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Abstract

This thesis studies dynamic programming algorithms and structural parameters
used when solving computationally hard problems. In particular, we look at
algorithms that make use of structural decompositions to overcome difficulties
of solving a problem, and find alternative runtime parameterizations for some of
these problems.
The algorithms we look at make use of branch decompositions to guide the

algorithm when doing dynamic programming. Algorithms of this type comprise
of two parts; the first part computes a decomposition of the input, and the sec-
ond part solves the given problem by dynamic programming over the computed
decomposition. By altering what properties of an input instance these decompo-
sitions should exploit, the runtime of the complete algorithm will change. We
look at four cases where altering the structural properties of the decomposition
(i.e., changing what width measure for the decomposition to minimize), is used to
improve an algorithm.
The first case looks at using branch decompositions of low maximum matching-

width (mm-width) instead of tree-decompositions of low treewidth when solving
Dominating Set. The result of this is an algorithm that is faster than the
treewidth-algorithms on instances where the treewidth is at least 1.55 times the
mm-width.
In the second case, we look at using branch decompositions of low split-

matching-width (sm-width) for cases when using tree-decompositions or k-
expressions will not do. This study leads to new tractability results for Hamilto-

nian Cycle, Edge Dominating Set, Chromatic Number, and MaxCut

for a class of dense graphs.
For the third case, we look at using branch decompositions of lowQ-rank-width

as an alternative to using branch decompositions of low rank-width for solving a
large class of problems definable as [σ,ρ]-partition problems. This class consists of
many domination-type problems such as Dominating Set and Independent

Set. One of the results of using such an alternative branch decompositions is that
we get an improved worst case runtime for Dominating Set parameterized by
the clique-width cw; namely O∗((cw)O(cw)) over the previous best O∗(2O((cw)2)).
The fourth case looks at using branch decompositions of low projection-

satisfiable-width (ps-width) for solving #SAT and MaxSAT on CNF formulas.
We define the notion of having low ps-width and show that by using a dynamic
programming algorithm that makes use of the ps-width of a branch decomposi-
tion, we get new tractability results for #SAT and MaxSAT, and a framework
unifying many previous tractability results.
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We also show that deciding boolean-width of a graph is NP-hard and deciding
mim-width of a graph is W[1]-hard. In fact, under the assumption NP �=ZPP,
we show that we cannot approximate mim-width to within a constant factor in
polynomial time.
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Chapter 1

The starting point

Unless P=NP, then for any problem π in the class of NP-hard problems there must
exist classes of instances for which we cannot solve π in polynomial time. However,
even for NP-hard problems, there are classes of input instances for which π can be
solved in polynomial time, i.e., in O(nc) time for some fixed constant c. The field
of Parameterized Complexity will account for this within the rich framework of
multivariate complexity analysis. This involves measuring the algorithmic runtime
not only using the input length n, but also by using a parameter k associated
with the input. For algorithms with runtimes of the form nf(k) or f(k)nc for some
constant c and function f depending only on k, it can be seen that for instances
where k is constant, the resulting algorithmic runtimes will in fact be polynomial
(e.g. for k = 2 and f(2) = 10, we get runtimes of n10 and 10nc). If we can solve a
parameterized problem π within a runtime of the form f(k)nc, then we say π is
Fixed Parameter Tractable (FPT). Problems that are solvable in time nf(k) are XP.
For an NP-hard problem π having a parameterized version which is FPT or XP,
for any class of instances where the parameter k is fixed, solving π will become
tractable1. However, although a problem π FPT for a parameter p1, becomes
tractable for classes of inputs where the value of p1 is bounded, there might still
be another class C of inputs where π is tractable even though p1 is unbounded on
C. The reason may be that an unrelated parameter p2, for which π is also FPT, is
bounded over C. Thus, a problem being FPT for a parameter p1 only gives a one
way relationship between parameter value and tractability. It would of course be
desirable to find a parameter whose value perfectly corresponds to the tractability
of a problem instance. That is, for a problem π to find a parameter so that π is
tractable on a class of inputs C if and only if the parameter value is bounded over
C.
In this thesis, we will investigate the topic of choosing parameters in order to

get the best correlation between parameter value and actual runtime complexity
of solving a problem. More on this in the next chapter. Let us first state some
definitions and terminology that will be used in this thesis.

1 Allthough constant k implies a polynomial runtime for both FPT and XP, having a runtime of
the form f(k)nO(1) (FPT) is regarded as better than nf(k) (XP), as an increase in k only changes the
coefficient of the polynomial for FPT, while it changes the degree of the polynomial for XP.
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1.1 Definitions and terminology

We assume the reader is familiar with standard terminology from set theory.

1.1.1 Graph terminology

Graphs. A graph G = (V,E) is an ordered pair consisting of a set of vertices
V and edges, E ⊆ {uv : u,v ∈ V }. We will only look at simple and undirected
graphs, meaning that we will not distinguish between uv and vu, and we will not
have edges of the form vv ∈ E. For a graph G= (V,E) we also denote the set of
vertices V by V (G), and set of edges E by E(G). For an edge uv ∈ E, we say u
and v are incident with the edge uv, and u and v are the endpoints of uv. We
say that two vertices u,v incident with the same edge uv share the edge uv. Two
vertices u,v ∈ V (G) are adjacent in the graph G if uv ∈ E(G).
For a set E′ of edges, we denote by V (E′) the union of all the endpoints of E′.

That is, V (E′) is the set of all vertices incident with edges of E′. For a graph G
and vertex, edge or set of vertices/edges x, we denote by G−x the subgraph by
removing the edges of x and vertices of x (and adjacent edges) from G. Likewise,
G+x denotes the graph where we add edges and vertices of x to G. We say a set
of edges E forms the graph G= (V (E),E).
The complement of a graph G = (V,E) is the graph G′ with the same vertex

set V as G, but where two vertices are adjacent in G′ if and only if they are not
adjacent in G.
The open neighbourhood of a vertex v in graph G, or simply its neighbourhood,

is the set of vertices adjacent to v in G, denoted NG(v). The closed neighbourhood
of v is the set NG(v)∪ {v}, denoted NG[v]. For a set S ⊆ V (G), we denote by
NG[S] and NG(S) the sets

⋃
s∈SNG[s] and NG[S]\S, respectively, and call them

the open (and closed resp.) neighbourhood of S. If there is no ambiguity, we may
drop the subscript G. The cardinality of NG(v) is called the degree of v in G,
denoted dG(v).
Two vertices u, v of a graph G are called true twins if their closed neighbour-

hoods are the same N [u] =N [v]. If u and v have the same open neighbourhoods
N(u) =N(v), we say they are false twins. A pair of vertices are twins if they are
either true twins or false twins.

A bipartite graph. A graph is bipartite if its set of vertices can be partitioned
into two disjoint parts A,B so that all edges are incident with exactly one vertex
of A and one vertex of B. When this bipartition is known for some graph G, we
might state this explicitly by describing G as G = (A,B,E), where A and B are
as described above, and E is the set E(G).

Subgraphs and induced graphs. For a graph G′, we say that it is a subgraph
of G if V (G′) ⊆ V (G) and E(G′) ⊆ E(G). A subgraph G′ of G with vertex set
S ⊆ V (G) is said to be the induced by S if all vertices of S that are adjacent in
G are also adjacent in G′. That is, E(G′) = {uv ∈ E(G) : u,v ∈ S}. We denote
this graph by G[S]. A bipartite subgraph G′ of G with vertex set S1 	S2 is said
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to be induced by S1 and S2 when its set of edges is precisely those edges from
E(G) that are incident with one vertex from S1 and one vertex from S2. That is,
E(G′) = {uv ∈ E(G) : u ∈ S1,v ∈ S2}. We denote this graph by G[S1,S2].

Identifying two vertices. To identify two vertices u and v, means to replace
them with a single vertex x for which N(x) =N({v,u}).

Contracting and subdividing an edge. To contract an edge uv in a graph means
to replace the two vertices u and v by a new vertex x so that N({u,v}) = N(x).
That is, we identify u and v. To subdivide an edge uv in a graph means to replace
the edge uv with a vertex x for which N(x) = {u,v}.

A path. A path in a graph is a sequence of vertices for which all pairs of con-
secutive vertices are adjacent. We say a graph G itself is a path if all the vertices
V (G) form a path, and E(G) is inclusion wise minimal. Similarly, a set of edges
E is called a path if it forms a graph which is a path. For a graph P which is a
path, for two vertices x,y ∈ V (P ), we denote by xPy the minimal subgraph which
is a path and contains the vertices x and y.

Connected. A graph is connected if there exists a path between any pair of
vertices in the graph. A connected component of a graph is an inclusion maximal
connected subgraph.

A cycle. A cycle is a (non-empty) connected graph of only vertices of degree
two. A graph is said to have or contain a cycle if it has a subgraph which is a
cycle.

Isomorphic graphs. We say two graphs G and G′ are isomorphic to each other
if there is a bijective function σ : V (G)→ V (G′) so that that u and v are adjacent
in G if and only if σ(u) and σ(v) are adjacent in G′.

A tree. A connected graph without any cycles as induced subgraph is called
a tree. A rooted tree is a tree with one distinguished vertex r called the root.
Vertices on a shortest path from v to r are called the ancestors of v. The ancestor
p incident with v is called the parent of v, and v a child of p. The other children
of p are called the siblings of v. Any vertex having v as an ancestor is called a
descendant of v. Vertices of degree more than one in a tree are called internal
vertices, and the remaining vertices are called leaves.

A pendant. A pendant is a vertex of degree one. This can also refer to an edge
incident with a degree one vertex.

Isolated and universal vertices. A vertex v of a graph is said to be isolated if
its neighbourhood is empty. A universal vertex of a graph is a vertex adjacent to
all other vertices in the graph.
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1.1.2 More on graphs

Cliques and complete graphs. A complete graph is a graph where all vertices
are adjacent to each other. We denote the complete graph of n vertices as Kn. A
clique is a set of vertices S of a graph G so that G[S] forms a complete graph. A
complete bipartite graph, is an induced bipartite graph of a complete graph. We
denote by Ka,b the complete bipartite graph with part A of cardinality a and part
B of cardinality b.

Distance hereditary graphs. A distance hereditary graph is a graph G so that
for every induced subgraph G[S] for S ⊆ V (G), and for any pair of vertices u,v
in S, either u is disconnected from v in G[S], or the distance from u to v in G[S]
is the same as the distance from u to v in G.

Matching of a graph. A matching of a graph G is a set M ⊆ E(G) of edges so
that no vertex of V (G) is incident with more than one edge in M . The number of
edges in M is called the size of M . A perfect matching is a matching M so that
every vertex of G is incident with exactly one edge of M . A vertex is said to be
saturated by a matching M if it is incident with an edge in M . A matching M is
maximal if no matching M ′ ⊆ E(G) exist so that M ⊂ M ′. A matching M is a
maximum matching if for all matchings M ′ ⊆ E(G) we have |M | ≥ |M ′|.

Induced matching. An induced matching of a graph G is a matching M of G so
that M = E(G[V (M)]). In other words, for any 3 vertices a,b,c, if ab is an edge
in M and bc is an edge then there does not exist an edge cd in M .

Vertex Cover. A vertex cover of a graph is a set S ⊆ V (G) of vertices so that
for every edge uv ∈ E(G) either u ∈ S or v ∈ S. A minimum vertex cover is a
smallest possible vertex cover. A minimal vertex cover is a vertex cover S so that
no proper subset S′ ⊂ S is also a vertex cover. It was shown by König [64] that
in bipartite graphs, the size of a minimum vertex cover is always the same size as
a maximum matching.

1.1.3 Decomposition-related terminology

Cut of a graph. A cut of a graph G= (V,E) is a partition of the vertices V into
two disjoint subsets (S ⊂ V,V \S). The edges of E with one endpoint in S and
one in V \S is said to cross the cut (S,V ⊆ S).

Neighbourhood equivalence. Neighbourhood equivalence is general equivalence
relation based on neighbourhoods crossing the cut of a graph. For a graph G and
subsets S1,S2 ⊆ V (G) we say that S1 and S2 are neighbour-equivalent, denoted
S1 ≡ S2, if they are adjacent to the same vertices in G. That is, S1 ≡ S2 if and only
if N(S1) = N(S2). Furthermore, S1 and S2 are d-neighbour-equivalent, denoted
S1 ≡d S2, if each vertex in V (G) is either adjacent to the same number of vertices
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a

b
c

d

e
f

Edge inducing the bipartition ({a, b, c}, {d, e, f})

Figure 1.1: An edge inducing in a branch decomposition inducing a bipartition.

in both S1 and S2, or it is adjacent to at least d vertices of both S1 and of S2.
Note that from this we have S1 ≡ S2 if and only if S1 ≡1 S2.

Branch decompositions A branch decomposition over X, for some set of ele-
ments X, is a pair (T,δ), where T is a tree over vertices of degree at most 3, and δ
is a bijection from the leaves of T to the elements in X. Any edge uv disconnects
T into two sub-trees Tu and Tv. Likewise, any edge uv partitions the elements of
X into two parts Xu and Xv, namely the elements mapped by δ from the leaves
(excluding u) of Tu, and of Tv, respectively. An edge uv ∈ E(T ) is said to induce
the partition (Xu,Xv). We denote this partition by δ(uv).
Given a symmetric (f(A) = f(A)) function f : 2X → R, using branch decom-

positions over X, we get a nice way of defining width parameters: For a branch
decomposition (T,δ) and edge e ∈ T , we define the f -value of the edge e to be the
value f(A) = f(B) where A and B are the two parts of the partition induced by e
in (T,δ), denoted f(e). We define the f -width of branch decomposition (T,δ) to be
the maximum f -value over all edges of T , denoted f(T,δ): maxe∈T{f −value of e}.
For set X of elements, we define the f -width of X to be the minimum f -width
over all branch decompositions over X. If |X| ≤ 1, then X admits no branch
decomposition and we define its f -width to be f(∅).

Cut function. We say that a function f : 2X → R is a cut function of G if
X = V (G).

Adjacency matrix. The adjacency matrix of a bipartite graph is a matrix M
where the rows are indexed by the vertices of one part, and the columns indexed
by the vertices of the other part. A cell M [u,v] in the matrix is one if u and v
are adjacent and zero otherwise.

Rank-width. Rank-width is width parameter, introduced by Oum and Sey-
mour [79], based on branch decompositions and the GF[2] rank of adjacency
matrices, called cut-rank. For a graph G and set S ⊆ V (G), the cut-rank of
S is the GF[2] rank of the adjacency matrix of G[S,V (G) \S]. Put differenctly,
the cut-rank of S is the minimum cardinality set S′ ⊆ S so that for any v ∈ S
there is a set S∗ ⊆ S′ where x ∈ V (G) is adjacent to v if and only if the number of
vertices from S∗ adjacent to x is odd. The cut-rank of S is also denoted cutrk(S).
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Using cut-rank as our symmetric function f in the definition of f -width above,
we define the rank-width of G to be the f -width of V (G) where f = cut-rank. We
say that the cut-width of a branch decomposition (T,δ) of V (G) is the f -width
of (T,δ) with f set to be the cut-rank.

A rooted branch decomposition. A rooted branch decomposition is a branch
decomposition (T,δ) where one of the vertices r of V (T ) are chosen as a root. In a
rooted branch decomposition, for an internal vertex v ∈ V (T ), we denote by δ(v)
the union of δ(l) for all leaves of l having v as its ancestor.

Branchwidth. The branchwidth of a graph G is a width parameter defined
through branch decompositions over E(G), introduced by Robertson and Sey-
mour [89]. The branchwidth of G is defined to be the f -width of E(G) with
respect to the following symmetric function f on subsets X ⊆ E(G):

f(X) = |{v ∈ V (G) : ∃uv ∈ X and ∃u′v ∈ E(G)\X}| .

necd-width. The necd-width of a graph is a general width parameter defined
through branch decompositions over V (G) and the d-neighbour-equivalence rela-
tion, introduced by Bui-Xuan et al. [23]. Note that d is a variable taking on any
natural number, so we have nec1-width, nec2-width, nec3-width and so on.
Given a set S ⊆V (G), the necd-value of S is the cardinality of the largest family

of subsets F of S so that no two subsets S1,S2 ∈ S are d-neighbour-equivalent in
the bipartite graph G[S,V (G) \S]. The necd-value of a cut is its f -value where
f = necd, and the necd-width of a graph is the f -width of V (G) where f = necd.

Boolean-width. The boolean-width of a graph G is precisely equivalent to the
logarithm base two of the nec1-width, introduced by Bui-Xuan et al. [22]. The
necd-width parameter was defined as a generalization of boolean-width. We de-
note the boolean-width of G as boolw(G).

Maximummatching-width. Themaximum matching-width, mm-width in short,
is a width parameter defined through branch decompositions over V (G) and the
cardinality of matchings, introduced by Vatshelle [107]. For a cut S ⊆ V (G), the
maximum matching-value is defined to be the size of a maximum matching in
G[S,V (G)\S], denoted mm(S). The mm-width of a graph G, denoted mm-w(G),
is the f -width of V (G) for f =mm.

Maximum induced matching-width. The maximum induced matching-width,
mim-width in short, is a width parameter defined through branch decompositions
over V (G) and the cardinality of induced matchings, introduced by Vatshelle [107].
For a cut S ⊆ V (G), the maximum induced matching-value, denoted mim(S), is
the size of a maximum induced matching in G[S,V (G)\S]. The mim-width of a
graph G, denoted mim-w(G), is the f -width of V (G) for f =mim.
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Treewidth. The treewidth, introduced by Seymour and Thomas [88], is a graph
parameter defined using a tree-decomposition. A tree-decomposition of a graph G
is a pair (T,{Xt}t∈V (T )) consisting of a tree T and a family {Xt}t∈V (T ) of vertex
sets Xt ⊆ V (G), called bags, satisfying the following three conditions:

1. each vertex of G is in at least one bag,

2. for each edge uv of G, there exists a bag that contains both u and v, and

3. for vertices t1, t2, t3 of T , if t2 is on the path from t1 to t3, thenXt1 ∩Xt3 ⊆Xt2.

The treewidth of a tree-decomposition (T,{Xt}t∈V (T )) is maxt∈V (T )|Xt| − 1. The
treewidth of G, denoted by tw(G), is the minimum width over all possible tree-
decompositions of G.

A k-expression. A k-expression is a way of describing a graph and is an algebraic
expression using the following four operations:

• i(v): construct a graph consisting of a single vertex with label i∈ {1,2, . . . ,k}.
• G1 ⊕G2: take the disjoint union of labelled graphs G1 and G2.

• ηi,j for distinct i, j ∈ {1,2, . . . ,k}: add an edge between each vertex of label
i and each vertex of label j.

• ρi→j for i, j ∈ {1,2, . . . ,k}: relabel each vertex of label i to j.

Clique-width. The clique-width of a graph G, introduced by Courcelle and
Olariu [32], is precisely the minimum value k such that there exists a k-expression
describing G. We denote this value by cw(G).

Submodular functions. A function f : 2X → R is said to be submodular if for
any A,B ⊆ X we have f(A)+f(B)≥ f(A∪B)+f(A∩B).

Splits. A split of a connected graph G is a bi-partition (A,B) of the vertices
V (G) where |A|, |B| ≥ 2 and for all a ∈ N(B), N(a)∩B = N(A). That is, all
vertices in A adjacent to B have the same neighbourhood in B. Notice that this
property holds if and only if also for all b∈N(A), N(b)∩A=N(B). A bi-partition
(A,B) where either A or B consists of at most one vertex is said to be a trivial
split.

Split-decomposing a graph. A graph G having a split (A,B) can be decomposed
into smaller graphs GA and GB where GA is the graph G with all the vertices of
B replaced by a single vertex v, called a marker, adjacent to the same vertices
in GA as B is adjacent to in G. GB is in the same way the graph G where we
replace the vertices A by the marker vertex v so that NGB

(v) =NG(A). A graph
decomposed by GA and GB is denoted GA ∗GB. So if G is decomposed by GA

and GB, we have G=GA ∗GB.
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Prime graphs. A graph without a split is called a prime graph. Since all graphs
of three or less vertices trivially do not contain any splits, we say that a prime
graph on more than three vertices is a non-trivial prime graph. Note that in
the context of modular decompositions a prime graph means something slightly
different2.

Split decomposition. A split decomposition of a graph G is a recursive decom-
position of G so that all of the obtained graphs are prime.

Split decomposition tree. For a split decomposition of G into G1,G2, . . . ,Gk,
a split decomposition tree is a tree T where each vertex corresponds to a prime
graph and we have an edge between two vertices if and only if the prime graphs
they correspond to share a marker. That is, the edge set of the tree is E(T ) =
{vivj : vi,vj ∈ V (T ) and V (Gi)∩V (Gj) �= ∅}. See Figure 1.2 for an example.

1.1.4 Non-standard definitions

The following definitions are non-standard and should be read more carefully than
the rest. These are definitions and terminology that will be used in Chapter 4.

The functions tot() and act(). For a split decomposition tree T and prime graph
P in V (T ), a marker v ∈ V (P ) ’represents’ some vertices of V (G), that we call
tot(v : P ). Formally, we define tot(v : P ) to be the vertices of V (G) in the prime
graphs of the unique connected component of T −P that contains the other oc-
currence of v. As an example, in Figure 1.2 the set tot(v1 : G2) is {f,g,h}; the
vertices of V (G) in G4 and G5. For a non-marker u in a prime graph Gi, we define
tot(u :Gi) to simply be the set {u}. In this way tot(w :Gi) can be seen as the set
of vertices from the original graph that w is representing in the prime graph Gi.
We note that for a prime graph Gi, the set of tot(v :Gi) for all v ∈ V (Gi) is a par-
tition of V (G). Also, for a marker v and the prime graphs Gi and Gj containing
it, {tot(v :Gi),tot(v :Gj)} is a bipartition of V (G). For a set V ′ ⊆ V (Gi), we de-
fine tot(V ′ :Gi) to be the union of tot(v :Gi) for all v ∈ V ′. We define the active
set of a vertex v ∈ Gi, denoted act(v :Gi), to be the vertices of tot(v :Gi) that are
adjacent to the rest of V (G). That is, act(v : Gi) = NG(V (G) \ tot(v : Gi)). See
Figure 1.2 for an example of tot() and act(). We may also denote tot and act by
the use of subscripts. That is, tot(v :Gi) = totGi

(v) and act(v :Gi) = actGi
(v).

Weight of vertices in decomposed graphs. For a prime graph G′ and vertex
v ∈ V (G′), when we say the weight of v, we mean the cardinality of act(v).

Partitioning through a function. For sets X and Y , we say that a function f :
X → 2Y partitions Y if 1) ∀x1 �= x2 ∈X : f(x1)∩f(x2) = ∅, and 2) ⋃

xi∈X f(xi) = Y .
2In the context of modular decompositions (see [72] for the definition of modular decompositions),

a prime graph is a graph for which there is no split (A,B) so that either A is disconnected from B or
N(A) =B.
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Figure 1.2: A split decomposition tree of a graph G. The markers of each prime
graph are circled in red. An example of a split decomposition resulting in this tree
is: ((G1 ∗G2)∗G3)∗ (G4 ∗G5). Note that tot({v1,v3} :G2) = {d,e,f,g,h}, act({v1,v3} :
G2) = {d,e,f}.

a

b c

x1

d

x2

e f

x3 g h

i

x4

j
x5

Figure 1.3: For the universes U1 = {a,b,c,d,e,f,g,h, i, j} and U2 = {x1,x2,x3,x4,x5},
and function σ = {x1 → {a,b,c},x2 → {d},x3 → {e,f},x4 → {g,h, i},x5 → {j}} that
partitions U1, we have that for any function f : 2U1 → R, the corresponding σ-lifted
function fσ : 2U2 → R of f on the marked region is fσ({x2,x4}) = f({d,g,h, i}).

A lifted function. Let X and Y be some set of elements and σ : X → 2Y a
function that partitions Y . Let σ′ : 2X → 2Y be the function so that σ′(S ⊆ X) =⋃
s′∈S σ(s′), and f : 2Y →R any subset-function of Y . We say that the composition
(f ◦σ′) of f and σ′ is the σ-lifted function of f from X to Y . That is, the σ-lifted
function of f is the function g : 2X → R so that g(S ⊆ X) = f(σ′(S)). We denote
the σ-lifted function of f by fσ. The reason why we do not simply use the well
known composition notation for this is that we want to avoid explicitly defining
σ′. See Figure 1.3 for an example of a lifted function. When the function σ is
clear from context, we might refere to the σ-lifted function of f simply as the
lifted f function.

1.1.5 Runtime and complexity

Unless otherwise specified, we denote by n and m the size cardinality of V (G) and
E(G) for input graph G implicit from context. At times we use the notation O∗.
This means we suppress polynomials of n. That is, O∗(f(x)) implies O(f(x)nO(1)).
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The complexity class P. The complexity class P is the set of problems solvable
in polynomial time ( nO(1) ).

The complexity class NP. The complexity class NP is the set of “yes”/“no” prob-
lems solvable in polynomial time non-deterministically. Alternatively; it is the set
of problems for which all “yes”-instances have a polynomial length certificate that
can be used as a hint to verify (in polynomial time) that the instance indeed is a
“yes”-instance.
A problem is NP-hard if it being in P will imply NP=P. A problem is NP-

complete if it is in NP and is NP-hard.

A parameter. A parameter is a function p assigning a number to each input
instance. The runtime of solving an instance I is parameterized if it is expressed
in terms both of the input length n of I and the parameter value k = p(I). E.g.,
O(n42k).

Classes of bounded value For a parameter p, we say that a class of instances
has bounded p if there is some constant c so that for all instances I in the class,
p(I)≤ c.

The complexity class FPT. The complexity class FPT is the class of problems
solvable in time nO(1)f(k) for some function f and parameter k. We abuse notation
slightly by saying that a runtime (not only problems) of the form nO(1)f(k) is FPT.

Being W[1]-hard. A parameterized problem is W[1]-hard if having a FPT algo-
rithm for the problem implies k-Independent Set can be solved in FPT time
parameterized by the size of the independent set (k).

The complexity class APX. The complexity class APX is the class of problems
in NP that can be approximated to within a constant factor in polynomial time.
That is, it is the class of problems of the form “is there a X of size k so that ...”
for which there is a c so that we can in polynomial time correctly determine that
an instance is not a yes instance, or determine that it is a yes instance for the
same problem with k adjusted to be c times as large.

The complexity class ZPP. The complexity class ZPP is the class of problems
for which there is a randomized algorithm which correctly solves the problem in
polynomial expected runtime.

Exponential Time Hypothesis. The Exponential Time Hypothesis (ETH) [56]
states that there is a positive real s so that 3-SAT cannot be solved in time O(2sn)
where n is the number of variables in the input formula.
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Strong Exponential Time Hypothesis. The Strong Exponential Time Hypoth-
esis (Strong ETH) states that SAT can not be solved in O((2− ε)n) time for any
constant ε > 0. Here n denotes the number of variables.

Linearly single exponential. We say that an FPT runtime of the form O∗(2O(k)),
is linearly single exponential. Problems solvable in linearly single exponantial FPT
time are also called EPT.
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Chapter 2

On choosing parameters

In this chapter, we motivate the study and results addressed in this thesis, and
give an outline of the remaining parts.

2.1 Dynamic programming on structure

Although the hypothesis P�=NP dictates that NP-hard problems do not have poly-
nomial time algorithms in general, even the most notorious NP-complete problems
can be solved quickly when restricting the class of input. Let us take Indepen-

dent Set as an example. The problem Independent Set is NP-complete, yet
if the input graph G is a tree we can easily solve Independent Set in poly-
nomial time by rooting the tree and doing dynamic programming in a bottom
up traversal of the tree from the leaves to the root. This works because each
vertex v in the graph disconnects the subtrees rooted at its children. Even if
the input graph is not a tree, but has low treewidth, we can solve Indepen-

dent Set quickly, since each bag Xt in a rooted tree-decomposition disconnects
each of the subgraphs induced by the bags of each subtree rooted at its chil-
dren. In this way we solve Independent Set using the structure inherent in
a tree-decomposition, giving an FPT runtime parameterized by the treewidth,
tw(G), of the graph. In this thesis we will focus on that kind of FPT algo-
rithms, namely the ones where we base our algorithm on first computing a de-
composition certifying some structural property, and then using dynamic pro-
gramming on said decomposition yielding solutions to the given problem with
runtime depending on the decomposition computed. Here is the general scheme
of many FPT algorithms solving a problem on input G1 of size n, parameterized by
some parameter x, using dynamic programming over structural decompositions:

1 G is usually a graph. However, in Chapter 8 the structural DP-scheme will be used with CNF-
formulas as input instead of a graph as input.
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[P1]: Compute a decomposition D for the respective structural parameter x
in f(x(G))nO(1) time, so that the width of the structure is some value
x′(D) = g(x(G)).

[P2]: Solve the problem on G through dynamic programming over D, or a de-
composition computed easily from D, with a runtime of f ′(x′(D))nO(1).

From this point and onwards, let us refer to the above framework as the
structural DP-scheme. Using this scheme, we get a total runtime (f(x(G)) +
f ′(g(x(G))))nO(1) which is FPT. Many studies focus only on [P2], assuming that
a decomposition D of width g(x(G)) has already been computed and is given
along with the input instance. A solution to [P2] does not imply that we can
solve the problem in FPT time parameterized by x(G), unless also [P1] is solved
in FPT time. This was the case for many years regarding graph algorithms pa-
rameterized by clique-width; an FPT algorithm approximating a decomposition
(a k-expression) of width f(x(G)) was not found until 2006 by Oum and Sey-
mour [79], while algorithms for [P2] using clique-width as a parameter were in use
before this. In particular, the celebrated meta-theorem by Courcelle et al. [31]
that MSO1 is FPT parameterized by clique-width (Theorem 2.3), was introduced
in 2000 and needed a k-expression given along with the input. Now, because of
[79], this extra limitation is not necessary.
One important aspect of the above structural DP-scheme, that we see illus-

trated in the story of clique-width, is that we do not need to find an optimal
decomposition in [P1]. Any f(x(G))-approximation will do fine in terms of fixed
parameter tractability. In fact, for clique-width, we still do not know whether or
not an FPT algorithm exists for computing the optimal k-expression, so an approx-
imation must be used in order to achieve FPT runtimes for current clique-width
algorithms. This is also the case for other width-parameters studied in this thesis,
like boolean-width and also mim-width. However, in Chapter 6 we will see that
we actually cannot hope to compute an optimal decomposition for mim-width in
FPT time unless FPT=W[1].
For a complete algorithm based on the structural DP-scheme, we must there-

fore weigh the runtime cost in [P1] of constructing an optimal decomposition
against the runtime cost in [P2] for non-optimal decompositions. Consider
treewidth as an example. The best algorithm for computing the optimal tree-
decomposition is a 2O(tw(G)3)n-time algorithm by Bodlaender [12], while we can
produce a constant approximation of the optimal treewidth in linearly single ex-
ponential time – 2O(tw(G))nO(1) – by Robertson and Seymour [90]. Thus, dynamic
programming algorithms that spend asymptotically less time than 2O(tw(D)3)nO(1)

when given a decomposition D (i.e., part [P2]) will benefit from using an approx-
imation for the first part, [P1], since [P1] otherwise will become the bottle-neck
of the algorithm.
This method of comparison also works across parameters: given an optimal

decomposition (i.e. avoiding [P1]), Independent Set parameterized by either
rank-width or clique-width both yield linearly single exponential 2O(k)nO(1) run-
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times. However, for [P1], in FPT time a decomposition for rank-width can be
much better approximated than clique-width, and thus Independent Set using
algorithms based on rank-width give better runtimes in general than those based
on clique-width.
Arguably, the most natural way to hierarchically decompose a graph is through

branch decompositions. Identifying the fundamental elements of the input, and
recursively splitting the set of these elements into smaller and smaller parts, is
a natural first step of divide and conquer algorithms, and can be well described
using rooted branch decompositions. The runtime of an algorithm based on such a
branch decomposition will depend on the amount of work needed to later combine
partial solutions for the smaller parts induced by each of these “divide”-steps.
This often correlates with how the fundamental elements within each divided
part interact with the rest of the elements, and hence can be described by a cut-
function. For graphs, these fundamental elements are the vertices of the graph.

In this thesis our graph algorithms2 will use the structural DP-scheme, with
a branch decomposition over the set of vertices.

As we will see, this type of decomposition is incredibly versatile, by exchanging
the cut function used, and can express many different structural properties of the
input.

2.2 Comparing parameters

An important reason for why we can say that parameterizing by rank-width is
better than parameterizing by clique-width for Dominating Set, is that the
clique-width is always at least as large as the rank-width. For a problem π, to
claim that a parameter p1 is better than parameter p2 when using the structural
DP-scheme, we need to address all of the following three points:

[A]: What is the value of p1 compared to p2 for a class C of instances?

[B]: What is the runtime to find a decomposition for p1? ([P1])

[C]: What is the runtime for solving π when given a decomposition? ([P2])

Leaving out any one of the above three points can lead to an incorrect conclusion
regarding which of p1 and p2 is the best parameter for problem π. As an example,
if when using the structural DP-scheme we get algorithms of runtime 2p1n2 and
(p2)p2n2 for a problem π, looking only at [B] and [C], it seems that p1 is better
than p2. However, if [A] reveals that p2 ≤ log(p1) for all instances, then actually
p2 is the better parameter for this problem.

2We again note that in Chapter 8 we do not work with graph algorithms. However, the branch
decomposition of Chapter 8 can be regarded simply as branch decomposition over the vertices of the
incidence graph of the input formula.
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Not only is clique-width at least as large as the rank-width, but it is also at most
a function of rank-width; rw(G)≤ cw(G)≤ 2rw(G)+1+1 [79]. When parameters are
both upper and lower bounded like this, we say that they have the same modelling
power. The modelling power of a parameter is the class of instances for which
the parameter is bounded. Other parameters with the same modelling power as
rank-width and clique-width include boolean-width (Bui-Xuan et al. [22]), NLC-
width (Johansson [61]) and module-width3 (Rao [86]). If the modelling power of
one parameter is a strict superset of another, we say that its modelling power is
stronger than the other, or simply that the parameter is stronger. Likewise, a
parameter (and modelling power) is weaker than another parameter if its mod-
elling power is a strict subset of the other. Note that parameters can also have
incomparable modelling powers, such as the two graph parameters treewidth and
maximum-degree4. See Figure 2.1 for an overview of the weaker/stronger relation-
ships between the parameters mentioned in this thesis.

2.3 The outline of the thesis
In our investigation on choosing parameters to get the best correlation between
parameter value and actual runtime complexity, we will look at the following four
main cases:

1) Using maximum matching-width as an alternative parameter to treewidth
for a faster FPT algorithm for Dominating Set. Chapter 3.

2) Finding a graph parameter that lies strictly between clique-width and
treewidth, both in terms of modelling power, and in terms of problems being
FPT. Chapter 4 and Chapter 5.

3) Finding an alternative parameter for solving [σ,ρ]-problems that gives new
runtime results, which when expressed in terms of clique-width, strictly im-
proves previous runtime analyses. Chapter 7.

4) Finding a parameter of CNF formulas better than previous structural pa-
rameterizations for solving #SAT and MaxSAT. Chapter 8.

In all four cases we make use of dynamic programming algorithms over branch
decompositions that follow the structural DP-scheme described earlier ([P1] and
[P2]), and in order to claim anything with respect to previous results, we need to
address all the points [A], [B], and [C] from the previous section. In addition to
the four case studies, we have an extra chapter where we give new (in-)tractability
results on hardness of computing optimal decompositions.

5) Showing that for some parameters computing an optimal decomposition [P1]

3Module-width goes by the name of modular-width in [86], but the parameter investigated in [45] is
also named modular-width and is what we refer to when the name modular-width is being used.

4The maximum degree of the particular graph. The class of all grids have vertices of degree at most
four, while the treewidth of grids is unbounded (Robertson and Seymour [89]), and the class of all stars
have unbounded degree while the treewidth is one.
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mm-width, treewidth,
branchwidth

clique-width, boolean-width,
rank-width, Q-rank-width

neighbourhood
diversity

shrub-depth

modular-width

sm-width

twin-cover

split-cardinality-
widthmodular-treewidth

split-treewidth
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Figure 2.1: A Hasse-diagram depicting the relationship of the modelling powers of some of
the parameters mentioned in this thesis. An arrow from parameter a to parameter b means
that a is weaker than b. Parameters of the same modelling power are joined together. We
investigate the underlined parameters in this thesis: In Chapter 3 we look at mm-width,
in Chapter 4 and Chapter 5 we look at sm-width, in Chapter 6 we look at boolean-width
and mim-width (mim-width is also addressed in Chapter 8), and in Chapter 7 we look
at Q-rank-width. We also look at the parameter projection-satisfiable-width (ps-width),
which is excluded from this figure, but can be found in a similar figure in Chapter 8
(Figure 8.1) relating its modelling power to that of other parameters.
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is W[1]-hard or NP-hard. Chapter 6.

We will now give a brief description of each of the four main cases studies 1–4,
and also 5).

2.3.1 Case 1 (Maximum matching-width)

We start our series of case studies by an investigation of the newly defined
graph parameter maximum matching-width, which is of equal modelling power
as treewidth. Treewidth is not defined through the general decomposition frame-
work of branch decompositions. With the same modelling power as treewidth,
we have the parameter branch-width, which is defined on branch decompositions,
and is linearly bounded by treewidth, as shown by Robertson and Seymour [89].
However, branch-width is defined through branch decompositions over the edges,
E(G), and not the vertices, V (G). Not long ago, Vatshelle [107] defined the param-
eter maximum matching-width which is defined through branch decompositions
over V (G), and is linearly bounded by the treewidth, as we see from the following
theorem.

Theorem 2.1 ([107]). Let G be a graph, then 1
3(tw(G)+1)≤mm-w(G)≤ tw(G)+

1

In this case study, we investigate properties of branch decompositions of
low maximum matching-width, and deduce an alternative characterization of
mm-w(G) = k graphs through an intersection of subtrees representation, very sim-
ilar to an alternative definition of treewidth. Through this alternative characteri-
zation, we can easily go back and forth between tree-decompositions of bounded
treewidth and branch decompositions of bounded MM-width.
We will generate an algorithm for solving Dominating Set, parameterized by

maximum matching-width, which turns out to be faster than the current best algo-
rithm for treewidth whenever tw(G)> 1.55mm-w(G). Our algorithm makes use of
properties that treewidth lacks in its description, namely the size of intersections
between adjacent bags. As we will see in Chapter 3, maximum matching-width to
some extent measures this property better than treewidth, and when this property
becomes dominant in the runtime analysis, parameterizing by mm-width instead
of treewidth gives a better runtime.
As mentioned earlier, for algorithms following the structural DP-scheme of

parts [P1] and [P2], both parts are necessary for a complete algorithm, and there
will usually be a trade-off between the runtime of [P1] and how good the decom-
position produced by [P1] is. For Dominating Set parameterized by treewidth
the best runtime, in terms of the exponential part, is obtained by the following
combination, with [P1] by Amir [3], and [P2] by van Roij et al. [105]:

[P1]: Compute in 8tw(G)nO(1) time a tree-decomposition D of treewidth at most
tw(D)≤ (3+2/3)tw(G).

[P2]: Using D from [P1], solve Dominating Set in time 3tw(D)nO(1).
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This results in a total runtime of 3(3+3/2)tw(G)nO(1), which is approximately
25.8tw(G)nO(1). There are other alternatives for [P1], yielding decompositions of
smaller treewidth [3, 12, 14], but then the runtime of [P1] takes more time than
the entire algorithm of the current approach. Our algorithm for Dominating

Set parameterized by mm-width also uses the same structural DP-scheme, and
it proceeds as follows:

[P1]: Based on submodularity of the cut function mm, compute in 8mm-w(G)nO(1)

time a branch decompositionD of mm-width at most mm-w(D)≤ 3mm-w(G)+
1.

[P2]: Using D from [P1], solve Dominating Set in time 8mm-w(D)nO(1).

Here [P2] is a completely new algorithm, and the approximation of [P1] is
based on a new result of submodularity of mm, and a known general algorithm
of Oum and Seymour approximating branch decompositions with respect to cut
functions that are submodular [79]. The result of this is an algorithm for Domi-

nating Set with a runtime of 29mm-w(D)nO(1). Thus, if the treewidth is at least
9/5.8≈ 1.55 times the mm-width, our algorithm beats the one for treewidth. We
note that if we only compare [P2] of the two algorithms, then our mm-width ap-
proach only beats treewidth when it is at least log3(8)≈ 1.9 times the mm-width.
Vatshelle showed that the bounds of Theorem 2.1 are tight, and thus we can

expect there to be many instances for which using the mm-width based algo-
rithm will outperform the treewidth algorithm, even though treewidth needs to
be larger than the mm-width. Note, that we do not hope to get an improved run-
time for all instances, as the best runtime for Dominating Set parameterized by
treewidth, O∗(3tw(G)) (when given an optimal tree-decomposition), is optimal un-
der the Strong Exponential Time Hypothesis, as shown by Lokshtanov et al. [67].
To sum up in terms of [A], [B], and [C]: For [C] our algorithm is worse than that

of treewidth, but since both [A] and [B] compare favourably over treewidth/tree-
decompositions, for classes of inputs where [A] says mm-width is sufficiently much
smaller than treewidth, our algorithm for Dominating Set based on mm-width
is faster than the Dominating Set-algorithm based on treewidth.

2.3.2 Case 2 (between treewidth and clique-width)
Among the most famous structural parameters for graphs, we have the parameters
treewidth and clique-width. The modelling power of clique-width is stronger than
treewidth, but as we see from the following two celebrated theorems, this power
has its cost in terms of tractability.

Theorem 2.2 ([29, 90]). Any problem expressible in MSO2 is fixed parameter
tractable when parameterized by the treewidth.

Theorem 2.3 ([31, 79]). Any problem expressible in MSO1 is fixed parameter
tractable when parameterized by the clique-width.

Every problem expressible in MSO1 can be expressed in MSO2, but the converse
is not true, and Fomin et al. [41] have shown that there are problems expressible
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in MSO2 which are not FPT (unless FPT=W[1]) parameterized by clique-width,
so there is indeed a trade-off between having the better modelling power of clique-
width, or having the fixed parameter tractability of using treewidth. In fact
Courcelle et al. [31] showed that, for any parameter p that includes the class of
cliques in its modelling power, we cannot hope to have all problems expressible
in MSO2 FPT parameterized by p unless P=NP for unary languages.
Some of the most well known problems in MSO2 but not in MSO1 are Max-

Cut, Chromatic Number, Hamiltonian Cycle and Edge Dominating

Set. These four problems are easily solvable for cliques, so they are not in the
implication of [31], but Fomin et al. [41, 42] have showed that none of them can
be FPT parameterized by clique-width, unless FPT=W[1].
In this case study, we will look for a parameter whose modelling power contains

the cliques, and which is weaker than clique-width but stronger than treewidth,
and for which the above four graph problems are FPT. We note that one can easily
define trivial parameters having these properties (e.g. value equal to clique-width
if this is at most 3, and otherwise equal to treewidth, since the four problems are
in XP parameterized by clique-width), but we want a more natural parameter,
which gives tractability results beyond what is already known.
This case study starts in this very subsection, where we search through pos-

sible candidate parameters, before finally arriving at our parameter choice split-
matching-width.

There are several suggestions for parameters that are weaker than clique-width
while being bounded also on some dense graphs, but few satisfy our criteria:

• ([A]) Its modelling power must include the cliques, but be weaker than clique-
width, and stronger than treewidth.

• ([B]) We must be able to compute a decomposition of bounded width in FPT
time.

• ([C]) Given a decomposition of bounded width, we must be able to solve the
following four problems in FPT time.
- Hamiltonian Cycle

- MaxCut

- Edge Dominating Set

- Chromatic Number.

Suggested parameters that contain the class of cliques and are weaker than
clique-width, but which fail our criteria on [A] of being stronger than treewidth
are listed below. All of them satisfy our constraint on [B], but only partially our
constraints on [C].

• neighbourhood diversity (Lampis [65])
• twin-cover (Ganian [46])
• shrub-depth (Ganian et al. [47])
• modular-width (Gajarský et al. [45])
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The latter of these parameters, modular-width, arises as the maximum cardinal-
ity over all prime graphs in the modular decomposition of the input graph. A
generalization of this, is to instead take the maximum treewidth over all prime
graphs in the modular decomposition. We then have the following parameter:

• modular-treewidth (Paulusma et al. [81])
Modular-treewidth is stronger than treewidth, weaker than clique-width, and has
the class of cliques in its modelling power, so modular-treewidth satisfies [A].
Furthermore, computing a modular decomposition can be done in polynomial
time (James et al. [57]), and computing a tree-decomposition for each prime graph
can be done in FPT time [12], so also our criteria on [B] is satisfied. However, we
do not know any FPT algorithms for computing the four problems Edge Domi-

nating Set, Chromatic Number, Hamiltonian Cycle, and MaxCut, so
we have not been able to satisfy our criteria on [C] for modular-treewidth.
Modular decompositions and split decompositions are very similar, and by

the same definitions as modular-width and modular-treewidth, but over split de-
compositions instead of modular decompositions, we arrive at the following two
parameters:

• split-cardinality-width (maximum cardinality of a prime graph of the split
decomposition of the input graph)

• split-treewidth (maximum treewidth over all prime graphs of the split de-
composition of the input graph)

As with modular-width, split-cardinality-width is not stronger than treewidth,
since it is unbounded for the class of cycles. However, similar to modular-
treewidth, split-treewidth satisfies our criteria on [A] and [B], but we do not
know any FPT algorithms for the four problems in our criteria for [C]. In fact,
Chromatic Number parameterized by modular-treewidth, and Chromatic

Number parameterized by split-treewidth, both are polynomial time Turing re-
ducible to and from the problem Preemptive Scheduling with polynomial
weights parameterized by treewidth5 (while preserving parameter value), which is
an interesting open problem by itself.
Out of the parameters looked at so far, only modular-treewidth and split-

treewidth can not be outright discarded for failing our criteria, as the criteria
on [A] and [B] are upheld, and we have not managed to prove that [C] is not
upheld. However, as we have not found a single FPT algorithm for either of the

5The Preemptive Scheduling problem can be regarded as a coloring problem where each vertex v
has a weight wc(v) and must be assigned wc(v) colors, and no adjacent vertices may share the same
color. A rough sketch of the (turing-)reduction is as follows: In the forward direction; replace each
vertex v by a clique of size wc(v) having the same neighbourhood as v. In the backwards direction (for
split-treewidth, which implies for modular-treewidth also); we guess a coloring number t out of the n
possible, and in a bottom up manner over the split decomposition tree (root it arbitrarily), for prime
graph G′ with parent G∗ in the split decomposition tree, sharing marker v, we assume all markers u
except v have been assigned weight equal to the minimum number of colors needed by act(u : G′) in
a t-coloring. Set all non-markers to weight 1. Then find the minimum number of colors needed by
act(v :G∗) in a t-coloring by taking t minus the maximum weight that v can have in G′ while being a
preemptive scheduling for G′. Continue in this way upwards the split-decomposition tree
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four mentioned problems parameterized by these two parameters, and we want
them all to be FPT, we continue our search for a suited parameter.
We landed on the two parameters split-treewidth and modular-treewidth by

starting with a dense decomposition, and then modifying it to include treewidth
bounded graphs. However, using mm-width and branch decompositions, we can
do this the other way around. That is, we construct a decomposition that includes
treewidth bounded graphs, and modify it to also include dense graphs. Recall
from our discussion of the first case study that mm-width has the same modelling
power as treewidth, and that it is defined through branch decompositions over
the vertex set. Also, recall that a split is a partition (A,B) of the vertices of a
graph so that G[A,B] is a complete bipartite graph plus some isolated vertices
(where |A|, |B| ≥ 2). One way of extending mm-width to a width parameter which
also includes some dense graph classes is to modify the cut-function as follows:
sm(S) = 1 if (S,V \S) is a split, and sm(S) = mm(S) otherwise. This will be our
parameter, and we call it split-matching-width.
In Chapter 4, we show that this parameter indeed satisfies our criteria for [A]

and [B], giving an approximation algorithm for [P1] and showing that its mod-
elling power is between treewidth and clique-width. And then in Chapter 5 we
show that split-matching-width also satisfies our criteria for [C], by giving FPT
algorithms for [P2] parameterized by the split-matching-width of the decomposi-
tions produced by [P1] in Chapter 4.

2.3.3 Case 3 ([σ,ρ]-domination)

In the third case study, we introduce an alternative parameter for [σ,ρ]-problems,
called Q-rank-width, with the same modelling power as clique-width, boolean-
width and rank-width. The [σ,ρ]-problems consist of a large class of domination-
type problems that generalize Independent Set and Dominating Set. Re-
call from earlier in this chapter that we got the best algorithms parameter-
ized by clique-width by actually using an algorithm focusing on rank-width in-
stead of clique-width. For a [σ,ρ]-problem π, the best clique-width algorithms
are found through the following observations, yielding an algorithm of runtime
2O(cw(D)2)nO(1):

[A] rw(G)≤ cw(G).
[B] We can compute a branch decomposition D of rank-width 3rw(G) + 1 in

time 8rw(G)nO(1).
[C] We solve π in time 2O(rw(D)2)nO(1).

We will show in Chapter 7 that using the same algorithms, but over a decompo-
sition of low Q-rank-width instead of low rank-width, we get the following:

[A] rwQ(G)≤ cw(G).
[B] We can compute a branch decomposition D of rank-width 3rw(G) + 1 in

time 8rwQ(G)nO(1).
[C] We solve π in time (rwQ(D))O(rwQ(D))nO(1).
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This results in a faster algorithm – 2O(cw(D) log(cw(D))nO(1) – in terms of clique-
width. For both the rank-width approach and the Q-rank-width approach, the
same algorithm is used in [P2]; namely a general algorithm of Bui-Xuan et al. [23],
that solves [σ,ρ]-problems using d-neighbourhood equivalence classes, and with
runtime that depends on the necd-width, necd(D), of the input decomposition
D. We show in Chapter 7 that our new parameter Q-rank-width better bounds
the necd-width than rank-width, and thus the runtime of [P2] of actually solving
the problem π has a smaller growing function when expressed in terms of Q-
rank-width than in terms of rank-width. We may note that rank-width is upper
bounded by the Q-rank-width, and could potentially be much smaller than Q-
rank-width for certain instances.
Note also that there are faster algorithms than ours for solving Dominat-

ing Set and Independent Set parameterized by clique-width if an optimal
k-expression is given as part of the input. However, we only have exponential ap-
proximations of clique-width, but linear approximations of both rank-width and
Q-rank-width.

2.3.4 Case 4 (parameterizing #SAT and MaxSAT)
This case study differs from the rest in two ways; the first difference being that we
do not look at a graph problem, and the second difference being that our result,
although based on the structural DP-scheme, does not include an algorithm [P1]
for computing a branch decomposition of bounded width. We only give heuristics
for [P1]. In this study we look at solving #SAT and MaxSAT through dynamic
programming over branch decompositions over the set of variables and clauses of
the input CNF formula, and not the vertices of a graph. We give an algorithm
for the last part, [P2], of the structural DP-scheme, which assumes that a branch
decomposition is given along with the input. When we design our algorithm in
Chapter 8, we first investigate the minimal information necessary at every step of
the branch decomposition to get an algorithm that does not depend on structure
not actually needed for solving our problems. The result is a general algorithm
with runtime depending on the structural parameter projection satisfiable-width
(ps-width), which tries to measure this minimal information.
As mentioned, we lack the part of constructing a low ps-width branch decom-

position. However, for all classes of inputs shown tractable by the use of the
structural DP-scheme, Brault-Baron et al. [20] have shown that we can transform
the decompositions used in [P1] of these previous results, into branch decompo-
sitions of low ps-width, replicating the tractability results. So our algorithm for
[P2] can be seen as a generalization of these previous results. The algorithm also
extends beyond the previous results, as we show by pointing out a new class of
CNF formulas that can be solved in polynomial time by our algorithm in combina-
tion with previous results (for graphs) that help compute a branch decomposition
of low ps-width for this particular class of formulas.
By the way we have constructed our algorithm, looking at the minimum infor-

mation needed over a cut, we make [P2] rely on as little information as possible.
This means that we can shift the focus of showing parameterized tractability for
#SAT and MaxSAT on structural parameters x from constructing algorithms
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for both [P1] and [P2], to simply constructing branch decompositions of ps-width
bounded by the x-width and apply our algorithm for [P2].

2.3.5 Chapter 6 - on the intractability of boolean-width and
mim-width

This chapter is complementary to the four main case studies. We address situa-
tions where computing an optimal decomposition in [P1] is itself an intractable
task. Since its definition, deciding the optimal boolean-width and deciding the
optimal mim-width have been thought to be NP-hard to compute, but no proof
has been given for this. The motivation for believing that these problems are NP-
hard, is from the fact that the cut-functions they are based on are by themselves
NP-hard in general.
In this part, we reduce the problems of deciding the cut-value of boolean-width

and mim-width, to that of deciding the optimal boolean-width and mim-width,
respectively. We thus show that indeed boolean-width and mim-width are NP-
hard to compute, and by this finally prove the conjectured hardness of these two
problems. In fact we show that deciding mim-width parameterized by said width
is W[1]-hard.

2.4 Papers this thesis is based on

This thesis is based on work published in the following papers, which have all been
peer reviewed either in its full version, or as an extended abstract for a conference.
We emphasise that the case studies are only based on these papers.

• The first case study is based on the following paper:
[60] Jeong, J., Sæther, S. H., and Telle, J. A. Maximum matching

width: new characterizations and a fast algorithm for dominating set.
To appear in Proceedings of IPEC 2015.

• The second case study is based on the following two papers:
[93] Sæther, S. H., and Telle, J. A. Between treewidth and clique-

width. In proceedings of WG 2014 (2014). Invited to contribute to
special section of Algorithmica.
The full text version of this paper was recently accepted for the special
section of Algorithmica, but the publication is not yet finalized.

[92] Sæther, S. H. Solving Hamiltonian Cycle by an EPT Algorithm for a
Non-sparse Parameter. In Algorithms and Discrete Applied Mathemat-
ics. Springer International Publishing, 2015, pp. 205–216.
This paper won a best student paper award and was invited to con-
tribute to a special issue of the journal Descrete Applied Mathemathics

• The third case study is based on the following paper:
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[78] Oum, S.-i., Sæther, S. H., and Vatshelle, M. Faster algorithms
for vertex partitioning problems parameterized by clique-width. Theo-
retical Computer Science 535 (2014), 16–24.

• The fourth case study is based on the following paper:
[94] Sæther, S. H., Telle, J. A., and Vatshelle, M. Solving MaxSAT

and #SAT by dynnamic programming. To appear in Journal of Artifi-
cial Intelligence Research

• Chapter 6 is based on the following paper:
[95] Sæther, S. H., and Vatshelle, M. Hardness of computing width

parameters based on branch decompositions over the vertex set. To
appear in the proceedings of EuroComb 2015 (2015).
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Chapter 3

Maximum matching-width

In this chapter, we study the parameter maximum matching-width (mm-width),
which was introduced by Vatshelle [107], serving as a connection between
treewidth and structural graph parameters defined through branch decomposi-
tions over the vertex set, by the use of the following theorem, which we saw in
Chapter 2.

Theorem 2.1 ([107]). Let G be a graph, then 1
3(tw(G)+1)≤mm-w(G)≤ tw(G)+

1

We show that the cut function of mm-width is submodular, leading to a
O∗(8mm-w(G)) time 3-approximation algorithm for mm-width ([P1]). We also give
an algorithm taking a branch decomposition over the vertex set as input and, pa-
rameterized by mm-width of this decomposition, solve Dominating Set in time
O∗(8mm-w(G)) ([P2]).
Our results are based on a new characterization of graphs of mm-width at

most k, as intersection graphs of subtrees of a tree. Combined with similar char-
acterizations for treewidth and branchwidth (see Paul and Telle [80]), it can be
formulated as follows, encompassing analogous formulations for all three parame-
ters mm-width (respectively treewidth, respectively branchwidth):

For any k ≥ 2 a graph G on vertices v1,v2, ...,vn has mm-w(G) ≤ k (resp.
tw(G) ≤ k − 1, resp. bw(G) ≤ k) if and only if there is a tree T of max de-
gree at most 3 with nontrivial subtrees T1,T2, ...,Tn such that if vivj ∈ E(G) then
subtrees Ti and Tj have at least one node (resp. node, resp. edge) of T in com-
mon and for each edge (resp. node, resp. edge) of T there are at most k subtrees
using it.

Thus, while treewidth has a focus on nodes and branchwidth a focus on edges,
mm-width combines the aspects of both. We also arrive at the following alterna-
tive characterization: a graph G has mm-w(G)≤ k if and only if it is a subgraph of
a chordal graph H and for every maximal clique X of H there exists A,B,C ⊆ X
with A∪B ∪C = X and |A|, |B|, |C| ≤ k such that any subset of X that is a
minimal separator of H is a subset of either A,B or C.
This chapter is organized as follows. In section 3.1 we start with a discussion

of runtimes for dominating set parameterized by treewidth versus mm-width. In
section 3.2 we show the cut function of mm-width is submodular and how this
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leads to a new approximation algorithm for mm-width. In section 3.3 we define
unique minimum vertex covers for any bipartite graph, show some monotonicity
properties of these, and use this, together with the fact the size of a maximum
mathching in a bipartite graph equals the size of a minimum vertex cover, to
give the new characterizations of mm-width. In section 3.4 we give the dynamic
programming algorithm for dominating set. We end in section 3.5 with some
concluding remarks of this case study.

3.1 Discussion of runtimes

We will show that given a branch decomposition over the vertex set of mm-width
k we can solve Dominating Set in time O∗(8k) ([P2]). This runtime beats the
O∗(3tw(G)) algorithm for treewidth [105] whenever tw(G) > log3 8× k ≈ 1.893k.
We also show that mm-width has a submodular cut function, which means we
can approximate mm-width to within a factor 3mm-w(G)+ 1 in O∗(23mm-w(G))
time using the generic algorithm of [79] ([P1] and [B]), giving a total runtime for
solving dominating set of O∗(29mm-w(G)). For treewidth we can in O∗(23.7tw(G))
time [3] get an approximation to within a factor (3+ 2/3)tw(G) giving a total
runtime for solving dominating set of O∗(33.666tw(G))1. This implies that on input
G, using maximum matching width gives better exponential factors whenever
tw(G) > 1.549mm-w(G). This is a very nice example of a situation where the
comparisons of [A], [B], and [C] are tightly coupled, and we see how these three
points come together.
We may also compare with branchwidth. Let ω be the exponent of matrix

multiplication, which practically means 2.3728639 using the current fastest ma-
trix multiplication algorithm [66]. In 2010, Bodlaender et al. [16] gave an O∗(3ω

2 k)
time algorithm solving Minimum Dominating Set if an input graph is given with
its branch decomposition of width k. This means that given decompositions of
bw(G) and mm-w(G) our algorithm based on mm-width is faster than the al-
gorithm in [16] whenever bw(G) > log3 8 · 2

ω ·mm-w(G) > 2log3 8
2.3728639 ·mm-w(G) >

1.6mm-w(G).

3.2 Approximating mm-width

In [107] it was shown how any tree-decompositionD could be turned into a branch
decomposition over the vertex set of mm-width at most tw(D)+1. Thus, one way
of approximating mm-width is by first computing exactly, or approximating, a
tree-decomposition, and then turn it into a branch decomposition of bounded mm-
width. In this section, we give an alternative way of approximating mm-width,
without the use of a tree-decomposition, based on the following very general result
of Oum and Seymour.

1Note that there is also a O∗(ctw(G)) time 3-approximation of treewidth [14], but the c is so large
that the approximation alone has a bigger exponential part than the entire Dominating Set algorithm
when using the 3.666-approximation
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Theorem 3.1 ([79]). For symmetric submodular cut-function f and graph G of
optimal f -width k, a branch decomposition of f -width at most 3k+1 can be found
in O∗(23k) time.

This theorem is central in the field of branch decompositions. There is no
abundance of submodular cut functions, but the cut function mm turns out to
be one of them. That mm is submodular and that we can approximate the mm-
width is a very crucial part of the approximation of the parameter sm-width in
Chapter 4.

Theorem 3.2. The cut function mm is submodular.

Proof. Let G be a graph and S ⊆ V (G). We will say that a matching M ⊆ E(G)
is a matching of S if each edge of M has exactly one endpoint in S, i.e. M is
a matching of the bipartite graph G[S,S]. To prove that mm is submodular, we
will show that for any A,B ⊆ V (G) and any matching MA∪B of A∪B and MA∩B
of A∩B, there must exist two matchings MA of A and MB of B so that the
multiset of edges MA 	MB is equal to the multiset MA∪B 	MA∩B. First notice
that each edge of MA∪B and MA∩B is a matching of either A or B (or both). As
the vertices in a matching have degree one, the multiset MA∪B 	MA∩B of edges
can be regarded as a set of vertex disjoint paths and cycles (note though, we might
have cycles of size two, as the same edge might be in both of the matchings). We
will show that for every such path or cycle P there exist matchings MP

A for A
and MP

B for B so that E(P ) = E(MP
A )∪E(MP

B ). Note that this suffices to prove
the statement, as there will then also exist matchings MA of A and MB of B
so that E(MA)	E(MB) = E(MA∪B)	E(MA∩B), by taking MA and MB as the
disjoint union of each of the smaller matchings, for A and B respectively, that
exist for each path or cycle P in MA∪B 	MA∩B. Since these paths and cycles are
vertex-disjoint MA and MB will be matchings.
Thus, let P be a path or a cycle from MA∪B 	MA∩B. If P only contains

vertices of A∩B and A∪B, each edge of P is a matching of both A and B, so
we have the matchings by setting MA = P ∩MA∩B and MB = P ∩MA∪B. Since
the edges of E(P ) alternate between MA∪B and MA∩B, and since all edges from
MA∪B has an endpoint in A∪B and all edges from MA∩B has an endpoint in
A∩B, there can be at most one vertex v in P belonging to (B \A)∪ (A\B) (it
may help to look at Figure 3.1 where it is clear that no path alternating between
blue and red edges can touch (B \A)∪(A\B) twice). If there exists such a vertex
v, assume without loss of generality that v ∈ B \A. As each edge in MA∩B ∩P

A \ B

MA∪B

MA∩B

A ∩ B

B \ A

A ∪ B

Figure 3.1: The edges of MA∩B and MA∪B in the proof of Theorem 3.2.
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has exactly one endpoint in A∩B, and P contains vertices only of A∩B,B \A
and A∪B, all the edges of MA∩B ∩P have one endpoint in A and one endpoint
in (B \A)∪A∪B = A. So, MA∩B ∩P is a matching of A. For MA∪B, by the
same arguments, each edge in MA∪B ∩P must have one endpoint in A∪B and
one endpoint in (B \A)∪ (A∩B) =B, making MA∪B ∩P a matching of B.
Corollary 3.3. Given a graph G of mm-width mm-w(G) = k, a branch decompo-
sition over V (G) of mm-width at most 3k+1 can be found in O∗(23k) time.

3.3 Subtrees of a tree representation for mm-width
Theorem 2.1 shows not only that mm-width is bounded by the treewidth, but also
that the treewidth is bounded by the mm-width. However, this latter relation was
in [107] not shown constructively. In this section, we give an alternative charac-
terization of mm-width, which gives rise to a polynomial procedure to transform
a branch-decomposition of mm-width k into a tree-decomposition of treewidth
3k−1. This alternative characterization shows a nice analogy between treewidth,
branchwidth and mm-width, and is crucial for our dynamic programming algo-
rithm solving Dominating Set.

3.3.1 König covers.
In this subsection, we will define canonical minimum vertex covers for any bipar-
tite graph. Our starting point is a well-known result in graph theory.
Theorem 3.4 (König’s Theorem [64]). Given a bipartite graph G, for any maxi-
mum matching M and minimum vertex cover C of G, the number of edges in M
is the same as the number of vertices in C; |M |= |C|.
Let (A,B) be the vertex partition of G. This statement can be proved in

multiple ways. The harder direction, that a maximum matching is never smaller
than a minimum vertex cover, does not hold for general graphs, and is usually
proven by taking a maximum matching M and constructing a vertex cover C
having size exactly |M |, as follows:

For each edge ab ∈ M (where a ∈ A, and b ∈ B), if ab is part of an
alternating path starting in an unsaturated vertex of A, then put b
into C, otherwise put a into C.

For a proof that C indeed is a minimum vertex cover of G, see e.g. [36]. We will
call the vertex cover C constructed by the above procedure the A-König cover of
G. A B-König cover of G is constructed similarly by changing the roles of A and
B (see figure 3.2). From how a König cover is constructed, it might seem that the
choice ofM is important for how the resulting set C will be. Lemma 3.5 shows us
that actually the König cover does not depend on the choice ofM as long as M is
a maximum matching. In fact this lemma shows that the A-König cover will, on
the A-side consist of the A-vertices in the union over all minimum vertex covers,
and on the B-side consist of the B-vertices in the intersection over all minimum
vertex covers.
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A

B

A

B

Figure 3.2: A-König cover and B-König cover.

Lemma 3.5. For a bipartite graph G= (A∪B,E) and minimum vertex cover C
of G, the set C is the A-König cover of G if and only if for any minimum vertex
cover C ′ of G we have A∩C ′ ⊆ A∩C, and B ∩C ′ ⊇ B ∩C.
Proof. Let M be a maximum matching of G, and C∗ the A-König cover of G
constructed fromM . Since both C∗ and C are minimum vertex covers, by showing
that for any minimum vertex cover C ′ of G we have A∩C ′ ⊆ A∩C∗, and B∩C ′ ⊇
B∩C∗, as a consequence will also show that C ′=C∗ if and only if for all minimum
vertex covers C ′ of G we have A∩C ′ ⊆ A∩C and B ∩C ′ ⊇ B ∩C. So this is
precisely what we will do.
Let C ′ be any minimum vertex cover, and b any vertex in C∗ ∩B. We will show

that b ∈ C ′, and from that conclude B ∩C ′ ⊇ B ∩C∗. As b ∈ C∗ there must be
some alternating path from b to an unsaturated vertex u ∈ A. The vertices b and
u are on different sides of the bipartite graph, so the alternating path P between
u and b must be of some odd length 2k+1. From Theorem 3.4, we deduce that
one and only one endpoint of each edge in M must be in C ′. As each vertex in
V (P ) is incident with at most two edges of P , and all edges of P must be covered
by C ′, we need at least �(2k+1)/2� = k+1 of the vertices in V (P ) to be in C ′.
However, the vertices of V (P )− b are incident with only k edges of M . Therefore
at most k of the vertices V (P )− b can be in C ′. In order to have at least k+1
vertices from V (P ) in C ′ we thus must have b ∈ C ′.
We now show that C ′ ∩A ⊆ C∗ by showing that a ∈ C∗ if a ∈ A∩C ′. Let E∗

and E′ be the edges of G not covered by C∗ ∩B and C ′ ∩B, respectively. Since
C∗ ∩B ⊆ C ′ ∩B, the set E∗ must contain all the edges of E′. As C ′ is a minimum
vertex cover, and all edges other than E′ are covered by C ′ ∩B, a vertex a of A
is in C ′ only if it covers an edge e ∈ E′. As E′ ⊆ E∗, we have e ∈ E∗, and hence
C∗ must also cover e by a vertex in A. As G is bipartite, the only vertex from A
that covers e is a, and we can conclude that a ∈ C∗.

The following lemma establishes an important monotonicity property for A-
König covers.
Lemma 3.6. Given a graph G and tripartition (A,B,X) of the vertices V (G),
the following two properties hold for the A-König cover CA of G[A,B ∪X] and
any minimum vertex cover C of G[A∪X,B].
1. A∩C ⊆ A∩CA

2. B ∩C ⊇ B ∩CA.
Proof. To prove this, we will show that it holds for X = {x}, and then by tran-
sitivity of the subset relation and that a König cover is also a minimum vertex
cover, it must hold also when X is any subset of V (G).
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Let A′ = A+x and B′ = B+x, and let C ′ be the A-König cover of the graph
G[A,B] (be aware that this graph has one less vertex than G). We will break the
proof into four parts, namely A∩C ⊆ A∩C ′, A∩C ′ ⊆ A∩CA, B ∩CA ⊆ B ∩C ′,
and B ∩C ′ ⊆ B ∩C. Again, by transitivity of the subset relation, this will be
sufficient for our proof. We now look at each part separately.

A∩C ⊆ A∩C ′: Two cases: |C| = |C ′| and |C| > |C ′|. We do the latter first.
This means that C ′ ∪{x} must be a minimum vertex cover of G[A′,B]. Therefore
the A′-König cover C∗ of G[A′,B′] must contain (C ′ ∪ {x})∩ A′. This means
that C∗ is a minimum vertex cover of G[A,B], and by C ′ being the A-König
cover of G[A,B], we have from Lemma 3.5 that C ′ ∩A ⊇ C∗ ∩A. And since C∗
is a A′-König cover of G[A′,B] we have C ′ ∩A′ ⊇ C ∩A′ and can conclude that
C ′ ∩A ⊇ A∩C. Now assume that the two vertex covers are of equal size. Clearly
x �∈ C, as then C −x is a smaller vertex cover of G[A,B] than C ′, so x is not in C.
This means that C is a minimum vertex cover of G[A,B], so all vertices in A∩C
must be in C ′ by Lemma 3.5.

A∩C ′ ⊆ A∩CA: Suppose C ′ is smaller than CA. This means C ′+ x is a
minimum vertex cover of G[A,B′], and hence (C ′+x)∩A ⊆ CA∩A by Lemma 3.5.
On the other hand, if C ′ is of the same size as CA. Then CA is a minimum vertex
cover of G[A,B], and so x �∈ CA. This means CA ∩N(x)∩A ⊆ CA ∩A. And
as CA is a minimum vertex cover of G[A,B], we know from Lemma 3.5 that
CA ∩N(x)∩A ⊆ C ′. In particular, this means C ′ covers all the edges of G[A,B′]
not in G[A,B], which means that C ′ is also a minimum vertex cover of G[A,B′].
This latter observation means that C ′ ∩A ⊆ CA ∩A from Lemma 3.5.

B ∩CA ⊆ B ∩C ′: Suppose C ′ is smaller than CA. This means C ′+ x is a
minimum vertex cover of G[A,B′], and thus B′ ∩ (C ′ + x) ⊇ B′ ∩ CA. Which
implies that B ∩C ′ ⊇ B ∩CA. Now assume that C ′ is of the same size as CA.
This means CA is a minimum vertex cover of G[A,B] and x �∈ CA. Furthermore,
this means N(x)∩A ⊆ CA∩A ⊆ C ′ ∩A by Lemma 3.5 and we conclude that C ′ is
a minimum vertex cover of G[A,B′]. By Lemma 3.5, this means B′ ∩CA ⊆ B′ ∩C ′
and in particular B ∩CA ⊆ B ∩C ′.

B ∩C ′ ⊇ B ∩C: Suppose C ′ is smaller than C. This means C ′+x is a mini-
mum vertex cover of G[A,B′], and hence by Lemma 3.5 we have B′ ∩ (C ′+x) ⊆
B′ ∩C2, which implies B ∩C ′ ⊆ B ∩C2. Now suppose C ′ is of the same size
as C. This means that C is a minimum vertex cover of G[A,B], and hence we
immediately get C ∩B ⊇ C ′ ∩B by Lemma 3.5.
This completes the proof, as we by transitivity of the subset relation have that

CA ∩B ⊆ C ∩B, and C ∩A ⊆ CA ∩A.

We are now ready to prove an important connectedness property of König
covers that arise from cuts of a given branch decomposition.

Lemma 3.7. Given a connected graph G and rooted branch decomposition (T,δ)
over V (G), for any node v in T , where C are the descendants of v and Cu means
the δ(u)-König cover of G[δ(u), δ(u)], we have that

⎛
⎜⎝ ⋃
x∈V (T )\C

Cx

⎞
⎟⎠ ∩

⎛
⎝ ⋃
x∈C

Cx

⎞
⎠ ⊆ Cv .
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Proof. First notice for all x ∈ C, since Cx is a δ(x)-König cover and Cv a minimum
vertex cover, from Lemma 3.6 we have that Cx ∩ δ(x) ⊆ Cv ∩ δ(x). In particular,
since δ(x) ⊆ δ(v), we have that Cx \ δ(v) ⊆ Cv \ δ(v) ⊆ Cv. Since each vertex of
V (G) is either in δ(v) or not in δ(v), by showing that also for all x ∈ (V (T )\C) we
have Cx ∩ δ(v)⊆ Cv we can conclude that the lemma holds: For all x ∈ V (T )\C
either δ(v)⊆ δ(x) (when x is an ancestor of v) or δ(v)⊆ δ(x) (when x is neither a
descendant of v nor an ancestor of v), in either case, we can apply the δ(v)-König
cover Cv of G[δ(v), δ(v)] and the minimum vertex cover Cx of G[δ(x), δ(x)] to
Lemma 3.6 and see that Cx ∩ δ(v)⊆ Cv ∩ δ(v)⊆ Cv.

3.3.2 The new characterization of mm-width

We say a graph is nontrivial if it has an edge.

Theorem 3.8. A nontrivial graph G = (V,E) has mm-w(G) ≤ k if and only if
there is a tree T of max degree at most 3 and for each vertex u ∈ V a nontrivial
subtree Tu of T such that i) if uv ∈ E then the subtrees Tu and Tv have at least one
vertex of T in common, and ii) for every edge of T there are at most k subtrees
using this edge.

Proof. Forward direction: Let (T,δ) be a rooted branch decomposition over V
having mm-width at most k, and assume G has no isolated vertices. For each edge
e= uv of T , with u a child of v, assign the δ(u)-König cover Cu of G[δ(u),V \δ(u)]
to the edge uv. For each vertex x of G, define the set of edges of T whose König
cover contains x and let Tx be the sub-forest of T induced by these edges. Using
Lemma 3.7 we first show that Tx is a connected forest and thus a subtree of T .
Consider edge e= uv of T . Let p be the lowest common ancestor of u and v. For
every vertex w on the path from p to u and on the path from p to v, except p, we
know that exactly one of u,v is a descendant of w. By Lemma 3.7, (Cu∩Cv)⊆ Cw.
It means that if a vertex x of G is in both Cu and Cv then it is also in Cw, which
implies that Tx is connected.
Now, since the branch decomposition has mm-width at most k part ii) in the

statement of the Theorem holds. For an arbitrary edge ab of G, consider any edge
e of T on the path from δ−1(a) to δ−1(b) and the partition (A,B) induced by e
where a ∈ A, b ∈ B. Then the König cover of e must contain one of a and b, and
thus, i) holds as well. Finally, Tx is nontrivial because the edge of T incident with
a leaf δ−1(x) assigns the König cover {x}. If G has isolated vertices, Tx is not
nontrivial for isolated vertex x. We fix this by setting Tx to consist exactly of the
edge incident with δ−1(x), for any isolated vertex x of G.
Backward direction: For each given subtree {Tu}u∈V of T , choose an edge in Tu

(it is also in T ) and append in the tree T a leaf 	u, and extend Tu to contain 	u and
set δ(	u) = u. Exhaustively remove leaves (from both T and the subtrees) that
are not mapped by δ. Call the resulting tree T ′ and subtrees {T ′

u}u∈V . Note that
subtrees {T ′

u}u∈V and T ′ still satisfy i) and ii). We claim that (T ′, δ) is a branch
decomposition of mm-width at most k. It is clearly a branch decomposition over
V , and for any edge e of T ′, if we choose S ⊆ V to be those u with Tu using this
edge e, then this will be a vertex cover of the bipartite graph H given by this
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edge e, and of size at most k because for an edge xy in H, one of Tx and Ty must
contain e.

There are analogous characterizations also of treewidth and branchwidth, see
Paul and Telle [80]. Combining these characterizations with ours of Theorem 3.8,
we arrive at the characterization stated in the first section of this chapter, which
encompass all three parameters mm-width, treewidth, and branchwidth. Using
this new characteristic of mm-width in combination with the characteristic of
treewidth, we get the following theorem solving an open problem of [107]:

Theorem 3.9. Given a branch decomposition D over V (G) of mm-width mm-w(D)=
k, we can in O(n3.5) time construct a tree-decomposition D′ of treewidth tw(D′)≤
3k−1. Moreover, the decomposition D′ has max degree three and the intersection
between two adjacent bags in D′, and the bags at the leaves of D′, are of cardinality
at most k.

Proof. The proof of Theorem 3.8 was constructive, meaning that given a branch
decomposition D of mm-w(D) = k, we showed how to construct a “subtrees of
a tree”-representation conforming to the alternative characterization, based on
König covers of the cuts induced by D. So, since finding a maximum matching of
a bipartite graph can be done in O(n2.5) time, by Hopcroft [54], and transforming
this to a König cover only takes an additional linear time suppressed by the O-
notation, we can in fact construct the “subtrees of a tree”-representation T with
subtrees {Tv : v ∈ V (G)} in O(n3.5) time (the extra n comes from iterating over all
cuts induced by D). To construct a tree-decomposition from this, simply have the
tree-decomposition D′= (T,{Xu : u∈ V (T )}) where Xu= {v ∈ V (G) : so that u∈
V (Tv)}. This is a tree-decomposition of treewidth at most 3k−1, because:
(1) each vertex v ∈ V (G) is in some bag Xu for u ∈ V (T ), in particular in all the

bags {Xu : u ∈ V (Tv)}.
(2) for any edge vw ∈ E(G), there must be a bag Xu containing both v and w,

since we know Tv and Tw must intersect in at least one node u.
(3) The bags containing any node v of V (G) must form a subtree, since the bags

containing v exactly correspond to the vertices of the subtree Tv.

That T has max degree three comes directly from the definition, and that two
adjacent bags Xu,Xv intersect by at most k vertices is because the intersection
between Xu and Xv is precisely the set {v : uv ∈ E(Tv)}, and thus there can be
at most k of these, by definition.

Another alternative characterization of the mm-width of a graph is the follow-
ing.

Corollary 3.10. A graph G has mm-w(G) ≤ k if and only if it is a subgraph of
a chordal graph H and for every maximal clique X of H there exists A,B,C ⊆ X
with A ∪ B ∪ C = X and |A|, |B|, |C| ≤ k such that any subset of X that is a
minimal separator of H is a subset of either A,B or C.
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We only sketch the proof, which is similar to an alternative characterization of
branchwidth given in [80]. We say a tree is ternary if it has maximum degree at
most 3. Note that a graph is chordal if and only if it is an intersection graph of
subtrees of a tree [50]. In the forward direction, take the chordal graph resulting
from the subtrees of ternary tree representation. In the backward direction, take a
clique tree of H and make a ternary tree-decomposition (which is easily made into
a subtrees of ternary tree representation) by for each maximal clique X of degree
larger than three making a bag X with three neighboring bags A,B,C. If minimal
separators S1, ...,Sq subset of X are contained in A make a path extending from
bag A of q new bags also containing A, with a single bag containing Si,1≤ i ≤ q
attached to each of them. These ternary subtrees, one for each maximal clique,
is then connected together in a tree by the structure of the clique tree, adding an
edge between bags of identical minimal separators.

3.4 Dominating Set parameterized by mm-width

For graph G = (V,E) a subset of vertices S ⊆ V is said to dominate the vertices
in N [S], and it is a dominating set if N [S] = V . Given a rooted branch decom-
position (T,δ) over V (G) of mm-width k, we will in this section give an O∗(8k)
algorithm for computing the size of a Minimum Dominating Set of G, i.e., the
minimization version of Dominating Set. This is done by an algorithm doing
dynamic programming along a rooted tree-decomposition (T ′,{Xt}t∈V (T ′)) of G
that we compute from (T,δ).
We have from Theorem 3.9 that we in polynomial time can compute a tree-

decomposition (T ′,{Xt}t∈V (T ′)) of treewidth at most 3k − 1 where intersections
between adjacent bags are of size at most k, and bags at the leaves of T ′ are of
size at most k. We extend this decomposition by for each pair of adjacent bags
Xu, Xv adding the intersection Xw =Xu∩Xv as a bag between Xu and Xv in the
decomposition, append two empty bags to each leaf, and root the decomposition
in an arbitrary leaf r. The resulting decomposition will be of the same treewidth
and have properties as described in Figure 3.3.

Let us now define the relevant subproblems for the dynamic programming
over this tree-decomposition. For node t of the tree we denote by Gt the graph
induced by the union of Xu where u is a descendant of t. A coloring of a bag Xt

is a mapping f :Xt → {1,0,∗} with the meaning that: all vertices with color 1 are
contained in the dominating set of this partial solution inGt, all vertices with color
0 are dominated, while vertices with color ∗ might be dominated, not dominated,
or in the dominating set. Thus the only restriction is that a vertex with color 1
must be a dominator, and a vertex with color 0 must be dominated. Thus, for any
S ⊆ V (G) there is a set c(S) of 3|S|2|N(S)| colorings f : V (G)→ {1,0,∗} compatible
with taking S as set of dominators, with vertices of S colored 1, 0 or ∗, vertices
of N(S) colored 0 or ∗, and the remaining vertices colored ∗.
For a coloring f of bag Xt we denote by T [t,f ] (and view this as a ’Table’

of values) the minimum |S| over all S ⊆ V (Gt) such that there exists f ′ ∈ c(S)
with f ′|Xt = f and f ′|V (Gt)\Xt

having everywhere the value 0. In other words, the
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minimum size of a set S of vertices of Gt that dominate all vertices in V (Gt)\Xt,
with a coloring f ′ compatible with taking S as set of dominators, such that f ′
restricted to Xt gives f . If no such set S exists, then T [t,f ] =∞. Note that the
size of the minimum dominating set of G is the minimum value over all T [r,f ]
where f−1(∗) = ∅ at the root r. We initialize the table at a leaf 	, with X� = ∅ as
T [	,f ] := 0 for the only possible coloring f : ∅ → ∅.
For internal nodes of the tree, instead of separate ’Join, Introduce and Forget’

operations we will give a single update rule with several stages. We will be using
an Extend-Table subroutine which takes a partially filled table T [t, ·] and extends
it to table T ′[t, ·] so the result will adhere to the above definition, ensuring the
monotonicity property that T ′[t,f ] ≤ T ′[t,f ′] for any f we can get from f ′ by
changing the color of a vertex from 1 to 0 or ∗, or from 0 to ∗. Intuitively, the
content of T ′[t,f ] will be the smallest value over all T [t,f ′] where ∀S f ′ ∈ c(S)→
f ∈ c(S). Extend-Table is implemented as follows:

(a) Initialize. For all f , if T [t,f ] is defined then T ′[t,f ] := T [t,f ], else T ′[t,f ] :=
∞.

(b) Change from 1 to 0. For q = |Xt| down to 1: for any f in T ′[t,f ] where |{v :
f(v) = 1}|= q, for any choice of a single vertex u∈ {v : f(v) = 1} set fu(u) = 0
and set fu(x) = f(x) for x �= u, and update T ′[t,fu] := min{T ′[t,fu],T ′[t,f ]}.

(c) Change from 0 to ∗. Similarly as in step (b).

Note the transition from color 1 to ∗ will happen by transitivity. The time for
Extend-Table is proportional to the number of entries in the tables times |Xt|.

x

a

b c

X = A ∪ B ∪ C

A

B C

a

b c

x

A

CB L

L L
L

Figure 3.3: Part of ternary tree used in the subtree representation of G on the left,
with node x having three incident edges a,b,c, with subtrees of vertices contained in
A,B,C ⊆ V (G) using these edges respectively, giving rise to the four bags in the tree-
decomposition shown in the middle, with constraint |A|, |B|, |C| ≤ k.

Assume we have the situation in Figure 3.3, corresponding to the bags sur-
rounding any degree-three node x of the tree-decomposition. This arises from
the branch decomposition (and the subtrees of tree representation) having a node
incident to three edges, creating three bags a,b,c containing subsets of vertices
A,B,C, respectively, each of size at most k, and giving rise to the four bags
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a,b,c,x in the figure, with the latter containing subsets of vertices X =A∪B∪C.
Let L = (A∩B)∪ (A∩C)∪ (B ∩C). Assume we have already computed T [b,f ]
and T [c,f ] for all 3|B| and 3|C| choices of f , respectively. We want to compute
T [a,f ] for all 3|A| choices of f , in time O∗(max{3|A|,3|B|,3|C|,3|L|2|X\L|}). Note
that we will not compute the table T [x, ·], as it would have 3|X| entries, which is
more than the allowed time bound. Instead, we compute a series of tables:

(1) T 1
b [x, ·] (and T 1

c [x, ·]) of size 3|B|, by for each entry T [b,f ] extending the
coloring f of B to a unique coloring f ′ of X by coloring N(f−1(1)) in X \B
by ’0’.

(2) T 2
b [x, ·] (and T 2

c [x, ·]) of size at most min(3|B|,3|B∩L|2|X\(B∩L)|), by changing
each coloring f of X to a coloring f ′ of X where vertices in B \L having
color 1 instead are given color 0 (note these vertices have no neighbors in
V (G)\V (Gx))

(3) T 3
b [x, ·] (and T 3

c [x, ·]) of size exactly 3|B∩L|2|X\(B∩L)|, with f−1(1) ⊆ B ∩L,
by running Extend-Table on T 2

b [x, ·]

(4) T 1
sc[x, ·] of size 3|L|2|X\L| by subset convolution over parts of T 3

b [x, ·] and
T 3
c [x, ·]

(5) T 2
sc[x, ·] of size 3|L|2|X\L| by running Extend-Table on T 1

sc[x, ·]
(6) T [a, ·] of size 3|A| by going over all 3|A| colorings of A and minimizing over

appropriate entries of T 2
sc[x, ·]

Note that in step 4 we use the following:

Theorem 3.11 (Fast Subset Convolution [10]). For two functions g,h : 2V →
{−M,. . . ,M}, given all the 2|V | values of g and h in the input, all 2|V | values of
the subset convolution of g and h over the integer min-sum semiring, i.e. (g ∗
h)(Y ) = minQ∪R=Y and Q∩R=∅ g(Q)+h(R), can be computed in time 2|V ||V |O(1) ·
O(M logM log logM).

Let us now give the details of the first three steps:

(1) Compute T 1
b [x, ·]. In any order, go through all f :B → {1,0,∗} and compute

f ′ :B ∪A∪C → {1,0,∗} by

f ′(v) =

⎧⎪⎨
⎪⎩

f(x) if v ∈ B
0 if v �∈ B and ∃u ∈ B : f(u) = 1∧uv ∈ E(G)
∗ otherwise

and set T 1
b [x,f ′] := T [b,f ].

(2) Compute T 2
b [x, ·]. First, initialize T 2

b [x,f ] =∞ for all f :B∪A∪C → {1,0,∗}
where f−1(1)⊆ B ∩L. In any order, go through all f :B ∪A∪C → {1,0,∗}
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such that T 1
b [x,f ] was defined in the previous step, and compute f ′ :B∪A∪

C → {1,0,∗} by

f ′(v) =
{
0 if v ∈ B \L and f(v) = 1
f ′(v) = f(v) otherwise

and set T 2
b [x,f ′] := min{T 2

b [x,f ′],T 1
b [x,f ]}. There will be no other entries in

T 2
b [x, ·].

(3) Compute T 3
b [x, ·] by Extend-Table on T 2

b [x, ·].

The total time for the above three steps is bounded by O∗(max{3|B|,3|B∩L|2|X\(B∩L)|}).
Note that T 3

b [x,f ] is defined for all f where vertices in B∩L take on values {1,0,∗}
and vertices in X \ (B∩L) take on values {0,∗}. The value of T 3

b [x,f ] will be the
minimum |S| over all S ⊆ V (Gb) such that there exists f ′ ∈ c(S) with f ′|X = f
and f ′|V (Gb)\X having everywhere the value 0. Note the slight difference from the
standard definition, namely that even though the coloring f is defined on X, the
dominators only come from V (Gb), and not from V (Gx). The table T 3

c [x, ·] is
computed in a similar way, with the colorings again defined on X but with the
dominators now coming from V (Gc).
When computing a Join of these two tables, we want dominators to come from

V (Gb)∪V (Gc). Because of the monotonicity property that holds for these two
tables, we can compute their Join T 1

sc[x,f ] for any f where vertices in L take on
values {1,0,∗} and vertices in X \L take on values {0,∗}, by combining colorings
as follows:

T 1
sc[x,f ] = min

fb,fc

(T 3
b [x,fb]+T 3

c [x,fc])−|f−1(1)∩B ∩C|

where fb,fc satisfy:

• f(v) = 0 if and only if (fb(v),fc(v)) ∈ {(0,∗),(∗,0)}
• f(v) = ∗ if and only if fb(v) = fc(v) = ∗
• f(v) = 1 if and only if v ∈ B ∩C and fb(v) = fc(v) = 1, or v ∈ B \C and
(fb(v),fc(v)) = (1,∗), or v ∈ C \B and (fb(v),fc(v)) = (∗,1).

This means that we can apply subset convolution to compute a table T 1
sc[x,f ]

on 3|L|2|X\L| entries based on T 3
b [x,f ] and T 3

c [x,f ]. Note that (B∩L)∪(C∩L) =L.
For this step we follow the description in [34, Section 11.1.2]. Fix a setD ⊆L to be
the dominating vertices. Let FD denote the set of 2|X\D| functions f :X → {1,0,∗}
such that f−1(1) = D, i.e. with vertices in X \D mapping in all possible ways
to {0,∗}. For each D ⊆ L we will by subset convolution compute the values of
T 1
sc[x,f ] for all f ∈ FD.
We represent every f ∈ FD by the set S = f−1(0) and define bS :X → {1,0,∗}

such that bS(x) = 1 if x ∈ D∩B, bS(x) = 0 if x ∈ S, bS(x) = ∗ otherwise. Similarly,
define cS : X → {1,0,∗} such that cS(x) = 1 if x ∈ D ∩C, cS(x) = 0 if x ∈ S,
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cS(x) = ∗ otherwise. Then, as explained previously, for every f ∈ FD we want to
compute

T 1
sc[x,f ] = min

Q∪R=f−1(0) and Q∩R=∅
(T 3

b [x,bQ]+T 3
c [x,cR])−|f−1(1)∩B ∩C|.

Define functions Tb : 2X\D → N such that for every S ⊆ X \D we have Tb(S) =
T 3
b [x,bS]. Likewise, define functions Tc : 2X\D → N such that for every S ⊆ X \D
we have Tc(S) = T 3

c [x,cS]. Also, define aS : X → {1,0,∗} such that aS(x) = 1
if x ∈ D, aS(x) = 0 if x ∈ S, aS(x) = ∗ otherwise. We then compute for every
S ⊆ X \D,

T 1
sc[x,aS] := (Tb ∗Tc)(S)−|f−1(1)∩B ∩C|

where the subset convolution is over the mini-sum semiring.

(4). In step (4), by Fast Subset Convolution, Theorem 3.11, we compute
T 1
sc[x,aS], for all aS defined by all f ∈ FD, in O∗(2|X\D|) time each. For all such
subsets D ⊆ L we get the time∑

D⊆L

2|X\D| =
∑
D⊆L

2|X\L|2|L\D| = 2|X\L| ∑
D⊆L

2|L\D| = 2|X\L|3|L|.

(5). In step (5) we need to run Extend-Table on T 1
sc[x, ·] to get the table T 2

sc[x, ·].
This since the subset convolution was computed for each fixed set of dominators
so the monotonicity property of the table may not hold. Note that the value of
T 2
sc[x,f ] will be the minimum |S| over all S ⊆ V (Gb)∪V (Gc) such that there exists

f ′ ∈ c(S) with f ′|X = f and f ′|(V (Gb)∪V (Gc))\X having everywhere the value 0.
(6). In step (6) we will for each f : A → {1,0,∗} compute f ′ : B ∪A∪C →

{1,0,∗} by

f ′(v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if v ∈ A∩L and f(v) = 1
0 if v ∈ A and f(v) = 0 and N(v)∩f−1(1) = ∅
0 if v �∈ A and N(v)∩f−1(1) = ∅
∗ otherwise

and set T [a,f ] := T 2
sc[x,f ′]+ |f−1(1)∩ (A\L)|.

Note that when we iterate over all choices of f : A → {1,0,∗}, the vertices
colored 0 (in addition to all vertices of X \A) must either be dominated by the
vertices in f−1(1) or by vertices in X \Va. As we know precisely what vertices
of f−1(0) are dominated by f−1(1), we know the rest must be dominated from
vertices of X \Va, and therefore we look in Tsc[x,f ′] at an index f ′ which colors the
rest of f−1(0) by 0. We can also observe that it is not important for us whether
or not f−1(0) contains all neighbours of f−1(1), since we are iterating over all
choices of f - also those where f−1(0) contains all neighbours of f−1(1).
The total runtime becomes O∗(max{3|A|,3|B|,3|C|,3|L|2|(A∪B∪C)\L|}), with L=

(A∩B)∪ (A∩C)∪ (B∩C) and with constraints |A|, |B|, |C| ≤ k. This runtime is
maximum when L = ∅, giving a runtime of O∗(23k). We thus have the following
theorem.
Theorem 3.12. Given a graph G and branch decomposition over its vertex set of
mm-width k we can solve Dominating Set in time O∗(8k).
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3.5 Concluding remarks
We have shown that the graph parameter mm-width can be 3-approximated in
O∗(8mm-w(G)) time, from showing that the corresponding cut-function mm is sub-
modular. Also we have shown that using mm-width will for some graphs be better
than treewidth for solving Dominating Set. The improvement holds whenever
tw(G)> 1.549×mm-w(G), if given only the graph as input. In Figure 3.4 we list
some examples of small graphs having treewidth at least twice as big as mm-width.
It could be interesting to explore the relation between treewidth and mm-width
for various well-known classes of graphs. The given algorithmic technique, combin-
ing ’join’,’introduce’ and ’forget’ into one operation using fast subset convolution,
should extend to any graph problem expressible as a maximization or minimiza-
tion over (σ,ρ)-sets, using the techniques introduced for treewidth in [105].

Figure 3.4: Three graphs of mm-width 2. Left and middle have treewidth 4, and right
has treewidth 5.

We gave an alternative definition of mm-width using subtrees of a tree, similar
to alternative definitions of treewidth and branchwidth. We saw that in the
subtrees of a tree representation treewidth focuses on nodes, branchwidth focuses
on edges, and mm-width combines them both. There is also a fourth way of
defining a parameter through these intersections of subtrees representation; where
subtrees Tu and Tv must share an edge if uv ∈ E(G) (similar to branchwidth) and
the width is defined by the maximum number of subtrees sharing a single vertex
(similar to treewidth). This parameter will be an upper bound on all the other
three parameters, but might it be that the structure this parameter highlights can
be used to improve the runtime of Dominating Set beyond O∗(3tw(G)) for even
more cases than those shown using mm-width and branchwidth?



Chapter 4

Split-matching-width: its modelling
power and an approximation
algorithm

In this chapter we will, as described in Section 2.3.2, consider the parameter
split-matching-width. We first discuss its modelling power, showing that it lies
between treewidth and clique-width. Next, we look at how we can find a branch
decomposition of low split-matching-width in FPT time parameterized by optimal
split-matching-width. There is a balance between how good of a branch decom-
position we compute and the runtime needed to find it, so we do not focus on
getting a decomposition of optimal sm-width. However, we show that in runtime
linearly single exponential in sm-width we can find a decomposition of sm-width
only a constant factor larger than the optimal. At the core of this approxima-
tion lies the following general approximation algorithm of Oum and Seymour [79]
mentioned in Chapter 3.

Theorem 3.1 ([79]). For symmetric submodular cut-function f and graph G of
optimal f -width k, a branch decomposition of f -width at most 3k+1 can be found
in O∗(23k) time.

Split-matching-width is not submodular (see Figure 4.2) and can not be applied
to this theorem directly, so the majority of this chapter is devoted to how we can
massage our input graph and cut function so that we can apply this theorem. In
the end we get a branch decomposition of sm-width at most 18sm-w(G)+1 at a
runtime of O∗(218sm-w(G)).

4.1 The modelling power of split-matching-width

In this section, we discuss the modelling power of split-matching-width, and give
examples of graph classes of bounded split-matching-width.
First let us recall the cut function used in definition of split-matching-width:

sm(A) =
⎧⎨
⎩1 if (A,A) is a split
mm(A) otherwise
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We see directly from this definition that cliques have split-matching-width one,
as each cut (A,A) of a clique either is a split or min{|A|, |A|} ≤ 1, which means
sm(A) ≤ 1. In fact, graphs of sm-width at most one are precisely the graphs of
rank-width at most one (equivalently: of boolean-width at most one), and thus
sm-w(G)≤ 1 if and only if G is a distance hereditary graph [75].
Observation 4.1. A graph G has split-matching-width sm-w(G)≤ 1 if and only
if it is a distance hereditary graph.

To show that the modelling power of sm-width is weaker than clique-width, and
stronger than treewidth, we have the following proposition, where the parameters
treewidth and clique-width are substituted by the parameters mm-width and rank-
width, respectively, of equal modelling power.

Proposition 4.2. For any non-trivial graph G, we have rw(G) ≤ sm-w(G) ≤
mm-w(G).

Proof. As G is a non-trivial graph, we have mm-w(G),rw(G),sm-w(G) ≥ 1. We
notice that for cuts (A,A) without crossing edges, we have mm(A) = cutrk(A) = 0
and sm(A) ≤ 1. So, if we manage to prove that for any (A,A) with at least one
crossing edge, we have cutrk(A) ≤ sm(A) ≤ mm(A), this will imply that for all
branch decompositionsD over V (G) we have rw(D)≤ sm-w(D)≤ sm-w(D), which
in turn means that rw(G)≤ sm-w(G)≤mm-w(G).
When (A,A) contain at least one edge, we have 1≤mm(A), and thus, clearly,

sm(A) ≤ mm(A), as sm(A) ∈ {mm(A),1}. Notice that sm(A) = 1 implies that
either (A,A) is a split, or there is at most one vertex in A or A. In either
case, we have cutrk(A) ≤ 1. So, if we can also prove that sm(A) ≥ cutrk(A)
when sm(A) > 1, we are done with the proof. We will do this by showing that
mm(A)≥ cutrk(A).
Indeed, cutrk(A) is defined as being the rank over GF [2] for the adjacency

matrixM of G[A,A]. We have from Theorem 3.4 that there must be a vertex cover
C of size mm(A) in G[A,A]. This means that each cell in M that contains a non-
zero value, must be in a row or a column representing a vertex of C. In particular,
this means that if we remove the mm(A) rows and columns in M representing C,
then there are only zero values left in the matrix. As the rank of a matrix does
not decrease by more than one from removing a row or column, and the rank of
the all-zero-matrix is zero, we have that the rank of M is at most |C| =mm(A).
Thus, we cutrk(A)≤mm(A), and can conclude that cutrk(A)≤ sm(A) also when
sm(A)> 1.

We now compare the modelling power of split-matching-width to some of the
other parameters mentioned in Section 2.3.2.

Proposition 4.3. If twin-cover is bounded then sm-width is bounded (sm-w(G)≤
tc(G)).

Proof. Twin-cover tc(G) is a graph parameter introduced by Ganian [46] as a
generalization of vertex cover that is bounded also for some dense classes of graphs.
Using the definition of tc(G) from [46] it follows that G has a set S ⊆ V (G) of
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at most tc(G) vertices such that every component C of G \S induces a clique
and every vertex in C has the same neighborhood in S. Let C1, ...,Cq be the
components of G \S. Take any branch decomposition of V (G) having for each
component Ci a subtree Ti such that the leaves of Ti are mapped to the vertices
of Ci and also having a subtree TS whose leaves are mapped to S. The cuts of G
induced by an edge of this branch decomposition are of three types depending on
where the edge is: if it is inside the tree of S the cut has a maximum matching
of size at most |S| ≤ tc(G); if it is inside a tree Ti the cut is a split; otherwise the
cut has a maximum matching of size at most |S| ≤ tc(G).

Proposition 4.4. The parameters modular-width and modular-treewidth are in-
comparable to split-matching-width.

Proof. Let Gi be the graph consisting of a clique Ki on i vertices, and a pendant
p(v) attached to vertex v ∈ V (Ki) for each v in Ki. That is, Gi is a clique Ki plus
a matching between the vertices ofKi and an independent set of size i. This graph
is distance hereditary, and hence has split-matching-width one, while it only has
one prime graph in the modular decomposition; namely itself, Gi. Thus, as the
treewidth of Ki is i−1, we have that both modular-treewidth and modular-width
of Gi is Θ(i). And so the class of graphs {Gi}i≥2 is in the modelling power of
split-matching-width, but not the two modular-* parameters.
A class of graphs that does have bounded modular-treewidth and modular-

width, but not bounded split-matching-width, is the class of graphs {G′
i}i≥2 where

G′
i is constructed from taking the cycle on five vertices, and then replace each
vertex v of the cycle by a clique of i vertices, with the same neighbourhood as
v. The modular decomposition only has prime graphs of constant size, while the
split-matching-width is unbounded, since any cut containing more than i vertices
on both sides of the cut is not a split (and there must exist at least one such cut
in any branch decomposition over V (G′

i).

There are several classes of graphs of bounded sm-width where no previous
results implied FPT algorithms for the considered problems. We now show a
class of such graphs, constructed by combining a graph of clique-width at most
3, with a graph of treewidth k and thus clique-width at most 3 ∗ 2k−1 [27], as
follows. Let G1 be a distance-hereditary graph and let G2 be a graph of treewidth
k. Let X ⊆ V (G1) with |X| ≤ k+1 and (X,X) a split of G1, and let Y ⊆ V (G2)
be a bag of a tree decomposition of G2 of treewidth k. Add an arbitrary set of
edges on the vertex set X ∪Y . The resulting graph will have sm-width at most
k+1, a result that basically follows by taking branch decompositions over V (G1)
and V (G2) where X and Y each are mapped as the set of leaves of a subtree,
subdividing each of the two edges above these subtrees and adding an edge on the
subdivided vertices to make a single branch decomposition over the vertices of the
combined graph. Adding more distance hereditary graphs to other bags of the
tree-decomposition in the similar way, we can construct a large class of graphs of
bounded split-matching-width containing graphs such as that of Figure 4.1, which
has clique-width lower bounded by the underlying grid.
Note that we can also construct new tractable classes of graphs by combining

several graphs in a tree structure.
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Figure 4.1: A graph of unbounded treewidth but split-matching-width comparable to
the clique-width. Selected rows of a grid are connected together with distinct complete
graphs to form a clique.

We now use the rest of the chapter to show how to approximate a branch
decomposition over the vertex set in FPT time.

4.2 Our strategy and goal for the approximation
In [93], Sæther and Telle gave an algorithm for constructing a branch decomposi-
tion of split-matching-width O(sm-w(G)2) in 2O(sm-w(G))nO(1) time. In the rest of
this chapter, we will improve this algorithm by constructing a branch decompo-
sition of split-matching-width O(sm-w(G)) in the same runtime, 2O(sm-w(G))nO(1).
We advice the reader to recall the non-standard definitions for tot(), act(), parti-
tioning functions, and lifted functions found in Section 1.1.
The previous approximation algorithm for split-matching-width, found in [93],

consists of the following four main steps;

1. construct a split decomposition D of G,

2. for each prime graph Gi in D compute a branch decomposition (Ti, δi) over
V (Gi) of split-matching-width at most O(k), where k = sm-w(G),

3. adjust each branch decomposition (Ti, δi) slightly so that for the cut function
g : 2V (Gi) → R defined as g(S) = f(totGi

(S)) for all S ⊆ V (G′), the g-width
becomes O(k2), and then finally

4. combine all the branch decompositions together to form a branch decompo-
sition over V (G) of sm-width O(k2).

We will keep the general structure as in [93], but we will replace steps (2)
and (3) by a single step where we for each prime graph Gi directly compute a
branch decomposition over V (Gi) of g-width bounded by 18k+1. We manage
this by the explicit use of lifted functions, which is something that was not done
in [93]. If we recall the definition of a lifted function from Chapter 1.1, we see that
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the cut-function g for a prime graph Gi, as defined above, is precisely the totGi
-

lifted cut function smtotGi of sm, since totGi
partitions V (G). So, our strategy for

computing a branch decomposition of split-matching-width linear in sm(G) is as
follows:

1. Construct a split decomposition D of G.

2. Compute a branch decomposition (Ti,Gi) over V (Gi) of smtotGi -width at
most 18k+1 for each prime graph Gi in D.

3. Combine all the branch decompositions together to form a branch decompo-
sition for G of sm-width at most 18k+1.

For step 1 there exists a well-known polynomial-time algorithm by Cunning-
ham [33] and even linear-time ones, see e.g. [26] and see also [87] for the use of
split decompositions in general. For step 2 we are dealing with a prime graph Gi,
which by definition has no non-trivial splits. This will allow us to control the lifted
split-matching-width of Gi. The main attention of this chapter goes towards solv-
ing step 2. The third step we do in the proof of Theorem 4.13 by joining together
the branch decompositions from step 2 so that each cut of the final decomposition
can be found as one of the lifted cuts induced by a branch decomposition found
in step 2.
We now turn our focus to step 2. Namely finding branch decompositions for

the prime graphs in a split decomposition having tot-lifted split-matching-width
that approximates the split-matching-width of G.

4.3 tot-lifted cut functions in prime graphs
When looking at the tot-lifted width of a cut in a prime graph, the set of vertices
tot(x) a marker x represents matters a lot in the computation of the lifted value.
In particular, for the cut functions mm and sm, the size of act(x)⊆ tot(x) is very
important. Recall that act(x) is the set of vertices from tot(x) that are adjacent
to vertices in V (G) \ tot(x). The larger the size of act(x), the more impact the
vertex x might have on the cut-value. For convenience, we will therefore in this
chapter mean the size of act(x) when we say the weight of x. That is, if we claim
the weight of a vertex x is 8 in a prime graph G′, we mean that |act(x :G′)|= 8.
As a side note, we may observe that using this notion of weights in a prime graph,
we get the following lemma.

Lemma 4.5. For a graph G and a prime graph G′ in a split decomposition of G,
the totG′-lifted mm-value of any cut (X,V (G′) \X) in G′ is precisely the weight
of a minimum weight vertex cover of G′[X,V (G′)\X].
Proof. If two vertices u and v of the same side of a bipartite graph are twins,
then all minimal vertex covers will contain both or none of the two vertices: If
one of u and v are not in the vertex cover, then N(u) = N(v) must be in the
vertex cover, and hence if the vertex cover is minimal, neither of u or v will be
in the vertex cover. As all of actG′(x) are twins in G[tot(X),tot(V (G′) \X)],
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either all or none of actG′(x) will be included in any minimum vertex cover of
G[tot(X),tot(V (G′)\X)]. Thus, the size of a minimum vertex cover of G will be

min
X⊆V (G′)

{
|act(X)| : ∀uv ∈ E(G[tot(X),tot(X)]),u ∈ act(X) or v ∈ act(X)

}
,

which is precisely the size of a minimum weight vertex cover of G′[X,X].

We are aiming for a way to approximate the tot-lifted split-matching-width.
Neither split-matching-width or tot-lifted split-matching-width is submodular, as
can be seen by Figure 4.2. However, the closely related tot-lifted mm function is

A

B

Figure 4.2: As we can see from this figure, the split-matching-value is not submodular:
f(A) = 1, f(B) = 1, f(A∩B) = 0, and f(A∪B) = 3, breaking the submodular inequality
f(A)+f(B)≥ f(A∪B)+f(A∩B).

submodular, as can be deduced from Theorem 3.2 stating that mm is submodular,
in combination with the following theorem.

Theorem 4.6. For a set X and Y and function σ :X → 2Y that partitions Y , for
any function f : 2Y → R, if f is submodular, then the σ-lifted function fσ of f is
also submodular.

Proof. Let σ′ : 2X → 2Y be the function defined as σ′(S ⊆ X) = ⋃
s′∈S σ(s′). From

the definition of fσ, the value of fσ(S ⊆ X) is f(σ′(S)). As σ′(A∪B) = σ′(A)∪
σ′(B) and σ′(A∩B) = σ′(A)∩σ′(B) for A,B ⊆X, we see from the below following
inequality that submodularity of f implies submodularity also of fσ:

fσ(A)+fσ(B) = f(σ′(A))+f(σ′(B))
≥ f(σ′(A)∪σ′(B))+f(σ′(A)∩σ′(B))
= f(σ′(A∪B))+f(σ′(A∩B))
= fσ(A∪B)+fσ(A∩B).

In combination with Theorem 3.1, the submodularity of all lifted versions of
the mm function gives us the following result.

Corollary 4.7. Given a graph G and a function σ : X → 2V (G) that partitions
V (G), we can in nO(1)23k time compute a branch decomposition over X of σ-lifted
mm-width at most 3k+1, where k is the optimal σ-lifted mm-width of G.
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As previously mentioned, when looking at a prime graph G′, the maximum
matching-width and the split-matching-width are closely related. In the following
series of results, ending in Corollary 4.11, we are able to find an intermediate sub-
graph of G′ where tot-lifted mm-width and tot-lifted sm-width are equal. We use
this intermediate subgraph as a way to apply the above lifted mm-approximation
of prime graphs to find a good smtot-approximation of G′ thereby completing step
2. Make an extra note of the first of these lemmas; Lemma 4.8, as this is a general
fact for branch decompositions and will be used also in Chapter 6.

Lemma 4.8. For any two (not necessarily disjoint) vertex subsets A and B of
V (G) so that |A| ≥ 2, and in any branch decomposition (T,δ) over V (G), there
must exist a cut (X,Y ) in (T,δ) so that |X ∩A| ≥

⌈
|A|
3

⌉
and |Y ∩B| ≥

⌈
|B|
2

⌉
.

Proof. For a single S ⊆ V (G) it is well known that since T is a ternary tree
with leaf set V (G) there exists a cut (XS,YS) in (T,δ) associated with an edge
(xS,yS) ∈ E(T ) so that |XS ∩S| ≥ �|S|

3 � and |YS ∩S| ≥ �|S|
3 �. Furthermore, when

|S| ≥ 2, there exists a cut (X ′
S,Y

′
S) in (T,δ) associated with an edge (x′

S,y
′
S)∈E(T )

so that |X ′
S ∩S| ≥ �|S|

3 � and |Y ′
S ∩S| ≥ �|S|

3 �.
Consider such a cut (XA,YA) in (T,δ) where at least one third of A is on

either side of the cut. As the vertices of B also must be distributed over this
cut, either XA or YA must contain at least half of B. Without loss of generality,
XA ∩B ≥ |B|/2, and thus XA ∩B contains at least �|B|/2� of B and YA contains
at least �|A|/3� of A.
Lemma 4.9. Let G be a graph and D a split decomposition of G. For any prime
graph G′ in D there exists a branch decomposition (T,δ) over V (G′) of smtot-width
at most 3sm-w(G).

Proof. We will give a proof by construction. Let (T,δ) be a branch decomposition
over V (G) of optimal split-matching-width. We will transform (T,δ) into a branch
decomposition (T ′, δ′) over V (G′). For each vertex v ∈ V (G′) of weight one, we set
σ′(totv) = v, where totv is the leaf of T so that σ(totv) = act(v). For the vertices
v ∈ V (G′) of weight two or more, by Lemma 4.8 applied to A=B = act(v), there
will always be an edge ev in T where at least one third of act(v) is on each side
of the cut induced by ev. For each vertex v ∈ V (G′) of weight at least two, we
append a vertex mapping to v to such an edge ev as depicted in Figure 4.3. We
then repeatedly remove all leaves not mapping to a vertex in V (G′), so that we are
left with a branch decomposition (T ′, δ′) of V (G′) (see Figure 4.3). We now claim
that this branch decomposition has tot-lifted sm-width no more than 3sm-w(G).
For each trivial cut ({v},V (G′)\ {v}) of (T ′, δ′) the lifted sm-value is 1, as it

is either a split or trivial-split. For each non-trivial cut (A′,B′) of (T ′, δ′), there
is an associated non-trivial cut (A,B) in (T,δ) where for each v ∈ A′/B′ at least
one third of act(v) is in A/B. Let C be a minimum vertex cover of G[A,B]. For
a minimum vertex cover, two twins are either both in the cover, or both not in
the cover, so for each vertex v ∈ A/B either one third of act(v) is in C or none
of act(v)∩A/B is in C. Let C ′ be the vertices v ∈ V (G′) for which at least one
third of act(v) is in C ′. The size of act(C ′) is at most three times C and we will
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now show that act(C ′) in fact is a vertex cover of G[tot(A),tot(B)], proving that
the lifted sm-width of G′ is at most 3sm(G).
There is an edge between a and b in G[A′,B′] if and only if there is an edge

between tot(a) and tot(b) in G[tot(A),tot(B)]. So, if for all edges uv in G[A′,B′],
either u or v is in C ′, we are done. Assume uv ∈ E(G[A′,B′] where u ∈ A′ and
v ∈ B′. This means one third of act(u) and one third of act(v) is on the opposite
side of each other in (A,B). However, as act(u) are twins and adjacent to all of
act(v), this means one third of either act(u) or act(v) must be in C, and hence u
or v must be in C ′.

w

v

u
w

v

u

Figure 4.3: As described in the proof of Lemma 4.9. u,v, and w are vertices of the prime
graph and the dotted lines are the pendants added to T (as described in the proof). To
the right is the resulting decomposition (T ′, δ′).

Lemma 4.10. Let G be a graph of split-matching-width k and G′ a non-trivial
prime graph in a split decomposition of G. For any vertex v in G′ of weight more
than 3k, v is either adjacent to exactly one other vertex of weight more than 3k
or the mm-value of tot(v) is at most 6k.

Proof. Assume for contradiction that v has two neighbours a and b of weight more
than 3k in G′, and let (T ′, δ′) be a branch decomposition of G′ of lifted sm-width
at most 3k, as by Lemma 4.9. Since G′ is a non-trivial prime graph, there must be
a fourth vertex z in V (G′). By Lemma 4.8 applied on A = B = {v,a,b,z}, there
must be a cut (X,Y ) in (T ′, δ′) so that at �|A|/3�= 2 of A is in X and �|B|/2�= 2
is in Y . Assume without loss of generality that v ∈ X. Since Y contains two of
the three remaining vertices a, b and z, at least one of the neighbours a and b
must be in Y , without loss of generality a ∈ Y . Since X and Y both contain at
least two vertices, the cut (X,Y ) is a non-trivial cut of G′ and hence it cannot
be a split, since G′ is a prime graph. That means that the lifted sm-value of this
cut is the same as its lifted mm-value. However, act(v)∩X and act(y)∩Y alone
induce a complete bipartite graph with more than 3k vertices on each side of the
bipartion, so the lifted mm-value of (X,Y ) is larger than 3k, a contradiction of
(T ′, δ′) having lifted sm-value at most 3k.
We know from Lemma 4.9 that there must exist a branch decomposition of G′

of smtot-width at most 3k, and all non trivial cuts have mmtot-value at most 3k.
This means there must be a tri-partition ({v},A,B) of V (G′) so that smtot({v}),
smtot(A), and smtot(B) are all at most 3k.
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Without loss of generality, we show that the number of vertices in tot(A)
adjacent to tot(v) is no more than 3k. Since G′ is a prime graph, (A,{v} ∪B)
cannot be a split and A must either consist of a single vertex, or have smtot(A) =
mmtot(A). If A consist of a single vertex, by our assumptions that v was not
adjacent to any vertex of weight more than 3k, we have |N(tot(v))∩ tot(A)| ≤
3k. If A consists of more than a single vertex, we know mmtot(A) = smtot ≤ 3k.
Since any minimum vertex cover of G [tot(A), tot({v}∪B)] must either consist
of all of act(v) or none of it (since act(v) are twins in this bipartite graph), and
|act(v)| > 3k ≥ mmtot(A), the minimum vertex cover of G [tot(A), tot({v}∪B)]
must consist of all the vertices of A adjacent to tot(v). Hence, |N(tot(v))∩
tot(A)| ≤mmtot(A)≤ 3k. The same arguments applies to B, so we can conclude
that

|N(tot(v))| ≤ |N(tot(v))∩A|+ |N(tot(v))∩B| ≤ 3k+3k .

And so the mm-value of tot(v) is no more than 6k as N(tot(v)) is a vertex cover
of (tot(v),tot(v)).

As we notice from Lemma 4.10, vertices of weight 3k are more restricted than
the rest of the vertices. We say that a vertex of weight more than 3k is heavy,
and an edge incident with two heavy vertices is called a heavy edge.
For a heavy edge uv, if a branch decomposition of lifted-sm-width at most 3k

induce a non-trivial cut (A,B), it must be the case that u and v are either both
in A or both in B. Otherwise, the lifted-sm-width will be too large. This means
that in any branch decomposition of lifted-sm-width at most 3k, ({uv},{uv})
must be a cut induced by the decomposition. Combining this observation with
Lemma 4.10, we get the following corollary.

Corollary 4.11. By contracting each heavy edge uv in a non-trivial prime graph
G′ of G to single vertices vuv, and defining g(vuv) = tot({u,v}) and g(x) = tot(x)
for all other vertices x, we get a graph of mmg-width at most 6sm-w(G).

Using Corollary 4.11 connecting the lifted mm-width to the sm-width of G,
and Corollary 4.7 giving a 3-approximation of the lifted mm-width, we are able
to solve step 2, as is shown by the following theorem.

Theorem 4.12. Given a graph G of split-matching-width at most k and a prime
graph G′ in a split decomposition of G, in O∗(218k) time we are able to construct
a branch decomposition (T ′, δ′) over V (G′) of totG′-lifted split-matching width at
most 18k+1.

Proof. If G′ is a trivial prime graph, any branch decomposition will have lifted
split-matching width at most 1, and the theorem trivially holds. If G′ is a non-
trivial prime graph, then by first contracting each heavy edge as described in
Corollary 4.11, we have a graph G∗ of g-lifted-mm-width less than 6k, where
g(v) = totG′(v) for all vertices v ∈ V (G′), and where g(vuv) = totG′(u)∪ totG′(v)
for all new vertices vuv resulting in contracting a heavy edge uv. As g partitions
V (G), we have by Corollary 4.7 that we can construct a branch decomposition
(T ∗, δ∗) over V (G∗) of mmg-width no more than 18k+1. Let X∗ be any subset
of vertices from V (G∗), and X ′ the corresponding set of vertices in V (G′) where
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every contracted vertex vuv ∈ X∗ is replaced by the two endpoints u and v of the
heavy contracted edge uv. From the definition of g we have totG′(X ′) = g(X∗).
Now, let (T ′, δ′) be the branch decomposition over V (G′) we get by for each leaf 	
in T ′ mapping to a contracted edge uv of G′, appending two vertices to 	 that map
to u and v, respectively. Now every non trivial cut (X ′,X ′) in V (G′) induced by
(T ′, δ′) has a corresponding cut (X∗,X∗) in V (G∗) so that (g(X∗),g(X∗)) equals
(totG′(X ′),totG′(X ′)) in G. The tot-lifted mm-value and the g-lifted mm-value,
respectively, of these cuts must thus be the same. The trivial cuts induced by
(T ′, δ′) are all splits, so we can conclude that the totG′-lifted sm-width of (T ′, δ′)
is the same as the g-lifted mm-width of (T ∗, δ∗), which is at most 18k+1.

Lemma 4.12 completes the part of finding branch decompositions of the prime
graphs with tot-lifted sm-width only a linear factor larger than the sm-width of
the original graph. Putting Lemma 4.12 together with the fact that we can find a
split decomposition in polynomial time by [33] and a procedure for how to combine
these branch decompositions together to form a branch decomposition for G, we
get the following theorem, as promised.

Theorem 4.13. Given a graph G of split-matching-width k, we can in O∗(218k)
time construct a branch decomposition (T,δ) of G of split-matching-width at most
18k+1.

Proof. First we construct a split decomposition D of G in polynomial time, as
shown by Cunningham [33]. Then, for each prime prime graph Gi in D, we
construct a branch decomposition (Ti, δi) over V (Gi) of totGi

-lifted split matching-
width no more than 18k+1, as shown by Lemma 4.12. We then combine the
decompositions to a branch decomposition (T,δ) of G, as follows:
For each pair of prime graphs Gi and Gj that share a marker m, we identify

the leaves of Ti and Tj that map to m. That is, for the leaf 	i of Ti so that
δi(	i) =m and the leaf 	j of Tj so that δj(	j) =m, we connect the trees Ti and Tj
by combining 	i and 	j into a single vertex 	 (see Figure 4.4). We let this be our
tree T , and let δ be the union of all the mappings δi restricted to the remaining
leaves. This gives us a branch decomposition (T,δ) over V (G).
This branch decomposition (T,δ) is very similar to how the split decompo-

sition tree TD of D is constructed. In T each Ti occurs as a subtree, and these
subtrees are placed relative to each other in T just as their respective prime graphs
are placed relative to each other in the split decomposition tree TD. As a conse-
quence, if we were to remove the edges of Ti from E, then the edges of T fall into
as many components as there are markers in V (Gi), just like when removing Gi

from TD. Furthermore, the set of vertices that δ maps to from the leaves of each
such component is precisely the set of vertices residing in the prime graphs of the
corresponding component of TD −Gi. Thus, for each leaf v and incident pendant
ev in Ti, the corresponding edge ev in T induces the cut (totGi

(v),V (G)\totGi
(v)).

So, for each edge e in T , the same edge e occurs in one of the branch decompo-
sitions (Tj, δj) of some prime graph Gj, and this edge induces cuts (X,V (G)\X)
and (X ′,V (Gj) \X ′) in V (G) and V (G′), respectively, so that X = totGj

(X ′).
And hence smG(X) = sm

totGj (X)≤ 18k+1. From this we can conclude that the
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split-matching-width of the entire branch decomposition (T,δ) over V (G) is no
larger than 18k+1.

�i
�j

�

↓

Ti Tj

Figure 4.4: For two prime graphs Gi and Gj sharing a marker m, we combine the their
respective branch decomposition trees at the leaf mapping to m, as described in the proof
of Theorem 4.13. Markers are marked with a red circle.

4.4 Concluding remarks
Using split decompositions and submodularity of the mm cut-function, we man-
aged to construct a branch decomposition D over the vertex set which has
sm-w(D) = O(sm-w(G)). With that, we can conclude that split-matching-width
satisfies our criteria on [B] from Section 2.3.2.
We also showed that the modelling power of split-matching-width contains the

class of cliques, and is stronger than the modelling power of treewidth, and weaker
than the modelling power of clique-width. As could be seen from the examples of
graphs of bounded split-matching-width, split-matching-width combines bounded
treewidth with distance hereditary properties. As distance hereditary means rank
width at most one, this leads us to wonder what about rank width more than one?
That is, if we slightly modify the definition of split-matching-width to instead use
the following cut function:

sm(A) =
⎧⎨
⎩cutrk(A) if cutrk(A)≤ 1
mm(A) otherwise

What happens for the variant of split-matching-width where we change cutrk(A)≤
1 with some other constant, for instance 4?

sm4(A) =
⎧⎨
⎩cutrk(A) if cutrk(A)≤ 4
mm(A) otherwise
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Clearly the sm4-width has more modelling power than sm-width, but is still weaker
than clique-width. However, our approximation algorithm for split-matching
works because of how easily we can find split decompositions, and relies heavily on
them to do the approximation. We are not aware of any similar decompositions
that can be used for cuts of cutrk(A)> 1, and thus fail the criteria for [B].



Chapter 5

Dynamic programming
parameterized by
split-matching-width

In this chapter, we will, as described in Section 2.3.2, construct FPT algorithms
for MaxCut, Chromatic Number, Hamiltonian Cycle and Edge Dom-

inating Set parameterized by the split-matching-width, showing that indeed
more problems are FPT parameterized by split-matching-width than clique-width
(at the cost of its modelling power). Here we only focus on the second part of the
structural DP-scheme; solving a problem when assuming a branch decomposition
is given together with the input ([P2]). We know from Chapter 4 that we can find
a constant approximation of split-matching-width in linearly single exponential
time ([P1]), which will result in FPT algorithms for these problems.

5.1 The framework
We solve MaxCut, Chromatic Number, Hamiltonian Cycle and Edge

Dominating Set on a graph G by a bottom-up traversal of a rooted branch
decomposition (T,δ) over V (G), in time FPT parameterized by the sm-width
of (T,δ). We will assume T is rooted, as this will help guide the algorithm by
introducing parent-child relationships. To root T , we first pick any edge of T and
subdivide it. We then root the tree in the newly introduced vertex, resulting in a
rooted binary tree consisting of the exact same cuts as the original decomposition.
In the bottom-up traversal of the rooted tree we encounter two disjoint sub-

sets of vertices A,B ⊆ V (G), as leaves of two already processed subtrees, and
need to process the subtree on leaves A∪B. There are three cuts of G involved:(
A,A

)
,
(
B,B

)
,
(
A∪B,A∪B

)
, and each of them can be of type split, or of type

non-split (also called type mm for maximum-matching). This gives six cases that
need to be considered, at least if we use the standard framework of table-based
dynamic programming. We instead use an algorithmic framework for decision
problems where we join sets of certificates while ensuring that the result pre-
serves witnesses for a “yes” instance. Under this framework, the algorithm for
MaxCut becomes particularly simple, and only two cases need to be handled
in the join, depending on whether the “parent cut”

(
A∪B,A∪B

)
is a split or



54 Dynamic programming parameterized by split-matching-width

not. For the other three problems we must distinguish between the two types
of “children cuts” in order to achieve FPT runtime, and the algorithms are more
complicated.
Let us describe the algorithmic framework. As usual, e.g. for problems in NP,

a verifier is an algorithm that given a problem instance G and a certificate c, will
verify if the instance is a “yes” instance, and if so we call c a witness. As an analogy
to other dynamic programming routines, the certificates can be looked at as partial
solutions, and a witness as a solution to the problem. For our algorithms we will
use a commutative and associative function ⊕(x,y), that takes two certificates
x,y and creates a set of certificates. This is extended to sets of certificates SA,SB

by ⊕(SA,SB) which creates the set of certificates
⋃
x∈SA,y∈SB

⊕(x,y). For a graph
decision problem, an input graph G, and any X ⊆ V (G) we define cert(X) to be
a set of certificates on only a restricted part of G, which must be subject to the
following constraints:

• If G is a “yes” instance, then cert(V (G)) contains a witness.
• For disjoint X,Y ⊆ V (G) we have ⊕(cert(X),cert(Y )) = cert(X ∪Y ).

For FPT runtime we need to restrict the size of a set of certificates, and the
following will be useful. For X ⊆ V (G) and certificates x,y ∈ cert(X), we say
that x preserves y if for all z ∈ cert(X) so that ⊕(y,z) contains a witness, the
set ⊕(x,z) also contains a witness. We denote this as x �X y. A set S preserves
S′ ⊆ cert(X), denoted S �X S′, if for every x′ ∈ S′ there exists a x ∈ S so that
x �X x′. A certificate x ∈ cert(X) so that there exists a y ∈ cert(X) where ⊕(x,y)
contains a witness, is called an important certificate.
For a rooted branch decomposition (T,δ) over the vertices of a graph G and

vertex v ∈ V (T ), we denote by Vv the set of vertices of V (G) mapped by δ from the
leaves of the subtree in T rooted at v. With these definitions we give a generic
recursive (or bottom-up) algorithm called Recursive that takes (T,δ) and a
vertex w of T as input and returns a set S �Vw cert(Vw), as follows:

• at a leaf w of T initialize and return the set cert({δ(w)})
• at an inner node w first callRecursive on each of the children nodes a and b
and then run procedure Join on the returned input sets S1,S2 of certificates,
with S1 �VA

cert(Va) and S2 �Vb
cert(Vb), and return a set S �Va∪Vb

⊕(S1,S2)

• at the root we will have a set of certificates S �V (G) cert(V (G))

Calling Recursive on the root r of T and running a verifier on the output solves
any graph decision problem in NP. Correctness of this procedure follows from the
definitions. The extra time spent by the verifier is going to be O∗(|S|), and for an
FPT algorithm we will require that all |S| be O∗(f(k)), i.e. FPT in the sm-width
k of (T,δ).
In the following sections we show how to solve each of the respective four

problems in FPT time. A rough sketch of the idea of how this can be achieved for
each of the problems is shown below. A formal definition of each of the problems
is given in each of their respective sections.
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Maximum Cut. MaxCut is the one out of the four problems which has the
most simple algorithm. To compute a maximum cut of a graph (a cut of maximum
number of crossing edges), we will give an algorithm to solve t-MaxCut, which
asks for a cut of with at least t crossing edges. Running t-MaxCut for increasing
values of t, will determineMaxCut. The certificates for this problem are subsets
of vertices and a witness is a subset S so that the number of edges with one
endpoint in S and one in V (G) \S is at least t (i.e., witnesses are cuts of size
at least t). We show that for a cut (A,A) and subsets S1 and S2 in cert(A), if
the neighbourhood of S1 ⊆ A and S2 ⊆ A in A are the same, then one of the
sets preserves the other in A (S1 �A S2 or S2 �A S1). As the number of distinct
neighbourhoods over the cut (A,A) is bounded by 2 and 2mm(A), for split and
non-split cuts, respectively, we will be able to give an FPT algorithm for solving
MaxCut.

Hamiltonian Cycle. For Hamiltonian Cycle, certificates are disjoint paths
or cycles, and a witness is a Hamiltonian cycle. For a cut (A,A) two certificates
C1,C2 will preserve each other in cert(A) if for any certificate in cert(A) the paths
of C1 can connect to the same paths (and in the same way) as the paths of C2
can, and vice versa. Whether this is the case depends on what vertices in A the
two endpoints of each of the paths in C2 and C1 are adjacent to. Therefore we
classify the paths into path classes, where two paths are in the same path class
if the two neighbourhoods of the one path is equal to the two neighbourhoods of
the other path. Two certificates will preserve each other as long as they consist of
paths of the same path classes and the cardinality of each path class is the same
for both of the certificates.
For splits the number of paths might be linear in n, but the number of path

classes is constant, so we have a preserving set of size O(n). For non-splits we use
techniques from algorithms for tree-decompositions ([43]) to produce a preserving
set of size 2O(k).

Chromatic Number. For Chromatic Number, we will actually solve t-
Coloring, which asks whether the input graph can be colored by at most t
colors, and from this conclude that Chromatic Number can be solved in the
same time when excluding polynomial factors. We note that a graph of sm-width
k, unlike graphs of treewidth k, may need more than k+1 colors. We let all par-
titions into t parts where the parts induce independent sets be our certificates.
What matters for a certificate is what kind of certificates it can be combined with
to yield a new certificate, i.e. inducing an independent set also across the cut.
For non-split cuts, this means the number of important certificates is bounded
by the number of ways to t-partition the vertices in the k-vertex cover of the cut,
which is a function of k. For a split cut, what is important is the number of parts
of a partition/certificate that have neighbors across the cut. The certificate min-
imizing this number will preserve all other certificates. Based on this the Join

operation will be able to find a preserving set of certificates of FPT-size.
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Edge Dominating Set. For Edge Dominating Set (or t-Edge Dominating

Set which is what we actually solve) the certificates are subgraphs of G and a
witness is a graph G′ = (V ′,E′) so that each vertex in V ′ is incident with an edge
in E′, and E′ is an edge dominating set of G of size at most t. The idea of how to
make an FPT Join-procedure is that for a vertex cover C of a cut, the number
of ways a certificate restricted to C can look is limited by a function of the size
of C. Based on this we find a preserving set of FPT cardinality when |C| is at
most k. When |C| is not bounded by k, we have a split. For splits we limit
the max number of certificates needed for a preserving set by a polynomial of n.
This is because almost all edges on one side of the cut affect the rest of the edges
uniformly, and the other way around.

5.2 Maximum Cut

5.2.1 The Problem.

The problem t-MaxCut asks, for a graph G, whether there exists a setW ⊆ V (G)
so that the number of edges in G[W,W ] is at least t. For a set X, we denote by
∂G(X) the number of edges in G[V (G)∩X,V (G)\X] (note that X does not need
to be a subset of V (G)).

5.2.2 The certificates and ⊕.

For t-MaxCut, we define cert(X) forX ⊆ V (G) to be all the subsets ofX, and we
define ⊕(x,y) to be the union function; ⊕(x,y) = {x∪y}. We solve t-MaxCut by
use of Recursive and the below procedure Joinmaxcut with input specification
as described above.

5.2.3 The Joinmaxcut function.

Procedure Joinmaxcut

Input: S1 ⊆ cert(A1) and S2 ⊆ cert(A2)
for disjoint sets A1, A2 and A= A1 ∪A2

Output: S �A ⊕(S1,S2)

S′ ← {s1 ∪ s2 : s1 ∈ S1, s2 ∈ S2} /* note S′ =⊕(S1,S2) */
S ← ∅

if
(
A,A

)
is a split then for z = 0, . . . ,n do

s′ ← argmaxs∈S′{∂G[A](s) :
∣∣∣N(A)∩s

∣∣∣= z}
S ← S ∪{s′}
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else for all subsets SC ⊆ C do
s′ ← argmaxs∈S′

{
∂G[A∪C](s∪SC) : SC ∩A= s∩A

}
S ← S ∪{s′}

return S

Lemma 5.1. Procedure Joinmaxcut is correct and runs in time O∗((|S1| |S2|)2k)
for k =max{sm(A1),sm(A2),sm(A)}, producing a set S of cardinality O(n+2k).

Proof. We S′=⊕(S1,S2), and S′ can be calculated in time O∗(|S1| |S2|). Finding a
minimum vertex cover of a G[A,A] can be done in polynomial time, since G[A,A]
is a bipartite graph. Also, when

(
A,A

)
is not a split, then mm(A)≤ k and |C| ≤ k.

Combined with a polynomial amount of work for each iteration of the for loops,
and loops iterating at most max{n,2k} times (making the size of S also bounded
by n+2k), the total runtime is O∗(|S|2k).
To show that S �A S′ we have to make sure that if there exists a witness x of

t-MaxCut so that for xA ∈ S′ and xA ∈ cert(A) we have {x} ⊆ ⊕(xA,xA), then
there must exist a certificate x′ ∈ S so that x′ �A xA. We assume there exists
such a witness x with xA and xA defined as above. We have two cases to consider;
when (A,A) is a split, and when it is not.
We first consider the case when

(
A,A

)
is a split. Since x is a witness, ∂G(x)≥ t.

Let z =
∣∣∣N(A)∩x

∣∣∣. We have ∂G(x) = ∂G[A](xA)+∂G[A](xA)+∂G[A,A](x), and
∂G[A,A](x) =

∣∣∣N(A)∩xA
∣∣∣ ×

∣∣∣N(A)\xA
∣∣∣ = z

∣∣∣N(A)\xA
∣∣∣ . Since S contains s ∈ S′

maximizing maxs∈S′{∂G[A](s) :
∣∣∣N(A∩ s)

∣∣∣ = z}, we have ∂G(⊕(s,xA)) = ∂G(x) +
∂G[A](s)−∂G[A](xA)≥ ∂G(x) meaning ⊕(s,xA) is a witness, and so S �A S′.
Now, consider the case when

(
A,A

)
is not a split (this means mm(A)≤ k). Let

C be the vertex cover used in the procedure and xC be x∩C. As C disconnects
A and A, for any certificate x′ ∈ cert(A) where C ∩x′ = xC ∩A, including xA, we
have the following:

∂G(x′ ∪xA) = ∂G[C∪A](xC ∪xA)+∂G[C∪A](xC ∪xA)−∂G[C](xC) .

This means that as ⊕(xA,xA) is a witness, as long as there is a certificate
x′ ∈ S so that x′ ∩C = xC ∩A and ∂G[C∪A](xC ∪x′)≥ ∂G[C∪A](xC ∪x), we can be
sure that S preserves {x}. And since we for all choices of xC ⊆ C add a certificate
from S to S that maximizes this value the set S must preserve S′ =⊕(S1,S2).

Theorem 5.2. Given a graph G and branch decomposition (T,δ) of sm-width k,
we can solve MaxCut in time O∗(8k).

Proof. In Lemma 5.1 we show Joinmaxcut is correct and produces a preserving
set S of size at most O∗(2k) in time O∗(|S1||S2|2k). So, using Recursive with
Joinmaxcut, we know the size of both of the inputs of Joinmaxcut is at most
the size of its output, i.e., |S1|, |S2| ≤ O∗(2k). So, each call to Recursive has
runtime at most O∗(8k). As there are linearly many calls to Recursive and
there is a polynomial time verifier for the certificates Recursive produces, by
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the definition of �, the total runtime for solving t-MaxCut is also bounded by
O∗(8k). To solve MaxCut, we run the t-MaxCut algorithm O(log(n)) times
while binary searching for the maximum cut value t ∈ {0,n2}, giving the same
runtime when excluding polynomials of n.

A rough analysis of the runtimes of this section, in terms also of n, gives a
total running time of O(n4 log(n)+8kn log(n)) for solving MaxCut.

5.3 Hamiltonian Cycle

Recently, it was shown that Hamiltonian Cycle parameterized by treewidth
can be solved in linearly single exponential time [13, 43], meaning it can be solved
in nO(1)2O(k)-time. In this section, using tools from [43], we show that also param-
eterized by split-matching-width we can solve Hamiltonian Cycle in linearly
single exponential time. To the best of our knowledge, this is the first linearly
single exponential algorithm for any “globally constrained” graph problem param-
eterized by a non-trivial and non-sparse structural parameter. Note that there is
another algorithm for deciding Hamiltonian Cycle which does not use these
new treewidth-tools, but this only achieves a runtime of nO(1)2O(k2) [93].

5.3.1 The problem.

For a graph G, a subgraph G′ of G where G′ is a cycle, we say that G′ is a
Hamiltonian cycle of G if V (G′) = V (G). The decision problem Hamiltonian

Cycle asks, for an input graph G, whether there exists a Hamiltonian cycle of
G.

5.3.2 The certificates and ⊕
We notice for a set A⊆V (G) and Hamiltonian cycleG′ ofG thatG′[A] is either the
Hamiltonian cycle itself (if A= V (G)) or a set of vertex disjoint paths and isolated
vertices. For ease of notation, we will throughout this section regard isolated
vertices as paths (of length zero). Based on this observation, for X ⊆ V (G), we
let cert(X) on the problemHamiltonian Cycle be all subgraphs G′ of G so that
V (G′) = X and G′ consists only of disjoint paths or of a cycle of length |V (G)|.
The witnesses of cert(V (G)) are exactly the certificates that are Hamiltonian
cycles of G. Clearly a polynomial time verifier exists, as we can easily confirm, in
polynomial time, that a Hamiltonian cycle in fact is a Hamiltonian cycle. Also,
as cert(V (G)) contains all Hamiltonian cycles of V (G), it must contain a witness
if G is a “yes” instance.
For disjoint sets A,B ⊂ V (G), certificate Gx ∈ cert(A), and certificate Gy ∈

cert(B), we define ⊕(Gx,Gy) to be the set of all certificates Gz = (A∪B, E(Gx)∪
E(Gy)∪E′) where E′ is a subset of the edges crossing (A,B). That is, ⊕(Gx,Gy)
is the set of all graphs generated by the disjoint union of Gx and Gy and adding
edges from G with one endpoint in A and one endpoint in B that are also valid
certificates.
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5.3.3 The JoinHC function.
In Joinmaxcut(S1,S2) we first calculated S = ⊕(S1,S2), and later reduced the
size of S. However, by our definition of ⊕ for Hamiltonian Cycle, even for
certificate sets S1 and S2 of restricted cardinality, the set ⊕(S1,S2) might be huge.
Therefore, in JoinHC we cannot allow to always run ⊕ inside our algorithm.
Instead we will for each pair of certificates in S1 and S2 construct a set S′ �
⊕(S1,S2) where |S′| is bounded by a linearly single exponential FPT function of
n and k while possibly S′ ⊂ ⊕(S1,S2).
We will handle cuts in two ways; one way when we are dealing with only splits,

and one way when we are dealing with cuts that are not splits. For the latter part,
when we do not have splits, we will use results from [43] to reduce the cardinality
of preserving sets.

5.3.4 Hamiltonian Cycle on splits
For a certificate G′ ∈ cert(A) where A ⊂ V (G), each path P of G′ can be catego-
rized by an unordered pair (N1,N2) so that for its two endpoints v1 and v2 (or
single endpoint v1 = v2 if P is an isolated vertex) we have N1 = N(v1) \A and
N2 =N(v2)\A. We say that two paths are from the same class of paths if they
get categorized by the same unordered pair. Two certificates G′,G′′ ∈ cert(A) are
path equivalent if there exists a bijection σ between the paths of G′ and the paths
in G′′ so that for each pair of paths P ∈ G′ and σ(P ) ∈ G′′ the path P is in the
same path class as σ(P ) (see Figure 5.1.

Figure 5.1: Two path equivalent certificates.

Claim 5.3. For any subset A ⊂ V (G) and certificates G1,G2 ∈ cert(A), we have
G1 �A G2 if G1 is path equivalent to G2.
Proof. Suppose there is a certificate G3 ∈ cert(A) and witness W ∈ ⊕(G3,G2).
That means that for a set of edges EW ⊆ E(G[A,A]) we have W =G2 ∪G3+Ew.
From the definition of path classes and path equivalence, there exists a bijection
σ from paths of G2 to paths in G1 so that for each path P in G2 and edges
a1p1,a2,p2 ∈ EW so that p1,p2 are the endpoints of P , there must exist two edges
a1p

′
1,a1p

′
2 ∈ E(G[A,A]) where p′

1,p
′
2 are the endpoints of σ(P ) in G1. Thus, if

replacing the edges EW with these edges, and replacing each path P in G2 with
the path σ(P ) of G3, we have an Hamiltonian cycle. So, if ⊕(G2,G3) contains a
witness, so must ⊕(G1,G3).
For a certificate G′ ∈ cert(A) and path P of G′, we say that P is an isolated

path if one of its endpoints is not incident with an edge in E(G[A,A]). That is,
P is an isolated path if it is categorized by a pair containing an empty set.
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As each vertex of a Hamiltonian cycle has degree exactly two, and for two cer-
tificates G1 ∈ cert(A), G2 ∈ cert(A), each of the edges in certificate G′ ∈ ⊕(G1,G2)
is either in E(G1), E(G2), or E(G[A,A]), we get the following observation.
Observation 5.4. If G′ is an important certificate, G′ can not contain any iso-
lated paths.
Lemma 5.5. Given two splits (A,A) and (B,B) so that A∩B = ∅, and two sets
Sa ⊆ cert(A) and Sb ⊆ cert(B), we can in O∗(|Sa|+ |Sb|) time compute a new set
S′ �A∪B ⊕(Sa,Sb) where |S′| ≤ n3 and S′ ⊆ ⊕(Sa,Sb).
Proof. First we trim the number of certificates in Sa: Since by Observation 5.4
all path classes are of the same type for important certificates when (A,A) is a
split, and by Claim 5.3 when two certificates are path equivalent one preserves the
other, we can in O∗(|Sa|) time find a set S′

a of at most n certificates that preserves
Sa, where all the certificates are pairwise not path equivalent. We do the same
for Sb, producing a set S′

b.
Let us now notice that for any important certificate Gx in ⊕(S′

a,S
′
b) each of

the paths of Gx are of one of the following three path classes.
(1) (N(A)\ (A∪B), N(A)\ (A∪B))

(2) (N(B)\ (A∪B), N(B)\ (A∪B))

(3) (N(A)\ (A∪B), N(B)\ (A∪B))
The number of paths of each of these path classes can be any number 0≤ z < n.
So there are at most n choices as to how many paths Gx might have of each single
path class, and thus in total no more than n3 choices. This is a good indication
that we can create a set S′ of size no larger than n3, but we also need to say
how such a set can be created. For sa ∈ S′

a and sb ∈ S′
b, let cz1,z2(sa, sb) be the

certificate resulting in combining z1 paths of sa and of sb together (by using edges
of E(G[A,B])) to form z2 paths of type (3). Since all paths in sa are of the same
path class, and all paths in sb are of the same path class, whenever it is possible
to construct cz1,z2(sa, sb), we can do so straight forward in polynomial time (e.g.,
by pairwise connecting z2 paths of sb to z2 paths of sa and extending one of the
resulting paths with the z1 −z2 remaining paths of sa and sb in a way alternating
between paths of sa and of sb). Clearly when Gx ∈ ⊕(sa, sb), there must be two
corresponding numbers z1 and z2 so that Gx is path equivalent to cz1,z2(sa, sb).
Thus, if we for each pair of choices of z1 and z2 (with 0≤ z2 ≤ z1 ≤ n) construct
cz1,z2(sa, sb) whenever possible, we have a set preserving ⊕(sa, sb) of size O(n2).
By doing this for all pairs in S′

a ×S′
b we thus end up with a set S of size O(n4).

We can again trim this set to a size of at most n3 by removing path equivalent
certificates. The result is a set S′ of size at most n3 which preserves ⊕(Sa,Sb) and
we can construct this set in O∗(|Sa|+ |Sb|) time.

5.3.5 Hamiltonian Cycle on general cuts
From Theorem 3 of [43] applied to a graphic matroid we have the following corol-
lary, which will help us not only get an FPT algorithm, but a linearly single
exponential FPT algorithm.
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Corollary 5.6 ([43]). Let G be a connected graph on n vertices and S a family
of p-sized subsets of E(G). We can for any integer q find a subset Ŝ of S with
|Ŝ| ≤ 2n so that for any q-sized subset Y of E(G), if there exists a set X ∈ S

disjoint from Y so that X ∪Y is a forest, then there exists a set X̂ ∈ Ŝ disjoint
from Y so that X̂ ∪ Y is a forest. Furthermore, the set Ŝ can be computed in
O(|S|3n) time.
This might not seem like something related to finding Hamiltonian cycles, since

finding a largest forest is polynomial time solvable and finding a largest cycle is NP-
complete. However, as shown in [43], many NP-complete problems that contain
a global connectivity constraint, for instance Steiner Tree and Hamiltonian

Cycle, can be solved faster by the use of Corollary 5.6. In [43], the authors
focus more on the Steiner Tree problem and less on Hamiltonian Cycle,
so the precise usage of Corollary 5.6 applied to Hamiltonian Cycle is not very
explicit. The following two lemmas can, however, be deduced from their paper,
but as it is such a crucial part of this algorithm, we need all the details formally
stated.

Lemma 5.7. Given a graph G of k vertices, and family S of edge-sets, we can
in nO(1)(|S|9k) time find a subset Ŝ of S of size at most 6k so that for any set Y
of edges in E(G), if there exists a set s ∈ S disjoint from Y so that s∪Y form a
Hamiltonian cycle, then there is a set ŝ ∈ Ŝ disjoint from Y so that ŝ∪Y form a
Hamiltonian cycle.

Proof. For a set x ∈ S let Di(x) denote the set of vertices in V (G) incident to
exactly i of the edges in x, i.e., the vertices of degree i in the graph (V (G),x).
We notice that if Y ∪ s is a Hamiltonian cycle, then s consists only of vertex
disjoint paths. Furthermore, when Y ∪ s is a Hamiltonian cycle, then Y ∪ s′
is a Hamiltonian cycle only if Di(s) = Di(s′) for i = 0,1,2. So, to produce a
smaller subset Ŝ of S as stated in the lemma, we start by categorizing each of the
s ∈ S that consist of only vertex disjoint paths into one of at most 3|V (G)| classes
S[D0][D1][D2], depending on the content of Di(s) (we put s into the class where
D0 =D0(s),D1 =D1(s) and D2 =D2(s)). One result of this is that all sets in the
same class will consist of exactly the same number of edges.
Now we apply Corollary 5.6 on each of the classes S[D0][D1][D2] with p being

the size of the edge set in the particular class, and q = n−p−1. We put the result
into Ŝ[D0][D1][D2] for each tri-partition D0,D1,D2. We will now show that when
Ŝ is the union of each Ŝ[D0][D1][D2], then Ŝ satisfies the statement.
First of all, the size of Ŝ is at most 3k2k, since there are at most 3k equivalence

classes, and each class contributes by at most 2k sets.
Second, we will have to show for every Y ⊆ E(G) so that there exists a set

s ∈ S disjoint from Y where Y ∪s is a Hamiltonian cycle of G, there also exists a
set ŝ ∈ Ŝ so that also Y ∪ ŝ is a Hamiltonian cycle:
Suppose for disjoint s and Y , Y ∪ s is a Hamiltonian cycle of G. This

means D0(s) = D2(Y ), D1(s) = D1(Y ) and D2(s) = D0(Y ), and s is an ele-
ment of S[D0(s)][D1(s)][D2(s)]. As all vertices of a Hamiltonian cycle have
degree exactly two, for any element s′ ∈ S[D0(s)][D1(s)][D2(s)] each vertex in
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V (G) must also have degree exactly two in Y ∪ s′. So Y ∪ s′ must be a disjoint
set of cycles containing all vertices of V (G). We will show that there exists a
s′ ∈ Ŝ[D0(s)][D1(s)][D2(s)] so that the cycles of Y ∪ s′ is connected, and hence
must be one large Hamiltonian cycle. Let e be any edge in Y , and let Ye be
Y \ {e}. We notice that s∪Ye is a (Hamiltonian) path and hence a subtree in
G. That means by Corollary 5.6, there must be a ŝ ∈ Ŝ[D0(s)][D1(s)][D2(s)] so
that ŝ∪ Ye is a forest. As we know all the elements of S[D0(s)][D1(s)][D2(s)]
have the same number of edges, H ′ = ŝ∪Ye must contain |V (G)| −1 edges. This
means H ′ is one single component, as we know H ′ is acyclic. Furthermore, we
know H ′ ∪ {e} = ŝ∪ (Ye ∪ {e}) is a cycle cover, so H ′ ∪ {e} = ŝ∪Y is indeed a
Hamiltonian cycle of G.

Lemma 5.8. Let G be a graph and A ⊆ V (G) some set of vertices separated from
V (G)\A by C ⊆ V (G) of size at least three. Given a family S of subsets of edges
of E(G[A∪C]), we can in nO(1)(|S|9|C|) time construct a family Ŝ ⊆ S of size
at most 6|C| so that for any set Y of edges in E(G[C ∪A]), if there exists a set
X ∈ S disjoint from Y so that Y ∪X is a Hamiltonian cycle, then there exists a
set X̂ ∈ Ŝ disjoint from Y so that X̂ ∪Y is a Hamiltonian cycle.

To prove Lemma 5.8, we use what is called a torso. For a graph G and subset
S ⊆ V (G), we say that the torso of G in S is the graph we get by taking G[S] and
then add the edges {uv : ∃uPv ∈ G s.t. P ∈ G\S}. In general this means we take
G[S] and for each component C ∈ G \S make N(C) into a clique. We will only
use torsos in the restricted case when the components C ∈ G\S have exactly two
neighbours in C, and hence each component will only contribute to the torso by
a single edge.

Proof of Lemma 5.8. Let G′ be the complete graph on V (G) (i.e., V (G′) = V (G)
and E(G′) = {uv : u ∈ V (G),v ∈ V (G)}). We notice that for disjoint sets X ⊆
E(G[A]) and Y ⊆ E(G[A ∪ C]) X ∪ Y form a Hamiltonian cycle in G only if
X ∪Y also form a Hamiltonian cycle in G′. Also, X ∪Y can be a Hamiltonian
cycle only if for some Y ′ ⊆ E(G′[C]) X ∪Y ′ is a Hamiltonian cycle (namely the
torso Y ′ of Y in C). So, we will from here on assume V (G′) = V (G) = A∪C.
Our goal now will be to reduce the problem from looking at G′[A∪C] to only

looking at G′[C]. First notice that unless X induces a disjoint set of paths ending
in C which covers all the vertices in A\C, then X ∪Y cannot be a Hamiltonian
cycle for any Y ⊆ E(G′[C]). Let T ⊆ S be the set consisting of all X ∈ S where X
is consisting of such edge disjoint set of paths. For any X ∈ T and Y ⊆ E(G′[C])
X ∪Y is a Hamiltonian cycle of G′[A∪C] if and only if for the torso X ′ of X in
X, X ′ ∪Y is a Hamiltonian cycle of G′[C].Therefore, to construct the set Ŝ in the
statement of the lemma, we do the following:
We first let T ′ be the set of these torsos. By first removing all the duplicates

in T ′ and then applying Lemma 5.7 to it, we get a subset T̂ ′ of size at most 6|C|.
The set Ŝ = {X ∈ T : X ′ ∈ T̂ ′} will thus be a set of size at most 6|C| and such
that for any X ∈ S and Y ⊆ E(G[A∪C]), if X and Y are disjoint and X ∪Y

is a Hamiltonian cycle of G, then ∃X̂ ∈ Ŝ disjoint from Y so that X̂ ∪ Y is a
Hamiltonian cycle in G.
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Lemma 5.8 gives an insight to how it is possible to make linearly single expo-
nential algorithms for Hamiltonian Cycle parameterized by treewidth, as done
in [43]. The idea is to build a set of partial solutions using dynamic programming
in a bottom up manner in a tree decomposition, and at each step use Lemma 5.8
to reduce the number of partial solutions needed to ensure you will find a Hamil-
tonian cycle in the end of your algorithm. This works because at each step of the
algorithm all partial solutions will be disjoint paths that have all their endpoints
inside a small separator (a bag in the tree decomposition). However, when param-
eterizing by split-matching width, even for cuts of small mm-value and a vertex
cover C of small size, the partial solutions (certificates) will not necessarily con-
sist of paths that have endpoints inside C, but possibly in N(C), which could be
large. To overcome this problem, we define what we call an extension.
An extension of a certificate is a certificate plus some extra edges. The idea is

that an extension will encompass how a certificate G′ ∈ cert(X) looks after adding
more edges than those in E(G[X]). Formally, for a certificate G′ ∈ cert(X) and
set of edges E∗ disjoint from E(G[X]), we say that a set S ⊆ {G′ ∪E′ : E′ ⊆ E∗}
is an extension of G′ by the set E∗. For a set of certificates P , the set S is an
extension of P by E′ if it is a union of extensions by E′ of the certificates in P .
For a set of certificates P we say that an extension S of P by E∗ is preserving if
for any edge set Y not intersecting E(G[A])∪E∗, if there is a certificate C ∈ P
and E′ ⊆ E∗ so that Y ∪G′ ∪E′ is a Hamiltonian cycle, then there is an element
G′′ ∈ S so that G′′ ∪Y is a Hamiltonian cycle. A preserving extension of a single
certificate G′ is simply a preserving extension of {G′}.
Observation 5.9. For P ⊆ cert(A) and edges E′ ⊆E(G[A,A]), if S is a preserving
extension of P by E′, then {S \E′ : S ∈ S} preserves P .

Motivated by Observation 5.9, we give the following lemma, which will be used
to reduce the number of certificates needed to preserve certificate sets over sets
of small mm-value. The result of this is captured in Corollary 5.11.

Lemma 5.10. Given a set of certificates S ⊆ cert(A) and a vertex cover C of
G[A,A] of size at least three, we can in O∗(|S|93|C|) time create a preserving
extension of S by E∗ = E(G[A,C \A]) of size no larger than 6|C|.

Proof of Lemma 5.10. We prove this first for a single certificate S = {G′} and
then generalize to a set S containing multiple certificates in the end of the proof.
Suppose Y is a set of edges outside of E(G[A]) and E∗ so that Y ∪G′ ∪E′ is a

Hamiltonian cycle for some E′ ⊆E∗. Neither E′ nor Y consist of edges in E(G[A]),
so by temporarily removing the edges of E(G[A]) not in E(G′) we get a new graph
G∗ for which Y ∪G′ ∪E′ is also a Hamiltonian cycle. Clearly, all Hamiltonian
cycles of G∗ are also Hamiltonian cycles of G. Let Q= E(G[A,A])∩ (Y,E∗). All
paths in G′ must be incident to exactly two edges of Q and no two paths in G′ can
be adjacent to the same edge in Q (since all edges in Q only have one endpoint
in A). Furthermore, all edges of Q must be incident with a vertex of C, but no
vertex of C can be incident with more than two vertices of Q. So |Q| ≤ 2|C| and
we can conclude that the number of paths in G′ is at most |C|. Now let X be
the endpoints of the paths in G′. Each path has at most 2 endpoints, so |X| is
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at most 2|C|. The set X ∪C is of size at most 3k and disconnects G′ from the
rest of the graph. We then do the following subroutine to construct a preserving
extension.

S′ = {G′}
for each e ∈ E′ incident with X:
for each s ∈ S′ add s∪{e} to S′
reduce the size of S′ using Lemma 5.8 with X ∪C as separator

end for

The set S′ resulted from this subroutine will be a preserving extension of G′ by
E′, and by Lemma 5.8, its size will not exceed 2|C|+|X| ≤ 23|C|. The runtime to
create this set will be nO(1)(93|C|).
For a set S of multiple certificates, we find for each G′ ∈ S a preserving ex-

tension SG′ by E′ and then in a similar manner as above, construct a preserving
set S′ by adding the preserving extensions SG′ to S′ one by one for each G′ ∈ S,
and for each time we add a new extension reduce the size of S′ using Lemma 5.8
with C as a separator. The size of the ending set of certificates will be bounded
by 6|C| and the total runtime as follows: To produce all the preserving exten-
sions we use O∗(|S|93|C|) time, and to put all of these at most |S|8|C| preserving
extensions into S′, we use O∗(|S|8|C|9|C|) time. The total runtime is thus domi-
nated by finding preserving extensions for single certificates, which is bounded by
O∗(|S|93|C|).

Corollary 5.11. Given a set S ⊆ cert(A), and a vertex cover C of G[A,A] where
3 ≤ |C| = k, we can in O∗(|S|93k) time find a set Ŝ ⊆ S so that Ŝ �A S and
|Ŝ| ≤ 6k.
Now that we have defined preserving extensions, and already shown how we can

use this to reduce the size of a preserving set of certificates, we will show how we
can also use extensions to produce small sets S preserving ⊕(S1,S2) for certificates
S1 and S2. This is the last step needed to create our dynamic programming
algorithm for Hamiltonian Cycle.

Lemma 5.12. For a tri-partition (A,B,W ) of V (G), and Sa ∈ cert(A) and Sb ∈
cert(B), for k = max{sm(A),sm(B)} we can in nO(1)2O(k) time compute a set
S ⊆ ⊕(Sa,Sb) so that S �A∪B ⊕(Sa,Sb) of size at most 2O(sm(W ))nO(1).

Proof. The case when both (A,A) and (B,B) are splits, the statement holds by
Lemma 5.5. So, we only need to prove that it holds for the case when when at
least one of (A,A) and (B,B) are not splits.
We first assume that there exists a certificate Sw ∈ cert(W ) so that the set

⊕(⊕(Sa,Sb),{Sw}) contains a witness H = Sa ∪Sb ∪Sw ∪E′ where E′ is disjoint
from the three certificates. Let Xa ⊆ A and Xb ⊆ B be the set of vertices in A
and B incident with less than two edges of Sa and Sb, respectively. That is, Xa

and Xb are exactly the vertices of A and B, respectively, that are incident with
E′.
We now show that if a witness H as described above exists, then |Xa| ≤

2mm(A) and |Xb| ≤ 2mm(B). Without loss of generality, we prove that this
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holds for Xa. As each vertex in Xa must be incident with an edge of E′, and
each vertex in A can be incident to at most two edges of E′ since H is a sim-
ple cycle, there is a matching in E′ of at least half the size of Xa, implying that
|Xa| ≤ 2mm(A). The same also holds for Xb. Let C be a vertex cover of G[A,A].
If both mm(A),mm(B)≤ k, then C ∪Xa ∪Xb is a vertex cover of size ≤ 5k. This
means that by Lemma 5.10 we can construct a preserving extension Ŝa of Sa by
E(G[A,(C∪Xb)\A]) of size 65k, which combined with Sb must preserve ⊕(Sa,Sb).
That is, S′ = {S′

a ∪Sb : S′
a ∈ Ŝa}.

For the case when either mm(A) > sm(A) or mm(B) > sm(B), we need a
slightly different argument. Assume without loss of generality that mm(B) >
sm(B), and thus (B,B) is a split. As before |Xa| ≤ 2k, but now |Xb| is possibly
very large. What we notice though, is that as each vertex of Xa can be incident
to at most two edges of E′, the number of edges in E′ incident with Xa is at most
2|Xa| ≤ 4k. This means that no more than 4k of the paths in Sb will connect
directly to Sb by the edges in E′. As all endpoints of all paths in Sb (including
isolated vertices, which can be thought of as paths of length zero) have the same
neighbourhood in B and are interchangeable, we can simply disregard all but 4k
paths of Sb, and do the same for the remaining 4k paths as we did for Sb for
the case when there were no splits. This means the set Xb is of size at most 8k
instead of 2k, giving a runtime of O∗(|Sa||Sb|93(11k)) to compute a preserving set
of ⊕(Sa,Sb). After computing this set, we can trim it further to a size of either
n as we did in the proof of Lemma 5.5 when (A∪B,W ) is a split, or trim it to
a size of 6mm(W ) by Corollary 5.11, depending on whether (A∪B,W ) is a split
or not. As sm(W ) = mm(W ) when (A∪B,W ) is not a split, we end up with a
preserving set of ⊕(Sa,Sb) of size bounded by n+6sm(W ).

Theorem 5.13. Given a graph G and branch decomposition (T,δ) of sm-width k,
we can solve Hamiltonian Cycle in time O∗(2O(k)).

Proof. Let Joinhc be the algorithm of Lemma 5.12. Using Recursive with
Joinhc, we know the size of both of the inputs of Joinhc is at most the size of
its output, i.e., |Sa|, |Sb| ≤ O∗(2k). So, each call to Recursive has runtime at
most O∗(2O(k)). As there are linearly many calls to Recursive and there is a
polynomial time verifier for the certificatesRecursive produces, by the definition
of �, the total runtime is also bounded by O∗(2O(k)).

5.4 t-Coloring

5.4.1 The problem.

The decision problem t-Coloring asks for an input graph G, whether there exists
a labelling function c of the vertices of V (G) using only t colors in such a way
that no edge has its endpoints labelled with the same color. Equivalently, it asks
whether there exists a t-partitioning of the vertices so that each part induces an
independent set. For simplicity, we will allow empty parts in a partition (e.g.,
{{x1,x2,x3},{x4},∅,∅,∅} is a 5-partition of {x1,x2,x3,x4}).
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For a set A and partition p= {p1,p2, . . . ,pj}, we denote by A∩p the partition
{p1 ∩A,p2 ∩A,. . . ,pj ∩A}.

5.4.2 The certificates and ⊕
For t-Coloring, we define cert(X) for X ⊆ V (G) to be all t-partitions of X and
⊕(p,q) for p= p1, . . . ,pt and q = q1, . . . , qt to be the following set of partitions⎧⎨

⎩
⋃
i≤t

{{
pi ∪ qσ(i)

}}
: σ is a permutation of {1, . . . , t}

⎫⎬
⎭ .

We can easily construct a polynomial time algorithm that given a t-partition
p of independent sets (which there must exist at least one of if G is a “yes”
instance) is able to confirm that G is a “yes” instance. So t-partitions of V (G)
forming independent sets will be our witnesses.

5.4.3 The Joincol function.

The main observation for the design of this procedure is that whenever
(
A,A

)
is a

split, there exists a single element x ∈ cert(A) so that {x} �A cert(A). Also, when
mm(A)< k there is a separator of A and A so that for any t-partition witness, the
separator is intersecting at most k of the parts of the t-partition. In the procedure
Trimcol below we use this to trim the number of certificates to store at each step
of the algorithm; if two certificates restricted to the vertices in the separator of A
and A are equal, we only store one of them. This results in less than kk certificates
to store.
For two t-partitions P , Q, we say that we merge P and Q when we generate a

new partition R by pairwise combining the parts (by union) of P with the parts
of Q in such a way that R is a t-partition where each part is an independent set.
If P and Q can be merged, we say that P and Q are mergeable.

Lemma 5.14. Given two t-partitions P and Q, deciding whether P and Q are
mergeable, and merging P and Q if they are, can be done in polynomial time.

Proof. We can check whether P and Q are mergeable by reducing it to deciding
whether a bipartite graph has a perfect matching: We generate a bipartite graph
B = (P,Q) where each vertex/part p ∈ P is adjacent to q ∈ Q if and only if p∪ q
is an independent set. When P and Q partition sets that do not intersect, then
we can merge P and Q by for each edge in the matching, combine the respective
parts the edge is incident with. If there is no perfect matching in B, then that
must mean there is no way of pairwise combining the parts of P with the parts
Q so that all combined parts are independent.
If P contain parts that share elements with parts of Q, then we know these

parts must be combined in all merged partitions, so we combine all these sets and
then run the above reduction to perfect matching (on the parts that do not have
intersecting elements). If a part intersect with more than one other part, then P
and Q cannot be merged.
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Lemma 5.15. Let A be a subset of V (G), C ⊆ V (G) a separator of A and A,
and PA and PC be t-partitions of A and C, respectively. If PC and PA merge to
a t-partition P ′

A, then for any set B ⊆ (C ∪A) and t-partition PB of B, PB is
mergeable with P ′

A if and only if PC is mergeable with PB.

Proof. For the forward direction, we notice that for any t-partition P ′ resulting
from merging P ′

A with PC , the t-partition P ∗ = P ′ ∩ (C ∪B) is a result of merging
P ′
A ∩ (C ∪B) = PC with PB ∩ (C ∪B) = PB, and hence PC and PB are mergeable.
We will prove the backwards direction by constructing a partition P ′ which is

the result of merging P ′
A with PB. As PC partitions exactly the set C, and both

PA merge with PC to a t-partition P ′
A and PB merge with PC to a t-partition

P ′
B, there is an ordering of the parts of P ′

A and P ′
B so that the i-th part of P ′

A
intersected with C equals the i-th part of P ′

B intersected with C. We let P ′ be
the multiset resulting from pairwise combining the i-th part of P ′

A with the i-th
part of P ′

B. As the only vertices that occur in parts of both P ′
A and of P ′

B is the
set of vertices C, by combining the parts based on the ordering we described, we
have made sure that each vertex appear in exactly on part of P ′, and hence P ′ is
a t-partition.
To show that each part in P ′ is an independent set, we assume by contradic-

tion that two adjacent vertices x and y are in the same part of P ′. By how we
constructed P ′, no two vertices in different parts in either P ′

A or P ′
B will be in

the same part in P ′. Therefore, as P ′
A partitions A∪C into parts that are inde-

pendent sets, and P ′
B does the same for B∪C, if x and y are adjacent and in the

same part, one of them must be in A\C and the other in B \C. However, C dis-
connects A and B, and hence no edge exists between vertices in A\C and B \C,
contradicting that x and y are adjacent.

Procedure Trimcol

Input: S ⊆ cert(A)
Output: S′ �A S of size |S′| ≤ sm(A)sm(A)

remove from S the partitions containing parts that are not independent sets
if

(
A,A

)
is a split then

mark one certificate P ′ ∈ S where
the number of non-empty parts in N(A)∩P ′ is minimized

else
C ← minimum vertex cover of G[A,A]
for each t-partition PC of C do
mark one certificate P ′

C ∈ S which is mergeable with PC

return the marked certificates of S

Lemma 5.16. The procedure Trimcol with input S ⊆ A for A ⊆ V (G) returns a
set S′ �A S of size at most sm(A)sm(A), and has a runtime of O∗(|S|sm(A)sm(A)).
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Proof. The runtime is correct as a result of the fact that merging (Lemma 5.14)
takes polynomial time to execute, and it produces a set S′ ⊆ S of cardinality at
most 1 = sm(A)sm(A) if (A,A) is a split, and cardinality at most mm(A)mm(A) =
sm(A)sm(A) otherwise. We now show that S′ �A S:
For contradiction, let us assume there exists a certificate Pw ∈ cert(A) so that

for a certificate P ∈ S the set ⊕(Pw,P ) contains a witness, while ⊕({Pw} ,S′) does
not contain a witness. Let us first assume

(
A,A

)
is a split:

As
(
A,A

)
is a split, each part of P is either adjacent to all of N(A), or not

adjacent to A at all. Let z be the number of parts in P that are adjacent to all of
N(A). This also means z is a lower bound to the number of parts in Pw that do
not have neighbours in A. In Trimcol we mark (and thus output) one certificate
P ′ where at most z parts have neighbours A. Thus for each of the at most z parts
in P ′ that are adjacent to A, there is a part in Pw not adjacent to any vertex in
A. So, we can conclude that P ′ and Pw can be merged together to form a witness.
This contradicts that ⊕({Pw} ,S′) does not contain a witness when

(
A,A

)
is a

split.
Now, let us assume

(
A,A

)
is not a split. LetW be a witness in⊕({Pw} ,S). For

the vertex cover C, we have the following smaller t-partitions of W ; PC =W ∩C
and PW =W ∩C. By Lemma 5.15, as C disconnects A from the rest of the graph,
any t-partition of A mergeable with PC is mergeable with PW . The algorithm
assures that for all t-partitions PC of C, whenever a t-partition in S is mergeable
with PC , at least one t-partition mergeable with PC exists in S′. From this we
can conclude that ⊕({Pw} ,S′) preserves ⊕({Pw} ,S).

Procedure Joincol

Input: S1 ⊆ cert(A1) and S2 ⊆ cert(A2)
for disjoint sets A1, A2 and A= A1 ∪A2

Output: S �A ⊕(S1,S2)

S ← ∅
C1,C2 ← minimum vertex cover of G[A1,A1] and G[A2,A2], respectively
for P1 ∈ S1 and P2 ∈ S2 do

N1 ← parts of P1 not adjacent to N(A1)
N2 ← parts of P2 not adjacent to N(A2)
if both (A1,A1) and (A2,A2) are splits then
for 0≤ z ≤min{|N1| , |N2|} do
add to S a t-partition generated (if possible) by

merging the two partitions P1 and P2 together
in such a way that exactly z of the parts of N1
are merged with parts of N2
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else if neither (A1,A1) nor (A2,A2) is a split then
for each t-partition Pc of C1 ∪C2 do
if both P1 and P2 are mergeable with Pc then

P c
1 ← merge Pc and P1

P ′ ← merge P c
1 and P2

add P ′ ∩ (A∪B) to S

else // up to symmetry let (A1,A1) be split and (A2,A2) not
for each t-partition Pc of C2 mergeable with P2 do
for each subset Q of the non-empty parts of Pc do

Pq ← merge (if possible) Pc with P1 so that Q is exactly the
non-empty parts of Pc that get combined with N1

P ′ ← the t-partition generated by merging Pq with P1
add to S the t-partition P ′ ∩ (A∪B)

return Trimcol(S)

Lemma 5.17. Procedure Joincol is correct and runs in time O∗(|S1| |S2|k3k) for
k =max{sm(A1),sm(A2),sm(A)}, producing a set S of cardinality O(kk).

Proof. We will go through the three cases in the algorithm (when zero, one or
two out of the two cuts (A1,A1) and (A2,A2) are splits), and show that for
each pair (P1,P2) of certificates in S1 ×S2, the output of the algorithm preserves
⊕(P1,P2). As the last line of the algorithm assures that the output preserves S
(by Lemma 5.16) and the cardinality of the output is of the correct size, we only
need to show that S preserves ⊕(P1,P2) and that the runtime is correct.
Suppose neither of the two cuts are splits. In this case, whenever there exists

a certificate of ⊕(P1,P2) mergeable with a t-partition PC of the separator C =
C1 ∪C2 of A and A, the algorithm assures that there is going to be at least one
t-partition of A in S mergeable with PC . By Lemma 5.15, this means S is going
to preserve ⊕(P1,P2).
If both of the two cuts are splits, then for each part pi of every t-partition of

A the neighbourhood N(pi)\A, must either be empty, N(A1), N(A2), or N(A).
In this case the algorithm generates, for each possible z so that there exists an
important certificate P ∗ ∈ ⊕(P1,P2) where the number of parts with empty neigh-
bourhoods is exactly z (and thus, the number of parts with neighbourhood equal
N(A1), N(A2) and N(A), is |N2| − z, |N1| − z, and t− |N1|+ |N2|+ z, respec-
tively), generates a t-partition of independent sets where there the same number
of parts with each of the particular four neighbourhoods is equal to the number of
parts of each neighbourhood for P ∗. We can observe that when two t-partitions
over the same set both consist of only independent sets, and there is a correspon-
dence between the parts of both partitions so that the neighbourhood in A of each
pair of corresponding parts are the same, the two partitions are mergeable to ex-
actly the same t-partitions of A. Therefore, the set of t-partitions the algorithm
generates in the case when both cuts are splits, preserves ⊕(P1,P2).
If exactly one of the cuts are splits, let us assume without loss of generality

that (A1,A1) is the split. As above, each part of P1 is one of two types; adjacent
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to N(A1), or not adjacent to N(A1). When C is a vertex cover of G[A2,A2], for
each important certificate P ∗ ∈ ⊕(P1,P2), we have a t-partition PC = P ∗ ∩C of
C. Of the parts in Pc, some subset Z of the non-empty parts get combined with
the parts of P1 that do not have any neighbours in N(A1) and the rest of the non-
empty parts get combined with the other type of parts in P1. Since C disconnects
A2 from the rest of the graph, there must be a bijection from each part in P ∗ to
parts with the exact same neighbourhood in N(A) for the t-partition generated
by the algorithm in the last if/else case, for Q = Z. This, in turn, means that
the two partitions preserve each other, and so we can conclude that the set of
certificates the algorithm produces preserves ⊕(P1,P2).
The runtime of the algorithm we get as follows: Excluding polynomials of n,

we get the worst case runtime when neither A1 nor A2 are splits. Then S grows
to be as large as O(k2k) (the number of t-partitions of C1 ∪C2) for each pair of
certificates in S1×S2. This implies a runtime of O∗(|S1| |S2|k2k) for the entire part
before the execution of Trimcol, which by Lemma 5.16 takes O∗(|S1| |S2|k3k)-time
given the size of S.

Theorem 5.18. Given a graph G and branch decomposition (T,δ) of sm-width k,
we can solve Chromatic Number in time O∗(k5k).

Proof. In Lemma 5.17 we show Joincol is correct and runs in time O∗(|S1| |S2|k3k),
producing a set S of cardinality O(kk). So, using Recursive with Joincol, we
know the size of both of the inputs of Joincol is at most the size of its output,
i.e., |S1|, |S2| ≤ O∗(kk). So, each call to Recursive has runtime at most O∗(k5k).
As there are linearly many calls to Recursive and there is a polynomial time
verifier for the certificates Recursive produces, by the definition of �, the total
runtime is also bounded by O∗(k5k). To solve Chromatic Number when we
have an algorithm for t-Coloring, we simply run the t-Coloring algorithm
for each value of t ≤ n, giving the same runtime for Chromatic Number when
excluding polynomial factors of n.

With a somewhat relaxed analysis of the runtimes of this section in terms also
of n, we get a total runtime of O(k5kn5) for solving Chromatic Number.

5.5 Edge Dominating Set

5.5.1 The problem.
The decision problem t-Edge Dominating Set asks for an input graph G,
whether there exists a set E′ ⊆ E(G) of cardinality at most t, so that for each
edge e ∈ E(G) either e ∈ E′ or e shares an endpoint with an edge e′ ∈ E′. We say
that an edge e′ ∈ E′ dominates e ∈ E(G) if e and e′ share an endpoint.

5.5.2 The certificates and ⊕
For t-Edge Dominating Set, we define cert(X) for X ⊆ V (G) to be all sub-
graphs of G[X]. This might seem odd, as we are looking for a set of edges. How-
ever, for a certificate G′ ∈ cert(X), the set V (G′) is going to make the algorithm
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simpler. A witness will be a subgraph Gw such that E(Gw) is an edge dominating
set of size at most t and each vertex of V (Gw) is incident with an edge of E(Gw).
Checking the latter can obviously be done in polynomial time and checking that
E(Gw) is an edge dominating set of size at most t can also be done in polynomial
time since t-Edge Dominating Set is in NP.
For disjoint sets A,B ⊆ V (G) and certificates GA ∈ cert(A) and GB ∈ cert(B),

we define ⊕(GA,GB) to be the set{
GA+GB+E′ : E′ ⊆ E(G[V (GA),V (GB)])

}
.

5.5.3 The Joineds function.

Given a graph G′ and vertex v ∈ V (G′), we say that v is an isolated vertex of
G′ if it is not incident with any edge of E(G′). If a vertex is not isolated, it is
non-isolated. We say a set of edges E′ span a set of vertices X if X ⊆ V (E′). We
denote by I(G′) the isolated vertices of G′.
We say that a certificate G′ ∈ cert(A) is locally correct if all edges in G[A]

have an endpoint in V (G′) and all the isolated vertices of V (G′) are in N(A). A
certificate is locally incorrect if it is not locally correct. We see that a certificate in
cert(A) which is locally incorrect cannot also be an important certificate as there
exists an edge in G[A] which is not dominated by edges in E(G′) and cannot be
dominated by edges in G[A,A].
We observe that for two locally correct certificates G1,G2 ∈ cert(A), if N(A)∩

G1 =N(A)∩G2 and the isolated vertices of G1 equal those of G2, then G1 �A G2
if |E(G1)| ≤ |E(G2)|.
Lemma 5.19. Given a graph G without isolated vertices and a subset A ⊆ V (G),
a minimum cardinality set X ⊆ E(G) of edges spanning the vertices A can be
found in polynomial time.

Proof. Let M be a maximum matching of G[A]. Any set spanning A must be
of size at least |M |+(|A| − 2|M |) = |A| − |M |, as otherwise there must exist a
matching in G[A] larger than M . Let R be the set of vertices in A not incident
with any edge inM . As no vertex of G is isolated, each vertex in R is incident with
at least one edge in G. Thus, we can easily find a set ER of |R| edges spanning
R. We claim that the set X =M ∪ER is a minimum cardinality set of edges
spanning A; Clearly X spans A, as each vertex not spanned by M is by definition
spanned by ER. Furthermore, the size of R is exactly |A|−2|M |, so the size of X
is |M |+(|A|−2|M |) = |A|− |M |. Hence, the set X is a minimum cardinality set
spanning A.

As usual, our join-procedure will consist of a part where we join together pairs
of certificates, imitating ⊕, and a part where the size of the output is reduced
using a trim-procedure that ensures the output is preserving. For the Edge

Dominating Set-problem, the trimming part consists of two procedures; one
for when the cut in question is a split, and one for when it is not a split. We
first present the simplest of the two, namely the one used when the cut is a split
(Trimeds-split).
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Procedure Trimeds-split

Input: S ⊆ cert(A) where (A,A) is a split
Output: S′ �A S of size |S′| ≤ O(n2).

remove from S all locally incorrect certificates
for each 0≤ x1,x2 ≤ n do
mark one certificate G′ ∈ S of minimized |E(G′)| where

x1 equals |I(G′)|, and
x2 equals

∣∣∣V (G′)∩N(A))
∣∣∣

return all the marked certificates in S

Lemma 5.20. The procedure Trimeds-split on S ⊆ cert(A) for A ⊆ V (G) where
(A,A) is a split, returns a set S′ ⊆ S so that S′ �A S and |S′| ≤ O(n2) in O∗(|S|)-
time.

Proof. The algorithm clearly does (n+1)2 number of iterations in the for-loop,
and for each of these iterations it iterates through the list S. For each element in S,
it does a polynomial amount of work, so the total runtime is O∗(|S|). Furthermore,
at most one element is marked to be put in the output at each iteration, so the
output of the algorithm is of size O(n2).

For the correctness of the algorithm, notice that for any two locally correct
certificates G1,G2 ∈ cert(A), if |I(G1)|= |I(G2)| and |V (G1)∩N(A)|= |V (G2)∩
N(A)|, then G1 preserves G2. This is because each vertex in N(A) is adjacent to
exactly the same vertices of A, and so for any set X2 ⊆ N(A), if there is a set of
edges spanning X ⊆ A and X1 ⊆ N(A), there is also a set of edges of the same
cardinality spanning X2 and X as long as |X2|= |X1|.

Now we describe the trim-procedure for when the respective cut is not a split
(Trimeds-non-split). This procedure is more complicated than Trimeds-split.
The core idea of the procedure is that when Ga+Ga+Ew ∈ ⊕(Ga,Ga) is a witness,
then also for any locally correct certificate Gi, the certificate Gi+Ga+E′

w ∈
⊕(Gi,Ga) is also a witness, as long as V (Gi)∪V (Ga) is a vertex cover of G[A,A],
E′
w spans I(Gi) and the vertices in V (Ew)∩A, and |E(Gi)|+ |E′

w| ≤ |E(Ga)|+
|Ew|.
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Procedure Trimeds-non-split

Input: S ⊆ cert(A)
Output: S′ �A S of size |S′| ≤ 3mm(A).

remove from S all locally incorrect certificates
C ← minimum vertex cover of G[A,A]
for all Q ⊆ R ⊆ C do

Ra ← R∩A
Ra ← R∩A
mark one certificate Gi ∈ S minimizing |Ei|+ |E(Gi)| where:

V (Gi)∩C =Ra,
C \ (Ra ∪A)⊆ N(V (Gi)), and
Ei ← a minimum subset of E(G[V (Gi),Ra]) spanning (I(Gi)∪Ra)\Q

(if no such Gi exists, then don’t mark any certificate)
return the set of all the marked certificates in S

Figure 5.2: As described in the proof of Lemma 5.21. The dotted lines constitute the set
EI .

Lemma 5.21. Procedure Trimeds-non-split produces a set S′ �A S of size at
most 3mm(A) in time O∗(3mm(A)|S|).
Proof. The size of S′ is apparent from the fact that we iterate through all sets
Q ⊆ R ⊆ C (at most 3mm(A) triples), and mark one certificate in S to later be put
in the output set. When deciding which certificate to mark, we possibly search
through the entire set S, and do a polynomial amount of work on each certificate
in S to check if it is the certificate that should be marked in this iteration. This
gives a total runtime of O∗(3mm(A)|S|).
By the definition of the �A-relation, we have S′ �A S if for every important

certificate Ga ∈ S and Ga ∈ cert(A) so that ⊕(Ga,Ga) contains a witness, the set
⊕(S′,{Ga}) also contains a witness.
Let Gw =Ga+Ga+Ew be a witness of ⊕(Ga,Ga). We show that the algorithm

will mark a certificate Gi so that the set ⊕(Gi,Ga) also contains a witness, thereby
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establishing the lemma. By our definition of ⊕, the set Ew is a subset of edges
from E(G[V (Ga),V (Ga)]). Let R′ be the vertices of V (Gw)∩C and let EI be the
edges of Ew where one endpoint is in C ∩A and the other endpoint is in A \C.
Note that EI must span the set I(Ga) \R′. We let Qa be the set of vertices in
R′ ∩A that are incident with edges of EI , and let Qa be the vertices of R′ ∩A not
incident with any edge in Ew (see Figure 5.2).
At the iteration of the algorithm where Q=Qa∪Qa and R=R′, the algorithm

marks a certificate Gi to be put into S′. This means for the certificate Gi there
is a set Ei ⊆ E(G[V (Gi),Ra]) spanning I(Gi)\Qa and Ra \Qa. Furthermore, we
have |Ei|+ |E(Gi)| ≤ |Ew \EI |+ |E(Ga)|, as otherwise the algorithm would prefer
marking Ga over marking Gi.
We will now show that the certificate G′

w = Gi+Ga+EI +Ei ∈ ⊕(Gi,Ga) is
a witness. To do this, it will be enough to show the following three things: (1)
V (G′

w) is a vertex cover of the original graph G, (2) |E(G′
w)| ≤ |E(Gw)|, and (3)

I(G′
w) is empty.
The first point, that V (G′

w) is a vertex cover, we get from the fact that G′
w is

a vertex cover of G[A,A] and that as both Gi and Ga are locally correct V (Gi)
and V (Ga) are vertex covers of G[A] and G[A], respectively. So, G′

w is a vertex
cover of G[A]+G[A]+G[A,A] =G.
The second point, |E(G′

w)| ≤ |E(Gw)|, holds by the following inequality.

|E(G′
w)|= |E(Gi)|+ |Ei|+ |E(Ga)|+ |EI |

≤ |E(Ga)|+ |Ew \EI |+ |E(Ga)|+ |EI |= |E(Gw)| .

What remains to prove is the third point, that I(G′
w) is empty. To do this, we

will show that each vertex in I(Gi) and I(Ga) is spanned by the edges EI+Ei. We
defined the vertices of Qa to not be incident with any edges of Ew, and we know
I(Gw) is empty, so we can conclude that Q∩I(Ga) is empty also. This means that
as Ei spans the set R∩A\Q, in fact Ei spans all the vertices of I(Ga)∩R. We
defined EI to be all the edges of Ew with endpoints in A\R, and Ew spans I(Ga),
so EI must span I(Ga)\R. From this we conclude that I(G′

w)\A is empty. Now
we must show that also I(G′

w)∩A is empty. We know Ei spans all the vertices
of I(G′

w)∩A\Qa by definition, and the set Qa is exactly the set of vertices in A
that are incident with edges of EI . So, EI ∪Ei also spans I(G′

w)∩A, and hence
I(G′

w) = ∅.

Next, we give the following lemma, which will be used directly in the join
operation of our algorithm solving t-Edge Dominating Set. It will be helpful
in reducing the number of certificates needed to ensure we have a set preserving
⊕(G1,G2) for given certificates G1 and G2. The idea behind this lemma is that
for any witness G1+G2+G3+Ew, we can substitute the set Ew with another
set E′

w spanning all the isolated vertices of G1,G2 and G3 to produce a new
witness, as long as |E′

w| ≤ |Ew|. This means that a lot of different certificates
G1+G2+Et ∈ ⊕(G1,G2) will generate a witness when combined with the same
certificate G3 as long as there is a set E′

t so that E′
t +Et spans the isolated

vertices of G1,G2 and G3. Having this in mind, we are able to limit the number
of certificates needed to preserve ⊕(G1,G2) greatly.
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Lemma 5.22. For any disjoint sets A1,A2 ⊆ V (G) and certificates G1 ∈ cert(A1)
and G2 ∈ cert(A2), we can in O∗(2sm(A1)+2sm(A2))-time compute two set families
F(G1,G2)⊆ 2V (G1) and F(G2,G1)⊆ 2V (G2) where the following holds:

1. |F(G1,G2)| ≤max
{
2sm(A1),n

}
and |F(G2,G1)| ≤max

{
2sm(A2),n

}
, and

2. there is a set S ⊆ ⊕(G1,G2) preserving ⊕(G1,G2), where for each certificate
G1+G2+Es ∈ S the set Es has V (Es)∩A1 ∈ F(G1,G2) and V (Es)∩A2 ∈
F(G2,G1).

Proof. Let A3 =A1 ∪A2. We will give a construction of the set families F(G1,G2)
and show that for any certificate Gz =G1+G2+Ez in ⊕(G1,G2), there is a cer-
tificate G′

z =G1+G2+E′
z in ⊕(G1,G2) so that G′

z �A3
Gz and that V (E′

z)∩A2 =
V (Ez)∩A2 and V (E′

z)∩A1 ∈ F(G1,G2). By similar construction and argument
for F(G2,G2), we can conclude that constraint (2.) holds for the two constructed
set families. That the two set families can be constructed within the proposed
time bound and that the size of the sets are as stated in constraint (1.) is evident
from how we are going to construct them.
Suppose for certificate Gz =G1+G2+Ez ∈ ⊕(G1,G2) there is some certificate

G3 ∈ cert(A3) so that we have a witness Gw =G1+G2+G3+Ew in ⊕(G3,Gz). Let
C be a vertex cover of G[A1,A1]. We are particularly interested in the following
three parts of Ew incident with A1 (see Figure 5.3).

• E1: the subset of edges that go from A1 ∩C to A2,

• E2: the subset of edges between A1 \C and A2 ∩C, and

• E3: the edges that go from A1 \C to A3 ∩C.

We denote by R1, R2 and R3 the endpoints A1 ∩V (E1), A2 ∩V (E2), and A3 ∩
V (E3), respectively.
As Gw is a witness, the edges in Ew must span all the isolated vertices of G1,

G2, and G3. We notice that the edges E(Gw) \ (E2 ∪E3) span all the vertices
of V (Gw) except possibly some vertices in I(G1)∪R2 ∪R3. Therefore, for any
subset E′ ⊆ E(I(G1)\R1, R2 ∪R3) spanning (I(G1)\R1)∪R2 ∪R3, it will be the
case that E(Gw)+E′ −E2 −E3 spans V (Gw). Furthermore, if |E′| ≤ |E2 ∪E3|,
then the certificate G′

z = Gw −E2 −E3+E′ will be a witness. To ensure that
constraint (2.) is satisfied, it thus suffice to ensure that the vertices in A1 adjacent
to vertices in A2 in G′

z constitute a set in F(G1,G2). For G′
z, these vertices are

exactly R1 ∪(V (E′)∩A1). What we notice is that E′ only depended on G1,R1,R2
and R3. So, if for each choice of R1, R2, and R3, we compute the E′ as we did
above, we will have made a set family satisfying constraint (2.) and which can be
computed within a polynomial factor in n of its size.
What we may now observe, is that since R1 ⊆ C ∩A1, R2 ⊆ C ∩A2 and R3 ⊆

C∩A3, the different possibilities for R1,R2 and R3 combined is at most 2|C|. This
means the size of the set family is at most 2mm(A1) and the time to compute it is
O∗(2mm(A1)).
If (A1,A1) is a split, however, it might be the case that sm(A1)<mm(A1). But

when it is a split, as the neighbourhood of each vertex in I(G1) is the same, as
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long as there is a set Si ∈F(G1,G2) of i vertices maximizing max{|Si ∩ I(G1)|} for
each i ∈ {0, . . . , |V (G1)|}, the set family F(G1,G2) satisfies constraint (2.). The
size constraint follows from the fact that we only need at most n sets Si, and
clearly we can compute the set family in the runtime stated, as it only takes
polynomial amount of time to generate Si greedily for each i.

Figure 5.3: As described in proof of Lemma 5.22. The vertices in each of the three
rectangles are subsets of the vertex cover C of A1, so these sets can be of at most 2|C|
possibilities.

Procedure Joineds

Input: S1 ⊆ cert(A1) and S2 ⊆ cert(A2)
for disjoint sets A1, A2 and A= A1 ∪A2

Output: S �A ⊕(S1,S2)

S ← ∅
for each G1 ∈ S1, G2 ∈ S2 do

V1 ← F(G1,G2) from Lemma 5.22
V2 ← F(G2,G1) from Lemma 5.22
for each X1 ∈ V1, X2 ∈ V2 do

E′ ← minimum sized subset of E(G[X1,X2]) spanning X1 ∪X2
add to S the certificate G1+G2+E′

if (A,A) is a split then return Trimeds-split(S ⊆ cert(A))
else return Trimeds-non-split(S ⊆ cert(A))



5.6 Conclusions 77

Lemma 5.23. The algorithm Joineds is correct and runs in time O∗(|S1| |S2|12k),
producing a set S of cardinality O(n2+3k) for k =max{sm(A1),sm(A2),sm(A)}.
Proof. For G1 ∈ cert(A1) and G2 ∈ cert(A2), if G∗ = G1+G2+E∗ ∈ ⊕(G1,G2)
and G′ =G1+G2+E′ where V (E′) = V (E∗), then G′ �A G∗ as long as |V (E′)| ≤
|V (E∗)|. Therefore, the set of certificates S generated in the first part of the
algorithm must preserve the set “S” from point 2. in the statement of Lemma 5.22,
which in turn implies that S �A ⊕(S1,S2). By Lemma 5.20 and Lemma 5.21 this
means the output of the algorithm is a set of size at most n2+3sm(A) that preserves
⊕(S1,S2).
From Lemma 5.22, for each pair of certificates, it takes O∗(2k) time to

compute F(G1,G2) and F(G2,G1), and for each pair we generate at most
|F(G1,G2)| |F(G2,G1)| certificates. So, before the call to one of the Trimeds-
procedures, the algorithm uses O∗((22k) |S1| |S2|)-time and S contains at most
(22k) |S1| |S2| certificates. The total runtime, including the call to the re-
spective Trimeds-procedure, must then by Lemma 5.20 and Lemma 5.21 be
O∗(3k22k |S1| |S2|).
Theorem 5.24. Given a graph G and branch decomposition (T,δ) of sm-width k,
we can solve Edge Dominating Set in time O∗(35k).

Proof. In Lemma 5.23 we showed that the procedure Joineds is correct and runs
in time O∗(|S1| |S2|12k), producing a set S of cardinality O(n2+3k). So, using
Recursive with Joineds, we know the size of both of the inputs of Joineds is at
most the size of its output, i.e., |S1|, |S2| ≤ O∗(35k). So, each call to Recursive

has runtime at most O∗(3k). As there are linearly many calls to Recursive and
there is a polynomial time verifier for the certificates Recursive produces, by
the definition of �, the total runtime is also bounded by O∗(35k). To solve Edge

Dominating Set, we run the t-Edge Dominating Set algorithm for all values
of t ≤ n and hence this is also solvable in O∗(35k) time as we exclude polynomials
of n.

With a rough analysis of the runtimes of this section in terms also of n, we get
a total runtime of O(35kn4+3kn10) for solving Edge Dominating Set.

5.6 Conclusions
We have given FPT algorithms, parameterized by split-matching-width, for part
[P2] of the structural DP-scheme for four basic problems that cannot be FPT pa-
rameterized by clique-width unless FPT=W[1]. In combination with the results
on [B] of Chapter 4, saying that we in FPT time can construct a branch decom-
position of sm-width only a constant factor from the optimal, we have [P1] and
[P2] of the structural DP-scheme, yielding complete FPT algorithms for all of the
four problems on any input graph G.

Corollary 5.25. Given a graph G of sm-w(G) = k, we can solve Hamiltonian

Cycle, MaxCut, and Edge Dominating Set in 2O(k)nO(1) time, and we can
solve Chromatic Number in kO(k)nO(1) time.
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In fact, the runtimes of Corollary 5.25 for all the four problems are optimal
under the Exponential Time Hypothesis [67, 68]1, in the sense that we cannot
change any O into o.
This concludes the second case study, as we have now looked at [C] and in

Chapter 4 looked at [A] and [B].

1The optimality of Edge Dominating Set under ETH follows follows from looking at the NP-
hardness reduction from 3-SAT to a restricted version of 3-SAT where each variable occurs at most 3
times [104], and the NP-hardness reduction from the restricted version of 3-SAT where each variable
occurs at most 3 times to Edge Dominating Set in bipartite graphs of maximum degree 3 [108]. The
resulting Edge Dominating Set instance G resulting of applying these two reductions on 3-SAT

formula φ has its number of vertices bounded by a constant factor c times the number of variables in φ.
So, any 2δnnO(1) algorithm for Edge Dominating Set implies a 2δcnnO(1) algorithm for 3-SAT.



Chapter 6

On the hardness of computing
optimal decompositions

We have seen how branch decompositions serve as a general decomposition that
is well suited for dynamic programming. This is under the assumption that the
f -width of the decomposition, for the corresponding function f is low. In this
chapter, we will look at situations where finding a branch decomposition of opti-
mal f -width is intractable. In these cases we should rather find good approxima-
tions to the best decomposition, such as what we did for split-matching-width in
Chapter 4.

6.1 Hardness of branch decompositions

Some of the most studied, and well known width parameters; treewidth, clique-
width, branch-width and rank-width, are all NP-hard to compute [4, 39, 76, 97].
Treewidth, branch-width and rank-width can all be computed in FPT time,
whereas it is a long-standing open problem if computing clique-width is FPT
or W[1]-hard. In contrast, for the parameters maximum matching-width, split-
matching-width, boolean-width and mim-width, no hardness results have been
shown. In this chapter, we show that both mim-width and boolean-width are NP-
hard to compute and also that mim-width is W[1]-hard. To our knowledge, this is
the first width parameter of graphs based on non-linear1 decompositions that have
been shown to beW[1]-hard to compute. As opposed to maximummatching-width
and split-matching-width, the cut-functions of both boolean-width and mim-width
are known to be NP-hard to compute. This is what allows us to show that both
boolean-width and mim-width are NP-hard to compute. We give a reduction from
deciding the value of these cut-functions on a given vertex subset to the problem
of deciding boolean-width and mim-width, respectively. This reduction is not only
applicable to boolean-width and mim-width, but to all width parameters based
on branch decompositions over the vertex set of a graph where the cut-function
in question satisfies certain constraints. One of these constraints being that the

1We say that a decomposition is a linear decomposition if the underlying structure of the decomposition
is a linear ordering or a path, as opposed to a tree. An example of a parameter based on a linear
decomposition which is W-hard to compute is the bandwidth of a graph [15, 37].
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value of the cut function should not increase when adding a twin vertex to the
graph.
Our reduction preserves the parameter to within a constant factor of the orig-

inal decision problem. Many parameterized hardness results will therefore also
translate to parameterized hardness of the width parameter in question. For in-
stance we get W[1]-hardness of computing mim-width, and that no polynomial
time constant factor approximation for mim-width can exist (unless NP=ZPP), be-
cause of similar hardness results for computing the mim-width of any particular
cut.
The main result of this chapter is Theorem 6.1, which follows from Lemma 6.5

and 6.8 described later. Using this theorem, we are able to show hardness results
of computing f -width for any cut-function f from a large class of functions we
name C-satisfying cut-functions, as long as computing f on a single cut is hard.
The graph GA

k is a specific graph constructible in polynomial time and is described
in detail in Section 6.3.

Theorem 6.1. Given a graph G, a subset A⊆ V (G), a C-satisfying cut function f
and a non-negative number k ∈R, the graph GA

�k�+1 has f -width at most k+�k�+1
if and only if fG(A) is at most k.

So given a graph G and subset A ⊆ V (G), answering the question “is fG(A)≤
k?” can be done by instead answering the question “for t= �k�+1, does GA

t have
f -width at most k+ t?”
Using Theorem 6.1 in combination with known NP-hardness results for count-

ing the number of Maximal Independent Sets in a bipartite graph G[A,A] (equiv-
alent to counting nec1(A), by Rabinovich et al. [83]) by Provan and Ball [82], and
deciding the size of a maximum induced matching in a bipartite graph G[A,A]
(equivalent to computing mim(A)) by Cameron [24], we get the following corollary.

Corollary 6.2. Both deciding the mim-width of a graph, and deciding the boolean-
width of a graph is NP-hard.

By Moser and Sikdar [73] finding a maximum induced matching in a bipartite
graph is W[1]-hard, which gives the following corollary.

Corollary 6.3. Deciding the maximum induced matching-width of a graph is W[1]-
hard.

By Elbassioni et al. [38], deciding the size of a maximum induced matching
in a bipartite graph is not in APX unless NP=ZPP, which gives us the following
corollary.

Corollary 6.4. There is no polynomial time algorithm for approximating the
mim-width of a graph to within a constant factor of the optimal, unless NP=ZPP.

6.2 Terminology
In this section, we give some terminology local to this chapter. The definitions
used here will not be used elsewhere in the thesis.
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For a grid graph G, we denote by Ci and Ri its i-th column and row, respec-
tively. A subdivided grid graph is a graph resulting from replacing each edge uv in
a grid by a vertex vuv with neighbourhood NG(vuv) = {u,v}. In this chapter, we
refer to the vertices added by this operation as sub-vertices. The non sub-vertices
we refer to as cell-vertices. For a subdivided grid, we denote by Ci and Ri the same
set of vertices as Ci and Ri denote in the original grid graph (i.e., cell-vertices).
For a set of cell-vertices X, we denote by sub(X) the set of sub-vertices adjacent
to exactly two vertices of X. For two sets X1,X2 of cell-vertices, we denote by
sub(X1,X2) the set of sub-vertices with one neighbour in X1 and one neighbour
in X2. For a column Ci, we call sub(Ci)∪Ci the sub-column of Ci.

6.3 Deciding cut value through graph width
In this section we will show that we can reduce the problem of deciding the value
of a cut-function f on a cut to the problem of deciding the f -width of a graph
(Theorem 6.1).
The idea of how to achieve such a reduction is that we construct, based on

the input graph G and cut (A,B), a new graph consisting of a subdivided grid
of known f -width, and attach copies of A to the left-hand side of the grid, and
copies of B to the right-hand side of the grid. The grid will enforce the existence
of a cut separating A from B in any optimal decomposition, making us able to
deduce the value of fG(A,B).
In order to enforce a cut such as mentioned above, we cannot allow all kinds of

cut-functions. In fact, we need our cut-functions to satisfy the following five con-
straints in order to work. However, these constraints are upheld by cut functions
of many known through branch decompositions. If a cut function satisfies the be-
low constraints C, we say that it is a C-satisfying cut-function. The constraints C
are as follows, and must hold for any graph G and any set S ⊆ V (G):

1. fG(S) = fG(S) and fG(S) depends only on the unlabeled graph G[S,S].

2. fG(S) is zero if G[S,S] has no edges and at least one otherwise.

3. Removing a vertex x ∈ S from G does not increase fG(S), and reduces fG(S)
by at most one.

4. If G[S,S] is the disjoint union of G1 = G[A1,B1] and G2 = G[A2,B2], then
fG(S) = fG1(A1)+fG2(A2).

5. If v ∈ S has a twin vertex in G[S,S], then fG(S) = fG−v(S).

On most known width parameters defined using branch decompositions over
V (G), all but the last constraint is upheld, as they are natural properties that
come as a result of wanting to measure how many objects of a certain kind lie
between the two parts of a cut. The last constraint is the only real limitation of
the cut-parameters we investigate.
As a result of the four first constraints, any C-satisfying cut function f on

A⊆ V (G) will always have value at least as large as a maximum induced matching
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M in G[A,A] (i.e. f(A)≥mim(A)), since removing all vertices other than those
in M does not increase the f -value, and we then have |M | disjoint graphs of at
least one edge, implying an f -value of at least |M |.
Some examples of cut functions that are C-satisfying are the cut functions of

the width-parameters mim-width, boolean-width, and rank-width.
To prove Theorem 6.1 we show that given a graph G, a cut A and non-negative

integer k, we can in polynomial time construct the graph GA
k having f -width no

more than k+fG(A) and no less than min{2k,k+fG(A)}. This upper and lower
bound is proved by Lemma 6.5 and Lemma 6.8, respectively. Let us now look at
how the graph GA

k is defined.

The graph GA
k . Given a graph G, a cut (A,B = A) of G and an integer k, we

construct GA
k as follows. We first start with a subdivided grid G′ of height k and

width 6k. Then, for each vertex a ∈ A, we add to GA
k a set Sa of k vertices, and

let SA =
⋃
a∈ASa. Similarly, for each vertex b ∈ B, we add to GA

k a k-vertex set Sb

and let SB denote the union
⋃
b∈B Sb. Then, for each a ∈ A we add edges making

up a matching between the vertices of Sa and the set C1 of G′ and for each b ∈ B
a matching between Sb and C6k. Now we add edges between the vertices of SA

and SB in such a manner that the induced subgraph on SA∪SB will be the graph
G[A,B] with the addition that each vertex has k − 1 extra twins. That is, we
add the edges E′ = {uv : u ∈ Sa,v ∈ Sb,a ∈ A,b ∈ B}. So, the vertices of GA

k are
V (GA

k ) = V (G′)∪SA ∪SB and the edges are E(G′)∪E′ plus a matching from Sa

to C1 for each a ∈ A, and a matching from Sb to C6k for each b ∈ B.

. . .

Figure 6.1: The graph GA
4 for some set A ⊂ V (G) so that |A|= |A|= 5. Edges between

SA and SA are omitted in this figure.

We now show the first part of proving Theorem 6.1, namely upper bounding
the f -width of GA

k .

Lemma 6.5. Given a graph G and subset A ⊆ V (G), the f -width of GA
k for a

C-satisfying cut function f is at most fG(A)+k, for any non-negative integer k.

Proof. Let B = V (G) \ A. The way we construct our decomposition will be
to (in an arbitrary way) decompose SA by itself, SB by itself, and each Ci,
sub(Ci), and sub(Ci,Ci+1) by themselves, and then in a specific way combine
them together by attaching each of the decomposition trees to a distinct node
in a path of length 18k − 2 (one node for all but two of the smaller decompo-
sition trees). We attach the decomposition trees to the path by, from left to
right, attaching the decompositions of the sets of the subdivided grid in the or-
der C1,sub(C1),sub(C1,C2),C2,sub(C2), . . . ,C6k. Then attach the decomposition
tree of SA to the leftmost node of the path (which is also attached to the decom-
position tree of C1), and attach the decomposition tree of SB to the rightmost
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C1 sub(C1)

sub(C1, C2)

C2 sub(C2)

sub(C6k−1, C6k)

C6k sub(C6k)

SA SA

. . .

Figure 6.2: A high-level view of the decomposition of width at most fG(A)+k described
in Lemma 6.5.

node of the path (which is also attached to the decomposition tree of C6k). See
Figure 6.3.
We now argue that the width of this decomposition is at most fG(A)+k. First

notice that since N(SA)\C1 ⊆ SB, we have by the constraints in C that f(SA)≤
f(SA,SB)+ |C1|= f(SA,SB)+k. Furthermore, as G[SA,SB] is isomorphic to the
graph G[A,B] with a lot of twins added, by C we have f(SA,SB) = fG(A). So,
f(SA) ≤ fG(A)+ k. The same holds for SB. As SA ∩N(SA) = SB ∩N(SB) = ∅,
we also have ∀S ⊆ SA : f(S)≤ f(SA) and ∀S ⊆ SB : f(S)≤ f(SB). So all the cuts
induced by the decompositions made for SA and SB themselves have low enough
f -width. For each of the remaining sets we made decomposed by themselves all
have size at most k, so the width is also at most k from the constraints in C.
Now we prove that the cuts induced by the edges of the path we attached

all the smaller decompositions to also have low enough f -width. Each such cut
(other than (SA,SA) and (SB,SB)) will be of the form (SA ∪Y1,Y2 ∪SB) where
Y1 and Y2 are vertices of the subdivided grid. If we look at the set Y1, the set
of vertices Z ⊆ Y1 that have neighbours in Y2 is either only a set Ci or a set
sub(Ci,Ci+1). Therefore, as each such set has size at most k, by C we get the
inequalities f(SA∪Y1,Y2 ∪SB)≤ f(SA,SB)+ |Z| ≤ fG(A)+k. This completes the
proof, as each cut will have f -width at most fG(A)+k.

What remain now in order for proving Theorem 6.1, is to lower bound the
f -width of GA

k . To do that, we show that for any branch decompositions, there
must be a cut of at least a specific width. However, to prove such a thing we
need to know a little bit more about the structure of a branch decomposition. For
this purpose we have Proposition 6.6 and Lemma 6.7, which enforces a certain
structure to any branch decomposition that could possibly contradict the lower
bound we aim for in Lemma 6.8.

Proposition 6.6. For a subdivided grid G, an integer t and cut (X1,X2), if for
t distinct sub-columns C we have that for all C in C it holds that C ∩X1 �= ∅ and
C ∩X2 �= ∅, then mim(X1,X2)≥ t.

Proof. Since (X1,X2) is a bipartition of V (G), each vertex in the graph is either
in X1 or X2. Therefore, as each of the sub-columns in C contain a vertex in X1
and a vertex in X2, there must be a pair of adjacent vertices of each of the t
sub-columns so that one is in X1 and one is in X2. As no two sub-columns are
adjacent to each other, this means we have an induced matching of size t in the
bipartite graph G[X1,X2] and hence mim(X1,X2)≥ t.
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Lemma 6.7. Let f be a C-satisfying cut function and D a branch decompo-
sition of a subdivided h × w-grid G. If the f -width of D is less than 2h and
w ≥ 6h, then there exists a cut (X1,X2) in D for which there are four sub-columns
C ′
i1,C

′
i2,C

′
i3,C

′
i4 where C ′

i1 ∪C ′
i2 ⊆ X1 and C ′

i3 ∪C ′
i4 ⊆ X2.

Proof. Let C ′
i be the i-th sub-column. That is, C ′

i = sub(Ci)∪Ci, and let C ′ be
the union of all C ′

i for 1 ≤ i ≤ w. We recall from Lemma 4.8 of Chapter 4 that
there must be a cut (X1,X2) so that |C ′ ∩X1|, |C ′ ∩X2| ≥

⌊
1
3 |C ′|

⌋
. In particular,

at least 2h of the sub-columns contain a vertex of X1 and at least 2h contain
a vertex of X2. In fact, if one sub-column contain a vertex of both X1 and of
X2, the number of sub-columns containing a vertex of X1 must be strictly more
than 2h and the number of sub-columns containing vertices of X2 strictly more
than 2h. By Poroposition 6.6, the number of sub-grids that contain vertices of
both X1 and X2 (simultaniously), is less than 2h, so there will always be at least
two sub-columns C ′

i1 and C ′
i2 subset of X1 and sub-columns C ′

i3 and C ′
i4 subset of

X2.

Lemma 6.8. Given a graph G, a non-negative integer k and subset A ⊆ V (G),
for any C-satisfying cut function f we have f(GA

k )≥min{2k, fG(A)+k}.

}Q2 }Q1}Q1

Figure 6.3: The four columns (marked in grey) mentioned in the proof of Lemma 6.8 act
as a separator between the parts Q1 and Q2 depicted. (Again, edges from SA to SA are
omitted from the drawing.)

Proof. Let t = fG(A) and B = A, and G′ be the subdivided grid of GA
k . Let C ′

be the set of all sub-columns C ′ = C ′
1 ∪C ′

2 ∪ . . .C ′
6k of G′. Suppose for contra-

diction there is a branch decomposition D of f -width less 2k and fG(A). Then
f(D) < 2k, and by Lemma 6.7, there must be a cut (X1,X2) in D so that two
sub-columns C ′

l1,C
′
l2 and two sub-columns C

′
r1,C

′
r2 are subsets of X1 and X2, re-

spectively. Without loss of generality let l1 < l2, r1, r2 and let r1 < r2. Since
f(X1,X2) < 2k, we must have l2 < r1, as otherwise we have two disjoint induced
subgrids from column l1 to r1 and one between l2 and r2, both of width at least
k by Proposition 6.6, which by the constraints C implies a total width of at least
2k. So we have l1 < l2 < r1 < r2.
Let Z be the vertices between (but not including) C ′

l1 and C ′
l2 and between C ′

r1
and C ′

r2 in G′. In the graph GA
k −Z we have at least two connected components

(possibly three if E(G[A,A]) = ∅). Let Q2 be the vertices of the same component
as C ′

l2 in GA
k −Z and let Q1 be the vertices of the remaining component(s) (Q1 =
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V (GA
k ) \ (Z ∪Q2)), as depicted in Figure 6.3. We will now show that the width

of GA
k is at least k+ f(A) by first showing that the cut (X1 ∩Q2,X2 ∩Q2) has

f -value at least k and then that (X1 ∩Q1,X2 ∩Q1) has f -value at least fG(A).
We notice that the induced subgraph GA

k [Q2] is a subdivided grid of height k
with one column only containing vertices of X1 (namely Cl2) and one column only
containing vertices only of X2 (namely Cr1). By regarding columns as rows and
rows as columns, we can see that GA

k [Q2] is also isomorphic to a subdivided grid of
width k where all sub-columns contain at least one vertex from X1 and one vertex
from X2. By Proposition 6.6, this means the mim-value of (X1 ∩Q2,X2 ∩Q2) is
at least k.
Now we show that f(X1 ∩Q1,X2 ∩Q1)≥ fG(A). Notice that if for any a ∈ A

we have Sa ⊆ X2 then there will be k induced paths from Sa ⊆ X2 to Cl1 ⊆ X1,
implying the mim-value, and hence f -value, of (X1 ∩Q1,X2 ∩Q1) to be at least
k. Likewise, if f(X1 ∩Q1,X2 ∩Q1)< k, then for all b ∈ B be must have Sb �⊆ X1,
as otherwise we have k induced paths from Cr2 ⊆ X2 to Sb ⊆ X1. As a result, for
each a ∈ A and b ∈ B there must be a vertex a′ ∈ Sa ∩X1 and b′ ∈ Sb ∩X2. Let
A′ and B′ be the set of one such a′ and b′ for each a ∈ A and b ∈ B, respectively.
The way we constructed GA

k , a vertex a′ ∈ A′ is adjacent to b′ ∈ B′ if and only if
a is adjacent to b in G, so G[A,B] is isomporhic to GA

k [A′ ⊆ X1,B
′ ⊆ X2]. This,

in turn, implies that f(X1 ∩Q1,X2 ∩Q1)≥ fG(A) just as we wantet to show.
From this we can conclude that either the width of D is at least 2k, or there

is a cut in D of width at least k+fG(A).

This completes the part of proving Theorem 6.1, as we now have a bound on
the f -width of GA

k by k+ fG(A) from above and min{2k,k+ f(G)} from below.
When we know fG(A)<k we thus have a strict bound of fG(A)+k for the f -width
of GA

k .
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Chapter 7

Faster algorithm for [σ,ρ]-problems

In this chapter, we investigate a set of parameterized problems already known
to be FPT. Namely, the class of [σ,ρ]-partition problems parameterized by clique-
width and parameters of the same modelling power as clique-width. As mentioned
in Section 2.3.3, the best known runtimes for these problems is achieved by the use
of a general algorithm of Bui-Xuan et al. [23] that requires a branch decomposition
given as part of the input. This branch decomposition approximates the optimal
rank-width. However, as we see in this chapter, by instead finding a branch
decomposition approximating a parameter which is a modification of rank-width,
called Q-rank-width we end up with a faster total runtime in terms of clique-
width.
Note, however, that if we compare rank-width with Q-rank-width directly, for

the points [A], [B], and [C], we see that for the parameterized runtimes of this new
algorithm parameterized by Q-rank-width and the former alorithm parameterized
by rank-width, neither of them are strictly better than the other. This is because
rank-width can be better than Q-rank-width in terms of [A], while Q-rank-width
is better than rank-width in terms of [C].

7.1 Introduction

Clique-width is a well-studied parameter in parameterized complexity theory. It
is therefore interesting to be able to expand our knowledge on the parameter
and to improve on the preciseness of problem complexity when parameterizing by
clique-width. For the definition of clique-width, see Section 1.1.
Courcelle, Makowsky, and Rotics [31] showed that, for an input graph of clique-

width at most k, every problem expressible in MSO1 (monadic second-order logic
of the first kind) can be solved in FPT time parameterized by k if a k-expression for
the graph is given together with the input graph. Later, Oum and Seymour [79]
gave an algorithm to find a (23k+2 −1)-expression of a graph having clique-width
at most k in time 23knO(1).1 By combining these results, we deduce that for an
input graph of clique-width at most k, every MSO1 problem is in FPT, even if a
k-expression is not given as an input. However the dependency in k is huge and

1Later, Oum [76] obtained an improved algorithm to find a (23k −1)-expression of a graph having
clique-width at most k in time 23knO(1).
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can not be considered of practical interest. In order to increase the practicality of
FPT algorithms, it is very important to control the runtime as a function of k.
If we rely on finding an approximate k-expression first and then doing dynamic

programming on the obtained k-expression, we have two ways to make improve-
ments; either we improve the algorithm that uses the k-expression, or we find
a better approximation for clique-width. Given a k-expression, Independent
Set and Dominating Set can be solved in time 2knO(1) [52] and 4knO(1) [11],
respectively. Lokshtanov et al. [67] show that unless the Strong ETH fails, Domi-

nating Set can not be solved in (3−ε)knO(1) time even if a k-expression is given2.
Hence, there is not much room for improvement in the existing algorithms when
a k-expression is given.
There are no known FPT algorithms for computing optimal k-expressions, and

the best known FPT algorithm for approximating an optimal k-expression via
rank-width has an approximation ratio which is exponential in the optimal clique-
width [76]. Therefore, even for the simple NP-hard problems such as Indepen-
dent Set and Dominating Set, all known algorithms following this procedure
have a runtime where the dependency is double exponential in the clique-width.
The question of finding a better approximation algorithm for clique-width is an
important and challenging open problem.
However, there is a way around this by avoiding a k-expression: Bui-Xuan,

Telle and Vatshelle [21] showed that by doing dynamic programming directly on
a rank decomposition, Dominating Set can be solved in 2k2

nO(1) for graphs
of clique-width k. Their algorithm with a runtime of 2O(k2)nO(1) is not only for
Independent Set and Dominating Set but also for a wide range of problems,
called the [σ,ρ] partition problems. Tables 7.1 and 7.2 list some well known [σ,ρ]
partition problems.
In this chapter we improve on these results by using a slightly modified def-

inition of rank-width, called Q-rank-width, based on the rank function over the
rational field instead of the binary field. The idea of using fields other than the bi-
nary field for rank-width was investigated earlier in [62], but our work is the first
to use Q-rank-width to speed up an algorithm.
We will show the following:
• For any graph, its Q-rank-width is no more than its clique-width.
• There is an algorithm to find a decomposition confirming that Q-rank-width
is at most 3k+1 for graphs of Q-rank-width at most k in time 23knO(1).

• If a graph has Q-rank-width at most k, then every fixed [σ,ρ] partition
problem can be solved in 2O(k logk)nO(1)-time.

This allows us to construct an algorithm that runs in time 2O(k logk)nO(1) for graphs
of clique-width at most k and solve every fixed [σ,ρ] partition problem, improving
the previous runtime 2O(k2)nO(1) of the algorithm by Bui-Xuan et al. [23].
We also relate the parameterQ-rank-width to other existing parameters. There

are several factors affecting the quality of a parameter, such as: Can we compute
2Their proof uses pathwidth, but the statement holds since clique-width is at most 1 higher than

pathwidth.
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d(π) Standard name
d d-Dominating set

d+1 Induced d-Regular Subgraph

d Subgraph of Min Degree ≥ d
d+1 Induced Subgraph of Max Degree ≤ d
2 Strong Stable set or 2-Packing
2 Perfect Code or Efficient Dominating set

2 Total Nearly Perfect set

2 Weakly Perfect Dominating set

2 Total Perfect Dominating set

2 Induced Matching

2 Dominating Induced Matching

2 Perfect Dominating set

1 Independent set

1 Dominating set

1 Independent Dominating set

1 Total Dominating set

Table 7.1: A table of some vertex subset properties whose optimization problems are
[σ,ρ] partition problems. The meaning of the problem specific constant d(π) is discussed
in subsection 7.2.2.

d(π) Standard name
1 H-coloring or H-homomorphism

1 H-role assignment or H-locally surjective homomorphism

2 H-covering or H-locally bijective homomorphism

2 H-partial covering or H-locally injective homomorphism

Table 7.2: A table of some homomorphism problems that are also [σ,ρ] partition problems
for fixed simple graph H. These are expressible with a degree constraint matrix Dq where
q(π) = |V (H)|. The meaning of Dq, d(π) and q(π) is explained in subsection 7.2.2.
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or approximate the parameter? Which problems can we solve in FPT time? Can
we reduce the exponential dependency in the parameter for specific problems?
And, how large and natural is the class of graphs having a bounded parameter
value?
This chapter is organized as follows: In Section 7.2 we introduce the main parts

of the framework used by Bui-Xuan et al. [23], including the general algorithm
they give for [σ,ρ] partition problems. Section 7.3 revolves around Q-rank-width
and is where the results of this chapter reside. We show how Q-rank-width relates
to clique-width, and reveal why we have a good FPT algorithm for approximating
a decomposition. In Section 7.4, we give our main result, which is an improved
upper bound on solving [σ,ρ] partition problems parameterized by clique-width
when we are not given a decomposition. We end the chapter with Section 7.5
containing some concluding remarks and open problems.

7.2 Framework

The algorithm of Bui-Xuan et al. [23] requires a branch decomposition as input,
and has a running time depending on the necd-width of the decomposition. Here
the value of d depends on which of the [σ,ρ] partition problems are being solved.
The definition of the class of [σ,ρ] partition problems is not used directly in this
chapter, but for completeness we give the definitions in Subsection 7.2.2. Before
this let us recall the definition of necd-width.

7.2.1 Neighbourhood Equivalence and necd

Two sets of vertices S1,S2 are neighbourhood equivalent if they have the same set
of neighbours, in other words, N(S1) =N(S2). We are particularly interested in
neighbourhood equivalence in bipartite graphs, or more specifically, cuts defined
by a branch decomposition. This concept was generalized with respect to cuts
in [23]. We define the d-neighbour equivalence relation ≡d

A, and use this to define
the parameter necd.
For a cut

(
A,A

)
of a graph G, and a positive integer d, two subsets X,Y ⊆ A

are d-neighbour equivalent, X ≡d
A Y , over

(
A,A

)
if:

for each vertex v ∈ A, min{d, |N(v)∩X|}=min{d, |N(v)∩Y |}.

The number of d-neighbour equivalence classes, necd(A), is the number of equiv-
alence classes of ≡d

A over
(
A,A

)
.

In other words, X ≡d
A Y over the cut

(
A,A

)
if each vertex in A is either

adjacent to at least d vertices in both X and Y , or is adjacent to exactly the same
number of vertices in X as in Y . The algorithm in [23] uses this relation to limit
the number of partial solutions to try. Therefore, the runtime is dependent on
the number of d-neighbour equivalence classes.
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Figure 7.1: The sets S1 and S2 are neighbourhood equivalent over
(
A,A

)
. That is,

S1 ≡1
A S2. However, in this example it is not the case that S1 ≡2

A S2.

7.2.2 Locally Checkable Vertex Subset and Vertex Partitioning
Problems

Telle and Proskurowski [101] introduced the [σ,ρ]-problems, also called Lo-
cally Checkable Vertex Subset and Vertex Partitioning problems (LC-VSP), and
Dq-partition problems (see below for the meaning of Dq). This is a framework to
describe many well-known graph problems, see [23, 101]. Tables 7.1 and 7.2 list
some of them.
For finite or co-finite sets σ and ρ of non-negative integers, a set S of vertices

of a graph G is a [σ,ρ]-set of G if for each vertex v of G,

|N(v)∩S| ∈
⎧⎨
⎩σ if v ∈ S,

ρ if v ∈ V (G)\S.
The [σ,ρ]-problems are those problems that consist of finding a minimum or max-
imum [σ,ρ]-set of the input graph.
The [σ,ρ] partition problems, or LC-VSP problems or Dq-partition problems, is

a generalization of the [σ,ρ]-problems. A degree constraint matrix Dq is a q × q
matrix such that each cell is a finite or co-finite set of non-negative integers. We
say that a partition V1,V2, . . . ,Vq of V (G) satisfies Dq if for 1≤ i, j ≤ q, the number
of neighbours in Vj of a vertex of Vi is in the set Dq[i, j]. In other words,

|N(v)∩Vj| ∈ Dq[i, j] for all 1≤ i, j ≤ q and v ∈ Vi.

For a given degree constraint matrix Dq, the [σ,ρ]-partition problem is to decide
whether the vertex set of a graph admits a partition satisfying Dq.
For each [σ,ρ]-partition problem π, there are two problem-specific constants

d(π) and q(π). The number q(π) equals the number of parts in a partition that the
problem requests, or equivalently, the row/column size of the constraint matrix
(i.e., for problem π with degree constraint matrix Dq we have q = q(π). The
number d(π) is defined to be one more than the largest number in all the finite
sets and in all the complements of the co-finite sets of the degree constraint matrix
used for expressing π. If all the finite sets and complements of co-finite sets are
empty, d(π) is zero.
For example,Dominating Set can be described by a degree constraint matrix

D2 where D2[1,1] =D2[1,2] =D2[2,2] = N and D2[2,1] = N\ {0}, and we ask to
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minimize |V1|. If we alterD2[1,1] to {0}, the problem is changed to Independent
Dominating Set, as no vertex in V1 can be adjacent to another vertex in V1.
For both problems we have a 2×2-matrix, and so q(π) = 2 and d(π) = 0+1 = 1.
The algorithm of Bui-Xuan et al. [23] solves each of the [σ,ρ] partition problems

with a runtime dependent on necd(π)-width and q(π) by using the d-neighbour
equivalence relation ≡d(π)

A .
Theorem 7.1 (Bui-Xuan et al. [23, Theorem 2]). Let π be a [σ,ρ] partition prob-
lem. For a graph G given with its branch decomposition of necd(π)-width k, the
problem π can be solved in time O

(
|V (G)|4 · q(π) ·k3q(π)

)
.

7.3 Q-rank-width of a Graph
For a graph G, the Q-cut-rank function is a cut function on V (G) that maps
X ⊆ V (G) to the rank of an |X| ×

∣∣∣X ∣∣∣-matrix A = (aij)i∈X,j∈X over the rational
field such that aij = 1 if i and j are adjacent in G and aij = 0 otherwise. We let
cutrkQ(X) denote the Q-cut-rank of X. For a subset X ⊆ V (G), the matrix A

associated with cutrkQ(X) is the adjacency matrix of the cut
(
X,X

)
. Note that

if the underlying field of the matrix A is the binary field GF (2), then we obtain
the definition of the usual cut-rank function [79]. By Q-rank-width of a graph
G, we mean the Q-cut-rank-width over V (G). We may denote the Q-rank-width
simply as rwQ.

⎛
⎜⎜⎜⎜⎜⎜⎝

A

1 1 0 0
0 1 1 0

A 0 0 1 1
0 1 1 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

Figure 7.2: The adjacency matrix of the cut depicted in Figure 7.1. The rank over the
rational field is 4, so the Q-cut-rank of this cut is 4.

Since the Q-cut-rank function is symmetric submodular and is computable
in polynomial time, by applying Theorem 3.1 of Oum and Seymour, we get the
following theorem.
Theorem 7.2 (Oum and Seymour [79]). There is a 23knO(1)-time algorithm for
which, given a graph G as input and a parameter k, either outputs a branch
decomposition for G of Q-rank-width at most 3k+1 or confirms that Q-rank-width
of G is more than k.

7.3.1 Q-rank-width versus clique-width/rank-width
The question of how useful the Q-rank-width is as a width parameter is hard to
answer. To better understand this question, it would be interesting to know the
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relation to other well-known width parameters such as treewidth, rank-width and
clique-width.
The following relatesQ-rank-width to the closely related parameter rank-width,

yet we see that rank-width can be substantially lower than Q-rank-width.

Lemma 7.3. For any graph G we have rw(G)≤ rwQ(G)≤ cw(G)≤ 2rw(G)+1 −1.
Proof. The first inequality is from the fact that a set of 0-1 vectors linearly de-
pendent over Q must also be linearly dependent over GF (2).
The second and third inequalities follow from [79, Proposition 6.3] since their

proof is not dependent on the type of field rank-width uses. They show that a
k-expression can be translated to a branch decomposition where for every cut(
A,A

)
in the decomposition, either the number of distinct rows or the number

of distinct columns in the adjacency matrix M of its induced bipartite graph, is
bounded by k. Since this means the rank of M over Q is at most k, we have
rwQ(G) ≤ cw(G). The idea of showing cw(G) ≤ 2rw(G)+1 − 1, is that a branch
decomposition where the adjacency matrix of each cut has its number of distinct
columns/rows (approximately) bounded by some k, can be translated to a k-
expression. As the number of distinct columns/rows for any 0-1 matrix of rank
rw is at most 2rw, we get our inequality. The last two inequalities are also proved
in [62].

We believe Lemma 7.3 is tight. There are existing results showing that it is
almost tight. A n×n grid has rank-width n− 1 [59] and clique-width n+1 [51],
hence the first two inequalities are almost tight. There exist graphs with treewidth
k and hence Q-rank-width at most k and clique-width at least 2�k/2�−1 [28].

7.3.2 Q-rank-width versus treewidth/mm-width
Oum [77] proved that the rank-width of a graph is less than or equal to its
treewidth plus 1. We prove a similar result for Q-rank-width, using maximum
matching-width as an intermediate parameter between treewidth and Q-rank-
width that lets us focus only on the relation between two cut functions instead
of entire decompositions. Recall Theorem 2.1 from Chapter 3 by Vatshelle [107]
stating that for any graph G, its optimal mm-width is at most tw(G)+1. Based
on this, we will prove that also the optimal Q-rank-width is at most tw(G)+1,
by showing that for any X ⊆ V (G) the cutrkQ(X) is upper bounded by mm(X).

Theorem 7.4. Let G be a graph, then rwQ(G)≤mm-w(G)≤ tw(G)+1.
Proof. The last inequality we know from Theorem 2.1, and the first inequality
follows by the exact same arguments as the proof of Proposition 4.2, since that
proof did not rely on the underlying field.

Figure 7.3 shows a comparison diagram of graph parameters. The idea of such
a diagram is that parameterized complexity results will propagate up and down
in this diagram. Positive results propagate upward; for instance, since Domi-

nating Set is solvable in 2O(tw)nO(1) for a graph of treewidth tw [100], we see
that Dominating Set is solvable in 2O(pw)nO(1) for a graph of pathwidth pw.
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FVS

OCT

D2ProperInterval

D2Interval

D2Chordal

D2Perfect

boolean-width

rank-width

clique-width

pathwidth

treewidth

Q-rank-width

Figure 7.3: A comparison diagram of some graph parameters. A parameter κ1 is drawn
below a parameter κ2 if there is a constant c such that κ1(G)≤ c ·κ2(G) for all graphs G
(this does not mean the modelling power of κ1 and κ2 are different from each other). The
abbreviations are: FVS = Feedback Vertex Set number, OCT = Odd Cycle Transversal
number, D2Π = Vertex Deletion distance to a member of Π. For the parameters outside
of the shaded region, all the [σ,ρ] partition problems are in FPT, and unless P = NP
for each of the parameters inside the shaded region, at least one of the [σ,ρ] partition
problems is not in FPT.

Negative results propagate downward; for example, since unless ETH fails, Dom-

inating Set can not be solved in 2o(pw)nO(1) where pw is the pathwidth of the
input graph [68], so is the case for treewidth, clique-width, Q-rank-width, rank-
width and boolean-width. From this table, we can deduce that the entire class of
[σ,ρ] partition problems cannot be in FPT parameterized by OCT, D2Chordal or
D2Perfect unless P=NP, sinceDominating Set is NP-hard for both bipartite [7]
and chordal graphs [17]. Furthermore, the class of [σ,ρ] partition problems pa-
rameterized by either of the remaining parameters is in fact in FPT, since we have
FPT algorithms solving each [σ,ρ] partition problem parameterized by rank-width,
boolean-width, and D2Interval3.

7.4 Bounding necd-width by Q-rank-width and its Al-
gorithmic Consequences

Now we know how to find a branch decomposition with a low Q-rank-width. We
are going to discuss its necd-width to apply Theorem 7.1. Theorem 7.1 provides
the runtime of the algorithm in terms of the necd-width of the given decomposition.
So, if we manage to give a bound on the necd-width of a decomposition in terms
of the Q-rank-width, we will also get a bound on the runtime of the algorithm in
terms of Q-rank-width. We will prove such a bound shortly, but in order to do

3Given a graph of D2Interval(G) = k, we have a fixed-parameter tractable algorithm to construct
a branch deceomposition of necd-width at most 2knd and thus by the algorithm of [23], we have a
fixed-parameter tractable algorithm to solve the problem. To do this, we first find a vertex set S of
size k so that G−S is an interval graph, and then find a branch decomposition of necd-width at most
nd. Arbitrarily adding the vertices of S anywhere in the branch decomposition cannot increase the
necd-width by more than 2|S|, and thus the resulting branch decomposition has necd-width at most
2knd. We have a fixed-parameter tractable algorithm to find S shown in [25] and constructing a branch
decomposition for G−S of necd-width at most nd can be done in polynomial time by [6].
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this we first need the following lemma, based on a proof of Belmonte and Vatshelle
[6, Lemma 1].

Lemma 7.5. Given a positive integer d and a cut
(
A,A

)
of Q-cut-rank k, for

every subset S ⊆ A, there exists a subset R ⊆ S so that |R| ≤ dk and R ≡d
A S over

the cut.

Proof. We proceed by induction on d. If d= 1, then let S′ be a minimal subset of
S so that S′ ≡1

A S. Since S′ is minimal, removing any vertex of S′ will decrease
|N(S′)|. Therefore, every vertex of S′ is adjacent to at least one vertex that none
of the other vertices in S′ are adjacent to. In the adjacency matrix M of

(
A,A

)
,

this means that each of the corresponding rows of S′ has a 1 in a column where
all the other rows of S′ has a 0. Hence, the rows of S′ are linearly independent
and so |S′| ≤ cutrkQ(A) = k.
So we may assume that d > 1. By the above, there exists a subset S1 ⊆ S

such that |S1| ≤ k and S1 ≡1
A S. By the induction hypothesis, there exists a set

S2 ⊆ (S \S1) so that S2 ≡d−1
A (S \S1) and |S2| ≤ (d−1)k.

We claim that S1 ∪S2 ≡d
A S. Let v ∈ A. We may assume that v has at most

d−1 neighbours in S1 ∪S2.
If v has a neighbour in S \ (S1 ∪S2), then |N(v)∩ (S \S1)| > |N(v)∩S2| and

therefore v has at least d− 1 neighbours in S2 and so v has no neighbors in S1.
This contradicts our assumption that S1 ≡1

A S.
Thus v has no neighbour in S \ (S1 ∪S2). This proves the claim. Since |S1 ∪

S2| ≤ dk, this completes the proof of the lemma.

Lemma 7.5 implies that to count distinct d-neighbour equivalence classes for a
cut of a branch decomposition of Q-rank-width k, it is enough to search subsets
of size at most dk. The same result is true, even if we replace Q-rank-width with
rank-width or boolean-width ([107], [23, Lemma 5]).
Then what is the contribution of Q-rank-width instead of rank-width or

boolean-width? Here comes the crucial difference. For both rank-width k or
boolean-width k, the number of vertices with distinct neighbourhoods over the
cut is no more than 2k [23, 107]. Putting this together gives a trivial bound of
necd ≤ 2dk2. We can improve this bound if k is Q-rank-width, thanks to the fact
that the row space of a matrix over Q not only contains all the rows of the ma-
trix, but also all the different sums of the rows in the matrix. So, we can bound
necd(A) by using a more direct connection between Q-rank-width and the number
of distinct d-neighbourhoods than that of the trivial bound.

Theorem 7.6. If the Q-rank-width of a branch decomposition is k, then the necd-
width of the same decomposition is no more than (dk+1)k = 2k log2 (dk+1).

Proof. It is enough to prove that if a cut
(
A,A

)
has Q-cut-rank k, then necd(A)≤

(dk+1)k. Let M be the A×A adjacency matrix of the cut
(
A,A

)
over Q.

For a subset S of A, let σ(S) be the sum of the row vectors ofM corresponding
to S. If σ(S) = σ(S′) then S ≡d

A S′ for all d, because the entries of σ(S) represent
the number of neighbours in S for each vertex in A.
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By Lemma 7.5, each equivalence class of ≡d
A can be represented by a subset S

of A having at most dk vertices. Notice that for such S, each entry of σ(S) is in
{0,1,2, . . . ,dk}.
Let B be a set of k linearly independent columns of M . Since M has rank

k, every linear combination of row vectors of M is completely determined by its
entries in B. Thus the number of possible values of σ(S) is at most (dk+1)k (see
Figure 7.4). This proves the theorem.
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Figure 7.4: As described by Theorem 7.6, we can determine the sum of the vectors by
looking at the values in the columns B. As we sum over at most dk rows, and each row
either increases the value of a column by exactly one or exactly zero, the number of
unique sums possible is at most |{0,1, . . .}||B| = (1+dk)k.

This result, combined with Theorems 7.1 and 7.2, shows that all the [σ,ρ]
partition problems can be solved in time 2O(k logk)nO(1). Expressing the runtime
in terms of clique-width, we get the following corollary.
Corollary 7.7. Every [σ,ρ] partition problem π on n-vertex graphs of clique-width
cw can be solved in 2O(cwlog(cw ·d(π))q(π))nO(1)-time.
Proof. Let k be the Q-rank-width of G. By Theorem 7.2 we can find a branch
decomposition of Q-rank-width at most 3k+1 in time 23knO(1). By Theorems 7.1
and 7.6, the [σ,ρ] partition problem π can be solved in time 29k log(3k·d(π)+1)q(π)nO(1).
This completes the proof because k ≤ cw by Lemma 7.3.

7.5 Conclusion
If we are given a k-expression as input, the best known FPT algorithm parame-
terized by k solving the Dominating Set is by Bodlaender et al. [11] and runs
in time 4knO(1). However, it is currently open whether we can construct a O(k)-
expression of an input graph of clique-width at most k in polynomial time. We
have shown the existence of algorithms with runtime 2O(cwlogcw)nO(1) for all [σ,ρ]
partition problems, without assuming that a k-expression is given as an input.
This still leaves the natural open question:
Can Independent Set or Dominating Set be solved in 2O(cw)nO(1) time,

where cw is the clique-width of the graph?



7.5 Conclusion 97

We know that for a graph of treewidth tw, Independent Set can be solved
in time 2O(tw)nO(1) time. This leads us to an interesting question of what param-
eters give a linearly single exponential runtime for Independent Set. Two
such parameters are the Vertex Deletion Distance to Proper Interval graphs
(D2ProperInterval) and the Odd Cycle Transversal number (OCT number):

1. For a graph G, the D2ProperInterval of a graph is the minimum number
of vertices needed to be removed in order to make G into a proper interval
graph. For a graph G with D2ProperInterval equal k, Villanger and van
’t Hof [106] gave a 6knO(1)-time algorithm for finding such a set S to be
removed. To solve Independent Set on a graph G= (V,E), we guess the
intersection S′ of S and an optimal solution, and then combining it with
the optimal solution of Independent Set on the proper interval graph
G− (S ∪N(S′)). As Independent Set is solvable in nO(1) time on proper
interval graphs, this yields a 2O(k)nO(1) time algorithm.

2. The OCT number of a graph G is the minimum number of vertices needed
to remove from G in order to make it bipartite. For a graph G with OCT
number equal k, Lokshtanov, Saurabh and Sikdar [69] gave a 3knO(1)-time
algorithm for finding the minimum set S of vertices to remove from G to
make it bipartite. As with the algorithm above, we can solve Independent
Set by guessing the intersection S′ of S and the optimal solution and then
combine it with the optimal solution of the bipartite graph G− (S ∪N(S′)).
As Independent Set is trivially solvable in nO(1) time on bipartite graphs,
this yields a 2O(k)nO(1) time algorithm.

Note, however, that these parameters are not bounded by treewidth (and thus
also not bounded by clique-width), see Figure 7.3.
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Chapter 8

Solving #SAT and MaxSAT by
dynamic programming

In this chapter we look at dynamic programming algorithms for propositional
model counting, also called #SAT, and MaxSAT. Tools from graph structure
theory, in particular treewidth, have been used to successfully identify tractable
cases in many subfields of AI, including SAT, Constraint Satisfaction Problems
(CSP), Bayesian reasoning, and planning. We attack #SAT andMaxSAT using
branch decompositions.
The decompositions used can be seen as being over the vertex set of the in-

cidence graph I(F ) of the CNF formula F . However, our corresponding width
measure will depend on more properties of the CNF formula than is captured by
I(F ), so we rather see it as a branch decomposition over the variables and clauses
of F .
As a partition function, we introduce the projection-satisfiable-value, which

gives rise to a parameter which correlates well, in terms of value, with known
tractability results of solving #SAT and MaxSAT through dynamic program-
ming along structural decompositions. In fact, as mentioned in Section 2.3.4,
our proposed algorithm extends all previous tractability results achieved using
structural decompositions of the incidence graph of the input formula. This is,
however, by upper bounding the value of the projection-staisfiable-width through
other structural measures, while we do not know a way of computing an opti-
mal decomposition, or even an approximation of an optimal one, in FPT time.
Our result is thus an algorithm for [P2] in terms of the structural DP-scheme of
Chapter 2.

8.1 A lengthier introduction
The propositional satisfiability problem (SAT) is a fundamental problem in com-
puter science and in AI. Many real-world applications such as planning, schedul-
ing, and formal verification can be encoded into SAT and a SAT solver can be
used to decide if there exists a solution. To decide how many solutions there are,
the propositional model counting problem (#SAT), which finds the number of
satisfying assignments, could be useful. If there are no solutions, it may be in-
teresting to know how close we can get to a solution. When the propositional
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formula is encoded in Conjunctive Normal Form (CNF) this may be solved by the
maximum satisfiability problem (MaxSAT), which finds the maximum number
of clauses that can be satisfied by some assignment. In this chapter we investigate
classes of CNF formulas where these two problems, #SAT and MaxSAT, can
be solved in polynomial time. Tools from graph structure theory, in particular
treewidth, have been used to successfully identify tractable cases in many sub-
fields of AI, including SAT, Constraint Satisfaction Problems (CSP), Bayesian
reasoning, and planning, see for example [5, 35, 40, 96]. In this chapter we attack
#SAT and MaxSAT through the use of branch decompositions of the formula.
The tractable cases will include formulas whose class of incidence graphs have not
only unbounded treewidth but also unbounded clique-width.
Both #SAT and MaxSAT are significantly harder than simply deciding if a

satisfying assignment exists. #SAT is #P-hard [49] even when restricted to Horn
2-CNF formulas, and to monotone 2-CNF formulas [91]. MaxSAT is NP-hard
even when restricted to Horn 2-CNF formulas [58], and to 2-CNF formulas where
each variable appears at most 3 times [85]. Both problems become tractable under
certain structural restrictions obtained by bounding width parameters of graphs
associated with formulas, see for example [40, 48, 96, 99]. The work we present
here is inspired by recent results of Paulusma et al. [81] and Slivovsky and Szeider
[98] showing that#SAT is solvable in polynomial time when the incidence graph1
I(F ) of the input formula F has bounded modular treewidth, and more strongly,
bounded symmetric clique-width.
These tractability results work by dynamic programming along a decomposi-

tion of I(F ). Using the structural DP-scheme of Chapter 2, there are thus two
steps involved: [P1] find a good decomposition, and [P2] perform dynamic pro-
gramming along the decomposition. The goal is to have a fast runtime, and this
is usually expressed as a function of some known graph width parameter of the
incidence graph I(F ) of the formula F , like its treewidth. Step [P1] is solved by a
known graph algorithm for computing a decomposition of low (tree-)width, while
step [P2] solves #SAT or MaxSAT by dynamic programming with runtime ex-
pressed in terms of the (tree-)width k of the decomposition.
The algorithms we give in this chapter also work by dynamic programming

along a decomposition, but in a slightly different framework. Since we are not
solving a graph theoretic problem, expressing runtime by a graph theoretic param-
eter may be a limitation. Therefore, our strategy will be to develop a framework
based on the following strategy

(I) consider, for #SAT or MaxSAT, the amount of information needed to
combine solutions to subproblems into global solutions, then

(II) define the notion of good decompositions based on a parameter that mini-
mizes this information, and then

(III) design a dynamic programming algorithm along such a decomposition with
runtime expressed by this parameter ([P2]).

1I(F ) is the bipartite incidence graph between the clauses of F on the one hand and the variables of
F on the other hand. Information about positive or negative occurrences of variables is not encoded in
I(F ) so sometimes a signed or directed version is used that includes also this information.
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Both Paulusma et al. [81] and Slivovsky and Szeider [98] consider two assignments
to be equivalent if they satisfy the same set of clauses. When carrying out (I) for
#SAT and MaxSAT this led us to the concept of ps-value of a CNF formula.
Let us define it and give an intuitive explanation. A subset C of the clauses of a
CNF formula F is called projection satisfiable if there is some complete assignment
satisfying every clause in C but not satisfying any clause not in C. The ps-value
of F is the number of projection satisfiable subsets of clauses. Let us consider its
connection to dynamic programming, which in general applies when an optimal
solution can be found by combining optimal solutions to certain subproblems. For
#SAT and MaxSAT these subproblems, at least in the cases we consider, take
the form of a subformula of F induced by a subset S of clauses and variables,
i.e. first remove from F all variables not in S and then remove all clauses not in
S. Consider for simplicity the two subproblems FS and FS defined by S and its
complement S. When combining the ’solutions’ to FS and FS, in order to find
solutions to F , it seems clear that we must consider a number of cases at least
as big as the ps-values of the two disjoint subformulas ’crossing’ between S and
S, i.e. the subformulas obtained by removing from clauses in S the variables of
S, and by removing from clauses in S the variables of S. See Figure 8.2 for an
example.
We did not find in the literature a study of the ps-value of CNF formulas, so

we start by asking for a characterization of formulas having low ps-value. We
were led to the concept of the mim-value of I(F ), which is the size of a maximum
induced matching of I(F ), where an induced matching is a subset M of edges
with the property that any edge of the graph is incident to at most one edge in
M . Note that this value can be much lower than the size of a maximum matching,
e.g. any complete bipartite graph has mim-value 1. We show that the ps-value
of F is upper bounded by the number of clauses of F raised to the power of the
mim-value of I(F ), plus 1. For a CNF formula F where I(F ) has mim-value 1 the
interpretation of this result is straightforward: its clauses can be totally ordered
such that for any two clauses C < C ′ the variables occurring in C are a subset
of the variables occurring in C ′, and this has the implication that the number of
subsets of clauses for which some complete assignment satisfies exactly this subset
is at most the number of clauses plus 1.
Families of CNF formulas having small ps-value are themselves of algorithmic

interest, but in this chapter we continue with part (II) of the above strategy, and
focus on how to decompose a CNF formula F based on the concept of ps-value.
We will decompose the formula by the use of rooted branch decompositions, but
this time not over sets of vertices, but rather over the variables and clauses of
F . For a rooted branch decompsition (T.δ), a node v in T then represents the
subset X = δ(v) of variables and clauses at the leaves of its subtree. Which
branch decomposition are good for efficiently solving #SAT and MaxSAT? In
accordance with the above discussion under part (I) the answer is that the good
branch decomposition are those where all subformulas ’crossing’ between X and
X, for some X defined by a node of the tree, have low ps-value. See Figure 8.2 for
an example. Using ps-value as our partition-function, we arrive at the definition
of the ps-width of a CNF formula F . It is important to note that a formula can
have ps-value exponential in formula size while ps-width is polynomial, and that
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in general the class of formulas of low ps-width is much larger than the class of
formulas of low ps-value.
To finish the above strategy, we must carry out part (III) and show how to solve

#SAT andMaxSAT by dynamic programming along the branch decomposition
of the formula, and express its runtime as a function of the ps-width. This is
not complicated, as dynamic programming when everything has been defined
properly simply becomes an exercise in brute-force computation of the sufficient
and necessary information, but it is technical and quite tedious. It leads to the
following theorem.
Theorem 8.4. Given a formula F over n variables and m clauses, and a branch
decomposition (T,δ) of F of ps -width k, we solve MaxSAT, #SAT, and weighted
MaxSAT in time O(k3m(m+n)).
Thus, given a decomposition having a ps-width k that is polynomially-bounded

in the number of variables n and clauses m of the formula, we get polynomial-
time algorithms. Let us compare our result to the strongest previous result in
this direction, namely that of Slivovsky and Szeider [98] for #SAT. Their algo-
rithm takes as input a branch decomposition over the vertex set of I(F ), which
is the same as the ground set of F , and evaluates its runtime by the cut function
they call ’index’. They show that this cut function is closely related to the sym-
metric clique-width scw of the given decomposition, giving runtime (n+m)O(scw).
Considering the clique-width cw of the given decomposition the runtime of [98]
becomes (n+m)O(2cw) since symmetric clique-width and clique-width is related by
the essentially tight inequalities 0.5cw ≤ scw ≤ 2cw [30]. Their algorithm is thus a
polynomial-time algorithm if given a decomposition with constantly bounded scw.
The result of Theorem 8.4 encompasses this, since our Corollary 8.6 ties ps-width
to mim-width and Vatshelle [107] shows that mim-width is upper bounded by
clique-width, see also [86] for symmetric clique-width, so that a decomposition of
I(F ) having constantly bounded (symmetric) clique-width also has polynomially
bounded ps-width. In this way, given the decomposition assumed as input in [98],
the algorithm of Theorem 8.4 will have runtime O(m3cws), for cw the clique-width
of the given decomposition.
In a paper by Brault-Baron et al. [20], appearing after a preliminary presen-

tation of our results [94], it is argued that the framework behind Theorem 8.4
gives a uniform explanation of all tractability results for #SAT in the literature,
in particular those using dynamic programming based on structural decomposi-
tions of the incidence graph. Brault-Baron et al. [20] also goes beyond this, giving
a polynomial-time algorithm, not by dynamic programming, to solve #SAT on
β-acyclic CNF formulas, being exactly those formulas whose incidence graphs are
chordal bipartite. They show that these formulas do not have bounded ps-width
and that their incidence graphs do not have bounded mim-width. See Figure 8.1
which gives an overview of the results in this chapter and in other papers. Using
the concept of mim-width of graphs, and the connection between ps-value and
mim-value alluded to earlier, we show that a rich class of formulas, including
classes of unbounded clique-width, have polynomially bounded ps-width and are
thus covered by Theorem 8.4. Firstly, this holds for classes of formulas having in-
cidence graphs that can be represented as intersection graphs of certain objects,



8.1 A lengthier introduction 103

Figure 8.1: We believe, as argued in [20], that any dynamic programming approach
working along a structural decomposition to solve #SAT (or MaxSAT) in polynomial
time cannot go beyond the green box. Paper A is [98] and Paper B is [20]. On the left
of the two dashed lines are 4 classes of graphs with bound k/2 or k on some structural
graph width parameter, and 5 classes of bipartite graphs. On the right are β-acyclic CNF
formulas and 3 classes of CNF formulas with ps-width varying from linear in the number
of clauses m, to m2 and mk. There is an arc from P to Q if any formula F or incidence
graph I(F ) having property P also has property Q. This is a Hasse diagram, so lack of
an arc in the transitive closure means this relation provably does not hold.

like interval graphs [6]. Secondly, it holds also for the much larger class of bipar-
tite graphs achieved by taking bigraph bipartizations of these intersection graphs,
obtained by imposing a bipartition on the vertex set and keeping only edges be-
tween the partition classes. Some such bigraph bipartizations have been studied
previously, in particular the interval bigraphs. The interval bigraphs contain all
bipartite permutation graphs, and these latter graphs have been shown to have
unbounded clique-width [19]. See Figure 8.1.
Let us discuss step [P1], finding a good decomposition. Note that Theorem 8.4

assumes that the input formula is given along with a decomposition of some ps-
width k. The value k need not be optimal, so any heuristic finding a reasonable
branch decomposition could be used in practice. Computing decompositions of
optimal ps-width is probably not doable in polynomial-time, but the complexity
of this question is not adressed in this chapter. However, we are able to efficiently
decide if a CNF formula has a certain linear structure guaranteeing low ps-width.
By combining an alternative definition of interval bigraphs [53] with a fast recog-
nition algorithm [74, 84] we arrive at the following. Say that a CNF formula F
has an interval ordering if there exists a total ordering of variables and clauses
such that for any variable x occurring in clause C, if x appears before C then any
variable between them also occurs in C, and if C appears before x then x occurs
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also in any clause between them.

Theorem 8.11. Given a CNF formula F over n variables and m clauses each
of at most t literals. In time O((m+n)mn) we can decide if F has an interval
ordering (yes iff I(F ) is an interval bigraph), and if yes we solve #SAT and
weighted MaxSAT with an additional runtime of O(min{m2,4t}(m+n)m).

Formulas with an interval ordering are precisely those whose incidence graphs
are interval bigraphs, so Theorem 8.11 encompasses classes of formulas whose
incidence graphs have unbounded clique-width.
Could parts of our algorithms be of interest for practical applications? Answer-

ing this question is beyond the scope of this chapter and our case study. However,
we have performed some limited testing, in particular for formulas with a linear
structure, as a simple proof of concept. All our code can be found online [1]. We
have designed and implemented a heuristic for step [P1] finding a good decom-
position (T,δ), in this case a linear one where T is a path with attached leaves.
We have also implemented step [P2] dynamic programming solving #SAT and
MaxSAT along such decompositions. We then run [P1] followed by [P2] and
compare against one of the best MaxSAT solvers from the Max-SAT-2014 event
of the SAT-2014 conference and the latest version of the #SAT solver called
sharpSAT developed by Marc Thurley [103]. These solvers beat our implementa-
tion on most inputs, which is not suprising since our code does not include any
techniques beyond our algorithm. Nevertheless, we were able to generate some
classes of CNF formulas having interval orderings where our implementation is by
far the better. This lends support to our belief that methods related to ps-value
warrants further research to investigate if they could be useful in practice.
This chapter is organized as follows. In Section 8.2 we give formal definitions

of ps-value and ps-width of a CNF formula and show the central combinatorial
lemma linking ps-value of a formula to the size of the maximum induced matching
in the incidence graph of the formula. In Section 8.3 we present the dynamic
programming algorithm for [P2] that, when given a formula and a decomposition,
solves #SAT and weighted MaxSAT, proving Theorem 8.4. In Section 8.4 we
investigate classes of formulas having decompositions of low ps-width, basically
proving the correctness of the hierarchy presented in Figure 8.1. In Section 8.5
we consider formulas having an interval ordering and prove Theorem 8.11. In
Section 8.6 we present the results of the implementations and testing. We end in
Section 8.7 with some open problems.

8.2 Framework
We consider propositional formulas in Conjunctive Normal Form (CNF). A literal
is a propositional variable or a negated variable, x or ¬x, a clause is a set of
literals, and a formula is a multiset of clauses. For a formula F , cla(F ) denotes
the clauses in F . The incidence graph of a formula F is the bipartite graph I(F )
having a vertex for each clause and variable, with variable x adjacent to any clause
C in which it occurs. We consider only input formulas where I(F ) is connected,
as otherwise we would solve our problems on the separate components of I(F ).
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For a clause C, lit(C) denotes the set of literals in C and var(C) denotes the
variables of the literals in lit(C). For a formula F , var(F ) denotes the union⋃
C∈cla(F )var(C). For a set X of variables, an assignment of X is a function

τ :X → {0,1}. For a literal 	, we define τ(	) to be 1− τ(var(	)) if 	 is a negated
variable (	= ¬x for some variable x) and to be τ(var) otherwise (	= x for some
variable x). A clause C is said to be satisfied by an assignment τ if there exists
at least one literal 	 ∈ lit(C) so that τ(	) = 1. We notice that this means an
empty clause will never be satisfied. A formula is satisfied by an assignment τ if
τ satisfies all clauses in cla(F ).
The problem #SAT, given a formula F , asks how many distinct assignments

of var(F ) satisfy F . The optimization problem weighted MaxSAT, given a
formula F and weight function w : cla(F )→N, asks what assignment τ of var(F )
maximizes ∑

Cw(C) for all C ∈ cla(F ) satisfied by τ . The problem MaxSAT is
weighted MaxSAT where all clauses have weight one. For weighted MaxSAT,
we assume the sum of all the weights are at most 2O(cla(F )), and thus we can do
summation on the weights in time linear in cla(F ).
For a set A, with elements from a universe U we denote by A the elements in

U \A, as the universe is usually given by the context.

8.2.1 Cut of a formula

In this chapter, we will solve MaxSAT and #SAT by the use of dynamic pro-
gramming. We will be using a divide and conquer technique where we solve the
problem on smaller subformulas of the original formula F and then combine the
solutions to each of these smaller formulas to form a solution to the entire formula
F . Note however, that the solutions found for a subformula will depend on the in-
teraction between the subformula and the remainder of the formula. We use the
following notation for subformulas.
For a clause C and set X of variables, by C|X we denote the clause {	 ∈

C : var(	) ∈ X}. We say C|X is the clause C induced by X. Unless otherwise
specified, all clauses mentioned in this chapter are from the set cla(F ) (e.g., if we
write C|X ∈ cla(F ′), we still assume C ∈ cla(F )). For a formula F and subsets
C ⊆ cla(F ) and X ⊆ var(F ), we say the subformula FC,X of F induced by C

and X is the formula consisting of the clauses {Ci|X : Ci ∈ C}. That is, FC,X is
the formula we get by removing all clauses not in C followed by removing each
literal of a variable not in X. For a set C of clauses, we denote by C|X the set
{C|X :C ∈ C}. As with a clause, for an assignment τ over a set X of variables, we
say the assignment τ induced by X ′ ⊆ X is the assignment τ |X ′ where the domain
is restricted to X ′.
For a formula F and sets C ⊆ cla(F ), X ⊆ var(F ), and S = C∪X, we call S

a cut of F and note that it breaks F into four subformulas FC,X , FC,X , FC,X , and
FC,X . See Figure 8.2. One important fact we may observe from this definition is
that a clause C in F is satisfied by an assignment τ of var(F ), if and only if C
(induced by X or X) is satisfied by τ in at least one of the formulas of any cut of
F .
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8.2.2 Projection satisfiable sets and ps-value of a formula
For a formula F and assignment τ of some of the variables in var(F ), we denote
by sat(F,τ) the inclusion maximal set C ⊆ cla(F ) so that each clause in C is
satisfied by τ . If for a set C ⊆ cla(F ) we have sat(F,τ) = C for some τ over
all the variables in var(F ), then C is known as a projection (see e.g. [63, 98])
and we say C is projection satisfiable in F . We denote by PS(F ) the family of all
projection satisfiable sets in F . That is,

PS(F ) = {sat(F,τ) : τ is an assignment of the entire set var(F )}.
The cardinality of this set, |PS(F )|, is referred to as the ps-value of F .
To get a grasp of the structure of formulas having low ps-value we consider

induced matchings in the incidence graph of a formula. The incidence graph of a
formula F is the bipartite graph I(F ) having a vertex for each clause and variable,
with variable x adjacent to any clause C in which it occurs. The following result
provides an upper bound on the ps-value of a formula in terms of the maximum
size of an induced matching of its incidence graph.

Lemma 8.1. Let F be a CNF formula with no clause containing more than t
literals, and let k be the maximum size of an induced matching in I(F ). We then
have |PS(F )| ≤min{|cla(F )|k+1,2tk}.
Proof. We first argue that |PS(F )| ≤ |cla(F )|k + 1. Let C ∈ PS(F ) and Cf =
cla(F ) \C. Thus, there exists a complete assignment τ such that the clauses
not satisfied by τ are Cf = cla(F ) \ sat(F,τ). Since every variable in var(F )
appears in some clause of F this means that τ |var(Cf ) is the unique assignment
of the variables in var(Cf ) which do not satisfy any clause of Cf . Let C

′
f ⊆ Cf

be an inclusion minimal set such that var(Cf ) = var(C′
f ), hence τ |var(Cf ) is also

the unique assignment of the variables in var(Cf ) which do not satisfy any clause
of C′

f . An upper bound on the number of different such minimal C
′
f , over all

C ∈ PS(F ), will give an upper bound on |PS(F )|. For every C ∈ C
′
f there is a

variable vC appearing in C and no other clause of C′
f , otherwise C

′
f would not be

minimal. Note that we have an induced matching M of I(F ) containing all such
edges vC ,C. By assumption, the induced matching M can have at most k edges
and hence |C′

f | ≤ k. It is easy to show by induction on k that there are at most
|cla(F )|k+1 sets of at most k clauses and the lemma follows.
We now argue that |PS(F )| ≤ 2tk. As the maximum induced matching has size

k there is some set C of k clauses so that var(C) = var(F ). As each clause C ∈ C

has |var(C)| ≤ t, we have |var(F )| = |var(C)| ≤ tk. As there are no more than
2|var(F )| assignments for F , the ps-value of F is upper bounded by 2tk.

8.2.3 The ps-width of a formula
We use branch decompositions over the set of variables and clauses, and for a
formula F , when we say (T,δ) is a branch decomposition of F , we mean (T,δ) is a
branch decomposition over var(F )∪cla(F ). Similar as for branch decompositions
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over set of vertices, we say that the bipartitions induced by the decomposition is
a cut of F . Furthermore, as we are working with rooted branch decompositions,
also the nodes of T induce cuts of F ; namely the cut with parts δ(v) and δ(v) for
node v in T .
For each node v in T , by Fv we denote the formula induced by the clauses in

cla(F )\ δ(v) and the variables in δ(v), and by Fv we denote the formula on the
complement sets; i.e. the clauses in δ(v) and the variables in var(F ) \ δ(v). In
other words, if δ(v) = C∪X with C⊆ cla(F ) and X ⊆ var(F ) then Fv =FC,X and
Fv =FC,X . To simplify the notation, we will for a node v in a branch decomposition
and a set C of clauses denote by C|v the set C|var(Fv). We define the ps -value of
the cut δ(v) to be

ps(δ(v)) = max{|PS(Fv)|, |PS(Fv)|}
We define the ps -width of a branch decomposition to be

psw(T,δ) = max{ps(δ(v)) : v is a node of T}
We define the ps -width of a formula F to be

psw(F ) = min{psw(T,δ) : (T,δ) is a branch decomposition of F}
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Figure 8.2: On top is a branch decomposition of a formula F with var(F ) =
{x1,x2,x3,x4,x5} and the 4 clauses cla(F ) = {c1, c2, c3, c4} as given in the boxes. The
node v of the tree defines the cut δ(v) = C∪X where C = {c1, c3} and X = {x1,x2}.
There are 4 subformulas defined by this cut: FC,X ,F

C,X ,F
C,X ,FC,X . For example,

F
C,X = {{x1,¬x2},{x2}} and FC,X = {∅,{¬x4,x5}}. We have Fv = F

C,X and Fv = FC,X

with projection satisfiable sets of clauses PS(Fv) = {{c2|v},{c4|v},{c2|v, c4|v}} and
PS(Fv) = {∅,{c3|v}} and the ps-value of this cut is ps(δ(v)) =max{|PS(Fv)|, |PS(Fv)|}=
3.

Note that the ps-value of a cut is a symmetric function. That is, the ps-value
of cut S equals the ps-value of the cut S. See Figure 8.2 for an example.
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8.3 Dynamic programming for MaxSAT and #SAT

Given a branch decomposition (T,δ) of a CNF formula F over n variables and m
clauses and of total size s, we will give algorithms that solveMaxSAT and#SAT

on F in time O(psw(T,δ)3m(m+n)). Our algorithms are strongly inspired by the
algorithm of [98], but in order to achieve a runtime polynomial in ps-width, and
also to solve MaxSAT, we must make some crucial changes. In particular, we
must index the dynamic programming tables by PS-sets rather than the ’shapes’
used in [98].

Special terminology. In this dynamic programming section, we will combine
partial solutions to subformulas into solutions for the input formula F . To improve
readability we introduce notation PS′ and sat′ that allows us to refer directly to
the clauses of F , also when working on the subformulas. Thus, for a formula F
and branch decomposition (T,δ), for each node v in T , and induced subformula
Fv of F , by PS′(Fv) we denote the subsets of clauses C from cla(F )\ δ(v) so that
PS(Fv) = C|var(Fv). Similarly, for an assignment τ over var(Fv), by sat′(Fv, τ) we
denote the set of clauses C from cla(F )\δ(v) so that sat(Fv, τ) = C|var(Fv). Note
that |PS′(Fv)| = |PS(Fv)| and |sat′(Fv, τ)| = |sat(Fv, τ)|. We take the liberty to
call also these sets projection satisfiable and refer to them as ’PS-sets’ in the text,
but it will be clear from context that we mean clauses of cla(F ) and not cla(Fv).

Implementation details. We regard PS-sets as boolean vectors of length
|cla(F )|, and assume we can identify clauses and variables by integer numbers.
So, checking if a clause is in a PS-set can be done in constant time, and checking
if two PS-sets are equal can be done in O(|cla(F )|) time. To manage our PS-sets,
we use a binary trie datastructure (see [44]). We can add and retrieve a PS-set
to and from a trie in O(|cla(F )|) time. Trying to add a PS-set to a trie al-
ready containing an equivalent PS-set will not alter the content of the trie, so
our trie’s will only contain distinct PS-sets. As retrieval of an element in our
trie takes O(|cla(F )|) time, by assigning a distinct integer to each PS-set at the
time it is added to the trie, we have a O(|cla(F )|)-time mapping from PS-sets
to distinct integers. This will be used implicitly in our algorithms when we say
we index by PS-sets; when implementing the algorithm we will instead index by
the according distinct integer the PS-set is mapped to.
In a pre-processing step we will need the following which, for each node v in T

computes the sets of projection satisfiable subsets of clauses PS′(Fv) and PS′(Fv)
of the two crossing subformulas Fv and Fv.
Theorem 8.2. Given a CNF formula F with a branch decomposition (T,δ) of
ps -width k, we can in time O(k2m(m+n)) compute the sets PS′(Fv) and PS′(Fv)
for each v in T .
Proof. We notice that for a node v in T with children c1 and c2, we can express
PS′(Fv) as

PS′(Fv) =
{
(C1 ∪C2)∩cla(Fv) :

C1 ∈ PS′(Fc1), and
C2 ∈ PS′(Fc2)

}
.
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Similarly, for sibling s and parent p of v in T , the set PS′(Fv) can be expressed as

PS′(Fv) =
{
(Cp ∪Cs)∩cla(Fv) :

Cp ∈ PS′(Fp), and
Cs ∈ PS′(Fs)

}
.

By transforming these recursive expressions into a dynamic programming algo-
rithm, as done in Procedure 1 and Procedure 2 below, we are able to calculate all
the desired sets as long as we can compute the sets for the base cases PS′(Fl) when
l is a leaf of T , and PS′(Fr) for the root r of T . However, these formulas contain at
most one variable, and thus we can easily construct their set of projection satisfi-
able clauses in linear amount of time for each of the formulas. For the rest of the
formulas, we construct the formulas using Procedure 1 and Procedure 2. As there
are at most twice as many nodes in T as there are clauses and variables in F , the
procedures will run at most O(|cla(F )|+ |var(F )|) times. In each run of the algo-
rithms, we iterate through at most k2 pairs of projection satisfiable sets, and do
a constant number of set operations that might take O(|cla(F )|) time each. This
results in a total runtime of O(k2|cla(F )|(|cla(F )|+ |var(F )|)) =O(k2m(m+n))
for all the nodes of T combined.

Procedure 1: Generating PS′(Fv)
input: PS′(Fc1) and PS′(Fc2) for children c1 and c2 of v

in branch decomposition
output: PS′(Fv)
L ← empty trie of projection satisfiable clause-sets
for each (C1,C2) ∈ PS′(Fc1)×PS′(Fc2) do
add (C1 ∪C2)∩cla(Fv) to L

return L

Procedure 2: Generating PS′(Fv)
input: PS′(Fs) and PS′(Fp) for sibling s and parent p of v

in branch decomposition
output: PS′(Fv)
L ← empty trie of projection satisfiable clause-sets
for each (Cs,Cp) ∈ PS′(Fs)×PS′(Fp) do
add (Cs ∪Cp)∩cla(Fv) to L

return L

We now move on to the dynamic programming proper. We first give the
algorithm forMaxSAT and then briefly describe the changes necessary for solving
weighted MaxSAT and #SAT.
Our algorithm uses the technique of ’expectation’ introduced in [21, 22]. Some

partial solutions might be good when combined with certain partial solutions, but
bad when combined with others. In the technique of ’expectation’ we categorize
how partial solutions can interact, and then optimize our selection of partial so-
lutions based on the ’expectation’ that this interaction occurs. In our dynamic
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programming algorithm for MaxSAT, we apply this technique by making expec-
tations on each cut regarding what set of clauses will be satisfied by variables of
the opposide side of the cut.
For a node v in the decomposition of F and PS-sets C ∈ PS′(Fv) and C ′ ∈

PS′(Fv), we say that an assignment τ of var(F ) meets the expectation C and C ′ if
sat′(Fv, τ |v) =C and sat′(Fv, τ |v) =C ′. For each node v of the branch decomposi-
tion, our algorithm uses a table Tabv that for each pair (C,C ′) ∈ PS′(Fv)×PS′(Fv)
stores in Tabv(C,C ′) the maximum number of clauses in δ(v) that are satisfied,
over all assignments meeting the expectation of C and C ′. As the variables in
var(F )\ δ(v) satisfy exactly C ′, for any assignment that meets this expectation,
an equivalent formulation of the content of Tabv(C,C ′) is that it must satisfy the
following constraint:

Over all assignments τ of var(F )∩ δ(v) such that sat′(Fv, τ) = C ,

Tabv(C,C ′) = max
τ

{ ∣∣∣ (
sat′(F,τ ′)∩ δ(v)

)
∪C ′ ∣∣∣ } (8.1)

By bottom-up dynamic programming along the tree T we compute the tables of
each node of T . For a leaf l in T , generating Tabl can be done easily in linear time
since the formula Fv contains at most one variable. For an internal node v of T ,
with children c1, c2, we compute Tabv by the algorithm described in Procedure 3.
There are 3 tables involved in this update, one at each child and one at the parent.
A pair of entries, one from each child table, may lead to an update of an entry in
the parent table. Each table entry is indexed by a pair, thus there are 6 indices
involved in a single potential update. A trick first introduced in [22] allows us to
loop over triples of indices and for each triple compute the remaining 3 indices
forming the 6-tuple involved in the update, thereby reducing the runtime.

Procedure 3: Computing Tabv for inner node v with children c1, c2
input: Tabc1, Tabc2
output: Tabv

1. initialize Tabv : PS′(Fv)×PS′(Fv)→ {−1}
2. for each (Cc1,Cc2,C

′
v) in PS′(Fc1)×PS′(Fc2)×PS′(Fv) do

3. C ′
c1 ← (Cc2 ∪C ′

v)∩ δ(c1)
4. C ′

c2 ← (Cc1 ∪C ′
v)∩ δ(c2)

5. Cv ← (Cc1 ∪Cc2)\ δ(v)
6. t ← Tabc1(Cc1,C

′
c1)+Tabc2(Cc2,C

′
c2)

7. if Tabv(Cv,C
′
v)< t then Tabv(Cv,C

′
v)← t

8. return Tabv

Lemma 8.3. For a CNF formula F of m clauses and an inner node v, of a
branch decomposition (T,δ) of ps -width k, Procedure 3 computes Tabv satisfying
Constraint (8.1) in time O(k3m).

Proof. We assume Tabc1 and Tabc2 satisfy Constraint (8.1). Procedure 3 loops
over all triples in PS′(Fc1)×PS′(Fc2)×PS′(Fv). From the definition of ps-width of
(T,δ) there are at most k3 such triples. Each operation inside an iteration of the
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loop take O(m) time and there is a constant number of such operations. Thus the
runtime is O(k3m).
Before we show the correctness of the output, let us look a bit at the workings

of Procedure 3. For any assignment τ over var(F ), and cut, the assignment τ will
only meet the expectation of a single pair of PS-sets. Let (X1,X

′
1), (X2,X

′
2) and

(Xv,X
′
v) be the pairs an assignment τ meets the expectation for with respect to

the cuts induced by c1, c2, and v, respectively. We notice that

Xv =sat′(Fv, τ |v)
=sat′(Fv, τ |c1 	 τ |c2)
=sat′(Fv, τ |c1)∪sat′(Fv, τ |c2)
=(sat′(Fc1, τ |c1)\ δ(v))∪ (sat′(Fc2, τ |c2)\ δ(v))
=(X1 \ δ(v))∪ (X2 \ δ(v))
=(X1 ∪X2)\ δ(v).

(8.2)

This can also be seen from Figure 8.3. By symmetry, we find similar values
for X ′

1 and X ′
2; namely X ′

1 = (X2 ∪X ′
v)∩ δ(c1) and X ′

2 = (X1 ∪X ′
v)∩ δ(c2). So,

these latter three sets will be implicit based on the three former sets with respect
to the cuts induced by v, c1 and c2. We will therefore, for convenience of this
proof, say that an assignment τ meets the expectation of a triple (C1,C2,C

′) of
PS-sets, when τ meets the expectation of the implicit three pairs on each of their
respective cuts. We notice that for each choice of triples of PS-sets (Cc1,Cc2,C

′
v)

Procedure 3 computes the implicit three other sets and names them C ′
c1, C

′
c2 and

Cv accordingly.

clauses in cla(F ) \ δ(v)

clauses in δ(c2)
clauses in δ(c1)

= X1 = sat′(Fc1 , τ |c1)

= X2 = sat′(Fc2 , τ |c2)

= Xv = sat′(Fv, τ |v)

Figure 8.3: As shown by the chain of equalities in (8.2) in the proof of Lemma 8.3, the
clauses in sat′(Fv, τ |v) are precisely the clauses in (sat′(Fc1 , τ |c1)∪sat′(Fc2 , τ |c2))\ δ(v).

We will now show that for all pairs (C,C ′) ∈ PS′(Fv)× PS′(Fv) the value of
Tabv(C,C ′) is correct. Let τ0 be an assignment over var(F ) that satisfies the
maximum number of clauses, while meeting the expectation of C and C ′. Thus,
the value of Tabv(C,C ′) is correct if and only if it stores exactly the number of
clauses from δ(v) that τ0 satisfies.
Let (C1,C

′
1) and (C2,C

′
2) be the pairs of PS-sets that τ0 meet the expectation

of for the cut (δ(c1), δ(c1)) and (δ(c2), δ(c2)), respectively. As τ0 meets these
expectations, the value of Tabc1(C1,C

′
1) and Tabc2(C2,C

′
2) must be at least as
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large as the number of clauses τ0 satisfies in δ(c1) and δ(c2), respectively. Thus,
the number of clauses τ0 satisfies in both δ(c1) and δ(c2) is at most as large as
the sum of these two entries. Since Procedure 3, in the iteration where C ′

v = C ′,
Cc1 =C1 and Cc2 =C2, ensures that Tabv(C,C ′) is at least the sum of Tabc1(C1,C

′
1)

and Tabc2(C2,C
′
2), we know Tabv(C,C ′) is at least as large as the correct value.

Now assume for contradiction that the value of the cell Tabv(C,C ′) is too large.
That means that at some iteration of Procedure 3 it is being assigned the value
Tabc1(Cc1,C

′
c1) + Tabc2(Cc2,C

′
c2) when this sum is too large. Let τ1 and τ2 be

the assignments of var(F ) meeting the expectation of Cc1 and C ′
c1 and meeting

the expectation of Cc2,C
′
c2, respectively, where the number of clauses of δ(c1)

and δ(c2), respectively, equals the according table entries of Tabc1 and Tabc2. If
we now take the assignment τx = τ1|c1 	 τ2|c2 	 τ0|v, we have an assignment that
meets the expectation of C and C ′, and who satisfies more clauses in δ(v) than
τ0, contradicting the choice of τ0. So Tabv(C,C ′) can be neither smaller nor larger
than the number of clauses in δ(v) τ0 satisfies, so it is exactly the same.

Theorem 8.4. Given a formula F over n variables and m clauses, and a branch
decomposition (T,δ) of F of ps -width k, we solve MaxSAT, #SAT, and weighted
MaxSAT in time O(k3m(m+n)).
Proof. To solve MaxSAT, we first compute Tabr for the root node r of T . This
requires that we first compute PS′(Fv) and PS′(Fv) for all nodes v of T , and then,
in a bottom up manner, compute Tabv for each of the O(m+n) nodes in T . The
former part we can do in O(k2m(m+n)) time by Theorem 8.2, and the latter part
we do in O(k3m(m+n)) time by Lemma 8.3.
At the root r of T we have δ(r) = var(F )∪ cla(F ). Thus Fr = ∅ and Fr

does not have any variables, so that PS(Fr)×PS(Fr) contains only (∅,∅). As all
assignments over var(F ) meet the expectation of ∅ and ∅ on the cut (δ(r), δ(r)),
and cla(F )∩ δ(r) = cla(F ), by Constraint (8.1) the value of Tabr(∅,∅) is the
maximal number of clauses in F any assignment of var(F ) satisfies. And hence,
this number is the solution to MaxSAT.
For a weight function w : cla(F )→ N, by redefining Constraint (8.1) for Tabv

to maximize w(sat′(F,τ)∩δ(v)) instead of |sat′(F,τ)∩δ(v))|, we are able to solve
the more general problem weighted MaxSAT in the same way.
For the problem #SAT, we care only about assignments satisfying all the

clauses of F , and we want to decide the number of distinct assignments doing
so. This requires a few alterations. Firstly, alter the definition of the contents of
Tabv(C,C ′) in Constraint (8.1) to be the number of assignments τ over var(F )∩
δ(v) where sat′(Fv, τ) = C and all clauses in δ(v) is either in C ′ or satisfied by
τ . Secondly, when computing Tabl for the leaves l of T , we set each of the
entries of Tabl to either zero, one, or two, according to the definition. Thirdly, we
alter the algorithm to compute Tabv (Procedure 3) for inner nodes. We initialize
Tabv(C,C ′) to be zero at the start of the algorithm, and substitute lines 6 and 7 of
Procedure 3 by the following line which increases the table value by the product
of the table values at the children

Tabv(Cv,Cv)← Tabv(Cv,Cv)+Tabc1(Cc1,Cc1) ·Tabc2(Cc2,Cc2)
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This will satisfy our new constraint of Tabv for internal nodes v of T . The value
of Tabr(∅,∅) at the root r of T will be exactly the number of distinct assignments
satisfying all clauses of F .

The bottleneck giving the cubic factor k3 in the runtime of Theorem 8.4 is
the number triples in PS′(Fv)× PS′(Fc1)× PS′(Fc2) for any node v with children
c1 and c2. When (T,δ) is a linear branch decomposition, it is always the case
that either c1 or c2 is a leaf of T . In this case either |PS′(Fc1)| or |PS′(Fc2)| is a
constant. Therefore, for linear branch decompositions PS′(Fv)×PS′(Fc1)×PS′(Fc2)
will contain no more than O(k2) triples. Thus we can reduce the runtime of the
algorithm by a factor of k.
Theorem 8.5. Given a formula F over n variables and m clauses, and a linear
branch decomposition (T,δ) of F of ps -width k, we solve #SAT, MaxSAT, and
weighted MaxSAT in time O(k2m(m+n)).

8.4 CNF formulas of polynomial ps -width
In this section we investigate classes of CNF formulas having decompositions with
ps-width polynomially bounded in the total size s of the formula. In particular,
we show that this holds whenever the incidence graph of the formula has constant
mim-width (see Section 1.1 for the definition of mim-width). We also show that
a large class of bipartite graphs, using what we call bigraph bipartizations, have
constant mim-width.
In order to lift the upper bound of Lemma 8.1 on the ps-value of F , i.e |PS(F )|,

to the ps-width of F , we use mim-width of the incidence graph I(F ), which is
defined using branch decompositions of graphs. A branch decomposition of the
formula F , as defined in Section 8.2, can also be seen as a branch decomposition
of the incidence graph I(F ). Therefore, from Lemma 8.1, we immediately get the
following corollary.
Corollary 8.6. For any CNF formula F over m clauses, with no clause con-
taining more than t literals, the ps -width of F is at most min{mk +1,2tk} for
k =mim-w(I(F )).
Many classes of graphs have intersection models, meaning that they can be

represented as intersection graphs of certain objects, i.e. each vertex is associated
with an object and two vertices are adjacent iff their objects intersect. The objects
used to define intersection graphs usually consist of geometrical objects such as
lines, circles or polygons. Many well known classes of intersection graphs have
constant mim-width, as in the following which lists only a subset of the classes
proven to have such bounds in [6, 107].
Theorem 8.7 ([6, 107]). Let G be a graph. If G is a:

interval graph then mim-w(G)≤ 1.
circular arc graph then mim-w(G)≤ 2.
k-trapezoid graph then mim-w(G)≤ k.

Moreover there exist linear decompositions satisfying the bound, that can be found
in polynomial time (for k-trapezoid assume the intersection model is given).
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Let us briefly mention the definition of these graph classes. A graph is an
interval graph if it has an intersection model consisting of intervals of the real
line. A graph is a circular arc graph if it has an intersection model consisting
of arcs of a circle. To build a k-trapezoid we start with k parallel line segments
(s1, e1),(s2, e2), ...,(sk, ek) and add two non-intersecting paths s and e by joining
si to si+1 and ei to ei+1 respectively by straight lines for each i ∈ {1, ...,k − 1}.
The polygon defined by s and e and the two line segments (s1, e1),(sk, ek) forms
a k-trapezoid. A graph is a k-trapezoid graph if it has an intersection model
consisting of k-trapezoids. See [18] for information about graph classes and their
containment relations.
Combining Corollary 8.6 and Theorem 8.7 we get the following

Corollary 8.8. Let F be a CNF formula containing m clauses with maximum
clause-size t. If I(F ) is a:

interval graph then psw(F )≤min{m+1,2t}.
circular arc graph then psw(F )≤min{m2+1,4t}.
k-trapezoid graph then psw(F )≤min{mk+1,2tk}.

Moreover there exist linear decompositions satisfying the bound, that can be found
in polynomial time (for k-trapezoid assume the intersection model is given).

The incidence graphs of formulas are bipartite graphs, which is not the case for
the majority of graphs in the above-mentioned graph classes. In the following we
show how to extend the results of Corollary 8.8 to large classes of bipartite graphs.
For a graph G and subset of vertices A ⊆ V (G) the bipartite graph G[A,A] is the
subgraph of G containing all edges of G with exactly one endpoint in A. For any
graph G and A ⊆ V (G) we call G[A,A] a bigraph bipartization of G, and note that
G has a bigraph bipartization for each subset of vertices. For a graph class X
we define the class of X bigraphs as the bipartite graphs H for which there exists
G ∈ X such that H is isomorphic to a bigraph bipartization of G. For example,
a bipartite graph H is an interval bigraph if there is some interval graph G and
some A ⊆ V (G) with H isomorphic to G[A,A].
The following result will allow us to lift the results of Corollary 8.8 from the

given graphs to the bigraph bipartizations of the same graphs.

Theorem 8.9. Assume that we are given a CNF formula F of m clauses and
maximum clause-size t, a graph G, a subset A ⊆ V (G), and (T,δG) a (linear)
branch decomposition of G of mim -width k. If I(F ) is connected and isomorphic
to G[A,A] (thus I(F ) a bigraph bipartization of G) then we can in linear time
produce a (linear) branch decomposition (T,δF ) of F having ps -width at most
min{mk+1,2tk}
Proof. Since each variable and clause in F has a corresponding node in I(F ), and
each node in I(F ) has a corresponding node in G, by defining δF to be the function
mapping each leaf l of T to the variable or clause in F corresponding to the node
δG(l), we get that (T,δF ) is a branch decomposition of F . Consider a cut (B,B)
induced by a node of (T,δF ). Note that the mim-value of G[B,B] is at most k.
I(F ) is connected which means that we have either A or A corresponding to the
set of variables of F . Assume wlog the former. Thus C =A∩B ⊆ cla(F ) are the
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clauses in B, with C = cla(F )\C and X =A∩B ⊆ var(F ) are the variables in B,
withX = var(F )\X. The mim-values of G[C,X] andG[C,X] are at most k, since
these are induced subgraphs of G[B,B], and taking induced subgraphs cannot
increase the size of the maximum induced matching. Hence by Lemma 8.1, we
have |PS(FC,X)| ≤ |cla(F )|k+1, and likewise we have |PS(FC,X)| ≤ |cla(F )|k+1,
with the maximum of these two being the ps-value of this cut. Since the ps-
width of the decomposition is the maximum ps-value of each cut the theorem
follows.

Combining Theorems 8.9 and 8.7 we immediately get the following.

Corollary 8.10. Let F be a CNF formula containing m clauses with maximum
clause-size t. If I(F ) is a:

interval bigraph then psw(F )≤min{m+1,2t}.
circular arc bigraph then psw(F )≤min{m2+1,4t}.
k-trapezoid bigraph then psw(F )≤min{mk+1,2tk}.

Moreover there exist linear decompositions satisfying the bound.

In the next section we address the question of finding such linear decomposi-
tions in polynomial time. We succeed in the case of interval bigraphs, but for
circular arc bigraphs and k-trapezoid bigraphs we must leave this as an open
problem.

8.5 Interval bigraphs and formulas having interval
orders

We will in this section show that for formulas whose incidence graph is an interval
bigraph we can in polynomial time find linear branch decompositions having small
ps-width. Let us recall the definition of interval ordering. A CNF formula F has
an interval ordering if there exists a linear ordering of variables and clauses such
that for any variable x occurring in clause C, if x appears before C then any
variable between them also occurs in C, and if C appears before x then x occurs
also in any clause between them. See Figure 8.4 for an example.
By a result of Hell and Huang [53] it follows that a formula F has an interval

ordering if and only if I(F ) is a interval bigraph.

Theorem 8.11. Given a CNF formula F over n variables and m clauses each
of at most t literals. In time O((m+n)mn) we can decide if F has an interval
ordering (yes iff I(F ) is an interval bigraph), and if yes we solve #SAT and
weighted MaxSAT with an additional runtime of O(min{m2,4t}(m+n)m).

Proof. Using the characterization of [53] and the algorithm of [84] we can in
time O((m+n)mn) decide if F has an interval ordering and if yes, then we find
it. From this interval ordering we build an interval graph G such that I(F ) is
a bigraph bipartization of G, and construct a linear branch decomposition of G
having mim-width 1 [6]. From such a linear branch decomposition we get from
Theorem 8.9 that we can construct another linear branch decomposition of F
having ps-width O(m). We then run the algorithm of Theorem 8.5.
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x4 x5

Incidence graph

c1 = {x1, x2}
c2 = {x2, x3, x5}
c3 = {x3, x4, x5}

Clauses

Figure 8.4: A CNF formula having an interval ordering. Its incidence graph is an interval
bigraph, since it is isomorphic to the bigraph bipartization, defined by the blue intervals,
of the interval graph with intersection model on the left.

8.6 Experimental results

We present some simple experimental results, intended as proof of concept.
It is our belief that some of the ideas behind our algorithms, like the notion of
ps-value, are useful in practice, but it will require a thorough investigation to
confirm such a belief. Our results indicate that the worst-case runtime bounds of
the dynamic programming, Theorems 8.4 and 8.5, are probably higher than what
would commonly be seen in practice.
In the past decade, SAT solvers have become very powerful, and are currently

able to handle very large practical instances. Techniques from these SAT solvers
have been applied to develop relatively powerful MaxSAT and #SAT solvers
[9]. In our experiments we compare implementations of our algorithms against
state-of-the-art MaxSAT and #SAT solvers. We do not enhance our implemen-
tations with any other techniques, not even simple pre-processing, and on the vast
majority of instances our implementations fall far behind in a comparison. How-
ever, when focusing on formulas with a certain linear order our implementations
compare favorably.
As explained in Section 8.1 and Chapter 2, there are two steps involved: [P1]

find a good decomposition of the input CNF formula F , and[P2] perform DP
(dynamic programming) along the decomposition. Let us start by describing a
very simple heuristic for step [P1]. It takes as input the bipartite graph I(F )
with vertex set cla(F )∪var(F ), and outputs a linear order σ on the vertex set.
The below heuristic GreedyOrder is a greedy algorithm that for increasing values



8.6 Experimental results 117

of i chooses σ(i) to be a vertex having the highest number of already chosen
neighbors, and among these choosing one with fewest non-chosen neighbors. This
defines a linear branch decomposition (T,δ) of the CNF formula F , with non-leaf
nodes of the binary tree T inducing a path, with T rooted at one end of this path,
and with δ mapping the ith leaf encountered by a breadth-first search starting at
the root of T to the clause or variable σ(i), for all 1≤ i ≤ |cla(F )∪var(F )|.

Algorithm GreedyOrder
input: G= (V,E), a (bipartite) graph
output: σ, a linear ordering of V

L= ∅,R = V , i= 1
for all v ∈ V set Ldegree(v) = 0
while R is not empty do

choose v: from vertices in R with max Ldegree take one of smallest degree
set σ(i) = v, increment i, add v to L and remove v from R
for all w ∈ R with vw ∈ E increment Ldegree(w)

All our implementations can be found online [1]. We have implemented Greedy-
Order in Java, together with a straight-forward implementation of the DP algo-
rithm of Theorem 8.5.
Given a CNF formula, this allows us to solve MaxSAT and #SAT by first

running GreedyOrder and then the DP. We compare our implementation to the
best solvers we could find online, respectively CCLS-to-akmaxsat [70] which
was among the best solvers of the MaxSAT Evaluation competition in 2014 [2],
and the latest version of the #SAT solver called sharpSAT developed by Marc
Thurley [102, 103]. These solvers handily beat our implementation on most inputs.
We have therefore generated some CNF formulas having interval orderings, as in
Theorem 8.11, to check if at least on these instances we do better. Note that for
step [P1] we have not implemented the polynomial-time algorithm recognizing
formulas having interval orders, relying instead on the GreedyOrder heuristic.

8.6.1 Generation of instances

Before presenting our results, let us describe the generation of the set of instances,
which are of three types. We start with type 1. The generation of these formulas
is based on the definition of interval orderings given by the interval bigraph defi-
nition, see e.g. the left side of Figure 8.4. To generate a formula of type 1 with n
variables and m clauses, we generate n+m intervals of the real line by iterating
through points i from 1 to 2(n+m) as left and right endpoints of the intervals:

• At step i, check which of the 4 cases below are legal (e.g. 3 is legal if there
exists a live variable, i.e. with left endpoint < i and no right endpoint) and
randomly make one of those legal choices:
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1. start interval of new variable with left endpoint i
2. start interval of new clause with left endpoint i
3. end interval of randomly chosen live variable by right endpoint i
4. end interval of randomly chosen live clause by right endpoint i

Towards the end of the process boundary conditions are enforced to reach
exactly m clauses, with n expected to be slightly smaller than m. For each clause
interval we randomly choose each variable having overlapping interval as being
either positive or negative in this clause. The resulting CNF formula will have
an interval ordering given by the rightmost endpoints of intervals. To hide this
ordering the clauses and variables are randomly permuted to make the final CNF
formula.
The formulas of type 2 are generated in a very similar fashion as type 1, except

we guarantee that all clauses have the same size t, which by Lemma 8.1 could
be of big help. The only change is to case 4 above which instead of being a
choice becomes enforced for a live clause that at step i has accumulated exactly t
overlapping variable intervals. We also let each clause interval represent 4 clauses
over the same variable set but on randomly chosen literals, at the aim of increasing
the probability of each instance not being satisfiable.
The formulas of type 3 are the CNF-representation of a conjunction of XOR

functions where each XOR has a fixed number t of literals and the variables of
the XOR functions overlap in such a way that the incidence graph will be the
bipartization of a circular arc graph.
A formula of type 3 is generated from three input parameters n,t,s. It has

n variables represented by successive points 1 to n on the circle. The first XOR
function has interval from 1 to t thus containing variables with points 1 to t,
the second has interval s+1 to s+ t, and in general the ith has interval i∗ s+1
to i ∗ s+ t, with appropriate modulo addition and some boundary condition at
the end to ensure n/s XOR functions. Variables are chosen randomly to appear
positive or negative in each XOR. Each XOR is then transformed in the standard
way to a CNF formula with 2t−1 clauses to give us a resulting CNF formula with
n/s ∗ 2t−1 clauses. Again, variables and clauses are randomly permuted to hide
the ordering giving the circular arc bigraph representation.
Note that all the resulting formulas have a quite simple structure, and that

a state-of-the-art SAT solver, like lingeling [8], handles all generated instances
within a few seconds.

8.6.2 Results

We are now ready to present our results. We ran all the solvers on a Dell Optiplex
780 running Ubuntu 12.04 64-Bit. The machine has 8GB of memory and an Intel
Core 2 Quad Q9650 processor with OpenJDK java 6 (IcedTea6 1.13.5).
For instances of type 1 the GreedyOrder heuristic fails terribly and becomes

a huge bottleneck. The greedy choice based on degrees of vertices in I(F ) is
too simple. However, when given the correct interval order to our solver(s) they
performed better.
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Instances of type 2 are generated similar to those of type 1 but all clauses have
small size, which by Lemma 8.1 could be of help. In this case the number of clauses
is approximately four times the number of variables, and as a consequence a great
number of the instances were not satisfiable, making the work of the #SAT-solvers
easier than that of the MaxSAT solvers. All generated instances of type 2 were
solved within seconds by sharpSAT, see Figure 8.5. As the size of the instances
grow, we see a clear tendency for the runtimes of CCLS_to_akmaxsat to increase
much more rapidly than both our solvers. The runtimes of our two solvers were
almost identical. The GreedyOrder heuristic on these instances seems to produce
decompositions/orders of low ps-width.
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Figure 8.5: Runtimes of instances of type 2. Here our MaxSAT solver is clearly faster
than CCLS_to_akmaxsat. The vertical axis represents time in seconds. Runs taking more
than 600 seconds were stopped before completion and are drawn on the dotted line.

The type 3 instances shown in Figure 8.6 were generated with k = 5 and s= 3.
All instances are satisfiable, which may explain why CCLS_to_akmaxsat is very
fast. Choosing k = 3 and s = 2 there will be some not satisfiable instances and
CCLS_to_akmaxsat would then often spend more than 600 seconds and time out.
As the size of the instances grow, we see a clear tendency for the runtimes of
sharpSAT to increase much more rapidly than our solvers. The runtimes of our
two solvers were almost identical.

8.7 Conclusion

In this chapter we have proposed a structural parameter of CNF formu-
las, called ps-width or projection-satisfiable-width. We showed that weighted
MaxSAT and #SAT can be solved in polynomial time if given a decomposition
of the formula of polynomially bounded ps-width. Using the concept of interval
bigraphs we also showed a polynomial time algorithm that actually finds such a
decomposition, for formulas having an interval ordering. Could one devise such
an algorithm also for the larger class of circular arc bigraphs, or maybe even for
the even larger class of k-trapezoid bigraphs? In other words, is the problem of
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Figure 8.6: Runtimes of instances of type 3. Here our #SAT solver is clearly faster
than sharpSAT. The vertical axis represents time in seconds. Runs taking more than 600
seconds were stopped before completion and are drawn on the dotted line.

recognizing if a bipartite input graph is a circular arc bigraph, or a k-trapezoid
bigraph, polynomial-time solvable?
It could be of practical interest to design a heuristic algorithm which given a

formula finds a decomposition of relatively low ps-width, as has been done for
boolean-width in [55]. One could then check if benchmarks covering real-world
SAT instances have low ps-width, and perform a study on the correlation between
low ps-width and their practical hardness by MaxSAT and #SAT solvers, as
has been done for treewidth and SAT solvers [71]. We presented some simple
experimental results, but it will require a thorough investigation to check if ideas
from our algorithms could be useful in practice. Finally, we hope the essential
combinatorial result enabling the improvements in this chapter, Lemma 8.1, may
have other uses as well.



Chapter 9

Conclusion

In this thesis, we have looked at four cases where we find alternative structural
parameters solving a number of parameterized problems. From these case studies
many natural open problems arise. We now look at some of these problems, case
by case.
In the first case study, we showed that we can get a faster algorithm for Domi-

nating Set by using branch decompositions of low mm-width when the treewidth
of the input graph is at least 1.55 larger than the mm-width. One of the improve-
ments of the mm-width approach over the treewidth approach is that we can get
a better approximation than we do for treewidth in the same amount of time.
However, we still only get a 3-approximation of mm-width. This was using the
general approximation algorithm of Oum and Seymour [79] for branch decompo-
sitions (Theorem 3.1). By looking in particular at mm-width, and making use
of properties unique for its cut function; can we get a better approximation of
mm-width, both in terms of approximation ratio, and in terms of runtime? And
what is the complexity of computing mm-width? Since the cut function mm(A)
is polynomial time computable, it is clear that deciding mm-width is in NP, but
is it NP-hard? And if so, is it also W[1]-hard, or is it FPT?
In the second case study, we defined the parameter split-matching-width (sm-

width), which is weaker than clique-width and stronger than treewidth, and and
showed that four problems that are W[1]-hard parameterized by clique-width are
FPT parameterized by sm-width. We selected our four NP-hard problems based
on them being expressible in MSO2 but not in MSO1, and being W[1]-hard pa-
rameterized by clique-width. Are there more problems like this which are FPT
parameterized by sm-width and treewidth, but not by clique-width? Can such
a class of problems be defined by expressibility in some logical language? For
[P1] of our FPT algorithms we used an approximation that used FPT time, yet
computing a split decomposition can be done in polynomial time. What is the
complexity of computing sm-width?
In the third case, we looked at using an alternative rank-like parameter for

solving many domination-type problems. One of the implications of our result
was that we improved the worst case runtime for solving Dominating Set pa-
rameterized by clique-width from O∗(2cw(G)2) to O∗(cw(G)O(cw(G))). A natural
question to ask is whether this new runtime is optimal. Can we show, under some
complexity theory assumption, e.g. under the Exponential Time Hypothesis, that
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the runtime of O∗(cw(G)cw(G)) is optimal for Dominating Set? Or can we show
this for any of the other [σ,ρ]-partition problems for that matter?
In the fourth case study, we defined the parameter projection-satisfiable-width

(ps-width). This parameter was a result of carefully looking at the minimal in-
formation necessary for a dynamic programming algorithm to solve MaxSAT

and #SAT over a branch decomposition of the input CNF formula which. How-
ever, we did not find a good algorithm for computing a branch decomposition of
low ps-width for general input formulas. We showed if the incidence graph of the
formula is an interval bigraph, then we can construct a branch decomposition hav-
ing ps-width upper bounded by the number of clauses in polynomial time. For
what other classes of CNF formulas can we construct a branch decomposition of
polynomial ps-width in polynomial time?
In Chapter 6 we showed that deciding the boolean-width of a graph is NP-

hard, and deciding the mim-width of a graph is W[1]-hard and not in APX unless
NP=ZPP. However, these results only show lower bounds on the complexity of
these two problems. What are the complexity upper bounds of these problems? Is
deciding boolean-width FPT or not? Is deciding mim-width W[1]-complete? We
cannot approximate mim-width to within a constant factor in polynomial time,
but can we approximate mim-width to within a constant factor in FPT time? Or
can we even approximate it to within f(mim(G)) for any function f in FPT time?
No polynomial time recognition algorithm has been found even for mim-width
one graphs. Might mim-width actually be paraNP-hard1?

1Being paraNP-hard means that even when fixing the parameter to a constant, the problem is NP-hard.
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