
 ISBN: 978-82-308-3436-7

doi: 10.5281/zenodo.33715

Efforts towards accessible and reliable bioinformatics

-ÁÔĭĤ +ÁÌÁĤ

Dissertation for the degree of Philosophiae Doctor (PhD)

Department of Informatics

University of Bergen

2015

2

This thesis is available under the Creative Commons Attribution-ShareAlike (CC BY-SA) 4.0 license,

with exception of the enclosed articles, and Fig. 1, 2, 3, 4.

http://creativecommons.org/licenses/by-sa/4.0
http://creativecommons.org/licenses/by-sa/4.0

3

Scientific environment

The work presented in this thesis has been carried out at the Computational Biology

Unit (CBU) at the Department of Informatics (II), Faculty of Mathematics and Natural

Sciences, University of Bergen. Until 2013, CBU was part of the Bergen Center for

Computational Science (later renamed to Uni Computing and recently Uni Research

Computing), a branch of Unifob (a research company majority-owned by the

University of Bergen, later renamed to Uni Research Ltd.). For the whole duration of

my PhD, I was affiliated with the Department of Informatics as my home institute. I

was affiliated also with the Molecular and Computational Biology research school

(MCB) at the University of Bergen. This thesis was supervised by Professor Inge

Jonassen at II and CBU, and co-supervised by Dr. Kjell Petersen at CBU and II, and Dr.

Pål Puntervoll at CBU (now at Uni Miljø/Uni Research Environment, Uni Research

Ltd.).

Parts of this work were performed in collaboration with the System administration

team led by Kristoffer Rapacki at the Center for Biological Sequence Analysis (CBS),

Department of Systems Biology, Technical University of Denmark (DTU); the IT

department and now the Center of Bioinformatics, Biostatistics and Integrative Biology

(C3BI) at the Institut Pasteur in Paris; the Research Group for Biomedical Informatics

at the Department of Informatics, Faculty of Mathematics and Natural Sciences,

University of Oslo and the Department of Tumor Biology, The Norwegian Radium

Hospital, /ÓÌÏ 5ÎÉÖÅÒÓÉÔÙ (ÏÓÐÉÔÁÌȠ 0ÅÔÅÒ 2ÉÃÅȭÓ 'ÒÏÕÐ ÁÎÄ ÔÈÅ 7ÅÂ

Production/External Services team led by Rodrigo Lopez at EMBL-EBI in Hinxton, UK;

the bioinformatics infrastructure team led by Christophe Blanchet at IBCP, CNRS, Lyon

(now at the Institut Français de Bioinformatique (IFB), Gif-sur-Yvette), the Advanced

Interfaces Group led by Steve Pettifer at the School of Computer Science, University of

-ÁÎÃÈÅÓÔÅÒȠ ÁÎÄ ÔÈÅ "ÕÒËÈÁÒÄ 2ÏÓÔȭÓ ÇÒÏÕÐ ÁÔ the Bioinformatics and Computational

Biology Department, Technische Universität München (TUM).

My work was funded by the Norwegian Research Council: projects eSysbio, FUGE

Bioinformatics Platform, and ELIXIR.NO. My research was partially connected with the

European projects EMBRACE, AllBio, and ELIXIR. In addition to these, my travels were

supported with occasional travel fellowships from the MCB (2010) and from the

European Conference on Computational Biology (2010, 2015), with contribution from

the International Society for Computational Biology (ISCB) and the Irish Government.

4

Acknowledgements

First of all, I would like to thank my awesome supervisor, Inge Jonassen, for always

having some great ideas, for good support but also enough freedom and trust in my

work, and for a lot of patience. I thank my co-supervisors Pål Puntervoll and Kjell

Petersen, with whom I worked closely, especially in the first years of my PhD, for

sharing a lot of experience in developing software for biology.

For fruitful collaborations I thank Jon Ison, Hervé Ménager and his colleagues, László

Kaján, Kristoffer Rapacki, Edita Karosiene, Sveinung Gundersen, Steve Pettifer,

Christophe Blanchet, Rodrigo Lopez, Gert Vriend, and Burkhard Rost and his Ȱ2ÏÓÔÉÅÓȱ.

In addition to interesting work, it was always massive fun spending time with you

guys, without which it would perhaps not work that well. The Debian Med and the

Open Bioinformatics Foundation folks kept sharing with me the grand ideas about

software development and science, and the awesome, friendly, and extremely

productive hacker community spirit: thank you Steffen Möller, Andreas Tille, Hilmar

Lapp, Brad Chapman, Jim Procter, Peter Cock, Nomi Harris, and others. I also need to

thank the providers of super-high-quality free software, freeware, and online tools that

substantially helped me with preparing this thesis, e.g. BibTeX, LaTeX, TeXworks,

CutePDF, Inkscape, Mozilla Firefox, Gadwin Print Screen, and GIMP.

I have to express enormous gratitude to my parents and grandparents ɀ all academics

ɀ ×ÈÏ ÁÂÓÏÌÕÔÅÌÙ ÕÎÉÎÔÅÎÔÉÏÎÁÌÌÙ ȰÌÅÄȱ ÍÅ ÔÏ ÁÃÁÄÅÍÉÁȟ ÄÅÓÐÉÔÅ ÔÈÅ ÓÕÓÔÁÉÎÉÎÇ

reluctance of both theirs and mine. This must have happened due to the early-on and

ubiquitously supported interests in nature, technology, and maths, and perhaps also

thanks to the absolute lack of business spirit in our family . After all the reluctance, I

have finally found an institute and a community I am happy to be part of.

This leads me to thanking the current and former CBUers, including but not limited to

)ÎÇÅȭÓȟ +ÊÅÌÌȭÓȟ ÁÎÄ 0âÌȭÓ ÇÒÏÕÐÓȟ ÆÏÒ ÆÏÒÍÉÎÇ Á ÖÅÒÙ ÈÅÔÅÒÏÇÅÎÅÏÕÓ ÂÕÔ ÁÌÓÏ ÖÅÒÙ ÃÏÓÙ

unit, with highly appreciated inter-disciplinary connections to other researchers in

Bergen (most mentionably Professors Rein Aasland, Anders Goksøyr, Mathias Ziegler

and Roger Strand), and beyond Bergen. Big thanks for a lot of help to our sysadmins:

Torbjørn, Loránd, Alex, and Stanislav. Particularly influential for this work was sharing

our software engineering ideas and a friendly team spirit, especially with Kidane,

Michi, Prabu, and Siv; and sharing additional ground-breaking fun and science,

especially with Anders, Animesh, Paweč, Simon, and Takaya. Hey bros! In addition to all

the entertainment, big thank you Sandhya for the intensive proofreading of this thesis

and grammar and style corrections at a short notice. And khob khun mak krub Tangmo,

the first and (so-far) last computational gynaecologist in Bergen, not only for help

improving my diet and the text of my thesis, but especially for sharing a cosy

bioinformaticsɂcomputational biology harmony.

5

Aims of the thesis

The aim of the presented work was contributing to making scientific computing more

accessible, reliable, and thus more efficient for researchers, primarily computational

biologists and molecular biologists. Many approaches are possible and necessary

towards these goals, and many layers need to be tackled, in collaborative community

efforts with well-defined scope. As diverse components are necessary for the

accessible and reliable bioinformatics scenario, our work focussed in particular on the

following:

In the BioXSD project, we aimed at developing an XML-Schema-based data format

compatible with Web services and programmatic libraries, that is expressive enough to

be usable as a common, canonical data model that serves tools, libraries, and users

with convenient data interoperability.

The EDAM ontology aimed at enumerating and organising concepts within

bioinformatics, including operations and types of data. EDAM can be helpful in

ÄÏÃÕÍÅÎÔÉÎÇ ÁÎÄ ÃÁÔÅÇÏÒÉÓÉÎÇ ÂÉÏÉÎÆÏÒÍÁÔÉÃÓ ÒÅÓÏÕÒÃÅÓ ÕÓÉÎÇ Á ÓÔÁÎÄÁÒÄ ȰÖÏÃÁÂÕÌÁÒÙȱȟ

enabling users to find respective resources and choose the right tools.

The eSysbio project explored ways of developing a workbench for collaborative data

analysis, accessible in various ways for users with various tasks and expertise. We

aimed at utilising the World-Wide-Web and industrial standards, in order to increase

compatibility and maintainability, and foster shared effort.

In addition to these three main contributions that I have been involved in, I present a

comprehensive but non-exhaustive research into the various previous and

contemporary efforts and approaches to the broad topic of integrative bioinformatics,

in particular with respect to bioinformatics software and services. I also mention some

closely related efforts that I have been involved in.

The thesis is organised as follows: In the Background chapter, the field is presented,

with various approaches and existing efforts. Summary of results summarises the

contributions of my enclosed projects ɀ the BioXSD data format, the EDAM ontology,

and the eSysbio workbench prototype ɀ to the broad topics of the thesis. The

Discussion chapter presents further considerations and current work, and concludes

the discussed contributions with alternative and future perspectives.

In the printed version, the three articles that are part of this thesis, are attached after

the Discussion and References. In the electronic version (in PDF), the main thesis is

optimised for reading on a screen, with clickable cross-references (e.g. from citations

in the text to the list of References) and hyperlinks (e.g. for URLs and most References).

A PDF viewÅÒ ×ÉÔÈ ȰÂÁÃËȰ ÆÕÎÃÔÉÏÎ ÉÓ ÒÅÃÏÍÍÅÎÄÅÄ.

6

Table of contents

Scientific environment .. 3

Acknowledgements .. 4

Aims of the thesis .. 5

Contributi ons included in the thesis ... 7

Other contributions ... 8

1 Background ... 10

1.1. Bioinformatics is an integral component of life sciences ... 10

1.2. The community of creative chaos .. 12

1.3. Efforts in mitigating the chaos .. 15

 Installable applications... 17

 Toolkits ... 17

 Interactive graphical user interfaces .. 19

 Web applications... 21

 Programming libraries ... 26

 Web services ... 29

 Catalogues, registries, and repositories ... 32

 Workbenches .. 35

 System distributions .. 39

1.4. Standardising information and data representation.. 41

 Data formats ... 41

 Vocabularies and ontologies .. 43

 Metadata standards and provenance .. 44

1.5. Sharing experience and effort ... 46

2 Summary of results ... 47

2.1. BioXSD ɀ a data model for basic bioinformatics data .. 47

2.2. EDAM ɀ the ontology of bioinformatics data and methods ... 50

2.3. eSysbio ɀ a workbench prototype for accessible globally-distributed bioinformatics 53

3 Discussion ... 57

3.1. Presence and future of BioXSD ... 57

3.2. Presence and future of EDAM.. 59

3.3. Heritage of eSysbio .. 61

3.4. Additional concluding remarks .. 65

References .. 66

7

Contributions included in the thesis

Article I

-ÁÔĭĤ +ÁÌÁĤȟ 0âÌ 0ÕÎÔÅÒÖÏÌÌȟ !ÌÅØÁÎÄÒÅ *ÏÓÅÐÈȟ %ÄÉÔÁ "ÁÒÔÁĤÅÖÉéÉıÔõ (now Karosiene), Armin Töpfer,

Prabakar Venkataraman, Steve Pettifer, Jan Christian Bryne, Jon Ison, Christophe Blanchet, Kristoffer

Rapacki, and Inge Jonassen (2010) . BioXSD: the common data-exchange format for everyday

bioinformatics web services. Bioinformatics, 26(18): i540ɀi546. 10.1093/bioinformatics/btq391

I have developed the BioXSD data model from analysing a wide variety of bioinformatics tools, exchange formats,
and collaborŀǘƻǊǎΩ requirements, coded and maintained the XML Schema and build scripts, examples, web page,
and programmed the test workflow. I wrote the manuscript with edits from the co-authors.

Article II

Jon Ison, -ÁÔĭĤ +ÁÌÁĤ, Inge Jonassen, Dan Bolser, Mahmut Uludag, Hamish McWilliam, James Malone,

Rodrigo Lopez, Steve Pettifer, and Peter Rice (2013) . EDAM: An ontology of bioinformatics operations,

types of data and identifiers, topics, and formats. Bioinformatics, 29(10): 1325ɀ1332.
10.1093/bioinformatics/btt113

I have contributed to the conceptual design and the development and maintenance of EDAM, led by Jon Ison. I
implemented the content negotiation at edamontology.org, EDAM usage in eSysbio, and the semantic annotation
with EDAM in BioXSD; and administer the website. I led the work on the manuscript, written together with Jon,
Steve, and Inge.

Article III

Kidane Tekle, Håkon Sagehaug, Prabakar Venkataraman, Armin Töpfer, -ÁÔĭĤ +ÁÌÁĤȟ 0Á×Åč

Sztromwasser, Anne-Kristin Stavrum, Siv Midtun Hollup, Michael Dondrup, Sattanathan Subramanian,

Francisco Roque, Inge Jonassen, Kjell Petersen, and Pål Puntervoll (Unpublished) . eSysbio: a

workbench proposal for collaborative computational biology. Manuscript in preparation.

I contributed to the design of eSysbio conceptually ς in particular from the usability and maintainability
viewpoints ς and by analysing use cases and other requirements from the potential community. I implemented
the usage of a subset of EDAM, developed the Web Service Interaction Ontology (WSIO), comprehensively
explored related systems and efforts, tested the eSysbio prototype workbench regularly, and contributed to the
manuscript.

http://bioinformatics.oxfordjournals.org/content/26/18/i540.full
http://bioinformatics.oxfordjournals.org/content/26/18/i540.full
http://dx.doi.org/10.1093/bioinformatics/btq391
http://bioinformatics.oxfordjournals.org/content/29/10/1325.full
http://bioinformatics.oxfordjournals.org/content/29/10/1325.full
http://dx.doi.org/10.1093/bioinformatics/btt113
http://edamontology.org/

8

Other contribution s

All articles are freely available (open access). ! ŎƭƛŎƪ ƻƴ ŀƴ ŀǊǘƛŎƭŜΩǎ ǘƛǘƭŜ or DOI will open the underlying link.

Steve Pettifer, Jon Ison, -ÁÔĭĤ +ÁÌÁĤ, Dave Thorne, Philip McDermott, Inge Jonassen, Ali Liaquat, José

M Fernández, Jose M Rodriguez, David G Pisano, Christophe Blanchet, Mahmut Uludag, Peter Rice,

Edita "ÁÒÔÁĤÅÖÉéÉıÔõ ɉÎÏ× +ÁÒÏÓÉÅÎÅɊ, Kristoffer Rapacki, Maarten Hekkelman, Olivier Sand, Heinz

Stockinger, Andrew B Clegg, Erik Bongcam-Rudloff, Jean Salzemann, Vincent Breton, Teresa K

Attwood, Graham Cameron, and Gert Vriend (2010) . The EMBRACE web service collection. Nucleic

Acids Res., 38(suppl 2,W1): W683ɀW688. 10.1093/nar/gkq297

As an active participant in the EMBRACE project, I developed BioXSD, wrote the corresponding part of the
manuscript, and contributed to the design and later development of EDAM.

Sveinung Gundersen, MatĭĤ +ÁÌÁĤ, Osman Abul, Arnoldo Frigessi, Eivind Hovig, and Geir K Sandve

(2011) . Identifying elemental genomic track types and representing them uniformly. BMC

Bioinformatics, 12(1): 494. 10.1186/1471 -2105-12-494

I contributed to the design of the GTrack format, and improved BioXSD into version 1.1 based on similar
optimisation tactics as in GTrack. I wrote parts of the manuscript.

Tomas Klingström, Larissa Soldatova, Robert Stevens, Erik T Roos, Morris A Swertz, Kristian M Müller,

-ÁÔĭĤ +ÁÌÁĤ, Patrick Lambrix, Michael J Taussig, Jan-Eric Litton, Ulf Landegren, and Erik Bongcam-

Rudloff (2013) . Workshop on laboratory protocol standards for the molecular methods database. N.

Biotechnol., 30(2): 109ɀ113. 10.1016/j.nbt.2012.05.019

I contributed with ideas for the standardisation of description and provenance of sample processing protocols,
and shared our experience from EMBRACE, BioXSD, and EDAM.

Geir K Sandve, Sveinung Gundersen, Morten Johansen, Ingrid K Glad, Krishanthi Gunathasan, Lars

Holden, Marit Holden, Knut Liestøl, Ståle Nygård, Vegard Nygaard, Jonas Paulsen, Halfdan Rydbeck,

Kai Trengereid, Trevor Clancy, Finn Drabløs, Egil Ferkingstad, -ÁÔĭĤ +ÁÌÁĤ, Tonje Lien, Morten B Rye,

Arnoldo Frigessi, and Eivind Hovig (2013) . The Genomic HyperBrowser: an analysis web server for

genome-scale data. Nucleic Acids Res., 41(suppl 2,W1): W133ɀW141. 10.1093/nar/gkt342

I contributed to the design of the core data format used by HyperBrowser, the GTrack.

Steffen Möller, Enis Afgan, Michael Banck, Peter JA Cock, -ÁÔĭĤ +ÁÌÁĤ, László Kaján, Pjotr Prins,

Jacqueline Quinn, Olivier Sallou, Francesco Strozzi, Torsten Seemann, Andreas Tille, Roman Valls

Guimera, Toshiaki Katayama, and Brad Chapman (2013) . Sprints, Hackathons and Codefests as

community gluons in computational biology. EMBnet.J., 19(B): 40ɀ42. 10.14806/ej.19.B.726

and

Steffen Möller, Enis Afgan, Michael Banck, Raoul JP Bonnal, Timothy Booth, John Chilton, Peter JA Cock,

Markus Gumbel, Nomi Harris, Richard Holland, -ÁÔĭĤ +ÁÌÁĤ, László Kaján, Eri Kibukawa, David R

Powell, Pjotr Prins, Jacqueline Quinn, Olivier Sallou, Francesco Strozzi, Torsten Seemann, Clare

Sloggett, Stian Soiland-Reyes, Sascha Steinbiss, Andreas Tille, Anthony J Travis, Roman Valls Guimera,

Toshiaki Katayama, and Brad Chapman (2014) . Community-driven development for computational

http://nar.oxfordjournals.org/content/38/suppl_2/W683.full
http://dx.doi.org/10.1093/nar/gkq297
http://www.biomedcentral.com/1471-2105/12/494
http://dx.doi.org/10.1186/1471-2105-12-494
http://www.sciencedirect.com/science/article/pii/S1871678412001215
http://dx.doi.org/10.1016/j.nbt.2012.05.019
http://nar.oxfordjournals.org/content/41/W1/W133.full
http://nar.oxfordjournals.org/content/41/W1/W133.full
http://dx.doi.org/10.1093/nar/gkt342
http://journal.embnet.org/index.php/embnetjournal/article/view/726/998
http://journal.embnet.org/index.php/embnetjournal/article/view/726/998
http://dx.doi.org/10.14806/ej.19.B.726
http://www.biomedcentral.com/1471-2105/15/S14/S7

9

biology at Sprints, Hackathons and Codefests. BMC Bioinformatics, 15(Suppl 14): S7. 10.1186/1471 -2105-15-

S14-S7

As a regular participant in the Open-Bio Codefests and the Debian Med Sprints, I channelled the coƳƳǳƴƛǘȅΩǎ
requirements, ideas, and spirit into BioXSD and EDAM, in turn contributing with ideas and promotion to other
related projects, and with edits to these two manuscripts.

Toshiaki Katayama, Mark D Wilkinson, Kiyoko F Aoki-Kinoshita, Shuichi Kawashima, Yasunori

Yamamoto, Atsuko Yamaguchi, Shinobu Okamoto, Shin Kawano, Jin-Dong Kim, Yue Wang, Hongyan

Wu, Yoshinobu Kano, Hiromasa Ono, Hidemasa Bono, Simon Kocbek, Jan Aerts, Yukie Akune, Erick

Antezana, Kazuharu Arakawa, Bruno Aranda, Joachim Baran, Jerven Bolleman, Raoul JP Bonnal, Pier

Luigi Buttigieg, Matthew P Campbell, Yi-an Chen, Hirokazu Chiba, Peter JA Cock, K Bretonnel Cohen,

Alexandru Constantin, Geraint Duck, Michel Dumontier, Takatomo Fujisawa, Toyofumi Fujiwara,

Naohisa Goto, Robert Hoehndorf, Yoshinobu Igarashi, Hidetoshi Itaya, Maori Ito, Wataru Iwasaki,

-ÁÔĭĤ +ÁÌÁĤ, Takeo Katoda, Taehong Kim, Anna Kokubu, Yusuke Komiyama, Masaaki Kotera, Camille

Laibe, Hilmar Lapp, Thomas Lütteke, M Scott Marshall, Takaaki Mori, Hiroshi Mori, Mizuki Morita,

Katsuhiko Murakami, Mitsuteru Nakao, Hisashi Narimatsu, Hiroyo Nishide, Yosuke Nishimura, Johan

Nystrom-Persson, Soichi Ogishima, Yasunobu Okamura, Shujiro Okuda, Kazuki Oshita, Nicki H Packer,

Pjotr Prins, Rene Ranzinger, Philippe Rocca-Serra, Susanna Sansone, Hiromichi Sawaki, Sung-Ho Shin,

Andrea Splendiani, Francesco Strozzi, Shu Tadaka, Philip Toukach, Ikuo Uchiyama, Masahito Umezaki,

Rutger Vos, Patricia L Whetzel, Issaku Yamada, Chisato Yamasaki, Riu Yamashita, William S York,

Christian M Zmasek, Shoko Kawamoto, and Toshihisa Takagi (2014) . BioHackathon series in 2011

and 2012: penetration of ontology and linked data in life science domains. J. Biomed. Sem., 5(1): 5.
10.1186/2041-1480-5-5

As a participant in the 4th BioHackathon, in 2011, I improved the compatibility of EDAM and BioXSD with the
Semantic Web, and contributed with my bits to the manuscript.

László Kaján, Thomas A Hopf, -ÁÔĭĤ +ÁÌÁĤ, Debora S Marks, and Burkhard Rost (2014) . FreeContact:

fast and free software for protein contact prediction from residue co-evolution. BMC Bioinformatics,

15(1): 85. 10.1186/1471-2105-15-85

I helped with designing the interoperability of FreeContact, improved BioXSD according to the corresponding
requirements, and provided ideas and edits to the manuscript.

Hervé Ménager, -ÁÔĭĤ +ÁÌÁĤ, Kristoffer Rapacki, and Jon Ison (2015) . Using registries to integrate

bioinformatics tools and services into workbench environments. Int. J. Softw. Tools Technol. Transfer.
10.1007/s10009-015-0392-z

I contributed with initial ideas to these efforts and contributed to the manuscript.

-ÁÔĭĤ +ÁÌÁĤ. WSIO (Web Service Interaction Ontology). http://wsio.org

I developed WSIO in order to facilitate automated invocation of Web services that deal with large data or time-
consuming computation, based on the requirements of the EMBRACE and eSysbio projects, and open to future
requirements and developments.

Jon Ison, -ÁÔĭĤ +ÁÌÁĤ, Peter Rice. DRCAT (Data Resource CATalogue). http://drcat.sourceforge.net

DRCAT (pronounced άDoctor Catέ) is a semantically annotated catalogue of web-accessible bioinformatics
databases developed by Jon based on previous work of Christopher {ƻǳǘƘŀƴΣ ǿƛǘƘ tŜǘŜǊΩǎ and my contribution.

http://www.biomedcentral.com/1471-2105/15/S14/S7
http://dx.doi.org/10.1186/1471-2105-15-S14-S7
http://dx.doi.org/10.1186/1471-2105-15-S14-S7
http://www.jbiomedsem.com/content/5/1/5
http://www.jbiomedsem.com/content/5/1/5
http://dx.doi.org/10.1186/2041-1480-5-5
http://www.biomedcentral.com/1471-2105/15/85
http://www.biomedcentral.com/1471-2105/15/85
http://dx.doi.org/10.1186/1471-2105-15-85
http://link.springer.com/article/10.1007/s10009-015-0392-z
http://link.springer.com/article/10.1007/s10009-015-0392-z
http://dx.doi.org/10.1007/s10009-015-0392-z
http://wsio.org/
http://wsio.org/
http://drcat.sourceforge.net/
http://drcat.sourceforge.net/

10

1 Background

The Background chapter of this thesis first briefly introduces the field of bioinformatics

to a non-bioinformatician reader, and then outlines the main sources of accessibility

and reliability problems with bioinformatics tools and data. Example approaches and

efforts towards more accessible and reliable bioinformatics are presented throughout

the rest of the chapter. For an interested reader, I can recommend Attwood et al. (2011)

as one of interesting historical overviews of bioinformatics from the point of view of

bioinformatics databases, or Hogeweg (2011) for her story of bioinformatics since the

beginning.

1.1. Bioinformatics is an integral component of life science s

Life sciences is an umbrella term covering a whole range of research disciplines about

living organisms. With biology as the central component, life sciences include also

fields such as ecology, medical research, pharmacology, and biotechnology. The

research in life sciences focuses on topics including evolution, health and disease,

ecosystems, ÌÉÆÅȭÓ ÄÉÖÅÒÓÉÔÙȟ genotype, phenotype, and their variations, mechanisms of

life, and their applications in technology. To enable answering questions about these

topics, and to organise the life-scientific knowledge, detailed information is being

recorded about species and their relations, anatomy and development, of genes,

proteins, other molecules, their interactions and functions, of whole genomes of

species, and metagenomes of ecosystems.

Successive innovations in measuring and imaging technologies are enabling a massive

growth in volume, quality, and diversity of produced biological data on the molecular

level, reaching from fully sequenced genomes of species or individuals, through

structures and movements of proteins and other molecules, to details about

interactions between various kinds of molecules and elements in genomes. Epigenetic

and phenotypic properties of living organisms are being captured under certain

conditions: for example the expression levels of genes, or concentrations of various

kinds of molecules under a given condition.

11

Bioinformatics is the discipline dedicated to computational processing, analysis,

storage, and representation of biological data, mostly on the molecular level.

Bioinformatics has over the last decades become an integral component of research in

the fields of molecular biology, medicine, pharmacology, ecology, and biotechnology, in

particular in cases of research where the amount of analysed data demands high-

throughput computational processing. The post-paradigmatic, interdisciplinary nature

of ÔÏÄÁÙȭÓ life-scientific research demands diverse expertise and methods to be

developed and applied. The involved disciplines include biology, chemistry, and

medicine, but also physics, mathematics including statistics and dynamic systems, and

informatics including e.g. data management, algorithmics, software engineering, high-

performance computing, machine learning, or text mining. Occasionally, cross-

disciplinary life-scientific research reaches out even to disciplines such as

environmental, social, Earth, or space sciences, law, ethics, linguistics, or philosophy.

Bioinformatics itself focuses on developing and applying algorithms, mathematical,

and statistical methods to process molecular-biological data obtained from lab, bench,

or field studies, in order to find answers to challenging scientific or technological

questions. Types of data being processed include for example sequences and 3D

structures of macromolecules such as DNA, RNA, proteins, their parts or complexes,

microscope images, or measured concentrations of certain types of molecules or

sequences. In addition to analysing laboratory data, bioinformaticians have a central

role in producing, publishing, and maintaining derived data of scientific interest, such

as annotations of loci in genomes, genes and gene products with their features and

relations, alignments of related sequences or structures, evolutionary trees, or

networks of interacting genes and molecules, with their systemic properties.

Other inter-disciplinary fields overlap with bioinformatics to a notable extent. Without

trying to fully define them, example relations include:

¶ Computational biology . The terms computational biology and bioinformatics

are often used interchangeably as close synonyms. On the other hand, they are

sometimes distinguished along the lines of bioinformatics being the discipline of

developing computational tools for biology and storing biological data, while

computational biology being the discipline of developing analytical methods,

applying tools, and using data for concrete biological research. In practical

terms, however, these directions are developed together and can hardly be

separated. The blurred distinction between bioinformatics and computational

biology can be illustrated with two of the main bioinformatics and

computational biology conferences ɀ the Intelligent Systems in Molecular Biology

and the European Conference on Computational Biology ɀ both publishing their

proceedings in the journal Bioinformatics (Lengauer 1999, 2002, Devignes and

Moreau 2014, Moreau and Beerenwinkel 2015).

12

¶ Genomics (or genome biology) is the study of whole genomes including the

sequences, relations between genes, mechanisms of gene regulation, evolution,

and variation. In line with genomics, other omics disciplines focus on complete

repertoires of different kinds of biological molecules or mechanisms, as fields of

study or as measurement and recording methods. For example proteomics

measures the repertoire of proteins present in a sample, and metabolomics the

small molecules, metabolites. Complementing genomics, epigenomics studies

the information not included in the genomic sequence itself, but in histone

modifications and DNA methylation.

¶ Systems biology studies networks of interacting molecules or other agents in a

cell, a cell compartment, tissue, organism, or ecosystem. These networks are

typically modelled as mathematical dynamic systems, and the dynamic

properties of the involved molecules and other measures are analysed and

simulated computationally. One may for example predict concentration of a

certain chemical constituent in a given system under given circumstances.

¶ Biostatistics is the statistical component of designing experiments, analysing

and interpreting data, and doing predictions within biological disciplines.

¶ Cheminformatics intersects with bioinformatics when it comes to information

about chemical compounds present in living organisms, e.g. to cataloguing their

properties, or inferring their structure.

¶ Immunoinformatics ɀ or computational immunology ɀ applies computational

methods including bioinformatics and genomics in immunology.

1.2. The community of creative chaos

With exception of a few bigger institutes, the bioinformatics community is spread over

thousands of independent research groups around the world. These are based at

various departments and institutions, most frequently academic, and may be co-

located with diverse related research disciplines: typically biology, medicine,

biochemistry, computer science, scientific computing, or mathematics, but possibly

also with other fields such as geology, marine and water research, or biotechnology.

Having the broad common goal of exploring biological mechanisms, researchers have

recorded numerous petabytes of data and developed thousands of software tools.

Large amounts of data have been collated in freely accessible public databases,

provided and maintained by different groups and institutes. The Nucleic Acids Research

ÊÏÕÒÎÁÌȭÓ Molecular Biology Database Collection lists in 2015 more than 1500 diverse

bioinformatics databases that are available to all researchers and to the general public

13

(Burks 1999, Baxevanis 2000, Fernández-Suárez et al. 2014, Galperin et al. 2015). Moreover, in

addition to the public databases, many research groups and companies maintain their

own private databases dedicated to their research.

The researchers and enthusiasts within the bioinformatics community keep

developing software tools which encapsulate diverse novel algorithms for processing

different kinds of biological data. A majority of these tools is either free and open-

source, or at least freely available to academic users or in fact to everyone. The

SEQanswers web portal currently includes informati on about almost 700 software

tools (Li et al. 2012a). It covers primarily tools for processing sequencing data, and this

list is far from being exhaustive.

The story of bioinformatics, however, does not end at developing and using individual

tools and databases, but that is rather where it all starts! A bioinformatics (or rather

computational biology) analysis needs to combine various steps, using multiple tools

and databases. The complete or partial work flow of analysing certain data, with a

certain scientific goal in mind, is referred to as an analysis workflow . Some workflows

or their parts can be fully automated in the form of a computer program or script,

running without user interaction from the initial inputs to the final outputs. Automated

workflows are sometimes called also pipelines, but such distinction is not universally

established and switched meanings occur, therefore I will avoid the term in the rest of

the text. Other parts of workflows that are not automated may include interactive use

of software tools or Ȱmanualȱ processing.

Analysis of biological data demands both the integration of different types and

sources of data, and the integration of diverse software tools. In a particular workflow,

the different types of data that are integrated may originate from various in vivo and in

vitr o sources, measured or imaged by various technologies, and represented in

different formats. In addition, data generated within a particular project are usually

compared with data stored in various public or private databases. Diverse

computational tools need to be combined while processing the data, often together

with steps of manual inspection and handling of the data, trials and errors in designing

the workflows themselves, and finding the most appropriate parameters of the

involved tools.

Additional special-purpose scripts often need to be written for automating particular

parts of the analyses. In contrast to multi-purpose software tools, scripts usually aim at

fitting a very specific situation. Scripts are often used, for example, in statistical

analyses, such as when comparing various data values and finding significant

differences, in graphical plotting of intermediate or final results, in data parsing,

filtering , and editing.

In many cases, the software tools used in a workflow may run ÏÎ ÔÈÅ ÕÓÅÒȭÓ ÐÅÒÓÏÎÁÌ

computer. However, a steadily growing portion of life-scientific research demands high

14

throughput of data analysis. In high-throughput analyses, certain steps of the

workflow s require time- and resource-consuming computation on powerful

supercomputers and with large databases. The high-performance computational

resources, in similar fashion to the databases, are provided by certain institutes as

services that are available to a limited group of local users or publicly, accessible via a

local network or the World Wide Web. In summary, bioinformatics workflows require

data integration, integration of software tools, scripts, computational resources,

services, and databases.

The self-organising character of the heterogeneous bioinformatics community, and the

fast responses to emerging technologies, have been resulting in high productivity of

novel data and scientific knowledge, accompanied by massive productivity of tools

which have been enabling tremendous progress in life sciences. Although there are

thousands of bioinformatics tools, databases, and other resources freely available to

the whole community, they are not necessarily easy to find, use, compare, evaluate,

and integrate with each other in order to find the best and most appropriate and fit

them into the researcherÓȭ ×ÏÒËÆÌÏ×ÓȢ Researchers analysing biological data spend a

substantial portion of their time navigating through the existing Ȱcreative chaosȱ ɉÁÓ

coined by Stein 2002) and adapting to it . The downside of the creative freedom has

been that the tools from different researchers come in very different forms, flavours,

and qualities.

Chasms exist between the quality of documentation, between the ways of distribution,

and between the degrees of usability ranging from the few user-friendly tools to ones

no one except the author can use. Importantly, computational tools can be available

with various types of interfaces , for example graphical user interface, command-line

interface, web application, plugin to another application, or a programming librar y.

Different types of tool interfaces are useful in different scenarios, and are described in

the next section, 1.3 Efforts in mitigating the chaos (p.15). Unfortunately, many tools are

only available with one type of interface, and in order to use them in a different way, an

additional effort must be made of wrapping them with another interface.

In addition, the input data that are consumed by tools and the output data that are

produced, or that can be extracted from distinct databases, vary hugely in the format in

which they are represented. Even when common formats are used, they can be used in

different ways, due to the flexibility of the formats. Also, the nomenclature inside the

data may be used differently and thus cause possibly different understandings. Last

but not least, major differences are usual in the presence and detail of accompanying

metadata, affecting the practical reliability of the data. Efforts in standardising the

representation of information are described in a dedicated section, 1.4 Standardising

information and data representation (p.41).

Together with integration of tools and data, there is another crucial area of integration

challenges: the integration of people, who are the users of bioinformatics tools,

15

producers of data, or providers of tools. One side is the Ȱhuman-tool integrationȱ,

where qualities of the tools ɀ such as accessibility and usability ɀ turn into either

efficiency or effortfulness of the research. This is even more important for those

prospective users of bioinformatics tools who are not computer specialists, such as

biologists or medical doctors. Also non-researchers, for example secondary-school

students, should be able to access and use the most basic publicly available biological

data and bioinformatics tools. Another side is the Ȱintegrationȱ of people with each

other, that is enabling efficient collaboration between scientists, and between

specialists in diverse disciplines. Broad collaborations are exemplified in section 1.5

Sharing experience and effort, p.46.

1.3. Efforts in mitigating the chaos

To enable researchers to utilise the abundance of diverse computational tools and data

resources more efficiently, several tactics and projects have been developed that focus

on improving the accessibility and reliability of the involved tools and data resources.

With the umbrella terms of accessibility and reliability, let us encompass broad and

overlapping ranges of quality aspects of tools and data, outlined in the following

paragraphs. For computational tools, these are also called non-functional requirements

or quality attributes.

Accessibility can in a broad sense cover a set of interconnected qualit ies such as:

¶ Usability. Tools with good usability are user-friendly, efficient to work with and

ergonomic. They minimise mistakes, and have low barrier to learn how to use

them. Usability design of a particular tool can focus on a particular type of user

and usage scenario.

¶ Availability. Means that tools can be downloaded, installed, and used; or

accessed on a server with good response time and sufficient computational

power. The usage should be affordable, ideally for free, for all scientists and the

general public. Free and open-source software can by definition be used, studied,

modified, and re-distributed freely (Stallman 1986, Perens 1997, 1999).

¶ Interoperability and compatibility refer to the smoothness of setup and use

together with other tools and systems (integration): software, hardware,

operating systems, programming languages, web browsers, or different types of

interfaces (e.g. interactive graphical, programmatic, or command shell). Worth

emphasising is the ease of using different tooÌÓ ÔÏÇÅÔÈÅÒ ÉÎ Á ȰÍÁÎÕÁÌȱ ÏÒ

automated workflow , and of replacing a tool in a workflow with another .

16

¶ Documentation available in good quality, and all necessary information easily

findable (the documentation, binaries, source code, web locations). A relevant

tool or resource should be findable for potential users that have not heard about

it before.

¶ Flexibility allowing unexpected usage scenarios. This is often referred to as re-

usability. Flexible tools are efficiently usable by different types of users,

smoothly in different scenarios. Scalability, maintainability (ease of keeping the

toolȭÓ ÆÕÎÃÔÉÏÎÁÌÉÔÙȟ ÉÔÓ ÉÎÓÔÁÌÌÁÔÉÏÎȟ ÁÎÄ ÄÅÐÅÎÄÅÎÃÉÅÓ up to date), and

possibilities to extend and contribute to further development can be mentioned

as separate qualities related to flexibility.

Reliability is desired with respect to scientific results, data and conclusions, and tools.

A high level of reliability can be achieved by satisfying a number of related qualities

including:

¶ Transparency of results, computations, algorithms, efficiency, assumptions, of

the development and maintenance process, and of weak points. Good

transparency can enable reproducibility, and can be facilitated by recording

provenance (the history of data), by availability and good quality of source code,

and by sharing information that is not sensitive.

¶ Confidence and evidence supported by extensive, well-targetted testing and

statistical evaluation, and comparability with similar tools or results.

¶ Reliable tools and resources should be well maintained, stable but up to date and

non-volatile in functionality and availability (durable), with good versioning,

updating, bug-fixing, and user support; free of unwanted side effects or

unexpected behaviour; and well compared with related tools, possibly using

some benchmarks.

Reliability and accessibility are naturally closely related. Documentation, scalability,

interoperability, flexibility , source code availability and quality, robustness (with

respect to parameter settings, improper use, high load, or failure), or openness for

community participation , can all contribute to both accessibility and reliability of a tool

or data resource. For example documentation and evidences ɀ which may include

example applications or benchmarks ɀ may advertise a resource in a transparent,

reliable way, thus improving its visibility to potential users. Another example, free and

open-source software is available for use, with a good chance to be flexible, well-

maintained, and reliable thanks to openness to modification and re-distribut ion and

transparent due to its available source code. In the best case, the whole development of

a particular software can be transparent and participatory, improving reliability of the

developed software, and fulfilling ÔÈÅ ÃÏÍÍÕÎÉÔÙȭÓ ÒÅÑÕÉÒÅÍÅÎÔÓ. As a fundamental

principle, tactics for making bioinformatics more accessible and reliable do focus on

the user. The rest of this section lists a number of main approaches to targeting these

various quality aspects of bioinformatics tools, together with examples where they are

applied. In this way, a non-exhaustive overview of existing efforts is presented.

17

Approaches related to mitigating the chaos within bioinformatics data are presented in

the next section, 1.4 Standardising information and data representation (p.41), while a

short section on collaborations (1.5 Sharing experience and effort, p.46) closes the

Background chapter.

Installable applications

Application software may be available for users to download and install onto their

personal computers or their ÉÎÓÔÉÔÕÔÉÏÎȭÓ ÓÅÒÖÅÒÓȢ As the ultimate examples, the all-

time most popular bioinformatics tools, Clustal and BLAST, thank their enormous

proliferation to bei ng free and open-source , easy to compile and install in all main

operating systems and hardware, well documented (both algorithms and

implementations), having user support , and being continuously maintained and

improved until today (Higgins and Sharp 1988, Higgins et al. 1992, Thompson et al. 1994,

1997, Larkin et al. 2007, Sievers et al. 2011 for Clustal; and Altschul et al. 1990, 1997, Camacho

et al. 2009 for BLAST).

As an interesting remark, rumours say that the MULTAL algorithm and its

implementation (Taylor 1988) was at least comparably fast and accurate as Clustal at

the time, but did not gain users possibly due to the lack of accessibility and support.

Although MULTAL was free to use and available with its source code, it could still be

considered a great academic prototype, as opposed to Clustal being an extensively

supported and maintained production software. Source code that is available and in

good quality, well-documented, with build scripts, easy to install, update, or use in

other applications and on all main operating systems, with continuous improvements,

and a well-supported user community naturally increase the transparency and

reliability of the given software, thus attracting more and more confiding users. As

opposed to applications available only remotely, locally-installable software is usable

also within isolated computational resources handling sensitive data , where all or

most of remote access is blocked.

Toolkits

To make software more visible to the users, and easier to install, manage

dependencies, and use, many tools are provided together as toolkits, called also

software suites. Tools within a suite are usually developed together, or following

shared guidelines, have similar interfaces, and are nicely compatible among

themselves, covering a certain domain of research. That means that they are easily

18

usable together in analysis workflows. Developing tools together as a toolkit , if

designed carefully, may also make it easier to develop them further, which is a feature

of good maintainability .

The University of Wisconsin Genetics Computer Group software suite, also known as

GCG or the Wisconsin Package (Devereux et al. 1984, Womble 1999a), was a toolkit that

included implementations of the classical optimal sequence alignment algorithms

(Needleman and Wunsch 1970, Smith and Waterman 1981), together with many other tools

for analysis of nucleotide and amino-acid sequences. Although initially with public

funding from NIH, GCG was developed at the University of Wisconsin as a commercial

software with 50% discount for non-profit users, and gained broad popularity. Owned

by the Genetic Computer Group Inc. and later Accelrys, GCG became obsolete and no

longer maintained or supported since 2008. As a free, open-source alternative to GCG,

the development of the European Molecular Biology Open Software Suite (EMBOSS,

Rice 1998, Rice et al. 2000) started in 1998 based on the work on previous GCG

extensions (GCGEMBL and EGCG, Rice et al. 1995, 1996), backed by the EMBnet

community (Doelz 1992, Harper 1996, D'Elia et al. 2009) and initially funded by the

Wellcome Trust. Providing hundreds of tools mostly for molecular sequence analysis,

EMBOSS was further developed until recently (http:// emboss.sourceforge.net/developers/

changelog.html), and is still widely used today.

Classical examples of bioinformatics toolkits include also the Staden Package for

sequence analysis and assembly (Staden 1977, 1978, 1979, 1986, 1996, Staden et al. 1999),

PHYLIP for phylogenetics (Felsenstein 1981, 1985, 1989), WHAT IF for molecular

structure analysis and modelling (Vriend 1990), the Vienna RNA Package for RNA

structure modelling and analysis (Hofacker et al. 1994, Gruber et al. 2008, Lorenz et al.

2011), or Gromacs for molecular dynamics (Berendsen et al. 1995, van der Spoel et al. 2005,

Hess et al. 2008, Pronk et al. 2013). More recent examples include the highly popular

SAMtools for handling and analysis of aligned sequencing reads (Li et al. 2009), or

GenomeTools developed at the University of Hamburg, which comprise genome

analysis tools published separately but available as a coherent toolkit (Gremme et al.

2013).

Notably, there is no clear distinction between single software tools and software

toolkits. On one hand, each software toolkit can be considered a coherent tool. On the

other hand, a particular tool often provides different algorithms for alternative options

and for different kinds of input data or usage scenarios, such as in BLAST, especially

since the introduction of the re-implemented BLAST+ suite (Camacho et al. 2009).

http://emboss.sourceforge.net/developers/changelog.html
http://emboss.sourceforge.net/developers/changelog.html

19

Interactive graphical user interfaces

Application software can be available as executables that read parameters and input

data, run the computation, write the output , and close the execution. Also called

command-line tools or programs, these can be executed in a command shell or within a

script.

Some applications are on the other hand ɀ or in addition ɀ equipped with an

interactive graphical user interface (GUI), enabling interactive graphical visualisation.

Once the graphical user interface is executed, it awaits a succession of user

interactions, based most typically on using a pointing device instead of typing

commands. Interactive graphical user interfaces thus increase usability and

transparency in scenarios where interactive visualisation is beneficial, and

accessibility for users that prefer not to type commands or write scripts.

As graphic displays were becoming affordable during the 1980s, interactive graphical

visualisation tools started proliferating into bioinformatics, such as within the Staden

(Staden 1982, 1984, 1990, Gleeson and Staden 1991) and WHAT IF (Vriend 1990) toolkits .

While at the time of the first publication GCG offered graphics only as output printed

by plotters (Devereux et al. 1984), graphical output on displays became available soon

after. The interactive GUI was, however, introduced into the GCG toolkit only in the

1990s in form of the Wisconsin Package Interface (WPI) for the X Window System,

followed by SeqLab (Womble 1999a).

Despite of the algorithms for automated alignment of multiple sequences, it turned out

early-on that they need to be complemented with visualisation and Ȱmanualȱ editing.

Editing of multiple-sequence alignments and their textual visualisation using ASCII

characters became available with HOMED (Stockwell and Petersen 1987, Stockwell 1988)

and ESEE (Cabot and Beckenbach 1989) editors. Graphical visualisation and editing were

enabled soon afterwards, for example in the historical MACAW (Schuler et al. 1991), a

comprehensive application for constructing alignments, which integrated manual

editing with automated methods. Clustal ɀ the all-time favourite multiple -sequence

aligner ɀ has since the 1990s been equipped with a GUI named CLUSTAL_X,

programmed in C and available for all major operating systems (Thompson et al. 1997,

Larkin et al. 2007). Currently perhaps the most popular graphical editor and analysis

tool for multiple -sequence alignments, especially for proteins and RNAs, is Jalview

(Clamp et al. 1998, 2004, Waterhouse et al. 2009, Fig. 1). It is programmed in Java and can

thus run on all common operating systems.

20

Fig. 1. A historical version of Jalview from Clamp et al. 1998.

Various GUI applications were developed in Java at the time of its increasing

popularity , for example the genome browser Artemis for displaying and annotating

whole-genome sequences (Rutherford et al. 2000), and J-Express for analysing data

obtained from gene-expression microarrays and other high-throughput technologies

(Dysvik and Jonassen 2001, Stavrum et al. 2008). At the time, J-Express enabled complete

gene-expression analysis using statistical algorithms and data visualisations integrated

in a relatively accessible, transparent , and comprehensive graphical application, as

opposed to otherwise using a set of partially unpublished scripts such as in the

foundational work of Eisen et al. (1998).

Interactive graphics are necessary for analysis of 3D structure of biomolecules,

provided by multiple applications such as RasMol (Sayle and Milner-White 1995, Bernstein

2000), the popular VMD (Humphrey et al. 1996) and PyMOL (http://www.pymol.org), or the

ambitious YASARA (http://yasara.org). A few other interesting examples of

comprehensive interactive visual tools are Cytoscape (Shannon et al. 2003, Yeung et al.

2008) and ONDEX (Köhler et al. 2006) for exploring networks of interactions and

relations such as between various molecules and genes; COPASI for analysing systems

biology models (Hoops et al. 2006); the Integrative Genomics Viewer (IGV, Robinson et al.

2011, Thorvaldsdóttir et al. 2013), a genome browser with rich functionality; Utopia

Documents (Attwood et al. 2010), a PDF reader for scientific articles, that interactively

visualises mentioned molecules and active links to other data; and a contemporary tool

Caleydo for exploring large heterogeneous data visually (Streit et al. 2009, Lex et al. 2012).

http://www.pymol.org/
http://yasara.org/

21

Web applications

In the previous subsection, I mentioned examples of interactive graphical user

interfaces that are either developed as native applications compiled specifically for

given combinations of operating system and hardware, or are developed for a

particular software framework. Software frameworks ɀ such as the X Window System,

Java, .NET and Mono, or Qt ɀ run on multiple operating systems and hardware

architectures. Worth noting is that all these applications are sometimes disputably

ÃÁÌÌÅÄ ȰÄÅÓËÔÏÐȱ ÁÐÐÌÉÃÁÔÉÏÎÓȢ /ÒÉÇÉÎÁÔÉÎÇ ÆÒÏÍ ÔÈÅ ȰÄÅÓËÔÏÐ ÍÅÔÁÐÈÏÒȱ ÏÆ interactive

GUIs, but indicating also specificity to desktop computers as opposed to mobile

computers and devices, or computers in racks, such a term is a confusing

misconception.

In addition to native applications and applications for multi-platform software

frameworks, interactive graphical user interfaces can also be provided as web

applications. Web applications are developed using a set of complementary languages

defined for the World Wide Web (WWW, the inter-linked documents on the Internet,

Berners-Lee et al. 1992). The standard languages, governed by the World Wide Web

Consortium (W3C, http://www.w3.org, http://www.w3.org/standards), are primarily HTML,

CSS, JavaScript, and more. Thanks to using web standards, a web application can run in

any web browser: historically e.g. the break-through graphical Mosaic (Andreessen 1993,

Vetter et al. 1994), Netscape, or the textual Lynx; nowadays e.g. Firefox, Konqueror,

Opera, Safari, IE, or Chrome. Naturally, the web browser must comply with the latest

versions of the web standards. In addition to accessibility and transparency fostered

by interactive graphics, compatibility with standards ensures interoperability of

web applications, enabling them not only to run on all applicable operating systems

and hardware architectures, but also to work together one with another, via e.g. links

or embedding.

Traditional web applications follow a client-server architecture. A rather simple client

part (frontend) of the web app ÒÕÎÓ ÉÎ Á ÕÓÅÒȭÓ ×ÅÂ ÂÒÏ×ÓÅÒ. Behind the scenes, the

client communicates ɀ using HTTP, the communication protocol of the Web ɀ with a

server (backend) deployed on the side of the provider of the web application. The client

page itself is located at a given URL of the web app, and automatically downloaded

ÆÒÏÍ ÔÈÅ ÓÅÒÖÅÒ ÔÏ ÔÈÅ ÕÓÅÒȭÓ ÃÏÍÐÕÔÅÒ ÖÉÁ (440ȟ ÔÏÏȟ ÉÎÃÒÅÁÓÉÎÇ ÔÈÅ accessibility by

freeing the user from any installation, dependency management, updating, and usually

also paying. The server most often gives access to some centralised computational or

data resource, employing high-ÐÅÒÆÏÒÍÁÎÃÅ ȰÐÁÒÁÌÌÅÌȱ ÃÏÍÐÕÔÅÒs and computer

clusters, and making accessible the tools and data that would hardly be usable on local

personal computers. A reliable server should be scalable for high demands and have

ideally 100% online uptime (availability) with load balancing, a failover system, and

enduring maintenance. While some client-ÓÅÒÖÅÒ ×ÅÂ ÁÐÐÌÉÃÁÔÉÏÎÓ ɉȰ×ÅÂ ÓÅÒÖÅÒÓȱɊ ÁÒÅ

only provided as a piece of software ×ÈÉÃÈ ÈÁÓ ÔÏ ÂÅ ÉÎÓÔÁÌÌÅÄ ÏÎ Á ÓÅÒÖÅÒ ÁÔ Á ÕÓÅÒȭÓ

http://www.w3.org/
http://www.w3.org/standards

22

institution, more commonly they are provided as a service: a deployed server instance

with access to ÐÒÏÖÉÄÅÒȭÓ ÃÏÍÐÕÔÁÔÉÏÎÁÌ ÁÎÄ ÄÁÔÁ ÒÅÓÏÕÒÃÅÓ ɀ either exclusively or in

addition to providing the server software.

The databases of biopolymer sequences were long ago distributed on paper (Fig. 2,

p.23), followed by magnetic tapes and CD-ROMs. Due to massive growth in volume and

increasingly frequent updates, the static media became insufficient. The databases had

to start being accessible remotely on a public server, which was more practical due to

being always up to date, and at the same time faster than navigating through the locally

accessed media. Such servers were accessible consecutively via various network

protocols, such as e-mail (Henikoff 1993), Telnet connections, FTP downloads, WAIS text

searching and Gopher browsing (Parker 1993, Rice et al. 1993). However, to unleash the

full power of links between data within and between the diverse bioinformatics

databases, integrative portals were soon developed using the new technology of the

World Wide Web. Just a couple of years after the Web was invented at CERN in Geneva,

ExPASy was launched as the first web server within the life sciences in 1993, as well in

Geneva (Appel et al. 1994). ExPASy has provided protein sequence data, their 3D

structures and features, with mutation and disease information, and annotated images

of proteomics gels, in an integrated user-friendly way that is still up-to-date today: via

the standard web links. More examples of integrative, multi-database data-access web

applications appeared shortly after : Entrez provided by at the National Center for

Biotechnology Information in Bethesda (NCBI, Benson et al. 1990) was after CD-ROMs

and a non-web client-server application launched together with the NCBI website in

1994 ÁÓ Á ȰÄÙÎÁÍÉÃȱ ×ÅÂ ÁÐÐÌÉÃÁÔÉÏÎ ÂÕÉÌÔ ÆÒÏÍ web forms and inter -ÌÉÎËÅÄ ȰÓÔÁÔÉÃȱ

web pages, named WWW Entrez or WebEntrez (Schuler et al. 1996). In the same year,

the Sequence Retrieval System (SRS, Etzold and Argos 1993) had its local command-line

and its network interface amended with a ȰÄÙÎÁÍÉÃȱ client-server web application

SRSWWWȟ ÁÖÁÉÌÁÂÌÅ ÆÏÒ ÉÎÓÔÁÌÌ ÁÔ ÕÓÅÒÓȭ ÉÎÓÔÉÔÕÔÉÏÎÓ, and for public access at the

European Molecular Biology Laboratory (EMBL) in Heidelberg (Etzold 1994). The

European Bioinformatics Institute (EBI) in Hinxton was established during the

transition period of 1992-95, as an outstation of EMBL responsible for maintenance

and distribution of bioinformatics databases (summarised in Lopez et al. 2003). Among

other media and protocols, these data were early-on provided via the Web (Emmert et

al. 1994). Using WWW for client-server communication improved accessibility

compared to other client-server protocols which could be disabled in certain networks

for security reasons. Furthermore, web servers have typically not required users to

register and log in.

Besides databases, client-server applications also gave access to computational tools

running on shared computational resources, first via e-mail (Henikoff 1993) and later

via web apps. WWW2GCG (Colet and Herzog 1996) was the first web GUI to the

commercial GCG toolkit, followed by SeqWeb in 1997 ×ÉÔÈ ȰÄÙÎÁÍÉÃȱ ×ÅÂ ÐÁÇÅÓ

implemented using JavaScript (Womble 1999b). These were client-server web

23

Fig. 2. GenBank and EMBL databases before the
Web. Nucleotide sequences 1986/1987, volumes I

to VII (David Landsman, Bethesda,). Various
network access methods were provided afterwards,
until settling down with the World Wide Web in
mid 1990s.

applications running on local networks at

research institutes, providing access to

local GCG servers. In contrast, the WHAT

IF toolkit has been provided as a publicly

accessible web app (Rodriguez et al. 1998).

Similarly, PredictProtein has for more

than two decades been a user-friendly

public server for integrative inference of

a growing multitude of protein features:

since 1992 as an e-mail server and later

on the Web (Rost et al. 2004). Further

examples of public websites giving access

to integrated kit s of tools are the Vienna

RNA Websuite for the Vienna RNA

Package (Hofacker 2003, Gruber et al. 2008);

BiBiServ, the Bielefeld University

Bioinformatics Server hosting tools

developed in Bielefeld and elsewhere

(http://bibiserv.techfak.uni-bielefeld.de, http://

bibiserv2.cebitec.uni-bielefeld.de); and the

Center for Biological Sequence analysis

(CBS) at the Technical University of

Denmark with a broad portfolio of their

tools (http://cbs.dtu.dk/biotools, http://cbs.dtu.dk/services). Meanwhile ɀ in the course of the

last two decades ɀ the websites of the major providers of bioinformatics databases

grew into integrated portals that complement the access to data with numerous web-

accessible tools enabling advanced searching and computations with the voluminous

public data: e.g. NCBI (McGinnis and Madden 2004, Johnson et al. 2008, NCBI Resource

Coordinators 2015), EBI (Lopez et al. 2003, Brooksbank et al. 2014, Li et al. 2015, Squizzato et

al. 2015), the National Institute of Genetics in Mishima with the DNA Data Bank of Japan

(NIG, DDBJ, Kodama et al. 2015), and ExPASy, now maintained within the Swiss Institute

of Bioinformatics (Gasteiger et al. 2003, Artimo et al. 2012). To conclude this paragraph, let

me emphasise again that the users of computational tools available as public web

applications benefit from the access to high-performance computing facilities and the

good accessibility without the need to install and administer necessary software or

type commands. The efficiency is maximised when the computational tools are co-

located with data resources: both with respect to computation and data transfer, and

convenience for users thanks to integrated access.

After the dramatic triumph of open science and open-source bioinformatics when

assembling the first draft of the human genome at UCSC in 2000 as a free public

resource (Kent and Haussler 2001), the need arose to make the genome data accessible

and efficiently usable for all researchers. The UCSC Genome Browser was developed

http://creativecommons.org/licenses/by-sa/3.0
http://bibiserv.techfak.uni-bielefeld.de/
http://bibiserv2.cebitec.uni-bielefeld.de/
http://bibiserv2.cebitec.uni-bielefeld.de/
http://cbs.dtu.dk/biotools
http://cbs.dtu.dk/services

24

soon after (Kent et al. 2002) as a user-friendly web application giving access to

numerous annotated genomes, and in addition enabling researchers to upload their

own annotations for browsing them visually on a genome together with diverse public

annotations. Ensembl, the infrastructure for automated genome annotation, provides

another web-based genome browser for a multitude of species (Hubbard et al. 2002,

Cunningham et al. 2015). On the other hand, Gbrowse is a popular web-based genome

browser for relatively easy installations on servers dedicated to genomes of a

particular species or group of species (Stein et al. 2002, Donlin 2007).

Web applications do not necessarily consist of a server and a client. Departure from

the traditional client -server architecture is increasingly common among modern web

applications that perform more computations themselves ɀ with in ÔÈÅ ÕÓÅÒȭÓ ×ÅÂ

browser running on the increasingly more powerful personal computer or device ɀ

with less or no help from a remote server. Some web apps are even supposed to be

installed and administered locally on Á ÕÓÅÒȭÓ ÃÏÍÐÕÔÅÒȟ ÂÕÔ ÒÕÎ in a web browser in

order to achieve independence from hardware platforms and operating systems. Other

apps are automatically downloaded from a web server when a user starts them, but do

not communicate with the server while running. They can be updated automatically

from the server when needed, thus freeing the user from installation and its

maintenance. Other web applications are Ȱserver-agnosticȱ, i.e. able to connect to

ÍÕÌÔÉÐÌÅ ÒÅÍÏÔÅ ÓÅÒÖÅÒÓ ÄÅÐÅÎÄÉÎÇ ÏÎ ÃÏÎÆÉÇÕÒÁÔÉÏÎȟ ÕÓÅÒȭÓ ÃÈÏÉÃÅÓȟ ÏÒ ÁÕÔÏÍÁÔÉÃÁÌÌÙ,

offering great flexibility and scalability via good interoperability among the

available servers and clients. Such applications often connect to so-called Web services

which I will describe a couple of pages later (p.29). Going in an orthogonal direction,

there are possibilities emerging of server-less web apps communicating directly with

each other, in a peer-to-peer fashion (http://www.w3.org/TR/webrtc).

Some graphical bioinformatics tools are available as Java applets which are usually

server-less and can be included (embedded) inside web applications: for example

JalviewLite, a stripped-down version of Jalview (Clamp et al. 2004, Waterhouse et al. 2009);

Jmol for viewing molecular structure (Herráez 2006); or Cytoscape Web and Ondex

Web, the applet versions of respectively Cytoscape and ONDEX (Lopes et al. 2010,

Taubert et al. 2013). To avoid the often troublesome need for additional, non-

transparent plugins for web browsers, such as Java or Flash, rich embeddable web

applications can nowadays be developed using pure web standards: HTML5

(http://www.w3.org/standards/webdesign, http://www.w3.org/TR/html5) supplemented with

related web standards such as CSS and SVG, and with JavaScript (not related to Java!) ɀ

the programming language that can be run inside HTML pages within a ÕÓÅÒȭÓ ×ÅÂ

browser. Recent examples of interactive web apps for bioinformatics use JavaScript in

way ÔÈÁÔ ÈÁÒÄÌÙ ÒÅÓÅÍÂÌÅÓ ÔÈÅ *ÁÖÁ3ÃÒÉÐÔ ÏÆ '#'ȭs SeqWeb from 1997. JSmol is an

HTML5/JavaScript version of Jmol (http://jsmol.sourceforge.net, http:// chemapps.stolaf.edu/

jmol/jsmol/jsmol.htm), while Jolecule is another HTML5 viewer of molecular structure

(http://jolecule.appspot.com, reviewed in Porebski et al. 2013). From the abundance of

http://www.w3.org/TR/webrtc
http://www.w3.org/standards/webdesign
http://www.w3.org/TR/html5
http://jsmol.sourceforge.net/
http://chemapps.stolaf.edu/jmol/jsmol/jsmol.htm
http://chemapps.stolaf.edu/jmol/jsmol/jsmol.htm
http://jolecule.appspot.com/

25

embeddable JavaScript genome browsers that have been developed, Anno-J (used in

Lister et al. 2008) is ρππϷ Ȱserver-agnosticȱ, connecting to custom Web services.

JBrowse is a JavaScript alternative to GBrowse (Skinner et al. 2009). It is a client-server

genome browser with rich functionality , and can additionally be supplemented with a

sequence-annotation editor Apollo (Lee et al. 2013). On the other hand, Dalliance is a

lightweight genome browser (Down et al. 2011), and Genome Maps may in complexity fit

somewhere between the two (Medina et al. 2013) All these apps can be embedded in

other web applications ɀ including ÕÓÅÒȭÓ Ï×Î ×ÅÂ ÐÁÇÅÓ ɀ and run in all normal web

browsers on all applicable platforms thanks to the interoperability achieved by

compatibility with w eb standards. A special attention needs to be given to

bioinformatics-specific JavaScript libraries of building blocks for developing custom

web applications for visualising biological data. These include among others: JBio, an

early comprehensive attempt by László Kaján (http://jbio.sourceforge.net); Scribl, a

JavaScript library for drawing sequence features (Miller et al. 2013); and Cytoscape.js, a

JavaScript-based successor of Cytoscape Web (http://js.cytoscape.org). Standing out is

BioJS, an initiative and a growing collection of concise JavaScript building blocks for

bioinformatics web applications, covering diverse types of bioinformatics data. BioJS

components are easy to find, use, develop, contribute, and combine, due to following a

set of common, well-designed guidelines, especially since version 2.0 (Gómez et al. 2013,

Corpas et al. 2014, http://biojs.net). Various BioJS components are used together for

example in PredictProtein (Yachdav et al. 2014). Standards-based components are

inherently transparent with open source, and ought to be flexible , reusable in

various applications, and interoperable with each other.

In this subsection we gave a deserved tribute to the World Wide Web ɀ the Ȱflagshipȱ

infrastructure for accessible reliable information and computation. For bioinformatics,

WWW has been among the most crucial technologies soon after it was invented. In

addition to web applications, Web services have been ubiquitous in bioinformatics, and

are introduced a couple of pages further. In the end, I mentioned JavaScript libraries

for bioinformatics web applications. Although using them for developing custom web

apps may often require only minimum programming, they still belong ɀ in addition to

interactive visualisation ɀ among programming libraries, which are the topic of the

following subsection.

http://jbio.sourceforge.net/
http://js.cytoscape.org/
http://biojs.net/

26

Programm ing libraries

In the previous two subsections, I wrote about interactive graphical user interfaces

that foster accessibility and usability to users who do not feel confident with typing

commands, and are usable in scenarios requiring visualisation. Data analysis

workflo ws often require automation of some portions which need to be performed

repeatedly, with different input data or parameters. Such portions of a workflow need

to be implemented as some sort of a script that can be re-run many times, possibly

even in a high-throughput fashion with large amounts of input data. As opposed to

GUIs ÁÎÄ ȰÍÁÎÕÁÌȱ ×ÏÒËÆÌÏ×Ó, it is essential for usability as a high-throughput

workflow to run without user interaction . An automated workflow, however, in most

cases needs to use one or more existing tools for analysing the data. The same is true

for many tools themselves, that inside them use other underlying tools. For such

purposes, the underlying tools have to be accessible and usable from within other

tools and workflows. Tools with a command-line interface can be used inside batch

scripts, and ÁÒÅ ÁÃÃÅÓÓÉÂÌÅ ÁÓ ÅØÔÅÒÎÁÌ ȰÎÁÔÉÖÅȱ ÔÏÏÌÓ ÆÒÏÍ ÖÁÒÉÏÕÓ ÐÒÏÇÒÁÍÍÉÎÇ

languages, yet with possible limitations to efficiency, interoperability, and

maintainability . For example, input and output data has to be typically sent and

received via the file system, which may or may not be desired in a particular workflow,

while portability to another system and management of dependencies and their

versions can turn close to impossible.

An Application Programming Interface (API) is an interface to a certain tool, system, or

other resource, that provides programmatic access from one or more programming

languages (for example Python, R, Java, JavaScript, C, C++, Perl, Haskell, or Ruby to

name a few). An API is often implemented as a library , a collection of operations,

functions, data structures, and other objects in a particular programming language. A

library can be available with or without its source code, and its interface can be used

directly ÉÎ ÕÓÅÒÓȭ ÐÒÏÇÒÁÍÓ ÏÒ ÓÃÒÉÐÔÓ in the given programming language, as opposed

to calling external commands. Programming libraries ɀ as APIs to computational tools

or other resources ɀ can either be provided separately from the tool or resource; or

ÔÈÅÙ ÃÁÎ ÂÅ ÐÁÒÔ ÏÆ ÔÈÅ ÔÏÏÌ ÉÔÓÅÌÆȟ ÏÆÔÅÎ ÃÏÎÓÔÉÔÕÔÉÎÇ ÔÈÅ ÃÏÒÅ ÏÆ ÔÈÅ ÔÏÏÌȭÓ

implementation, that other interfaces are built upon. A language binding for a library is

some sort of Á Ȱ×ÒÁÐÐÅÒ ÌÉÂÒÁÒÙȱ ÉÎ Á ÄÉÆÆÅÒÅÎÔ ÐÒÏÇÒÁÍÍÉÎÇ ÌÁÎÇÕÁÇÅ ÔÈÁÎ ÔÈÅ ȰÂÕÉÌÔ-

ÉÎȱ ÌÁÎÇÕÁÇÅ ÏÆ ÔÈÅ ÏÒÉÇÉÎÁÌ ÌÉÂÒÁÒÙȟ ÅÎÁÂÌÉÎÇ ÔÈÅ ÏÒÉÇÉÎÁÌ ÌÉÂÒÁÒÙ ÔÏ ÂÅ ÕÓÅÄ ÆÒÏÍ ÔÈÅ

other programming language.

Many bioinformatics tools and toolkits are implemented as an open-source core

library , with other interfaces ɀ such as command-line, GUI, or web app ɀ built on top of

it. While using such a straightforward architecture, these tools are inherently

accessible via multiple types of interfaces, usable in various scenarios, transparent

with their open source code, and more interfaces can be developed by anybody who

wants to implement them, thanks to the public API of the core library. In addition, such

27

libraries are often proven reliable by usage in numerous tools. The core libraries are

in many cases implemented in C or C++ for runtime speed, while language bindings

may be provided for various other programming languages. This is the case in a great

number of examples. To list some: the Vienna RNA Package has been built upon its

core C library RNAlib (Hofacker et al. 1994), and later complemented with a Perl binding

(Lorenz et al. 2011); SRS was implemented with a core C library suitable for APIs also for

Perl, Tcl, and Python (Etzold et al. 1996); EMBOSS includes a layer of a C library called

AJAX (Rice 1998; not the later ȰAsynchronous JavaScript + XMLȱ Ajax) which has been

used by numerous types of interfaces; SAMtools are constituted as a C library (Li et al.

2009), amended with command-line interface and numerous language bindings; and

GenomeTools consist of multiple tools implemented around the libgenometools C

library, distributed altogether as a package, with an additional API for scripting

language Lua (Gremme et al. 2013).

In addition to such tool-specific libraries serving as APIs to given tools, various

programming libraries aim to cover the broad field of bioinformatics or its parts, from

a perspective of a software developer who implements new bioinformatics tools, or a

computational biologist who writes scripts for their analyses. Numerous C++ libraries

have been developed, that provide substantial portions of typical bioinformatics

operations in a programmatic way: for example an early PDBlib for structural

bioinformatics (Chang et al. 1994), and more sequence-oriented or generic ones such as

BTL (Pitt et al. 2001), Libsequence (Thornton 2003), libcov (Butt et al. 2005), Bio++ (Dutheil

et al. 2006), or the modern SeqAn optimised for speed (Döring et al. 2008). An extensive

NCBI C++ Toolkit (http:// www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC) comprises

programmatic tools for sequence analysis and data retrieval, together with numerous

data-handling and server utilities not specific to bioinformatics.

To avoid the need of always programming ÏÎÅȭÓ own new scripts from scratch for

particular analysis workflows , and instead provide commonly shared reusable building

blocks for both workflows and application development, BioPerl was initiated as a

community effort in 1995, when Perl was the most popular language for scripting in

bioinformatics (Chervitz et al. 1998, Stajich et al. 2002). Within the shared effort with a

substantial level of self-organisation, BioPerl quickly evolved into a comprehensive

toolkit library of well-integrated, reusable Perl modules for bioinformatics, that are

smoothly interoperable with each other, easy to understand, developed in a similar

style, and share common data representations. It offers functionality such as handling,

parsing, transforming, and integrating data, or programmatic access to popular data

resources and analysis tools ɀ serving the typical needs ÏÆ ȰÇÌÕÅ ÃÏÄÅȱ ÉÎ ÃÏÍÐÕÔÁÔÉÏÎÁÌ

biology workflows, whether Ȱmanualȱ or high-throughput, and in bioinformatics

applications. In the same spirit as BioPerl, community efforts followed soon with other

popular programming languages, conceiving BioJava (Pocock et al. 2000, Holland et al.

2008, 0ÒÌÉç et al. 2012) and Biopython (Chapman and Chang 2000, Cock et al. 2009), later

joined by BioRuby (Goto et al. 2010). These initiatives ɀ together nicknamed Bio* or

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC

28

Open-Bio ɀ united under a common umbrella of the Open Bioinformatics Foundation

(O|B|F or OBF, http://open-bio.org, reviewed in Mangalam 2002), together with other

projects including EMBOSS, and attempts enabling certain scenarios of interoperability

between the Bio* libraries, e.g. BioCORBA (http://www.bioperl.org/wiki/BioCORBA) and

BioSQL (http://www.biosql.org). O|B|F supports and promotes free/ open-source software

within bioinformatics, and organises an annual Bioinformatics Open Source

Conference (BOSC, Harris et al. 2015Ɋ ÁÎÄ ÖÁÒÉÏÕÓ ȰÈÁÃËÁÔÈÏÎÓȱ ÇÁÔÈÅÒÉÎÇ ÃÏÍÍÕÎÉÔÉÅÓ

of collaborating software developers (e.g. Möller et al. 2013, 2014). Complementing the

popular programming languages, enthusiasts develop integrated library toolkits for

ÂÉÏÉÎÆÏÒÍÁÔÉÃÓ ÁÌÓÏ ÉÎ ÖÁÒÉÏÕÓ ȰÎÉÃÈÅȱ ÌÁÎÇÕÁÇÅÓȟ ÃÒÅÁÔÉÎÇ ÆÏÒ ÅØÁÍÐÌÅ Biohaskell

(http://biohaskell.org), BioClojure (Plieskatt et al. 2014), BioSmalltalk (Morales and

Giovambattista 2013), or Biocaml (http://biocaml.org). The former Microsoft Biology

Foundation (MBF) library for the .NET platform transformed into a free and open

community effort .NET Bio (http://bio.codeplex.com, http://github.com/dotnetbio/bio).

Numerous biology-related libraries have been developed for R, the programming

language that is particularly convenient for statistical analyses. One example is the

comprehensive APE (Analysis of Phylogenetics and Evolution, Paradis et al. 2004). Using

a slightly different approach than the integrated toolkit libraries of Bio*, Bioconductor

was conceived as an even more open collection of R libraries for computational biology

(Gentleman et al. 2004). "ÉÏÃÏÎÄÕÃÔÏÒ ÌÉÂÒÁÒÉÅÓ ɉȰÐÁÃËÁÇÅÓȱɊ ÁÒÅ ÍÏÒÅ ÉÎÄÅÐÅÎÄÅÎÔ ÆÒÏÍ

each other, while still following common guidelines and reusing common utilities in

order to maintain a certain degree of interoperability and other qualities. With the

richness of libraries available either on CRAN (http://cran.r-project.org) or Bioconductor,

R grew into perhaps the ÔÏÄÁÙȭÓ most popular scripting language for data analysis and

plotting in computational biology. Bioconductor-inspired Biogem and its dedicated

repository (http://biogems.info, Bonnal et al. 2012) enable modular extensions to BioRuby,

that are less tightly integrated and thus easier to develop in comparison to the

integrated core of BioRuby. Accessibility for novice contributors is fostered by the

automation provided by Biogem. While scripting and niche languages may be slower at

runtime thÁÎ ȰÎÁÔÉÖÅȱ # ÁÎÄ #ϹϹ ÄÕÅ ÔÏ ÔÈÅÉÒ ÈÉÇÈ-level constructs, and generic-

ÐÕÒÐÏÓÅ ÌÉÂÒÁÒÉÅÓ ÍÁÙ ÂÅ ÌÅÓÓ ÅÆÆÉÃÉÅÎÔ ÁÔ ÂÏÔÈ ÒÕÎÔÉÍÅ ÁÎÄ ȰÄÅÖÅÌÏÐÍÅÎÔ-ÔÉÍÅȱ ÄÕÅ ÔÏ

their complexity compared to narrowly specialised ones, they enable easy and quick

development of usÅÒȭÓ ×ÏÒËÆÌÏ×Ó ÁÎÄ ÁÐÐÌÉÃÁÔÉÏÎÓȟ ×ÈÉÃÈ ÍÁÙ ÏÆÔÅÎ ÂÅ ÈÉÇÈÅÒ

priorities than runtime efficiency or maintainability.

Let us now shortly get back to interactive graphical user interfaces. Towards the end of

the previous subsection, I mentioned JavaScript libraries for programming web

applications. BioJS ɀ again especially since its version 2.0 (Gómez et al. 2013, Corpas et al.

2014, http://biojs.net) ɀ is another example of an open collection of community-

developed libraries, sharing the right minimal set of common guidelines for ensuring

interoperability, so that the BioJS components can easily be combined together in

ÕÓÅÒÓȭ ÃÕÓÔÏÍ ÁÐÐÌÉÃÁÔÉÏÎÓȢ For programmatic integration, JavaScript APIs can also be

http://open-bio.org/
http://www.bioperl.org/wiki/BioCORBA
http://www.biosql.org/
http://biohaskell.org/
http://biocaml.org/
http://bio.codeplex.com/
http://github.com/dotnetbio/bio
http://cran.r-project.org/
http://biogems.info/
http://biojs.net/

29

provided with Java applets, for example with JalviewLite (Clamp et al. 2004, Waterhouse

et al. 2009) or Cytoscape Web (Lopes et al. 2010). Libraries for other programming

languages also provide functionality for both static and interactive visualisations,

including e.g. the Bio* and the NCBI C++ toolkits. These can as well be used for

developing interactive GUIs, or client-server web apps with graphics generated on the

server. A couple of example graphics libraries for drawing genomic data are

GenomeDiagram integrated in Biopython (Pritchard et al. 2006); AnnotationSketch, a C

library within GenomeTools, with Lua, Python, and Ruby bindings (Steinbiss et al. 2009);

and Circleator using BioPerl, SVG, and CSS (Crabtree et al. 2014).

Web services

First to make the terminology clear: Any computational tool or data resource that is

not provided in form of software that users would have to install on their side, but is

instead deployed and running on a server of its provider, is a computational or data

service. And if the access to the server is via the Web, it could in fact be broadly called a

Ȱ×ÅÂ ÓÅÒÖÉÃÅȱȢ 4ÈÕÓ Á ÃÌÉÅÎÔ-server web application ɀ ÒÕÎÎÉÎÇ ÁÔ Á ÐÒÏÖÉÄÅÒȭÓ ×ÅÂ

server and accessible for users through web browsers ɀ is after all in rather general

ÔÅÒÍÉÎÏÌÏÇÙ Á Ȱ×ÅÂ ÓÅÒÖÉÃÅȱȢ In contrast, a Web service (often spelled with a capital,

what we will follow) provides programmatic access ɀ i.e. a programmatic API ɀ to a

computational or data server, over the Web. /ÃÃÁÓÉÏÎÁÌÌÙȟ ÔÈÅ ÔÅÒÍ Ȱ7ÅÂ ÓÅÒÖÉÃÅȱ was

used to designate only Web services that used SOAP protocol (SOAP services), while

the Web services using pure HTTP protocol would then be called web APIs, HTTP APIs,

HTTP services, ȰRESTȱ APIs, ȰRESTȱ services, or ȰRESTȱ resources. We will not follow

such a confusing, unpractical distinction . Instead in line with the more common

terminology, let us call all programmatic APIs over the Web synonymously Web

services ×ÉÔÈ Á ÃÁÐÉÔÁÌ Ȭ7ȭ or web APIs.

Notably, interactive graphical web applications ɀ serving human-computer interaction

ɀ are as a type of interface disjoint with Web services which serve interfaces for other

applications and scripts (Table 1, p.30). For maximum simplicity, we can say that if a web

server provides us (via HTTP because it is a web server) with something formatted in

HTML, then it is a web page (static) or a web application (dynamic); and if it provides

us with something in another format, one that is suitable for Ȱmachineȱ consumption,

then it is a Web service. Naturally , one web server can serve both web application(s)

and Web service(s). However, in case a web resource provides only HTML format, i.e.

ÆÏÒ ȰÈÕÍÁÎȱ ÃÏÎÓÕÍÐÔÉÏÎȟ ÂÕÔ ×Å ÓÔÉÌÌ ÎÅÅÄ ÔÏ retrieve some of its data automatedly in

our script or application, we need to painfully ȰÄÉÇȰ ÉÔ ÆÒÏÍ ÔÈÅ often-changing and

unsuitable HTML page, in an unmaintainable ÐÒÏÃÅÄÕÒÅ ÃÁÌÌÅÄ ÁÌÓÏ ȰÓÃÒÅÅÎ ÓÃÒÁÐÉÎÇȱ

ÁÎÄ ÃÏÉÎÅÄ ȰÍÅÄÉaÅÖÁÌ ÔÏÒÔÕÒÅȱ ÂÙ Stein (2002).

30

types of tool interfaces

user interface

(human -computer
interaction)

partially supporting
ÂÏÔÈ ȰÈÕÍÁÎÅȱ ÁÎÄ

programmatic access

API

(programmatic
access)

running locally

(or on a local server)

interactive application
installed locally

command-line program programming library

accessed remotely
via the Web

client-server

web application
Ȱ(440 '%4ȱ ÓÅÒÖÉÃÅ Web service

Table 1. A simplified distinction of Web services and their relations to other types of tool interfaces.
Note, however, that there are no precise borders (symbolised by the grey dotted lines) between local and
remote applications, because remote access involves something running locally, and a local app may
communicate with remote resources or be deployed from a remote resource. Hybrid apps with extensive
local and remote portions have been increasingly popular, including server-agnostic apps, peer-to-peer
ÎÅÔ×ÏÒËÓȟ ȰÆÁÔȱ ÃÌÉÅÎÔÓȟ ÁÎÄ ÕÂÉÑÕÉÔÏÕÓ ȰÈÉÄÄÅÎȱ ÕÓÅ ÏÆ ÅØÔÅÒÎÁÌ 7ÅÂ ÓÅÒÖÉÃÅÓȢ)Î ÁÄÄÉÔÉÏÎȟ ×Å ÃÁÎ ÁÃÃÅÓÓ ÖÉÁ
the Web and HTTP also locally-deployed web applications and Web services, which can be useful not only
for testing but also for interoperability in certain scenarios.

As opposed to web applications, Web services provide programmatic APIs accessible

from a userȭs high-throughput workflow in any of the common programming or

scripting languages, and from other applications, facilitating flexibility . For better

accessibility compared to other remote APIs, the communication with Web services is

over the Web (i.e. HTTP) instead of other protocols which may be blocked, and

typically does not require user accounts. Interoperability with most of the applicable

programming languages and command shells is enabled by available utility software

and libraries compliant with the Web-service standards governed by the World Wide

Web Consortium (http://www.w3.org/standards/webofservices). Web services deployed on

an appropriate server provide interoperable access to high-availability high-

performance scalable computing resources and big databases, without cumbering the

users with need to obtain and administer such resources or install and maintain the

tools. However, to allow maintainability of tools that use the Web services,

reproducibility of workflows, and to ÄÅÓÅÒÖÅ ÕÓÅÒÓȭ confidence, providers must

support their users and carefully maintain their services up-to-date but stable and

non-volatile ɀ with strict versioning of the interface, preferably even keeping

deprecated versions alive.

Historically, various predecessors of Web services were providing programmatic

access to remote bioinformatics resources, using various communication protocols.

Perhaps the most widely used and most accessible at the time were e-mail servers,

ÐÒÏÖÉÄÉÎÇ ÂÏÔÈ ȰÈÕÍÁÎȱ ÕÓÅÒÓ ÁÎÄ ÓÏÆÔ×ÁÒÅ ÁÐÐÌÉÃÁÔÉÏÎÓ ×ÉÔÈ ÁÃÃÅÓÓ ÔÏ ÒÅÍÏÔÅ ÄÁÔÁ

and computational tools (Henikoff 1993). Ahead of its time was the sophisticated

HASSLE protocol (Hierarchical Access System for Sequence Libraries in Europe),

developed specifically for bioinformatics needs by Reinhard Doelz at Biozentrum,

University of Basel (Doelz 1994, Doelz et al. 1994). It included automated search for

available services within the network of sequence-data servers around Europe, batch

remote execution with automatic failover, and a client user interface hiding all the

sophisticated technicalities. CORBA was developed as an industrial technology for

distributed object-oriented software systems. In bioinformatics, CORBA was used for

http://www.w3.org/standards/webofservices

31

access to databases with genome maps (Hu et al. 1998, Jungfer and Rodriguez-Tomé 1998,

Barillot et al. 1998, 1999); and a system for wrapping bioinformatics tools as CORBA APIs

was developed by Martin Senger (1999) at EBI, named AppLab and used inside the later

Soaplab, until Soaplab2 in 2007 (Senger et al. 2003, 2008). The Bio* initiatives developed

BioCORBA for compatible distributed capabilities among BioPerl, BioJava, and

Biopython (http://www.bioperl.org/wiki/BioCORBA). Java RMI ɀ a lighter-weight remote API

framework for Java only ɀ has also been tried for distributed bioinformatics

applications (Möller et al. 1999, Saqi et al. 1999). All these technologies required special

network protocols other than the HTTP of WWW, causing difficulties to software

administration and usage, such as being blocked in certain networks.

Proper Web services over HTTP began to flourish soon after being introduced in

bioinformatics in the beginning of this millennium. DAS, the Distributed Annotation

System, is a system for accessing sequence annotations from a large number of online

resources, via HTTP Web services providing data in a dedicated XML format (Dowell et

al. 2001, 0ÒÌÉç et al. 2007, Jenkinson et al. 2008). BioMoby was developed as special protocol

on top of SOAP, HTTP, and XML for any kind of bioinformatics Web services and types

of data (Wilkinson and Links 2002).

Numerous SOAP services were soon launched at various institutions (e.g. Kawashima et

al. 2003, Krishnamurthy et al. 2003, Wang and Mu 2003, Crass et al. 2004), including the

major providers of bioinformatics databases and tools, where SOAP has usually later

been complemented or sometimes replaced by pure HTTP services. Early examples are

NIG in Mishima providing access to DDBJ, other databases, and computational tools

(Sugawara and Miyazaki 2003, Kwon et al. 2009); and EBI, including the Soaplab

framework (Senger et al. 2003, 2008) which provided Web-service access to the EMBOSS

toolkit (Rice et al. 2000)ȟ ÏÔÈÅÒ 7ÅÂ ÓÅÒÖÉÃÅÓ ÆÏÒ ÁÃÃÅÓÓ ÔÏ %")ȭÓ ÄÁÔÁÂÁÓÅÓ ÁÎÄ ÒÅÌÁÔÅÄ

tools (Harte et al. 2004, Pillai et al. 2005, Labarga et al. 2007, McWilliam et al. 2009, Squizzato et

al. 2015), and later the JDispatcher framework for computational and data-searching

Web services (Goujon et al. 2010, McWilliam et al. 2013, Li et al. 2015). Entrez Programming

Utilities include Web services for accessing data at NCBI (NCBI Resource Coordinators

2014, NCBI Resource Coordinators 2015). Integrative, easy-to-use TogoWS services for

retrieving and converting data are provided by the Database Center for Life Science

(DBCLS) at the University of Tokyo and NIG (Katayama et al. 2010a), while the ExPASy

portal of SIB includes among other Web-service-accessible resources ɀ and EMBOSS

via Soaplab2 ɀ also an HTTP Web service for integrative querying over a big portion of

the provided databases (Artimo et al. 2012). Examples of providers of web-accessible

bioinformatics tools, offering programmatic access to numerous Web services, are: the

WHAT IF toolkit at the Radboud University Nijmegen (Hekkelman et al. 2010); the G-

language Genome Analysis Environment (GAE) framework at Keio University with

Web-service APIs (Arakawa et al. 2010); CBS at the Technical University of Denmark

(http://cbs.dtu.dk/services/ws.php, http://cbs.dtu.dk/ws/doc); and BiBiServ of the Bielefeld

University (http://bibiserv.techfak.uni-bielefeld.de, http://bibiserv2.cebitec.uni-bielefeld.de).

http://www.bioperl.org/wiki/BioCORBA
http://cbs.dtu.dk/services/ws.php
http://cbs.dtu.dk/ws/doc
http://bibiserv.techfak.uni-bielefeld.de/
http://bibiserv2.cebitec.uni-bielefeld.de/

32

Web services are convenient for remote access to distributed resources especially if

they have similar interfaces ɀ with the same operations and formats of input and

output data ɀ thus being interoperable with each other. Interoperable Web services

are conveniently usable together in automated workflows, comparable, and

replaceable with each other (although that is of course not limited to Web services but

holds for all kinds of programmatically usable tools). Web services usually share

interfaces within an institution providing them, but it is seldom the case between

different institutions . Exceptions exist, such as the DAS resources; PSICQUIC (Aranda et

al. 2011, del Toro et al. 2013), the common Web-service interface to numerous databases

of molecular interactions, standardised by the (ÕÍÁÎ 0ÒÏÔÅÏÍÅ /ÒÇÁÎÉÚÁÔÉÏÎȭÓ

Proteomics Standards Initiative (HUPO-PSI, Martens et al. 2007); or the Web services of

BioMart, a framework for uniform access to distributed bioinformatics databases

(Kasprzyk 2011, Smedley et al. 2015).

Other than being useful with in analysis workflows encoded in a ÒÅÓÅÁÒÃÈÅÒȭÓ ÓÃÒÉÐÔÓȟ

Web services are ubiquitously used behind-the-scenes inside bioinformatics software.

Remote access from within one application to other tools and data resources was

common already in the old-days e-mail servers (Henikoff 1993); and is enduringly

popular with DAS, accessed among others from Dalliance, IGV, UCSC Genome Browser,

Ensembl, Gbrowse, or Jalview. Interestingly IGV, together with many other genome

browsers, can access data from custom HTTP or FTP services in addition to DAS. The

interactive reader Utopia Documents retrieves information and data underlying a

scientific publication naturally via Web services (Attwood et al. 2010). Jalview could

access remote computational tools at EBI and data via SRS already since its early

versions (Clamp et al. 1998), and nowadays is complemented with dedicated JABAWS

framework (Java Bioinformatics Analysis Web Services, Troshin et al. 2011), enabling

deployment of new JABAWS-compatible Web services ÁÔ ÕÓÅÒÓȭ ÓÉÔÅÓ, another example

of smooth interoperability.

Catalogues, registries, and repositorie s

One of reasons for the creative chaos in bioinformatics is that it may often feel more

straightforward ÔÏ ÄÅÖÅÌÏÐ ÏÎÅȭÓ Ï×Î ÎÅ× ÓÏÌÕÔÉÏÎ ÆÏÒ ÔÈÅ ÃÕÒÒÅÎÔ ÐÕÒÐÏÓÅȟ ÃÏÍÐÁÒÅÄ

to looking for what is available, what it does, and how it does it ɀ what may often be

onerous. And what is onerous for a group of researchers carrying out a project, can

well be even more onerous for the ones reviewing their publication. Even worse it can

get in situations when a researcher has no clue whether there is anything at all

available and helpful for the given task. Despite (or maybe due to) the literature

tsunami in life sciences, such scenario can happen easily ɀ irrespective of whether it is

a junior researcher not yet up-to-date, a senior researcher not up-to-date anymore

with the new creations, or an expert in other subdomains of the field. While developing

33

ÏÎÅȭÓ own do-it -yourself single-purpose solutions may have obvious benefits in the

degree of control and in fitting the purpose exactly, these contribute to the abundance

of developments that are not well reusable, not well documented, transparent, reliable,

or reproducible, and hardly accessible, interoperable, or maintainable. Decreasing the

substantial burden of finding relevant tools is one of the purposes of catalogues,

registries, and repositories. Another purpose of such collections is list ing and

advertising achievements of a certain project or institution .

Although the terms are often used arbitrarily or interchangeably (together with e.g.

list, directory, or archive), it may be useful if we distinguish for clearer understanding:

¶ Catalogues, created by a group of authors who provide the published content

using some sources, and who may or may not continue updating ɀ curating ɀ the

content

¶ Registries, where users contribut e the content over time ɀ for example

registering information about a tool they developed ɀ and curate parts of the

content

¶ Repositories, where software or other resources are deposited and can be

obtained from. Repositories can of course also register or catalogue information,

and software can be deposited as source code or binaries.

7ÈÉÌÅ ÖÅÎÄÏÒÓȭ Ãatalogues often list commercial products, public registries and

repositories are usual for free open software. Some of them do among other

application domains contain also bioinformatics tools. This is the case of SourceForge

and now growingly GitHub repositories that host big portions of open-source projects

in bioinformatics, while Download.com and Softpedia list only few downloadable

bioinformatics tools but include some commercial ones. The bioinformatics section of

the non-commercial DMOZ registry (http://www.dmoz.org/Science/Biology/Bioinformatics)

lists a considerable number of bioinformatics resources of various kinds, including

both free and commercial tools. The Free Software Directory (http://directory.fsf.org) of

the Free Software Foundation (FSF) is a substantial registry with rich semantic

annotation, but contains little bioinformatics. Some programming languages have the

available libraries organised in convenient centralised repositories (archives), which

include substantial amounts of bioinformatics libraries for the given language: CPAN

for Perl (http://www.cpan.org), CRAN for R (http://cran.r-project.org), RubyGems for Ruby

(http://rubygems.org), and Hackage for Haskell (http://hackage.haskell.org). Multiple

application-domain-agnostic public registries were developed for Web services during

ÔÈÅ Ȱ3/!0 rushȱ ÏÆ ÔÈÅ ÐÒÅÖÉÏÕÓ ÄÅÃÁÄÅȟ ×ÉÔÈ ambitious features (e.g. ÔÈÁÔ ÔÉÍÅȭÓ

registry from Seekda or http://www.membrane-soa.org/soa-registry), but to my knowledge

none withstood the course of time without deterioration .

Within the domain of bioinformatics, bigger institutes usually publish catalogues

advertising the tools and databases the institute provides (e.g. NCBI at http:// ncbi.nlm.

nih.gov/guide/all, EBI at http://www.ebi.ac.uk/services, SIB via ExPASy at http://expasy.org, or

http://www.dmoz.org/Science/Biology/Bioinformatics
http://directory.fsf.org/
http://www.cpan.org/
http://cran.r-project.org/
http://rubygems.org/
http://hackage.haskell.org/
http://www.membrane-soa.org/soa-registry
http://ncbi.nlm.nih.gov/guide/all
http://ncbi.nlm.nih.gov/guide/all
http://www.ebi.ac.uk/services
http://expasy.org/

34

the Weizmann Institute of Science in Rehovot at http://miw.weizmann.ac.il). Similarly,

distributed infrastructures such as DAS maintain registries of compatible Web

services (http://dasregistry.org); shared librar y efforts that follow common guidelines

register the compliant libraries (e.g. Bioconductor at http:// master.bioconductor.org/

packages/release and BioJS at http:// biojs.io); and initiatives such as O|B|F document their

achievements and affiliated projects (http:// www.open-bio.org/wiki/Projects).

More representative selections of bioinformatics tools ɀ not specific to a project,

network, or institution ɀ have been created in various forms ranging from journal

articles (e.g. Gilbert 1998, 1999, online at http://iubio.bio.indiana.edu/soft/molbio/Listings.html)

to websites, from personal listings (such as the spreadsheets I made for myself in order

to write this chapter) to global projects. A great number of catalogues, registries, and

repositories is available within the field , with substantial differences in types of tools

or other resources they collect, in the amount and type of information they provide

about the listed items, and in functionality they enable: ways of searching, accessing,

exporting, or other.

The IUBio Archive for Biology ɀ conceived in 1989 and maintained by Don Gilbert

(http://iubio.bio.indiana.edu) ɀ is a historically valuable archive of downloadable software

and other resources. Bio Catalog (also Bio-Catalog or BioCatalog, Rodriguez-Tomé 1998,

archived at http://iubio.bio.indiana.edu/soft/biosoft-catalog) was a catalogue of software for

molecular biology and genetics, developed since 1992 within Généthon, co-founded by

CEPH (http://www.cephb.fr/en), and later maintained at the EBI. In a similar style, DBcat

was constructed at Infobiogen with contribution from Centre National de Séquençage

and Généthon (Discala et al. 1999, 2000). Around the same time, Christian Burks created

the Molecular Biology Database List (Burks 1999) of databases published in the Nucleic

Acids Research ɉ.!2Ɋ ÊÏÕÒÎÁÌȭÓ annual special issue dedicated to databases (Bateman

2005, Galperin et al. 2015). This list has since been updated annually with the NAR

Database Issue, under changing names and by changing maintainers (e.g. Baxevanis

2000). Several database catalogues were developed until today, storing both

overlapping and distinct types of information about the databases, for example:

BioRegistry with annotation generated from other resources, including rich

attribution data and terms from the MeSH vocabulary (http://bioregistry.loria.fr, Devignes

et al. 2010); MIRIAM Registry with monitoring of online availability (Juty et al. 2012);

BioDBCore catalogue at the BioSharing portal (Galperin and Fernández-Suárez 2012); or

the Integbio Database Catalog merging information from other Japanese database

catalogues (http://integbio.jp/dbcatalog/en).

In the last paragraph, let me mention a few influential collections of different types of

tools or information. Bioinformatics Links Directory is a catalogue of web links to

bioinformatics tools and databases (Fox et al. 2005, Brazas et al. 2012), including ones

ÐÕÂÌÉÓÈÅÄ ÉÎ ÁÎÏÔÈÅÒ .!2ȭÓ ÁÎÎÕÁÌ special issue, the Web Server Issue (Benson 2007,

2015). The Bioinformatics Links Directory has only limited information and navigation

http://miw.weizmann.ac.il/
http://dasregistry.org/
http://master.bioconductor.org/packages/release
http://master.bioconductor.org/packages/release
http://biojs.io/
http://www.open-bio.org/wiki/Projects
http://iubio.bio.indiana.edu/soft/molbio/Listings.html
http://iubio.bio.indiana.edu/
http://iubio.bio.indiana.edu/soft/biosoft-catalog
http://www.cephb.fr/en
http://bioregistry.loria.fr/
http://integbio.jp/dbcatalog/en

35

Fig. 3. A workbench. WÉÔÈ ȰÉÎÔÅÇÒÁÔÅÄȱ
tools ÁÎÄ Ȱ×ÏÒËÆÌÏ× ÒÅÃÉÐÅÓȱ ɉÔÏÐ ÌÅÆÔɊ.
© Northern Tool + Equipment. Fair use.

functionality, but catalogues links to thousands of tools. myExperiment (Goble et al.

2010) is a repository of automated workflows defined in specific workflow languages

(mostly graphical) executable in particular workbenches. BioCatalogue (not the

previously mentioned Bio Catalog) is a registry for bioinformatics Web services (Bhagat

et al. 2010) with community annotation inspired by social websites. In some cases, an

internally -maintained catalogue of tools for computational biologists at a sizeable

research institute may ɀ in addition to its main purpose of serving the internal users ɀ

present a useful representative list with rich institute -unspecific information about

numerous bioinformatics tools: for example the WÅÉÚÍÁÎÎ)ÎÓÔÉÔÕÔÅȭÓ "ÉÏ0ÏÒÔÁÌ

(http://bioportal.weizmann.ac.il/toolbox/overview.html). Special cases are registries that are

maintained openly by their users in form of wikis, with a combination of structured

informatio n and free text with further documentation and comments such as ÕÓÅÒÓȭ

experiences. Within bioinformatics , the main such example is the Software Hub of the

SEQanswers wiki (SEQwiki, http://seqanswers.com/wiki/Software, Li et al. 2012a) dedicated

to software for analysing sequencing data. The last example catalogue is OMICtools

(Henry et al. 2014), a publicly accessible portal with contents owned by a small company

STATSARRAY LLC. It provides information about thousands of bioinformatics tools,

categorised and searchable as steps in typical computational biology workflows for

analysing several types ÏÆ ȰÏÍÉÃȱ ÂÉÏÌÏÇÉÃÁÌ ÄÁÔÁ. Although limited to a set of

stereotypical workflows, it offers this way a visual aid for more accessible navigation.

Workbenches

The term workbench originates from an

analogy with actual workbenches for

manual work. A workbench provides a

stable, heavy-duty platform on top of which

the work can be done conveniently. Various

tools such as hammers, wrenches, or vices

can be used on a workbench, attached to it,

or possibly stored in some integrated

toolboxes (Fig. 3).)Ô ÉÓ Á ÕÓÅÒȭÓ ÃÈÏÉÃÅ ×ÈÉÃÈ

tools they use on a workbench, as long as

the tools fit.

http://bioportal.weizmann.ac.il/toolbox/overview.html
http://seqanswers.com/wiki/Software

36

Workbenches for bioinformatics and computational biology follow the same principles

as workbenches for manual work. A bioinformatics workbench provides an integrated

analysis platform which aims at enabling convenient data analysis, minimising usÅÒȭÓ

effort . Various computational tools and data resources can be used in a workbench. In

the best case, a user can add the tools they need, as long as they are somehow

compatible with the workbench. However, adding custom tools requires effort with

most workbenches. In workbenches that are publicly accessible over the Web,

selections of tools are provided, covering the domain of research a workbench targets

(e.g. sequence analysis and evolution, structure bioinformatics, or genomics). On the

other hand, the workbeÎÃÈÅÓ ÔÈÁÔ ÁÒÅ ÉÎÓÔÁÌÌÁÂÌÅ ÁÔ Á ÕÓÅÒȭÓ local facilit y come often

ÂÕÎÄÌÅÄ ×ÉÔÈ Á ȰÓÔÁÒÔ ËÉÔȱ ÏÆ ÍÁÉÎ ÔÏÏÌÓ ÆÏÒ ÔÈÅ ÇÉÖÅÎ ÄÏÍÁÉÎȢ

To enable a convenient data analysis, workbenches integrate other essential

functionality , in addition to computational tools and data services. They may include

data management, visualisation, storage, or occasionally editing; management and

execution of automated workflows , workflow design, or scripting; and access to high -

performance computing facilities.

Workbenches usually provide an accessible interactive graphical user interface ɀ

typically in form of a web application ɀ providing the integrated tools and analysis

functionality with a unified look -and-feel, mutual interoperability , and usability

without typing commands or scripting (Fig. 4, p.37, Fig. 5, p.39). Other forms of accessing

the integrated functionality of a workbench may, however, be included in addition to

GUIs, allowing flexibility and accessibility for various groups of users and usage

scenarios.

Workbenches often include functionality that aims at enabling transparency and

reproducibility of the performed analyses: for example recording analysis steps (the

workflow) , details of the particular steps, provenance metadata; or enabling users to

add human-written documentation. Such documentation, together with the performed

workflow and used and obtained data, can often be shared publicly, enabling

convenient publishing of transparent and reproducible results. In addition, various

resources such as data and workflows can be shared between individual users or user

groups, a useful functionality for collaborative work. Tools compatible with a

particular workbench can usually be published in dedicated repositories, enabling

sharing of effort of making the tools compatible (i.e. typically wrapping them with a

given kind of interface).

From historical examples other than the various toolkits popular through the history

of bioinformatics (p.17), HASSLE (Doelz 1994, Doelz et al. 1994) was a highly sophisticated

system integrating distributed resources around Europe, far ahead of its time. GDE

(Genetic Data Environment, Fig. 4) was an interactive graphical workbench for multiple

sequence alignment (Smith et al. 1994, Eisen 1997), while SeqPup was an interactive

graphical sequence editor (Gilbert 1999), both with access to custom computational

37

Fig. 4. Screenshot of the GDE workbench from Eisen 1997.

tools. HUSAR (Heidelberg Unix Sequence Analysis Resources, Senger et al. 1995) is an

institution -specific system at the German Cancer Research Center in Heidelberg, based

on GCG (Devereux et al. 1984) and with restricted access, still functional today. Vector

NTI was a complex and extendable commercial workbench covering a broad spectrum

of bioinformatics (reviewed in Lu and Moriyama 2004).

Since the beginning of the 21st century, the development of integrated analysis systems

thrived in bioinformatics, resulting in a plethora of workbenches with diverse

specialisations and designs. These include expandable, multi-functional interactive

GUIs (more on p.19) that are rather narrowly specialised for a certain type of data: e.g.

ones for molecular structure analysis, Jalview (Clamp et al. 1998, 2004, Waterhouse et al.

2009, Troshin et al. 2011) with functionality comparable to GDE but state-of-art,

Norwegian J-Express for gene expression and similar analyses (Dysvik and Jonassen

2001, Stavrum et al. 2008) and MotifLab for analysis of regulatory regions in genomes

(Klepper and Drabløs 2013), or the popular Cytoscape for analysis and visualisation of

networks (Shannon et al. 2003, Yeung et al. 2008, Lopes et al. 2010).

Workflow systems focus on functionality including the design of automated workflow s,

their administration and execution. These are for example the well-known Taverna

(Oinn et al. 2004, Hull et al. 2006, Wolstencroft et al. 2013), or from the newer ones e.g. the

easy-to-use Armadillo (Lord et al. 2012) with data management and visualisation, and a

pretty graphical workflow editor.

Workbenches available for use on publicly accessible web servers reached a

considerable level of popularity, especially the comprehensive GenePattern (Reich et al.

2006) and Galaxy (Giardine et al. 2005, Goecks et al. 2010), both with active communities of

users and contributors. In addition to access at the public web servers, these

×ÏÒËÂÅÎÃÈÅÓ ÃÁÎ ÂÅ ÉÎÓÔÁÌÌÅÄ ÌÏÃÁÌÌÙ ÏÎ Á ÕÓÅÒȭÓ ÃÏÍÐÕÔÅÒ ÏÒ ÁÎ ÉÎÓÔÉÔÕÔÅȭÓ ÓÅÒÖÅÒȢ

38

Thanks to a well-targetted community building and promotion, instances of Galaxy

were deployed at various sites, with various sets of tools available. Such instances are

often locally customised versions, e.g. the publicly accessible Genomic HyperBrowser

(Sandve et al. 2010, 2013). Some institution -specific systems for access to local high-

performance computing resources use tweaked versions of Galaxy, for example at the

Institut Pasteur (slides http:// wiki.sb-roscoff.fr/ ifb/images/c/cc/Galaxy_Day_Institut_Pasteur.pdf),

occasionally replacing single-site ȰÈÏÍÅ-ÍÁÄÅȱ ÓÏÌÕÔÉÏÎÓ, such as at the University of

Oslo where the new Galaxy-based LifePortal (http://lifeportal.uio.no, Kumar et al. 2015)

replaced the previous, easy-to-use BioPortal (Kumar et al. 2009) with a simple web user

interface.

Institut Pasteur and other sites provide also Mobyle, a popular workbench for

sequence and structure analysis, with convenience features such automatic data

retrieval and re-formatting, or suggesting tools and operations for the next step within

a workflow (Néron et al. 2009). Chipster is a powerful workbench provided by the

Finnish CSC - IT Center for Science, with extensive support for scripting and graphics

(Kallio et al. 2011). Likewise the previous ones, Chipster is open-source and installable

for free, with a restricted-access instance at CSC (http:// chipster.csc.fi/access.shtml). UGENE

(Okonechnikov et al. 2012) is another free and open-source, locally installable workbench

that gained certain popularity, with optional commercial support. An interesting

system is GenomeSpace, going one level up and integrating various workbenches and

other tools, with convenient data management and sharing (http://genomespace.org,

posters Reich et al. 2013, Garamszegi et al. 2015).

Non-free commercial systems are for example the CLC Bio workbenches

(http://clcbio.com), or the user-friendly Geneious (http://geneious.com), with an old, slightly

limited version available for free as Geneious Basic (Kearse et al. 2012, Fig. 5). BaseSpace

is a comprehensive, accessible, and easy-to-use environment for computational biology

(http:// basespace.illumina.com). BaseSpace is free for use, with charging announced for

data above 1TB, providing access to numerous free and non-free tools, mostly non-

transparent.

Notable among recent developments for convenient deployment and execution of

automated workflows ɀ with Linux command-line tools ɀ in high-performance

computing facilities are e.g. Arvados and Nextflow. Arvados is a freely installable open-

source system with functionality including data versioning and parallelisation,

additionally provided as a commercial service (http:// arvados.org). Nextflow is a free and

accessible tooling for deploying and executing automated workflows on a growing

number of supported cluster systems, with support for various scripting languages

(poster Di Tommaso et al. 2014, update on slides http://speakerdeck.com/pditommaso/nextflow-a-

tool-for-deploying-reproducible-computational-pipelines).

http://wiki.sb-roscoff.fr/ifb/images/c/cc/Galaxy_Day_Institut_Pasteur.pdf
http://lifeportal.uio.no/
http://chipster.csc.fi/access.shtml
http://genomespace.org/
http://clcbio.com/
file:///C:/Users/Matus/Work/thesis%20&%20future/http:/geneious.com
http://basespace.illumina.com/
http://arvados.org/
http://speakerdeck.com/pditommaso/nextflow-a-tool-for-deploying-reproducible-computational-pipelines
http://speakerdeck.com/pditommaso/nextflow-a-tool-for-deploying-reproducible-computational-pipelines

39

Fig. 5. A screenshot of the graphical user interface of the Ge neious Basic workbench. Geneious Basic
(Kearse et al. 2012) offered a good selection of data-retrieval, computational, and visualisation tools, with a
playful user interface. Newer versions of Geneious are not available for free anymore, but this older
Geneious Basic is still available in Bio-Linux, leading us to the next section.

System distributions

Operating systems ɀ on personal computers nowadays most commonly Windows, Mac

OS X, or some kind of Linux (properly GNU/Linux) ɀ are normally distributed and

installed together with a set of tools for basic tasks: GUIs, editors, APIs, a web browser,

etc.. These system distributions (not ȰÄÉÓÔÒÉÂÕÔÅÄ ÓÙÓÔÅÍÓȱ ÉÎ ÓÅÎÓÅ ÏÆ ÂÅÉÎÇ ÄÅ-

centralised, but of being distributed as goods for the users) can be installable as a

whole from e.g. DVDs or downloadable files. Some Linux distributions come already

pre-equipped with a selection of well-tested ÂÉÏÉÎÆÏÒÍÁÔÉÃÓ ÔÏÏÌÓȢ 3ÕÃÈ Ȱ"ÉÏ ,ÉÎÕÃÅÓȱ

make bioinformatics tools accessible and availabl e ÆÏÒ ÕÓÅÒÓȭ ÐÅÒÓÏÎÁÌ ÃÏÍÐÕÔÅÒÓ ÁÎÄ

ÔÈÅÉÒ ÉÎÓÔÉÔÕÔÉÏÎÓȭ ÓÅÒÖÅÒÓȟ without having to search, choose, and install the tools,

manage their dependencies, or sometimes compile them. They are with few exceptions

free and open-source . In addition, Ȱ"ÉÏ ,ÉÎÕÃÅÓȱ can usually be booted up from a so-

called live CD, DVD, or USB stick, so that users do not have to install them at all if they

only need them temporarily, for example within a training workshop or an occasional

ÁÎÁÌÙÓÉÓȢ Ȱ,ÉÖÅȱ ÅØÁÍÐÌÅÓ ÉÎÃÌÕÄÅ Bioknoppix (not maintained anymore,

http://bioknoppix.hpcf.upr.edu), bioSLAX (http://bioslax.com), and especially the

comprehensive and well-supported Bio-Linux (http://environmentalomics.org/bio-linux, Field

et al. 2006) which is based on the usability -oriented Ubuntu distribution. A specialised

http://bioknoppix.hpcf.upr.edu/
http://bioslax.com/
http://environmentalomics.org/bio-linux

40

Linux distribution that partially overlaps with bioinformatics is e.g. OSDDlinux for

chemo-informatics and drug discovery (http://www.osdd.net/news-updates/osddlinux).

Main Linux distributions are equipped with package management software which

enables users to add new applications or libraries from dedicated repositories, without

complications with installation, versions, compilation, and especially dependency

management, making the system installations maintainable without complex

administration . A couple of Linux distributions contain large numbers of

bioinformatics tools available in their package repositories: Gentoo Linux

(http://packages.gentoo.org/category/sci-biology?full_cat), and especially the foundational

Debian which many Linux distributions are based on, including Ubuntu. Debian is the

well-tested, reliable , well-supported, strictly free and transparent operating system

maintained by an organisation of volunteers (Murdock 1994, Perens 1997). Debian users

can, however, install non-free packages additionally . Debian contains a broad selection

of free bioinformatics and life-scientific tools that are integrated into Debian by the

Debian Med initiative (Möller et al. 2010, http://www.debian.org/devel/debian-med). Debian

Med is, using the Debian terminology, Á ȰDebian Pure BÌÅÎÄȱ: a subset of Debian for a

particular target-group of users, with an associated community that develops it and

provides user support. Debian Med and Bio-Linux, the two main Linux initiatives for

computational biology, evolved into a single integrated community, where the majority

of Bio-,ÉÎÕØȭÓ ȰÂÉÏȱ ÐÁÃËÁÇÅÓ ÉÓ ÍÁÉÎÔÁÉÎÅÄ ÕÎÄÅÒ $ÅÂÉÁÎ -ÅÄ, with few additional

ones that so far are Bio-Linux-only. It may be interesting to mention also Qlustar

(http://qlustar.com), an example of a commercial distribution for high-performance

ÃÏÍÐÕÔÉÎÇ ÉÎ ȰÓÕÐÅÒÃÏÍÐÕÔÅÒȱ ÃÅÎÔÒÅÓȢ 1ÌÕÓÔÁÒ ÉÓ ÂÁÓÅÄ ÏÎ $ÅÂÉÁÎ ÁÎÄ Ubuntu, so

Debian Med and Bio-Linux can smoothly be used inside it, and it has an edition with

somewhat limited functionality available for free to non-commercial use.

Virtual machines can be used to run one system installation inside another, for example

Bio-Linux inside Mac OS X. Virtual machines can also be moved between different

ÐÈÙÓÉÃÁÌ ÃÏÍÐÕÔÅÒÓȟ ÁÎÄ ÃÁÎ ÂÅ ÒÕÎ ÉÎ ÃÏÍÍÅÒÃÉÁÌ ȰÃÌÏÕÄÓȱ if users pay, or in

specialised supercomputing centres if users have access to them, paid or free (e.g.

http://research.csc.fi/computing-infrastructures). Using virtual machines running on remote

computational services, one of the phenomena hidden behind the marketing buzzword

ÏÆ ȰÃÌÏÕÄ ÃÏÍÐÕÔÉÎÇȱȟ ÍÁËÅÓ ÈÉÇÈ-performance computations usable and accessible

to researchers flexibly , without the need for purchasing, installing, and maintaining

the necessary hardware. Increasing number of bioinformatics tools are available as

fully -installed virtual machines, that users can immediately deploy and start using

locally, on a virtualisation-ÅÎÁÂÌÅÄ ÓÅÒÖÅÒȟ ÏÒ Á ȰÃÌÏÕÄȱ service. Examples include

PredictProtein (Kaján et al. 2013, http://rostlab.org/services/ppmi), JBrowse (Skinner et al.

2009), and Galaxy (Afgan et al. 2010). Examples of virtual machines equipped with

comprehensive sets of bioinformatics tools are DNALinux (http://dnalinux.com) and

CloudBioLinux (http://cloudbiolinux.org, Afgan et al. 2012), the latter containing a

substantial portion of contemporary bioinformatics tools via integration from various

http://www.osdd.net/news-updates/osddlinux
http://packages.gentoo.org/category/sci-biology?full_cat
http://www.debian.org/devel/debian-med
http://qlustar.com/
http://qlustar.com/content/qlustar-basic-edition
http://research.csc.fi/computing-infrastructures
http://rostlab.org/services/ppmi
http://dnalinux.com/
http://cloudbiolinux.org/

41

repositories including Bio-Linux, Bio*, and Bioconductor. With CloudBioLinux, the

×ÈÏÌÅ ÂÉÏÉÎÆÏÒÍÁÔÉÃÓ ȰÌÁÂÏÒÁÔÏÒÙȱ ÉÓ available ÉÎ ȰÁ ÃÏÕÐÌÅ ÏÆ ÃÌÉÃËÓȱȟ ÏÎ Á ÕÓÅÒȭÓ local

computer or in an eventual supercomputing facility. A light-weight alternative to

virtual machines are software containers limited to one family of operating systems,

such as the popular Docker for Linux systems (http://docker.com). In addition to

installable tools and system distributions, virtual machines and software containers

are the only other option for analysing sensitive data ɀ provided that the virtual

machine is verified safe ɀ inside isolated computing environments (such as TSD at the

University of Oslo, http://www.uio.no/tjenester/it/forskning/sensitiv/hjelp/brukermanual).

1.4. Standardising information and data representation

Bioinformatics and computational biology have data in the centre of gravity: analysing

biological data, comparing data, interpre ting data, producing data that suggest new

relations in nature. When researchers succeed in finding new insights, the excitement

is naturally about the content of the data and some nice plots to present the results.

LÅÓÓ ÅÆÆÏÒÔ ÍÁÙ ÂÅ ÐÕÔ ÉÎÔÏ ȰÎÏÎ-ÃÏÎÔÅÎÔȱ ÑÕÁÌÉÔÉÅÓ ÏÆ ÔÈÅ ÄÁÔÁ ÓÕÃÈ ÁÓ ÆÏÒÍÁÔȟ

readability, terminology, consistency, reproducibility, or compatibility and

comparability (interoperability) with other data. Similar holds when developing new

computational tools or databases: the functionality and the content of the output or

ÓÔÏÒÅÄ ÄÁÔÁ ÁÒÅ ÎÁÔÕÒÁÌÌÙ ÔÈÅ ÍÁÉÎ ÆÏÃÕÓȟ ×ÈÉÌÅ ÆÌÅØÉÂÉÌÉÔÙ ÏÆ ÉÎÐÕÔÓ ÁÎÄ ÔÈÅ ȰÎÏÎ-

ÃÏÎÔÅÎÔȱ ÑÕÁÌÉÔÉÅÓ ÏÆ ÔÈÅ ÏÕÔÐÕÔ ÁÒÅ ÓÅÃÏÎÄÁÒÙȢ (Ï×ÅÖÅÒȟ ×ÈÅÎ ÔÈÅ ÒÅÓÕÌÔÓ ÁÎÄ ÔÏÏÌÓ ÁÒÅ

later used by other researchers in their analysis workflows, the accessibility ,

usability and reusability , interoperability with other data, and of course

provenance and reliability of the data become of great importance. In order to

mitigate the vast creative chaos in bioinformatics data, various types of efforts have

been initiated and implemented.

Data formats

We can broadly say that a data format is a particular way of structuring information so

ÔÈÁÔ ÃÏÍÐÕÔÅÒ ÐÒÏÇÒÁÍÓ ÃÁÎ ÒÅÁÄ ÁÎÄ ȰÕÎÄÅÒÓÔÁÎÄȱ ÉÔȠ ÏÆ ÒÅÐÒÅÓÅÎÔÉÎÇ ÉÎÆÏÒmation as

data items; and of encoding the data in computer memory or on a data medium. A

particular type of data ɀ for example a sequence of nucleotides of a gene with basic

information about the gene ɀ can be represented in many ways, in various formats. In

http://docker.com/
http://www.uio.no/tjenester/it/forskning/sensitiv/hjelp/brukermanual

42

Fig. 6. Examples of sequence records in FASTA format. 4 different records of the same sequence in the
same format (FASTA), but with differently formatted accompanying information. Highlighted in blue is
database, green identifier, red taxon, and violet version.

order to have a set of tools smoothly interoperable with each other, minimising the

needs for converting formats when they are used together in a workflow, the tools

should accept and output a particular type of data in a common format. There are

numerous de-facto standard formats which are usable with broad spectra of

bioinformatics tools, e.g. the tab-separated textual GFF (http://gmod.org/wiki/GFF3) and

BED (Kent et al. 2002) for information about genomes, genes, biopolymers, their parts,

and related measured or inferred values. These formats are to some extent readable

also to humans, while similar ly structured bigBed (Kent et al. 2010) and BAM (Li et al.

2009) are, in contrast, compressed into binary files or blobs in order to save data

volume for transfer and storage.

Specifications of data formats often allow certain freedom of representing some parts

of the recorded information. An obvious example among bioinformatics data formats is

the FASTA format (http://www.ncbi.nlm.nih.gov/BLAST/blastcgihelp.shtml) ɀ a widely used

textual format for genetic and biopolymer sequences ɀ which leaves the structuring of

accompanying information open (Fig. 6). Using the same format in different ways among

various tools may hamper the interoperability, too.

In order to achieve better interoperability with tools, and in some way easier

implementation or integration with other data, a machine-understandable

specification of a data format can be provided in a schema language. A data schema can

also be called a data model, and allows a degree of automation in processing data

instances, such as in parsing, validating, printing, or compressing, by using available

programmatic libraries that are not specific to a particular data format. XML formats

are usually defined in a dedicated XML Schema (XSD, http://www.w3.org/XML/Schema,

http://www.w3.org/2001/XMLSchema). XML formats in bioinformatics are for example

MAGE-ML for microarray data (Spellman et al. 2002), SBML for models in systems

biology (Hucka et al. 2003, 2004), CML and PDBML for molecular structure (Murray-Rust

et al. 2001, Westbrook et al. 2005), phyloXML and NeXML for phylogenetic data (Han and

Zmasek 2009, Vos et al. 2011, 2012), or recently BDML for spatiotemporal dynamics of

biological objects (Kyoda et al. 2015). In addition to formats specialised on a particular

