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Abstract. We consider domain decomposition techniques for a non-linear elasticity problem. 
Our main focus is on non-linear preconditioning, realized in the framework of additive 
Schwarz preconditioned inexact Newton (ASPIN) methods. The standard 1-level ASPIN 
method is extended to a 2-level method by adding a non-linear coarse solver. Numerical 
experiments show that the coarse component is necessary for scalability in terms of linear 
iterations inside the Newton loop. Moreover, for problems that are dominated by non-
linearities that are not localized in space the non-linear coarse iterations are crucial for 
achieving computational efficiency. 

1 INTRODUCTION 
Physical systems that exhibit non-linear behavior are encountered throughout the sciences. 

As a result, discretized numerical simulations of practical applications commonly involve 
solving systems of non-linear algebraic equations. The standard approach is to apply a 
Newton linearization, and solve the resulting linear system with either a direct or an iterative 
solver. For large systems of equations the computational cost of the Newton iterations and 
their associated linear systems of equations can dominate the overall simulation effort and 
efficient approaches for solving non-linear equations is thus an active research field.  

For many problems non-linearities will often be localized in space. This may be caused by 
the character of the governing equations, heterogeneities in parameter fields, or by boundary 
conditions. For these problems, a natural approach is to resolve the non-linearities locally 
instead of by global computations. Domain decomposition (DD) techniques [1] not only allow 
for such localized treatment of the computational challenges, but also provide a convenient 
framework for parallel computing, which is necessary to deal with large-scale problems. 
However, it is well-known that DD is inferior as a stand-alone solver, and in practice the 
standard Newton method combined with a Krylov subspace linear solver with an appropriate 
preconditioner, possibly linear DD, is the preferred option. To be competitive, non-linear DD 
must similarly be considered as a preconditioner, as is realized in the framework of the 
Additive Schwarz Preconditioned Inexact Newton (ASPIN) methods [2]. ASPIN has been 
shown to be a robust of efficient approach for solving non-linear problems for many 
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applications. 
To be suited for large-scale parallel computations, the DD method must be scalable when 

the number of subdomains is increased. To that end, the fine-scale computations need to be 
amended by a coarse-scale solver, and this can be realized either by deriving non-linear coarse 
equations, or by instead solving a representative linear coarse problem. The latter option will 
transfer more of the computational burden to the local problems, but for some problems it 
may still be an attractive approach in terms of overall computational time. 

In this paper, we employ ASPIN to non-linear systems of equations arising from non-linear 
elasticity problems, with focus on the design of coarse solvers. We show that for this problem, 
the localization of non-linearities, and thus the optimal design of the coarse spaces, depends 
critically on the problem setup and parameter field. The paper is structured as follows: The 
governing equation and its discretization are introduced in Section 2. Section 3 presents 
solution techniques for non-linear systems. Numerical examples are given in Section 4, and 
conclusions are drawn in Section 5. 

2 GOVERNING EQUATIONS AND DISCRETIZATION 

We consider the equilibrium configuration of an elastic medium in , with fixed 
Dirichlet boundary  of positive measure and Neumann boundary . 
Introducing  as the space of weakly differential functions with zero trace on , we can 
express the solution through the weak formulation [3]: Find  such that  

 (1) 

Here, the standard inner product on  is denoted ,  represents body forces, while the 
stress tensor  is taken to be a non-linear extension of the isotropic stress tensor: 

 (2) 

with  being the symmetrized gradient of the deformation ; 

 

We note that the standard linear elasticity problem is recovered by setting .  
We next consider a finite element discretization of (1). To that end,  is discretized by a 

triangulation , and we denote by  the space of nodal basis functions for 
. The discrete problem then reads: Find  such that  

 (3) 

This is a non-linear problem in terms of the displacement , and the rest of the paper is 
devoted to solution techniques for this equation. 
 

3 NON-LINEAR PRECONDITIONING TECHNIQUES 
We write the non-linear equation (3) in the generic form  

 (4) 
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For simplicity we will drop the subscript  throughout this section. The goal of this section is 
to introduce a two-level ASPIN solver for (4), but we first give a brief introduction of the 
single level ASPIN method.  

3.1 1-level ASPIN methods 

Divide the domain into  subdomains , which are allowed to overlap. To simplify the 
construction of the coarse operator (see next section), we will assume that  can be identified 
as essentially triangles or quadrilaterals, in the sense that 3 or 4 vertices can be identified in a 
meaningful way. Let  denote the total number of degrees of freedom in (5), and let  be the 
number of unknowns associated with subdomain . Restriction operators  and 
prolongation operators  are then defined for each subdomain. In this work we let 
element  of  be unity if the unknown  of subdomain  is associated with the global 
unknown , and set , but the formulation is valid also for more general approaches 
[4].  

With the above notation, a local non-linear problem can be stated as follows: Starting with 
the global state , find a local response  such that  

  (5) 

Since the boundary conditions for the local problem are inexact, it is computationally efficient 
to apply an inexact solution strategy to (5). The global update  is then given as  

 

where the weight in the vectors  handle overlapping subdomains, and are unity in the 
interior of the subdomains.  A domain decomposition iterative solver can now be realized by 
defining , where the update is computed from (5)-(6). However a much 
more efficient approach is found by instead solving the preconditioned non-linear system   

 (7) 

for  using Newton’s method [2]. The Jacobian matrix of , which  can be computed 
from (5)-(6), depend on both  and the local updates , and it is thus both cumbersome 
to form the matrix, and costly to solve the associated linear system. In terms of computational 
efficiency, it is better to use an approximated Jacobian matrix solve the system [2], [5] 

 

for the Newton search direction . Here  is the Jacobian matrix of , i.e. without 
accounting for the local updates and  represents the linear additive Schwarz 
preconditioner. The system is solved by GMRES, with a slight modification to ensure that 
only the left hand side is preconditioned; the right hand side is already preconditioned non-
linearly [2]. Again, we only seek an inexact solution of (8). Finally, as a safeguard in cases 
where we are far from the solution of (4), the global state is updated as , 
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where the damping parameter  is computed using a line search with cubic backtracking [6].  

3.2 Two-level ASPIN 
We next turn our attention to the formulation of a coarse system to complement the local 

systems defined by (5) and the corresponding restriction and prolongation operators. 
Introduce a coarse grid  with the subdomains  as cells. With the goal of obtaining a 
coarse-scale discretization that is reminiscent of the fine-scale problem (3), coarse degrees of 
freedom are assigned with all vertexes of . Let  denote the number of coarse unknowns. 
Construct first-order vertex-centered basis functions , that is linear (on triangles) or bi-
linear (on quadrilaterals) functions, on the coarse grid. The restriction operator  is 
then defined as a matrix having one function in  in each of its rows, and .  

With these coarse restriction and prolongation matrices the coarse non-linear system is 
now defined by setting  in (4). That is, the coarse system of equations is given by 

  (9) 

and the coarse Jacobian matrix is thus given by 

 (10) 

Note that with the current formulation of the coarse system, all upscaling or multiscale 
modeling must be realized in the restriction and prolongation operators.  

The coarse solver is introduced to the above 1-level in a multiplicative step, in accordance 
with [7]. For convenience, we summarize the 2-level ASPIN method in Table 1, and note that 
the 1-level method is recovered by dropping all references to the coarse level 0. 
 

Table 1: Summary of a single global Newton iteration with the 2-level ASPIN method 

1. Solve local non-linear problems 
a. Coarse update: Solve (9) for  with a relative tolerance of , and define a 

temporary fine-scale state  
b. Local fine-scale updates: Solve the local systems  

for , and define the global update  

 

Check convergence for . 
2. Within a relative tolerance of  solve the global linear system  

 

3. Define the new global state , where the damping parameter  is found by 
cubic backtracking. 
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4 NUMERICAL RESULTS 
In this section we probe the above formulation of a two-level ASPIN method with two 
numerical test examples. In the first test scalability is tested on a problem with homogenous 
parameter field. The second case considers a heterogeneous permeability field which is design 
to explore the effects of localization of non-linearities. Both domains are triangulated, with 
about 40.000 vertexes. The subdomain geometry will be described in each case. In all cases, 
an overlap of two vertexes is assigned, and a Restricted Additive Schwarz-type handling of 
the overlap is applied [8]. All non-linear systems are solved with an exact evaluation of the 
Jacobian matrix, using the automatic differentiation framework from [9]. The relative 
tolerances  and  are both set to . 

There are two possible benefits from amending the 1-level ASPIN method by a non-
linear coarse solver. Firstly, in cases where the non-linearities are not localized, the coarse 
non-linear solver will contribute to reduce the number of global Newton iterations. Secondly, 
the coarse solver will contribute not only in the non-linear solves in (4), but also as a coarse 
component of the linear additive Schwarz preconditioner of (7). Motivated by this, we 
compare the 2-level ASPIN method by two other solution approaches: A 1-level ASPIN 
method, as described in section 3.1, and a standard Newton solver, where the inner linear 
system is solved by GMRES preconditioned by a linear 2-level DD method, i.e. the same 
preconditioner as is employed for the 2-level ASPIN method. For all methods the setup in 
terms of the geometry of subdomains and tolerances for iterative solver is identical. Three 
metrics are employed to measure performance: The number of global Newton iterations, the 
total number of GMRES iterations, and the number of local linear solves. The latter is 
composed of the linear preconditioning, and for the ASPIN methods also the solution of local 
non-linear systems, thus it gives an indication of whether the added cost in solving local non-
linear systems is compensated by a correspondingly reduction of linear solver cost. For all 
problems considered, the coarse systems are small, thus the cost of solving them is negligible. 

4.1 A homogeneous non-linear media 
In the first test, the computational domain is the unit square. The elastic parameters are 

homogeneous, with values , see (2). The displacement field 
has an analytical solution of , and the right hand side is computed 
according to (1)-(2). The initial guess for the Newton iterations is a uniform displacement of 
0, and we then solve (3) with the given right hand side and boundary conditions. To test for 
scalability, the domain is partitioned into  and  subdomains, respectively.  

The computational results are reported in table 2. First consider the case of a splitting into 
 subdomains. As expected, non-linear preconditioning reduces the number of global 

Newton iterations, and the non-linear coarse component further improves the results. In terms 
of global linear iterations, linear DD and the 2-level ASPIN method have about the same 
number of iterations per Newton iteration, while the 1-level ASPIN method suffers from the 
lack of a coarse component in (8). The total number of local solves show that non-linear 
preconditioning clearly is worthwhile in this case. 

Next, consider the performance as the number of subdomains is increased. Both the non-
linear and the linear 2-level methods scale well: The number of global Newton iterations is 
more or less constant, and the number of linear iterations decreases somewhat. The 1-level  
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Table 2: The number of global Newton (GN), local Newton (LN), global GMRES (GL) and local linear 
solves (LL) for the homogeneous test problem. The local linear solves are composed by the local Newton 

iterations and the preconditioning of the global linear iterations 

Sub-
domains 

2x2 4x4 8x8 

 GN LN GL LL GN LN GL LL GN LN GL LL 
ASPIN 2 4 48 81 372 4 135 69 123

9 
4 468 54 3942 

ASPIN 1 6 56 181 780 7 224 294 492
8 

9 1089 516 34113 

LIN-DD 8 0 173 692 7 0 122 195
2 

7 0 86 5504 

 
ASPIN method sees a significant increase in the number of global Newton iterations, and for 
the finest partitioning it is outperformed by the standard Newton method. The non-local 
character of the non-linearities means that, unless combined with a coarse solver, attempts at 
localizing the computations will suffer from inaccurate boundary conditions, and the 
approximation deteriorates as the local boundary conditions see less of the global state. This 
trend continuous for smaller subdomains finer than those reported here. 

4.2 Material heterogeneities 
The second test case resembles a composite bar where circular inclusions are surrounded 

by a frame, see figure 1. The domain is , and it is split into 20 subdomains 
of unit size. There is one circular inclusion in each subdomain, again see figure 1. The stress 
tensor is again given by (2). The inclusions has a coefficient , while for the frame, 
we vary  between  and  Define . The remaining parameters in (2) 
are homogenous, and set to  and . The displacement is fixed to 0 at 

, and zero Neumann conditions are assigned to the rest of the boundary. The bar then 
bends under its own weight, rendering a non-linear elasticity problem. As initial guess for the 
iterations, we solve the linearized version of (1)-(2), that is, set .  

  
Figure 1: Left: Conceptual drawing of the computational domain used in section 4.2. The parameter  controlling non-
linearity is fixed in the black circles, and reduced in the surrounding frame. Stippled lines indicate subdomain boundaries. 
Right: Localization of the residual after the coarse-scale solve for a high contrast ; away from the material discontinuity the 
residual is essentially zero. 
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Table 3: The number of global Newton (GN), local Newton (LN), global GMRES (GL) and local linear 
solves (LL) for the heterogeneous test problem. The local linear solves are composed by the local Newton 

iterations and the preconditioning of the global linear iterations 
 0 1 2 

 GN LN GL LL GN LN GL LL GN LN GL LL 
ASPIN 2 5 292 60 1492 4 182 32 822 4 154 27 694 
ASPIN 1 8 354 1082 21994 6 226 853 17286 4 159 589 11839 
LIN-DD 8 0 73 1492 7 0 56 1120 6 0 40 800 

 
 3 4 3 

 GN LN GL LL GN LN GL LL GN LN GL LL 
ASPIN 2 4 158 32 798 4 160 28 720 4 160 28 720 
ASPIN 1 3 130 453 9190 3 126 457 9266 3 126 457 9266 
LIN-DD 6 0 40 800 6 0 41 820 6 0 41 820 
 
The performance of the three non-linear solvers is listed in table 3. When the material 

properties are homogeneous ( , the 2-level method has the lowest number of global 
Newton iterations, whereas the 1-level ASPIN and standard Newton has comparable 
performance in this case. As  increases, both the 2-level ASPIN method and standard 
Newton method behave somewhat better, with a relative difference in performance that is 
quite stable. However, the 1-level method improves significantly with increasing , and for 

 it outperforms the 2-level ASPIN method both in terms of global Newton iterations, 
and in local non-linear iterations. As  increases, the frame in figure 1 becomes more linear, 
thus the enhanced performance of the 1-level method is caused by the localization of non-
linearities within each subdomain. In terms of global linear iterations, the 2-level ASPIN 
method outperforms the standard Newton method, whereas the 1-level method naturally 
suffers from the lack of a coarse preconditioner, independent of the contrast ratio . 

To understand the comparatively weak results of the 2-level method, figure 1 also shows 
the residual in the subdomain with the highest non-linearity (the leftmost) after the coarse 
non-linear solve in the first global Newton iteration when . The figure shows that the 
residual is confined to the boundary of the highly non-linear inclusion. Since the coarse-scale 
operators  and  are not formulated to adapt to the fine-scale state, they cannot accurately 
project the coarse-scale update to the fine-scale. As a result, the initial guess for the local fine-
scale solves in the 2-level method are unfavorable compared to the 1-level method, leaving 
more of the burden to the global Newton iterations. 

5 CONCLUDING REMARKS  
In this paper we have discussed a two-level formulation of a non-linear preconditioner, 
formulated in the ASPIN framework. A non-linear coarse-scale problem was derived from the 
fine-scale state, and the coarse-scale update serves as initial guess for local fine-scale solves. 
Numerical examples from non-linear elasticity benchmarked the 2-level ASPIN method with 
a 1-level method, and a standard Newton solver combined with an inner GMRES solver that 
was preconditioned with a linear 2-level DD solver.  
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Numerical experiments show that for problems where the non-linearities do not localize, 
the non-linear coarse solver reduced the number of global Newton iterations compared to both 
1-level ASPIN and standard Newton. Moreover, the coarse component renders scalability for 
the GMRES solver for an increasing number of subdomains. For problems with 
heterogeneous material fields, where the non-linearities do linearize, the coarse solver still 
give scalability for GMRES. However, the coarse restriction and prolongation operators failed 
to respect the fine-scale state, and the 1-level ASPIN method outperformed the 2-level 
method in terms of the number of non-linear solves in this case. Thus for the 2-level method 
to be competitive for general problems, more sophisticated restriction and prolongations are 
needed.  

It should be mentioned that for the somewhat small problems considered herein, solving 
coarse non-linear problems are relatively cheap, and the cost has therefore been neglected. 
However, for large-scale and massively parallel computations with many sub-domains, 
solving the coarse problem becomes a bottleneck. The two natural solutions are either to only 
employ a linear coarse model [10], and thus keep the first benefit but loose the second, or to 
introduce a further coarsening step to arrive at a 3-level method. The simulations presented 
herein clearly show the merit of resolving non-linearities on the coarse scale in some cases, 
but more work is needed to identify efficient and robust solvers for large-scale non-linear 
problems. 
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