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Abstract

Orographic and dynamic blocks have a profound influence on both weather and climate.
The persistence of dynamic blocks can, for example, lead to the build-up of extreme
temperature anomalies or droughts. In addition, previous studies linked dynamic blocks
to Rossby wave breaking events, which can be associated with extreme precipitation.
Dynamic blocks occur preferentially at certain locations, and therefore influence local
climate. A important climatic effect of orographic blocks is to act as a temperature-
barriers. For example, the North-Atlantic would be significantly colder during winter
if Greenland did not shield the North-Atlantic from the climatological cold pool over
the Canadian Arctic. Thus, both types of blocking contribute to the zonal asymmetries
in the climate and in the atmospheric circulation.

Unfortunately, our understanding of the dynamics of both types of blocking is still
far from complete. One of the main challenges in trying to grasp the essentials of
blocking is the importance of non-linear effects. These effects are important, because
the flow diversion around a block constitutes a large deviation from an unblocked basic
state, such that the differences in the advection cannot be neglected. For that reason,
previous studies proposed different indicators to capture the transition from linear flow
over to non-linear flow around orography. Despite this effort, none of the proposed
indicators is generally applicable. Furthermore, it is unclear how dynamic blocks inter-
act with breaking Rossby waves and whether variability indexes like the North-Atlantic
Oscillation are resulting from variability of blocking and/or wave breaking.

In this thesis, I pursue three novel approaches to enhance the understanding of
blocking. First, I demonstrate that deformation is a suitable diagnostic for detecting
and quantifying the magnitude of orographic and dynamic blocks. Consequently, de-
formation helps to investigate the splitting of synoptic systems at the Rocky-Mountain
barrier. Furthermore, I show that the deformation associated with Rossby wave break-
ing is aligned with the observed mean deformation up and downstream of a dynamic
block. Thus, the deformation associated with the wave breaking reinforces the flow di-
version around the dynamic block, establishing a potential link by which Rossby wave
breaking can strengthen a dynamic block.

Second, I adapt an existing scheme for upper-tropospheric jet detection. The de-
tected jet axes open up new perspectives on the relation between jets and blocking,
because they condense dynamically relevant information about the distribution of hor-
izontal wind shear into a set of jet axis lines. Jet axes also provide the basis to directly
analyse variability of the jet location. Usually, this variability is characterised indirectly
by geopotential variability. I find the leading variability patterns of the jet location in
the Atlantic and the Pacific to be consistent with the variability described by the North-
Atlantic Oscillation and the Pacific-North American pattern, respectively. However,



in both the Atlantic and the Pacific, the second variability patterns of the jet location
has no clear counterpart in the geopotential-based variability patterns. Both the East
Atlantic pattern and the West Pacific pattern are related to the two leading variability
patterns of the jet location.

Third, I devise and implement a new model named “Bergen dynamic model”
(BEDYMO), that combines the quasi-geostrophic and dry hydrostatic primitive equa-
tions in one model. BEDYMO hence allows to easily switch between the two approxi-
mations, facilitating a direct assessment of the effect the processes that are neglected in
the transition from the primitive equations to quasi-geostrophy. Therefore, BEDYMO is
an ideal tool to assess the importance of these processes for simulating a given aspect
of the atmospheric dynamics. Although BEDYMO is designed with an application to
blocking in mind, this aspect is not limited to either type of blocking.
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1 Background and Motivation

The northern hemisphere circulation features pronounced zonal asymmetries, with two
distinct maxima of cyclone frequency over the Atlantic and Pacific sectors (e.g. Zishka
and Smith, 1980; Wernli and Schwierz, 2006). On a hypothetical aqua planet, cyclones
and anticyclones would develop and decay equally frequently at all longitudes and
the circulation would be zonally symmetric. Hence, the strong asymmetries in the
circulation must be induced by inhomogeneities in the lower boundary like orography
or land-sea contrasts (Manabe et al., 1965; Hunt, 1973; Held and Suarez, 1994).

In order to disentangle the observed combined effect of all of the earth’s inhomo-
geneities, it is crucial to understand how a single inhomogeneity affects the global cir-
culation. To some extent, the effect of some types of inhomogeneities like orography
or isolated heat sources can be captured by linear stationary wave theory (e.g. Smith,
1979; Hoskins and Karoly, 1981). Held (1983) even showed, that the combined atmo-
spheric response to realistic northern hemisphere orography fits relatively well with the
response in a linear model.

Nevertheless, Valdes and Hoskins (1991) and Held et al. (2002) analysed the relative
importance of non-linear effects for the northern hemisphere circulation and thereby
demonstrated that non-linear effects contribute significantly to the observed circulation
patterns. In their analyses, one inhomogeneity sticks out in particular for its non-linear
effects: the Tibetan Plateau. The plateau leads to a significant diversion of the wester-
lies to the north or to the south. This flow diversion is called blocking. Blocking is a
non-linear effect, because it constitutes a large deviation from an unblocked basic state,
such that the advection by the diverted winds is not negligible.

The diversion of the flow around the block is the characterising feature for all blocks
in the atmosphere. The diversion can be around an orographic obstacle or around a
body of stagnant air, where the process is called orographic or dynamic blocking, re-
spectively. Whereas orographic blocking mainly affects the flow below crest level,
dynamic blocking is generally a barotropic feature (e.g. Egger, 1978; Shutts, 1983).

Although “blocking” is a good metaphor to describe flow diversion, the term can
be misleading. It implies a causality in the sense that the obstacle induces the flow
diversion. While this causality is clear for orographic blocking, the relation between
the diverted flow and the block is not as straightforward for dynamic blocking. It is a
matter of ongoing debate if the body of stagnant air in a dynamic block is causing the
flow diversion or if it is a result of the flow diversion (Colucci, 1985; Nakamura and
Wallace, 1993; Swanson, 2001). As with most chicken-and-egg conundrums, there is
likely no clear-cut solution to this ambiguity.

Orographic blocking can have a significant impact on the synoptic development.
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For example, cyclones forming along the North American east coast often interact with
Greenland in their developing stage. Depending on the exact location of the cyclone,
this interaction can lead to tip jets at the southern tip of Greenland or to barrier jets
along the east coast of Greenland (e.g. Doyle and Shapiro, 1999; Moore and Renfrew,
2005; Harden et al., 2011). Våge et al. (2009) showed that these high-wind events also
strongly influence mixed layer depth in the seas around Greenland.

Dynamical blocking is often linked to extreme events. Some of these extremes
are caused by the stationarity of the weather situation. Persistent local imbalances in,
for example, the energy budget can lead to a build-up of extreme temperature anoma-
lies. In regions that receive anomalously little precipitation during a block, the block
can additionally lead to droughts. Both the Russian heat wave in 2010 and the quasi-
stationary block over the Eastern Pacific during winter 2013/14 are examples for such
events (Dole et al., 2011; Wallace et al., 2014). In both examples, the stationarity of the
block caused record-breaking temperatures.

Another more indirect link between blocking and extreme events is through break-
ing Rossby waves (McIntyre and Palmer, 1983; Thorncroft et al., 1993; Appenzeller
et al., 1996). When a Rossby wave breaks, its wavelength is gradually shortened until
the wave collapses into an thin filament. There is growing evidence for close relation
between dynamic blocking and Rossby wave breaking, although the underlying mecha-
nism is still poorly understood (Benedict et al., 2004; Altenhoff et al., 2008; Woollings
et al., 2008). Altenhoff et al. (2008) for example showed, that there are preferred lo-
cations of Rossby wave breaking directly up- and downstream of a block, but did not
propose a potential mechanism explaining this finding.

Rossby wave breaking events are often linked to extreme weather, because they go
along with transport in the upper troposphere of either subtropical air far to the north
or polar air far to the south. Southward protrusions of polar air masses at upper levels
destabilise the air column and can lead to extreme convective precipitation. Massacand
et al. (1998) showed that several extreme precipitation events in the Alpine region were
associated with Rossby wave breaking events.

Because of those connections to extreme weather events, the ability to reliably fore-
cast dynamic blocking episodes has great societal value. Unfortunately, forecasting the
onset and decay of such episodes remains a challenge (Tibaldi and Molteni, 1990; Pelly
and Hoskins, 2003b; Matsueda et al., 2011; Jia et al., 2014). A potential reason why
these aspects are relatively poorly forecasted might be the importance of non-linear
processes, which can quickly amplify initially small forecast errors and biases (Lorenz,
1963; Benzi et al., 1986).

In addition to shaping day-to-day weather, blocking also has a profound influence
on the mean climate. Both orographic and dynamic blocking occur preferentially in
specific regions, thereby playing an important role in shaping the regional climate. For
example, one important climatic effect of blocking orography can be to act as a temper-
ature barrier. The barrier effect has been shown to be important for the North Atlantic
climate, where Greenland shields the area from the climatological cold pool located
over the Canadian Arctic (Petersen et al., 2004; Junge et al., 2005). Furthermore, Boos
and Kuang (2010) showed that it is the barrier effect of the Himalayas that is pivotal
for the dynamics of the Indian monsoon, rather than the climatological low over the
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Figure 1: Linear and and blocked flow past an isolated Gaussian mountain. In the blocked

case, the approaching flow is diverted around the orography in the xy-plane.

Tibetan Plateau. Here, the Himalayas constitute a barrier between the hot and humid
Indian peninsula and the cold and dry Inner Asia.

Given these implications, it is not surprising that both types of blocking have been
intensively studied before. Despite all the effort, however, the overall understanding of
blocking is far from complete. In the following sections, I summarise pertinent earlier
results, that directly lead to the open questions that I will address in this thesis.

1.1 Orographic blocking

One of the obstacles to better understand blocking are the already mentioned chal-
lenges posed by the importance of non-linear processes. While linear models of flow–
orography interaction can explain, for example, the excitation of Rossby and gravity
waves (e.g. Smith, 1979; Hoskins and Karoly, 1981), blocking is excluded from these
models, because blocking is a non-linear process. Figure 1 illustrates the flow diversion
around a mountain and contrasts that flow regime with linear flow over the mountain.

Probing the limits of the applicability of linear theory, many studies investigated
the transition from a linear to a non-linear regime and tried to grasp its essence in
characteristic numbers. One widely accepted number designed for this purpose is the
so-called mountain Froude number

Frm = ĥ−1
m :=

U
Nhm

, (1)

with U being a characteristic wind speed, N a characteristic Brunt-Väisälä frequency
and hm the height of the mountain (e.g. Sheppard, 1956; Snyder et al., 1985; Smith,
1989). Some authors prefer the inverse of the mountain Froude number and denote
it non-dimensional mountain height ĥm. It arises as a common coefficient for non-
linear terms in the non-dimensionalised incompressible primitive equations (Smith and
Grønås, 1993).

From numerous numerical model experiments it has however become clear, that the
mountain Froude number does not capture all factors influencing the transition from
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Figure 2: Vertical cross-sections with unblocked and blocked isentropes past an isolated moun-

tain. In the blocked case, the some isentropes intersect more than once with the lower surface,

as indicated by the red layer, showing that the mountain protrudes these surfaces.

the linear to the non-linear regime. Other factors are the meridional scale of the moun-
tain, its latitude, and the vertical wind shear, among others (Trenberth and Chen, 1988;
Smith and Grønås, 1993; Ringler and Cook, 1995; Thorsteinsson and Sigurdsson, 1996;
Ringler and Cook, 1997; Petersen et al., 2003). Hence, the mountain Froude number
can only give a rough indication on the importance of non-linear effects.

A further obstacle to the application of the Froude number to real synoptic situa-
tions is the use of characteristic scales for the wind speed, and the stratification. The
determination of these scales is ambiguous in real situations. Consequently, one has
to rely on spatial and/or temporal averaging to define the ingredients of Frm. As the
flow in the vicinity of mountains tends to be particularly inhomogeneous, this averag-
ing will always lead to a certain degree of arbitrariness in the evaluation of Frm. Even
for a very idealised mountain, Reinecke and Durran (2008) could not identify a single
best method to determine the Brunt-Väisälä frequency under varying atmospheric con-
ditions, thereby questioning the representativeness of the spatially averaged Frm for the
local dynamics.

Schär and Davies (1988), Valdes and Hoskins (1991), and Cook and Held (1992)
proposed a different criterion to unify all these influencing factors into one compact
indicator. They assume adiabatic motions, such that the flow cannot leave its isentropic
surface. Hence, the flow must be diverted around any mountain that protrudes this
isentropic surface. As analogous arguments apply for fluid parcels on any isentropic
surface, some surfaces will be blocked as soon as the meridional slope of a mountain
is steeper than the slope of the isentropic surfaces close to the orography (Fig. 2). This
criterion can be expressed as (adapted from Cook and Held, 1992)∣∣∣∣ly ∂θ0

∂y

∣∣∣∣< hm
∂θ0

∂ z
, (2)

using some of the above scales and with ly the meridional length scale of the moun-
tain and θ0 the basic-state potential temperature. For an application to real synoptic
situations, the criterion can be generalised to test for the existence of protrusions of
orography through the instantaneous isentropic surfaces. Any such protrusion consti-
tutes a block, because adiabatic flow is diverted around the orography.

Although this isentropic criterion provides a perspicuous criterion for analysing
idealised model simulations, its application to real weather situations is not straight-
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forward. Close to the sea or land surfaces, where radiation imbalances and boundary
layer transports play an important role, the underlying assumption of adiabatic motion
is rather unrealistic.

Furthermore, the criterion becomes conceptually misleading, if there is a pro-
nounced temperature contrast between the upstream and the downstream side of the
mountain, rendering the orography a temperature barrier. Such a temperature contrast
often exists for Greenland in winter, with the cold ice-covered Labrador to the West
and the comparably warm Atlantic to the East. In this case, isentropic surfaces that ex-
ist on the cold side of the mountain would be well below the surface on the warm side.
Consequently, the flow is not diverted around the mountain, but must remain upstream
of the mountain. From an isentropic perspective this blocked situation is indistinguish-
able from an intersection of an isentropic surface with a flat land surface where the flow
would not be considered as orographically blocked.

Some insight in the non-linear dynamics of blocking is provided by studies on lee
cyclogenesis and on the interaction of cold fronts with orography (Davies, 1984; Egger
and Hoinka, 1992; Egger, 1995). These studies consider two-dimensional flow in two
or three homogeneous layers approaching a razor-thin barrier or a finite-width ridge.
The biggest limitation of these models is the two-dimensionality, which does not permit
a flow-diversion around the orography, but requires blocked flow to stagnate upstream.
For this reason, these models are only applicable to orographic barriers like the Rocky
Mountains which extend far enough meridionally that flow around the orography is not
easily possible.

Despite the mentioned shortcomings of these concepts, the Froude number, the
isentropic-protrusion concept, and the two-dimensional cold-air damming model pro-
vide a context to interpret the results from the numerous studies investigating oro-
graphic blocks using numerical models (e.g. Smolarkiewicz and Rotunno, 1989; Yu
and Hartmann, 1995; Doyle and Shapiro, 1999; Petersen et al., 2003), case studies (e.g
McCauley and Sturman, 1999; Outten et al., 2009) and observations (e.g. Parish, 1982;
Mc Innes et al., 2009). The variety of features documented in these studies highlights
the complexity of flow–orography interactions, but did not lead to more generally ap-
plicable concepts, neither for the description of the transition between the linear and
the non-linear regimes nor for the description of the non-linear dynamics.

1.2 Dynamic blocking

Whereas flow diversion around an orographic obstacle unambiguously indicates oro-
graphic blocking, flow diversion around an anticyclone does not necessarily imply a
dynamic block. The exact criteria to separate blocking anticyclones from non-blocking
anticyclones are not obvious and still a matter of debate. In one of the first attempts to
define objective criteria for mid-latitude blocks, Rex (1950) required

1. a splitting of the westerly flow into two relatively equal branches,

2. an abrupt transition from a zonal flow into meridional flow at the location of the
flow splitting,
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3. a minimum zonal extent and

4. a minimum duration.

To be able to objectively detect blocking in one of the first gridded reanalysis datasets,
Lejenäs and Økland (1983) successfully combined requirement (1)–(3) by looking for
geopotential gradient reversals between two fixed latitudes spanning the mid-latitude
westerlies. The approach was refined in many later studies by allowing for variations
in the blocked range of latitudes and avoiding some classes of spurious detections by
additional criteria (e.g. Tibaldi and Molteni, 1990; Barriopedro et al., 2006). Pelly and
Hoskins (2003a) adapted the approach to the potential vorticity (PV) perspective by
considering reversals of potential temperature gradients on PV surfaces.

The evolution of the criteria for dynamic blocking followed the changing dynamical
interpretation of blocks. For example, the second requirement of Rex (1950) is heavily
influenced by his interpretation of dynamic blocking as a process analogous to a hy-
draulic jump. Analogous to an hydraulic jump, he imagines dynamic blocking to be
associated with a change in flow regime from “supercritical” focused strong westerly
flow to a “subcritical” broad flow of weak westerlies. Although this conceptual model
was later discarded by Egger (1978), Rex (1950) already noticed a relation of blocking
with “intense cyclonic vortices” upstream of the block, which also play an integral role
in much more recent conceptual ideas about blocking (e.g. Altenhoff et al., 2008).

Many authors have proposed alternative mechanisms for blocking. Arakawa (1952)
noticed that some essential aspects of blocking can already be captured by linear analyt-
ical wave theory, whereas Namias (1964),White and Clark (1975), and Kalnay-Rivas
and Merkine (1981) point out that the observed preferred locations of blocking can
be related to stationary forcing like orography. Egger (1978) successfully combined
these two perspectives in barotropic and baroclinic numerical models, and concludes
that blocking results from non-linear interactions between slowly-moving waves and
stationary forcing.

Later, Shutts (1983) and Haines and Marshall (1987) showed that blocking can
also arise purely by non-linear interactions of synoptic-scale eddies. This process can
however not explain the zonal asymmetries in the blocking location. Therefore, Luo
(2005) augmented the eddy-interactions framework with stationary forcing like orogra-
phy. Swanson (2000) and Swanson (2001) pursued a related, but different approach. He
interpreted blocking onset as an instability of a boundary separating two homogeneous
PV reservoirs. The studies of Shutts (1983), Haines and Marshall (1987), Swanson
(2001), and Luo (2005) all require non-linear eddy interactions and hence provide the
foundation for studies arguing for a close dynamical relation between dynamic block-
ing and Rossby wave breaking.

The potential relation between blocking and wave breaking is already apparent from
the overlapping definitions of Rossby wave breaking and blocking. Rossby wave break-
ing is the overturning of PV contours on isentropic surfaces (McIntyre and Palmer,
1983; Thorncroft et al., 1993; Appenzeller et al., 1996) leading to a reversed PV gra-
dient. Pelly and Hoskins (2003a), Schwierz et al. (2004), and Berrisford et al. (2007)
use this reversed gradient to detect dynamic blocking events. Consistently, Altenhoff
et al. (2008) find a climatological co-occurrence of blocking and wave breaking, and
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demonstrate that there is a preferred location for cyclonic (anticyclonic) wave breaking
just upstream (downstream) of the block.

The interplay between blocking and wave breaking might also be largely respon-
sible for the variability captured by indexes such as the North-Atlantic Oscillation
(NAO) or the Pacific-North American (PNA) pattern. Renwick and Wallace (1996)
and Croci-Maspoli et al. (2007) documented an increased frequency of blocking oc-
currence during positive phases of the PNA and the NAO, respectively. However, in a
stream function budget analysis, Feldstein (2002), and Feldstein (2003) found the life
cycle of the PNA to be dominated by linear processes, whereas nonlinear processes
dominate for the NAO. These fundamental differences in the stream function budget
contradict Croci-Maspoli et al. (2007), who imply that the same mechanism is active
in both the Atlantic and the Pacific. Furthermore, Benedict et al. (2004) and Woollings
et al. (2008) proposed different interpretations of the NAO, but both argue for a close
dynamical relation between wave breaking events, blocking, and the NAO.

The NAO and the PNA indexes are commonly based on Empirical Orthogonal Func-
tions (EOF) of the geopotential and hence directly incorporate the variability created
by the geopotential anomaly associated with a block (e.g. Wallace and Gutzler, 1981;
Barnston and Livezey, 1987). If these variability indexes are indeed driven by blocking
or wave breaking, jet and storm track diagnostics should display variability patterns that
are consistent with the geopotential-based EOFs. However, Athanasiadis et al. (2010)
and Wettstein and Wallace (2010) demonstrated that not all of these indexes relate to
leading variability patterns of the zonal wind and different storm track diagnostics, re-
spectively. Although they do not discuss the implications of their results for the offered
dynamical relations between the NAO, PNA, and blocking, their results show that these
relations are far from being fully understood.

1.3 Open questions, remaining challenges

Despite all the efforts to better understand both types of blocking, there are still many
questions that are not resolved satisfactorily. For orographic blocking, there is no gen-
erally applicable diagnostic indicating the transition from the linear to the non-linear
flow regime that would allow to define the limits of linear theories. Furthermore, there
is little conceptual consensus on how to best describe non-linear flow–orography inter-
actions.

For dynamic blocking, there seems to be an emerging consensus on the objective
criteria defining a block. In addition, the conceptual frameworks combining station-
ary forcing with either slowly-moving linear waves (Egger, 1978) or non-linear eddy
interactions (Luo, 2005) can explain many features of blocking. However, some ques-
tions like the dynamic link to Rossby wave breaking or to common variability indexes
remain rather poorly understood (e.g. Feldstein, 2002; Croci-Maspoli et al., 2007).

In summary, some particular open questions regarding both types of blocking are:

1. How can we reliably detect orographic and dynamic blocking and quantify the
intensity of the block?
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2. Which processes determine the occurrence of blocking and the transition between
a blocked and unblocked state?

3. What is the simplest model representing the processes that determine the dynam-
ics of blocking?

In addition, previous studies on dynamic blocking raised the questions:

4. Is there a dynamical link between blocking and Rossby wave breaking? If yes,
which processes constitute this link?

5. Do variability indexes like the NAO and the PNA describe variability in the oc-
currence of blocking?

The main aim of this thesis is to establish and apply new approaches that help answering
these questions.



2 The novel approaches in this thesis

The introduction posed five questions regarding the influence of orographic and dy-
namic blocking on large-scale atmospheric flow. To be able address these questions, I
devised three new approaches that help to study interactions between orography, block-
ing, and jet streams. They are:

1. The use of deformation as a diagnostic for both types of blocking.
Deformation is a promising diagnostic to detect orographic and dynamic blocking
(question 1), because the flow diversion around an obstacle elongates approaching
fluid parcels around the block. The elongation is reflected in a characteristic
deformation pattern. In contrast to the Froude number, deformation avoids the
use of characteristic scales that are not uniquely determined in real cases. Like
vorticity and divergence, deformation instead describes the local properties of a
flow field. Therefore, deformation provides local information on the intensity of
the block and does not require any averaging.

Furthermore, Rossby waves are severely deformed during the wave breaking pro-
cess. Hence, this process must be associated with a clear signature in the defor-
mation field. The role of deformation in both wave breaking and blocking opens
up an avenue to investigate potential dynamical links between these processes
(questions 2 & 4).

This approach is described and applied in Paper I and II. A brief discussion of the
physical mechanisms creating and destroying deformation is given in Appendix
A.

2. The use of jet axes as diagnostic condensing information on internal struc-
ture of jets and for describing the variability of the jet location.
Jets are often detected by applying a wind speed threshold to define the perimeter
and hence the body of a jet stream (e.g. Koch et al., 2006; Strong and Davis, 2007;
Woollings et al., 2010). A disadvantage of this approach is that it tends to conceal
the existence of multiple wind speed maxima within one jet body. These wind
maxima, however, define the structure of the wind shear within a jet body, which
separates the areas dominated by cyclonic or anticyclonic wave breaking (Rivière,
2009; Barnes and Hartmann, 2012). Hence, the locations of these wind speed
maxima are of great dynamical interest. As jets are elongated, these wind speed
maxima generally follow a line, called the jet axis. In addition to being related to
the wind shear distribution, this axis also characterises the exact location of a jet.

Furthermore, jet axes allow to independently detect dynamic blocking episodes
by the associated splitting of the jet into two branches (question 1). Hence, the
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distribution of jet axes for different phases of common variability indexes can
give independent indications for or against the proposed interpretations of these
indexes as being essentially driven by blocking (question 5).

This approach is described and applied in case studies in Paper III and applied to
jet variability in Paper IV.

3. The introduction of a new idealised atmospheric model that incorporates
a hierarchy of approximations to the primitive equations in one consistent
framework.
In order to investigate specific processes one should ideally be able to switch
between levels of complexity in a hierarchy of approximations. As most atmo-
spheric models are based on one approximation, one would hence need to com-
pare different models. These models can differ regarding the numerics, the im-
plementation of boundary conditions, and the model configuration, among other
features. These differences in the model formulation introduce non-physical dif-
ferences in the model results that complicate the comparison. By combining
quasi-geostrophy and the the dry hydrostatic primitive equations into one frame-
work, we can eliminate most of these non-physical differences. The combined
model is then an ideal test bed to isolate the fundamental aspects of the dynamics
underlying orographic and dynamical blocking by testing which of the neglected
or included terms are essential to simulate either type of blocking (question 2 &
3).

This approach and the model is documented in Paper V, and the full derivation of
the model equations is given in Appendix B.



3 Summary of the results

Whereas Papers I, III and V are mainly—but not entirely—concerned with the estab-
lishment and the implementation of the three novel approaches, Papers II and IV show-
case some immediate applications of the approaches to address the questions raised in
section 1.3. In the following, I summarise the main findings for each Paper.

• Paper I: A new look at deformation as a diagnostic for large-scale flow
Spensberger, C. and Spengler, T. (2014), Journal of Atmospheric Sciences, 71,
4221–4234.

In this paper, we demonstrate that deformation captures local information on the
strength of the flow diversion around an orographic or dynamic block. For that
reason, we conclude that deformation is suitable to detect blocking and to quantify
the intensity of the block (question 1).

Furthermore, we show that Rossby wave breaking is associated with a character-
istic structure in the deformation field. The orientation of the deformation is such
that cyclonic (anticyclonic) wave breaking upstream (downstream) of a block en-
hances the flow diversion around the block (questions 2 & 4). This is exactly the
preferred region of wave breaking that Altenhoff et al. (2008) find in their cli-
matology. Hence, the typical configuration of blocks and wave breaking is such
that wave breaking enhances the flow diversion around the block. Therefore, we
conclude that deformation indeed provides a dynamical link between blocking
and wave breaking that can potentially explain how Rossby wave breaking events
create and maintain a block.

• Paper II: The splitting of synoptic systems at the Rocky Mountains barrier
Egger, J., Spensberger, C. and Spengler, T. (2014), in preparation for Monthly
Weather Review.

In this paper, we analyse the composite evolution of the 1% strongest synoptic
systems approaching and crossing the Rocky Mountains. While the lower part
of an approaching cyclonic or anticyclonic anomaly is blocked by the mountain
range, the upper-level anomaly propagates comparatively undisturbed across the
barrier. For cyclonic systems, the lower part is blocked, resulting in a splitting
of the system. Furthermore, cyclogenesis occurs in the lee. Following up on the
ideas of Paper I, we also use deformation to discuss the dynamical evolution of
and the differences between the cyclonic and the anticyclonic composites.

The synoptic evolution in the two cases allows us to conclude, which of the pub-
lished theories for cyclone–orography interactions appropriately describe the ef-
fect of the Rocky Mountains on strong synoptic systems (question 2). In particu-
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lar, the comparison between the cyclonic and the anticyclonic composites facili-
tates an assessment of the limits of linear theories describing this interaction. Al-
though, we limit our analysis to the 1% strongest synoptic systems, some features
like the deflection of the blocked lower part of the systems towards the north ap-
pears analogous for the cyclonic and the anticyclonic case. However, the synoptic
development in the lee of the Rocky Mountains differs considerably between the
cyclonic and the anticyclonic cases.

• Paper III: Upper tropospheric jet axis detection and application to the bo-
real winter 2013/14
Spensberger, C., Spengler, T., and Li, C. (2014), in preparation for Monthly
Weather Review.

In this paper, we adapt the jet axis detection scheme devised by Berry et al. (2007)
for detecting African Easterly Jets to be suitable for upper tropospheric jet detec-
tion. We demonstrate the advantages of our scheme over previous jet identifica-
tion methods by comparing the different methods for synoptic situations during
the boreal winter 2013/14 as well as for the climatology for 1979–2013. The
winter 2013/14 featured a long-lasting blocking episode in the East Pacific. We
discuss potential dynamical implications of the detected jet axes by relating them
to the conceptual model of Dritschel and McIntyre (2008), who analysed the ef-
fect of growing baroclinic eddies on the jet axis (questions 1 & 4).

In addition, we show that the jet axis detection scheme also works reliably for
time-averaged input data. Although the use of monthly wind averages as basis
for the jet axis detection drastically reduces the variability of the jet axis location,
it does not introduce any spatial biases in the location.

• Paper IV: Wintertime variability of mid-latitude jet axes
Spensberger, C., Spengler, T., and Li, C. (2014), in preparation for Journal of
Climate.

In this study, we investigate the variability of jet axes detected by the scheme in-
troduced in Paper III. Through EOF analysis, we identify variability patterns of
the Atlantic and Pacific jet axis location. Over both ocean basins the two leading
variability patterns of the jet axis are a tripole pattern reflecting the transition be-
tween a straight and an undulating jet stream, as well as a dipole pattern reflecting
meridional shifts of the jet location. We denote the tripole as a “straightening”
pattern. These variability patterns are consistent with the variability patterns of
Athanasiadis et al. (2010) and Wettstein and Wallace (2010), who analysed vari-
ability of the zonal wind, and several storm track diagnostics, respectively.

Composites of the jet axis distribution for positive and negative phases of the
NAO describe shifts in the latitude of the eddy-driven jet that co-occur with a
straightening of the subtropical jet over the Atlantic and the African continent.
The PNA describes a variation in the length of the Pacific jet that extends either
to the North American west coast or the date line. Both the West-Pacific (WP)
pattern and the East-Atlantic (EA) pattern do not have a clear-cut effect on the jet
axis distribution. In addition, both the WP and the EA correlate to both of our
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leading EOFs in the respective ocean basin. Hence, they constitute a mixture of
different variability patterns of the jet location.

• Paper V: Bedymo, a combined quasi-geostrophic and primitive equations
model
Spensberger, C., Thorsteinsson, T., Spengler, T. (2014), in preparation for Geo-
scientific Model Development.

The use of the two-column layout of the journal Geoscientific Model Develop-
ment shall not indicate, that this manuscript already went through the discussion
process for this journal. I use this layout, because the layout for Geoscientific
Model Development Discussions is unfortunately not suitable be to included in
this thesis.

In this paper, we introduce the BErgen DYnamic MOdel (BEDYMO), which em-
ploys a common approach to solve the quasi-geostrophic (Charney, 1947) and
hydrostatic primitive equations. BEDYMO aims to keep the time-integration pro-
cedure as similar as possible for the two approximations (detailed derivation in
Appendix B). The similarity allows us to easily and consistently switch between
the approximations by neglecting or considering the respective terms in the equa-
tions. To demonstrate the performance BEDYMO, we evaluate the model against
the analytical solutions or conceptual models for (a) cyclogenesis in a baroclin-
ically unstable environment, (b) stationary Rossby waves excited by orography,
and (c) the coupled response to an equatorial temperature anomaly in the ocean
mixed layer. For the coupled test, we use a slab-ocean with different parametri-
sations of the oceanic heat transport. For all three test cases, BEDYMO compares
well to the analytic solution or the conceptual models. Furthermore, these test
cases highlight the dynamical differences arising from the different approxima-
tions, demonstrating that the model is suitable to address question 3.

Naturally, the results of these five papers do not fully answer all five questions raised
in section 1.3. Nevertheless, they contribute to the understanding of orographic and
dynamic blocking and thereby demonstrate the value of the new approaches established
in this thesis.

I am convinced that these approaches will prove to be instructive also outside the
theme of blocking. Some potential continuations of this work and other applications of
the approaches are described in the following.
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4 Outlook

A large part of this thesis is devoted to the description of new approaches to study
orographic and dynamic blocking. Every approach by itself opens up new perspectives
on these phenomena and provides the basis for the conclusions drawn in this thesis.
However, a combined analysis using several of these approaches might prove to be
even more insightful.

The following sections outline potential future paths of research building on the
results in this thesis. The first pair of suggestions are more direct continuations of this
thesis, as they also focus on blocking. The third suggestion demonstrates that the new
approaches are equally valuable outside the direct scope of this thesis.

4.1 Dynamics of orographic blocking

The combination of Paper I and Paper V facilitates the identification the minimal model
required to represent pertinent aspects of orographic blocking. Paper I documents the
deformation patterns associated with orographic blocking, both in reanalysis data and
analytically for two-dimensional flow around a circular obstacle. These results provide
a base line to compare with the simulated flow diversion around idealised and realis-
tic topography in the different approximations available in BEDYMO . The similarity
between the base line and simulated deformation patterns can serve as a benchmark of
how well blocking is simulated. This allows to identify the minimal model.

The minimal model can subsequently be used to clarify which of the proposed pa-
rameters are best suited to indicate the transition between linear and non-linear flow
(see discussion and references in sec. 1.2). By analysing the sensitivity of the simu-
lated orographic blocking response to variations of each parameter, BEDYMO allows us
to identify those parameters that are best suited as an indicator for this transition.

4.2 Dynamics of dynamic blocking and its relation to jet variability

Combining Papers I and III-V in this thesis, a similar strategy will help to better un-
derstand dynamic blocking and jet variability. Long-term simulations of a baroclinic
channel including thermal driving allow us to directly relate the jet driving mechanisms
to the simulated jet variability (Paper III-IV; Eichelberger and Hartmann, 2007; Li and
Wettstein, 2012). Furthermore, the deformation patterns described in Paper I allow us
to analyse blocking variability. The sensitivity of these variability patterns can then be
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tested by varying the relative importance of the driving mechanisms within the differ-
ent approximations available in BEDYMO. This set of simulations can help to further
clarify the physical mechanisms relating the driving mechanisms to jet and blocking
variability.

4.3 Interaction of fronts with orography

This thesis was only concerned with flow at the synoptic and larger scales. The same
approaches will, however, be equally valuable at smaller scales, for example to study
the interaction of fronts with orography. Published theories on this interaction (e.g.
Davies, 1984; Blumen and Gross, 1987) fail to explain the complex structures that are
documented for numerous case studies (Egger and Hoinka, 1992; Blumen, 1992; Schär,
2002; Neiman et al., 2004).

Similar to orographic blocking, one of the fundamental questions regarding this
interaction is whether the flow moves over the mountain or around it. The large spa-
tial variability of the flow around the steep and complex orography that is resolved on
smaller scales will render the Froude number even less suitable for identifying the flow
regime. Also two-dimensional deformation, as discussed in Paper I, becomes inappro-
priate on these scales, because vertical velocities become important. The concept can,
however, be extended to three-dimensional flow and give local information on the flow
diversion on smaller scales analogously to Paper I. This local information can provide
a basis to define different categories of front interactions and hence helps to conceptu-
ally divide between classes of such interactions. By simulating archetypal interactions
for each class, BEDYMO can point to the dominant dynamical processes for each class
separately and thus help to understand the dynamical differences.
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Introduction

The tendency equations for total deformation and the deformation angle show which
physical processes can create, turn, and destroy deformation. In order to isolate the
most important terms in the resulting tendency equations, I also present their equiva-
lents within the quasi-geostrophic (QG) approximation.

The QG deformation tendencies pinpoint an important difference between the two
widely adopted definitions of QG in the textbooks of Pedlosky (1986) and Holton
(2004). Therefore, a brief discussion of the dynamical differences arising from the
differences is required to interpret the different deformation tendencies.
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Deformation tendencies

The derivation is based on the frictionless Navier-Stokes equations in z-coordinates.

dvvv
dt

+ f kkk× vvv =− 1

ρ
∇p . (A.1)

In this equation vvv = (u,v) denotes the horizontal wind vector.

Using the definitions of the deformation components δ+ = ux−vy and δ× = vx+uy
the tendencies for stretching deformation

dδ+
dt

=−Dδ++ f δ×+βu− 1

ρ
(pxx − pyy)+

1

ρ2
(ρx px −ρy py)− (wxuz −wyvz) (A.2)

and shearing deformation

dδ×
dt

=−Dδ×− f δ++βv− 2

ρ
pxy +

1

ρ2
(ρx py +ρy px)− (wxvz +wyuz) (A.3)

follow. With the definitions of total deformation δ and the deformation angle γ

δ =
√

δ 2
++δ 2× (A.4)

tan2γ =
δ×
δ+

(A.5)

the time tendencies of δ and γ can be expressed in terms of the tendencies of shearing
and stretching deformation,

∂δ
∂ t

=− 1

2
√

δ 2
++δ 2×

(
2δ+

∂δ+
∂ t

+2δ×
∂δ×
∂ t

)

=− 1

δ

(
δ+

∂δ+
∂ t

+δ×
∂δ×
∂ t

)
(A.6)

∂γ
∂ t

=
1

2+2
δ 2×
δ 2
+

· δ+ ∂δ×
∂ t −δ× ∂δ+

∂ t

δ 2
+

=
1

2δ 2

[
δ+

∂δ×
∂ t

−δ×
∂δ+
∂ t

]
(A.7)
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Using the tendency of total deformation as an example, the terms originating from
the stretching and the shearing deformation tendencies due to advection, differential
advection, divergence, and the Coriolis effect, respectively, combine into

δ+(vvv ·∇δ+)+δ×(vvv ·∇δ×) =
1

2
vvv ·∇δ 2

++
1

2
vvv ·∇δ 2

× =
1

2
vvv ·∇δ 2

= δvvv ·∇δ (A.8)

δ+(vvvx ·∇u− vvvy ·∇v)+δ×(vvvy ·∇u+ vvvx ·∇v) = δ+(uxux + vxuy −uyvx − vyvy)

+δ×(uyux + vyuy +uxvx + vxvy)

= δ 2
+D+δ 2

×D = δ 2D (A.9)

δ+( f δ×+βu)+δ×(− f δ++βv) = β (δ+u+δ×v) (A.10)

The pressure gradient, tilting, and solenoidal terms cannot be combined without further
assumptions. The combination works analogously for the tendency of the deformation
angle.

With these ingredients the deformation tendencies result in

dz lnδ
dt

=

DIV

−D+
1

δ 2

[ BETA

β (δ+u+δ×v)

PRES

− 1

ρ

(
δ+(pxx − pyy)+2δ×pxy

)

+δ+(wxuz −wyvz)+δ×(wxvz +wyuz)

T ILT

+
1

ρ2

(
δ+(ρx px −ρy py)+δ×(ρx py +ρy px)

)

SOL

]

(A.11)

2
dzγ
dt

=

COR

− f − 1

δ 2

[ BETA

β (δ×u−δ+v)

PRES

− 1

ρ

(
δ×(pxx − pyy)−2δ+pxy

)

+δ×(wxuz −wyvz)−δ+(wxvz +wyuz)

T ILT

+
1

ρ2

(
δ×(ρx px −ρy py)−δ+(ρx py +ρy px)

)

SOL

]

(A.12)

Despite being the tendency of an absolute magnitude and an orientation, respectively,
these equations are remarkably symmetric.

Physical interpretation of the tendencies

Focusing first on the pressure terms PRES, the patterns that optimally reinforce the
respective deformation component are visualised in gray in Figure A.1a and b. They
resemble the checkerboard pressure pattern that leads to frontogenesis along the axis
of dilatation, which is strongest at the saddle point. By reinforcing deformation of one
specific orientation, pressure turns the axis of dilatation towards this specific orienta-
tion, if the axis of dilatation was not pointing in that orientation already. Hence, a
tendency in the deformation angle requires the existence of deformation perpendicular
to the reinforced component.
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Figure A.1: Principal flow patterns (black arrows), the associated axis of dilatation (black

double arrows), and favourable pressure patterns (dashed gray lines) for (a) stretching defor-

mation and (b) shearing deformation. Panel (c) illustrates of the effect of the β -term in the

deformation tendency for pure stretching deformation.

To understand the effect of the BETA term in (A.11), it is instructive to consider
an initial state with v = 0 but homogeneous ux > 0 corresponding to pure stretching
deformation (Fig. A.1c). Then, due to the β -effect the flow further north is influenced
by a stronger Coriolis force, leading to convergence (divergence) in westerly (easterly)
flow. The convergence (divergence) translates into a vy < 0 (vy > 0) which reinforces
(counteracts) the stretching deformation.

The interpretation of the remaining terms in (A.11) and (A.12) is straight-forward.
Convergent flow strengthens total deformation (DIV ), and the unbalanced part of the
Coriolis force turns the axis of dilatation anti-clockwise (COR). The terms denoted
T ILT and SOL correspond to the tilting term and solenoidal term in the vorticity ten-
dency equation.

Simplifications in Pedlosky-type quasi-geostrophy

The derivation of the deformation tendencies within the QG framework allow an assess-
ment of the relative importance of the terms contributing to the deformation tendencies.
In QG, the horizontal momentum equation is replaced by the equations

f0kkk× vvvg =− 1

ρ0
∇z pg (A.13)

dgzvvvg

dt
+ f0kkk× vvva +βykkk× vvvg =− 1

ρ0
∇z pa (A.14)

in which the subscripts g and a stand for the geostrophic and ageostrophic parts, respec-
tively. In the derivation, we use the β -plane and Boussinesq approximations (Pedlosky,



156 APPENDIX A

1986). The resulting tendencies are

dzg lnδg

dt
=

1

δ 2
g

[
β (δ+gua +δ×gva)− 1

ρ0

(
δ+g(paxx − payy)+2δ×g paxy

)]
(A.15)

2
dzgγg

dt
=−βy− 1

δ 2
g

[
β (δ×gua −δ+gva)− 1

ρ0

(
δ×g(paxx − payy)−2δ+g paxy

)]

(A.16)

Compared to the full primitive equation version of the tendencies, the solenoidal and
the tilting terms are neglected because of the Boussinesq approximation and the small
vertical velocities, respectively. The pressure terms take the same form as in the full
primitive equation version, but are based on the ageostrophic pressure alone, indicating
that the geostrophic parts of the pressure terms cannot influence deformation. This
indication can be proven by using (A.13) to rewrite pgxx− pgyy as ρ0 f0δ×g and 2pgxy as
ρ0 f0δ+g. With those substitutions the geostrophic parts of the PRES terms cancel also
in the primitive equation version of the deformation tendency (A.11). In the tendency of
the deformation angle (A.12) the geostrophic pressure terms combine to + f0 and hence
largely balance the COR term − f . This cancellation leads to the −βy-contribution in
the QG tendency of the deformation angle.

Simplifications in Holton-type quasi-geostrophy

Expanding only the wind velocity components in orders of the Rossby number results
in a further simplification of the equations, because there are no ageostrophic pressure
gradients (e.g. Holton, 2004).

dzg lnδg

dt
=

β
δ 2

g
(δ+gua +δ×gva) (A.17)

2
dzgγg

dt
=−βy− β

δ 2
g
(δ×gua −δ+gva) (A.18)

Hence, on an f -plane, both the total deformation and the deformation angle are con-
served.

Albeit leading to the same vorticity tendencies, the different set of QG equations
presented by Pedlosky (1986) and Holton (2004) lead to important differences in the
deformation tendencies. However, as the vorticity tendency fully determines the evo-
lution of the geostrophic flow field, the geostrophic deformation tendencies must be
equal in both systems, if they are initialised with equal geostrophic vorticity. The con-
tribution of the pressure terms must consequently be counterbalanced by the β -terms
or vanish on an f -plane.

Apart from the inconsistency in the deformation tendencies, there are further im-
portant differences between the QG definitions of Holton (2004) and Pedlosky (1986).
Comparing, for example, the geostrophic divergence tendencies, which in both cases
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must equal zero,

u2
gx + vgxugy +ugyvgx + v2

gy + f0ζa −βug +βyζg =− 1

ρ0
∇2 pa (Pedlosky) (A.19)

u2
gx + vgxugy +ugyvgx + v2

gy + f0ζa −βug +βyζg = 0 (Holton) (A.20)

The first four terms can be rewritten as 2ψ2
gxy − 2ψgxxψgyy. Also, 2ψ2

gxy =
1
2δ 2

+g and

−2ψgxxψgyy =
1
2δ 2×g − 1

2ζ 2
g . The first four terms are thus the Okubo-Weiss parameter

1
2δ 2

g − 1
2ζ 2

g , evaluated using the geostrophic wind components Okubo (1970); Weiss
(1991).

These equations allow us to gain further insight into the role of the ageostrophic
geopotential in QG dynamics. To clarify the argument, the beta terms are omitted in
the following. Following Pedlosky (1986), the divergence tendency reduces to

1

2
δ 2

g −
1

2
ζ 2

g + f0ζa =− 1

ρ0
∇2 pa . (A.21)

Hence, a non-zero Okubo-Weiss parameter must be balanced by either a rotating
ageostrophic wind, or an ageostrophic geopotential. Consequently, the Okubo-Weiss
parameter shows the amount of cancellation between the ageostrophic vorticity and
the ageostrophic geopotential. For pure shear flow, when the Okubo-Weiss parame-
ter is exactly zero, the relation reduces to a geostrophic balance for the ageostrophic
geopotential. Such a relation would be, in my opinion, albeit mathematically valid and
consistent, not physically meaningful. In this case, ζa could—and should—be added to
ζg, because that results in a smaller Rossby number and thus an overall better approx-
imation of the primitive equations. The same argument applies for a non-zero Okubo-
Weiss parameter, which does not rule out cancellation effects between the ageostrophic
vorticity and the ageostrophic geopotential.

A simple way to avoid any cancellation is to use the additional degree of freedom in
the Pedlosky (1986) definition of quasi-geostrophy to require either ζa = 0 or ∇2 pa = 0.
As these requirements make a partial geostrophic balance in the ageostrophic circula-
tion impossible, they also ensure an optimally low Rossby number and hence an optimal
approximation of the primitive equations.

One of the optimal choices is to set ∇2 pa = 0, showing that the Holton (2004) defi-
nition of QG is one of the optimal limits of the Pedlosky (1986) definition. Hence, the
simpler quasi-geostrophic deformation tendencies (Eqs. A.17, A.18) following from
the Holton (2004) definition are at least as good an approximation to the their primitive-
equation equivalents as the ones following from Pedlosky (1986). As a consequence,
to a good approximation, quasi-geostrophic deformation is conserved on an f -plane.
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BEDYMO: Concept and derivation of the model equations

 B
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Introduction

The “BErgen DYnamic MOdel” (BEDYMO) is an idealised regional atmospheric
model. The main aim with the development of BEDYMO is to be able to study ef-
fects of the lower boundary, such as orographic blocking or ocean–atmosphere heat
fluxes, in an idealised framework. The basic concepts for the model formulation hence
aim for an accurate representation of lower boundary effects.

Motivation and Background

Lower boundary effects have a profound influence on both weather an climate. For
example, orography has an important impact on the development of synoptic systems
(e.g. Zishka and Smith, 1980; Wallace et al., 1988; Egger et al., 2014). In particular,
orography can induce or strengthen cyclogenesis in the lee (e.g. Egger, 1988; Bannon,
1992; Egger, 1995). Furthermore, contrasts in the surface properties can influence
weather on meso- and larger scales. Along the North American east coast, the contrast
between the cold land and the warm ocean regularly leads coastal fronts in fall and
winter (Riordan, 1990; Srock and Bosart, 2009). Also, the surface temperature contrast
between sea-ice covered and open ocean can have dynamical implications Langland
et al. (1989); Papritz et al. (2014).

On climatological time scales, orography and other inhomogeneities of the surface
characteristics lead to the observed zonal asymmetries of the atmospheric circulation.
These asymmetries show, that the lower surface strongly affects not only the individ-
ual cyclone, but also the storm track, and the jet structure as a whole. For example,
the preferred locations of cyclogenesis in the lee of orography anchor the storm track
and hence lead to preferred locations for dynamic blocking (e.g. Egger, 1978; Swan-
son, 2001; Luo, 2005). These preferred locations for blocking are well-documented
in blocking climatologies (e.g. Pelly and Hoskins, 2003; Schwierz et al., 2004; Bar-
riopedro et al., 2006) and influence the local climate. Furthermore, blocking orography
can act as a temperature barrier, thereby altering the climatological temperature distri-
bution. For example, Greenland shields the comparatively warm North Atlantic from
the cold ice-covered Labrador sea associated with the climatological cold pool over the
Canadian Arctic. A hypothetical removal of Greenland would thus strongly affect the
Climate in Central Europe and Scandinavia (Petersen et al., 2004; Junge et al., 2005).

To be able to better understand the dynamics underlying these interactions between
the lower surface, orographic blocks, dynamic blocks, and jet streams, we have to resort
to idealised modelling. The potential mechanisms and feed backs are too complex to be
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understood based on measurements or the simulation of realistic case studies alone (e.g
Parish, 1982; McCauley and Sturman, 1999; Mc Innes et al., 2009; Outten et al., 2009).
The relative importance of most interactions is unclear. Hence it is a-priori unknown,
which approximation to the full atmospheric dynamics is most appropriate to describe
the interactions. Furthermore, the appropriate approximation will depend on which as-
pect of the flow–orography interaction is under consideration. While non-linear quasi-
geostrophy (QG) might already include the most relevant dynamics of lee cyclogenesis,
the simulation of sharp fronts along ice edges will likely require semi-geostrophic (SG)
dynamics in which also the ageostrophic flow contributes to the sharpening of the front.
Along steep orography, the flow might be accelerated fast enough to invalidate the as-
sumption of balanced flow in QG and SG. Hence, these situations can only be simulated
appropriately using the primitive equations (PE).

Required features for BEDYMO

Consequently, in addition to representing the lower boundary condition accurately,
BEDYMO should include several approximations and allow to easily switch between
them. The ability to switch between approximations would allow BEDYMO to repre-
sent the dynamics of many aspects of flow–orography interaction in their respective
simplest manifestation. Furthermore, the switch allows to directly compare the rep-
resentation of these aspects in different approximations. To keep the comparison as
straight-forward as possible, the different approximations should be solved as consis-
tently as possible.

The comparison of different approximation is otherwise only possible by compar-
ing different models. The comparison of different models complicates the comparison
of the actual dynamics, because additional differences can arise due to the different nu-
merics, different treatment of boundaries, and subtle differences in the model setup.
Furthermore, the typical approaches to numerically solve the QG, SG, and PE system
differ considerably. For example, QG models typically forecast the QG potential vortic-
ity (QGPV) and diagnose the geostrophic wind that is required for the time integration
by inverting the defining equation of QGPV (e.g. Charney and Phillips, 1953). The
equivalent approach is not feasible for solving the dry hydrostatic primitive equations
(PE), because in PE, the wind velocity components need be able to evolve indepen-
dently from the temperature distribution.

Furthermore, BEDYMO should not use terrain-following coordinates, because they
hide the volume-blocking effect of orography in the coordinate system. With terrain-
following coordinates, orography affects the entire atmospheric column above oro-
graphic slopes, because it introduces pressure gradients along the tilted coordinate
surface. These pressure gradients needs to be largely compensated through the in-
troduction of an additional counteracting force to the momentum equations. A terrain-
intersecting vertical coordinate avoids these problems at the expense of a more com-
plicated lower boundary condition. In this representation, orography can only directly
affect the flow in those grid cell that actually intersect with orography. While the differ-
ence between these different coordinate systems naturally has to vanish for very small
grid spaces and time steps, we expect our terrain-intersecting coordinates to be more
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accurate for the intended use of idealised simulations on comparatively coarse vertical
grids.

To our knowledge, there is no model that combines several approximations in
one framework. Furthermore, most idealised atmospheric models use pressure-based
terrain-following coordinates, often denoted as σ -coordinates. To fill this gap, we de-
vised BEDYMO, that combines these two features.

There are several options for orography-intersecting coordinate systems. We chose
to use cartesian z-coordinates rather than a pressure-based vertical coordinate, because
changes in the surface pressure imply changes in the extent of the blocked part of the
model domain. Hence, all information concerning the blocking of grid cells would need
to be updated every time step, thereby unnecessarily complicating the time integration.

Starting a new model development from scratch has a few more positive side effects,
because many QG, SG, and PE models have originally been devised in the 1980ies and
1990ies (e.g. Table 1 of Schär and Wernli, 1993). By starting from scratch, we can
more easily adopt some comparatively new features of Fortran 95 and 2003 that help
the modularity, readability, and hence maintainability of the source code. In addition,
the source code is organised in a way to make it easily accessible from python. Besides
allowing for flexible yet easy-to-read run scripts, the python bindings provide the basis
for a graphical user interface (GUI) which allows to interactively run the model and
watch the flow evolution “live" while the model is running. All these features make
BEDYMO an ideal tool not only for research but also for teaching and for student’s
projects.
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Model physics

Our common approach to solve the quasi-geostrophic, semi-geostrophic, and the dry,
hydrostatic primitive equations is based on the thermodynamic equation, because the
equation is only subject to small modifications between the approximations. The only
differences are the wind velocity components used in the advection terms (Tab. B.1).
In conjunction with a lower boundary condition provided by the forecasted surface
pressure, the temperature distribution fully determines the atmospheric state in the QG
and SG systems. In PE, the horizontal wind velocity components evolve independently
and must hence be forecasted as well.

Derivation of the basic model equations

We start from the hydrostatic primitive equations in z-coordinates. In order to provide
an energy sink for long and short waves, respectively, the momentum equations include
scale-inselective Ekman friction and a scale-selective damping term that relax the wind
velocities towards the unperturbed initial state, indicated by the δ -operator.

∂vvv
∂ t

+ vvv ·∇hvvv+w
∂vvv
∂ z

+ f kkk× vvv =− 1

ρ
∇h p− rδvvv+D∇2δvvv (B.1)

∂ p
∂ z

=−ρg (B.2)

∂ρ
∂ t

+∇h(ρvvv)+
∂ρw
∂ z

= 0 (B.3)

∂T
∂ t

+ vvv ·∇hT +w
∂T
∂ z

− 1

cpρ
d p
dt

=
J
cp

(B.4)

p = ρRT (B.5)

In this set of equations, vvv is the horizontal wind velocity vector, w is the vertical wind, f
is the spatially varying Coriolis parameter, ρ is density, p is pressure, g the gravitational
acceleration close to the Earth surface, T is temperature, cp is the isobaric specific heat
of dry air, J is the heating rate, and R is the gas constant for dry air.

As a first step, we express the total pressure tendency in (B.4) in terms of the vertical
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Table B.1: Summary of the common approach to solve the QG, SG, and PE systems. Prog-

nostic equations are marked bold. In this table, u and v denote advecting wind velocities.

Variable QG SG PE

T Eq. (B.27) Eq. (B.40) Eq. (B.18)
ps Eq. (B.39), (B.37) Eqs. (B.39), (B.41) Eqs. (B.22)
u, v = (ug,vg) = (ug +ua,vg + va) Eq. (B.15)
p′ Eq. (B.16) Eq. (B.16) Eq. (B.16)

ug, vg Eq. (B.24) Eq. (B.24)

ua, va Eq. (B.53)

w Eq. (B.31) Eq. (B.53) Eq. (B.17)

wind w by using the hydrostatic equation.

d p
dz

=
∂ p
∂ z

+
dt
dz

∂ p
∂ t

+
dx
dt

dt
dz

∂ p
∂x

+
dy
dt

dt
dz

∂ p
∂y

=
∂ p
∂ z

+
1

w
∂ p
∂ t

+
u
w

∂ p
∂x

+
v
w

∂ p
∂y

(B.6)

≈ ∂ p
∂ z

(B.7)

It follows that
1

ρ
d p
dt

≈−gw . (B.8)

BEDYMO only simulates the deviations from a stationary, hydrostatic basic state
with ρ0 = ρ0(z), p0 = p0(z). Based on these assumptions, it follows that T0 = T0(z),
φ0 = φ0(z) and ψ0 = ψ0(z). With those relations, the primitive equations take the form

∂vvv
∂ t

+ vvv ·∇hvvv+w
∂vvv
∂ z

+ f kkk× vvv =− 1

ρ
∇h p− rδvvv+D∇2δvvv (B.9)

∂ p′

∂ z
=−ρ ′g (B.10)

∂ρ ′

∂ t
+∇h(ρvvv)+

∂ρw
∂ z

= 0 (B.11)

∂T ′

∂ t
+ vvv ·∇hT ′+

(
∂T
∂ z

+
g
cp

)
w =

J
cp

(B.12)

p′ = ρ ′RT0 +ρRT ′ (B.13)

Applying the anelastic approximation, we assume ρ0 � ρ ′ such that ρ = ρ0 +ρ ′ ≈
ρ0. We furthermore neglect the local time tendency

∂ρ ′
∂ t ≈ 0, eliminating sound waves.

As in the Boussinesq approximation, the approximated version of the ideal gas law

p′

p0
=

ρ ′

ρ0
+

T ′

T0
(B.14)
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along with the observation that generally δ p
p < δT

T suggests the relation T ′
T0

≈ − ρ ′
ρ0

be-

tween temperature and density perturbations. Hence, also for temperature, T ≈ T0.

∂vvv
∂ t

+ vvv ·∇hvvv+w
∂vvv
∂ z

+ f kkk× vvv =− 1

ρ0
∇h p′ − rδvvv+D∇2δvvv (B.15)

∂ p′

∂ z
= ρ0g

T ′

T0
(B.16)

∇h · vvv+ 1

ρ0

∂ρ0w
∂ z

= 0 (B.17)

∂T ′

∂ t
+ vvv ·∇hT ′+

(
∂T0

∂ z
+

g
cp

)
w =

J
cp

(B.18)

In this system, the surface pressure tendency

∂ ps

∂ t
= g

∫ zs

ztop

∂ρ
∂ t

dz =−g
∫ zs

ztop

∇ · (ρvvv)dz

=−g
∫ zs

ztop

∇ · (ρ0vvv)dz−g
∫ zs

ztop

∇ · (ρ ′vvv)dz

= g(ρ0w)top − g
T0

∫ zs

ztop

ρ0
∂T ′

∂ t
dz (B.19)

is given by the mass flux convergence using the basic state density and the mass-
weighted mean temperature tendency in the column.

The temperature tendency in (B.19) implies that a column-integrated temperature
tendency can change the total air mass in the column, thereby violating mass conserva-
tion. To make sure the model is mass-conserving, we enforce the mass continuity also
for the density perturbations by

ρ0

T0

∂T ′

∂ t
=

∂ρ ′

∂ t
=−∂ρ0wexp

∂ z
, (B.20)

such that the expansion of the air column, reflected in wexp, contributes to the vertical
velocity used in (B.19). Hence, we can express the temperature contribution in (B.19)
as

g
T0

∫ zs

ztop

ρ0
∂T ′

∂ t
dz =−g

∫ zs

ztop

∂ρ0wexp

∂ z
dz =−g(ρ0wexp)top , (B.21)

showing that the temperature term exactly cancels the additional vertical velocity due to
thermal expansion. Consequently, enforcing mass continuity for density perturbations
is equivalent to omitting the temperature tendency from (B.19). Hence, the surface
pressure tendency in BEDYMO is simply

∂ ps

∂ t
= g(ρ0w)top . (B.22)

The equations (B.15)–(B.18) and (B.22) form a closed set. The only unknown pa-
rameters in the prognostic equations for temperature, surface pressure, and the hori-
zontal wind velocity components are the perturbation pressure and p′ and the vertical
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velocity w. We diagnose them by integrating hydrostasy (B.16) and the continuity
equation (B.17) upwards. The value of p′ at the lower boundary is given by the surface
pressure ps, the value of w follows the boundary condition

ws = vvvs ·∇hzs , (B.23)

respectively. The horizontal wind vector at the lower surface vvvs is taken to be equal to
the horizontal wind vector at the lowest model level.

Simplifications for Quasi-Geostrophy

To introduce QG, we define a geostrophic wind vvvg, which geostrophically balances the
pressure gradient,

f0kkk× vvvg =− 1

ρ0
∇p′ =−∇φ ′ . (B.24)

Deviations from this balance are accounted for by the ageostrophic wind vvva = vvv −
vvvg. We also define the constant parameter β for deviations from f0 using the β -plane
approximation, f = f0 +βy.

With these definitions, the thermodynamic equation (B.18) and the momentum
equations (B.15) become

∂T ′

∂ t
+(vvvg + vvva) ·∇hT ′+w

(
∂T0

∂ z
+

g
cp

)
=

J
cp

(B.25)

∂ζg +ζa

∂ t
+(vvvg + vvva) ·∇h(ζg +ζa)− ( f0 +ζg +ζa)

1

ρ0

∂ρ0w
∂ z

+ kkk ·
(

∂vvvg + vvva

∂ z
×∇hw

)
+β (vg + va) =−rδζg +D∇2δζg . (B.26)

We assume the scales Ua = RoU , βL = Ro f , a δT -scale for T ′, and a divergence

scale from the continuity equation (B.17) as W
H = RoU

L . Retaining only the (U2

L2 )-terms

in the vorticity tendency, and the (δT U
L )-terms in the thermodynamic tendency, the

equations (B.25) and (B.26) reduce to

∂T ′

∂ t
+ vvvg ·∇hT ′+w

(
∂T0

∂ z
+

g
cp

)
=

J
cp

, (B.27)

∂ζg

∂ t
+ vvvg ·∇hζg − f0

ρ0

∂ρ0w
∂ z

+βvg =−rδζg +D∇2δζg . (B.28)

In QG, we integrate the thermodynamic equation (B.27), and use the vertical integral
of the vorticity equation (B.28) to forecast surface pressure. We only need to determine
the vertical velocity to close the system of equations. We determine w by inverting the
QG omega-equation.

To derive the omega-equation, we use hydrostasy T ′ = T0
g

∂φ ′
∂ z , and the definition of

the (geostrophic) geopotential ∇2
hφ ′ = f0ζg, to rewrite equations (B.27) and (B.28) in
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terms of the geopotential,[
∂
∂ t

+ vvvg ·∇h

](
∂∇2

hφ ′

∂ z

)
+(∇2

hvvvg) ·∇h
∂φ ′

∂ z
+N2∇2

hw = ∇2
hJ∗ , (B.29)

[
∂
∂ t

+ vvvg ·∇h

](
∂∇2

hφ ′

∂ z

)
+

∂vvvg

∂ z
·∇h(∇2

hφ ′+ f0 f )− ∂
∂ z

(
1

ρ0

∂ρ0w
∂ z

)
=

=−r∇h
∂δφ ′

∂ z
+D∇h

∂∇2
hδφ ′

∂ z
. (B.30)

By combining these equations, the geopotential tendency can be eliminated to yield a
z-coordinate version of the omega-equation,[

N2∇2
h + f 2

0 ρ0
∂
∂ z

(
1

ρ0

∂
∂ z

)]
(ρ0w) =

= ρ0

[
∂vvvg

∂ z
·∇h(∇2

hφ ′+ f0 f )− (∇2
hvvvg) ·∇h

∂φ ′

∂ z
+∇2

hJ∗+ r
∂∇2

hδφ ′

∂ z
−D∇2

h
∂∇2

hδφ ′

∂ z

]

= ρ0∇h ·
[

∂
∂ z

(
vvvg(∇2

hφ ′+ f0 f )
)
+∇h

(
−(∇2vvvg) · ∂φ ′

∂ z
+ J∗+ r

∂δφ ′

∂ z
−D

∂∇2
hδφ ′

∂ z

)]

= ρ0∇h ·QQQ . (B.31)

The omega-equation only contains the vertical derivative of the vorticity equation,
such that the three-dimensional balance established by the omega-equation only con-
tains the baroclinic part of the total QG balance (for a further discussion of this problem
see Keyser et al., 1989; Xu and Keyser, 1993). The barotropic part of the QG balance
must hence be established separately. We use the vertically averaged vorticity tendency
equation for that purpose, forecasting the surface pressure change due to barotropic
motions.

We hence split the surface pressure into a barotropic pb and a baroclinic p∗s compo-
nent ps = pb + p∗s . The baroclinic tendency reflects the column integrated temperature
change

< T ′ >=
1

ρ0H

∫ zs

ztop

ρ0T ′dz (B.32)

where H = ztop − zs the height of the domain and ρ0 the average basic state density.
From the thermal wind relation,

p∗s − p∗top = ρ0H < T ′ >=
∫ zs

ztop

ρ0T ′dz . (B.33)

To solve this equation, we need another relation between p∗s and p∗top. We obtain such
a relation by ensuring that the baroclinic circulation does not project on the barotropic
wind velocities. In other word, we require the column-average baroclinic wind velocity
components to vanish,

< u∗ >=< v∗ >= 0 , (B.34)

where the angle brackets are defined analogously to the column-averaged temperature
< T ′ >. Solving these relations by integrating the thermal wind relation upwards gives

∂ p∗s
∂y

=− g
HT0

∫ zs

ztop

∫ z

ztop

ρ0
∂T ′

∂y
dz2 , (B.35)
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and an analogous relation for
∂ p∗s
∂x . Hence,

p∗s =− g
HT0

∫ zs

ztop

∫ z

ztop

ρ0T ′dz2 +C (B.36)

where the integration constant C amounts to a pressure offset that has no effect in the
model, and that hence can safely be set to zero.

The barotropic circulation can be inferred from the column-integrated vorticity
equation

∂ < ζg >

∂ t
+< vvvg ·ζg >− f

ρ0

[ρ0w]ztop
zs +β < vg >=−rδ < ζg >+D∇2δ < ζg > .

(B.37)
The barotropic component of the surface pressure can then be obtained by inverting

1

ρ0

∇2 pb = f0 < ζg > . (B.38)

Hence, the total surface pressure tendency results in

∂ ps

∂ t
= ∇−2 ∂ ( f < ζg >)

∂ t
− g

(ztop − zs)T0

∫ zs

ztop

∫ z

ztop

ρ0T ′dz2 . (B.39)

Simplifications in Semi-Geostrophy

The same procedure as in QG can be used, except that also (Ro U
L )-terms are retained.

The resulting thermodynamic equation and the resulting barotropic vorticity tendency
are

∂T ′

∂ t
+(vvvg + vvva) ·∇hT ′+w

(
∂T0

∂ z
+

g
cp

)
=

J
cp

and

(B.40)

∂ < ζg >

∂ t
+< (vvvg + vvva) ·∇ζg >− f0+< ζg >

ρ0

[ρ0w]ztop
zs +β < vg + va >=

=−rδ < ζg >+D∇2δ < ζg > .
(B.41)

In the derivation of the diagnostics, we will also use the SG momentum equation

∂vvvg

∂ t
+(vvvg + vvva) ·∇hvvvg + f kkk× (vvvg + vvva) =− 1

ρ0
∇p′ − rδvvvg +D∇2δvvvg . (B.42)

In addition to a diagnostic equation for the vertical velocity w, also diagnostics
for the ageostrophic horizontal velocity components are necessary to solve the system.
Following the procedure of Xu (1990), we introduce a stream function vector ψψψa =
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(ψa1,ψa2,ψa3) defining the 3D ageostrophic wind uuua = (ua,va,w) by

ua =
1

ρ0

∂ρ0ψa2

∂ z
− ∂ψa3

∂y
, (B.43)

va =
∂ψa3

∂x
− 1

ρ0

∂ρ0ψa1

∂ z
, (B.44)

w =
∂ψa1

∂y
− ∂ψa2

∂x
, (B.45)

which can be determined diagnostically. The first step to derive relations for the com-
ponents of ψψψa is to realise that we can recast the SG momentum (B.42) and the SG
thermodynamic equation (B.40) as

Dg∇φ ′+Luuua =B(vvvg) (B.46)

with Dg =
(

∂
∂ t + vvvg ·∇h

)
the geostrophic total derivative and a matrix L. The function

B contains the β -effect, the heating terms, and friction. The entries in L are

L11 = f0∂xvg + f0 f ,

L22 =− f0∂yug + f0 f ,

L33 = N2 ,

L12 = L21 = f0∂yvg =− f0∂xug ,

L13 = L31 = f0∂zvg =
g
T0

∂xT ′ ,

L23 = L32 =− f0∂zug =
g
T0

∂yT ′ .

The matrix L is symmetric, because the geostrophic wind is divergence-free and be-
cause of the thermal wind relation in x and y direction.

The forcing vector B contains the beta effect, friction, and diabatic heating. It
results in

B=

⎛
⎝ − f0βug − rvg +D∇2vg

− f0βvg + rug −D∇2ug
gJ

cpT0

⎞
⎠ .

As the thermal wind relation must be maintained and the geostrophic wind has to
stay divergence-free, we also have at the relations

−Dg( f0∂xug) = Dg( f0∂y(vg)) , (B.47)

−Dg( f0∂zug) =
g
T0

Dg(∂yT ′) and (B.48)

Dg( f0∂zvg) =
g
T0

Dg(∂xT ′) , (B.49)

which in conjunction with (B.46) allow to derive diagnostics for ψψψa. Calculating the
cross-derivatives of the components of (B.46) appearing in (B.47)–(B.49), we can use
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the relations (B.47)–(B.49) do derive a diagnostic relation for ψψψa.The relations are

∂z(L21ua)+∂z(L22va)+∂z(L23w)−∂y(L31ua)−∂y(L32va)−∂y(L33w) =
=−∂zug∂y( f0vg)+∂zvg∂y( f0ug)+∂yug∂z( f0vg)−∂yvg∂z( f0ug)+∂zB2 −∂yB3 =

= 2 f0
∂ (ug,vg)

∂ (y,z)
+∂zB2 −∂yB3 = Qyz , (B.50)

∂x(L31ua)+∂x(L32va)+∂x(L33w)−∂z(L11ua)−∂z(L12va)−∂z(L13w) =
= +∂zug∂x( f0vg)−∂zvg∂x( f0ug)−∂xug∂z( f0vg)+∂xvg∂z( f0ug)−∂zB1 +∂xB3 =

= 2 f0
∂ (ug,vg)

∂ (z,x)
−∂zB1 +∂xB3 = Qzx and (B.51)

∂y(L11ua)+∂y(L12va)+∂y(L13w)−∂x(L21ua)−∂x(L22va)−∂x(L23w) =
=−∂yug∂x( f0vg)+∂yvg∂x( f0ug)+∂xug∂y( f0vg)−∂xvg∂y( f0ug)+∂yB1 −∂xB2 =

= 2 f0
∂ (ug,vg)

∂ (x,y)
+∂yB1 −∂xB2 = Qxy . (B.52)

We can now substitute the ageostrophic wind components with the definition of the
ageostrophic stream function to arrive at the combined diagnostic

M(ρ0ψψψa) = Q = (Qyz,Qzx,Qxy) (B.53)

with the entries of M being

M11 =−∂z(ρ−1
0 L22∂z)+∂z(ρ−1

0 L23∂y)+∂y(ρ−1
0 L32∂z)−∂y(ρ−1

0 L33∂y) ,

M12 =−∂x(ρ−1
0 L32∂z)+∂x(ρ−1

0 L33∂y)+∂z(ρ−1
0 L12∂z)−∂z(ρ−1

0 L13∂y) ,

M13 =−∂y(ρ−1
0 L12∂z)+∂y(ρ−1

0 L13∂y)+∂x(ρ−1
0 L22∂z)−∂x(ρ−1

0 L23∂y) ,

M21 =+∂z(ρ−1
0 L21∂z)−∂z(ρ−1

0 L23∂x)−∂y(ρ−1
0 L31∂z)+∂y(ρ−1

0 L33∂x) ,

M22 =+∂x(ρ−1
0 L31∂z)−∂x(ρ−1

0 L33∂x)−∂z(ρ−1
0 L11∂z)+∂z(ρ−1

0 L13∂x) ,

M23 =+∂y(ρ−1
0 L11∂z)−∂y(ρ−1

0 L13∂x)−∂x(ρ−1
0 L21∂z)+∂x(ρ−1

0 L23∂x) ,

M31 =−∂z(ρ−1
0 L21∂y)+∂z(ρ−1

0 L22∂x)+∂y(ρ−1
0 L31∂y)−∂y(ρ−1

0 L32∂x) ,

M32 =−∂x(ρ−1
0 L31∂y)+∂x(ρ−1

0 L32∂x)+∂z(ρ−1
0 L11∂y)−∂z(ρ−1

0 L12∂x) ,

M33 =−∂y(ρ−1
0 L11∂y)+∂y(ρ−1

0 L12∂x)+∂x(ρ−1
0 L21∂y)−∂x(ρ−1

0 L22∂x) .

Equation (B.53) describes three coupled three-dimensional elliptic equations that
must be inverted simultaneously. This can be seen as one four-dimensional inversion,
in which the fourth dimension comprises the components of ψψψa.
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