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Chapter 1

Introduction

To find the largest number of occurrences of a set of vertices with given
constraints, is an important field of study in graph theory and graph algo-
rithms.

An upper bound on the number of vertex sets satisfying some property
is the proved maximum number of these vertex sets that can be found in any
graph. This bound is often proved with the help of branching algorithms. A
lower bound is given by the maximum number of vertex sets we have been
able to find in a graph, and is proved by giving an example graph with this
number of vertex sets.

A classical example is Moon and Moser’s theorem from 1965 which states
that the number of maximal cliques and maximal independent sets in any
graph on n vertices is at most 3n/3 [20]. This is a tight upper bound as
there exist graphs with 3n/3 maximal independent sets. With a tight bound
we mean that the upper bound is equal to the lower bound. We give the
lower bound example for the number of maximal independent sets in general
graphs in Figure 1.1. This example consists of n/3 disjoint triangles.

Figure 1.1: A graph having 3n/3 maximal independent sets

Sometimes we are able to give an upper bound on the number of vertex
sets satisfying a given property, but we are not able to find a lower bound
example that reaches this bound. For instance the number of minimal subset
feedback vertex sets in general graphs, where the upper bound is known to
be 1.8638n [12], but the largest number of minimal subset feedback vertex
sets that have been found in a graph gives the lower bound 1.5927n. Thus
these bounds are not tight. In such cases it is not known whether the upper
bound is too high, or whether there exists a better lower bound. One way
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2 CHAPTER 1. INTRODUCTION

of trying to tighten these bounds is to restrict the input to certain types of
graphs. An example where this has been effective is when finding all minimal
subset feedback vertex sets in chordal graphs. In this case the upper bound
is 1.6708n and the lower bound is 1.5848n [3], making the bounds closer to
each other than in general graphs.

In this thesis we will study such upper and lower bounds. More specifi-
cally we will use an algorithm given by Couturier et al. in [2] to study the
maximum number of minimal dominating sets in chordal graphs. And we
will use an algorithm given by Golovach et al. in [12] to study the maximum
number of minimal subset feedback vertex sets in chordal and split graphs.
We will implement these algorithms and study how the proven bounds com-
pare to practical experiments. The implementation of these algorithms have
generated some interesting test results. Especially for the number of minimal
subset feedback vertex sets in split graphs. These results will be presented
in later chapters.

1.1 Notation

In this thesis we work with simple undirected graphs. We denote a graph by
G = (V,E), where V is the set of vertices and E is the set of edges in G. The
neighbourhood of a vertex v ∈ V (G) is the set of vertices adjacent to v, and it
is denoted by NG(v). The closed neighbourhood of v is NG[v] = N(v)∪ {v}.
The degree of a vertex v is |NG(v)|, and it is denoted dG(v). For a set
S ⊆ V we define the neighbourhood and the closed neighbourhood of S as
NG(S) = ∪v∈SNG(v) \ S and NG[S] = NG(S)∪ S respectively. We say that
a vertex v is isolated if it has no neighbours, that is if NG(v) = ∅.

A set D ⊆ V is a dominating set in G if for all vertices v in G, either
v ∈ D or v ∈ NG(D). A dominating set is minimal if no proper subset
of D is a dominating set. That is for any vertex v in D, D \ {v} is not a
dominating set. In the Dominating set problem we are given a graph G,
and an integer k and we are asked to find a dominating set of size k.

The sub graph of G induced by S is denoted by G[S]. We use G− v to
denote the graph G[V \ {v}], and G− S to denote the graph G[V \ S].

A path in G is a sequence of distinct vertices such that the next vertex
in the sequence is adjacent to the previous vertex. A cycle is a path with at
least three vertices such that the first vertex is adjacent to the last vertex.

Given a subset S ⊆ V , we call a cycle an S-cycle if it contains a vertex
of S. For a cycle or S-cycle C we denote the set of vertices in C by V (C).
A subset F ⊆ V is a forest if G[F ] contains no cycle. F is an S-forest if no
cycle in G[F ] contains a vertex of S.

A graph is connected if there is a path between every pair of its vertices.
A maximal connected sub graph of G is called a connected component of G.

A set X ⊆ V is a clique if uv ∈ E(G) for every pair of vertices u, v ∈ X.
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A clique is maximal if no proper superset of it is a clique. X ⊆ V is an
independent set if uv /∈ E(G) for every pair of vertices u, v ∈ X.

X ⊆ V is a feedback vertex set of G, if G−X contains no cycles. Given
a graph G and a set S ⊆ V , then a set U ⊆ V is a subset feedback vertex set
of G if no cycle in G − U contains a vertex of S. A subset feedback vertex
set U is minimal if no proper subset of U is a subset feedback vertex set of
G. In the Subset feedback vertex set problem we are given a graph
G, a set S ⊆ V and an integer k and asked to find a subset feedback vertex
set of size k such that G− U has no cycles containing a vertex of S.

A simplicial vertex is a vertex v such that NG(v) is a clique. A Per-
fect Elimination Ordering (PEO) in a graph G = (V,E) is an ordering
[v1, v2, ..., vn] of the vertices in G such that each vi is a simplicial vertex in
the induced sub graph G[vi, ..., vn].

1.2 Graph classes

A graph class is an infinite set of graphs that satisfy some common property.
There are many important graph problems that are NP-hard on the class
of general graphs. Meaning the set of graphs without any particular restric-
tions. Since these graph problems are NP-hard, we do not expect that they
can be solved in polynomial time for general graphs. However most of the
instances of these problems have nice properties that make them solvable
in polynomial time. Therefore a very common way of dealing with hard
problems is to restrict the input to various graph classes. In this way some
NP-hard problems become polynomial time solvable on these graph classes.

An example of a NP-hard problem that become polynomial, when re-
stricting the input to a certain graph class, is the famous problem clique
which asks for a clique of maximum size in a graph. This problem is solvable
in polynomial time on chordal graphs [11]. We will explain what a chordal
graph is and different properties of chordal graphs in the next section.

When studying the maximum number of vertex subsets with various
properties in graphs, it is also interesting to consider input graphs that
belong to different graph classes. The number vertex sets may be exponential
in general graphs but could be polynomial when restricting the input to
specific graph classes. An example of this is the number of minimal feedback
vertex sets which on general graphs is exponential, but that is polynomial
on split graphs [12]. It could also be that upper and lower bounds get closer
in restricted graph classes. For instance the currently best known upper
and lower bounds on the number of minimal subset feedback vertex sets for
general graphs are 1.8638n and 1.5927n, but for chordal graphs these bounds
are 1.6708n and 1.5848n respectively [12].

Both the Dominating Set problem and the Subset Feedback Ver-
tex Set problem stay NP-hard in chordal and split graphs, but this is not
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what we will study in this thesis. We will study the number of minimal dom-
inating sets in chordal graphs and the number of minimal subset feedback
vertex sets in chordal and split graphs. The number of these vertex subsets
is exponential on general graphs and, more importantly for us, exponential
on both chordal and split graphs.

1.2.1 Chordal graphs

In this section we will present properties of chordal graphs in addition to pre-
senting two algorithms that combined are used to recognize chordal graphs.
These algorithms will later be used as part of the preprocessing step for the
algorithms that will be used to find and list all minimal dominating sets and
all minimal subset feedback vertex sets in chordal graphs found in [2] and
[12] respectively. These algorithms will be described in Chapters 3 and 4.

Chordal graphs have been found interesting in many areas. They have
applications in sparse matrix computations [21] and computational biology
and phylogenetics [22], among many other areas. In addition they form one
of the first graph classes to be recognized as perfect [13]. It was mentioned
that some problems become polynomial-time solvable on different graph
classes. A number of problems that are NP-complete on general graphs are
polynomial-time solvable in chordal graphs [15]. Examples of such problems
are clique and colouring.

Definition 1. A graph is chordal if every cycle of length > 3 has a chord.

A chord is an edge between two non-consecutive vertices of a cycle. We
show the difference between a chordal and a non-chordal graph on four
vertices in Figure 1.2. The red edge in the rightmost square of the figure is
a chord.

Figure 1.2: To the left a non-chordal graph, to the right a chordal graph.

Theorem 1. [4] Every induced sub graph of a chordal graph is chordal.

Theorem 2. [4] Every chordal graph is either a clique or it contains two
non-adjacent simplicial vertices.

Theorem 3. [10] A graph is chordal if and only if it has a PEO.

Theorem 2 can be used to recognize whether a graph is chordal. This can
be done by repeatedly finding a simplicial vertex in the graph and deleting
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it, until either there are no more vertices in the graph, meaning that the
graph is chordal, or until there are no more simplicial vertices in the graph,
meaning that it is not chordal. Note that if the graph is chordal, the order
that these vertices have been deleted in form a PEO of the graph. This is
not a very efficient algorithm in terms of running time. In fact it has been
shown by Tarjan that we can recognize whether a graph is chordal in linear
time [23]. This is done by finding an ordering of the vertices in linear time
and checking that this ordering is a PEO.

0 1

23

4

α1: [4, 3, 2, 1, 0]

α2: [1, 4, 2, 0, 3]

Figure 1.3: A chordal graph, and two of its PEOs

Theorem 3 states that a graph is chordal if and only if it has a PEO,
but the PEO of a graph is not necessarily unique. A chordal graph can have
many different PEOs. This is illustrated in Figure 1.3, where both orderings
α1 and α2 are PEOs of the graph in the figure.

Tarjan and Yannakakis gives an algorithm called maximum cardinality
search (MCS) in [23]. MCS gives an ordering α of the vertices in a graph.
It is proved in [23] that this ordering is a PEO, if the graph is chordal. We
use the MCS algorithm in combination with the checkPEO algorithm that
is described in Algorithm 1.2 to verify whether a graph is chordal and to
generate PEOs.

The pseudo code for finding an ordering of the vertices with MCS, is pre-
sented in Algorithm 1.1, and the pseudo code for checking that this ordering
is in fact a PEO, is presented in Algorithm 1.2. Both these algorithms were
given by Tarjan and Yannakakis in [23].

The MCS algorithm works as follows: It takes as input a graph G and
outputs an ordering α. It starts by choosing a vertex v, removing it from
the graph G and putting it first in the ordering α. After which it marks all
its neighbours. This is illustrated in Figure 1.4 (b). When the algorithm
chooses the next vertex v it chooses any of the vertices with the highest
number of neighbours in α. And puts v first in α, as shown in Figure 1.4
(c). It continues in this way, choosing a vertex with the largest number of
neighbours in α, putting it first in α and marking all its neighbours, before
removing it from G. The algorithm terminates when there are no more
vertices in G. Figure 1.4 illustrates how the algorithm would proceed in
a graph with 5 vertices. In this example the first vertex chosen is 0. The
numbers in parenthesis gives the number of neighbours already placed in the
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ordering. An implementation of Algorithm 1.1 can be found in Appendix
A.

Algorithm 1.1 MCS algorithm

Input: Graph G
Output: An ordering α of the vertices of G
1: i:= Number of vertices of G
2: j:=0
3: for All vertices do
4: level(v) := 0
5: add v to set(0)
6: end for
7: while i ≥ 0 do
8: v:= vertex from set(j)
9: delete v from set(j)

10: add v to α at position i
11: level(v) := −1
12: for All neighbours w of v where level(w) ≥ 0 do
13: delete w from set(level(w))
14: level(w) := level(w)+1
15: add w to set(level(w))
16: end for
17: i := i− 1
18: j := j + 1
19: while j ≥ 0 and set(j)= ∅ do
20: j := j − 1
21: end while
22: end while

To check that the ordering α is in fact a PEO, we use the checkPEO
algorithm described in Algorithm 1.2. This algorithm is given by Tarjan and
Yannakakis in [23] as Test for zero fill-in. We know that any graph
can be made chordal by adding edges to the graph. Algorithm 1.2 verifies
that no edges have to be added to make the graph chordal.

Note that we abuse the notation somewhat in Algorithm 1.2, such that
α(i) returns element at position i in α while α(v) returns the index of v in
α. Before we start to describe the algorithm, we define f(v), the follower of
v, to be the vertex of largest index, in α given by the MCS algorithm, that
is both a neighbour of v and that comes before v in α.

The algorithm works as follows: For all vertices v, compute f(v). For ev-
ery {v, w} in E(G), where v comes before w in α, verify that either {f(v), w}
is in E(G) or that f(v) = w. In this way we check that all cycles > 3 has a
chord. An implementation of this algorithm is given in Appendix A.
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0 1

23

4

α: []

(a)

0 (-) 1 (1)

2 (1)3 (1)

4 (0)

α: [0]

(b)

0 (-) 1 (-)

2 (2)3 (1)

4 (0)

α: [1, 0]

(c)

0 (-) 1 (-)

2 (-)3 (2)

4 (1)

α: [2, 1, 0]

(d)

0 (-) 1 (-)

2 (-)3 (-)

4 (2)

α: [3, 2, 1, 0]

(e)

0 (-) 1 (-)

2 (-)3 (-)

4 (-)

α: [4, 3, 2, 1, 0]

(f)

Figure 1.4: Figure showing how an ordering α is found with MCS algorithm

Algorithm 1.2 CheckPEO algorithm

Input: Graph G, Ordering α
Output: if G is chordal return true , else return false
1: for i := 0 to n do
2: w := α(i) in α
3: f(w) := w
4: index(w) := i
5: for all neighbours v of w where α(v) < i do
6: index(v) = i
7: if f(v) = v then
8: f(v) = w
9: end if

10: end for
11: for all neighbours v of w where α(v) < i do
12: if index(f(v)) < i then
13: return false
14: end if
15: end for
16: end for
17: return true

The algorithms that have been described above will be used both to
test for chordality in graphs and to generate PEOs for the graphs that we
generate. The PEOs are important for achieving the correct running time
for the algorithms in [2] and [12]. The reason for this will be explained in
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later chapters.

1.2.2 Split graphs

In this section we will first present a few properties of split graphs before
we present how we can recognize a split graph.

Definition 2. A graph G = (V,E) is a split graph if V can be partitioned
into a clique and an independent set.

Split graphs are a sub-class of chordal graphs, which is why the algorithm
given by Golovach et al. in [12] also gives an upper bound on the number
of minimal subset feedback vertex sets in split graphs.

It was mentioned in the previous section that upper and lower bounds
on the number of vertex subsets in graphs can be closer when studied in
restricted graph classes. An example of this is the bounds on the number
of minimal feedback vertex sets. For general graphs the best known upper
and lower bounds are 1.8638n and 1.5927n respectively. But for split graphs
these bounds are not only tight but also polynomial, the upper and lower
bounds for this graph class has been shown to be n2 [12]. This is due to
the partition of the vertices in the graph that form a clique. There can be
at most two vertices of the clique left in the graph after the feedback vertex
set has been removed which results in n2 possible minimal feedback vertex
sets.

We define a degree sequence d1 ≥ d2 ≥ ... ≥ dn of an undirected graph
G, to be an ordering of the vertices v1, v2, ..., vn of G such that dG(vi) = di
and di ≥ di+1.

Theorem 4. [1] Given a degree sequence d1 ≥ d2 ≥ ... ≥ dn of an undirected
graph G, let w = max{i | di ≥ i− 1}. Then G is a split graph if and only if

w∑
i=1

di = w(w − 1) +

n∑
i=m+1

di (1.1)

Corollary 1. [13] If G is a split graph, then every graph with the same
degree sequence as G is also a split graph.

Theorem 4 is important for recognizing whether a graph is a split graph.
In fact it can be used to recognize whether a graph is a split graph in linear
time. The equation works by identifying what index the last vertex of the
clique has in the degree sequence and assigning that value to w. Then it
computes the sums as given by (1.1). Where the left hand side sums up
the degree of all the vertices in the clique, this will necessarily also count
edges between the clique and the independent set. The right hand side first
summarizes the edges in the clique, and then adding all edges that have an



1.3. BRANCHING ALGORITHMS 9

endpoint in the independent set. When these two sides are equal G is a split
graph. An implementation of this equation can be found in Appendix A.

One of the goals of this thesis is to study the bounds for the number of
minimal subset feedback vertex sets in split graphs. Therefore we need to
be able to recognize the graphs that are split graphs in our data sets.

1.3 Branching Algorithms

Branching algorithms can be used to find and list all feasible solutions of a
problem. One goal of this thesis is to generate all minimal dominating sets
for a selection of chordal graphs, and all minimal subset feedback vertex
sets for a selection of chordal and split graphs. The two algorithms that we
implement as part of this thesis are both branching algorithms.

A basic branching algorithm for a graph problem typically works as fol-
lows: For every vertex v we have one branch where we generate all solutions
containing v, and one branch where we generate all solutions not containing
v. Every time we branch we generate new sub problems, that is we generate
new instances not containing the vertices that we have already branched
on. As a consequence, the deeper we get in the branching tree, the smaller
instances we have to consider, which in turn makes it faster to solve the sub-
problems. The tree generated by the branching of our algorithm is called a
computation tree. The leaves of the computation tree represent all feasible
solutions to our problem.

In graphs we often say that the size of an instance is equal to the number
of vertices in the graph. By generating new sub-problems with a branching
rule or a reduction rule we can reduce the size of the instance. A branching
rule decides how we branch on vertices in different circumstances, while a
reduction rule removes or forbid vertices without branching. A reduction
rule is used if there are vertices that are either always in the solution or if
they are never in the solution.

To forbid a vertex means that it is still part of the graph, but we do
not ever include this vertex in a solution in the subsequent sub problems.
An example of a situation where we would forbid a vertex is when finding
all minimal dominating sets in a graph. Let us assume that in a branch we
decide that a vertex v should never be in any of the minimal dominating
sets generated by this branch. If v is not yet dominated, we can not remove
it as we have no guarantee that it will be dominated at a later stage, so we
forbid it.

Generating all vertex subsets of a graph is often done with recursion. An
example of a recursion algorithm generating all vertex subsets of a graph is
given in Algorithm 1.3. This algorithm generates all vertex subsets contain-
ing X. To generate all 2n vertex subsets of a graph we call the algorithm
with X = ∅, that is we call GenerateAllSubsets(G, ∅).
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The leaves in the computation tree generated by Algorithm 1.3 represent
all subsets of vertices of the graph G. In this case we have no need to forbid
any vertices as we want to generate all 2n vertex subsets.

Algorithm 1.3 Algorithm generating all vertex subsets containing X of a
graph G

1: procedure GenerateAllSubsets(G,X)

2: if G is empty then

3: Output X

4: end if

5: while G is nonempty do

6: v := any vertex from G

7: GenerateAllSubsets(G− v, X ∪ v)

8: GenerateAllSubsets(G− v, X)

9: end while

10: end procedure

The maximum number of leaves in the computation tree is analysed by
looking at the branching steps of the algorithm. If at each branching step
we make t new sub-problems where the size of the instance is decreased by
c1, c2, ..., ct in each respective sub-problem. Then we obtain the recurrence
T (n) ≤ T (n−c1)+T (n−c2)+...+T (n−ct) for the number of leaves, assuming
that T (1) = 1. This recurrence has the branching vector (c1, c2...ct). We use
this information to give the equation xn − xn−c1 − ...− xn−ct = 0. Let α be
the unique positive real root of this equation. The number α is called the
branching number of the branching vector. The maximum number of leaves
is at most αn, which gives us an upper bound on the number of objects
we want to generate. If the algorithm performs a polynomial number of
operations at each branching and reduction step then the total running
time is given by O∗(αn), where O∗-notation suppresses polynomial factors.
When we branch in different ways, the running time is given by the worst
case branching. Meaning that the branching vector with the least progress
is used to find the running time of the algorithm. For Algorithm 1.3 we get
the branching vector (1, 1) which gives the equation xn − xn−1 − xn−1 = 0.
The unique positive real root of this equation gives the branching number
2. Therefore the maximum number of leaves produced by Algorithm 1.3 is
2n giving a total running time of O∗(2n).

The approach to branching that is described above is often called branch
and reduce. In branch and reduce the size of the sub-problem is typically
the number of vertices in the sub-graph corresponding to it. A different
approach to branching called measure and conquer has been showed to be
very beneficial. The branching algorithms with the currently best known
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running times for solving particular NP-hard problems, that have been found
in the last decade, have been found using the measure and conquer method
or related approaches [8].

The main difference between the measure and conquer method and the
branch and reduce approach is that the measure of how much we can reduce
the size, or the measure, of the graph in each branch can be chosen with more
freedom with measure and conquer [8]. With this approach it is possible to
reduce the size of the graph by a number between 0 and 1, when we delete
and forbid vertices. This makes it possible to lower bound the progress made
by the algorithm at each branching step.

The measure of a vertex is chosen carefully, exploiting how the algorithm
works. A basic example is for the maximum independent set problem
where the measure of vertices with degree ≤ 1 is set to 0, vertices with
degree 2 is set to 0.5 and vertices with degree ≥ 3 is set to 1. This improves
the running time of the algorithm from O(1.3803n) to O(1.3248n) [8]. It is
possible to improve this running time more by choosing the measure even
more carefully, giving a running time of O(1.2905n) [8].

1.4 Overview of This Thesis

In this thesis we will study:

• Maximum number of minimal dominating sets in chordal graphs.

• Maximum number of minimal subset feedback vertex sets in chordal
graphs.

• Maximum number of minimal subset feedback vertex sets in split
graphs.

To study the maximum number of minimal dominating sets in chordal
graphs, we will implement an algorithm that finds and list all minimal dom-
inating sets in chordal graphs. This algorithm was given by Couturier et al.
in [2], and it gives the best known upper bound on the number of minimal
dominating sets in chordal graphs: 1.6181n. One goal is to see whether
we can find a graph that gives a better lower bound than 1.4422n for the
number of minimal dominating sets in chordal graphs. A second goal is to
study how the algorithm behaves in practice, and analyse this behaviour to
see whether it is possible to improve the upper bound in some way.

For the study of the number of minimal subset feedback vertex sets in
chordal and split graphs we will use an algorithm given by Golovach et al.
that was given in [12]. This algorithm gives the best known upper bound
on the number of minimal subset feedback vertex sets in chordal and split
graphs: 1.6708n. We will use this algorithm to find and list all minimal
subset feedback vertex sets in a selection of chordal and split graphs. This
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data will then be used to see whether it is possible to improve the current
upper bound, or to see if we can find a better lower bound example than
the currently best known lower bounds. In fact for split graphs we will see
that there exists a graph that gives a better lower bound than the currently
best known lower bound.

The algorithms that we implement are based on branching. To test the
algorithms we will generate a large number of graphs, this will be done with
the help of a graph generating tool called geng given by [18]. All graphs
with upto 11 vertices, and a selection of both dense and sparse graphs with
upto 15 vertices, will be generated.

This thesis is structured as follows:
In the first chapter we have given some general background information

on graph classes, branching algorithms and notation that is used in the
thesis. This will be important for the next chapters.

In Chapter 2 we will explain both the Dominating Set problem and
the Subset Feedback Vertex Set problem. And what results have been
found in terms of current upper and lower bounds for the number of minimal
dominating sets in chordal graphs and for the number of minimal subset
feedback vertex sets in chordal and split graphs.

In Chapter 3 we will first explain how we implemented the algorithm for
finding and listing all minimal dominating sets that was given by Couturier
et al in [2]. We will then present and analyse the test results given by this
algorithm.

In Chapter 4 we will explain how we implemented the enumeration al-
gorithm given by Golovach et al. in [12] for finding an listing all minimal
subset feedback vertex sets in chordal and split graphs. Then we will present
the test results we have achieved with this implementation for chordal and
split graphs.

In Chapter 5, the last chapter, we will present the conclusion of this
thesis. We will summarize our work and propose a few questions for further
study.



Chapter 2

Listing all Minimal
Dominating Sets and
Minimal Subset Feedback
Vertex Sets

2.1 Minimal Dominating Sets

Dominating set is one of the most classical and important NP-complete
problems. It has been studied in various forms over the years and has many
practical applications [14]. One of the earliest studies of domination dates
back to 1862 and considered how many queens were necessary to cover, or
dominate, an n × n chessboard [14]. But it was not until the late 1950s,
early 1960s, that the mathematical study of the problem appeared. When
the Dominating Set problem was shown to be NP-complete in 1979 by
Garey and Johnson [19] it inspired many to study this problem and now the
number of papers on the topic, is in the thousands.

In this thesis we will study an algorithm for finding and listing all mini-
mal dominating sets in chordal graphs given by Couturier et al. in [2]. Note
that finding a single minimal dominating set in a graph can easily be done
in polynomial time, but a graph normally has an exponential number of
minimal dominating sets. The algorithm that we study is an enumeration
algorithm, meaning that it finds and lists all minimal dominating sets in an
n-vertex graph. This algorithm works specifically for chordal graphs.

Finding a minimum dominating set when we have listed all dominating
sets is trivial, we can simply pick the smallest set. Observe that we do not
even have to list all dominating sets, but simply all the minimal dominating
sets as a minimum dominating set is by definition also minimal.

The fastest known algorithm for finding and listing all minimal domi-
nating sets in general graphs was given by Fomin et al. in 2008, and runs in

13
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O(1.7159n) time [7]. Note that this is not the fastest algorithm for solving
the Dominating Set problem. The currently fastest known algorithm for
this was given by Iwata and runs in O(1.4864n) time and polynomial space,
or O(1.4689n) time and space [16].

The algorithm by Fomin et al., on general graphs, is not the fastest for
solving the Dominating Set problem, but it is the fastest known algorithm
for enumerating all minimal dominating sets in general graphs. Specifically
it gives the best known upper bound on the number of minimal dominating
sets in general graphs.

When we mention upper bounds on the number of minimal dominating
sets in graph classes we mean how many minimal dominating sets there
could at most be in a graph. This upper bound is often given by a branching
algorithm. Specifically it is given by how many vertex subsets the algorithm
can theoretically find and list. The lower bound on the number of minimal
dominating sets in a graph is given by an example of a graph with the
largest number of minimal dominating sets that we know of. We give a
lower bound example by finding a graph G′ with a high number of minimal
dominating sets. We then construct a graph G consisting of |G|/|G′| copies
of G′. The motivation for this is that the number of minimal dominating
sets in G is then the product of the number of minimal dominating sets
of all its components. More specifically, assume that G is a disconnected
graph, and G1, G2, ..., Gk are its components. Let t1, t2, ..., tk be the number
of minimal dominating sets in G1, G2, ..., Gk respectively. Then the number
of minimal dominating sets in G is t1 · t2 · ... · tk.

We want the known upper and lower bounds to be equal, but this is not
always the case. We can see in Table 2.1 that the known bounds for the
number of minimal dominating sets are not equal. Not for general graphs,
and not for chordal graphs.

Graph class Lower bound Upper bound

General 1.5704n 1.7158n

Chordal 1.4422n 1.6181n

Table 2.1: Table giving the upper and lower bounds for the number of
dominating sets in graph classes

Notice that the gap between the known bounds on chordal graphs is
actually bigger than the gap between the known bounds on general graphs.
In these cases we want to find either, an example of a graph with a larger
number of minimal dominating sets, or we want to improve the algorithm,
to achieve a better upper bound.

Observe that having tight bounds can result in faster algorithms for
seemingly unrelated problems. An example of this is an algorithm by Lawler,
that was the fastest known algorithm for Graph Colouring for 25 years.
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It used the bounds on the number of independent sets in general graphs to
solve the problem [17].

The algorithm by Couturier et al. [3], gives us the currently best known
upper bound on the number of minimal dominating sets in chordal graphs.
As mentioned, the gap between the known upper and lower bounds on
chordal graphs is actually larger than the gap between the known bounds on
general graphs. Therefore we want to see whether it is possible to improve
these bounds.

A graph achieving the currently best known number of minimal domi-
nating sets for general graphs, is given in Figure 2.1. It has 15n/6 ≈ 1.5704n

minimal dominating sets. This graph demonstrates the method of achieving
a high lower bound as described above. Note that this graph is not chordal,
as it contains a cycle of length 4 without a chord.

Figure 2.1: A graph with 1− 5704n minimal dominating sets.

For chordal graphs we find the lower bound in the same way. An example
of a graph giving the currently largest number of minimal dominating sets
for chordal graphs is given by Figure 2.2 and has 3n/3 ≈ 1.4422n minimal
dominating sets.

Figure 2.2: A graph with 1.4422n minimal dominating sets.

In this thesis we will study the algorithm by Couturier et al., and analyse
how it works on chordal graphs. Specifically we want to see whether it is
possible to find a graph that gives a higher lower bound for chordal graphs
than the bound we already have. We also want to see what output the
algorithm gives and what information this will give us about the upper
bound.

There is a possibility that the given upper bound is too high, which
motivates us to study the behaviour of the algorithm. This is to see whether
there is some behaviour that is not captured by the algorithm, and that
could help us improve the upper bound. It could also be that the lower
bound is too low, meaning there could exist an example of a graph that has
more minimal dominating sets than the currently best known lower bound
example. This motivates us to look for a graph that achieves a better lower
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bound.

Table 2.2 gives an overview over how many minimal dominating sets
there would have to be in a chordal graph to achieve at least the current
lower bound. In the table we let s denote the number of vertices in a graph,
t is the number of dominating sets needed in the graph to achieve at least
the current lower bound. And n is the total number of vertices in a lower
bound example.

s t lower bounds

3 3 3n/3 ≈ 1.4422n

4 5 5n/4 ≈ 1.4953n

5 7 7n/5 ≈ 1.4758n

6 9 9n/6 ≈ 1.4422n

7 13 13n/7 ≈ 1.4425n

8 19 19n/8 ≈ 1.4449n

9 27 27n/9 ≈ 1.4422n

10 39 39n/10 ≈ 1.4424n

Table 2.2: Table showing the number of minimal dominating sets needed on
chordal graphs of s vertices to achieve at least the current lower bound.

2.2 Minimal Subset Feedback Vertex Sets

The Subset Feedback Vertex Set problem was first introduced by Even
et al. in a paper where they find a polynomial time approximation algorithm
for finding a minimum subset feedback vertex set [5]. The motivation for
working on this was the many important and practical uses of solving Sub-
set Feedback Vertex Set, such as its applications in genetics, circuit
testing and artificial intelligence [5].

Subset Feedback Vertex Set is an interesting problem, even more
so as it is a generalization of two NP-complete problems [6]. If we set S = V
we get an instance of the Feedback Vertex Set problem [19], where given
a graph G we are asked to find a minimum sized set of vertices such that
when these are removed from G, the remaining graph is acyclic. If we set
|S| = 1 we get an instance of the Multiway Cut problem [9], that given
a graph G and a set T ⊆ G called terminals, asks for a set of edges of
minimum weight that disconnects every pair of terminals in G.

We mentioned in the previous section that to find a minimum dominating
set, it is sufficient to list all minimal dominating sets. This is also true for
finding a minimum subset feedback vertex set.

The fastest known algorithm for the Subset Feedback Vertex Set
problem on general graphs uses time O(1.8638n) [9]. This is not only the
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fastest known algorithm for solving Subset Feedback Vertex Set, but
also the fastest known algorithm for finding and listing all minimal subset
feedback vertex sets in general graphs. In consequence this algorithm gives
us the currently best known upper bound on the number of minimal subset
feedback vertex sets in general graphs.

Though this is the best upper bound that have been found there is still
a significant gap between the upper and lower bounds on general graphs.
Golovach et al. [12] gave an algorithm for enumerating all minimal subset
feedback vertex sets in chordal graphs that significantly lowers the upper
bound for chordal graphs. Though this is a great improvement for chordal
graphs, these techniques do not transfer to the general case, as the algo-
rithm relies heavily on the structural properties of chordal graphs [12]. The
algorithm also gives a better upper bound for split graphs, but here the gap
between the upper and lower bounds is greater than for chordal graphs. This
is because the currently best known lower bound for split graphs is signif-
icantly lower than the currently best known lower bound given for chordal
graphs.

In Table 2.3 we can see the currently best known bounds on the number
of subset feedback vertex sets in general, chordal and split graphs.

Graph class Lower bound Upper bound

General 1.5927n 1.8638n

Chordal 1.5848n 1.6708n

Split 1.4422n 1.6708n

Table 2.3: Table giving the upper and lower bounds for the number of subset
feedback vertex sets in graph classes

When constructing a lower bound example for the number of minimal
subset feedback vertex sets on chordal graphs, we do it the same way as
described for minimal dominating sets. Find a graph G with a large number
of minimal subset feedback vertex sets, then copy it n/|G| times. We find
the number of sets in the constructed graph as follows: Assume we have
an unconnected graph G such that G1, G2, ..., Gk are the components of G.
We let t1, t2, ..., tk be the number of minimal subset feedback vertex sets in
G1, G2, ..., Gk respectively. Then the number of minimal subset feedback
vertex sets in G is t1 · t2 · ... · tk. This way of finding a better lower bound
example is not possible for split graphs, as a split graph has to be connected
and maintain a partition into a clique and an independent set. We will
explain how to achieve an exponential lower bound for split graphs later in
this section.

As mentioned, for chordal graphs, we can find an exponential number of
minimal subset feedback vertex sets in the same way as we did for finding
an exponential number of minimal dominating sets. An example of such a
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graph that achieves the currently highest known lower bound, is the disjoint
union of complete graphs on 5 vertices. We choose any three of the vertices
in every connected component to be in S. Three vertices are chosen to be
sure that there can be no more cycles in the component. This is depicted
in Figure 2.3, where the red vertices are vertices in S. The graph in Figure
2.3 has 10

n
5 ≈ 1.5848n minimal subset feedback vertex sets. To make a

component of the graph acyclic only two vertices can remain as part of the
maximal S-forest. Giving

(
5
2

)
= 10 possible minimal subset feedback vertex

sets. Since we have n/5 copies of this connected component. This gives the
lower bound 10

n
5 ≈ 1.5848n.

Figure 2.3: A chordal graph with the currently highest number of minimal
subset feedback vertex sets.

An example of a split graph achieving an exponential number of minimal
subset feedback vertex sets is given in Figure 2.4. The red vertices are the
vertices contained in S. This lower bound example is constructed by copy-
ing triangles and connecting them in a certain way. We choose one of the
vertices in each triangle to be in S. This way each triangle has 3 minimal
subset feedback vertex sets. As we will explain below, no vertex in S can
be part of the clique of the split graph. As such all vertices in S are in
the independent set of the graph. The remaining vertices of each triangle is
connected into a large clique. Observe that removing an S-cycle from one
triangle will not affect the S-cycles in the other triangles, as these are not
dependent on each other. This method can be used for all split graphs. As
long as all vertices of S is in the independent set, we can connect all vertices
that are in the clique of the graphs to make an even larger clique. And the
number of minimal subset feedback vertex sets is the product of all the sets
in all these connected graphs. That is given a split graph G with compo-
nents G1, G2, ..., Gk where all vertices in the cliques of these components are
connected. Each component has t1, t2, ..., tk minimal subset feedback vertex
sets respectively. Then the number of minimal subset feedback vertex sets in
G is t1 ·t2 ·...·tk. In Figure 2.4 each triangle has 3 subset feedback vertex sets
and we have n/3 triangles in the graph, we get the bound 3n/3 ≈ 1.4422n.

When looking for a better lower bound on split graphs, we cannot choose
a vertex from the clique to be part of S. If we did we would get a polynomial
number of minimal subset feedback vertex sets as we would have to remove
the entire clique except for two vertices to be able to remove all cycles
containing a vertex of S. This is because all vertices in the clique are part
of all cycles in the clique.
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Figure 2.4: A split graph with the currently highest number of minimal
subset feedback vertex sets.

In Table 2.4 we give an overview of how many minimal subset feedback
vertex sets would have to be in a graph for it to at least achieve the current
lower bounds for chordal and split graphs. Again we let s be the size of
a graph, t the number of minimal subset feedback vertex sets needed to
achieve at least the current lower bound, and n the number of vertices in a
lower bound example.

s t
bounds for

chordal graphs
s t

bounds for
split graphs

3 4 4n/3 ≈ 1.5874n 3 3 3n/3 ≈ 1.4422n

4 7 7n/4 ≈ 1.6265n 4 5 5n/4 ≈ 1.4953n

5 10 10n/5 ≈ 1.5848n 5 7 7n/5 ≈ 1.4757n

6 16 16n/6 ≈ 1.5874n 6 9 9n/6 ≈ 1.4422n

7 26 26n/7 ≈ 1.5927n 7 13 13n/7 ≈ 1.4425n

8 40 40n/8 ≈ 1.5858n 8 19 19n/8 ≈ 1.4449n

9 64 64n/9 ≈ 1.5874n 9 27 27n/9 ≈ 1.4422n

10 100 100n/10 ≈ 1.5848n 10 39 39n/10 ≈ 1.4424n

Table 2.4: Table showing the number of minimal subset feedback vertex
sets needed in chordal and split graphs to achieve at least the currently best
known lower bound.

In this thesis we test the algorithm by Golovach et al. on both chordal
graphs and split graphs. The goal is to see whether there exists a graph
that achieves a better lower bound than the currently best known lower
bounds for chordal and split graphs. In fact it will be shown in Chapter 4
that there exists a better lower bound for split graphs than the lower bound
given by Figure 2.4. In addition we will, as with dominating set, test and
see how the practical running time of the algorithm, corresponds with the
theoretical running time. We will compare the results for chordal and split
graphs and see whether there are any significant differences in how many
leaves the algorithm reaches on these different graph classes.
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Chapter 3

Minimal dominating sets:
Implementation and test
results

In this chapter we will give the details of the algorithm for enumerating all
minimal dominating sets in chordal graphs by Couturier et al. [2], how we
implemented it and what test results we achieved with the implementation.
First we will explain the pseudo code of the algorithm, followed by a section
with details on choices we took while implementing the algorithm. Then we
will present the test results we obtained when we tested our implementation
on chordal graphs. Last we will present some suggested improvements to
the algorithm.

3.1 The Algorithm

The algorithm by Couturier et al. [2] consists of two reduction rules and two
branching rules. We give a pseudo-code for our implementation of this algo-
rithm in Algorithm 3.1. The rules in the algorithm are marked as (1),(2),(3)
and (4), respectively. We give the full implementation of Algorithm 3.1 in
Appendix B. We will give an informal explanation of the correctness of the
rules when we explain them. For full proof of correctness we refer to [2].

The algorithm works as follows: It takes as input a chordal graph G =
(V,E), a set D ⊆ V and a PEO α of G. The goal is to generate all minimal
dominating sets of G that D is a subset of. To find all minimal dominating
sets of G we initially run the algorithm with D = ∅. That is we call the
algorithm with Alg(G, ∅, α).

For the next steps we define the following operations on α:

(α− x) : Remove x from α. x is always the first vertex in α

21
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(α−X) : Remove the set X from α. The other vertices of α retain their
order in α.

The first step of the algorithm is to check whether G is empty. This is
the base-case of the algorithm, meaning this is the check that tests whether
we are at a leaf in the computation tree. That G is empty, means that all
vertices in G have been processed.

When we reach a leaf in the computation tree we check whether D is a
minimal dominating set of G. This is done by verifying that D − v is not a
dominating set of G, for every vertex v in D.

Algorithm 3.1 Algorithm for enumerating MDS in chordal graphs

1: procedure Alg(G,D,α)

2: if G is empty then

3: if D is a MDS of G then

4: save D

5: end if

6: end if

7: x:= first vertex in α

8: if x is isolated then

9: if x is dominated by D then

10: Alg(G− x, D,α− x) . (1)

11: else

12: Alg(G− x, D ∪ {x}, α− x) . (2)

13: end if

14: else if x is dominated by D then . (3)

15: Alg(G−NG[x], D ∪ {x},α−NG[x])

16: Alg(G− x, D, α− x)

17: else if x is not dominated by D then . (4)

18: y := an arbitrary neighbour of x

19: Alg(G− {x, y}, D ∪ {y}, α− {x, y})
20: Alg(G− y, D, α− y)

21: end if

22: end procedure

If G is non-empty, pick a simplicial vertex of G. This can be done in
constant time by picking the first vertex in α, a PEO of G. We generate α
as part of the preprocessing step. We will explain the preprocessing step in
the next section.

Let x be the first vertex of α. If x is isolated, meaning it has no neigh-
bours in G, proceed with one of the two following reduction rules to decide
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what happens to x. If x is dominated remove x from G as described in (1).
If x is not dominated add x to D and remove it from G as described in (2).
(1) is safe because if x is dominated, and it has no neighbours to dominate,
adding x to D would make x redundant, and D could not possibly be mini-
mal. (2) is safe because if x is not dominated by D and it has no neighbours
that could dominate it then x would have to be in D, if not G would not be
dominated by D.

If x is not isolated, proceed with the branching rules. If x is dominated
by D the algorithm branches as described in (3), it creates one branch where
x is added to D while removing the closed neighbourhood of x from G. And
one branch where it removes x from G. The first branch is safe since x
is already dominated by D, adding a neighbour of x to D, would make x
redundant in D. This is because any neighbour of x would dominate all
other neighbours of x, since x is simplicial. The second branch is safe, as x
has already been dominated.

If x is not dominated, let y be any neighbour of x, then branch as
described in (4). We generate one branch where y is added to D and x and
y are deleted from G. And one branch where y is deleted from G. In the
first branch, after y has been added to D, x is dominated. It is not possible
for x to have a private neighbour, a vertex only dominated by x, in this
branch. And since x is simplicial, NG′ [x] ⊆ NG′ [y]. As such it is safe to
remove both x and y from G. The first branch is safe. The second branch is
safe as x has not been deleted. And any vertex that dominates x would also
dominate y, since x is simplicial and any neighbour of x is also a neighbour
of y.

The running time of the algorithm is decided by the branching vectors
given by the branching rules. For the branching in (3) we know that x has
at least one neighbour and as such we remove at least two vertices from G
in the first branch, and we remove one vertex, x, in the second branch. This
gives the branching vector (2, 1). For every branching of (4), we know that x
has at least one neighbour y. In one branch we remove two vertices, {x, y},
while in the second branch we remove only one vertex, y. Again we get the
branching vector (2, 1).

The branching vector (2, 1) has the branching number 1.61804. This
implies a running time of O∗(1.61804n) = O(1.6181n). For more in-depth
analysis of the running time of the algorithm we refer to [2].

3.2 Implementation Details

As mentioned in the previous section we need to do some preprocessing be-
fore testing the implementation of the algorithm. In this section we will first
present what was done in the preprocessing step, before we present different
choices that were made in terms of the implementation of the algorithm.
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To test our implementation of Algorithm 3.1 we first generate graphs.
This is done with a graph generating tool called geng, which is part of
a package called gtools, that is distributed by [18]. It can generate all
non-isomorphic graphs of size n where n is small. The program, geng, is
implemented in the programming language C, and outputs the graphs in
a compressed format called graph6. To be able to use this data we use a
second tool, also from the gtools package, called showg. This interprets
the graph6 format and outputs the graphs in a format we can read into our
Java implementation. Note that this tool generates all graphs and not just
chordal graphs.

We were able to generate all non-isomorphic graphs with upto 11 vertices
with no problem. But we wanted to test our implementation of the algorithm
on graphs with upto 15 vertices. Since the number of graphs generated
grows exponentially the time it would take to generate all these graphs is
too long. In fact; to generate all graphs with 12 vertices would take 285 hours
according to tests run by [18]. As a consequence only a selection of graphs
for the graphs with 12-15 vertices were generated. For graphs with more
than 11 vertices we chose to generate very dense graphs and very sparse
graphs. We made this choice based on the output from the graphs with
upto 11 vertices. We saw that the most interesting results were achieved
in either very dense graphs or very sparse graphs. For example we found
that complete graphs generated the most leaves as compared to more sparse
graphs with the same number of vertices.

As all graphs were generated and not just chordal graphs, the size of
the text files containing the largest graphs was too large for a laptop. Even
when generating a selection of graphs as we did for graphs with more than
11 vertices the files were too large. As such we ran our program on Brake, a
supercomputer at the University of Bergen, to be able to test the algorithm
on more graphs. We generated all graphs instead of just chordal graphs to
be sure that we generated a variety of graphs. And to be sure that we tested
all graphs of a certain size.

The program geng generates graphs relatively fast, but it generates, as
mentioned, all graphs. We only want to test our implementation on chordal
graphs, therefore we had to test whether the graphs were chordal before
running our implementation of the algorithm. To test for chordality in
graphs we implemented the MCS algorithm and the checkPEO algorithm
that were described in Chapter 1.2.1 on chordal graphs. That is, for every
graph generated we find an ordering of the vertices with the MCS algorithm
and check that this ordering is in fact a PEO. If it is a PEO this implies that
the graph is chordal and we run the implementation of Algorithm 3.1 on the
graph. If the ordering is not a PEO meaning that the graph is not chordal
we proceed with the next graph. The PEO, that is generated, is used not
only when testing for chordality, but also as input to the implementation of
Algorithm 3.1.
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We chose to represent the graphs we generated with an adjacency-list.
This data structure was chosen as opposed to an adjacency-matrix as the
graphs generated varied between being very dense and very sparse.

To make our implementation of Algorithm 3.1 as efficient as possible we
chose to keep the graph as a constant field variable. That way we did not
have to change the actual graph when running the algorithm. Instead we
chose to send the set of vertices we have already processed, as input to the
algorithm. We implemented the method header as follows:

public void finn_mds(HashMap<Integer,Integer> slettaNoder,

ArrayList<Integer> dSet, LinkedHashSet<Integer> p)

Where slettaNoder is the set of vertices that has already been processed,
dSet is the set of vertices that has been added to the dominating set, and
p is the PEO of the graph. We chose to do this as it is more efficient to
copy only the list of vertices already processed as opposed to the whole
graph minus the vertices already processed. In addition it made it easier
to check whether we have reached a leaf in our computation tree. It was
necessary to copy either the graph or the list of processed vertices because
of how recursion works in Java. If we did not copy the input then the first
branch would change the variables which would result in the second branch
recurring on the wrong input. We give the method calls depicting how we
branch on a vertex x that has already been dominated:

finn_mds(removeNeighbourhood(x, slettaNoder),

addToDomSet(x, dSet),

removeNeighbourhoodFromPEO(x, p));

finn_mds(removeNode(x, slettaNoderCopy),

dSetCopy,

removeFromPEO(x,pCopy));

3.3 Test results of our implementation

In this section we will present the test results that was achieved when run-
ning the implementation of Algorithm 3.1 on chordal graphs. We will also
present some observations that were made based on the output given by the
implementation.

We mentioned that one goal of this thesis was to study the upper and
lower bounds on the number of minimal dominating sets in chordal graphs.
We have not been able to find a better lower bound than the currently best
known lower bound; 1.4422n. But an observation we have made is that
there exist graphs that manage to achieve this lower bound that are not
isomorphic to the lower bound example that we gave in Chapter 2.1 on
minimal dominating sets. It is interesting to note that for all the graphs
we have found that manage to achieve this lower bound the number of
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vertices in these graphs is divisible by 3. We show examples of this in
Figure 3.1. Here the first example (a) consists of connected components
of size 3 where each component has 3 minimal dominating sets, giving the
bound 3n/3 ≈ 1.4422n. In (b) each connected component has 6 vertices and
9 minimal dominating sets, achieving the bound 9n/6 ≈ 1.4422n. In (c)
each connected component consists of 9 vertices and each component has 27
minimal dominating sets. This gives the bound 27n/9 ≈ 1.4422n. In other
words all these examples manage to achieve the same lower bound. This
observation supports the hypothesis that 1.4422n could be the upper bound
on the number of minimal dominating sets, in chordal graphs. Note that
similar results were achieved for graphs of size 12 and 15.

(a)

(b)

(c)

Figure 3.1: Three graphs that achieve the currently best known lower bound
for the maximum number of minimal dominating sets in chordal graphs. The
graph in (a), has 3 minimal dominating sets in every component. The graph
in (b), has 9 minimal dominating sets in every component. The graph in
(c), has 27 minimal dominating sets in every component.

We have tested our implementation on more than 5 million graphs. We
have generated all graphs with upto 11 vertices, and a selection of graphs
with between 12 and 15 vertices. As mentioned not all of these were chordal,
and as a consequence we have generated more graphs than we have tested
the implementation on. The test results that have been output by our im-
plementation is shown in Table 3.1. This data is also depicted in Figure 3.2.
Where the blue line is the running time of the algorithm given by Couturier
et al. in [2], meaning the upper bound on the number of minimal dominating
sets in chordal graphs. The red line depicts the maximum number of leaves
found in graphs of size s. The brown line depicts the maximum number of
minimal dominating sets in a graph of s vertices. And the grey line depicts
the average number of leaves reached for each graph size. The points on the
lines are given by DSn/s where DS is the number of dominating sets and s
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is the size of the graph.

2 4 6 8 10 12 14 16
1.2
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1.5
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Average number of leaves

Figure 3.2: A chart depicting the correlation between the upper and lower
bounds on the number of minimal dominating sets in chordal graphs, the
number of leaves found, and the average number of leaves found in graphs
of size s.

In Table 3.1 we give t, the number of minimal dominating sets we would
have to find to at least achieve the currently best known lower bound. We
give the number of graphs we have tested our implementation on for each
graph size, and we give the exact number of minimal dominating sets and
the exact number of leaves found. These are given as DS and L respectively.

Notice that the average number of leaves reached for each graph size is
generally closer to the maximum number of minimal dominating sets found,
as opposed to the maximum number of leaves found. Also the pattern made
by the brown line seems to indicate that the lower bound does not grow.
In fact it seems as if it stabilizes at 1.4422. There is also a substantial gap
between the number of leaves found and the number of minimal dominating
sets found. There is even a gap between the number of leaves found and the
running time of the algorithm given by the branching vector (2, 1). The gap
between the number of minimal dominating sets found and the number of
leaves found is especially interesting, as it indicates that the algorithm finds
dominating sets that are not minimal. One of the cases where this happens,
is when the input graph is a clique. In this case the implementation will
branch more than necessary. This is because the algorithm has to process
all vertices in the graph, even though a dominating set has already been
found. In practice this means that we generate dominating sets that cannot
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be minimal.

s t L L1/s DS DS1/s # graphs Average # leaves

3 3 3 1.4422 3 1.4422 2 2

4 5 5 1.4953 4 1.4142 5 3

5 7 8 1.5157 6 1.4309 15 5

6 9 12 1.5130 9 1.4422 58 8

7 13 18 1.5112 12 1.4261 272 12

8 19 31 1.5361 18 1.4351 1614 18

9 27 45 1.5264 27 1.4422 11911 27

10 39 79 1.5479 36 1.4309 109539 42

11 57 116 1.5405 54 1.4371 1392387 61

12 81 191 1.5491 81 1.4422 364142 78

13 117 249 1.5287 108 1.4335 1116854 99

14 169 362 1.5232 162 1.4382 2791946 125

15 243 495 1.5123 243 1.4422 2270218 130

Table 3.1: Table showing the number of minimal dominating sets on graphs
of s vertices

(∅, ∅, α)

({0, 1}, {1}, α)

(G, {1, 2}, α) ({0, 1, 2}, {1}, α)

(G, {1, 3}, α) ({0, 1, 2, 3}, {1}, α)

(G, {1, 4}, α) ({0, ..., 4}, {1}, α)

(G, {1}, α)

Figure 3.3: Left branch of computation tree, when running our implemen-
tation of Algorithm 3.1 on a complete graph of 5 vertices.

In Figure 3.3 we show the left branch of the computation tree built when
running Algorithm 3.1 on a complete graph of 5 vertices. The algorithm finds
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a dominating set already at the second level. But it continues to look for
all possibilities for the remaining vertices. Even though any new vertices
added to the dominating set would be redundant. In the figure this branch
generates four leaves, but only on leaf gives a minimal dominating set.

These observations support the hypothesis that the upper bound is too
high and could be equal to the lower bound of 1.4422n. They are also what
motivated the next section, where we suggest two new reduction rules.

3.4 Suggested improvements

As mentioned in the previous section, one case where the number of leaves in
a graph is significantly larger than the number of minimal dominating sets
is when the graph is a clique. Therefore we suggest two additional reduction
rules for the algorithm:

R3: If D is a dominating set of G, then stop recurring and check whether
D is minimal.

The rule checks whether a set D is a dominating set. If the set is a dom-
inating set then stop recurring as a solution has been found. Test whether
D is minimal, if it is: save D. This rule is safe because if D is a dominating
set of G, then D can never be minimal if we add any other vertices to the
set.

R3 will mostly give results in small graphs, but will not be very useful
if the graph consists of many connected cliques. Depending on the PEO the
algorithm could work its way through one clique at a time and R3 would
not happen. As a consequence of this situation we generalized the rule into
reduction rule R4.

R4: If NG[x] is dominated by D, remove x. We call Alg(G− x, D, α− x)

The rule checks whether NG[x] is dominated, and removes x from G if this
is true. The rule is safe because if NG[x] is dominated, then x has no private
neighbour in G. This means that x will not dominate any unique vertex in
G. As a consequence x would be redundant in D.

In Algorithm 3.2 we show how we would formulate the algorithm to
implement these changes.

After running Algorithm 3.2 on the same data as was used when testing
Algorithm 3.1, we noticed that the maximum number of leaves reached, for
a graph with s vertices, was significantly lowered. This is depicted in Figure
3.4. In addition we noticed that the average number of leaves reached when
we run the changed implementation is drastically reduced. For some graph
sizes this number is even halved when compared to the number given by the
original implementation



30 CHAPTER 3. MINIMAL DOMINATING SETS

Algorithm 3.2 Algorithm for enumerating MDS in chordal graphs with
changes

1: procedure Alg(G,D,α)

2: if G is empty or D is dominating set of G then . (R3)

3: if D is a MDS of G then

4: save D

5: end if

6: end if

7: x:= first vertex in α

8: if x is isolated then

9: if x is dominated by D then

10: Alg(G− x, D,α− x)

11: else

12: Alg(G− x, D ∪ {x}, α− x)

13: end if

14: else if x is dominated by D then

15: if NG[x] is dominated by D then . (R4)

16: Alg(G− x, D, α− x)

17: else

18: Alg(G−NG[x], D ∪ {x},α−NG[x])

19: Alg(G− x, D, α− x)

20: end if

21: else if x is not dominated by D then

22: y := an arbitrary neighbour of x

23: Alg(G− {x, y}, D ∪ {y}, α− {x, y})
24: Alg(G− y, D, α− y)

25: end if

26: end procedure

The changes we have made to the implementation runs in polynomial
time. Since we did not change any of the branching rules, we still get
the same branching number. Therefore the running time of the changed
implementation is the same as for the original implementation. As we run
the implementation on small graphs the polynomial factor is not a problem.
In terms of practical running time we see a reduction in the number of leaves
reached. This supports the hypothesis that the upper bound is in fact too
high.

The implemented changes reduced the practical running time of the al-
gorithm. This was observed as the number of leaves found by the algorithm
were reduced. This observation in addition to the observations made con-
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cerning the lower bound examples, in the previous section, support the hy-
pothesis that the currently best known upper bound could be too high. In
fact these observations imply that the upper bound could be equal to the
currently best known lower bound; 1.4422n.

2 4 6 8 10 12 14 16
1.2

1.3

1.4

1.5

1.6

1.7

1.8

s

DS1/s

Leaves found before changes
Leaves found after changes

Lower bound
Average number of leaves reached

Figure 3.4: Chart showing the result given by Algorithm 3.2 compared with
the results given by Algorithm 3.1

s
graphs
tested

Minimal
dominating

sets

Leaves reached
before changes

Leaves reached
after changes

Average
leaves
reached

3 2 3 3 3 2

4 5 4 5 4 3

5 15 6 8 6 4

6 58 9 12 11 5

7 272 12 18 16 8

8 1614 18 31 22 11

9 11911 27 45 39 15

10 109539 36 79 58 20

11 1392387 54 116 84 27

12 364142 81 191 122 37

13 1116854 108 249 206 51

14 2791946 162 362 288 67

15 2270218 243 495 495 76

Table 3.2: Table showing test results when implementing Algorithm 3.2.
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Chapter 4

Subset Feedback Vertex Sets:
Implementation and test
results

In this chapter we will first present the algorithm for enumerating all subset
feedback vertex sets given by Golovach et al. [12]. Then we will explain
details of how we chose to implement the algorithm. At last we will present
the test results that we managed to achieve with our implementation of this
algorithm. In fact we will present a graph that achieves a better lower bound
than the currently best known lower bound for split graphs.

4.1 The Algorithm

In Algorithm 4.1 we give a pseudo-code for the algorithm by Golovach et
al. as we implemented it. An implementation of this algorithm is given in
Appendix C. Due to the length of the algorithm and for better readability we
chose to describe the different cases of the algorithm in separate procedures.
These are given in Algorithms 4.2 to 4.8. We will explain each case as given
by the branching and reduction rules. As we explain these cases we will also
give an informal explanation of the safeness of these rules. For full proof of
correctness we refer to [12].

Before we describe Algorithm 4.1 we need to define a few terms that we
will use. We let S ⊆ V be the set of vertices in G that can not be part
of any cycles when we remove the subset feedback vertex set from G. We
let F ⊆ V be a set of vertices that form an S-forest in G. And U ⊆ V is
the set of vertices that are deleted from G. The set R ⊆ F is the set of
hidden vertices, the vertices that we do not not make any decisions based
on. Note that it is necessary to hide vertices to make it possible to always
choose a simplicial vertex v, that is either undecided or has a neighbour that
is undecided. It is shown in [12] that these vertices have no effect on the

33
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result. We let G′ = V \U ∪R, and we say that a vertex is undecided if it is
not contained in U ∪F . The goal is to generate all minimal subset feedback
vertex sets that U is a subset of.

Algorithm 4.1 Algorithm for enumerating SFVS in chordal graphs

1: procedure Alg(F , U , R)

2: Reduce(F ,U ,R)

3: if G has no undecided vertices then

4: if F is maximal S-forest then

5: Save U

6: Save F

7: end if

8: else

9: if F is S-forest then

10: v:= simplicial vertex of G′

11: if v is undecided then

12: if v is in S then

13: if v has no neighbour in F then

14: Case 1.1

15: else

16: Case 1.2

17: end if

18: else

19: if v has no neighbours in F then

20: Case 1.3

21: else

22: Case 1.4

23: end if

24: end if

25: else if v is in F then

26: if v is in S then

27: Case 2.1

28: else

29: Case 2.2

30: end if

31: end if

32: end if

33: end if

34: end procedure
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The algorithm works as follows: We first call the reduce procedure, which
is described in Algorithm 4.2. It contains three reduction rules, Rule A,
Rule B and Rule C, and it will run until there are no vertices in G′ that
satisfy these rules. We chose to implement this procedure such that instead
of just finding one vertex that satisfy a rule and calling Alg on the changes,
we find all vertices that satisfy the rules and remove or decide the vertices
as the rules states, without calling Alg on the changes.

Algorithm 4.2 Reduce in Algorithm for enumerating all minimal SFVSs

1: procedure Reduce

2: while There is change do

3: for all vertices v in G′ do . (Rule A)

4: if u,w ∈ N(v), u,w ∈ F s.t. uw ∈ E and {u, v, w} ∩ S 6= ∅
then

5: (F , U ∪ v, R)

6: end if

7: end for

8: for all vertices v in G′ do . (Rule B)

9: if v has d(v) ≤ 1 then

10: (F ∪ v, U , R ∪ v)

11: end if

12: end for

13: for all vertices v in G′ do . (Rule C)

14: if v is simplicial and N [v] ∩ S = ∅ then

15: (F ∪ v, U , R ∪ v)

16: end if

17: end for

18: end while

19: end procedure

The Reduce procedure works by first trying to find a vertex that satisfy
Rule A, then Rule B and last Rule C. If a vertex is found that satisfy either
Rule B or Rule C, then the procedure will act on the vertex as described
in the rule before starting again at Rule A. Next we will describe how the
different reduction rules work.

Rule A checks whether there exists any vertex v with neighbours u,w
contained in F where {u, v, w} ∩ S is non-empty. If such a vertex v exists,
we add v to U . This is safe as we know that {u, v, w} form an S-cycle. This
means that at least one of them would have to be in U . Since v is the only
undecided vertex of the three, it has to be added to U .

Rule B checks whether there exists a vertex v where d(v) ≤ 1. If v is
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undecided, add v to F . When v is in F , hide v by adding it to R. The
safeness of this rule comes from the fact that v can never be part of an
S-cycle in G. As such it can never be a part of an S-cycle at a later stage
when there are fewer vertices to consider either. Since v will never be a part
of an S-cycle at a later stage there is no reason to make decisions based on
this vertex. As such it is also safe to hide v.

When we try to find a vertex that satisfy Rule C we try to find a simplicial
vertex v such that NG′ [v]∩S is empty. If v is undecided, add v to F . When
v is in F , add v to R. Due to Rule B, we know that d(v) ≥ 2. Let F ′

be a maximal S-forest of G, such that F ⊆ F ′. If F ′ contains at most one
neighbour of v, then F ′ must contain v also. In this case v would never be
a part of an S-cycle and it must therefore be in F . If F ′ contains two or
more neighbours of v then these neighbours can not be part of any S-cycles
in F ′, and since v is not contained in S, we can safely add v to F . The
safeness of hiding v comes from the observation that any S-cycle containing
v must contain at least two neighbours u,w of v. Since v is simplicial we
know that u and w are adjacent. As such any S-cycle containing v will still
be an S-cycle even if we remove v.

After exhaustively running the Reduce procedure, the algorithm checks
whether there are any undecided vertices left in G′. This is done with a
simple comparison between the size of |F ∪ U | and the size of |V (G)|. If
there are no more undecided vertices in G′, we check whether F is a maximal
S-forest. If it is, we save both U and F .

If there are undecided vertices left in G′, verify that F is an S-forest
and proceed with the branching rules. We let v be a simplicial vertex of
G′. v can be found in constant time by using an ordering α of the vertices,
and picking the first vertex in this ordering. Note that α is a PEO of G,
and it is found in the preprocessing step of the implementation. In the
implementation we let α be a field variable. The reason for this and how
we maintain a correct PEO will be explained in Chapter 4.2. In the next
paragraphs we will explain the different cases that decide how the algorithm
branches. Which case used is decided by properties of v.

Case 1.1 If v is undecided, not contained in S and has no neighbours in
F , call Case 1.1, which is described in Algorithm 4.3. We will branch in
different ways depending on the size of the neighbourhood of v.

If v has exactly 2 neighbours then we branch in four ways. These
branches are given by the different ways we can add v and at most one
of its neighbours to F . We also get one branch where we add only the
neighbours of v to F . The remaining vertices in NG[v] are added to U .

If v has exactly 3 neighbours then again we branch on the different ways
we can add v and at most one of its neighbours to F while adding the rest
to U , or adding v to U . In the latter case there are two possibilities. Either
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we add one neighbour to F , or we add one neighbour to U in addition to v
and add the remaining neighbours to F .

If v has more than 3 neighbours then the algorithm branches in d(v) + 2
ways. One branch where v is added to U , one branch where v is added to
to F and NG′(v) is added to U , and d(v) branches where it branches on the
different ways of adding v and one of its neighbours to F , while adding the
rest of the neighbourhood to U .

In each of these branches we add at most two vertices to F and we add
the rest to U . If we did not add the remaining vertices to U , or if we added
more than two vertices to F we would get an S-cycle in F . Since we generate
all the different ways v could or could not be added to F , these branches
are safe.

Algorithm 4.3 Case 1.1 in Algorithm for enumerating all minimal SFVSs

1: procedure Case 1.1

2: if v has 2 neighbours then

3: Let u1 and u2 be the neighbours of v

4: Alg(F ∪ {u1, u2}, U ∪ {v}, R)

5: Alg(F ∪ {v, u2}, U ∪ {u1}, R)

6: Alg(F ∪ {v, u1}, U ∪ {u2}, R)

7: Alg(F ∪ {v}, U ∪ {u1, u2}, R)

8: else if v has 3 neighbours then

9: Let u1, u2, u3 be the neighbours of v

10: Alg(F ∪ {v, u1}, U ∪ {u2, u3}, R)

11: Alg(F ∪ {v, u2}, U ∪ {u1, u3}, R)

12: Alg(F ∪ {v, u3}, U ∪ {u1, u2}, R)

13: Alg(F ∪ {v}, U ∪ {u1, u2, u3}, R)

14: Alg(F ∪ {u1}, U ∪ {v}, R)

15: Alg(F ∪ {u2, u3}, U ∪ {v, u1}, R)

16: else if v has more than 3 neighbours then

17: Alg(F , U ∪ {v}, R)

18: Alg(F ∪ {v}, U ∪NG′(v), R)

19: for all Neighbours ui of v do

20: Alg(F ∪ {v, ui}, U ∪ (NG′(v)− ui), R)

21: end for

22: end if

23: end procedure

Case 1.2 If v is undecided, contained in S and has at least one neighbour
in F , proceed with Case 1.2, which is described in Algorithm 4.4. In this
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case the algorithm branches in two ways. Let u be the neighbour of v that
is in F , note that v can only have one neighbour in F or v would have been
added to U in Rule A. We generate one branch where v is added to U , and
one branch where v is added to F and NG′(v)− u is added to U .

The first branch is safe as v has been added to U , and can therefore
never be part of an S-cycle in F . The second branch is safe since v already
has one neighbour in F . Adding more neighbours to F after adding v to F
would result in an S-cycle in F . Therefore the rest of the neighbours have
to be added to U .

Algorithm 4.4 Case 1.2 in Algorithm for enumerating all minimal SFVSs

1: procedure Case 1.2

2: Let u be neighbour of v in F

3: Alg(F , U ∪ v, R)

4: Alg(F ∪ v, U ∪ (NG′(v)− u), R)

5: end procedure

Case 1.3 For Case 1.3 to happen v has to be undecided, not contained
in S and it cannot have any neighbours in F . This case is very similar to
Case 1.1. Since v was not handled by any of the reduction rules, v has at
least one neighbour contained in S. For d(v) = 2 we proceed in the same
way as we did in Case 1.1 when d(v) = 2.

When d(v) = 3 the algorithm acts in a similar way as it did in Case 1.1
for d(v) = 3. Only instead of branching on v it branches on the different
ways it can add a neighbour u1, that is contained in S, to F .

For the case where d(v) ≤ 4, let u1 be a neighbour of v contained in S.
The algorithm branches: One branch where u1 is added to U , one branch
where u1 is added to F and NG′ [v]− u1 is added to U . Next it branches for
all the combinations u1 and a vertex from NG′ [v] − u1 can be added to F
and adding the rest of the closed neighbourhood of v to U .

These branches are safe as we branch on all the different ways to add u1
to F , at most two vertices are added to F and the rest of the neighbourhood
to U . This is safe because adding more than two vertices to F would produce
an S-cycle in F so these vertices have to be in U .

Case 1.4 If v is undecided, not contained in S and has at least one neigh-
bour in F we proceed with Case 1.4. This procedure is described in Al-
gorithm 4.6. As v has not been decided by any of the reduction rules we
know that v has exactly one neighbour u in F . We branch in different ways
depending on whether u is contained in S or not. If u is contained in S then
at most one vertex from NG′ [v]− u can be added to F . Therefore the algo-
rithm branches on all the different ways we can add a vertex from NG′ [v]−u
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to F , and deleting the rest of the neighbourhood from G′ by adding it to U .
This is safe as adding any more of the neighbours to F would result in an
S-cycle in F , so these have to be in U .

Algorithm 4.5 Case 1.3 in Algorithm for enumerating all minimal SFVSs

1: procedure Case 1.3

2: if v has 2 neighbours then

3: Let u1, u2 be neighbours of v

4: Alg(F ∪ {u1, u2}, U ∪ v, R)

5: Alg(F ∪ {v, u2}, U ∪ u1, R)

6: Alg(F ∪ {v, u1}, U ∪ u2, R)

7: Alg(F ∪ v, U ∪ {u1, u2}, R)

8: else if v has 3 neighbours then

9: Let u1, u2, u3 be neighbours of v

10: Alg(F ∪ {v, u1}, U ∪ {u2, u3}, R)

11: Alg(F ∪ {u1, u2}, U ∪ {v, u3}, R)

12: Alg(F ∪ {u1, u3}, U ∪ {v, u2}, R)

13: Alg(F ∪ {u1}, U ∪ {v, u2, u3}, R)

14: Alg(F ∪ {v}, U ∪ {u1}, R)

15: Alg(F ∪ {u2, u3}, U ∪ {v, u1}, R)

16: else if v has more than 3 neighbours then

17: Let u1 be a neighbour of v in S

18: Alg(F , U ∪ v, R)

19: Alg(F ∪ u1, U ∪ (NG′ [v]− u1), R)

20: Alg(F ∪ {v, u1}, U ∪ (NG′(v)− u1), R)

21: for all Neighbours ui of v except u1 do

22: Alg(F ∪ {u1, ui}, U ∪ (NG′ [v]− {u1, ui}), R)

23: end for

24: end if

25: end procedure

If u is not contained in S then, due to the reduction rules, v has another
neighbour w that is contained in S. The algorithm branches in two ways.
One branch where w is added to F and NG′ [v]−{u,w} is added to U . And
one branch where w is added to U . The first branch is safe as adding any
more vertices from the closed neighbourhood of v to F would result in an
S-cycle in F so these vertices have to be added to U . The second branch is
safe since w is in U , and can therefore never be part of an S-cycle in F .
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Algorithm 4.6 Case 1.4 in Algorithm for enumerating all minimal SFVSs

1: procedure Case 1.4

2: Let u be a neighbour of v

3: if u is in S then

4: for all Vertices x in NG′ [v]− u do

5: Alg(F ∪ x, U ∪ (NG′ [v]− {u, x}), R)

6: end for

7: else

8: Let w be a neighbour of v in S

9: Alg(F ∪ w, U ∪ (NG′ [v]− {u,w}), R)

10: Alg(F , U ∪ w, R)

11: end if

12: end procedure

Case 2.1 When v is in F and in S, proceed with Case 2.1. This case
is described in Algorithm 4.7. Due to the reduction rules we know that
NG′(v)∩ F is empty, and since v is in F we can add at most one neighbour
of v to F .

If d(v) = 2, let u and w be the neighbours of v. The algorithm branches
on whether to add u to F and w to U , or to add u to U . The first branch is
safe as w has to be added to U after adding u to F . If not we would get an
S-cycle in F . The second branch is safe as u is deleted from G′, and thus u
can never be part of an S-cycle in F .

Algorithm 4.7 Case 2.1 in Algorithm for enumerating all minimal SFVSs

1: procedure Case 2.1

2: if v has 2 neighbours then

3: Let u1, u2 be neighbours of v

4: Alg(F ∪ u1, U ∪ u2, R)

5: Alg(F , U ∪ u1, R)

6: else if v has more than 2 neighbours then

7: for all Vertices ui in NG′(v) do

8: Alg(F ∪ ui, U ∪ (NG′(v)− ui), R)

9: end for

10: Alg(F , U ∪NG′(v), R)

11: end if

12: end procedure

If d(v) > 2 the algorithm branches on all the different ways we can add
at most one neighbour of v to F , and adding the remaining neighbourhood
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to U . Since v is already in F , and it is in S, at most one neighbour of v can
be added to F . If more neighbours of v were added to F , there would be an
S-cycle in F . Therefore the remaining neighbourhood must be added to U .

Case 2.2 If v is in F but not in S we proceed with Case 2.2. This
procedure is described in detail in Algorithm 4.8. For this case we branch
in two ways. We let u1 be an undecided neighbour of v that is in S. We
branch on either adding u1 to U or adding u1 to F and NG(v) − u1 to U .
The first branch is safe as we simply remove u1 from G′, as such u1 can
never be part of an S-cycle in F . In the second branch we add u1 to F and
since v is already in S we cannot add any more neighbours of v to F without
creating an S-cycle in F so we have to add the rest of the neighbourhood to
U . So this rule is safe.

Algorithm 4.8 Case 2.2 in Algorithm for enumerating all minimal SFVSs

1: procedure Case 2.2

2: Let u1 be undecided vertex, neighbour of v

3: Alg(F , U ∪ u1, R)

4: Alg(F ∪ u1, U ∪ (NG′(v)− u1), R)

5: end procedure

The algorithm branches until it has reached all possible solutions. If
these solutions are minimal subset feedback vertex sets we count and store
them. The worst case branching vector for this algorithm is (4, 4, 4, 4, 2, 4).
This branching vector gives the branching number 1.6708 which in turn
implies a running time of O(1.6708n). For more in-depth analysis of the
running time we refer to [12].

4.2 Implementation Details

In this section we will describe the different choices that were made when
implementing Algorithm 4.1. We will first describe choices that were made
specific to the implementation of the algorithm, then the choices that were
made concerning the implementation when run on chordal graphs. And last
we will describe choices that were made specifically concerning the imple-
mentation when run on split graphs. We will not describe how we generated
graphs as this was done the same way as described in the previous chapter,
but we will mention what graphs that were generated.

Unlike the implementation of Algorithm 3.1 we chose to implement the
PEO as a field variable instead of giving it as input to the implementation.
This way we find the PEO by removing all vertices contained in U ∪R from
the ordering. Note that we do not change the order of the vertices in the
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PEO. This was done to avoid manipulating the PEO for all the different
branches that are generated at each level. The graph G and the set S, were
also kept as field variables. This was because these sets of vertices do not
change throughout the algorithm. The method header is given below to give
an insight into how a call to Algorithm 4.1 would work in practise. Here f

is an S-forest of G, sfvs is the set of deleted vertices in G and r is the set
of hidden vertices.

public void alg(HashMap<Integer, Integer> f,

HashMap<Integer,Integer> sfvs,

HashMap<Integer, Integer> r)

For each solution generated by the implementation of Algorithm 4.1,
we test whether this is in fact a minimal subset feedback vertex set. This
is done by verifying that it is not possible to remove any vertices from U ,
without making an S-cycle in F . That is; we test that U − v is not a subset
feedback vertex set of G for every v in U . To check whether a set U is a
subset feedback vertex set of G, we implemented a depth-first-search, that
specifically searched for any cycles in G − U that contained at least one
vertex of S.

We checked for chordality in graphs the same way as described in the
previous section, by generating an ordering α with the MCS-algorithm given
in Algorithm 1.1, and then verifying that α is in fact a PEO with the check-
PEO algorithm given in Algorithm 1.2.

We wanted to test the implementation of Algorithm 4.1 for all different
choices of S. As a consequence we could not, for chordal graphs, test the
implementation on as many graphs as we did in the previous section. The
algorithm was run up to 2n times for each graph of size n that we tested
it on. This was because all unique sets of S were generated. Note that we
did not include the empty set for S as then the solution is trivial. As the
implementation is tested for all choices of S, we limited the graphs that were
generated to very dense graphs. We chose very dense graphs as the most
interesting results found in already tested graphs were found in very dense
graphs. As an example the currently best known lower bound example, for
chordal graphs, consists of n/5 disjoint copies of the complete graph on 5
vertices.

We implemented Equation 1.1 that was given in Theorem 4 in Chapter
1.2.2. This equation was implemented to check whether a graph is a split
graph or not. It works by identifying the last vertex that could be part
of the clique in the graph using the index of this vertex in a sorted degree
sequence to solve the equation.

We mentioned in Chapter 2.2 that the set S can not contain any vertices
from the clique of the split graph. Therefore we know that there are many
sets of S that there is no point on testing our implementation for. We
sorted out irrelevant sets of S with the same concepts used when recognizing
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whether a graph is a split graph. Since we knew that a graph was a split
graph, we used the same index w, that is found in Equation 1.1 to identify
which vertices were part of the clique and then removing any sets that
contained these vertices. As a consequence we were able to test the algorithm
on larger data sets than we did for chordal graphs when s ≥ 11. Note that
since split graphs are a sub class of chordal graphs there are naturally more
chordal graphs than there are split graphs for a given graph size.

4.3 Test results of our implementation

In this section we will present the results we have achieved when running our
implementation of Algorithm 4.1 on chordal and split graphs. In particular
the test results for split graphs are very interesting as we managed to find
a graph that achieves a better lower bound than the currently best known
lower bound.

4.3.1 Test results for chordal graphs

The bounds on the number of minimal subset feedback vertex sets in chordal
graphs are very close, though not equal. In Table 4.1 we give the output of
our implementation when run on graphs of upto 15 vertices. In this table,
s is the size of the graphs. We give the number of chordal graphs we have
tested our implementation on, and the number of minimal subset feedback
vertex sets that are needed to achieve at least the currently best known
lower bound. Further we give the number of leaves that the implementation
has reached, and the number of minimal subset feedback vertex sets that
were found for each graph size. In addition we show the lower bounds we
were able to achieve for each graph size. This bound is given by SFV Sn/s

where SFV S is the maximum number of minimal subset feedback vertex
sets we have found in graphs of size s. In Figure 4.2 we compare the upper
bound given by Golovach et al. in [12], the number of leaves found by our
implementation and the lower bound given by the number of minimal subset
feedback vertex sets we have found for each graph size. Notice that we also
manage to achieve the currently best known lower bound in a graph with
10 vertices. This graph is shown in Figure 4.1.

Figure 4.1: A graph with 1.5848n minimal subset feedback vertex sets

The red vertices are vertices in S, and each connected component of the
graph has 100 minimal subset feedback vertex sets. Assuming there are n/10
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connected components in the graph, it achieves 100n/10 ≈ 1.5848n subset
feedback vertex sets.

2 4 6 8 10 12 14 16
1.3

1.4

1.5

1.6

1.7

1.8

s

SFV S1/s

Upper bound
Leaves found
Lower bound

Figure 4.2: Chart showing the result given by Algorithm 4.1 as given by 4.3.

s # graphs
# sfvs
needed

# leaves
# minimal

SFVS
SFV Sn/s

3 2 4 4 3 1.4422n

4 5 7 7 6 1.5650n

5 15 10 12 10 1.5848n

6 58 16 18 15 1.5704n

7 272 26 31 21 1.5448n

8 1614 40 51 36 1.5650n

9 11911 64 91 60 1.5760n

10 109539 100 145 100 1.5848n

11 34736 159 193 112 1.5356n

12 457 252 165 84 1.4466n

13 1384 398 224 111 1.4365n

14 457 631 220 117 1.4051n

15 265 1000 240 126 1.3804n

Table 4.1: Table showing the test result for Algorithm 4.1 on split graphs

When we analyse the results depicted in Figure 4.2 we can see that the
number of leaves found is close to the upper bound. But what is more
interesting is the gap between the number of leaves found and the lower
bound for each graph size.
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The results we have achieved on graphs of size ≥ 11 show a drastic
decline in both the number of leaves found and the number of minimal subset
feedback vertex sets. We believe this was due to the small selection of graphs
that was used when testing our implementation, when the number of vertices
in the graph was ≥ 11. This indicates that the most interesting graphs for
graphs of size ≥ 11 are not as dense as we believed when generating graphs.

The observations we have made concerning the upper and lower bounds
on the number of minimal subset feedback vertex sets in chordal graphs,
indicate that the upper bound could be too high. This is mainly based on
the observation that the algorithm produces more leaves than it produces
minimal subset feedback vertex sets.

4.3.2 Test results for split graphs

As was mentioned in the introduction of this chapter we have managed to
find a better lower bound on the number of minimal subset feedback vertex
sets in split graphs. In fact we were able to find three examples that achieve
a better lower bound.

Before we present these examples we repeat how to construct a lower
bound example for split graphs. For chordal graphs it is possible to construct
a lower bound example by making n/s disjoint copies of a graph on s vertices.
This is not possible for split graphs as a split graph has to be connected.
But we construct a lower bound example in a similar way, only instead of
the n/s copies being disjoint we connect all the vertices of the cliques in
each copy into an even larger clique. As mentioned in Chapter 2.2 none
of the vertices in the set S can be in the clique. They have to be in the
independent set. Due to this any cycles we break in one copy will not affect
any cycles in a different copy. Even though they are connected through the
clique. Next we will give the graphs that achieve better lower bounds than
the currently best known lower bound.

G8:
C:

G10:
C:

Figure 4.3: Figure showing examples of a graphs achieving better lower
bounds than 1.4422n

We found one graph G8 with 8 vertices and 20 minimal subset feedback
vertex sets that could be used to construct a lower bound example that gives
the bound 1.4542n. We also found one graph G10 with 10 vertices and 39
minimal subset feedback vertex sets that can be used to construct a lower



46 CHAPTER 4. SFVS ALGORITHM

bound example with 1.4424n minimal subset feedback vertex sets. These
graphs are both depicted in Figure 4.3. We note that all the vertices of the
grey area in these figures are connected as a clique. In addition all the red
vertices are vertices contained in S and in the independent set of the graph.

G9:
C:

Figure 4.4: Figure showing an example of a graph achieving the currently
best known lower bound: 1.4645n

The graph giving the best lower bound that we were able to find is
constructed from a graph with 9 vertices that has 31 minimal subset feedback
vertex sets, giving the new best known lower bound 1.4645n. This lower
bound example is given as G9 in Figure 4.4. Note that to achieve this
bound the entire independent set is contained in S. In Figure 4.5 we show a
detailed view of the graph we use to achieve the new currently best known
lower bound. The red vertices are the vertices in the independent set and
they are all contained in S. The actual minimal subset feedback vertex sets
for this figure are given in Table 4.2.

3

8

7
6

5

4

1

0

2

Figure 4.5: Figure showing the graph that is used to construct the new lower
bound example in Figure 4.4

[0, 1, 2] [1, 2, 3, 4, 5] [1, 2, 4, 5, 6] [1, 2, 3, 5, 6] [1, 2, 3, 4, 6]
[0, 2, 4, 7, 8] [0, 2, 3, 7, 8] [2, 3, 4, 6, 8] [0, 2, 3, 4, 8] [2, 3, 4, 5, 8]
[2, 3, 4, 6, 7] [0, 2, 3, 4, 7] [2, 3, 4, 5, 7] [3, 5, 6, 7, 8] [4, 5, 6, 7, 8]
[0, 1, 6, 7, 8] [0, 3, 6, 7, 8] [0, 4, 6, 7, 8] [3, 4, 6, 7, 8] [0, 1, 5, 7, 8]
[0, 3, 5, 7, 8] [0, 4, 5, 7, 8] [3, 4, 5, 7, 8] [1, 4, 5, 6, 8] [0, 1, 5, 6, 8]
[1, 3, 5, 6, 8] [3, 4, 5, 6, 8] [1, 4, 5, 6, 7] [0, 1, 5, 6, 7] [1, 3, 5, 6, 7]
[3, 4, 5, 6, 7]

Table 4.2: All minimal subset feedback vertex sets for the graph depicted
in Figure 4.5.

With this new lower bound example we have managed to answer one
of the open questions given by Golovach et al. in [12]. The question on
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whether there exist a split graph with a better lower bound than 1.4422n, a
bound achieved by the graph in Figure 4.6.

Figure 4.6: The graph giving the previously best known lower bound for the
number of minimal subset feedback vertex sets in split graphs

s # graphs
# sfvs
needed

# leaves
# minimal

SFVS
SFV Sn/s

3 2 3 4 3 1.4422n

4 5 5 6 4 1.4142n

5 12 7 6 5 1.3797n

6 35 9 16 9 1.4422n

7 168 13 24 12 1.4261n

8 393 19 36 20 1.4542n

9 1666 27 64 31 1.4645n

10 8543 39 96 39 1.4424n

11 5473 57 101 46 1.4163n

12 6038 81 256 81 1.4422n

13 1009 117 122 64 1.3770n

14 1412 169 89 58 1.3364n

15 159 243 1024 243 1.4422n

Table 4.3: Table showing the test result for Algorithm 4.1 on split graphs

In Table 4.3 we give an overview of what we have found when running
our implementation on split graphs. We let s be the size of the graphs. We
give the number of graphs that we have tested the implementation on for
every size s. We give the number of leaves found, and we give the maximum
number of minimal subset feedback vertex sets we have found. We also give
the bound SFV Sn/s. Where SFV S is the maximum number of minimal
subset feedback vertex sets, we have found in graphs of size s. These results
are depicted in Figure 4.7.

We believe that the drastic decline in the maximum number of minimal
subset feedback vertex sets for graphs of size ≥ 11 was because we were not
able to test the implementation on all graphs for these sizes. We observed
for chordal graphs that the graph examples that achieve the best bounds
are from graphs that are not necessarily very sparse or very dense. This
seems to be true for split graphs as well. As such it could be that the
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results output by the implementation of Algorithm 4.1, for these graphs
sizes, are not representative of how many leaves and how many minimal
subset feedback vertex sets exist in these graph sizes. In fact the positive
results we achieved for graphs with size 8, 9 and 10 support the notion that
there could exist more graphs achieving a better lower bound than 1.4422n

when s ≥ 11.

2 4 6 8 10 12 14 16
1.3

1.4

1.5

1.6

1.7

1.8

s

SFV Sn/s

Upper bound
Leaves found
Lower bound

Figure 4.7: Chart showing the result given by Algorithm 4.1 as given by
Table 4.3.

In Figure 4.8 we compare the number of leaves found for split graphs
with the number of leaves found for chordal graphs. From Chapter 1.2.2
we know that split graphs are chordal, and in this figure we can see that
split graphs are not the sub-class of chordal graphs that generates the most
leaves. We chose to only compare the result of the graphs with at most 10
vertices as we ran our implementation on the same data sets for both split
and chordal graphs for these sizes. In addition to these differences we see
that there is a substantial gap between the number of leaves found and the
number of minimal subset feedback vertex sets found in graphs of a given
size. This is shown in Figure 4.7.

In this section we were able to give a better lower bound on the number
of minimal subset feedback vertex sets in split graphs. The observations
we were able to make when comparing the number of leaves found to the
number of minimal subset feedback vertex sets found, and the comparison
between the number of leaves found in chordal graphs as opposed to split
graphs strongly indicate that the upper bound given by Golovach et al. in
[12] for chordal graphs is too high for split graphs.
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Leaves found chordal graphs
Leaves found split graphs

Figure 4.8: Chart comparing the number of leaves found in split graphs and
chordal graphs when we test Algorithm 4.1.
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Chapter 5

Conclusion

In this chapter we will first give a summary of this thesis. Then we will
discuss possible open questions.

5.1 Summary

In the first chapters we gave background information on minimal dominating
sets, minimal subset feedback vertex sets, chordal and split graphs. We gave
algorithms for testing whether a graph is chordal and for testing whether a
graph is a split graph.

The goal of the thesis was to see whether it was possible to achieve better
upper or lower bounds for the number of minimal dominating sets in chordal
graphs and for the number of minimal subset feedback vertex sets in chordal
and split graphs. To achieve this goal we implemented two algorithms. One
algorithm for enumerating all minimal dominating sets in chordal graph [2],
and one algorithm for enumerating all minimal subset feedback vertex sets
in chordal graphs [12]. We tested the latter algorithm on both chordal and
split graphs.

In terms of upper bounds we managed to find strong indications that
the upper bound is too high for both minimal dominating sets in chordal
graphs and for minimal subset feedback vertex sets in split graphs. There
were some indications that that the upper bound on the number of minimal
subset feedback vertex sets in chordal graphs is also too high and could be
equal to the lower bound. For minimal dominating sets in chordal graphs
we managed to improve the practical running time of the implementation
of Algorithm 3.1 given by [2]. In spite of these results we were not able to
prove any better upper upper bounds than the ones given in [2] and [12].

When we studied the lower bounds on the number of minimal subset
feedback vertex sets in split graphs we were able to find several graphs that
achieved a better lower bound than the previously best known lower bound
example. The new lower bound on the number of minimal subset feedback
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vertex sets in split graphs is 1.4645n.
For the lower bound on the number of minimal dominating sets in chordal

graphs we found that the currently best known lower bound is achieved in
several non-isomorphic graphs where the number of vertices in each compo-
nent is divisible by 3. This supports the hypothesis that 3n/3 is in fact the
upper bound for minimal dominating sets in chordal graphs.

We were not able to achieve any better results for the lower bound on
the number of minimal subset feedback vertex sets in chordal graphs.

5.2 Further work

Our results concerning the number of minimal dominating sets in chordal
graphs could indicate that the upper bound given by Couturier et al. in [2]
is too high, though we have not been able to prove this. Therefore we pose
the question:

1. Could there exist an algorithm that gives a better upper bound than
1.6181n, on the number of minimal dominating sets in chordal graphs?

The results we were able to achieve for the number of minimal subset
feedback vertex sets in split graphs indicate that there exist graphs that give
a better lower bound than 1.4422n, but the upper and lower bounds are still
not equal. As such we ask:

1. Could there exist a better lower bound on the number of minimal
subset feedback vertex sets in split graphs than 1.4645n?

2. Could there exist a better upper bound on the number of minimal
subset feedback vertex sets in split graphs?



Appendix A

Recognizing chordal and
split graphs

A.1 MCS Algorithm

public static LinkedList<Integer> mcsHashSet

(ArrayList<ArrayList<Integer>> edge,

int numNodes){

LinkedList<Integer> nP = new LinkedList<Integer>();

ArrayList<HashSet<Integer>> v=

new ArrayList<HashSet<Integer>>();

int[] nV = new int[numNodes];

for(int i =0; i<numNodes; i++){

v.add(i, new HashSet<Integer>());

}

for(int i =0; i<numNodes; i++){

v.get(0).add(i);

nV[i] =0;

}

int i =numNodes-1;

int j=0;

while(i>=0){

int node = v.get(j).iterator().next();

v.get(j).remove(node);

nV[node]=-1;

nP.addFirst(node);

for(int a =0; a< edge.get(node).size(); a++){

if(nV[edge.get(node).get(a)]>=0){
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int temp = edge.get(node).get(a);

v.get(nV[temp]).remove(temp);

nV[temp]+=1;

v.get(nV[temp]).add(temp);

}

}

i--;

j++;

while(j>=0 && j<numNodes && v.get(j).isEmpty()){

j--;

}

}

return nP;

}

A.2 checkPEO

public static boolean isChordal(LinkedList<Integer> peo,

ArrayList<ArrayList<Integer>> edge){

int w;

int v;

ArrayList<Integer> p = new ArrayList<Integer>();

p.addAll(peo);

int [] follower = new int[peo.size()];

int [] index = new int[peo.size()];

for(int i=0; i<peo.size(); i++){

w=p.get(i);

follower[w]=w;

index[w] = i;

for(int j=0; j<edge.get(w).size(); j++){

if(p.indexOf(edge.get(w).get(j))<i){

v= edge.get(w).get(j);

index[v] = i;

if(follower[v] ==v){

follower[v]=w;

}

}

}

for(int j=0; j<edge.get(w).size(); j++){

if(p.indexOf(edge.get(w).get(j))<i){

v= edge.get(w).get(j);
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if(index[follower[v]]<i)

return false;

}

}

}

return true;

}

A.3 Split graph recognition.

public static boolean isSplit

(ArrayList<ArrayList<Integer>> edge){

ArrayList<Pair> unSortedDeg =

generateDegreeSequence(edge);

ArrayList<Pair> deg =

sortAccordingToDegree(unSortedDeg, edge.size());

int w = findW(deg);

int left =0;

int right;

for (int i = 1; i <= w; i++) {

left += deg.get(i-1).grad;

}

right = w *(w-1);

for (int i = w+1; i <= deg.size(); i++) {

right+=deg.get(i-1).grad;

}

return left==right;

}
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Appendix B

Implementation of MDS
algorithm

public void finn_mds(HashMap<Integer,Integer> slettaNoder,

ArrayList<Integer> dSet,

LinkedHashSet<Integer> p){

if(slettaNoder.size() == graf.size() ||

isDominatingSet(dSet) ){

numLeaves++;

if(isMinimalDominatingSet(dSet)){

mdsListe.add(dSet);

}

}

else{

int x = p.iterator().next();

if(checkIfHasNoNeighbour(x, slettaNoder)){

if(isDominated(x, dSet)){

slettaNoder.put(x, x);

p.remove(x);

finn_mds(slettaNoder, dSet, p);

}else{

slettaNoder.put(x, x);

p.remove(x);

dSet.add(x);

finn_mds(slettaNoder, dSet, p);

}

}

else if(isDominated(x,dSet)){

if(neighbourhoodIsDominated(x, dSet)){

finn_mds(removeNode(x, slettaNoder),

dSet,
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removeFromPEO(x, p));

}else {

HashMap<Integer, Integer> slettaNoderCopy =

new HashMap<Integer, Integer>();

for (Map.Entry e : slettaNoder.entrySet()) {

slettaNoderCopy.put(

(Integer) e.getKey(),

(Integer) e.getValue());

}

ArrayList<Integer> dSetCopy =

new ArrayList<Integer>();

dSetCopy.addAll(dSet);

LinkedHashSet<Integer> pCopy =

new LinkedHashSet<Integer>();

Iterator e = p.iterator();

while (e.hasNext()) {

pCopy.add((Integer) e.next());

}

finn_mds(removeNeighbourhood(x, slettaNoder),

addToDomSet(x, dSet),

removeNeighbourhoodFromPEO(x, p));

finn_mds(removeNode(x, slettaNoderCopy),

dSetCopy,

removeFromPEO(x, pCopy));

}

}

else{

HashMap<Integer,Integer> slettaNoderCopy =

new HashMap<Integer, Integer>();

for(Map.Entry e : slettaNoder.entrySet()){

slettaNoderCopy.put(

(Integer) e.getKey(),

(Integer) e.getValue());

}

ArrayList<Integer> dSetCopy =

new ArrayList<Integer>();

dSetCopy.addAll(dSet);

LinkedHashSet<Integer> pCopy =

new LinkedHashSet<Integer>();

Iterator e = p.iterator();

while(e.hasNext()){

pCopy.add((Integer)e.next());

}

int y1 = hentNabo(x,slettaNoder);
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int y2 = hentNabo(x,slettaNoderCopy);

finn_mds(removeTwoNodes(x,y1,slettaNoder),

addToDomSet(y1, dSet),

removeTwoFromPEO(x, y1, p));

finn_mds(removeNode(y2, slettaNoderCopy),

dSetCopy,

removeFromPEO(y2, pCopy));

}

}

}
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Appendix C

Implementation of MSFVS
algorithm

public void alg(HashMap<Integer, Integer> f,

HashMap<Integer, Integer> sfvs,

HashMap<Integer, Integer> r){

LinkedList<Integer> peoCopy =

new LinkedList<Integer>();

HashMap<Integer, Integer> fCopy =

new HashMap<Integer, Integer>();

HashMap<Integer, Integer> sfvsCopy =

new HashMap<Integer, Integer>();

HashMap<Integer, Integer> rCopy =

new HashMap<Integer, Integer>();

copyMap(f, fCopy);

copyMap(sfvs, sfvsCopy);

copyMap(r, rCopy);

reduce(fCopy, sfvsCopy, rCopy);

if(fCopy.size() + sfvsCopy.size() == graf.size()){

numberOfLeaves++;

if(checkMaximalSForest(sfvsCopy)){

fSets.add(fCopy);

uSets.add(sfvsCopy);

}

}else {

if(!fCopy.isEmpty()) {

if (!isSforest(fCopy)) {

return;

}

}

peoCopy.addAll(peo);
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cleanPEO(rCopy, sfvsCopy, peoCopy);

int v = peoCopy.remove();

int neigh = findNumNeighboursInG(v,sfvsCopy, rCopy);

//case 1

if (!fCopy.containsKey(v)) {

if(!sfvsCopy.containsKey(v)) {

//1.1

if (S.contains(v)) {

if (noNeighboursInF(v, fCopy,rCopy )) {

if (neigh == 2) {

case11numNeigh2(fCopy, sfvsCopy,

rCopy, v);

} else if (neigh == 3) {

case11numNeigh3(fCopy, sfvsCopy,

rCopy, v);

} else if (neigh >= 4) {

case11numNeigh4(fCopy, sfvsCopy,

rCopy, v);

}

}//1.2

else if(!noNeighboursInF(v, fCopy,rCopy )){

case12(fCopy, sfvsCopy, rCopy, v);

}

}//1.3

else if (!S.contains(v)) {

if (noNeighboursInF(v, fCopy,rCopy )){

if (neigh == 2) {

case13numNeigh2(fCopy, sfvsCopy,

rCopy, v);

} else if (neigh == 3) {

case13numNeigh3(fCopy, sfvsCopy,

rCopy, v);

} else if (neigh >= 4) {

case13numNeigh4(fCopy, sfvsCopy,

rCopy, v);

}

}//1.4

else if(!noNeighboursInF(v, fCopy,rCopy )){

int u = -1;

for (int i = 0;

i < graf.get(v).size();

i++){

int t = graf.get(v).get(i);

if (fCopy.containsKey(t) &&
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!rCopy.containsKey(t){

u = t;

break;

}

}

if (S.contains(u)) {

case14uInS(fCopy, sfvsCopy,

rCopy, v, u);

} else {

case14uNotInS(fCopy, sfvsCopy,

rCopy, v, u);

}

}

}

}

} else { //case 2

if (S.contains(v)) {

//2.1

if (neigh == 2) {

case21NumNeigh2(fCopy, sfvsCopy,

rCopy, v);

} else if (neigh >= 3) {

case21NumNeigh3(fCopy, sfvsCopy,

rCopy, v);

}

}//2.2

else {

int numNeigbours = graf.get(v).size();

if (neigh > 0 &&

!hasNeighbourInF(v,fCopy,rCopy)){

case22(fCopy, sfvsCopy,

rCopy, v, numNeigbours);

}

}

}

}

}

C.1 Reduce

private void reduce(HashMap<Integer, Integer> f,

HashMap<Integer, Integer> sfvs,

HashMap<Integer, Integer>r){
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boolean changed = true;

while(changed) {

changed = false;

//Rule A

for (int i = 0; i < graf.size(); i++) {

if(f.containsKey(i)|| sfvs.containsKey(i)){

continue;

}

ArrayList<Integer> cand =

new ArrayList<Integer>();

for (int j = 0; j < graf.get(i).size(); j++) {

int u = graf.get(i).get(j);

if (f.containsKey(u) && !r.containsKey(u)){

cand.add(u);

}

}

if(cand.size()<2){

continue;

}

boolean update = false;

for (int j = 0; j < cand.size()-1; j++) {

int u = cand.get(j);

for (int k = j+1; k < cand.size(); k++) {

int w = cand.get(k);

if(f.containsKey(u) &&

f.containsKey(w)){

if(graf.get(u).contains(w)){

if(S.contains(u) ||

S.contains(w) ||

S.contains(i)){

sfvs.put(i,i);

update = true;

changed = true;

break;

}

}

}

}

if(update){

break;

}

}

}

if(changed){
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continue

}

//Rule B

for (int i = 0; i < graf.size(); i++) {

if(sfvs.containsKey(i) || r.containsKey(i)){

continue;

}

int numN = findNumNeighboursInG(i, sfvs, r);

//legger v til i f og r

if(numN<2){

if (!f.containsKey(i)){

f.put(i,i);

}

r.put(i,i);

changed = true;

break;

}

}

if(changed){

continue;

}

//Rule C

for (int i = 0; i < graf.size(); i++) {

boolean inS = false;

if (r.containsKey(i) || sfvs.containsKey(i))

continue;

if(S.contains(i)){

continue;

}

for (int j = 0; j < graf.get(i).size(); j++) {

int u = graf.get(i).get(j);

if(S.contains(u) &&

!sfvs.containsKey(u) &&

!r.containsKey(u)){

inS = true;

break;

}

}

if(inS){

continue;

}

boolean isSimp = isSimplicial(i,r,sfvs);

if(isSimp){
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if(!f.containsKey(i) && !sfvs.containsKey(i)){

f.put(i,i);

}

r.put(i,i);

changed = true;

break;

}

}

}

}

C.2 Case 1

C.2.1 Case 1.1

private void case11numNeigh2(

HashMap<Integer, Integer> fCopy,

HashMap<Integer, Integer> sfvsCopy,

HashMap<Integer, Integer> rCopy, int v) {

int u1 = -1, u2 = -1;

boolean foundFirst = false;

for (int i = 0; i < graf.get(v).size(); i++) {

int a = graf.get(v).get(i);

if (foundFirst){

if (sfvsCopy.containsKey(a) ||

rCopy.containsKey(a)){

continue;

}

u2 = a;

break;

}

if (sfvsCopy.containsKey(a) ||

rCopy.containsKey(a)) {

continue;

}

u1 = a;

foundFirst = true;

}

assert u1!=-1:"ugyldig verdig på u1";

assert u2!=-1:"ugyldig verdig på u2";

HashMap<Integer, Integer> fCopy1 =

new HashMap<Integer, Integer>();

HashMap<Integer, Integer> sfvsCopy1 =
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new HashMap<Integer, Integer>();

HashMap<Integer, Integer> rCopy1 =

new HashMap<Integer, Integer>();

copyMap(fCopy, fCopy1);

copyMap(sfvsCopy, sfvsCopy1);

copyMap(rCopy, rCopy1);

fCopy1.put(u1, u1);

fCopy1.put(u2, u2);

sfvsCopy1.put(v, v);

alg(fCopy1, sfvsCopy1, rCopy1);

copyMap(fCopy, fCopy1);

copyMap(sfvsCopy, sfvsCopy1);

copyMap(rCopy, rCopy1);

fCopy1.put(v, v);

fCopy1.put(u2, u2);

sfvsCopy1.put(u1, u1);

alg(fCopy1, sfvsCopy1, rCopy1);

copyMap(fCopy, fCopy1);

copyMap(sfvsCopy, sfvsCopy1);

copyMap(rCopy, rCopy1);

fCopy1.put(v, v);

fCopy1.put(u1, u1);

sfvsCopy1.put(u2, u2);

alg(fCopy1, sfvsCopy1, rCopy1);

copyMap(fCopy, fCopy1);

copyMap(sfvsCopy, sfvsCopy1);

copyMap(rCopy, rCopy1);

fCopy1.put(v, v);

sfvsCopy1.put(u1, u1);

sfvsCopy1.put(u2, u2);

alg(fCopy1, sfvsCopy1, rCopy1);

}

private void case11numNeigh3(

HashMap<Integer, Integer> fCopy,

HashMap<Integer, Integer> sfvsCopy,

HashMap<Integer, Integer> rCopy, int v){

int u1 = -1, u2 = -1, u3 = -1;

boolean foundFirst = false;

boolean foundSec = false;
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for (int i = 0; i < graf.get(v).size(); i++) {

int a = graf.get(v).get(i);

if (foundSec) {

if (sfvsCopy.containsKey(a) ||

rCopy.containsKey(a)) {

continue;

}

u3 = a;

break;

} else if (foundFirst) {

if (sfvsCopy.containsKey(a) ||

rCopy.containsKey(a)) {

continue;

}

u2 = a;

foundSec = true;

} else {

if (sfvsCopy.containsKey(a) ||

rCopy.containsKey(a)) {

continue;

}

u1 = a;

foundFirst = true;

}

}

HashMap<Integer, Integer> fCopy1 =

new HashMap<Integer, Integer>();

HashMap<Integer, Integer> sfvsCopy1 =

new HashMap<Integer, Integer>();

HashMap<Integer, Integer> rCopy1 =

new HashMap<Integer, Integer>();

copyMap(fCopy, fCopy1);

copyMap(sfvsCopy, sfvsCopy1);

copyMap(rCopy, rCopy1);

fCopy1.put(v, v);

fCopy1.put(u1, u1);

sfvsCopy1.put(u2, u2);

sfvsCopy1.put(u3, u3);

alg(fCopy1, sfvsCopy1, rCopy1);

copyMap(fCopy, fCopy1);
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copyMap(sfvsCopy, sfvsCopy1);

copyMap(rCopy, rCopy1);

fCopy1.put(v, v);

fCopy1.put(u2, u2);

sfvsCopy1.put(u1, u1);

sfvsCopy1.put(u3, u3);

alg(fCopy1, sfvsCopy1, rCopy1);

copyMap(fCopy, fCopy1);

copyMap(sfvsCopy, sfvsCopy1);

copyMap(rCopy, rCopy1);

fCopy1.put(v, v);

fCopy1.put(u3, u3);

sfvsCopy1.put(u1, u1);

sfvsCopy1.put(u2, u2);

alg(fCopy1, sfvsCopy1, rCopy1);

copyMap(fCopy, fCopy1);

copyMap(sfvsCopy, sfvsCopy1);

copyMap(rCopy, rCopy1);

fCopy1.put(v, v);

sfvsCopy1.put(u1, u1);

sfvsCopy1.put(u2, u2);

sfvsCopy1.put(u3, u3);

alg(fCopy1, sfvsCopy1, rCopy1);

copyMap(fCopy, fCopy1);

copyMap(sfvsCopy, sfvsCopy1);

copyMap(rCopy, rCopy1);

fCopy1.put(u1, u1);

sfvsCopy1.put(v, v);

alg(fCopy1, sfvsCopy1, rCopy1);

copyMap(fCopy, fCopy1);

copyMap(sfvsCopy, sfvsCopy1);

copyMap(rCopy, rCopy1);

fCopy1.put(u2, u2);

fCopy1.put(u3, u3);

sfvsCopy1.put(v, v);

sfvsCopy1.put(u1, u1);

alg(fCopy1, sfvsCopy1, rCopy1);

}

private void case11numNeigh4(

HashMap<Integer, Integer> fCopy,
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HashMap<Integer, Integer> sfvsCopy,

HashMap<Integer, Integer> rCopy, int v) {

HashMap<Integer, Integer> fCopy1 =

new HashMap<Integer, Integer>();

HashMap<Integer, Integer> sfvsCopy1 =

new HashMap<Integer, Integer>();

HashMap<Integer, Integer> rCopy1 =

new HashMap<Integer, Integer>();

copyMap(fCopy, fCopy1);

copyMap(sfvsCopy, sfvsCopy1);

copyMap(rCopy, rCopy1);

sfvsCopy1.put(v, v);

alg(fCopy1, sfvsCopy1, rCopy1);

copyMap(fCopy, fCopy1);

copyMap(sfvsCopy, sfvsCopy1);

copyMap(rCopy, rCopy1);

fCopy1.put(v, v);

for (int i = 0; i < graf.get(v).size(); i++) {

int a = graf.get(v).get(i);

if(rCopy1.containsKey(a) ||

sfvsCopy1.containsKey(a))

continue;

sfvsCopy1.put(a, a);

}

alg(fCopy1, sfvsCopy1, rCopy1);

for (int i = 0; i < graf.get(v).size(); i++) {

copyMap(fCopy, fCopy1);

copyMap(sfvsCopy, sfvsCopy1);

copyMap(rCopy, rCopy1);

int ui = graf.get(v).get(i);

if(rCopy1.containsKey(ui) ||

sfvsCopy1.containsKey(ui))

continue;

fCopy1.put(v, v);

fCopy1.put(ui, ui);

for (int j = 0; j < graf.get(v).size(); j++) {

int a = graf.get(v).get(j);

if (a == ui) {

continue;

}

if(rCopy1.containsKey(a) ||
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sfvsCopy1.containsKey(a))

continue;

sfvsCopy1.put(a, a);

}

alg(fCopy1, sfvsCopy1, rCopy1);

}

}

C.2.2 Case 1.2

private void case12(

HashMap<Integer, Integer> fCopy,

HashMap<Integer, Integer> sfvsCopy,

HashMap<Integer, Integer> rCopy, int v) {

int u1 = -1;

//finner den ene naboen som må være i F

for (int i = 0; i < graf.get(v).size(); i++) {

if (fCopy.containsKey(graf.get(v).get(i)) &&

!rCopy.containsKey(graf.get(v).get(i))) {

u1 = graf.get(v).get(i);

break;

}

}

HashMap<Integer, Integer> fCopy1 =

new HashMap<Integer, Integer>();

HashMap<Integer, Integer> sfvsCopy1 =

new HashMap<Integer, Integer>();

HashMap<Integer, Integer> rCopy1 =

new HashMap<Integer, Integer>();

ArrayList<Integer> naboer = new ArrayList<Integer>();

finnNaboer(sfvsCopy, rCopy, v, naboer); //O(n)

copyMap(fCopy, fCopy1);

copyMap(sfvsCopy, sfvsCopy1);

copyMap(rCopy, rCopy1);

sfvsCopy1.put(v, v);

alg(fCopy1, sfvsCopy1, rCopy1);

copyMap(fCopy, fCopy1);

copyMap(sfvsCopy, sfvsCopy1);

copyMap(rCopy, rCopy1);

fCopy1.put(v, v);

for (Integer aNaboer : naboer) {

if (aNaboer == u1 || aNaboer == v) {
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continue;

}

sfvsCopy1.put(aNaboer, aNaboer);

}

alg(fCopy1, sfvsCopy1, rCopy1);

}

C.2.3 Case 1.3

private void case13numNeigh2(

HashMap<Integer, Integer> fCopy,

HashMap<Integer, Integer> sfvsCopy,

HashMap<Integer, Integer> rCopy, int v) {

int u1 = -1,u2 = -1;

boolean foundFirst = false;

for (int i = 0; i < graf.get(v).size(); i++) {

int a = graf.get(v).get(i);

if (foundFirst){

if (sfvsCopy.containsKey(a) ||

rCopy.containsKey(a)){

continue;

}

u2 = a;

break;

}

if (sfvsCopy.containsKey(a) ||

rCopy.containsKey(a)) {

continue;

}

u1 = a;

foundFirst = true;

}

assert u1!=-1: "u1 har ugyldig verdi";

assert u2 != -1: "u2 har ugyldig verdi";

HashMap<Integer, Integer> fCopy1 =

new HashMap<Integer, Integer>();

HashMap<Integer, Integer> sfvsCopy1 =

new HashMap<Integer, Integer>();

HashMap<Integer, Integer> rCopy1 =

new HashMap<Integer, Integer>();

copyMap(fCopy, fCopy1);

copyMap(sfvsCopy, sfvsCopy1);

copyMap(rCopy, rCopy1);
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fCopy1.put(u1, u1);

fCopy1.put(u2, u2);

sfvsCopy1.put(v, v);

alg(fCopy1, sfvsCopy1, rCopy1);

copyMap(fCopy, fCopy1);

copyMap(sfvsCopy, sfvsCopy1);

copyMap(rCopy, rCopy1);

fCopy1.put(v, v);

fCopy1.put(u2, u2);

sfvsCopy1.put(u1, u1);

alg(fCopy1, sfvsCopy1, rCopy1);

copyMap(fCopy, fCopy1);

copyMap(sfvsCopy, sfvsCopy1);

copyMap(rCopy, rCopy1);

fCopy1.put(v, v);

fCopy1.put(u1, u1);

sfvsCopy1.put(u2, u2);

alg(fCopy1, sfvsCopy1, rCopy1);

copyMap(fCopy, fCopy1);

copyMap(sfvsCopy, sfvsCopy1);

copyMap(rCopy, rCopy1);

fCopy1.put(v, v);

sfvsCopy1.put(u1, u1);

sfvsCopy1.put(u2, u2);

alg(fCopy1, sfvsCopy1, rCopy1);

}

private void case13numNeigh3(

HashMap<Integer, Integer> fCopy,

HashMap<Integer, Integer> sfvsCopy,

HashMap<Integer, Integer> rCopy, int v) {

int u1 = -1, u2 = -1, u3 = -1;

boolean foundFirst = false;

boolean foundSec = false;

for (int i = 0; i < graf.get(v).size(); i++) {

int a = graf.get(v).get(i);

if (foundSec) {

if (sfvsCopy.containsKey(a) ||

rCopy.containsKey(a)) {

continue;

}
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u3 = a;

break;

} else if (foundFirst) {

if (sfvsCopy.containsKey(a) ||

rCopy.containsKey(a)) {

continue;

}

u2 = a;

foundSec = true;

} else {

if (sfvsCopy.containsKey(a) ||

rCopy.containsKey(a)) {

continue;

}

u1 = a;

foundFirst = true;

}

}

if(S.contains(u1)){

assert S.contains(u1) : "Does not contain u1";

}

else if (S.contains(u2)) {

int temp = u1;

u1 = u2;

u2 = temp;

} else if (S.contains(u3)) {

int temp = u1;

u1 = u3;

u3 = temp;

}

HashMap<Integer, Integer> fCopy1 =

new HashMap<Integer, Integer>();

HashMap<Integer, Integer> sfvsCopy1 =

new HashMap<Integer, Integer>();

HashMap<Integer, Integer> rCopy1 =

new HashMap<Integer, Integer>();

copyMap(fCopy, fCopy1);

copyMap(sfvsCopy, sfvsCopy1);

copyMap(rCopy, rCopy1);
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fCopy1.put(u1, u1);

fCopy1.put(v, v);

sfvsCopy1.put(u2, u2);

sfvsCopy1.put(u3, u3);

alg(fCopy1, sfvsCopy1, rCopy1);

copyMap(fCopy, fCopy1);

copyMap(sfvsCopy, sfvsCopy1);

copyMap(rCopy, rCopy1);

fCopy1.put(u1, u1);

fCopy1.put(u2, u2);

sfvsCopy1.put(v, v);

sfvsCopy1.put(u3, u3);

alg(fCopy1, sfvsCopy1, rCopy1);

copyMap(fCopy, fCopy1);

copyMap(sfvsCopy, sfvsCopy1);

copyMap(rCopy, rCopy1);

fCopy1.put(u1, u1);

fCopy1.put(u3, u3);

sfvsCopy1.put(v, v);

sfvsCopy1.put(u2, u2);

alg(fCopy1, sfvsCopy1, rCopy1);

copyMap(fCopy, fCopy1);

copyMap(sfvsCopy, sfvsCopy1);

copyMap(rCopy, rCopy1);

fCopy1.put(u1, u1);

sfvsCopy1.put(v, v);

sfvsCopy1.put(u2, u2);

sfvsCopy1.put(u3, u3);

alg(fCopy1, sfvsCopy1, rCopy1);

copyMap(fCopy, fCopy1);

copyMap(sfvsCopy, sfvsCopy1);

copyMap(rCopy, rCopy1);

fCopy1.put(v, v);

sfvsCopy1.put(u1, u1);

alg(fCopy1, sfvsCopy1, rCopy1);

copyMap(fCopy, fCopy1);

copyMap(sfvsCopy, sfvsCopy1);

copyMap(rCopy, rCopy1);
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fCopy1.put(u2, u2);

fCopy1.put(u3, u3);

sfvsCopy1.put(u1, u1);

sfvsCopy1.put(v, v);

alg(fCopy1, sfvsCopy1, rCopy1);

}

private void case13numNeigh4(

HashMap<Integer, Integer> fCopy,

HashMap<Integer, Integer> sfvsCopy,

HashMap<Integer, Integer> rCopy, int v) {

int u1 = -1;

for (int i = 0; i < graf.get(v).size(); i++) {

int temp = graf.get(v).get(i);

if (S.contains(temp) &&

!rCopy.containsKey(temp) &&

!sfvsCopy.containsKey(temp)) {

u1 = temp;

break;

}

}

ArrayList<Integer> naboer = new ArrayList<Integer>();

finnNaboer(sfvsCopy, rCopy, v, naboer);

HashMap<Integer, Integer> fCopy1 =

new HashMap<Integer, Integer>();

HashMap<Integer, Integer> sfvsCopy1 =

new HashMap<Integer, Integer>();

HashMap<Integer, Integer> rCopy1 =

new HashMap<Integer, Integer>();

copyMap(fCopy, fCopy1);

copyMap(sfvsCopy, sfvsCopy1);

copyMap(rCopy, rCopy1);

sfvsCopy1.put(u1, u1);

alg(fCopy1, sfvsCopy1, rCopy1);

copyMap(fCopy, fCopy1);

copyMap(sfvsCopy, sfvsCopy1);

copyMap(rCopy, rCopy1);

fCopy1.put(u1, u1);

sfvsCopy1.put(v, v);

for (Integer aNaboer : naboer) {

int temp = aNaboer;

if (temp == u1 || temp == v) {

continue;
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}

sfvsCopy1.put(temp, temp);

}

alg(fCopy1, sfvsCopy1, rCopy1);

copyMap(fCopy, fCopy1);

copyMap(sfvsCopy, sfvsCopy1);

copyMap(rCopy, rCopy1);

fCopy1.put(v, v);

fCopy1.put(u1, u1);

for (Integer aNaboer : naboer) {

int temp = aNaboer;

if (temp == u1 || temp == v) {

continue;

}

sfvsCopy1.put(temp, temp);

}

alg(fCopy1, sfvsCopy1, rCopy1);

for (int i = 0; i < naboer.size(); i++) {

copyMap(fCopy, fCopy1);

copyMap(sfvsCopy, sfvsCopy1);

copyMap(rCopy, rCopy1);

int temp = naboer.get(i);

if (temp == u1 || temp == v) {

continue;

}

fCopy1.put(u1, u1);

fCopy1.put(temp, temp);

sfvsCopy1.put(v, v);

for (Integer aNaboer : naboer) {

int a = aNaboer;

if (a == u1 || a == temp || a == v) {

continue;

}

sfvsCopy1.put(a, a);

}

alg(fCopy1, sfvsCopy1, rCopy1);

}

}
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C.2.4 Case 1.4

private void case14uInS(

HashMap<Integer, Integer> fCopy,

HashMap<Integer, Integer> sfvsCopy,

HashMap<Integer, Integer> rCopy,

int v,

int u){

HashMap<Integer, Integer> fCopy1 =

new HashMap<Integer, Integer>();

HashMap<Integer, Integer> sfvsCopy1 =

new HashMap<Integer, Integer>();

HashMap<Integer, Integer> rCopy1 =

new HashMap<Integer, Integer>();

copyMap(fCopy, fCopy1);

copyMap(sfvsCopy, sfvsCopy1);

copyMap(rCopy, rCopy1);

ArrayList<Integer> naboer = new ArrayList<Integer>();

finnNaboer(sfvsCopy, rCopy, v, naboer);

for (int i = 0; i < naboer.size(); i++) {

copyMap(fCopy, fCopy1);

copyMap(sfvsCopy, sfvsCopy1);

copyMap(rCopy, rCopy1);

int a = naboer.get(i);

if (a==u){

continue;

}

fCopy1.put(a, a);

for (Integer aNaboer : naboer) {

int b = aNaboer;

if (b == u || b == a) {

continue;

}

sfvsCopy1.put(b, b);

}

alg(fCopy1, sfvsCopy1, rCopy1);

}

}

private void case14uNotInS(
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HashMap<Integer, Integer> fCopy,

HashMap<Integer, Integer> sfvsCopy,

HashMap<Integer, Integer> rCopy,

int v,

int u) {

int w = -1;

for (int i = 0; i < graf.get(v).size(); i++) {

int temp = graf.get(v).get(i);

if (S.contains(temp) &&

!sfvsCopy.containsKey(temp) &&

!rCopy.containsKey(temp)) {

w = temp;

break;

}

}

HashMap<Integer, Integer> fCopy1 =

new HashMap<Integer, Integer>();

HashMap<Integer, Integer> sfvsCopy1 =

new HashMap<Integer, Integer>();

HashMap<Integer, Integer> rCopy1 =

new HashMap<Integer, Integer>();

copyMap(fCopy, fCopy1);

copyMap(sfvsCopy, sfvsCopy1);

copyMap(rCopy, rCopy1);

ArrayList<Integer> naboer = new ArrayList<Integer>();

finnNaboer(sfvsCopy, rCopy, v, naboer);

fCopy1.put(w, w);

sfvsCopy1.put(v, v);

for (Integer aNaboer : naboer) {

int a = aNaboer;

if (a == u || a == w || a == v) {

continue;

}

sfvsCopy1.put(a, a);

}

alg(fCopy1, sfvsCopy1, rCopy1);

copyMap(fCopy, fCopy1);

copyMap(sfvsCopy, sfvsCopy1);

copyMap(rCopy, rCopy1);

sfvsCopy1.put(w, w);

alg(fCopy1, sfvsCopy1, rCopy1);

}
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C.3 Case 2

C.3.1 Case 2.1

private void case21NumNeigh2(

HashMap<Integer, Integer> fCopy,

HashMap<Integer, Integer> sfvsCopy,

HashMap<Integer, Integer> rCopy,

int v) {

int u = -1, w =-1;

boolean foundFirst = false;

for (int i = 0; i < graf.get(v).size(); i++) {

int a = graf.get(v).get(i);

if (foundFirst){

if (sfvsCopy.containsKey(a) ||

rCopy.containsKey(a)){

continue;

}

w = a;

break;

}

if (sfvsCopy.containsKey(a) ||

rCopy.containsKey(a)) {

continue;

}

u = a;

foundFirst = true;

}

HashMap<Integer, Integer> fCopy1 =

new HashMap<Integer, Integer>();

HashMap<Integer, Integer> sfvsCopy1 =

new HashMap<Integer, Integer>();

HashMap<Integer, Integer> rCopy1 =

new HashMap<Integer, Integer>();

copyMap(fCopy, fCopy1);

copyMap(sfvsCopy, sfvsCopy1);

copyMap(rCopy, rCopy1);

fCopy1.put(u, u);

sfvsCopy1.put(w, w);

alg(fCopy1, sfvsCopy1, rCopy1);
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copyMap(fCopy, fCopy1);

copyMap(sfvsCopy, sfvsCopy1);

copyMap(rCopy, rCopy1);

sfvsCopy1.put(u, u);

alg(fCopy1, sfvsCopy1, rCopy1);

}

private void case21NumNeigh3(

HashMap<Integer, Integer> fCopy,

HashMap<Integer, Integer> sfvsCopy,

HashMap<Integer, Integer> rCopy,

int v) {

HashMap<Integer, Integer> fCopy1 =

new HashMap<Integer, Integer>();

HashMap<Integer, Integer> sfvsCopy1 =

new HashMap<Integer, Integer>();

HashMap<Integer, Integer> rCopy1 =

new HashMap<Integer, Integer>();

copyMap(fCopy, fCopy1);

copyMap(sfvsCopy, sfvsCopy1);

copyMap(rCopy, rCopy1);

ArrayList<Integer> naboer = new ArrayList<Integer>();

finnNaboer(sfvsCopy, rCopy, v, naboer);

for (int i = 0; i < naboer.size(); i++) {

int x = naboer.get(i);

if(x==v)

continue;

fCopy1.put(x, x);

for (Integer aNaboer : naboer) {

int a = aNaboer;

if (a == x || a== v) {

continue;

}

sfvsCopy1.put(a, a);

}

alg(fCopy1, sfvsCopy1, rCopy1);

copyMap(fCopy, fCopy1);

copyMap(sfvsCopy, sfvsCopy1);

copyMap(rCopy, rCopy1);

}

for (Integer aNaboer : naboer) {

int a = aNaboer;

if (a== v){
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continue;

}

sfvsCopy1.put(a, a);

}

alg(fCopy1, sfvsCopy1, rCopy1);

}

C.3.2 Case 2.2

private void case22(

HashMap<Integer, Integer> fCopy,

HashMap<Integer, Integer> sfvsCopy,

HashMap<Integer, Integer> rCopy,

int v,

int numNeigbours) {

int u = -1;

for (int i = 0; i < numNeigbours; i++) {

int temp = graf.get(v).get(i);

if (S.contains(temp) &&

!fCopy.containsKey(temp) &&

!sfvsCopy.containsKey(temp)) {

u = temp;

break;

}

}

ArrayList<Integer> naboer = new ArrayList<Integer>();

finnNaboer(sfvsCopy, rCopy, v, naboer);

HashMap<Integer, Integer> fCopy1 =

new HashMap<Integer, Integer>();

HashMap<Integer, Integer> sfvsCopy1 =

new HashMap<Integer, Integer>();

HashMap<Integer, Integer> rCopy1 =

new HashMap<Integer, Integer>();

copyMap(fCopy, fCopy1);

copyMap(sfvsCopy, sfvsCopy1);

copyMap(rCopy, rCopy1);

sfvsCopy1.put(u, u);

alg(fCopy1, sfvsCopy1, rCopy1);

copyMap(fCopy, fCopy1);

copyMap(sfvsCopy, sfvsCopy1);

copyMap(rCopy, rCopy1);



C.3. CASE 2 83

fCopy1.put(u, u);

for (Integer aNaboer : naboer) {

int temp = aNaboer;

if (temp == u || temp == v) {

continue;

}

sfvsCopy1.put(temp, temp);

}

alg(fCopy1, sfvsCopy1, rCopy1);

}
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