cP]  

μi  Viscosity of fluid i (water, oil, gas) 

ϕ  Effective porosity of sample 

µ   Fluid viscosity [cP] 

ρ  Fluid density [g/ml] 

Vb, Vp   Bulk and pore volume, respectively  

M  Mobility ratio  

kr,i  Relative permeability of fluid i (water, oil or gas) 

υ  Velocity of displacing fluid 

Rv/g  Viscous to gravity force ratio 

Fp  Pressurization factor 

σy  Uncertainty of value, y 

𝑁𝑣𝑐  Capillary number 

 
𝑅𝑓,𝐼  Recovery factor after injection method, I 

 
𝑆𝑜𝑟,𝐼  Residual oil saturation after injection method, I 

 
 

  



99 
 

 

 

  



100 
 

8 | REFERENCES 
 

Aarra, M. G., Skauge, A., & Martinsen, H. A. (2002). FAWAG: A Breakthrough for EOR in the 
North Sea. San Antonio, Texas: Paper SPE-77695-MS presented at the SPE Annual 
Technical Conference and Exhibition, September 29-October 2. 

Ahr, M. M. (2008). Geology of Carbonate Reservoirs. Hoboken, New Jersey: John Wiley & Sons, 
Inc. 

Albrecht, R. A., & Marsden, S. S. (1970). Foams as Blocking Agents in Porous Media. Society of 
Petroleum Engineers, 10(01), 51 - 55. 

Allan, J., & Sun, S. Q. (2003). Controls on Recovery Factor in Fractured Reservoirs: Lessons 
Learned from 100 Fractured Fields. Denver, Colorado: Paper SPE-84590-MS presented at 
the Annual Technical Conference and Exhibition, October 5-8. 

Alotaibi, M., Nasralla, R. A., & Nasr-El-Din, H. A. (2010). Wettability Challenges in Carbonate 
Reservoirs. Tulsa, Oklahoma: Paper SPE129972 presented at the Improved Oil Recovery 
Symposium, 24 - 28 April. 

Al-Shuraiqi, H. S., Muggeridge, A. H., & Grattoni, C. A. (2003). Laboratory Investigations of First 
Contact Miscible WAG Displacement: The Effects of WAG Ratio and Flow Rate. Kuala 
Lumpur, Malaysia: Society of Petroleum Engineers. 

Amin, M. E., Zekri, A. Y., Almehaideb, R. A., & Al-Attar, H. H. (2012). Optimization of CO2 WAG 
Processes in Carbonate Reservoirs-An Experimental Approach. Abu Dhabi: Society of 
Petroleum Engineers. 

Basu, S., & Sharma, M. M. (1996). Measurement of Critical Disjoining Pressure for Dewetting 
Solid Surfaces. Journal of Colloid and Interface Science(181), 443-455. 

Bertin, H., Quintard, M., & Castanier, L. (1998). Development of a Bubble-Population Correlation 
for Foam-Flow Modeling in Porous Media. Society of Petroleum Engineers ,SPE-52596-
PA, 3(04), 356 - 362. 

Boud, D. C., & Holbrook, O. C. (1958). Patent No. US2866507 A. U. S. 

Brock, W., & Bryan, L. (1989). Summary Results of C02 EOR Field Tests, 1972-1987. Denver, 
Colorado: Paper SPE 18977 presented at Joint Rocky Mountain Regional/Low 
Permeability Reservoirs Symposium and Exhibition, March 6-8. 



101 
 

Brown, C. E. (2002). Ph.D. Director, IGER INSTITUTE INC. In World energy resources (pp. 149-
150). Berlin and New York: Springer-Verlag. 

Caudle, B., & Dyes, A. (1958). Improving Miscible Displacement by Gas-Water Injection. Dallas, 
Texas: Paper SPE-911-G presented at 32nd Annual Fall Meeting of Society of Petroleum 
Engineers, October 6-9. 

Chatzis, I. (1983). Magnitude and Detailed Structure of Residual Oil Saturation. Society of 
Petroleum Engineers Journal, Paper SPE-10681-PA, 23(02), 311 - 326. 

Chordia, M., & Trivedi, J. J. (2010). Diffusion in Naturally Fractured Reservoirs - A Review. 
Brisbane, Austrailia: Society of Petroleum Engineers. 

Chou, S. (1991). Conditions for Generating Foam in Porous Media. Dallas, Texas: Paper SPE-
22628-MS presented at the SPE Annual Technical Conference and Exhibition. 

Christensen, J. R., Stenby, E. H., & Skauge, A. (2001). Review of WAG Field Experience. Society of 
Petroleum Engineers, 4(02), 97-106. 

Crussler, E. (2009). Diffusion: Mass Transfer in Fluid Systems (Third Edition ed.). Cambridge: 
Cambridge University Press. 

Dai, Z., Middleton, R., Viswanthan, H., Fressen-rahn, J., Bauman, J., Pawar, R., et al. (2013). An 
Integrated Framework for Optimizing CO2 Sequestration and Enhanced Oil Recovery. 
Environmental Science & Technology Letters. 

Donaldson, E., Chilingarian, G., & T.F, Y. (1989). Enhanced oil recovery II, processes and 
operations (Vol. 17B ed.). Amsterdam: Elsevier sience publishers B. V. 

Duchenne, S., Puyou, G., Cordelier, P., Hy-Billiot, J., & Hamon, G. (2014). Efficient Experimental 
Data Acquisition for Miscibile CO2 WAG Injection Corefloods in Carbonate. Tulsa, 
Oklahoma: Paper SPE-169045-MS presented at SPE Improved Oil Recovery Symposium, 
April 12-16. 

Dullien, F. A. (1979). Porous Media: Fluid Transport and Pore Structure. London, UK: Academic 
Press, Inc. 

Eide, Ø. (2014). Co2 Injection foe Enhanced Oil Recovery: Production Mechanisms in Fractured 
Reservoirs. Bergen, Norway: Institute of Physics and Technology. University of Bergen. 
PhD Dissertation. 

Eide, Ø., Haugen, Å., Svenningsen, S., Hoff, K., Ersland, G., Fernø, M., et al. (2012). Tertiary 
Liquid and Supercritical CO2 Injection in Chalk and Limestone at Strongly Water-Wet and 



102 
 

Near Neutral-Wet Conditions. Aberdeen, Scotland: Paper presented at the International 
Symposium of the Society of Core Analysis, August 27-30. 

Eson, R. L., & Cooke, R. W. (1989). A Comprehensive Analysis of Steam Foam Diverters and 
Application Methods. Paper SPE18785 presented at the SPE California Regional Meeting, 
Bakersfield, California, April 5-7. 

Farajzadeh, R., Andrianov, A., Hirasaki, G. J., & Rossen, W. R. (2012). Foam-Oil Interaction in 
Porous Media: Implications for Foam Assisted Enhanced Oil Recovery. Muscan, Oman: 
Paper SPE 154197 presented at the EOR Conference at Oil and Gas West Asia, 16-18 
April. 

Farajzadeh, R., Risjwijk, Eftekhari, A., Hajibeygi, H., Meer, J. v., Vincent-Bonnieu, S., et al. (2015). 
Simulation of Instabilities and Fingering in Surfactant Alternating Gas (SAG) Foam 
Enhanced Oil Recovery. SPE Reservoir Simulation Symposium. Houstion: Society of 
Petroleum Engineers. 

Fernø, M. A., Gauteplass, J., Pancharoen, M., Haugen, Å., Graue, A., Kovscek, A. R., et al. (2014). 
Experimental Study of Foam Generation, Sweep Efficiency and Flow in a Fracture 
Network. Amsterdam, Netherlands: Paper SPE-170840-MS presented at the SPE Annual 
Technical Conference and Exhibition, October 27-29. 

Fosse, E. (2012). An Experimental Study of CO2 Injection for Oil Recovery in Chalk. Bergen: 
Department of Physics and Technology, University of Bergen, Master Thesis. 

Frampton, A. (2014). Chapter 9: Fracture Transmissivity Estimation Using Natural Gradient Flow 
Measurements in Sparesely Fractured Rock. In J. M. Sharp (Ed.), Fractured Rock 
Hydrogeology (pp. 147-165). London, UK: Taylor & Francis Group. 

Fulcher, R., Ertekin, T., & Stahl, C. (1985). Effect of Capillary Number and Its Constituents on 
Two-Phase Relative Permeability Curves. Journal of Petroleum Technology, SPE-12170-
PA, 37(02), 249-260. 

Gandomkar, A., Kharrat, R., Motealleh, M., Khanamiri, H. H., Nematzadeh, M., & Ghazanfari, M. 
H. (2012). An Experimental Investigation of Foam for Gas. Petroleum Science and 
Technology, 30, 976–985. 

Graue, D. J., & Blevins, T. R. (1978). SACROC Tertiary CO2 Pilot Project. Tulsa, Oklahoma: Paper 
SPE7090 presented at the 5th Symposium on Improved Methods for Oil Recovery, April 
16-19. 

Grigg, R. B., & Schechter, D. S. (1998). Improved Efficiency of Miscible CO2 Floods and Enhanced 
Prospects for CO2 Flooding Heterogeneous Reservoirs. Socorro, New Mexico: New 



103 
 

Mexico Petroleum Recovery Research Center and New Mexico Institute of Mining and 
Technology. 

Halliburton. (2015). Halliburton.com. Retrieved 03 18, 2015, from 
http://www.halliburton.com/en-US/ps/solutions/mature-fields/default.page?node-
id=hgjyd46l 

Haugen, Å., Fernø, M., Graue, A., & Bertin, J. (2012). Experimental Study of Foam Flow in 
Fractured Oil-Wet Limestone for Enhanced Oil Recovery. SPE Reservoir Evaluation & 
Engineering, 15(02), 218 - 228. 

Haugen, Å., Mani, N., Svenningsen, S., Brattekås, B., Graue, A., Ersland, G., et al. (2014). Miscible 
and Immiscible Foam Injection for Mobility Control and EOR in Fractured Oil-Wet 
Carbonate Rocks. Transport in Porous Media, 104(1), 109-131. 

Hoiteit, H., & Firoozabadi, A. (2006). Numerical Modeling of Diffusion in Fractured Media for Gas 
Injection and Recycling Schemes. San Antonio, Texas: Society of Petroleum Engineers. 

Holm, L. W. (1970). Foam Injection Test in the Siggins Field, Illinois. Journal of Petroleum 
Technology, paper SPE-2750-PA, 22(12), 1499-1506. 

Holm, L. W. (1974). Mechanisms of Oil Displacement by Carbon Dioxide. Journal of Petroleum 
Technology, Journal Paper SPE-4736-PA, 26(12), 1,427 - 1,438. 

Holm, L. W. (1986). Miscibility and Miscible Displacement. Journal of Petroleum Technology, 
Journal Paper SPE-15794-PA, 38(08), 817 - 818. 

IPCC. (2005). Intergorvenmental Panel on Climate Change: Special Report on Carbon Dioxide 
Capture and Storage. Working Group III. Cambridge and New York: Cambridge University 
Press. 

Jackson, D. D., & Andrews, G. L. (1985). Optimum WAG Ratio vs. Rock Wettability in CO2 
Flooding. Las Vegas, Nevada: Paper SPE-14303-MS presented at the 60th Annual 
Technical Conference and Exhibition, September 22-25. 

Johns, R. T., & Dindoruk, B. (2013). Ch. 1: Gas Flooding. In J. J. Sheng (Ed.), Enhanced Oil 
Recovery: Field Case Studies. Waltham, Massachusetts: Gulf Professional Publishing. 

Kamalipour, M., Shahrabadi, A., Sabzkouhi, G. A., Ali, S. M., & Jamialahmadi, M. (2014). The Role 
of Diffusion and Dispersion in Miscible CO2. Petroleum Science and Technology, 32(2), 
158-161. 



104 
 

Kapetas, L., El, W. A., & Rossen, W. R. (2014). Representing Slow Foam Dynamics in Laboratory 
Corefloods for Foam Enhanced Oil Recovery. Tulsa, Oklahoma: Paper SPE-169059-MS 
presented at the SPE Improved Oil Recovery Symposium, April 12-16. 

Kokal, S., & Al-Kaabi, A. (2010). Enhanced oil recovery: challenges & opportunities. Retrieved 
December 19, 2014, from http://www.world-
petroleum.org/docs/docs/publications/2010yearbook/P64-69_Kokal-Al_Kaabi.pdf 

Koottungal, L. (2010). 2010 Worldwide EOR Survey. Oil and Gas Journal, 108(14), 45-60. 

Kovscek, A. R. (1998). Reservoir Simulation of Foam Displacement Processes. Beijing, China: 
Paper presented at the 7th UNITAR International Conference on Heavy Crude and Tar 
Sands, October 27-31. 

Kovscek, A., Patzek, T., & Radke, C. (1995). A Population Balance Model for Transient and 
Steady-State Foam Flow in Boise Sandstone. Berkeley, CA: Lawrence Berkely Laboratory, 
University of California. 

Lake, L. W. (1989). Enhanced Oil Recovery. Eaglewood Cliffs, New Jersey: Prentice Hall 
Incorporated. 

Lee, S., & Kam, S. (2013). Ch. 2: Enhanced Oil Recovery by Using CO2 Foams: Fundamentals and 
Field Applications. In J. J. Sheng (Ed.), Enhanced Oil Recovery: Field Case Studies. 
Waltham, Massachusetts: Gulf Professional Publishing. 

Liontas, R., Ma, K., Hirasaki, G. J., & Biswal, L. (2013). Neighbor-induced bubble pinch-off: novel 
mechanisms of insitu foam generation in microfluidic channels. Soft Matter, 9(46), 
10933-11144. 

Ma, K., Lopez-Salinas, J. L., Puerto, M. C., Miller, C. A., Biswal, S. L., & Hirasaki, G. J. (2013). 
Estimation of Parameters for the Simulation of Foam Flow through Porous Media. Part 1: 
The Dry-Out Effect. Energy & Fuels, 27(05), 2363-2375. 

Manrique, E. J., Muci, V. E., & Gurfinkel, M. E. (2007). EOR Field Experiences in Carbonate 
Reservoirs in the United States. Society of Petroleum Engineers, Journal Paper SPE-
100063-PA, 10(06), 667 - 686. 

Manrique, E., Thomas, C., Ravikiran, R., Izadi, M., Lantz, M., Romero, J., et al. (2010). EOR: 
Current Status and Opportunities. Tulsa, Oklahoma: Paper SPE-130113-MS presented at 
the SPE Improved Oil Recovery Symposium, April 24-28. 



105 
 

Mathiassen, O. M. (2003, May). CO2 as Injection Gas for Enhanced Oil Recovery and Estimation 
of the Potential on the Norwegian Continental Shelf, Part I of II. 20. Trondheim: 
Norwegian University of Science and Technology, Master Thesis. 

Melzer, L. S. (2012). Carbon Dioxide Enhanced Oil Recovery: Factors Involved in Adding Carbon 
Capture, Utilization and Storage (CCUS) to Enhanced Oil Recovery. Midland, Texas: 
National Enhanced Oil Recovery Initiative. 

National Energy Technology Laboratory. (2010). Storing CO2 and Producing Domestic Crude Oil 
with Next Generation CO2-EOR Technology: An Update. United States: U.S. Department 
of Energy. 

NEORI. (2012). The National Enhanced Oil Recovery Initiative: CARBON DIOXIDE ENHANCED OILR 
ECOVERY: A CRITICAL DOMESTIC ENERGY, ECONOMIC, AND ENVIRONMENTAL 
OPPORTUNITY. Washington, D.C: The National Enhanced Oil Recovery Initiative (NEORI). 

NETL. (2010). National Energy Technology Laboratory: Carbon Dioxide Enhanced Oil Recovery. 
Untapped Domestic Energy Supply and Long Term Carbon Storage Solution. United 
States: U.S. Department of Energy. 

NETL. (2011). National Energy Technology Laboratory: Mobility and Conformance Control for 
Carbon Dioxide Enhanced Oil Recovery (CO2-EOR) via Thickeners, Foams and Gels - A 
Detailed Literature Review of 40 Years of Research. United States: U.S. Department of 
Energy. 

NIST. (2011). National Institute of Standards and Technology Chemistry WebBook. Retrieved 12 
05, 2014, from http://webbook.nist.gov/chemistry/ 

Ocampo, A., Restrepo, A., Rendon, N., Coronado, J., Correa, J., D.ramirez, et al. (2014). Foams 
Prove Effectiveness for Gas Injection Conformance and Sweep Efficiency Improvement in 
a Low porosity Fractured Reservoir - Field Pilots. Kuala Lumpur, Malaysia: Paper IPTC-
17950-MS presented at the International Petroleum Technology Conference, December 
10-12. 

Opdal, I. (2014). Mobility Control by CO2-foam Injection for Integrated EOR. Bergen: 
Department of Physics and Technology, University of Bergen, Master Thesis. 

Perkins, T., & Johnston, O. (1963). A Review of Diffusion and Dispersion in Porous Media. Society 
of Petroleum Engineers Journal, 3(01), 70 - 84. 

Ransohoff, T., & Radke, C. (1988). Mechanisms of Foam Generation in Glass-Bead Packs. Society 
of Petroleum Engineers, SPE-15441-PA, 3(02), 573-585. 



106 
 

Renkema, W. J., & Rossen, W. R. (2007). Success of SAG Foam Processes in Heterogeneous 
Reservoirs. SPE Annual Technical Conference and Exhibition. Anaheim, California: Society 
of Petroleum Engineers. 

Rogers, J. D., & Grigg, R. B. (2001). A Litterature Analysis of the WAG Injectivity Abnormalities in 
the CO2 Process. Society of Petroleum Engineers, 4(05), 375-386. 

Sahimi, M., Rasaei, M. R., & Haghighi, M. (2006). Ch. 8: Gas Injection and Fingering in Porous 
Media. In C. K. Ho, & S. W. Webb (Eds.), Gas Transport in Porous Media (pp. 133-168). 
Dordrecht: Springer. 

Salehi, M. M., Safarzadeh, M. A., Sahraei, E., & Nejad, S. A. (2014). Comparison of oil removal in 
surfactant alternating gas with water alternating gas, water flooding and gas flooding in 
secondary oil recovery process. Journal of Petroleum Sience and Engineering, 120, 86-93. 

Schlumberger. (2014). Schlumberger. Retrieved 01 13, 2014, from 
http://www.slb.com/services/technical_challenges/carbonates.aspx 

Schramm, L. L. (2005). Emulsions, Foams and Suspensions: Fundamentals and Applications. 
Weinheim, Germany: John Wiley & Sons. 

Shan, D., & Rossen, W. R. (2002). Optimal Injection Strategies for Foam IOR. SPE/DOE Improved 
Oil Recovery Symposium. Tulsa, Oklahoma: Society of Petroleum Engineers. 

Shehata, A. M., Alotaibi, M. B., & Nasr-El-Din, H. A. (2014). Waterflooding in Carbonate 
Reservoirs: Does the Salinity Matter? Society of Petroleum Engineers, Paper SPE-170254-
PA, 17(03), 304 - 313. 

Sheng, J. J. (2013). Ch. 11: Foams and Their Applications in Enhancing Oil Recovery. In J. J. Sheng 
(Ed.), Enhanced Oil Recovery: Field Case Studies. Waltham, Massachusetts: Gulf 
Professional Publishing. 

Shi, J. X., & Rossen, W. R. (1998). Improved Surfactant-Alternating-Gas Foam Processes to 
Control Gravity Override. SPE/DOE Improved Oil Recovery Symposium. Tulsa, Oklahoma: 
Society of Petroleum Engineers. 

Shojaei, H., & Jessen, K. (2015). Diffusion and Matrix-fracture Interactions during Gas Injection 
in Fractured Reservoirs. Dresden, Germany: Paper SPE-169152-MS presented at the SPE 
IOR 2015 – 18th European Symposium on Improved Oil Recovery, April 14-16. 

Simjoo, M., Rezaei, T., Andrianov, A., & Zitha, P. (2013). Foam Stability in the Presence of Oil: 
Effect of Surfactant Concentration and Oil Type. Colloids and Surfaces, A: 
Physicochemical and Engineering Aspects, 438, 148-158. 



107 
 

Skarestad, M. a. (2012). Reservoarteknikk II: Fluid Properties and Recovery Methods. Bergen: 
University of Bergen. 

Skauge, A. (2013). RE: PTEK312: Selected Topics in Petroleum Technology. Bergen: University of 
Bergen. 

Sorbie, K., & Dijke, M. v. (2007). Fundamentals of Three-Phase Flow in Porous Media of 
Hetergoeneous Wettability. Edinburgh, Scotland, UK: Heriot-Watt university. 

Statoil. (2008). Statoil. Retrieved January 16, 2015, from 
http://www.statoil.com/en/technologyinnovation/optimizingreservoirrecovery/recovery
methods/wateralternatinggaswag/pages/water-alternating-gas%20(wag).aspx 

Steinsbø, M., Brattekås, B., Ersland, G., Bø, K., Opdal, I., Tunli, R., et al. (2015). Foam as Mobility 
Control for Integrated CO2-EOR in Fractured Carbonates. Dresden, Germany: Paper 
presented at the 18th European Symposium on Improved Oil Recovery, April 14-16. 

Stern, D. (1991). Mechanisms of Miscible Oil Recovery: Effects of Pore-Level Fluid Distribution. 
Dallas, Texas: Paper SPE 22652 presented at the SPE 66th Annual Technical Conference 
and Exhibition, October 6-9. 

Stosur, G. J., Hite, J. R., Carnahan, N. F., & Miller, K. (2003). The alphabet Soup of IOR, EOR and 
AOR: Effective Communication Requires a Definition of Terms. Kuala Lumpur, Malaysia: 
Paper SPE-84908-MS presented at the SPE International Improved Oil Recovery 
Conference in Asia Pacific, October 20-21. 

Suffridge, F., Raterman, K., & Russell, G. (1989). Foam Performance Under Reservoir Conditions. 
San Antonio, Texas: Paper SPE-19691-MS presented at the SPE Annual Technical 
Conference and Exhibition, October 8-11. 

Surguchev, L. M., Korbøl, R., Haugen, S., & Krakstad, O. S. (1992). Screening of WAG Injection 
Strategies for Heterogeneous Reservoirs. Cannes, France: Paper SPE25075 presented at 
the SPE European Petroleum Conference, November 16-18. 

Svenningsen, S. (2011). An Experimental Study of CO2 Injection for Enhanced Oil Recovery in 
Chalk and Limestone. Bergen: University of Bergen, Master Thesis. 

Terry, R. E., & Rogers, J. B. (2014). Ch. 11: Enhanced Oil Recovery. In Applied Petroleum Teservoir 
Engineering, Third Edition (pp. 405-433). Westford, Massachusetts: Prentice Hall. 

Tipura, L. (2008). Wettability Characterization by NMR T2 Measurements in Edwards Limestone. 
Bergen: Department of Physics and Technology, University of Bergen, Master Thesis. 



108 
 

Turta, A., & Singhal, A. (2002). Field Foam Applications in Enhanced Oil Recovery Projects: 
Screening and Design Aspects. Journal of Canadian Petroleum Technology, 41(10). 

Uleberg, K., & Høier, L. (2002). Miscible Gas Injection in Fractured Reservoirs. Tulsa, Oklahoma: 
Paper SPE-75136-MS presented at SPE/DOE Improved Oil Recovery Symposium, April 13-
17. 

Utseth, R. H. (1996). RUTH 1992-1995. A Norwegian Research Program on Improved Oil 
Recovery. Stavanger: Norwegian Petroleum Directorate. 

Wassmuth, F., Green, K., & Randall, L. (2001). Details of In-Situ Foam Propagation Exposed With 
Magnetic Resonance Imaging. SPE Reservoir Evaluation & Engineering, Paper SPE-71300-
PA, 4(02), 135 - 145. 

Xu., Q., & Rossen, W. (2003). Experimental Study of Gas Injection in Surfactant-Alternating-Gas 
Foam Process. Denver, Colorado: Paper SPE-84183-MS presented at the SPE Annual 
Technical Conference and Exhibition, October 5-8. 

Yaghoobi, H., Tsau, J., & Grigg, R. (1998). Effect of Foam on CO Breakthrough: Is This Favorable 
to Oil Recovery? Midland, Texas: Paper SPE-39789-MS presented at the SPE Permian 
Basin Oil and Gas Recovery Conference, March 23-26. 

Yan, W., Miller, C. A., & Hirasaki, G. J. (2006). Foam sweep in fractures for enhanced oil 
recovery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 282-283, 
348-359. 

Zaganeh, M. N., Kam, S. I., LaForce, T. C., & Rossen, W. R. (2009). The Method of Characteristics 
Applied to Oil Displacement by Foam. Amsterdam, Netherlands: Paper SPE-121580-MS 
presented at the SPE EUROPEC/EAGE Conference and Exhibition, June 8-11. 

Zahoor, M. K., Derahman, M. N., & Yunan, M. H. (2011). WAG Process Design - An Updated 
Review. Brazilian Journal of Petroleum and Gas, 5(02), 109-121. 

Zhou, D., Yan, M., & Calvin, W. M. (2012). Optimization of Mature CO2 Flood - From Continuous 
Injections to WAG. Tulsa, Oklahoma: Paper SPE 154181 presented at the SPE IOR 
Symposium, April 14-18. 

Zolotukhin, A., & Ursin, B. (2000). Introduction to Petroleum Reservoir Engineering. Kristiansand: 
HøyskoleForlaget. 

Zuta, J., & Fjelde, I. (2010). Transport of CO2-Foaming Agents During CO2-Foam Processes in Fractured 

Chalk Rock. SPE Reservoir Evaluation & Engineering, Paper SPE-121253-PA, 13(04), 710 - 719. 


