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Abstract

The initial angular momentum of the system formed in peripheral heavy ion

collisions is of order 106h̄. This leads to strong momentum space anisotropies,

evident in the directed, and elliptic flow. In the almost perfect fluid formed

in the central reaction zone, shear flow may facilitate the onset of a Kelvin-

Helmholtz instability, which may enhance rotation. The large local angular

momentum is thought to lead to a large global transverse polarization due to

spin-orbital-momentum coupling in QCD. The STAR collaboration at RHIC

recently measured |PΛ,Λ| to no more than 2%. Polarization was averaged over

large centralities and the azimuth of the Λ momentum. The polarization is

predicted to be 9% if the Λ has momentum in the reaction plane. Presented here

are analytic, non-relativistic results for Λ transverse polarization in
√
sNN =

2.76A·TeV, b = 0.7bMax collisions using an exact, rotating hydrodynamical

model with a modified spin-1/2 Cooper-Frye freeze-out. The Λ polarization is

predicted to become large for increasing center of mass transverse momenta in

the reaction plane; little y-dependence is displayed. The polarization is 1% for

vanishing center of mass transverse momentum; it increases to 16% for px = ±4

for any choice in py. The polarization points in the negative y-direction. For

the first time, the radial and axial components of polarization were calculated.
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Chapter 1

Preliminaries

This is a master’s thesis in theoretical and high energy physics accompanied by

a paper made under the guidance of professor Lászlo Csernai. I was fortunate

to work with him on a problem pertaining to his work in relativistic heavy ion

collisions. I also had the pleasure of working with Yilong Xie. The paper is a

small contribution to the field of high-energy and nuclear physics.

The novel feature of this work [1] is the use of a recently proposed exact

analytical, self-similar rotating hydrodynamics model combined with a Cooper-

Frye freeze-out formulated to accommodate spin-1/2 particles to calculate the

Λ polarization in peripheral heavy ion collisions. Frankly, our discovery that

the terms in the polarization integral hitherto neglected were quite significant

is indeed the novel feature. Small as it may seem, I am under the impression

that it was a suprise to those working in the field, so I consider the work well

done. I use natural units, h̄ = c = kB = 1, in what follows.

1.1 Special Relativity

Invariant quantities play a central role in heavy ion collisions, and allow us to

express the mathematics in a fashion that is frame-independent. Let m be the

mass of a particle. We denote its position by

xµ = (t,x), (1.1)
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and its momentum by

pµ = (E,p), (1.2)

where t is time, x is the position vector, E is the particle energy

E =
√
p2 +m2; (1.3)

p is three-momentum. The inner product of any two four-vectors is invariant

(in general, the contraction of all indices is invariant):

p2 = m2 = E2 − p2. (1.4)

We transform using the Minkowski metric,




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1



. (1.5)

For example, xµ = gµνx
ν . Since invariance is the name of the game, rapidity is

a convenient way to characterize speeds in. Let

(E, px, py, pz)→ (E,pT , y), (1.6)

and define

y = tanh−1 pz
E

=
1

2
ln

(
E + pz
E − pz

)
. (1.7)

We do this since all directions perpendicular to the direction of motion are

left unchanged; a vector in the transverse plane does not change its length or

direction when transforming from one frame to the other. Furthermore, for

one-dimensional boosts, rapidities are conveniently added. An invariant related

to this is the transverse mass,

mT =
√
m2 + p2

T . (1.8)

Remember there is an implicit dependence on the polar angle θ in pz; for ultra-

relativistic particles, this leads to the definition of pseudorapidity (m << |p|)
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η =
1

2
ln

1 + cos θ

1− cos θ
= ln

(
cot

θ

2

)
. (1.9)

In frequent use is the (3+1)D coordinate system (xT , y, τ) to describe fluid flow

in relativistic fluid dynamics. Here τ =
√
t2 − z2 is proper time. Collisions take

place at small values of z, whereas large rapidities often are assumed to be ∞
(corresponding to v → c. This corresponds to small values of rapidity, commonly

referred to as mid-rapidity; boost invariant boundary conditions often mean we

treat the system in the mid-rapidity region.

The invariant cross section is

σinv = E
d3σ

dp3
, (1.10)

which may be manipulated to suit the situation. For example, if the system is

cylindrically isotropic, we have (partially integrated)

dp2 = 2πpT dpT dpz, (1.11)

which, with dpz/E = dy, yields

σinv =
d2σ

2πpT dpT dy
. (1.12)

1.2 Statistical Mechanics, Quantum Mechanics

and Observables

In classical statistical mechanics, phase space refers to the union of configuration

space with its cotangent space. The trajectory (xi, pi) uniquely determines

the system’s microstate for a given Hamiltonian, H. Kinetic theory is then

reduced to the art of counting the number of microstates, and finding the most

likely macrostate. This corresponds to an equilibrium state, or the state with

maximum entropy. The coordinates are related via Hamilton’s equations of

motion

ẋi =
∂H

∂pi
(1.13)

ṗi = −∂H
∂xi

, (1.14)
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and any observable has equation of motion

Ȯ =
∂O

∂t
+ {A,H}, (1.15)

where {O,H} is the Poisson bracket.

In quantum mechanics, however, we have only the wavefunction as a function

of the positions, momenta and other properties, like spins, of the particles in

the system, |Ψ〉. The wave function lives in Fook space, the union of all Hilbert

spaces associated with the system. The wave equation satisfies Schrödinger’s

equation

i |Ψ̇〉 = H |Ψ〉 . (1.16)

If there are no external forces acting on the system, we separate the time-

dependence from the energy dependence:

i |Ψ̇〉 = e−iEtE |ΨE〉 . (1.17)

The hat denoting the fact that the Hamiltonian, or any observable, is an

operator has been omitted. Let |ψi〉 denote a complete set of energy eigenvectors

in Fook space, then

H |ψi〉 = Ei |ψi〉 . (1.18)

This eigenvector corresponds to the eigenvalue Ei, which is the energy associated

with the state; this is the energy one would measure if the system was found in

the state |ψi〉. We will stick to a general basis of operator eigenvalues, each of

which allows for the complete knowledge of the system within the confines of

the commutation relations. In a complete basis of orthonormal kets {|ψi〉} any

state can be expressed as

|Ψ〉 =
∑

i

ci |ψi〉 , (1.19)

with 〈ψi|ψj〉 = δij . The density operator in this set is given by

ρ =
∑

i

ci |ψi〉 〈ψi| . (1.20)

Its action on the general state |Ψ′〉,
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ρ |Ψ′〉 =
∑

i

ci |ψi〉 〈ψi|


∑

j

cj |ψ′j〉


〉 = c2j , (1.21)

denotes the probability of finding the particle whose wave function is |Ψ′〉 in-

habiting the pure state |ψ′j〉. Any observable is weighted by this transition

probability, so we have the relation

〈O〉 = tr(ρO), (1.22)

where ρ is the projection operator

ρ =
∑

i

|ψi〉 〈ψi| . (1.23)

We use von Neumann’s equation of motion for the Schrödinger picture (where

ρ̇i = 0)

i
d

dt
ρ = [H, ρ], (1.24)

or Heisenberg’s in Heisenberg’s picture (with ρ̇ = 0)

i
d

dt
OH =

∂O

∂t
+ i[O,H] (1.25)

Wigner’s 1931 theorem, that there is a one-to-one correspondence between

observables and the ray space defining the pure states (and hence all states),

has proved an important result for theoretical physics. The ray space is defined

as

R = {ρ(|ψ〉) = |ψ〉 〈ψ| , such that |ψ〉 ∈ B}, (1.26)

where B is the unit ball,

B = {|ψ〉 ∈ H, such that 〈ψ|ψ〉 = 1}. (1.27)

Exploiting this fact, we can consider any transformation we like, provided it

can be made coherent. Hilbert space is a gauge invariant space due to the fact

that a local phase transformation preserves probabilities, i.e., if |Ψ〉 → |Ψ′〉 =

eα(x) |Ψ〉, then

〈Ψ′|Ψ′〉 = 〈Ψ|Ψ〉 . (1.28)
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Wigner’s theorem was foundational to the advent of internal symmetries

as suggested by Yang and Mills, which came to dominate theoretical particle

physics. They considered the choosing isotopic spin gauge as defining a pref-

erential direction in space. This was not without problems though, since it

introduced 12 independent field components countering the variation in the La-

grangian density. And the bosons were massive! Not many years later this led

to Higgs’ postulate, that there would exist a field that broke the symmetries of

Gell-Mann’s highest level of symmetry, giving rise to the massive gauge bosons

in the weak interaction.

In heavy ion physics, we use the Wigner transformation to relate classical

observables to the matrix elements of ρO, here in configuration space represen-

tation

〈O(x, p)〉 =
1

(2π)4

∫
d4ye−ipy 〈x− y/2|O|x+ y/2〉 . (1.29)

These are what are referred to as quasiprobability distributions. Wigner’s theo-

rem associates to each observable a phasespace distribution function correspond-

ing to the observable, defined via the relation between statistical ensembles and

observables,

< O >= Tr(ρ̂Ô). (1.30)

This function is not non-negative, however, which may be a problem, but it

seems negative probabilites are extricably linked to uncertainty. We use the

single-particle Fermi-Jüttner distribution

f(x, p) =
1

e(pµuµ−µ(x))/T (x) + 1
, (1.31)

where p is four-momentum, u is four-flow and µ(x) the chemical potential. The

temperature is T (x).

For a hydrodynamical context, in particular, we have the situation where

the energy-momentum tensor is a quantum mechanical operator,

Tµν = tr(ρ̂ : T̂µν :), (1.32)

where T̂µν is composed of the fields, and normal ordering implies one arranges

annihilation operators to the right of all creation operators. We want to find

the phasespace distribution function associated with this given the particular
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Lagrangian density. Strictly speaking, Tµν comes about by considering an in-

finitesimal boost and rotation invariance in spacetime.

1.2.1 Polarization of a Free Electron

An example of using these relations follows as we analyze the polarization of a

free electron, described by

|p, s〉 = c+ |p, 1/2〉+ c− |p,−1/2〉 , (1.33)

where

|p, s〉 (x) = f(x, p)χs, (1.34)

and χ1/2 =

(
1

0

)
and χ−1/2 =

(
0

1

)
are its spin projections; f(x, p) the

spatial part of the wavefunction. The electron is said to be right-handed polar-

ized (or has a helicity of +1) if c+ = 1 and c− = 0. Let P denote the spatial

polarization vector. Then

P = 〈p, s|σ|p, s〉 =




c∗+c− + c+c+c
∗
−

i(c+c
∗
− − c∗+c−)

c∗+c− − c+c∗−


 , (1.35)

where σ = (σ1, σ2, σ3) are the Pauli matrices. Since |c+|2 + |c−|2 = 1, the

electron is maximally polarized. But that is one electron. In experiments, we

use mostly unpolarized beams, and thus have a statistical ensemble of particles

with a given polarization. So we must find the probability distribution prior to

finding the observed polarization, via

〈P 〉 = C+ 〈p, 1/2|σ|p, 1/2〉+ C− 〈p,−1/2|σ|p,−1/2〉 , (1.36)

where C± refer to the observed probability for either state. For C± = 1
2 the

beam is completely unpolarized.

The polarization of Λ’s in particle physics is often measured using the angular

distribution of decay proton in the Λ frame of reference. Having performed a

measurement to distinguish the number of particles with spin up (down) you

attain a cross section for spin up (down). The polarization of hyperons is then

given by the following ratio:
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PΛ =
σ+ − σ−
σ+ + σ−

. (1.37)

As we saw with the electron, this is a number between +1 and −1, where 0

corresponds to unpolarized, and +(−) 1 refers to completely polarized spin up

(down).

1.2.2 Why Glauber states?

A Glauber state is a minimally uncertain coherent state |α〉, which is an eigen-

vector of annihilation operator, a, i.e.,

a |α〉 = α |α〉 , 〈α|α〉 = 1. (1.38)

These states form the basis for the initial conditions for many hydrodynamic

models. Since the eigenvectors of the operators on their respective Hilbert spaces

form a complete basis for the Fook space, any state may be expanded in any of

of the complete bases of Fook space. Expanded in the number representation

{|n〉},

|α〉 =

∞∑

n=0

cn |n〉 , (1.39)

Operating on this with the annihilation operator, we get

a

∞∑

n=0

cn |n〉 =

∞∑

n=0

cn
√
n |n− 1〉 . (1.40)

Since |α〉 is an eigenvector of a,

∞∑

n=0

cn
√
n |n− 1〉 = α

∞∑

n=0

cn |n〉 . (1.41)

Multiplying from the left by 〈m|, we get

〈m|
∞∑

n=0

cn
√
n |n− 1〉 = cm+1

√
m+ 1 = αcm, (1.42)

which, by induction,

cn =
αn√
n!
c0, (1.43)
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and, thus,

|α〉 = c0
∑ αn√

n!
|n〉 . (1.44)

We have

1 =|c0|2
∑

n,m=0

(α∗)mαn√
nm

〈m|n〉

=|c0|2
∑

n

|α|2n
n

=|c0|2e−|α|
2

,

so c0 = e−|α|
2/2, or

|α〉 = e−|α|
2/2

∞∑

n=0

αn√
n!
|n〉 . (1.45)

Glauber states make ideal initial states for hydrodynamics calculations due

to the fact that

〈x〉 = (1/
√

2λ) 〈α|a+ a∗|α〉 = (1/
√

2λ)(α+ α∗), (1.46)

and

〈k〉 = (λ/
√

2i) 〈α|a− a∗|α〉 = (λ/
√

2i)(α− α∗), (1.47)

with 〈α| a∗ = α∗ 〈α| and a |α〉 = α |α〉, and a variance

〈x2〉 =(1/2λ2) 〈α| : (a+ a∗)2 : |α〉
=(1/2λ2) 〈α|(aa+ 2a∗a+ (a∗)2)|α〉
=(1/2λ2)((α+ α∗)2 + 1),

and similarly
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〈k2〉 =− (λ2/2) 〈α| : (a− a∗)2 : |α〉
=− (λ2/2) 〈α| : a2 − aa∗ − a∗a+ (a∗)2 : |α〉
=− (λ2/2) 〈α|a2 − 2a∗a+ (a∗)2− 1|α〉
=− λ2/2((α− α∗)2 − 1),

having used aa∗ = 1 +a∗a from the commutation relation in the process of nor-

mal ordering. The large interest in terms of initial states in heavy ion collisions

is evident from the uncertainty relation

√
〈x2〉 − 〈x〉2

√
〈k2〉 − 〈k〉2 =

1

2
. (1.48)

These states are also referred to as displaced ground states. A similar analysis

holds for other complementary coordinates, i.e., those obeying a commutation

(anti-commutation) relation.

1.3 Hydrodynamics

Continuum mechanics is the field which governs relativistic fluid dynamics. We

describe the bulk properties of matter as if they were continuous, and define

fluid particles whose properties are related to microscopic properties through

statistical ensembles (like pressure being millions of collisions perpendicular to

a boundary). The bulk properties of the fluid as a whole are then similar to

that of the fluid particles, whose bulk properties are governed by constituent

relations and boundary conditions.

This allows us to make general statement about the conservation of energy

and momentum, and possibly conserved charges.

∂νT
µν = 0, (1.49)

and

∂µniu
µ, (1.50)

To every fluid particle, we assign a timelike four-vector

uµ =
dxµ

dτ
= (γ, γv), (1.51)
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everywhere tangent to the fluid wordline. The operator

∆µν = gµν − uµuν (1.52)

yields the spatial vector associated with a vector, or the shear/pressure on some

surface in spacetime associated with a tensor.

Given the phase space density f(x, p) the local particle density and particle

flow are

n =

∫
d3pf(x, p), (1.53)

j =

∫
vf(x, p), (1.54)

respectively. Together they yield a particle four-current

Nµ =

∫
d3p

p0
pµf(x, p). (1.55)

For energy and momentum density flow, we need a tensor of rank 2, which we

denote Tµν . The energy density and energy flow are T 00 and T i0, respectively,

while the momentum (density) and momentum current are given by T 0i and

T ik, respectively. Together they give

Tµν =

∫
d3p

p0
pµpνf(x, p). (1.56)

Specifying f(x, p) requires a detailed analysis of a given problem.

A fluid satisfying the Euler equation

(∂t + v∇)v =
−∇P
nm

, (1.57)

is called a perfect fluid. It is non-viscous and void of energy dissipation. These

equations together with an EoS close the system of equations, allowing for at

least attempt at solving. A frequently used EoS is

ε = κP = κnT, (1.58)

where κ = 1/v2
s , the compressibility, is inverse to the square of the velocity of

sound, n is the number density, and T the temperature.

We need to entertain the idea that collisions may take place,and we achieve
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some handle on it by assuming molecular chaos applies, and that the probability

for a collisions is proportional to the product of the phasespace densities of the

two single-particle distribution functions. If the particles are in momentum

states p, p1 before the collisions, and p′, p′1 after, then the Boltzmann transport

equation reads

pµ∂µf(x, p) =
1

2

∫
d3p1

p0
1

d3p′1
p′01

d3p′

p′0

× [f(x, p′)f(x, p′1)W (p′, p′1|p, p1)− f(x, p)f(x, p1)W (p, p1|p′, p′1)] .

It is important to mention that these formulae do not apply in non-equilibrium

situations with strong coupling between constituents; for those there are cascade

models and other fluid dynamical schemes one would employ. As we will see,

viscous corrections to ideal, inviscid hydrodynamics are becoming increasingly

important in heavy ion collisions.

At some point during the evolution of the fireball, the energy density is such

that the quarks and gluons recombine to make hadrons. This chemical freeze-out

takes place at T ≈ 150 MeV. After the chemical freeze-out, the hydrodynamical

evolution continues until a given condition is met. Conditions may also be

crosschecked. Often this is a given FO temperature, or a energy density. The

point is that the mean distance between fluid particles is so large that they have

stopped interacting. At points in spacetime where the conditions are met, we

select a spacetime surface Σ, and start counting the particles using the Cooper-

Frye FO

E
dN

dp3
=

∫

Σ

g(s)Σµp
µf(x, p), (1.59)

where g(s) = (2s + 1) is the number of spin states. The FO surface is chosen

such that [TµνdΣν ] = 0, [NµdΣµ] = 0, and dS ≥ 0. To determine the FO

temperature normally one employs pT spectra for hadrons. During all stages,

advanced interferometry reveals the system size, angular velocity, and particle

correlations, probing the general properties of the system. They may also be

necessary simply to detect rotation, as is done in the case of astrophysics, or in

relativistic heavy ion collisions in which a strong antiflow may cancel the strong

directed flow building up with increasing energies. Particle correlations refer

to particles in symmetric or anti-symmetric particle configurations in Hilbert

space, where all the spooky action at a distance takes place.
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1.3.1 Thermodynamical Relations

We use several thermodynamical relations, most notably the number density

(baryon number), n. However, irrespectively of an equation of state, we may

use the laws of thermodynamics. The first states

ε = σT − P + µn, (1.60)

where ε is the energy density σ the entropy density and n the number density;

µ, P , and T are chemical potential, pressure, and temperature, respectively.

If we differentiate this, we get

dε = µdn+ Tdσ, (1.61)

and

dP = ndµ+ σdT, (1.62)

using the Gibbs-Duhem relation.

Entropy density is added to the hydrodynamical equations listed above as

∂tσ +∇(σv) = 0 (1.63)

1.3.2 Scaling variables

Scaling is simply choosing axes and varibles such that they make your life a bit

easier. It is closely related to the comoving derivative. In our model, we use

temperature and density profiles assumed to be time-independent with respect

to the scaling variable, s,

s =
x2

X2
+
y2

Y 2
+
z2

Z2
, (1.64)

where (x, y, z) is the position of a fluid particle in the matter which extends

to (X,Y, Z). We have a cylindrically symmetric fireball, so we perform the

transformation

(x, y, z)→ (r, φ, y), (1.65)

where r2 = x2 + z2, φ = tan−1(z/x), and y = y. Furthermore, we define the

R = Rout, S = Rside, and Y = Rlong by substituting φ → rφ, so that all
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dimensions are the same.

Scaling is now introduced via

sr =r2/R2

sφ =(rφ)2/S2

sy =y2/Y 2,

where S is the displacement along the outer surface of the fluid (S0 = 0 for

φ0 = 0; S = Rφ). Since we have a cylindrically symmetric fireball, there cannot

be any dependence on φ in the number density our temperature profile. Thus,

we introduce the scaling variable

s = sr + sy =
r2

R2
+
y2

Y 2
. (1.66)

We know these facts because

(∂t + v∇)sr = (∂t + v∇)sy = 0. (1.67)



Chapter 2

Introduction

We probe Quantum Chromodynamics (QCD) under extreme conditions in rela-

tivistic heavy ion collisions. First of all: We assume the system may be treated

hydrodynamically; i.e., there is some degree of statistical homogeneity. Fermi

suggested chemical equilibrium would be achieved due to the large energy den-

sity in a small spacetime region. Landau then proposed that, though chem-

ical equilibrium would not be established immediately, thermal equilbrium is

achieved rapidly [2]. Hwa gave the interpretation of a hadronic gas with an

uncountable number of degrees of freedom due to a large number of fermionic

degrees of freedom within the hadrons [3]. Bjorken introduced the idea of boost

invariant boundary conditions for the mid-rapidity region [4]. A number of exact

[5, 6, 7] and numerical solutions [8, 9] to both equilibrium and non-equilibrum

fluid dynamics have been established through, among others, the work of Israel

and Stewart [10]. These hypotheses have proven enormously successful in pre-

dicting a number of things: nuclear stopping, the plateu in multiplicity per unit

rapidity in the mid-rapidity region, large directed and elliptic flow in peripheral

collisions. Today, there is an enormous interest in finding the specific viscosity

of the dense and hot matter created in heavy ion reactions. It is a measure

of how the fluid in question accommodates collective motion within it. If η/s

is large, the fluid will transfer the kinetic energy of constituents into internal

energy more easily. There would be no flow components if the matter had had

a large specific viscosity. The low ratio η/s permits large fluctuations in the hot

and dense matter. As energies increase, so to do fluctuations, and they are now

bigger than the v1 flow in peripheral heavy ion collisions. It should be noted,

however, that the v1 has diminished as energies increase.

23
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2.1 General Interest in Heavy Ion Collisions

The large interest in heavy ion collisions is dual: First, there is the exploration

of the phase diagram of QCD. Unique to QCD is that it is non-Abelian. The

gauge bosons themselves carry charge, and may emit gluons to change their color

in addition to interactions with quarks. This leads to a notoriously difficult

formalism in which to compute the action of the field. The phase diagram

has been established using perturbative Quantum ChromoDynamics (pQCD) in

regions where strong force is rather weak. This is the phenomena of confinement.

As quarks are separated, more and more energy is required to pull them further

apart, and eventually the potential energy in the field is sufficient to produce

the required quark-anti-quark so that the quarks remain confined. At small

distances (large energies/densities), however, deconfinement takes place.

Second, there are still hopes some odd signal will appear in one or the other

detector, to pave way for the advent of new physics. Non-perturbative QCD is a

mathematically intractable problem, so there is little qualitative understanding

of the properties of the QGP. It is thus essential to first understand the bulk and

transport properties of such matter in a statistical manner. There now exists two

domains of QGP, namely the strongly coupled, or weakly coupled QGP (sQGP,

wQGP, respectively) whose properties are quite distinct. Whereas the viscosity

of sQGP is like that of an ideal gas, its entropy density jumps discontinuously to

allow for the display of perfect fluidity, for the wQGP, less ideal fluid behavior

is observed as the entropy density drops faster than the viscosity of wQGP [8].
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Figure 2.1: Temperature vs. baryon density for QCD-matter. Research suggest
we are dealing with a crossover deconfinement in heavy ion collisions [11], while
there are also possibilites for both first and second order phase transitions. For
relatively low temperatures and high baryon density, there exists yet another
form of matter, the color flavor locked (CFL) phase [12].

Studies of QCD at large baryon densities and low temperature predict the

existence of color superconductivity in a phase known as Color Flavor Locked

(CFL), a degenerate Fermi gas of quarks with a condensate of Cooper pairs

near the Fermi surface inducing a color Meissner effect. In this phase, the

quark-matter is an electromagnetically insulating superfluid expected to break

chiral symmetry. [12]. We are currently exploring the high-temperature-low-

density region in heavy ion collisions, where a crossover deconfinement takes

place at a quasi-critical temperature of 150 MeV. In FIG.1 is the QCD phase

diagram as established in perturbative QCD, which applies to both the high-

temperature-low-density and low-temperature-high-density regions. As the hot

and dense matter cools and expands, it traverses the hadronic gas-QGP phase

transition to equilibrate to normal nuclear density.

2.2 Hydrodynamics and Heavy Ion Collisions

One of the great successes in the field of relativistic heavy ion collisions over

the last decade is the prediction of the strong elliptic flow at the Relativistic

Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) using ideal, invis-

cid hydrodynamics. RHIC announced a strongly coupled quark-gluon plasma

formed in Au+Au at
√
sNN = 200 GeV per nucleon collisions, characterized by

significant charmonium and meson transverse momentum suppression [13]. It

is certain we are dealing with the formation of a quark-gluon plasma (QGP) in

equilibrium.

The rigorous analysis made using an analytic blastwave model with a strongly

coupled quark-gluon plasma core with a dissipative hadronic corona suggests the

QGP owes its superfluidity to a sudden increase in entropy density as deconfine-

ment sets in – and not the expected spontaneous lowering of the QGP viscosity.

The ratio η/s determines a fluids ability to convert internal energy to collective

flow, so a rapid change in s with η almost constant will drive the ratio toward

its minimum conjectured limit(s). Ref. [8] provides crucial insight into the

interpretation of the data collected at RHIC in terms of a hybrid model.
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Although the QGP has been established, and event-plane correlations cou-

pled with anisotropies in the transverse plane have established its ratio of η/s

to be of order unity larger than the Anti de-Sitter/Conformal Field Thory du-

ality (AdS/CFT) or Heisenberg uncertainty lower limits, still there are as many

questions as there were before [14]. Hydrodynamical calculations suggest a large

range of values, many of whch are able to reproduce central observables, like

the strong elliptic flow. Some research suggests all flow harmonics are initially

large (direct, elliptic, triangular, etc.), but that only the leading two or perhaps

three yield observable signals at kinetic freeze-out [15]. The study of higher

order harmonics, or perhaps other modes of decomposing the multiplicity seems

prudent [15, 16].

The previously assumed inviscid QGP has a finite value of η/s, thus de-

manding we treat the situation more carefully. Further experiments are needed

to better understand viscous effects, both in the QGP phase and the hadronic

phase. With the emerging paradigm of viscous hydrodynamics, there is also

great interest in the modelling of initial states[16, 17], and the customary de-

composition into azimuthal modes may also need revision, to allow for more

propagating modes. Probing the properties of the established plasma is a key

priority in heavy ion physics. The color-deconfined plasma may also open for

extensive studies into QCD interactions [18, 19, 20, 21, 22]. The Chiral Mag-

netic Effect (CME) has come under extensive theoretical interest in the context

of heavy ion collisions. Its counterpart, the chiral vortaic effect (CVE) may also

make an apparence in relativistic heavy ion collisions. These effects arise from

the axial anomaly, the local violation of discrete symmetries (charge/parity) in

QCD. This may lead to baryon charge or strangeness separation and it has been

explored using an effective Lagrangian which, when it couples to the electro-

magnetic field, also couples to an arbitrary field of any conserved charge.

Using event-plane correlators, the effects on the Λ polarization arising from

the coupling of vorticity to the strange quark axial current via the strangeness

chemical potential was explored. The event-plane correlations were suggested to

further establish the value of η/s through the examination of non-linear hydro-

dynamical responses in Fourier azimuthal modes for higher-order flow harmonics

for differing event-plane phases [23]. A Fourier-Bessel expansion proposed to

examine flow patters in more detail may lead to better understanding of both

initial states and final-state anisotropies [16, 24]. Both Glauber and color-

glass condensate initial states are able to reproduce multiplicity, flow patterns,

and yield ratios within ranges of the conjectured η/s. In Ref. [17], a value
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of η/s = 0.08 ≈ 1/4π successully reproduced multiplicity, directed, and ellip-

tic flow of charged hadrons. However the large uncertainty stemming from the

theoretical and experimental uncertainties surrounding its proper establishment

left open the possibility to reproduce the same observables with other values of

η/s. The uncertainty given is of the order of the estimate itself.

A key component to the elliptic flow is the participant plane eccentricity, and

thus the distribution of nucleons within the nuclei. This has been studied in the

wounded nucleon approach using various density distributions for the nucleons

in a hybrid model. The strong coupling between the elliptic flow and participant

eccentricity lead to the proposal to measure the eccentricity-weighted integrated

elliptic flowand its dependence on the impact parameter. Its studies have led to

the discovery that v2/ε is a function of multiplicity density [25] independent of

the details of the participant eccentricity, which could give detailed information

about the specific shear viscosity η/s

The magnitude and effects of shear flow in the reaction plane must be exam-

ined in more detail. In particular in peripheral heavy ion collisions, the initial

angular momentum may lead to vorticious flow due to the shear flow in the

reaction plane. Hydrodynamical calculations with non-vanishing viscosity have

shown that the longitudinal shear flow can lead to turbulent phenomena, par-

ticularly the onset of a Kelvin-Helmholtz Instability (KHI) [26, 27]. The initial

results using a definition of circulation fit for relativistic fluiddynamics explored

in the non-ideal fluid dynamical paradigm [10] show a strong dependence on

both the impact parameter and whether conditions are favorable to KHI’s. It

is pointed out that the strength of the signal is contingent on the centrality, as

more peripheral collisions lead to greater vorticity. The observation of vorticity

in the late stages of the fluid dynamical evolution could give detailed infor-

mation about the transport properties of the QGP, but would require precision

measurements as the vorticity is sensitive to the explosive expansion of the fluid.

Eventually, when rotational equilibrium has been achieved, the energy of

rotation transfers to the explosive expansion of the system, and rotation slows, as

was explored in a series of papers recently [27, 28]. As we have seen, vorticious

flow plays a role in the studies of polarization in that it may couple to the

strange quark axial-current, polarizing the strange quarks. It is pointed out

that the CVE is negligible compared to the vorticity arising from conditions

favorable to KHI’s at large impact parameter; it will be interesting to see how

the results of the calculation change now that it is know that the vorticity may

have been underestimated for the purposes of peripheral heavy ion collisions.
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It is also interesting to note that studies of turbulent phenomena take place

in lattice QCD as well, to better understand the thermalization process [20,

21]. Here it is found that in the limit of weak coupling at very high energy

employing lattice simulations of the classical Yang-Mills equations, the dynamics

of the longitudinally expanding plasma is independent of the details of the initial

conditions.

2.3 Polarization in Heavy Ion Collisions

The strong transverse polarization of hyperons that has been observed in inclu-

sive channels in unpolarized beams since the 1970’s is still under investigation

[29]. Early experiments notes that the Λ, ξ, and ξ are polarized in the nega-

tive y- direction, Σ and Σ in the positive, while Λ and Ω display no significant

polarization. In particular, studies of Λ0 in hadron collisions are particularly

extensive due to its self-analyzing decay mode into p+ π−.

Changes in hyperon polarization were one of the earliest suggestions for

probing the hot and dense nuclear matter in heavy ion collisions; if the strong

transverse polarization observed in nucleon-nucleon and nucleon-hadron colli-

sions makes an appearance in heavy ion collisions, it may indicate the critical

QGP formation density is reached. It may also give vital clues into transport

properties of QGP. Since then, attempts have been made to establish a mech-

anism by which polarization may arise. Spin-orbital-momentum coupling in

QCD predicts global transverse polarization originating from the quark con-

tent of secondary produced hyperons to vanish at high transverse momenta,

yet remain strong for pT of a few GeV/c. Furthermore, secondary produced

hyperons may rescatter to aquire polarization during later hadronic stages. If

the QGP interacts strongly, it will have many observable effects, like polarized

thermal photons, or an effect similar to single-spin left-right asymmetries in p+p

collisions . Assuming the strange and non-strange quarks have similar polariza-

tions, the weakly decaying, self-analyzing hyperons are particularly interesting

[30, 31, 32, 33, 34, 35, 36].

A global transverse polarization of seconday produced hyperons was esti-

mated to be 30% in an exclusive recombination scenario; a more moderate

estimate of −0.03-0.15% was predicted using a hard thermal loop with a De-

bye screening potential, depending on temperature. However, according to data
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Λ and Λ in
√
sNN = 62.4 and 200 GeV/A Au+Au collisions analyzed by the

STAR collaboration, there is no global polarization. Having averaged over sig-

nificant centralities (0-80% and 20-70%, respectively) and over the azimuthal of

the momentum direction of the Λ, no more than 2% was observed [37].

Thus the search for a possible signal continues. Following the ideas of [33,

34], Ref. [38] investigates multiple quark-quark scattering in the global polar-

ization scenario. Leaving open the possibility for an quark initial polarization,

the time dependence of the quark polarization is examined in a laminar flow

governed by viscous hydrodynamics. The quark polarization is found to always

point in the negative y direction within the small angle approximation. It is

inversely related to η/s with a strong dependence on the initial shear of local lon-

gitudinal flow, and on the transverse expansion as demonstrated by contrasting

stationary and boost-invariant boundary conditions. In viscous fluid flow, ini-

tial longitudinal shear flow may lead to parton pairs with non-vanishing impact

parameter having relative local orbital angular momentum along the direction

opposite to the reaction plane. This can lead to global quark polarization within

both Landau fireball and Bjorken scaling model of initial parton production.

Quarks polarized through quark-quark scattering via the exchange of a ther-

mal gluon was also calculated beyond the small angle approximation in QGP,

and is shown to display a non-monotonic dependency on the relative local orbital

angular momentum. The dependecy is dictated by interplay between electric

and magnetic interactions [39]. It it hard to establish how the value for quarks,

|Pq| < 0.04 relate to the hadrons with respect to agreement with the measure-

ments performed at RHIC.

Ref. [40] investigates the transverse hyperon polarization by examining its

coupling to the thermal vorticity, defined as

ωµν =
1

2
(∂νβµ − ∂µβν). (2.1)

Here βµ(x) = uµ(x)/T (x) is the inverse temperature field, and uµ is the flow

four-velocity. T is the temperature. Using a Cooper-Frye freeze-out formal-

ism adapted to fermions, provided spin degrees of freedom locally equilibrate,

transverse polarization of secondary produced hyperons arises from any change

in the inverse temperature field. In particular, a careful selection of Λ trans-

verse momentum lying in the reaction plane will lead to significant transverse

polarization of secondary produced hyperons.

Now more than ever, the transverse polarization of secondary produced hy-
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perons in hadron collisions is strong [41], but a clear signal remains to be seen in

heavy ion collisions. Though it is itself an indication of the reabsorption of sec-

ondary produced particles into the sQGP phase, thus confirming it has formed,

some signal would be very interesting indeed. In Ref. [42], the first results us-

ing the exact model proposed in a series of papers culminating in a new, exact

family of solutions to fireball hydrodynamics with anisotropic Hubble flows and

scaling temperature and density profiles was reported. The transverse polar-

ization arising from the curl of the inverse temperature field was around 10%.

Though consistent with our results, we show the assumption that the gradient

of the inverse temperature field is negligible was mistaken. Here we calculate

the polarization term due to the gradient of the inverse temperature as well, and

present the very first results for the polarization of secondary produced Λ’s in

the non-relativistic limit using a cylindrically symmetric fireball in the context

of Case 1A from [43].



Chapter 3

Some General Ideas

3.1 General Remarks

There are many things to consider: If the polarization arises from the curl and

gradient of the inverse temperature field, then collective motion, especially the

differential elliptic flow dv2(pT )/dpT attained through azimuthal correlations

and differential HBT analyses [44] will be important to detect the rotation. A

careful understanding of the interplay between internal energy and axial/radial

expansion is also important [28]. This again leads to the need for a more subtle

understanding of event-by-event fluctuations in participant event plane eccen-

tricity, interferomtery, initial states, transport properties, and so on. We must

also seek to understand the transparency effect displayed in ultrarelativistic col-

lisions, which may serve to further restrict the QGP equation of state (EOS);

this is the constituent relation containing all the pertinent bulk properties as

they relate to statistical ensembles within the fluid particles and which, at least

in the case of perfect fluid dynamics, closes the system of equations allowing

for an attempt to solve; in fact, many hydrodynamical models use the elliptic

and directed flow parameters to constrain their equations of state [45, 46]. The

equation of state may also be influenced by important work looking into the

properties of the EOS of normal nuclear matter [47].

31
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Figure 3.1: The evolution stages of heavy ion collisions [50].

The evolution of an event in a heavy ion collider is depicted in FIG.1. We

see the soft probes, thermal photons and and lepton pairs, originating in the

sQGP phase and leave the reaction zone immediately. These give information

of the bulk properties of QGP. The hard probes must penetrate the hot and

dense plasma, and thus provide information about its transport properties. Re-

absorption accounts for asymmetries in particle pT spectra, as well as a possible

suppression of charm bound states, like the J/Ψ.

In heavy ion collisions, many fields of physics coalesce. We use quantum

mechanics to calculate the probabilities related with the properties of particles

and their interactions. So there are expectation values associated with measur-

ing those properties. Furthermore, we cannot use one collision to examine our

assumptions and predictions, so we average over many events as well. Statistics

plays a large role in our collecting data. Everything takes place in the space-

time continuum, so invariance plays a large role in attaining the correct data

for a given measurement. The properties of particles related to position and

momenta are relatively easy to handle; those symmetries and relations taking

place in the ”more” complex Hilbert spaces are very complicated, indeed, and

are formulated using quantum field theory with complex internal symmetries

and interactions.

There are also many fields of inquiry related to hydrodynamics in relativis-

tic heavy ion collisions, many of which pertain to polarization. The hydrody-

namics need elaborate inital states describing the initial velocities and entropy

density. The most used states are Glauber states or color-glass condensates.

These are coherent, minimal uncertainty states, and transiently solid, highly

length-contracted gluon saturated nuclei, respectively. The QGP appears an al-

most perfect fluid as it has bee successfully modelled using the relativistic Euler

equations. This is evident in the large azimuthal anisotropies. However, viscous

corrections to the ideal, inviscid hydrodynamics are becoming increasingly im-
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portant. When considering most observables, hybrid fluid dynamics and hadron

cascade models have the best ability to reproduce the data from RHIC and LHC.

Whereas models assuming chemical equilibrum reproduce hadron abundances

and radial flow at the expense of differential elliptic flow, models assuming par-

tial chemical equilibrium reproduce the latter to the detriment of the former

two. Although hybrid models still struggle with energy and momentum conser-

vation due to the interface between the sQGP core and the hadronic resonance

gas phase, they seem the best approach in the light of the properties displayed.

3.1.1 On Initial States

With higher energies there is a need to specify the intial states in increasing

detail, and therefore the need for a better understanding of event-by-event fluc-

tuations in the initial conditions. These form the input in fluid dynamical

(+cascade) models, and are for instance Glauber states, or color-glass conden-

sates (CGC). Glauber states are general quantum mechanical states that are

eigenvectors of the annihilation operator. As we have seen, these states display

classical behavior, and form a good starting point for a hydrodynamical scheme.

Although only alluded to in the previous section, the fluid dynamical properties

of the initial fluid flow are encoded in these states [48, 49].

The CGC is a transient solid state which is predicted to dominate for length-

contracted nuclei in relativistic heavy ion collisions. First proposed in DIS

experiments to explain the parton distribution function of nucleons, it has since

been successful in describing the incident nuclei. As the gluon density exceeds

the QCD momentum saturation scale, the effective coupling is such that it allows

pertubative expansion in terms of free quark and gluon fields and light-like color

sources. For the duration of the interaction, the timescales are an 2-3 orders

of magnitude longer than in the nucleon at rest (RHIC, LHC, respectively), so

the color fields are treated classicaly. In this regime, the picture of the three

valence quarks gives way to a more complicated picture in which a sea of QCD

interactions take place. Owing to the large density of gluons in the nucleus, it

may be viewed as a static color condensate, since the fields are not really static.

These then form the basis for the classical Yang-Mills color fields which develop

in a so-called glasma until conditions suitable for hydrodynamics treatment

arises.
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Figure 3.2: The gluon saturation scale Q2
s as a function of nucleon number, A,

and Feynman x, x = pz/
√
s. The color-glass condensate allows for perturbative

treatment of interactions between color charges [50]
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Figure 3.3: The parton distribution of a proton resulting from Deep Inelastic
Scattering experiments. As the fraction of nucleon momentum carried by the
different parton flavors, x = pz/

√
s, diminishes, more and more QCD interac-

tions take place, until the dynamics of the nucleon is completely dominated by
gluon interactions. The sea quarks are an order of magnitude less likely than
gluons, thus the gluons dominate the nucleon dynamics in high-energy collisions
[50].

The coordinate system mostly used in heavy ion collision physics is one in

which the beam direction is along z, and the reaction plane is spanned by ẑ and

the impact parameter b defined to be the distance separating the nuclei in the

reaction plane. The transverse plane is the xy-plane. However, the distribution

of nucleons is not homogeneous within the nuclei, thus their configuration de-

fines the event planes depicted in FIG. 5. The initial states of peripheral heavy

ion collisions are thus prone to fluctuations. These fluctuations, including fluc-

tuations arising from individual collisions between nuclei may be encoded into

the initial state via a Glauber state or Glasma. The initial eccentricity has been

shown to lead to significant eccentricity in hadron pT spectra as predicted by

the customary Fourier analysis of azimuthal modes.

Figure 3.4: Depicted is the event plane in the initial configuration of nucleons
within the colliding nuclei. The customary flow harmonics use the momentum
event plane angle (here) Ψ2. The filled circles represent participant nucleons;
the empty are spectators [15]. The participant plane is randomly tilted with
respect to the reaction plane.

Most often studied is the set of flow harmonics coefficients {〈vn〉} of the

azimuthal Fourier expansion of the Cooper-Frye kinetic freeze-out formula,
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E
dN

dp3
=

1

2π

dN

pT dpT dy

(
1 +

∞∑

n=1

2vn cos [n(φ−Ψ)]

)
. (3.1)

Here E, pT , y, and φ are energy, transverse momentum, rapidity, and azimuthal

emission angle with respect to the positive x-axis, respectively; Ψ is the angle

of the reaction plane. The coefficients of the cosine in the series give rise to the

names directed v1 flow, elliptic v2 flow, triangular v3 flow, etc.

As a sidenote, there is strong correlation between η/s and flow harmonics,

and thus, eccentricity in the initial state. Yet the fact that participant plane

is sensitive to fluctuations about the reaction plane, the correlation is not very

precise in estimating η/s. It should also be noted that the reaction plane is

not observable, so it must be inferred from the the symmetry properties of the

flow. For this one may use azimuthal correlations to average over an event and

subsequently over all events. This way one may infer the reaction plane for a

given centrality.

In Ref. [16] a new approach to the study of collective motion is proposed.

They propose to use Bessel-Fourier series instead of the simpler Fourier series.

This may prove essential for further understanding of the flow properties of

QGP, as it allows for expansion in terms of radial modes as well as the familiar

azimuthal modes. Within 1% accuracy the enthalpy distribution in an initial

state in the wounded nucleon Monte Carlo Glauber is reproduced. In Fig. 4 the

number of included modes are the same for both modalities, and the number of

modes are chosen to be 6, 10, 15, 20, and 30. An almost exact replica is found

when the initial conditions in a random Pb+Pb collision is reproduced.
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Figure 3.5: The initial transverse enthalphy distribution, w(x, y), as produced
by a Monte Carlo Glauber model in which the enthalpy is proportional to the
number of wounded nucleons in the upper-left corner. The remaining plots are
the reproduced transverse enthalpy distributions for an increased number of
terms from the Fourier-Bessel series [16].
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Chapter 4

Λ Polarization in Heavy Ion

Collisions
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We calculate the Λ polarization in an exact analytical, rotating model based on parameters
extracted from a high resolution (3+1)D Particle-in-Cell Relativistic hydrodynamics calculation.
The polarization is attributed to effects from thermal vorticity and for the first time the effects of
the radial and axial acceleration are also studied separately.
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I. INTRODUCTION

In high energy peripheral heavy ion collisions there is a
substantial amount of initial angular momentum present
directly after the Lorentz contracted nuclei penetrate
each other, and proceed to fill the reaction zone with
a hot and dense soup of elementary particles forming a
relatively new state of matter – the quark-gluon plasma
(QGP) – consisting of unbound quarks and gluons in a
confined system. Subsequently the plasma expands and
cools according to statistical laws in continuum mechan-
ics and thermodynamics with implied local thermody-
namical equilibria, followed by a final kinetic transport
development determined by cross-sections between neigh-
boring fluid particles.

Due to a finite impact parameter, the initial stage (IS)
may have a non-vanishing angular momentum [1, 2]. In
the initial stages, effective models as a color glass conden-
sate (CGC) [3] or Glauber states [4] are used. In general,
the IS uses experimental data, to construct a possible IS
using participant nucleons, eccentricity, and impact pa-
rameter. Early studies neglected effects arising from the
non-vanishing angular momentum, but interest increased
recently [5, 6].

After many decades of refinement [7, 8], solutions of
fireball hydrodynamics, the hydrodynamics best suited
to describe the system that arises in peripheral heavy
ion collisions at relativistic energies. Thus, rotation and
its consequences were studied as well [9, 10].

We look at polarization in effects arising from thermal
vorticity in an exact rotating model, modelling an ap-
propriate time-period of the collision. Special attention
has been given to collective motion to extract it from ob-
servables, which could confirm that such descriptions are
indeed plausible.

We calibrate an exact rotating model based on a
(3+1)D fluid dynamical model, the relativistic particle-
in-cell method (PICR), to fine-tune the initial parameters
of the rotating and expanding fireball. Other methods
include the three-fluid (3FD) approximation model, in
which modelled are the distributions of two constituent
fluids, one for each of the colliding nuclei, and one for
the ”fireball” fluid developing in a given transition time
[11, 12]. These models assume QGP formation. The dy-

namical effects of QGP in the Equation of State (EoS) is
studied for a long time [13].

In Ref. [14] the differential Hanbury Brown and Twiss
(HBT)-method was used to detect rotation in heavy ion
collisions. The HBT method was proposed to measure
the size of a system – initially stars for cosmological pur-
poses [15], yet the method has ”morphed” into a tool to
detect and analyze rotation in sources varying from gi-
ant stars to tiny particles using emission functions and
correlation functions.

Furthermore, studies of the relationship between shear
viscosity and entropy have shown that the development
of strong collective effects like transverse and azimuthally
asymmetric flow, or ”elliptic” flow, which imply an al-
most perfect fluid dynamic for the early stages in which
these effects are thought to be produced [16].

Without at least some viscosity, however, there would
be no rotation, so we now assume QGP to be a near-
perfect fluid. Although perturbative quantum chromody-
namics (pQCD) does not show significant improvement
in trying to account for these effects, an effective Van
der Waals excluded volume hadron-resonance gas may
be capable of producing the desired result in a hydrody-
namical description given hard-spheres of sufficient radii
(r ≥ 0.2), to account for the ratio of shear viscosity to
entropy density, η/s, for the time being thought to be
bounded below by ~/4πkB [17].

Thermal vorticity arises from the inverse temperature
field present in heavy ion collisions, and it arises mainly
due to a non-vanishing angular momentum in the ini-
tial stages, but in the transverse plane fluctuations can
achieve significance for the measurement [18] one may
wish to perform. It may also be further enhanced by
the Kelvin Helmholtz Instanolity (KHI) evolving in the
period prior to equilibration of rotation.

In our formalism, the dynamics of the system prior to
equilibration is computed using a (3+1)D fluid dynami-
cal model based on the particle-in-cell method. This fluid
dynamical computation shows enhanced collective rota-
tion due to an evolving KHI. In Ref. [19] an effective
model for this phenomena is explored using a few mate-
rial properties: the surface tension between the colliding
nuclei, the viscosity, and the thickness of the flow layer.
This enables a classical potential flow approximation, in
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which one may study the dynamics of an onsetting KHI.

A more recent calculation of the onset and effects of the
KHI is performed in Ref. [20], in which the calibration
of the exact model takes place. Here it is pointed out
that this feature – the enhancement of rotation – is a
dominant aspect of the (3+1)D fluid dynamical model,
but it is also seen in UrQMD [21].

There has also been progress in other fields pertain-
ing to heavy ion collision, and in nuclear physics, new
modes of resonance have been suggested to account for
asymmetric densities in the nucleus itself. Itself paving
way for better understanding the so-called ”magic num-
bers”, the study may also have profound implications for
the equation of state (EoS) governing the matter in col-
lisions.

In Ref. [22], the authors take a closer look at the low-
energy E1 model, accounting for several shifts in energy
due to both mean fields and residual interactions, as well
as electromagnetic interactions. These correspond to the
pygmy dipole resonance, the toroidal resonance, and to
anisotropic compressional resonance modes [23].

In Ref. [24], a discrepancy between the hydrodynamic
definition of vorticity, ω = ∇ × v, and the ”Raventhall-
Wambach vorticity” is explored to propose indicators for
nuclear vorticity. In the article, the toroidal strength ap-
proximation is used instead of the hydrodynamical defi-
nition, as it decouples from the continuity equation in the
Raventhall-Wambach definition of vorticity, exhibiting a
natural vorticious flow.

At high energy collisions, initially prior to both the
(3+1)D fluid dynamical model and the subsequent ex-
act analytical, rotation model, the collision is forming
a color-glass condensate (GCG), after that we have ex-
panding fire streaks, which can be described by Yang-
Mills fields acting between color charges. Our exact
model starts a short time after a (3+1)D fluid dynamic
stage, which uses as initial condition the result of the fire
streak Yang-Mills field action and the subsequent initial
fluid dynamical development of nearly uniform rotation.

Proposed in Ref. [25] there are two families of exact
analytical, rotating solutions, of which one is the subject
of this, and other papers, in attempts to familiarize our-
selves with new phenomena arising due to the solutions
– and how they fit together with known and preferably
unknown observables.

In Ref. [25] an ansatz for the velocity field v = vH+vR
is set forth, with vH being the irrotational velocity field,
while vR = (∇ × v) × r ≡ ω(t) × r is the rotational
velocity field. Hubble flows are now an integral part of
the velocity field, encoded in the irrotational field. With
these assumptions, one assumes an equation of state and
pursues solutions as best one can. Ref. [25] then proceeds
to define the two different families based on the physical
properties of the collision (whether there is a conserved
number density or not) and the proceeds to outline dif-
ferent cases for each family of solutions. A set of scaling

variables,

(sR, sY ) =

(
x2 + z2

R2
,
y2

Y 2

)
, (1)

is also proposed with s = sR + sY being the scaling
variable as it appears in the thermodynamical relations.
Here we have interchanged the y- and z-axes to resonate
with choice of axes in heavy ion collision literature, in
which the reaction plane, in which the system rotates, is
spanned by ex and ez, leaving the axis of rotation to be
defined by ey.

Ref. [20] provides an extensive look at the simplest
case from the aforementioned paper, and proceeds to cal-
ibrate the exact model to the (3+1)D fluid dynamical
model which precedes it in time, extracting parameters
from experiments at

√
SNN = 2.76A · TeV with impact

parameter b = 0.7bMax (See Fig. 1 and 2). In the (3+1)D
models, rotation increases due to Kelvin-Helmholtz insta-
bilities, whereas in the exact model – and the later stages
in the experiments themselves – rotation slows due to a
transfer of energy to the explosively increasing size of the
system after a period of time. The exact model, there-
fore, is suited to describe the period after the equilibra-
tion of rotation in the (3+1)D model, but prior to the
freeze-out, in which rotation slows down.

From [25] case 1A, the solution for a flow of conserved
number density together with a constant, temperature-
independent compressibility in the velocity field is pro-
posed, hence the solutions take the forms, in cylindrical
coordinates (r, y, φ), where r =

√
x2 + z2 with equation

of motion ṙ(t) = v(r, t). The exact model assumes a
linear velocity both in the radial, r, and in the axial, y,
directions. This result in a flow development where a
fluid element starting from a point (r0, y0, φ0) at a later
time, t reaches the point

r(t) = r0
R(t)

R(t0)
,

y(t) = y0
Y (t)

Y (t0)
,

φ(t) = φ0 +

∫
dt ω(t), (2)

showing explicitly how the solutions evolve in time, ro-
tating and expanding together with the fluid; they also
follow the time-evolution of the scaling variables in the
radial and axial directions. This is a Cylindrically sym-
metric setup with X(t) = Z(t),

√
X2(t) + Z2(t) = R(t)

and, in general, Y (t) 6= R(t).
We have chosen the xz-plane as our reaction plane,

with y the axis of rotation; our initial angular momen-
tum, then, points in the negative y-direction, with an ab-
solute value of approximately 1.45 · 104~. In an attempt
to determine new observables, we propose a search for
Λ polarization. Our hope is that this polarization, at
least in part, will be able to account for the polarization
as observed in peripheral regions in the first 10-15fm/c
following an impact in a heavy ion collider.
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In Ref. [26] the energy weighted thermal vorticity in
the exact model with the parameters found in Ref. [20]
was calculated. First explored was the total energy of the
system and the energy of each relevant component and
how they changed in time, showing an expected transfer
of energy from rotation to expansion, hence the rotation
slows as the system expands up until the freeze-out.

According to Ref. [27], in which a quantum-field-
theoretical approach to the Λ polarization in an inverse
temperature field βµ(x) = uµ(x)/T (x) is laid out, the
expectation value for Λ polarization, Πµ(x, p), goes as

〈Πµ(x, p)〉 =
1

8
εµρστ (1− nF )∂ρβσ(x)

pτ

m
, (3)

where εµρστ is the completely antisymmetric Levi-Civita
symbol, nF the Fermi-Jüttner distribution for spin-1/2
particles ((1 − nF ) is the Pauli blocking factor), and p
is the Λ four-momentum. This we integrate over some
volume, ultimately over all of space, weighted by the
number density, normalized by number of particles in
that volume, leaving a momentum-dependent polariza-
tion four-vector in the participant frame of reference

Πµ(p) = ~εµσρτ
pτ

8m

∫
dΣλp

λnF (x, p)(1− nF (x, p))∂ρβσ∫
dΣλpλnF (x, p)

.

(4)
Note that, as opposed to electromagnetic phenomena,

in which particle and anti-particle will have anti-aligned
polarization vectors, here it is shown that Λ and Λ̄ po-
larizations are aligned in vorticious flow thermal fields.

While the average values of polarization may be as low
as 1-2%, consistent with RHIC bounds, in some regions
of momentum space we see a larger polarization, about
5% for momenta in the transverse plane up to 3 GeV/c.
Kelvin-Helmholtz instabilities may further enhance rota-
tion, hence thermal vorticity, defined as

ωµν(x) =
1

2
(∂νβµ − ∂µβν) (5)

and thereby increase signal strength by 10-20%. At LHC
energies, there may be 5% Λ polarization due to the
corona effect, single nucleon-nucleon collisions occurring
outside of the reaction zone of the collision itself. So at-
tempts should be made to further the understanding of
this background, and remove it from measurements in or-
der to further isolate the Λ polarization as it arises from
the collision itself.

The Λ polarization is determined by measuring the an-
gular distribution of the decay protons in the Λ’s rest
frame. In this frame the Λ polarization is Π0(p), which
can be obtained by a Lorentz boosting the polarization
Π(p) from the participant frame to the Λ’s rest frame,
Ref. [28]:

Π0(p) = Π(p)− p

p0(p0 +m)
Π(p) · p , (6)

where (p0,p) is the Λ four-momentum and m its mass.
Based on this equation we see that in order to max-

imize polarization, we need to choose momenta for the
Λ such that they lie in the reaction plane, or transverse
to it, hence we fix p in the positive z-direction (beam
directed momentum).

Z

XY p

βΦ(x)

Φ βΦ(x)

FIG. 1. (color online) The direction of axes, as well as the
momentum, p, and flow, β, vectors. The azimuth angle is
measured from the direction of the p-vector, i.e. from the
x-axis.

II. SOLUTION FOR THE Λ POLARIZATION

As the Λ is transversely polarized, Πµpµ = 0, one can
confine himself to the spatial part of Πµ. The simplified
spatial part of polarization vector is:

Π(p) =
~ε
8m

∫
dV nF (x, p) (∇× β)∫

dV nF (x, p)

+
~p
8m
×
∫
dV nF (x, p) (∂tβ +∇β0)∫

dV nF (x, p)
. (7)

where nF is the phase space distribution of Λs, nF (x, p).
In a previous calculation [28], the p depencence of nF ,
was considered negligible in the integral and the time
derivative and gradient terms were also assumed to be
smaller. The present calculation shows that in general
these terms are not negligible, and it depends on the
particular conditions, which terms are dominant.

A. The denominator

We first perform the integral in the denominator:

A(p) ≡
∫

dV nF =

R∫

0

r dr

+Y∫

−Y

dy

2π∫

0

dφ nF (x, p) . (8)
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According to Eq. (3) in Ref. [26] in terms of the scaling
variable, s, we have:

n = n0
V0
V
ν(s) , (9)

ν(s) =
1

τ(s)
exp

(
−1

2

∫ s

0

du

τ(u)

)

= 1 · exp

(
−1

2

∫ s

0

du

)
, (10)

where the simplifying choice of τ(s) = 1 is used in the
last step. Therefore:

n(s) = n0
V0
V
e−

1
2 s . (11)

The EoS is assumed to be: ε(s) = κT (t)n(s) and the
energy density ε(s) is calculated as in Eq. (29) in Ref.
[26], therefore:

n(s) =
ε

κT (t)

= n0
V0
V

T0
T

(
V0
V

) 1
κ

e−
s
2

= n0
T0
T

(
V0
V

)1+1/κ

e−
sy
2 e−

sρ
2

=
CN
κT

e−
sy
2 e−

sρ
2 , (12)

where CN = κn0T0(V0

V )1+1/κ.

From Ref. [28], the Fermi-Jüttner distribution is:

nF (x, p) =
1

ep
µβµ−ξ + 1

≈ 1

ep
µβµ−ξ =

eµ/T

ep
µβµ

, (13)

where the ξ = µ/T , and µ is chemical potential. The
thermal flow velocity, βν = βµ(x) ≡ uµ(x)/T is different
at different space-time points x.

As is known, the invariant scalar density for Jünttner
distribution is:

n =
4πm2K2(m/T )

(2π~)3
eµ/T =

eµ/T

C0
(14)

where the C−10 = 4πm2TK2(m/T )/(2π~)3. With C0 and
n(s) = n, the Fermi-Jüttner distribution can be written
as:

nF (x, p) =
eµ/T

ep
µβµ

=
C0n(s)

ep
µβµ

. (15)

Now we introduce cylindrical coordinates for the loca-
tion in the configuration place x = (r, y, φ), and using the
scaling expansion model [20, 25] we introduce the scaling
variables s , sr , sy. Now, substituting Eqs. (12,15) into
the denominator of Π(p), i.e. Eq. (8), and noticing that

s = sr + sy = r2

R2 + y2

Y 2 , one obtains:

A(p) ≡
∫
dV nF (p, s)

=
CNC0

κT

∫
r dr

∫
dy

∫
dφ n(s) e−p

µβµ

=
CNC0

κT

∫ aY

−aY
dy exp

(
− y2

2Y 2

)∫ bR

0

rdr exp

(
− r2

2R2

)

×
∫ 2π

0

dφ e−p
µβµ . (16)

In the above equation, we first integrate with respect
to φ.

Generally, the position of the integration point in cylin-
drical coordinates is: x = (r, y, φ) = rer + yey + eφ.
The spatial part of momentum vector, pµ = (p0,p),
in cylindrical coordinates is: p(x) = (pr, py, pφ) =
prer + pyey + pφeφ, and similarly: β(x) = (βr, βy, βφ) =
βrer + βyey + βφeφ. Then the scalar product is pµβµ =
(p0,p)(β0,β) = p0β0−p β = p0β0− prβr − pyβy − pφβφ.

In our integral the pµ is given or ’fixed’ as the argu-
ment of Π(p), while the β = β(x) is changing. The
integration with respect to φ starts from the direction
of the p-vector. According to the Eq. (5) in reference

[26]: v = vrer + vφeφ + vyey = Ṙ
Rrer + ωreφ + Ẏ

Y yey,

and β = ui/T = γv/T , thus in the integral for φ we
exploit that in the exact model we discuss, the radial, r,
and axial, y, components of the thermal velocity, β, do
not depend on φ, while the tangential component does
not depend on y, i.e. βφ = γr ω/T , but its direction is
changing with respect to the direction of p. As the in-
tegral is over the whole 2π angle we can start it at any
point of φ, so we start it from the extremely given p-
direction. Consequently, with this choice of the x-axis,
p = (pr, py, 0), and pz = pφ = 0. In this azimuthally
symmetric, exact model it is sufficient to calculate Π(p)
for one direction of p in the [x, z]-plane.

For the volume integration we still have to integrate
over the azimuthal direction φ. The p ·β product will be
the same for every azimuthal angle as at the x-axis.

The direction of the thermal velocity is tangential to
the direction φ, i.e. it points to the eφ+π/2-direction.

Thus the scalar product is:

p ·β(r, y, φ) = |px|βr cos (φ)+pyβy + |px|βφ cos
(
φ+

π

2

)
,

where φ is the azimuth angle of the position around the
y, rotation axis, counted starting from the x-axis. Thus
we have chosen the coordinate axes in a way that the p
is orthogonal to the z axis, pz = 0. So, the integral starts
from φ = 0, when p and βφ are orthogonal. See Fig. 1.

So, inserting the last expression for pµβµ into the last
term of the integral Eq. (16), the integral with respect
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to φ will take the form:
∫ 2π

0

dφ e−p
µβµ = e−γp

0/T epyβy ×
∫ 2π

0

dφ e|px|βr cos(φ)−|px|βφ sin(φ)

=

∫ π

−π
dφ ea cos(φ)−b sin(φ)

= 2πI0

(√
a2 + b2

)
, (17)

where a = |px|βr = |px|γṘr/TR and b = |px|βφ =
|px|γr ω/T , and we used integral no. 3.338(4) [29]. If
we define

c3 =

√√√√
(
pxγṘ

TR

)2

+
(pxγ ω

T

)2
=
|px|γ
T

√
(Ṙ/R)2 + ω2 ,

then
√
a2 + b2 = c3r, and:
∫ 2π

0

dφ e−p
µβµ = e−γp

0/T epyβy × 2πI0 (c3r) . (18)

Now, substitute this back into Eq. (16):

A(p) =

∫
dV nF (p, s)

=
CNC0

κT

aY∫

−aY

dye−
y2

2Y 2

bR∫

0

r dre−
r2

2R2

2π∫

0

dφe−p
µβµ

=
CNC0

κT

aY∫

−aY

dry

bR∫

0

r dr exp
(
− y2

2Y 2
− r2

2R2

)

× e−γp
0/T epyβy · 2πI0 (c3 r) (19)

Now we may use the same simplifying non-relativistic
assumption as in, Eq. (5) of Ref. [26], i.e. γ = 1 is
assumed, and the we approximate uµ by vµ as v = vrer+

vyey + vφeφ = Ṙ
Rrer + Ẏ

Y yey + ωreφ, and thus γ = 1 is
assumed, in non-relativistic approximation. It follows
then:

A(p) =

∫
dV nF (p, s)

=
CNC0

κT
2πe−p

0/T

aY∫

−aY

dy exp
(pyyẎ
TY

− y2

2Y 2

)

×
bR∫

0

r I0(c3r) exp

(
− r2

2R2

)
dr

=
CNC0

κT
2πe−p

0/T

aY∫

−aY

exp
(
c1y − c2y2

)
dy

×
bR∫

0

r I0(c3r) exp(−c4r2)dr (20)

where the c1 = pyẎ /(Y T ), c2 = 1/(2Y 2), c4 = 1/(2R2)
are constants.

Currently, it is assumed to be an infinite system with
scaling Gaussian density profile, so that the integrals are
evaluated up to infinity, i.e. the parameters a = ∞,
b =∞.

Thus, the y component integration in Eq. (21) will be
calculated as:

∫ +∞

−∞
ec1y−c2y

2

dy

=
1

2

√
π

c2
exp

( c21
4c22

)[
erf
(√

c2y −
c1

2
√
a

)]+∞

−∞

=

√
π

c2
exp

( c21
4c22

)
, (21)

where we used the integral formula No. 2.33(1) in refer.
[29]. And the error function in infinity is: erf (+∞) = 1,
erf (−∞) = −1.

-4 -2 0 2 4
-4

-2

0

2

4

px (GeV/c)

p
y
(G

eV
/c
)

Π1(px,py)

FIG. 2. (color online) The polarization of Λ particles, Π1(p),
in the participant Center of Mass (CM) frame for the first
term containing the (∇×β)-contribution, at time t = 0.5 fm/c
after the equilibration of the rotation, in the Exact model.
The polarization, Π1(p), points into the −y-direction and
changes from −1.5% at the CM-momentum (px = py = 0),
to −8% in the corners, in 1% steps per contour line. The
negative percentage indicates that the polarization is in the
−y-direction. The structure is just like that of the energy
weighted vorticity. Due to azimuthal symmetry of the Exact
Model the px and pz dependence of Π are the same.
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For the integration of r component:

∫ +∞

0

r I0(c3r) e
−c4r2dr

=
1

c3
√
c4

exp
( c23

8c4

)
M− 1

2 ,0

( c23
4c4

)
, (22)

where the M−µ,ν(z) is the so called ’Whittaker Function’.
The integral formula used here is No.6.643(2) in refer.
[29].

Now, we can write down the final integration of Eq.
(21):

A(p) =

∫
dV nF (p, s)

=
CNC0

κT
2πe−p

0/T ×
√
π

c2
exp

( c21
4c22

)

× 1

c3
√
c4

exp
( c23

4c4

)
M− 1

2 ,0

( c23
8c4

)

=
2π
√
π

κT

CNC0

c3
√
c2c4

e−p
0/T exp

( c21
4c22

)

× exp
( c23

8c4

)
M− 1

2 ,0

( c23
4c4

)
, (23)

which is the analytical solution for the denominator of
Π(p).

However, in the relativistic case, the integrations with
respect to y and r can not be performed, because of the

presence of γ = 1/
√

1− v2r − v2y − v2φ will make integra-

tion much more involved.

B. The numerator

Ref. [26] calculates the energy weighted vorticity,
which is azimuthally symmetric, i.e. independent of the
azimuthal angle φ. In the definition of the polarization,
Eq. (7), we have p0 nF (p, x) = ε nF (p, x) for Λs with
momentum p. In [26], however, the energy weighting
is performed with the total energy density of the fluid
Etot = Eint + Ekin, which in general is not the same as
ε nF (p, x). On the other hand the bare vorticity is just
a constant in the non-relativistic exact model, while the
EoS may be more general and it may lead to more in-
volved R(t) and Y (t) dependence than the ideal Jüttner
gas approximation would allow.

Thus we use the direct non-relativistic vorticity values
from Ref. [26], and not the presented energy weighted
vorticity, i.e.

∇× β = −2ωey/T , (24)

so that the vorticity has only y-directed component in

-4 -2 0 2 4
-4

-2

0

2

4

px (GeV/c)

p
y
(G

eV
/c
)

Π2(px,py)

FIG. 3. (color online) The absolute value of Λ-polarization,
Π2(p), in the participant Center of Mass (CM) frame for
the second term containing the (∂tβ)-contribution, at time
t = 0.5 fm/c after the equilibration of the rotation, in the
Exact model. The polarization changes from zero at the
CM-momentum (px = py = 0), up to 20% in the corners
at px = −4GeV/c, in 2.5% steps per contour line. In the
corners at px = 4GeV/c, the polarization is 12%. This
second term is orthogonal to p, and it is smaller, especially
at CM-momenta, where it is negligible. This term arises
from the expansion, which is increasing rapidly in the Exact
model with time and also increases with the radius. At large
radius the larger expansion leads to larger momenta. The
structure of the 2nd component of polarization arises from
the asymmetries of the different components of Π2(p)

the Exact model. This will make the numerator simple:

B(p) ≡
∫

dV nF
(
∇× β

)

=

R∫

0

r dr

+Y∫

−Y

dy

2π∫

0

dφ nF (x, p)
(−2ωey

T

)
.

=
−2ωey
T

R∫

0

r dr

+Y∫

−Y

dy

2π∫

0

dφ nF (x, p)

=
−2ωey
T

×A(p) (25)

Therefore, the first term of polarization vector, i.e. Eq.
(7) will be:

Π1(p) = − ~ε
8m

∫
dV nF (x, p) (∇× β)∫

dV nF (x, p)

=
~εω
4mT

ey , (26)
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which means the polarization vector arising from the vor-
ticity, Π1(p), in the exact rotation model is a constant,
(although time dependent), and parallel to the y-axis. At
the same time, Π0(p) shows a p dependence according to
Eq. (6).

One may add the Freeze-Out (FO) probability to the
integral. According to the Ref. [30], the FO probability
is ws = (pµ σ̂

µ
s ) (p · u(x)), where the approximation is

used that the FO direction, σ̂µs is parallel to the flow ve-
locity, u(x) = γv(x). In the first term of the nominator,
which depends on the constant y-directed vorticity this
FO probability influences the nominator and denomina-
tor the same way, so the effect of the two integrals cancel
each other with the FO probability also.

-4 -2 0 2 4
-4
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px (GeV/c)

p
y
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/c
)

Π2 x(px,py)

FIG. 4. (color online) The x component of the Λ-
polarization, Π2x(p), in the participant Center of Mass (CM)
frame for the second term containing the (∂tβ)-contribution,
at time t = 0.5 fm/c after the equilibration of the rotation,
in the Exact model. The polarization vanishes at the CM-
momentum (px = py = 0), and changes from zero up/down
to ±8% in the corners, in 1% steps per contour line. This
term arises from the expansion, which is increasing rapidly in
the Exact model with time and also increases with the radius.
At large radius the larger expansion leads to larger momenta.

C. The second term

The numerator in second term of polarization vector
reads:

C(p) ≡
∫

dV nF (x, p) (∂tβ + ∇β0) . (27)

If, in the non-relativistic limit, γ = 1 is assumed, then
∇β0 = 0, and ∂tβ = ∂t(v/T ), so we have to evaluate only

the first term of the sum in the integrand. According to
Ref. [26, 31], the time derivatives of velocity are:

∂tvr =

[( R̈
R
− Ṙ2

R2

)
− ω2

]
r ≡ c5r

∂tvφ =

(
ω̇ + 2

Ṙ

R
ω

)
r ≡ c6r

∂tvy =

[
Ÿ

Y
− Ẏ 2

Y 2

]
y ≡ c7y , (28)

where c5 = (R̈/R − Ṙ2/R2 − ω2), c6 = (ω̇ + 2(Ṙ/R)ω),

and c7 = (Ÿ /Y − Ẏ 2/Y 2). Therefore,

∂tβ =
(
c5rer + c6reφ + c7yey

)
/T.

Eq. (27) is a volume integral of a vectorial quantity,
which is not convenient perform in cylindrical coordi-
nates, so we transform it into Cartesian coordinates:
er = cosφ ex+sinφ ez, eφ = − sinφ ex+cosφ ez. There-
fore,

T · ∂tβ
= c5r cosφex + c5r sinφ ez

−c6r sinφex + c6r cosφ ez + c7y ey

=
(
c5 cosφ− c6 sinφ

)
r ex

+
(
c5 sinφ+ c6 cosφ

)
r ez + c7y ey . (29)

The integral of Eq. (27) can be expanded as:

C(p) =

∫
dV nF (x, p) ∂tβ

=
CNC0

κT
e−p0/T

∫∫∫
rdrdφdy exp

(
c1y − c2y2

)

× exp
(
a cosφ− b sinφ− c4r2

)
∂tβ , (30)

where a and b are defined after Eq. (17).
It is convenient to define an integrating operator, based

on integration A(p):

Ā =

∫
dV nF (x, p) ×

=

∫∫∫
r dr dφ dy ec1y−c2y

2

ea cosφ−b cosφ−c4r2× ,

and then Eq. (30) will be:

C(p) = Ā · ∂tβ

= Ā · 1

T

(
c5 cosφ− c6 sinφ

)
r ex

+ Ā · 1

T

(
c5 sinφ+ c6 cosφ

)
r ez

+ Ā · 1

T
c7y ey

≡ 1

T
(Iex + Jez +Hey) , (31)
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FIG. 5. (color online) The y-component of Λ-polarization,
Π2(p), in the participant Center of Mass (CM) frame for
the first term containing the (∂tβ)-contribution, at time t =
0.5 fm/c after the equilibration of the rotation, in the Exact
model. The polarization changes from zero in the middle to
−8% at px = ±4GeV/c, in 1% steps per contour line. This
y-component points into the axis-direction just as the first
term, Π1, thus these two are additive. The y-component of
Π2(p) does not depend of py, as shown in Eq. (40).

where we defined:

I ≡ Ā ·
(
c5 cosφ− c6 sinφ

)
r ,

J ≡ Ā ·
(
c5 sinφ+ c6 cosφ

)
r ,

H ≡ Ā · c7y .
H can be expanded as:

H = Ā · c7y

=
CNC0

κT
e−p0/T

∫
dy c7 y exp

(
c1y − c2y

)

×
∫∫

rdr dφ exp
[
(a cosφ− b sinφ)− c4r2

]
.

(32)

According to Eqs. (18) and (22), the integral with
respect to r and φ is:

∫∫
rdr dφ exp

[
(a cosφ− b sinφ)− c4r2

]

=
2π

c3
√
c4

exp
( c23

8c4

)
M− 1

2 ,0

( c23
4c4

)
,

and the integral with respect to y is calculated as:
∫
dy c7 y exp

(
c1y − c2y2

)
=
c7c2
2c2

√
π

c2
exp

( c21
4c22

)
,

where we used the integral formula No. 2.33(6) in Ref.
[29]. Therefore, Eq. (32) becomes:

H =
2π
√
πCNC0

κT
e−p0/T

c7c1
2c3c2

√
c4c2

× exp
( c23

8c4

)
exp

( c21
4c22

)
M− 1

2 ,0

( c23
4c4

)
. (33)

I can be expanded as:

I = Ā ·
(
c5 cosφ− c6 sinφ

)
r

=
CNC0

κT
e−p0/T

∫
dy exp

(
c1y − c2y2

) ∫
dr r2e−c4r

2

×
∫
dφ exp

[
a cosφ− b sinφ

](
c5 cosφ− c6 sinφ

)
,

(34)

According to Eqs. No. 3.937 (1) and (2) in Ref. [29], one
can first perform the integration with respect to φ:

∫ 2π

0

dφ exp

[
a cosφ− b sinφ

](
c5 cosφ− c6 sinφ

)

=
c8
c3

2πI1(c3r) ,

where c8 = (c5a
′ − c6b

′), and a′ = a/r = |px|Ṙ/TR,
b′ = b/r = |px|ω/T . Then, the integral with respect to r
becomes:

∫ ∞

0

drr2e−c4r
2 · c8
c3

2πI1(c3r)

= 2π
c8
c3

∫ ∞

0

drr2I1(c3r)e
−c4r2

= 2π
c8
c23c4

exp

(
c23
8c4

)
M−1, 12

( c23
4c4

)
, (35)

where we used the 6.643(2) of Ref. [29]. The integration
with respect to y here is separable and is the same as Eq.
(21). So, substituting Eqs. (36) and (21) into I, i.e. Eq.
(34), one obtains:

I =
2π
√
πCNC0

κT
e−p0/T

c8
c23c4
√
c2

× exp
( c23

8c4

)
exp

( c21
4c22

)
M−1, 12

( c23
4c4

)
. (36)

Evaluating the integral J is similar to I:

J =
2π
√
πCNC0

κT
e−p0/T

c9
c23c4
√
c2

× exp
( c23

8c4

)
exp

( c21
4c22

)
M−1, 12

( c23
4c4

)
. (37)

where the only difference is: c9 = (c5b
′ + c6a

′) compared
to c8 in I.
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FIG. 6. (color online) The y-component of Λ-polarization,
Π(p), in the participant Center of Mass (CM) frame for the
second term containing the (∂tβ)-contribution, at time t =
0.5 fm/c after the equilibration of the rotation, in the Exact
model. The polarization is -1.5% at the CM-momentum (px =
py = 0), it is −16% in the corners. The change is in steps of
2% per contour line.

Then, substituting I, J , H back into Eq. (31), one can
obtain the analytical solution for numerator in second
term of polarization vector as:

C(p) =

∫
dV nF (x, p) ∂tβ

=
1

T
(Iex + Jez +Hey)

=
2π
√
πCNC0

κT 2
e−p0/T exp

( c23
8c4

)
exp

( c21
4c22

)
×

[
c8

c23c4
√
c2
M−1, 12

( c23
4c4

)
ex +

c9
c23c4
√
c2
M−1, 12

( c23
4c4

)
ez

+
c7c1

2c3c2
√
c4c2

M− 1
2 ,0

( c23
4c4

)
ey

]
.

(38)

Dividing this by A(p), i.e. Eq. (23), one gets:

C(p)

A(p)
=

1

T

[ c8
c3
√
c4

M−1, 12
M− 1

2 ,0

ex+
c9

c3
√
c4

M−1, 12
M− 1

2 ,0

ez+
c7c1
2c2

ey

]
.

(39)

Then, we obtain the second term of polarization vector:

Π2(p) =
~p
8m
× C(p)

A(p)

=
~

8mT

[
pyc9
c3
√
c4

M−1, 12
M− 1

2 ,0

ex −
|px|c9
c3
√
c4

M−1, 12
M− 1

2 ,0

ey

+
( |px|c7c1

2c2
− pyc8
c3
√
c4

M−1, 12
M− 1

2 ,0

)
ez

]
.

(40)

As we can see, and it is given also by the definition,
Eq. (7), the second therm of polarization is orthogonal
to the particle momentum:

Π2(p) ⊥ p , (41)

thus if we use the choice that p should be in the [x, y]-
plane and its z-component should vanish, then in Π2(p)
the y-component px only, see Fig. 5.
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FIG. 7. (color online) The z-component of Λ-polarization,
Π2(p), in the participant Center of Mass (CM) frame for
the second term containing the (∂tβ)-contribution, at time
t = 0.5 fm/c after the equilibration of the rotation, in the Ex-
act model. The polarization vanishes at the CM-momentum
(px = py = 0), it is ±3% in the corners. The change is in
steps of 0.5% per contour line. The corners at py = −4GeV/c
are positive while at py = 4GeV/c are negative.
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D. Conclusion

Finally, adding Eqs. (40) and (26) we get the analytical
solution for Λ-polarization in the Exact model:

Π(p) =
~

8mT

[
pyc9
c3
√
c4

M−1, 12
M− 1

2 ,0

ex +
(

2εω − |px|c9
c3
√
c4
×

M−1, 12
M− 1

2 ,0

)
ey +

( |px|c7c1
2c2

− pyc8
c3
√
c4

M−1, 12
M− 1

2 ,0

)
ez

]
.

(42)

Notice that Eq. (42) is the analytical solution in
the non-relativistic limit. The ’Whittaker Function’,
Mµ,ν(z), is the confluent hypergeometric function. For
the relativistic case, the integrations of the Λ-polarization
vector can not be performed analytically, because of the

presence of γ = 1/
√

1− v2r − v2y − v2φ, which will make

the integrations more involved. Thus, a numerical solu-
tion for the Λ-polarization would be needed.

The effect of vorticity is shown in Fig. 2. The non-
relativistic Exact model can handle reactions with mod-
est energy and modest rotation, so the overall vorticity
and the resulting polarization is not too large. Further-
more the rotation and vorticity decrease with time while
the radial and axial expansion increases. This expan-
sion leads to the second term of polarization, Π2, which
depends on ∂tβ (while the ∇β0 terms vanishes in the
non-relativistic approximation). Thus this second term
is of comparable magnitude to the term arising from local
vorticity. See Fig. 3.

The presented plots are such that px points into the
direction of the observed Λ-particle, while the py is the
axis direction. All results should be either symmetric
or antisymmetric for a ±py change. On the other hand
reversing the px axis must not change the data, as the x-
axis is chosen to be the direction of the argument of Π(p),
which must be azimuthally symmetric in the [x, y]-plane.
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FIG. 8. (color online) The radial, x, and axial, y, components of Λ-polarization, Π0(p), in the Λ’s rest frame. For Π0x(p) the
contours represent changes of 1% from −9.5% in the upper left-hand corner to 9.5% in the upper right-hand corner, whereas
the contours of Π0y(p) change in steps of 2% ranging from Π0y = 0 (!) at the CM momentum (px = py = 0) to −12% for
px = ±4GeV/c at the edges. Both plots are asymmetric due to the Lorentz boost to the Λ rest frame.

The polarization arising from the dynamics of the ra-
dial and spherical expansion, Π2, was not discussed be-
fore in the literature, as the dominance of the vorticity
effect was anticipated and studied up to now. The Π2

plots in Figs. 3, 4, 5, 7, show the components of the po-
larization arising from the dynamics of the spherical ex-
pansion. The most interesting y-component arises from
the x-component of the momentum ans the z-component



11

of the thermal velocity change β̇z (Fig. 5).
Now if we study the axis directed components, this

is given by Πy = Π1y + Π2y. Both these terms have
a negative maxima of the same magnitude, −8%, at the
corners, px, py = ±4GeV/c, thus these terms add up con-
structively and result in Λ-particle polarizations reaching
-16% at high momenta. At small momenta the polariza-
tion is still the same sign but has a reduced value of the
order of 1.5% arising from the vorticity (Fig. 6).

In this Exact model the x and z components of the po-
larization arise only from the second term, Π2(p). The
x component is reaching ±8%, while the z component
is smaller, it reaches about ±3%. These both are asym-
metric for ±py change, and show an opposite symmetry.
The x-component is proportional to py and the dynamics
of radial expansion, thus it follows the signature of py,
Fig. 4. The z-component is proportional to py and the
dynamics of radial expansion, thus it follows the signa-
ture of py, Fig. 7. The z-component is proportional to

pxβ̇y and inversely proportional to pyβ̇x, Fig. 7. These
two effects compensate each other so the maxima of the
polarization are smaller and the symmetry is opposite
to that of the x-component. This term is sensitive to
the balance between the axial expansion and the radial
expansion in the model.

The Λ polarization is measured via the angular dis-
tribution of the decay protons in the Λ’s rest frame, as
shown in Eq. 6. The resulting distribution is shown in
Fig. 8. This new studies indicate that the dynamics of
the expansion may lead to non-negligible contribution to
the observable polarization. The structure of Π0y(p) is
similar to the one obtained in Ref. [28], but here the

contribution of the ”second”, ∂tβ term is also included,
which makes the y-directed polarization stronger at high
px values, 12%, while it was 9% in Ref. [28], both in
the negative y-direction. Furthermore, the second term
changes the structure, of the momentum dependence of
Π0y(p), and it becomes ±px asymmetric.

Recently the vorticity and polarization were also stud-
ied in two fluid dynamical models [32]. The initial states
that were used from Bozek and Gubser neglected fully
the initial shear flow in the central domain of the reac-
tion, in contrast to other models where this is present
[1, 2, 21, 33]. This results in negligible thermal vorticity
in the central domain of the collision (Figs. 3, 13 of Ref.
[32]), and consequently a negligible polarization from the
vorticity from the ”first term” discussed here. Thus, the
observed vorticity arises from the ”second term”. In this
work we analyzed and compared the two terms, and the
Exact model, – including both rotation and expansion,
and vorticity arising from both effects – , enables us to
study the consequences of the two terms separately. This
study indicates that the assumptions regarding the ini-
tial state are influencing the predictions on the observed
vorticity, while in all cases observable polarization is pre-
dicted.
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Chapter 5

Conclusion

In peripheral heavy ion collisions, there is substantial angular momentum in the

initial state, giving rise to rotation and vorticious flow. Due to the small ratio of

η/s of hot and dense nuclear matter, turbulent phenomena may occur to further

enhance rotation in the QGP phase. When the system cools and expands, it

slows, due to the transfer of energy to expansion. Hence, we use an exact

analytical, self-similar rotating fluid dynamical model which may accommodate

the slowing of rotation. In this model we explored the transverse polarization

of Λ’s in the non-relativistic case.

In this scenario, we have discussed the transverse polarization of Λ’s in pe-

ripheral heavy ion collisions. Provided spin degrees of freedom locally equili-

brate, polarization of secondary hyperons occur via a thermomechanical effect

(due to equipartioning of energy from spin degrees of freedom). This leads to

aligned spin for hyperon and antihyperon alike. We measure the polarization

using the azimuthal distribution of decay protons, hence we expect the strongest

polarization for Λ with momenta in the reaction plane. The polarization points

in the negative y-direction, and arises from the four-gradient, temporal deriva-

tive, and curl of the inverse temperature field which we saw amounted to about

9%, assuming that only the curl of the inverse temperature field was to con-

tribute significantly. It vanishes for center of mass transverse momenta px = 0

and py = 0. The px dependence was strong for fixed py, while a change in py

would yield somewhat less rapid increase. The largest transverse polarization

was measured with px = ±4 GeV/c in the center of mass system, which gave

16%.
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Figure 5.1: The y-component of the polarization 4.5 fm/c after the initiation of
the fluid dynamical model (0.5 fm/c after initiation of the exact model). For
center of mass transverse momenta px = py = 0 the polarization is 1% and it
increases in 1.5% steps per contour line to 16% for large transverse momenta.

Here we have shown that assuming the gradient of the inverse temperature

is negligible was mistaken. It should be noted that our calculating the terms

was a matter of ”confirming” their insignificance, so we were surprised as well.

This is promising with respect to performing a measurement; but we should

still try to maximize, which now seems a more complicated task, given that the

radial and axial part do not vanish as we expected.
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