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Aims of the thesis  

The aim of the presented work was contributing to making scientific computing more 

accessible, reliable, and thus more efficient for researchers, primarily computational 

biologists and molecular biologists. Many approaches are possible and necessary 

towards these goals, and many layers need to be tackled, in collaborative community 

efforts with well-defined scope. As diverse components are necessary for the 

accessible and reliable bioinformatics scenario, our work focussed in particular on the 

following:  

In the BioXSD project, we aimed at developing an XML-Schema-based data format 

compatible with Web services and programmatic libraries, that is expressive enough to 

be usable as a common, canonical data model that serves tools, libraries, and users 

with convenient data interoperability. 

The EDAM ontology aimed at enumerating and organising concepts within 

bioinformatics, including operations and types of data. EDAM can be helpful in 

ÄÏÃÕÍÅÎÔÉÎÇ ÁÎÄ ÃÁÔÅÇÏÒÉÓÉÎÇ ÂÉÏÉÎÆÏÒÍÁÔÉÃÓ ÒÅÓÏÕÒÃÅÓ ÕÓÉÎÇ Á ÓÔÁÎÄÁÒÄ ȰÖÏÃÁÂÕÌÁÒÙȱȟ 

enabling users to find respective resources and choose the right tools. 

The eSysbio project explored ways of developing a workbench for collaborative data 

analysis, accessible in various ways for users with various tasks and expertise. We 

aimed at utilising the World-Wide-Web and industrial standards, in order to increase 

compatibility  and maintainability, and foster shared effort. 

In addition to these three main contributions that I have been involved in, I present a 

comprehensive but non-exhaustive research into the various previous and 

contemporary efforts and approaches to the broad topic of integrative bioinformatics, 

in particular with respect to bioinformatics software and services. I also mention some 

closely related efforts that I have been involved in. 

The thesis is organised as follows: In the Background chapter, the field is presented, 

with various approaches and existing efforts. Summary of results summarises the 

contributions of my enclosed projects ɀ the BioXSD data format, the EDAM ontology, 

and the eSysbio workbench prototype ɀ to the broad topics of the thesis. The 

Discussion chapter presents further considerations and current work, and concludes 

the discussed contributions with alternative and future perspectives. 

In the printed version, the three articles that are part of this thesis, are attached after 

the Discussion and References. In the electronic version (in PDF), the main thesis is 

optimised for reading on a screen, with clickable cross-references (e.g. from citations 

in the text to the list of References) and hyperlinks (e.g. for URLs and most References). 

A PDF viewÅÒ ×ÉÔÈ ȰÂÁÃËȰ ÆÕÎÃÔÉÏÎ ÉÓ ÒÅÃÏÍÍÅÎÄÅÄ. 
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1 Background  

The Background chapter of this thesis first briefly introduces the field of bioinformatics 

to a non-bioinformatician reader, and then outlines the main sources of accessibility 

and reliability problems with bioinformatics tools and data. Example approaches and 

efforts towards more accessible and reliable bioinformatics are presented throughout 

the rest of the chapter. For an interested reader, I can recommend Attwood  et al. (2011) 

as one of interesting historical overviews of bioinformatics from the point of view of 

bioinformatics databases, or Hogeweg (2011) for her story of bioinformatics since the 

beginning. 

1.1. Bioinformatics  is an integral  component of life science s 

Life sciences is an umbrella term covering a whole range of research disciplines about 

living organisms. With biology as the central component, life sciences include also 

fields such as ecology, medical research, pharmacology, and biotechnology. The 

research in life sciences focuses on topics including evolution, health and disease, 

ecosystems, ÌÉÆÅȭÓ ÄÉÖÅÒÓÉÔÙȟ genotype, phenotype, and their variations, mechanisms of 

life, and their applications in technology. To enable answering questions about these 

topics, and to organise the life-scientific knowledge, detailed information  is being 

recorded about species and their relations, anatomy and development, of genes, 

proteins, other molecules, their interactions and functions, of whole genomes of 

species, and metagenomes of ecosystems. 

Successive innovations in measuring and imaging technologies are enabling a massive 

growth in volume, quality, and diversity of produced biological data on the molecular 

level, reaching from fully sequenced genomes of species or individuals, through 

structures and movements of proteins and other molecules, to details about 

interactions between various kinds of molecules and elements in genomes. Epigenetic 

and phenotypic properties of living organisms are being captured under certain 

conditions: for example the expression levels of genes, or concentrations of various 

kinds of molecules under a given condition. 



11 
 

Bioinformatics  is the discipline dedicated to computational processing, analysis, 

storage, and representation of biological data, mostly on the molecular level. 

Bioinformatics has over the last decades become an integral component of research in 

the fields of molecular biology, medicine, pharmacology, ecology, and biotechnology, in 

particular in cases of research where the amount of analysed data demands high-

throughput computational processing. The post-paradigmatic, interdisciplinary nature 

of ÔÏÄÁÙȭÓ life-scientific research demands diverse expertise and methods to be 

developed and applied. The involved disciplines include biology, chemistry, and 

medicine, but also physics, mathematics including statistics and dynamic systems, and 

informatics including e.g. data management, algorithmics, software engineering, high-

performance computing, machine learning, or text mining. Occasionally, cross-

disciplinary life-scientific research reaches out even to disciplines such as 

environmental, social, Earth, or space sciences, law, ethics, linguistics, or philosophy. 

Bioinformatics itself focuses on developing and applying algorithms, mathematical, 

and statistical methods to process molecular-biological data obtained from lab, bench, 

or field studies, in order to find answers to challenging scientific or technological 

questions. Types of data being processed include for example sequences and 3D 

structures of macromolecules such as DNA, RNA, proteins, their parts or complexes, 

microscope images, or measured concentrations of certain types of molecules or 

sequences. In addition to analysing laboratory data, bioinformaticians have a central 

role in producing, publishing, and maintaining derived data of scientific interest, such 

as annotations of loci in genomes, genes and gene products with their features and 

relations, alignments of related sequences or structures, evolutionary trees, or 

networks of interacting genes and molecules, with their systemic properties. 

Other inter-disciplinary fields overlap with bioinformatics to a notable extent. Without 

trying to fully define them, example relations include: 

¶ Computational biology . The terms computational biology and bioinformatics 

are often used interchangeably as close synonyms. On the other hand, they are 

sometimes distinguished along the lines of bioinformatics being the discipline of 

developing computational tools for biology and storing biological data, while 

computational biology being the discipline of developing analytical methods, 

applying tools, and using data for concrete biological research. In practical 

terms, however, these directions are developed together and can hardly be 

separated. The blurred distinction between bioinformatics and computational 

biology can be illustrated with  two of the main bioinformatics and 

computational biology conferences ɀ the Intelligent Systems in Molecular Biology 

and the European Conference on Computational Biology ɀ both publishing their 

proceedings in the journal Bioinformatics (Lengauer 1999, 2002, Devignes and 

Moreau 2014, Moreau and Beerenwinkel 2015). 
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¶ Genomics (or  genome biology) is the study of whole genomes including the 

sequences, relations between genes, mechanisms of gene regulation, evolution, 

and variation. In line with genomics, other omics  disciplines focus on complete 

repertoires of different kinds of biological molecules or mechanisms, as fields of 

study or as measurement and recording methods. For example proteomics  

measures the repertoire of proteins present in a sample, and metabolomics  the 

small molecules, metabolites. Complementing genomics, epigenomics  studies 

the information not included in the genomic sequence itself, but in histone 

modifications and DNA methylation. 

¶ Systems biology  studies networks of interacting molecules or other agents in a 

cell, a cell compartment, tissue, organism, or ecosystem. These networks are 

typically modelled as mathematical dynamic systems, and the dynamic 

properties of the involved molecules and other measures are analysed and 

simulated computationally. One may for example predict concentration of a 

certain chemical constituent in a given system under given circumstances. 

¶ Biostatistics  is the statistical component of designing experiments, analysing 

and interpreting data, and doing predictions within biological disciplines. 

¶ Cheminformatics  intersects with bioinformatics when it comes to information 

about chemical compounds present in living organisms, e.g. to cataloguing their 

properties, or inferring  their structure.  

¶ Immunoinformatics  ɀ or computational immunology ɀ applies computational 

methods including bioinformatics and genomics in immunology. 

1.2. The community of creative chaos  

With exception of a few bigger institutes, the bioinformatics community is spread over 

thousands of independent research groups around the world. These are based at 

various departments and institutions, most frequently academic, and may be co-

located with diverse related research disciplines: typically biology, medicine, 

biochemistry, computer science, scientific computing, or mathematics, but possibly 

also with  other fields such as geology, marine and water research, or biotechnology. 

Having the broad common goal of exploring biological mechanisms, researchers have 

recorded numerous petabytes of data and developed thousands of software tools. 

Large amounts of data have been collated in freely accessible public databases, 

provided and maintained by different groups and institutes. The Nucleic Acids Research 

ÊÏÕÒÎÁÌȭÓ Molecular Biology Database Collection lists in 2015 more than 1500 diverse 

bioinformatics databases that are available to all researchers and to the general public 
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(Burks 1999, Baxevanis 2000, Fernández-Suárez et al. 2014, Galperin et al. 2015). Moreover, in 

addition to the public databases, many research groups and companies maintain their 

own private databases dedicated to their  research. 

The researchers and enthusiasts within the bioinformatics community keep 

developing software tools  which encapsulate diverse novel algorithms for processing 

different kinds of biological data. A majority of these tools is either free and open-

source, or at least freely available to academic users or in fact to everyone. The 

SEQanswers web portal  currently  includes informati on about almost 700 software 

tools (Li et al. 2012a). It covers primarily tools for processing sequencing data, and this 

list is far from being exhaustive. 

The story of bioinformatics, however, does not end at developing and using individual  

tools and databases, but that is rather where it all starts! A bioinformatics (or  rather 

computational biology) analysis needs to combine various steps, using multiple tools 

and databases. The complete or partial work flow of analysing certain data, with a 

certain scientific goal in mind, is referred to as an analysis  workflow . Some workflows 

or their parts can be fully automated in the form of a computer program or script, 

running without user interaction from the initial inputs to the final outputs. Automated 

workflows are sometimes called also pipelines, but such distinction is not universally 

established and switched meanings occur, therefore I will avoid the term in the rest of 

the text. Other parts of workflows that are not automated may include interactive use 

of software tools or Ȱmanualȱ processing. 

Analysis of biological data demands both the integration  of different types and 

sources of data, and the integration of diverse software tools. In a particular workflow, 

the different types of data that are integrated may originate from various in vivo and in 

vitr o sources, measured or imaged by various technologies, and represented in 

different formats. In addition, data generated within a particular project are usually 

compared with data stored in various public or private databases. Diverse 

computational tools need to be combined while processing the data, often together 

with steps of manual inspection and handling of the data, trials and errors in designing 

the workflows themselves, and finding the most appropriate parameters of the 

involved tools. 

Additional special-purpose scripts  often need to be written for automating particular 

parts of the analyses. In contrast to multi-purpose software tools, scripts usually aim at 

fitting a very specific situation. Scripts are often used, for example, in statistical 

analyses, such as when comparing various data values and finding significant 

differences, in graphical plotting of intermediate or final results, in data parsing, 

filtering , and editing. 

In many cases, the software tools used in a workflow may run ÏÎ ÔÈÅ ÕÓÅÒȭÓ ÐÅÒÓÏÎÁÌ 

computer. However, a steadily growing portion of life-scientific research demands high 
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throughput of data analysis. In high-throughput analyses, certain steps of the 

workflow s require time- and resource-consuming computation on powerful 

supercomputers and with  large databases. The high-performance computational 

resources, in similar fashion to the databases, are provided by certain institutes as 

services  that are available to a limited group of local users or publicly, accessible via a 

local network or the World Wide Web. In summary, bioinformatics workflows require 

data integration, integration of software tools, scripts, computational resources, 

services, and databases. 

The self-organising character of the heterogeneous bioinformatics community, and the 

fast responses to emerging technologies, have been resulting in high productivity of 

novel data and scientific knowledge, accompanied by massive productivity of tools 

which have been enabling tremendous progress in life sciences. Although there are 

thousands of bioinformatics tools, databases, and other resources freely available to 

the whole community, they are not necessarily easy to find, use, compare, evaluate, 

and integrate with each other in order to find the best and most appropriate and fit 

them into the researcherÓȭ ×ÏÒËÆÌÏ×ÓȢ Researchers analysing biological data spend a 

substantial portion of their time navigating through the existing Ȱcreative chaosȱ ɉÁÓ 

coined by Stein 2002) and adapting to it . The downside of the creative freedom has 

been that the tools from different researchers come in very different forms, flavours, 

and qualities. 

Chasms exist between the quality of documentation, between the ways of distribution, 

and between the degrees of usability ranging from the few user-friendly tools to ones 

no one except the author can use. Importantly, computational tools can be available 

with various types of interfaces , for example graphical user interface, command-line 

interface, web application, plugin to another application, or a programming librar y. 

Different types of tool interfaces are useful in different scenarios, and are described in 

the next section, 1.3 Efforts in mitigating the chaos (p.15). Unfortunately, many tools are 

only available with one type of interface, and in order to use them in a different way, an 

additional effort must be made of wrapping them with another interface. 

In addition, the input data that are consumed by tools and the output data that are 

produced, or that can be extracted from distinct databases, vary hugely in the format in 

which they are represented. Even when common formats are used, they can be used in 

different  ways, due to the flexibility of the formats. Also, the nomenclature inside the 

data may be used differently  and thus cause possibly different understandings. Last 

but not least, major differences are usual in the presence and detail of accompanying 

metadata, affecting the practical reliability  of the data. Efforts in standardising the 

representation of information are described in a dedicated section, 1.4 Standardising 

information and data representation (p.41). 

Together with integration of tools and data, there is another crucial area of integration 

challenges: the integration of people, who are the users of bioinformatics tools, 
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producers of data, or providers of tools. One side is the Ȱhuman-tool integrationȱ, 

where qualities of the tools ɀ such as accessibility and usability ɀ turn into either 

efficiency or effortfulness of the research. This is even more important for those 

prospective users of bioinformatics tools who are not computer specialists, such as 

biologists or medical doctors. Also non-researchers, for example secondary-school 

students, should be able to access and use the most basic publicly available biological 

data and bioinformatics tools. Another side is the Ȱintegrationȱ of people with each 

other, that is enabling efficient collaboration between scientists, and between 

specialists in diverse disciplines. Broad collaborations are exemplified in section 1.5 

Sharing experience and effort, p.46. 

1.3. Efforts in mitigating the chaos  

To enable researchers to utilise the abundance of diverse computational tools and data 

resources more efficiently, several tactics and projects have been developed that focus 

on improving the accessibility and reliability  of the involved tools and data resources. 

With the umbrella terms of accessibility and reliability, let us encompass broad and 

overlapping ranges of quality aspects of tools and data, outlined in the following 

paragraphs.  For computational tools, these are also called non-functional requirements 

or quality attributes. 

Accessibility  can in a broad sense cover a set of interconnected qualit ies such as: 

¶ Usability. Tools with good usability are user-friendly, efficient to work with and 

ergonomic. They minimise mistakes, and have low barrier to learn how to use 

them. Usability design of a particular tool can focus on a particular type of user 

and usage scenario. 

¶ Availability. Means that tools can be downloaded, installed, and used; or 

accessed on a server with good response time and sufficient computational 

power. The usage should be affordable, ideally for free, for all scientists and the 

general public. Free and open-source software can by definition be used, studied, 

modified, and re-distributed freely (Stallman 1986, Perens 1997, 1999). 

¶ Interoperability and compatibility refer to the smoothness of setup and use 

together with other tools and systems (integration): software, hardware, 

operating systems, programming languages, web browsers, or different types of 

interfaces (e.g. interactive graphical, programmatic, or command shell). Worth 

emphasising is the ease of using different tooÌÓ ÔÏÇÅÔÈÅÒ ÉÎ Á ȰÍÁÎÕÁÌȱ ÏÒ 

automated workflow , and of replacing a tool in a workflow with another . 
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¶ Documentation available in good quality, and all necessary information easily 

findable (the documentation, binaries, source code, web locations). A relevant 

tool or resource should be findable for potential users that have not heard about 

it before. 

¶ Flexibility allowing unexpected usage scenarios. This is often referred to as re-

usability. Flexible tools are efficiently usable by different types of users, 

smoothly in different scenarios. Scalability, maintainability  (ease of keeping the 

toolȭÓ ÆÕÎÃÔÉÏÎÁÌÉÔÙȟ ÉÔÓ ÉÎÓÔÁÌÌÁÔÉÏÎȟ ÁÎÄ ÄÅÐÅÎÄÅÎÃÉÅÓ up to date), and 

possibilities to extend and contribute to further development can be mentioned 

as separate qualities related to flexibility.  

Reliability  is desired with respect to scientific results, data and conclusions, and tools. 

A high level of reliability can be achieved by satisfying a number of related qualities 

including: 

¶ Transparency of results, computations, algorithms, efficiency, assumptions, of 

the development and maintenance process, and of weak points. Good 

transparency can enable reproducibility, and can be facilitated by recording 

provenance (the history of data), by availability and good quality of source code, 

and by sharing information  that is not sensitive. 

¶ Confidence and evidence supported by extensive, well-targetted testing and 

statistical evaluation, and comparability with similar tools or results. 

¶ Reliable tools and resources should be well maintained, stable but up to date and 

non-volatile in functionality and availability (durable), with good versioning, 

updating, bug-fixing, and user support; free of unwanted side effects or 

unexpected behaviour; and well compared with related tools, possibly using 

some benchmarks. 

Reliability and accessibility are naturally closely related. Documentation, scalability, 

interoperability, flexibility , source code availability and quality, robustness (with 

respect to parameter settings, improper use, high load, or failure), or openness for 

community participation , can all contribute to both accessibility and reliability of a tool 

or data resource. For example documentation and evidences ɀ which may include 

example applications or benchmarks ɀ may advertise a resource in a transparent, 

reliable way, thus improving its visibility to potential users. Another example, free and 

open-source software is available for use, with a good chance to be flexible, well-

maintained, and reliable thanks to openness to modification and re-distribut ion and 

transparent due to its available source code. In the best case, the whole development of 

a particular software can be transparent and participatory, improving reliability  of the 

developed software, and fulfilling  ÔÈÅ ÃÏÍÍÕÎÉÔÙȭÓ ÒÅÑÕÉÒÅÍÅÎÔÓ. As a fundamental 

principle, tactics for making bioinformatics more accessible and reliable do focus on 

the user. The rest of this section lists a number of main approaches to targeting these 

various quality aspects of bioinformatics tools, together with examples where they are 

applied. In this way, a non-exhaustive overview of existing efforts is presented. 
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Approaches related to mitigating the chaos within bioinformatics data are presented in 

the next section, 1.4 Standardising information and data representation (p.41), while a 

short section on collaborations (1.5 Sharing experience and effort, p.46) closes the 

Background chapter. 

Installable applications  

Application software may be available  for users to download and install onto their 

personal computers or their ÉÎÓÔÉÔÕÔÉÏÎȭÓ ÓÅÒÖÅÒÓȢ As the ultimate examples, the all-

time most popular bioinformatics tools, Clustal and BLAST, thank their enormous 

proliferation to bei ng free  and open-source , easy to compile and install in all main 

operating systems and hardware, well documented  (both algorithms and 

implementations), having user support , and being continuously maintained  and 

improved until today (Higgins and Sharp 1988, Higgins et al. 1992, Thompson et al. 1994, 

1997, Larkin et al. 2007, Sievers et al. 2011 for Clustal; and Altschul et al. 1990, 1997, Camacho 

et al. 2009 for BLAST). 

As an interesting remark, rumours say that the MULTAL algorithm and its 

implementation (Taylor 1988) was at least comparably fast and accurate as Clustal at 

the time, but did not gain users possibly due to the lack of accessibility and support. 

Although MULTAL was free to use and available with its source code, it could still be 

considered a great academic prototype, as opposed to Clustal being an extensively 

supported and maintained production software. Source code that is available and in 

good quality, well-documented, with build scripts, easy to install, update, or use in 

other applications and on all main operating systems, with continuous improvements, 

and a well-supported user community naturally increase the transparency  and 

reliability  of the given software, thus attracting more and more confiding  users. As 

opposed to applications available only remotely, locally-installable software is usable 

also within isolated computational resources handling sensitive data , where all or 

most of remote access is blocked. 

Toolkits  

To make software more visible to the users, and easier to install, manage 

dependencies, and use, many tools are provided together as toolkits, called also 

software suites. Tools within a suite are usually developed together, or following 

shared guidelines, have similar interfaces, and are nicely compatible  among 

themselves, covering a certain domain of research. That means that they are easily 
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usable together in analysis workflows. Developing tools together as a toolkit , if 

designed carefully, may also make it easier to develop them further, which is a feature 

of good maintainability . 

The University of Wisconsin Genetics Computer Group software suite, also known as 

GCG or the Wisconsin Package (Devereux et al. 1984, Womble 1999a), was a toolkit that 

included implementations of the classical optimal sequence alignment algorithms 

(Needleman and Wunsch 1970, Smith and Waterman 1981), together with many other tools 

for analysis of nucleotide and amino-acid sequences. Although initially with public 

funding from NIH, GCG was developed at the University of Wisconsin as a commercial 

software with 50% discount for non-profit  users, and gained broad popularity. Owned 

by the Genetic Computer Group Inc. and later Accelrys, GCG became obsolete and no 

longer maintained or supported since 2008. As a free, open-source alternative to GCG, 

the development of the European Molecular Biology Open Software Suite (EMBOSS, 

Rice 1998, Rice et al. 2000) started in 1998 based on the work on previous GCG 

extensions (GCGEMBL and EGCG, Rice et al. 1995, 1996), backed by the EMBnet 

community (Doelz 1992, Harper 1996, D'Elia et al. 2009) and initially funded by the 

Wellcome Trust. Providing hundreds of tools mostly for molecular sequence analysis, 

EMBOSS was further developed until recently  (http:// emboss.sourceforge.net/developers/

changelog.html), and is still widely used today. 

Classical examples of bioinformatics toolkits include also the  Staden Package for 

sequence analysis and assembly (Staden 1977, 1978, 1979, 1986, 1996, Staden et al. 1999), 

PHYLIP for phylogenetics (Felsenstein 1981, 1985, 1989), WHAT IF for molecular 

structure analysis and modelling (Vriend 1990), the Vienna RNA Package for RNA 

structure modelling and analysis (Hofacker et al. 1994, Gruber et al. 2008, Lorenz et al. 

2011), or Gromacs for molecular dynamics (Berendsen et al. 1995, van der Spoel et al. 2005, 

Hess et al. 2008, Pronk et al. 2013). More recent examples include the highly popular 

SAMtools for handling and analysis of aligned sequencing reads (Li et al. 2009), or 

GenomeTools developed at the University of Hamburg, which comprise genome 

analysis tools published separately but available as a coherent toolkit (Gremme et al. 

2013). 

Notably, there is no clear distinction between single software tools and software 

toolkits. On one hand, each software toolkit can be considered a coherent tool. On the 

other hand, a particular tool often provides different algorithms for alternative options 

and for different kinds of input data or usage scenarios, such as in BLAST, especially 

since the introduction of the re-implemented BLAST+ suite (Camacho et al. 2009). 

http://emboss.sourceforge.net/developers/changelog.html
http://emboss.sourceforge.net/developers/changelog.html
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Interactive graphical user interfaces  

Application software can be available as executables that read parameters and input 

data, run the computation, write the output , and close the execution. Also called 

command-line tools or programs, these can be executed in a command shell or within a 

script. 

Some applications are on the other hand ɀ or in addition ɀ equipped with an 

interactive graphical user interface (GUI), enabling interactive graphical visualisation. 

Once the graphical user interface is executed, it  awaits a succession of user 

interactions, based most typically on using a pointing device instead of typing 

commands. Interactive graphical user interfaces thus increase usability  and 

transparency  in scenarios where interactive visualisation is beneficial, and 

accessibility  for users that prefer not to type commands or write scripts. 

As graphic displays were becoming affordable during the 1980s, interactive graphical 

visualisation tools started proliferating into bioinformatics, such as within the Staden 

(Staden 1982, 1984, 1990, Gleeson and Staden 1991) and WHAT IF (Vriend 1990) toolkits . 

While at the time of the first publication  GCG offered graphics only as output printed 

by plotters (Devereux et al. 1984), graphical output on displays became available soon 

after. The interactive GUI was, however, introduced into the GCG toolkit only in the 

1990s in form of the Wisconsin Package Interface (WPI) for the X Window System, 

followed by SeqLab (Womble 1999a). 

Despite of the algorithms for automated alignment of multiple sequences, it turned out 

early-on that they need to be complemented with visualisation and Ȱmanualȱ editing. 

Editing of multiple-sequence alignments and their textual visualisation using ASCII 

characters became available with HOMED (Stockwell and Petersen 1987, Stockwell 1988) 

and ESEE (Cabot and Beckenbach 1989) editors. Graphical visualisation and editing were 

enabled soon afterwards, for example in the historical MACAW (Schuler et al. 1991), a 

comprehensive application for constructing alignments, which integrated manual 

editing with automated methods. Clustal ɀ the all-time favourite multiple -sequence 

aligner ɀ has since the 1990s been equipped with a GUI named CLUSTAL_X, 

programmed in C and available for all major operating systems (Thompson et al. 1997, 

Larkin et al. 2007). Currently perhaps the most popular graphical editor and analysis 

tool for multiple -sequence alignments, especially for proteins and RNAs, is Jalview 

(Clamp et al. 1998, 2004, Waterhouse et al. 2009, Fig. 1). It  is programmed in Java and can 

thus run on all common operating systems. 



20 
 

 

Fig. 1. A historical version of Jalview from  Clamp et al. 1998. 

Various GUI applications were developed in Java at the time of its increasing 

popularity , for example the genome browser Artemis for displaying and annotating 

whole-genome sequences (Rutherford et al. 2000), and J-Express for analysing data 

obtained from gene-expression microarrays and other high-throughput technologies 

(Dysvik and Jonassen 2001, Stavrum et al. 2008). At the time, J-Express enabled complete 

gene-expression analysis using statistical algorithms and data visualisations integrated 

in a relatively accessible, transparent , and comprehensive graphical application, as 

opposed to otherwise using a set of partially unpublished scripts such as in the 

foundational work of Eisen et al. (1998). 

Interactive graphics are necessary for analysis of 3D structure of biomolecules, 

provided by multiple applications such as RasMol (Sayle and Milner-White 1995, Bernstein 

2000), the popular VMD (Humphrey et al. 1996) and PyMOL (http://www.pymol.org), or the 

ambitious YASARA (http://yasara.org). A few other interesting examples of 

comprehensive interactive visual tools are Cytoscape (Shannon et al. 2003, Yeung et al. 

2008) and ONDEX (Köhler et al. 2006) for exploring networks of interactions and 

relations such as between various molecules and genes; COPASI for analysing systems 

biology models (Hoops et al. 2006); the Integrative Genomics Viewer (IGV, Robinson et al. 

2011, Thorvaldsdóttir  et al. 2013), a genome browser with rich functionality; Utopia 

Documents (Attwood  et al. 2010), a PDF reader for scientific articles, that interactively 

visualises mentioned molecules and active links to other data; and a contemporary tool 

Caleydo for exploring large heterogeneous data visually (Streit et al. 2009, Lex et al. 2012). 

http://www.pymol.org/
http://yasara.org/
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Web applications  

In the previous subsection, I mentioned examples of interactive graphical user 

interfaces that are either developed as native applications compiled specifically for 

given combinations of operating system and hardware, or are developed for a 

particular software framework. Software frameworks ɀ such as the X Window System, 

Java, .NET and Mono, or Qt ɀ run on multiple operating systems and hardware 

architectures. Worth noting is that all these applications are sometimes disputably 

ÃÁÌÌÅÄ ȰÄÅÓËÔÏÐȱ ÁÐÐÌÉÃÁÔÉÏÎÓȢ /ÒÉÇÉÎÁÔÉÎÇ ÆÒÏÍ ÔÈÅ ȰÄÅÓËÔÏÐ ÍÅÔÁÐÈÏÒȱ ÏÆ interactive 

GUIs, but indicating also specificity to desktop computers as opposed to mobile 

computers and devices, or computers in racks, such a term is a confusing 

misconception. 

In addition to native applications and applications for multi-platform software 

frameworks, interactive graphical user interfaces can also be provided as web 

applications. Web applications are developed using a set of complementary languages 

defined for the World Wide Web (WWW, the inter-linked documents on the Internet, 

Berners-Lee et al. 1992). The standard languages, governed by the World Wide Web 

Consortium (W3C, http://www.w3.org, http://www.w3.org/standards), are primarily HTML, 

CSS, JavaScript, and more. Thanks to using web standards, a web application can run in 

any web browser: historically e.g. the break-through graphical Mosaic (Andreessen 1993, 

Vetter et al. 1994), Netscape, or the textual Lynx; nowadays e.g. Firefox, Konqueror, 

Opera, Safari, IE, or Chrome. Naturally, the web browser must comply with the latest 

versions of the web standards. In addition to accessibility  and transparency  fostered 

by interactive graphics, compatibility  with standards ensures interoperability  of 

web applications, enabling them not only to run on all applicable operating systems 

and hardware architectures, but also to work together one with another, via e.g. links 

or embedding. 

Traditional  web applications follow a client-server architecture. A rather simple client 

part (frontend)  of the web app ÒÕÎÓ ÉÎ Á ÕÓÅÒȭÓ ×ÅÂ ÂÒÏ×ÓÅÒ. Behind the scenes, the 

client communicates ɀ using HTTP, the communication protocol of the Web ɀ with a 

server (backend) deployed on the side of the provider of the web application. The client 

page itself is located at a given URL of the web app, and automatically downloaded 

ÆÒÏÍ ÔÈÅ ÓÅÒÖÅÒ ÔÏ ÔÈÅ ÕÓÅÒȭÓ ÃÏÍÐÕÔÅÒ ÖÉÁ (440ȟ ÔÏÏȟ ÉÎÃÒÅÁÓÉÎÇ ÔÈÅ accessibility  by 

freeing the user from any installation, dependency management, updating, and usually 

also paying. The server most often gives access to some centralised computational or 

data resource, employing high-ÐÅÒÆÏÒÍÁÎÃÅ ȰÐÁÒÁÌÌÅÌȱ ÃÏÍÐÕÔÅÒs and computer 

clusters, and making accessible the tools and data that would hardly be usable on local 

personal computers. A reliable  server should be scalable for high demands and have 

ideally 100% online uptime (availability ) with load balancing, a failover system, and 

enduring maintenance. While some client-ÓÅÒÖÅÒ ×ÅÂ ÁÐÐÌÉÃÁÔÉÏÎÓ ɉȰ×ÅÂ ÓÅÒÖÅÒÓȱɊ ÁÒÅ 

only provided as a piece of software ×ÈÉÃÈ ÈÁÓ ÔÏ ÂÅ ÉÎÓÔÁÌÌÅÄ ÏÎ Á ÓÅÒÖÅÒ ÁÔ Á ÕÓÅÒȭÓ 

http://www.w3.org/
http://www.w3.org/standards
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institution, more commonly they are provided as a service: a deployed server instance 

with access to ÐÒÏÖÉÄÅÒȭÓ ÃÏÍÐÕÔÁÔÉÏÎÁÌ ÁÎÄ ÄÁÔÁ ÒÅÓÏÕÒÃÅÓ ɀ either exclusively or in 

addition to providing the server software. 

The databases of biopolymer sequences were long ago distributed on paper (Fig. 2, 

p.23), followed by magnetic tapes and CD-ROMs. Due to massive growth in volume and 

increasingly frequent updates, the static media became insufficient. The databases had 

to start being accessible remotely on a public server, which was more practical due to 

being always up to date, and at the same time faster than navigating through the locally 

accessed media. Such servers were accessible consecutively via various network 

protocols, such as e-mail (Henikoff 1993), Telnet connections, FTP downloads, WAIS text 

searching and Gopher browsing (Parker 1993, Rice et al. 1993). However, to unleash the 

full power of links between data within and between the diverse bioinformatics 

databases, integrative portals were soon developed using the new technology of the 

World Wide Web. Just a couple of years after the Web was invented at CERN in Geneva, 

ExPASy was launched as the first web server within the life sciences in 1993, as well in 

Geneva (Appel et al. 1994). ExPASy has provided protein sequence data, their 3D 

structures and features, with mutation and disease information, and annotated images 

of proteomics gels, in an integrated user-friendly  way that is still up-to-date today: via 

the standard web links. More examples of integrative, multi-database data-access web 

applications appeared shortly after : Entrez provided by at the National Center for 

Biotechnology Information in Bethesda (NCBI, Benson et al. 1990) was after CD-ROMs 

and a non-web client-server application launched together with the NCBI website in 

1994 ÁÓ Á ȰÄÙÎÁÍÉÃȱ ×ÅÂ ÁÐÐÌÉÃÁÔÉÏÎ ÂÕÉÌÔ ÆÒÏÍ web forms and inter -ÌÉÎËÅÄ ȰÓÔÁÔÉÃȱ 

web pages, named WWW Entrez or WebEntrez (Schuler et al. 1996). In the same year, 

the Sequence Retrieval System (SRS, Etzold and Argos 1993) had its local command-line 

and its network interface amended with a ȰÄÙÎÁÍÉÃȱ client-server web application 

SRSWWWȟ ÁÖÁÉÌÁÂÌÅ ÆÏÒ ÉÎÓÔÁÌÌ ÁÔ ÕÓÅÒÓȭ ÉÎÓÔÉÔÕÔÉÏÎÓ, and for public access at the 

European Molecular Biology Laboratory (EMBL) in Heidelberg (Etzold 1994). The 

European Bioinformatics Institute (EBI) in Hinxton was established during the 

transition period of 1992-95, as an outstation of EMBL responsible for maintenance 

and distribution of bioinformatics databases (summarised in Lopez et al. 2003). Among 

other media and protocols, these data were early-on provided via the Web (Emmert et 

al. 1994). Using WWW for client-server communication improved accessibility  

compared to other client-server protocols which could be disabled in certain networks 

for security reasons. Furthermore, web servers have typically not required users to 

register and log in. 

Besides databases, client-server applications also gave access to computational tools 

running on shared computational resources, first via e-mail (Henikoff 1993) and later 

via web apps. WWW2GCG (Colet and Herzog 1996) was the first web GUI to the 

commercial GCG toolkit, followed by SeqWeb in 1997 ×ÉÔÈ ȰÄÙÎÁÍÉÃȱ ×ÅÂ ÐÁÇÅÓ 

implemented using JavaScript (Womble 1999b). These were client-server web 
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Fig. 2. GenBank and EMBL databases before the 
Web. Nucleotide sequences 1986/1987, volumes I 

to VII (David Landsman, Bethesda, ). Various 
network access methods were provided afterwards, 
until settling down with the World Wide Web in 
mid 1990s. 

applications running on local networks at 

research institutes, providing access to 

local GCG servers. In contrast, the WHAT 

IF toolkit has been provided as a publicly 

accessible web app (Rodriguez et al. 1998). 

Similarly, PredictProtein has for more 

than two decades been a user-friendly 

public server for integrative inference of 

a growing multitude of protein  features: 

since 1992 as an e-mail server and later 

on the Web (Rost et al. 2004). Further 

examples of public websites giving access 

to integrated kit s of tools are the Vienna 

RNA Websuite for the Vienna RNA 

Package (Hofacker 2003, Gruber et al. 2008); 

BiBiServ, the Bielefeld University 

Bioinformatics Server hosting tools 

developed in Bielefeld and elsewhere 

(http://bibiserv.techfak.uni-bielefeld.de, http://

bibiserv2.cebitec.uni-bielefeld.de); and the 

Center for Biological Sequence analysis 

(CBS) at the Technical University of 

Denmark with a broad portfolio  of their 

tools (http://cbs.dtu.dk/biotools, http://cbs.dtu.dk/services). Meanwhile ɀ in the course of the 

last two decades ɀ the  websites of the major providers of bioinformatics databases 

grew into integrated portals that complement the access to data with numerous web-

accessible tools enabling advanced searching and computations with the voluminous 

public data: e.g. NCBI (McGinnis and Madden 2004, Johnson et al. 2008, NCBI Resource 

Coordinators 2015), EBI (Lopez et al. 2003, Brooksbank et al. 2014, Li et al. 2015, Squizzato et 

al. 2015), the National Institute of Genetics in Mishima with the DNA Data Bank of Japan 

(NIG, DDBJ, Kodama et al. 2015), and ExPASy, now maintained within  the Swiss Institute 

of Bioinformatics (Gasteiger et al. 2003, Artimo  et al. 2012). To conclude this paragraph, let 

me emphasise again that the users of computational tools available  as public web 

applications benefit from the access to high-performance computing facilities and the 

good accessibility  without the need to install and administer necessary software or 

type commands. The efficiency is maximised when the computational tools are co-

located with data resources: both with respect to computation and data transfer, and 

convenience for users thanks to integrated access. 

After the dramatic triumph of open science and open-source bioinformatics when 

assembling the first draft of the human genome at UCSC in 2000 as a free public 

resource (Kent and Haussler 2001), the need arose to make the genome data accessible 

and efficiently usable  for all researchers. The UCSC Genome Browser was developed 

http://creativecommons.org/licenses/by-sa/3.0
http://bibiserv.techfak.uni-bielefeld.de/
http://bibiserv2.cebitec.uni-bielefeld.de/
http://bibiserv2.cebitec.uni-bielefeld.de/
http://cbs.dtu.dk/biotools
http://cbs.dtu.dk/services
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soon after (Kent et al. 2002) as a user-friendly web application giving access to 

numerous annotated genomes, and in addition enabling researchers to upload their 

own annotations for browsing them visually on a genome together with diverse public 

annotations. Ensembl, the infrastructure for automated genome annotation, provides 

another web-based genome browser for a multitude of species (Hubbard et al. 2002, 

Cunningham et al. 2015). On the other hand, Gbrowse is a popular web-based genome 

browser for relatively easy installations on servers dedicated to genomes of a 

particular  species or group of species (Stein et al. 2002, Donlin 2007). 

Web applications do not necessarily consist of a server and a client. Departure from 

the traditional client -server architecture is increasingly common among modern web 

applications that perform more computations themselves ɀ with in ÔÈÅ ÕÓÅÒȭÓ ×ÅÂ 

browser running on the increasingly more powerful personal computer or device ɀ 

with  less or no help from a remote server. Some web apps are even supposed to be 

installed and administered locally on Á ÕÓÅÒȭÓ ÃÏÍÐÕÔÅÒȟ ÂÕÔ ÒÕÎ in a web browser in 

order to achieve independence from hardware platforms and operating systems. Other 

apps are automatically downloaded from a web server when a user starts them, but do 

not communicate with the server while running. They can be updated automatically 

from the server when needed, thus freeing the user from installation and its 

maintenance. Other web applications are Ȱserver-agnosticȱ, i.e. able to connect to 

ÍÕÌÔÉÐÌÅ ÒÅÍÏÔÅ ÓÅÒÖÅÒÓ ÄÅÐÅÎÄÉÎÇ ÏÎ ÃÏÎÆÉÇÕÒÁÔÉÏÎȟ ÕÓÅÒȭÓ ÃÈÏÉÃÅÓȟ ÏÒ ÁÕÔÏÍÁÔÉÃÁÌÌÙ, 

offering great flexibility  and scalability  via good interoperability  among the 

available servers and clients. Such applications often connect to so-called Web services 

which I will describe a couple of pages later (p.29). Going in an orthogonal direction, 

there are possibilities emerging of server-less web apps communicating directly with 

each other, in a peer-to-peer fashion (http://www.w3.org/TR/webrtc). 

Some graphical bioinformatics tools are available as Java applets which are usually 

server-less and can be included (embedded) inside web applications: for example 

JalviewLite, a stripped-down version of Jalview (Clamp et al. 2004, Waterhouse et al. 2009); 

Jmol for viewing molecular structure (Herráez 2006); or Cytoscape Web and Ondex 

Web, the applet versions of respectively Cytoscape and ONDEX (Lopes et al. 2010, 

Taubert et al. 2013). To avoid the often troublesome need for additional, non-

transparent plugins for web browsers, such as Java or Flash, rich embeddable web 

applications can nowadays be developed using pure web standards: HTML5 

(http://www.w3.org/standards/webdesign, http://www.w3.org/TR/html5) supplemented with 

related web standards such as CSS and SVG, and with JavaScript (not related to Java!) ɀ 

the programming language that can be run inside HTML pages within a ÕÓÅÒȭÓ ×ÅÂ 

browser. Recent examples of interactive web apps for bioinformatics use JavaScript in 

way ÔÈÁÔ ÈÁÒÄÌÙ ÒÅÓÅÍÂÌÅÓ ÔÈÅ *ÁÖÁ3ÃÒÉÐÔ ÏÆ '#'ȭs SeqWeb from 1997. JSmol is an 

HTML5/JavaScript version of Jmol (http://jsmol.sourceforge.net, http:// chemapps.stolaf.edu/

jmol/jsmol/jsmol.htm), while Jolecule is another HTML5 viewer of molecular structure 

(http://jolecule.appspot.com, reviewed in Porebski et al. 2013). From the abundance of 

http://www.w3.org/TR/webrtc
http://www.w3.org/standards/webdesign
http://www.w3.org/TR/html5
http://jsmol.sourceforge.net/
http://chemapps.stolaf.edu/jmol/jsmol/jsmol.htm
http://chemapps.stolaf.edu/jmol/jsmol/jsmol.htm
http://jolecule.appspot.com/
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embeddable JavaScript genome browsers that have been developed, Anno-J (used in 

Lister et al. 2008) is ρππϷ Ȱserver-agnosticȱ, connecting to custom Web services. 

JBrowse is a JavaScript alternative to GBrowse (Skinner et al. 2009). It is a client-server 

genome browser with rich functionality , and can additionally be supplemented with a 

sequence-annotation editor Apollo (Lee et al. 2013). On the other hand, Dalliance is a 

lightweight  genome browser (Down et al. 2011), and Genome Maps may in complexity fit 

somewhere between the two (Medina et al. 2013) All these apps can be embedded in 

other web applications ɀ including ÕÓÅÒȭÓ Ï×Î ×ÅÂ ÐÁÇÅÓ ɀ and run in all normal web 

browsers on all applicable platforms thanks to the interoperability  achieved by 

compatibility with w eb standards. A special attention needs to be given to 

bioinformatics-specific JavaScript libraries of building blocks for developing custom 

web applications for visualising biological data. These include among others: JBio, an 

early comprehensive attempt by László Kaján (http://jbio.sourceforge.net); Scribl, a 

JavaScript library  for drawing sequence features (Miller  et al. 2013); and Cytoscape.js, a 

JavaScript-based successor of Cytoscape Web (http://js.cytoscape.org). Standing out is 

BioJS, an initiative and a growing collection of concise JavaScript building blocks for 

bioinformatics web applications, covering diverse types of bioinformatics data. BioJS 

components are easy to find, use, develop, contribute, and combine, due to following a 

set of common, well-designed guidelines, especially since version 2.0 (Gómez et al. 2013, 

Corpas et al. 2014, http://biojs.net). Various BioJS components are used together for 

example in PredictProtein (Yachdav et al. 2014). Standards-based components are 

inherently transparent  with open source, and ought to be flexible , reusable  in 

various applications, and interoperable  with each other. 

In this subsection we gave a deserved tribute to  the World Wide Web ɀ the Ȱflagshipȱ 

infrastructure  for accessible reliable information and computation. For bioinformatics, 

WWW has been among the most crucial technologies soon after it was invented. In 

addition to web applications, Web services have been ubiquitous in bioinformatics, and 

are introduced a couple of pages further. In the end, I mentioned JavaScript libraries 

for bioinformatics web applications. Although using them for developing custom web 

apps may often require only minimum programming, they still belong ɀ in addition to 

interactive visualisation ɀ among programming libraries, which are the topic of the 

following subsection. 

 

 

  

http://jbio.sourceforge.net/
http://js.cytoscape.org/
http://biojs.net/
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Programm ing libraries  

In the previous two subsections, I wrote about interactive graphical user interfaces 

that foster accessibility and usability to users who do not feel confident with typing 

commands, and are usable in scenarios requiring visualisation. Data analysis 

workflo ws often require automation of some portions which need to be performed 

repeatedly, with different input data or parameters. Such portions of a workflow need 

to be implemented as some sort of a script that can be re-run many times, possibly 

even in a high-throughput fashion with large amounts of input data. As opposed to 

GUIs ÁÎÄ ȰÍÁÎÕÁÌȱ ×ÏÒËÆÌÏ×Ó, it is essential for usability  as a high-throughput 

workflow to run without  user interaction . An automated workflow, however, in most 

cases needs to use one or more existing tools for analysing the data. The same is true 

for many tools themselves, that inside them use other underlying tools. For such 

purposes, the underlying tools have to be accessible and usable  from within other 

tools and workflows. Tools with a command-line interface can be used inside batch 

scripts, and ÁÒÅ ÁÃÃÅÓÓÉÂÌÅ ÁÓ ÅØÔÅÒÎÁÌ ȰÎÁÔÉÖÅȱ ÔÏÏÌÓ ÆÒÏÍ ÖÁÒÉÏÕÓ ÐÒÏÇÒÁÍÍÉÎÇ 

languages, yet with possible limitations to efficiency, interoperability, and 

maintainability . For example, input and output data has to be typically sent and 

received via the file system, which may or may not be desired in a particular workflow, 

while portability to another system and management of dependencies and their 

versions can turn close to impossible. 

An Application Programming Interface (API) is an interface to a certain tool, system, or 

other resource, that provides programmatic access from one or more programming 

languages (for example Python, R, Java, JavaScript, C, C++, Perl, Haskell, or Ruby to 

name a few). An API is often implemented as a library , a collection of operations, 

functions, data structures, and other objects in a particular programming language. A 

library can be available with or without its source code, and its interface can be used 

directly ÉÎ ÕÓÅÒÓȭ ÐÒÏÇÒÁÍÓ ÏÒ ÓÃÒÉÐÔÓ in the given programming language, as opposed 

to calling external commands. Programming libraries ɀ as APIs to computational tools 

or other resources ɀ can either be provided separately from the tool or resource; or 

ÔÈÅÙ ÃÁÎ ÂÅ ÐÁÒÔ ÏÆ ÔÈÅ ÔÏÏÌ ÉÔÓÅÌÆȟ ÏÆÔÅÎ ÃÏÎÓÔÉÔÕÔÉÎÇ ÔÈÅ ÃÏÒÅ ÏÆ ÔÈÅ ÔÏÏÌȭÓ 

implementation, that other interfaces are built upon. A language binding for a library is 

some sort of Á Ȱ×ÒÁÐÐÅÒ ÌÉÂÒÁÒÙȱ ÉÎ Á ÄÉÆÆÅÒÅÎÔ ÐÒÏÇÒÁÍÍÉÎÇ ÌÁÎÇÕÁÇÅ ÔÈÁÎ ÔÈÅ ȰÂÕÉÌÔ-

ÉÎȱ ÌÁÎÇÕÁÇÅ ÏÆ ÔÈÅ ÏÒÉÇÉÎÁÌ ÌÉÂÒÁÒÙȟ ÅÎÁÂÌÉÎÇ ÔÈÅ ÏÒÉÇÉÎÁÌ ÌÉÂÒÁÒÙ ÔÏ ÂÅ ÕÓÅÄ ÆÒÏÍ ÔÈÅ 

other programming language. 

Many bioinformatics tools and toolkits are implemented as an open-source core 

library , with other interfaces ɀ such as command-line, GUI, or web app ɀ built  on top of 

it. While using such a straightforward architecture, these tools are inherently  

accessible via multiple types of interfaces, usable in various scenarios, transparent  

with their open source code, and more interfaces can be developed by anybody who 

wants to implement them, thanks to the public API of the core library. In addition, such 
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libraries are often proven reliable  by usage in numerous tools. The core libraries are 

in many cases implemented in C or C++ for runtime speed, while language bindings 

may be provided for various other programming languages. This is the case in a great 

number of examples. To list some: the Vienna RNA Package has been built upon its 

core C library RNAlib (Hofacker et al. 1994), and later complemented with a Perl binding 

(Lorenz et al. 2011); SRS was implemented with a core C library suitable for APIs also for 

Perl, Tcl, and Python (Etzold et al. 1996); EMBOSS includes a layer of a C library called 

AJAX (Rice 1998; not the later ȰAsynchronous JavaScript + XMLȱ Ajax) which has been 

used by numerous types of interfaces; SAMtools are constituted as a C library (Li et al. 

2009), amended with command-line interface and numerous language bindings; and 

GenomeTools consist of multiple tools implemented around the libgenometools C 

library, distributed altogether as a package, with an additional API for scripting 

language Lua (Gremme et al. 2013). 

In addition to such tool-specific libraries serving as APIs to given tools, various 

programming libraries aim to cover the broad field of bioinformatics or its parts, from 

a perspective of a software developer who implements new bioinformatics tools, or a 

computational biologist who writes scripts for their analyses. Numerous C++ libraries 

have been developed, that provide substantial portions of typical bioinformatics 

operations in a programmatic way: for example an early PDBlib for structural 

bioinformatics (Chang et al. 1994), and more sequence-oriented or generic ones such as 

BTL (Pitt et al. 2001), Libsequence (Thornton 2003), libcov (Butt et al. 2005), Bio++ (Dutheil 

et al. 2006), or the modern SeqAn optimised for speed (Döring et al. 2008). An extensive 

NCBI C++ Toolkit (http:// www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC) comprises 

programmatic tools for sequence analysis and data retrieval, together with numerous 

data-handling and server utilities not specific to bioinformatics. 

To avoid the need of always programming ÏÎÅȭÓ own new scripts from scratch for 

particular analysis workflows , and instead provide commonly shared reusable building 

blocks for both workflows and application development, BioPerl was initiated as a 

community effort in 1995, when Perl was the most popular language for scripting in 

bioinformatics (Chervitz et al. 1998, Stajich et al. 2002). Within the shared effort with a 

substantial level of self-organisation, BioPerl quickly evolved into a comprehensive 

toolkit library  of well-integrated, reusable  Perl modules for bioinformatics, that are 

smoothly interoperable  with each other, easy to understand, developed in a similar 

style, and share common data representations. It  offers functionality such as handling, 

parsing, transforming, and integrating data, or programmatic access to popular data 

resources and analysis tools ɀ serving the typical needs ÏÆ ȰÇÌÕÅ ÃÏÄÅȱ ÉÎ ÃÏÍÐÕÔÁÔÉÏÎÁÌ 

biology workflows, whether Ȱmanualȱ or high-throughput, and in bioinformatics 

applications. In the same spirit as BioPerl, community efforts followed soon with other 

popular programming languages, conceiving BioJava (Pocock et al. 2000, Holland et al. 

2008, 0ÒÌÉç et al. 2012) and Biopython (Chapman and Chang 2000, Cock et al. 2009), later 

joined by BioRuby (Goto et al. 2010). These initiatives  ɀ together nicknamed Bio* or 

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC


28 
 

Open-Bio ɀ united under a common umbrella of the Open Bioinformatics Foundation 

(O|B|F or OBF, http://open-bio.org, reviewed in Mangalam 2002), together with other 

projects including EMBOSS, and attempts enabling certain scenarios of interoperability 

between the Bio* libraries, e.g. BioCORBA (http://www.bioperl.org/wiki/BioCORBA) and 

BioSQL (http://www.biosql.org). O|B|F supports and promotes free/ open-source software 

within  bioinformatics, and organises an annual Bioinformatics Open Source 

Conference (BOSC, Harris et al. 2015Ɋ ÁÎÄ ÖÁÒÉÏÕÓ ȰÈÁÃËÁÔÈÏÎÓȱ ÇÁÔÈÅÒÉÎÇ  ÃÏÍÍÕÎÉÔÉÅÓ 

of collaborating software developers (e.g. Möller et al. 2013, 2014). Complementing the 

popular programming languages, enthusiasts develop integrated library toolkits for 

ÂÉÏÉÎÆÏÒÍÁÔÉÃÓ ÁÌÓÏ ÉÎ ÖÁÒÉÏÕÓ ȰÎÉÃÈÅȱ ÌÁÎÇÕÁÇÅÓȟ ÃÒÅÁÔÉÎÇ ÆÏÒ ÅØÁÍÐÌÅ Biohaskell 

(http://biohaskell.org), BioClojure (Plieskatt et al. 2014), BioSmalltalk (Morales and 

Giovambattista 2013), or Biocaml (http://biocaml.org). The former Microsoft Biology 

Foundation (MBF) library for the .NET platform transformed into a free and open 

community effort .NET Bio (http://bio.codeplex.com, http://github.com/dotnetbio/bio). 

Numerous biology-related libraries have been developed for R, the programming 

language that is particularly convenient for statistical analyses. One example is the 

comprehensive APE (Analysis of Phylogenetics and Evolution, Paradis et al. 2004). Using 

a slightly different approach than the integrated toolkit libraries of Bio*, Bioconductor 

was conceived as an even more open collection of R libraries for computational biology 

(Gentleman et al. 2004). "ÉÏÃÏÎÄÕÃÔÏÒ ÌÉÂÒÁÒÉÅÓ ɉȰÐÁÃËÁÇÅÓȱɊ ÁÒÅ ÍÏÒÅ ÉÎÄÅÐÅÎÄÅÎÔ ÆÒÏÍ 

each other, while still following common guidelines and reusing common utilities in 

order to maintain a certain degree of interoperability and other qualities. With the 

richness of libraries available either on CRAN (http://cran.r-project.org) or Bioconductor, 

R grew into perhaps the ÔÏÄÁÙȭÓ most popular scripting language for data analysis and 

plotting  in computational biology. Bioconductor-inspired Biogem and its dedicated 

repository (http://biogems.info, Bonnal et al. 2012) enable modular extensions to BioRuby, 

that are less tightly integrated and thus easier to develop in comparison to the 

integrated core of BioRuby. Accessibility  for novice contributors is fostered by the 

automation provided by Biogem. While scripting and niche languages may be slower at 

runtime thÁÎ ȰÎÁÔÉÖÅȱ # ÁÎÄ #ϹϹ ÄÕÅ ÔÏ ÔÈÅÉÒ ÈÉÇÈ-level constructs, and generic-

ÐÕÒÐÏÓÅ ÌÉÂÒÁÒÉÅÓ ÍÁÙ ÂÅ ÌÅÓÓ ÅÆÆÉÃÉÅÎÔ ÁÔ ÂÏÔÈ ÒÕÎÔÉÍÅ ÁÎÄ ȰÄÅÖÅÌÏÐÍÅÎÔ-ÔÉÍÅȱ ÄÕÅ ÔÏ 

their complexity compared to narrowly specialised ones, they enable easy and quick 

development of usÅÒȭÓ ×ÏÒËÆÌÏ×Ó ÁÎÄ ÁÐÐÌÉÃÁÔÉÏÎÓȟ ×ÈÉÃÈ ÍÁÙ ÏÆÔÅÎ ÂÅ ÈÉÇÈÅÒ 

priorities than runtime efficiency or maintainability.  

Let us now shortly get back to interactive graphical user interfaces. Towards the end of 

the previous subsection, I mentioned JavaScript libraries for programming web 

applications. BioJS ɀ again especially since its version 2.0 (Gómez et al. 2013, Corpas et al. 

2014, http://biojs.net) ɀ is another example of an open collection of community-

developed libraries, sharing the right minimal set of common guidelines for ensuring 

interoperability, so that the BioJS components can easily be combined together in 

ÕÓÅÒÓȭ ÃÕÓÔÏÍ ÁÐÐÌÉÃÁÔÉÏÎÓȢ For programmatic integration, JavaScript APIs can also be 

http://open-bio.org/
http://www.bioperl.org/wiki/BioCORBA
http://www.biosql.org/
http://biohaskell.org/
http://biocaml.org/
http://bio.codeplex.com/
http://github.com/dotnetbio/bio
http://cran.r-project.org/
http://biogems.info/
http://biojs.net/
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provided with Java applets, for example with JalviewLite (Clamp et al. 2004, Waterhouse 

et al. 2009) or Cytoscape Web (Lopes et al. 2010). Libraries for other programming 

languages also provide functionality for both static and interactive visualisations, 

including e.g. the Bio* and the NCBI C++ toolkits. These can as well be used for 

developing interactive GUIs, or client-server web apps with graphics generated on the 

server. A couple of example graphics libraries for drawing genomic data are 

GenomeDiagram integrated in Biopython (Pritchard et al. 2006); AnnotationSketch, a C 

library within GenomeTools, with Lua, Python, and Ruby bindings (Steinbiss et al. 2009); 

and Circleator using BioPerl, SVG, and CSS (Crabtree et al. 2014). 

Web services 

First to make the terminology clear: Any computational tool or data resource that is 

not provided in form of software that users would have to install on their side, but is 

instead deployed and running on a server of its provider, is a computational or data 

service. And if the access to the server is via the Web, it  could in fact be broadly called a 

Ȱ×ÅÂ ÓÅÒÖÉÃÅȱȢ 4ÈÕÓ Á ÃÌÉÅÎÔ-server web application ɀ ÒÕÎÎÉÎÇ ÁÔ Á ÐÒÏÖÉÄÅÒȭÓ ×ÅÂ 

server and accessible for users through web browsers ɀ is after all in rather general 

ÔÅÒÍÉÎÏÌÏÇÙ Á Ȱ×ÅÂ ÓÅÒÖÉÃÅȱȢ In contrast, a Web service (often spelled with a capital, 

what we will follow) provides programmatic access ɀ i.e. a programmatic API ɀ to a 

computational or data server, over the Web. /ÃÃÁÓÉÏÎÁÌÌÙȟ ÔÈÅ ÔÅÒÍ Ȱ7ÅÂ ÓÅÒÖÉÃÅȱ was 

used to designate only Web services that used SOAP protocol (SOAP services), while 

the Web services using pure HTTP protocol would then be called web APIs, HTTP APIs, 

HTTP services, ȰRESTȱ APIs, ȰRESTȱ services, or ȰRESTȱ resources. We will not follow 

such a confusing, unpractical distinction . Instead in line with the more common 

terminology, let us call all programmatic APIs over the Web synonymously Web 

services ×ÉÔÈ Á ÃÁÐÉÔÁÌ Ȭ7ȭ or web APIs. 

Notably, interactive graphical web applications ɀ serving human-computer interaction 

ɀ are as a type of interface disjoint with Web services which serve interfaces for other 

applications and scripts (Table 1, p.30). For maximum simplicity, we can say that if a web 

server provides us (via HTTP because it is a web server) with something formatted in 

HTML, then it is a web page (static) or a web application (dynamic); and if it provides 

us with something in another format, one that is suitable for Ȱmachineȱ consumption, 

then it is a Web service. Naturally , one web server can serve both web application(s) 

and Web service(s). However, in case a web resource provides only HTML format, i.e. 

ÆÏÒ ȰÈÕÍÁÎȱ ÃÏÎÓÕÍÐÔÉÏÎȟ ÂÕÔ ×Å ÓÔÉÌÌ ÎÅÅÄ ÔÏ retrieve some of its data automatedly in 

our script or application, we need to painfully ȰÄÉÇȰ ÉÔ ÆÒÏÍ ÔÈÅ often-changing and 

unsuitable HTML page, in an unmaintainable ÐÒÏÃÅÄÕÒÅ ÃÁÌÌÅÄ ÁÌÓÏ ȰÓÃÒÅÅÎ ÓÃÒÁÐÉÎÇȱ 

ÁÎÄ ÃÏÉÎÅÄ ȰÍÅÄÉaÅÖÁÌ ÔÏÒÔÕÒÅȱ ÂÙ Stein (2002). 
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types of tool interfaces 

user interface  

(human -computer 
interaction)  

partially supporting 
ÂÏÔÈ ȰÈÕÍÁÎÅȱ ÁÎÄ 

programmatic access  

API 

(programmatic 
access) 

running locally  

(or on a local server)  

interactive application 
installed locally 

command-line program programming library  

accessed remotely 
via the Web 

client-server  

web application 
Ȱ(440 '%4ȱ ÓÅÒÖÉÃÅ Web service 

Table 1. A simplified distinction of Web services and their relations to other types of tool interfaces.  
Note, however, that there are no precise borders (symbolised by the grey dotted lines) between local and 
remote applications, because remote access involves something running locally, and a local app may 
communicate with remote resources or be deployed from a remote resource. Hybrid apps with extensive 
local and remote portions have been increasingly popular, including server-agnostic apps, peer-to-peer 
ÎÅÔ×ÏÒËÓȟ ȰÆÁÔȱ ÃÌÉÅÎÔÓȟ ÁÎÄ ÕÂÉÑÕÉÔÏÕÓ ȰÈÉÄÄÅÎȱ ÕÓÅ ÏÆ ÅØÔÅÒÎÁÌ 7ÅÂ ÓÅÒÖÉÃÅÓȢ )Î ÁÄÄÉÔÉÏÎȟ ×Å ÃÁÎ ÁÃÃÅÓÓ ÖÉÁ 
the Web and HTTP also locally-deployed web applications and Web services, which can be useful not only 
for testing but also for interoperability in certain scenarios. 

As opposed to web applications, Web services provide programmatic APIs accessible 

from a userȭs high-throughput workflow in any of the common programming or 

scripting languages, and from other applications, facilitating  flexibility . For better 

accessibility  compared to other remote APIs, the communication with Web services is 

over the Web (i.e. HTTP) instead of other protocols which may be blocked, and 

typically does not require user accounts. Interoperability  with most of the applicable 

programming languages and command shells is enabled by available utility software 

and libraries compliant  with the Web-service standards governed by the World Wide 

Web Consortium (http://www.w3.org/standards/webofservices). Web services deployed on 

an appropriate server provide interoperable  access to high-availability  high-

performance scalable computing resources and big databases, without  cumbering the 

users with need to obtain and administer such resources or install and maintain the 

tools. However, to allow maintainability of tools that use the Web services, 

reproducibility  of workflows, and to ÄÅÓÅÒÖÅ ÕÓÅÒÓȭ confidence, providers must 

support their users and carefully maintain their services up-to-date but stable and 

non-volatile ɀ with strict versioning  of the interface, preferably even keeping 

deprecated versions alive. 

Historically, various predecessors of Web services were providing programmatic 

access to remote bioinformatics resources, using various communication protocols. 

Perhaps the most widely used and most accessible at the time were e-mail servers, 

ÐÒÏÖÉÄÉÎÇ ÂÏÔÈ ȰÈÕÍÁÎȱ ÕÓÅÒÓ ÁÎÄ ÓÏÆÔ×ÁÒÅ ÁÐÐÌÉÃÁÔÉÏÎÓ ×ÉÔÈ ÁÃÃÅÓÓ ÔÏ ÒÅÍÏÔÅ ÄÁÔÁ 

and computational tools (Henikoff 1993). Ahead of its time was the sophisticated 

HASSLE protocol (Hierarchical Access System for Sequence Libraries in Europe), 

developed specifically for bioinformatics needs by Reinhard Doelz at Biozentrum, 

University of Basel (Doelz 1994, Doelz et al. 1994). It included automated search for 

available services within the network of sequence-data servers around Europe, batch 

remote execution with automatic failover, and a client user interface hiding all the 

sophisticated technicalities. CORBA was developed as an industrial technology for 

distributed object-oriented software systems. In bioinformatics, CORBA was used for 

http://www.w3.org/standards/webofservices
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access to databases with genome maps (Hu et al. 1998, Jungfer and Rodriguez-Tomé 1998, 

Barillot  et al. 1998, 1999); and a system for wrapping bioinformatics tools as CORBA APIs 

was developed by Martin Senger (1999) at EBI, named AppLab and used inside the later 

Soaplab, until Soaplab2 in 2007 (Senger et al. 2003, 2008). The Bio* initiatives developed 

BioCORBA for compatible distributed capabilities among BioPerl, BioJava, and 

Biopython (http://www.bioperl.org/wiki/BioCORBA). Java RMI ɀ a lighter-weight remote API 

framework for Java only ɀ has also been tried for distributed  bioinformatics 

applications (Möller et al. 1999, Saqi et al. 1999). All these technologies required special 

network protocols other than the HTTP of WWW, causing difficulties to software 

administration and usage, such as being blocked in certain networks. 

Proper Web services over HTTP began to flourish soon after being introduced in 

bioinformatics in the beginning of this millennium. DAS, the Distributed Annotation 

System, is a system for accessing sequence annotations from a large number of online 

resources, via HTTP Web services providing data in a dedicated XML format (Dowell et 

al. 2001, 0ÒÌÉç et al. 2007, Jenkinson et al. 2008). BioMoby was developed as special protocol 

on top of SOAP, HTTP, and XML for any kind of bioinformatics Web services and types 

of data (Wilkinson and Links 2002). 

Numerous SOAP services were soon launched at various institutions (e.g. Kawashima et 

al. 2003, Krishnamurthy  et al. 2003, Wang and Mu 2003, Crass et al. 2004), including the 

major providers of bioinformatics databases and tools, where SOAP has usually later 

been complemented or sometimes replaced by pure HTTP services. Early examples are 

NIG in Mishima providing access to DDBJ, other databases, and computational tools 

(Sugawara and Miyazaki 2003, Kwon et al. 2009); and EBI, including the Soaplab 

framework (Senger et al. 2003, 2008) which provided Web-service access to the EMBOSS 

toolkit (Rice et al. 2000)ȟ ÏÔÈÅÒ 7ÅÂ ÓÅÒÖÉÃÅÓ ÆÏÒ ÁÃÃÅÓÓ ÔÏ %")ȭÓ ÄÁÔÁÂÁÓÅÓ ÁÎÄ ÒÅÌÁÔÅÄ 

tools (Harte et al. 2004, Pillai et al. 2005, Labarga et al. 2007, McWilliam et al. 2009, Squizzato et 

al. 2015), and later the JDispatcher framework for computational and data-searching 

Web services (Goujon et al. 2010, McWilliam et al. 2013, Li et al. 2015). Entrez Programming 

Utilities  include Web services for accessing data at NCBI (NCBI Resource Coordinators 

2014, NCBI Resource Coordinators 2015). Integrative, easy-to-use TogoWS services for 

retrieving and converting data are provided by the Database Center for Life Science 

(DBCLS) at the University of Tokyo and NIG (Katayama et al. 2010a), while the ExPASy 

portal of SIB includes among other Web-service-accessible resources ɀ and EMBOSS 

via Soaplab2 ɀ also an HTTP Web service for integrative querying over a big portion of 

the provided databases (Artimo  et al. 2012). Examples of providers of web-accessible 

bioinformatics tools, offering programmatic access to numerous Web services, are:  the 

WHAT IF toolkit at the Radboud University Nijmegen (Hekkelman et al. 2010); the G-

language Genome Analysis Environment (GAE) framework at Keio University with 

Web-service APIs (Arakawa et al. 2010); CBS at the Technical University of Denmark 

(http://cbs.dtu.dk/services/ws.php, http://cbs.dtu.dk/ws/doc); and BiBiServ of the Bielefeld 

University (http://bibiserv.techfak.uni-bielefeld.de, http://bibiserv2.cebitec.uni-bielefeld.de). 

http://www.bioperl.org/wiki/BioCORBA
http://cbs.dtu.dk/services/ws.php
http://cbs.dtu.dk/ws/doc
http://bibiserv.techfak.uni-bielefeld.de/
http://bibiserv2.cebitec.uni-bielefeld.de/
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Web services are convenient for remote access to distributed resources especially if 

they have similar interfaces ɀ with the same operations and formats of input and 

output data ɀ thus being interoperable  with each other. Interoperable Web services 

are conveniently usable  together in automated workflows, comparable, and 

replaceable with each other (although that is of course not limited to Web services but 

holds for all kinds of programmatically usable tools). Web services usually share 

interfaces within an institution providing them, but it is seldom the case between 

different institutions . Exceptions exist, such as the DAS resources; PSICQUIC (Aranda et 

al. 2011, del Toro et al. 2013), the common Web-service interface to numerous databases 

of molecular interactions, standardised by the (ÕÍÁÎ 0ÒÏÔÅÏÍÅ /ÒÇÁÎÉÚÁÔÉÏÎȭÓ 

Proteomics Standards Initiative (HUPO-PSI, Martens et al. 2007); or the Web services of 

BioMart, a framework for uniform access to distributed bioinformatics databases 

(Kasprzyk 2011, Smedley et al. 2015). 

Other than being useful with in analysis workflows encoded in a ÒÅÓÅÁÒÃÈÅÒȭÓ ÓÃÒÉÐÔÓȟ 

Web services are ubiquitously used behind-the-scenes inside bioinformatics software. 

Remote access from within one application to other tools and data resources was 

common already in the old-days e-mail servers (Henikoff 1993); and is enduringly 

popular with  DAS, accessed among others from Dalliance, IGV, UCSC Genome Browser, 

Ensembl, Gbrowse, or Jalview. Interestingly IGV, together with many other genome 

browsers, can access data from custom HTTP or FTP services in addition to DAS. The 

interactive reader Utopia Documents retrieves information and data underlying a 

scientific publication naturally via Web services (Attwood et al. 2010). Jalview could 

access remote computational tools at EBI and data via SRS already since its early 

versions (Clamp et al. 1998), and nowadays is complemented with dedicated JABAWS 

framework (Java Bioinformatics Analysis Web Services, Troshin et al. 2011), enabling 

deployment of new JABAWS-compatible Web services ÁÔ ÕÓÅÒÓȭ ÓÉÔÅÓ, another example 

of smooth interoperability. 

Catalogues, registries, and repositorie s 

One of reasons for the creative chaos in bioinformatics is that it may often feel more 

straightforward ÔÏ ÄÅÖÅÌÏÐ ÏÎÅȭÓ Ï×Î ÎÅ× ÓÏÌÕÔÉÏÎ ÆÏÒ ÔÈÅ ÃÕÒÒÅÎÔ ÐÕÒÐÏÓÅȟ ÃÏÍÐÁÒÅÄ 

to looking for what is available, what it does, and how it does it ɀ what may often be 

onerous. And what is onerous for a group of researchers carrying out a project, can 

well be even more onerous for the ones reviewing their publication. Even worse it can 

get in situations when a researcher has no clue whether there is anything at all 

available and helpful for the given task. Despite (or maybe due to) the literature 

tsunami in life sciences, such scenario can happen easily ɀ irrespective of whether it  is 

a junior researcher not yet up-to-date, a senior researcher not up-to-date anymore 

with the new creations, or an expert in other subdomains of the field. While developing 
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ÏÎÅȭÓ own do-it -yourself single-purpose solutions may have obvious benefits in the 

degree of control and in fitting the purpose exactly, these contribute to the abundance 

of developments that are not well reusable, not well documented, transparent, reliable, 

or reproducible, and hardly accessible, interoperable, or maintainable. Decreasing the 

substantial burden of finding  relevant tools is one of the purposes of catalogues, 

registries, and repositories. Another purpose of such collections is list ing and 

advertising  achievements of a certain project or institution . 

Although the terms are often used arbitrarily or interchangeably (together with e.g. 

list, directory, or archive), it may be useful if we distinguish for clearer understanding: 

¶ Catalogues, created by a group of authors who provide the published content 

using some sources,  and who may or may not continue updating ɀ curating ɀ the 

content 

¶ Registries, where users contribut e the content over time ɀ for example 

registering information about a tool they developed ɀ and curate parts of the 

content 

¶ Repositories, where software or other resources are deposited and can be 

obtained from. Repositories can of course also register or catalogue information, 

and software can be deposited as source code or binaries. 

7ÈÉÌÅ ÖÅÎÄÏÒÓȭ Ãatalogues often list commercial products, public registries and 

repositories are usual for free open software. Some of them do among other 

application domains contain also bioinformatics tools. This is the case of SourceForge 

and now growingly GitHub repositories that host big portions of open-source projects 

in bioinformatics, while Download.com and Softpedia list only few downloadable 

bioinformatics tools but include some commercial ones. The bioinformatics section of 

the non-commercial DMOZ registry (http://www.dmoz.org/Science/Biology/Bioinformatics) 

lists a considerable number of bioinformatics resources of various kinds, including 

both free and commercial tools. The Free Software Directory (http://directory.fsf.org) of 

the Free Software Foundation (FSF) is a substantial registry with rich semantic 

annotation, but contains little bioinformatics. Some programming languages have the 

available libraries organised in convenient centralised repositories (archives), which 

include substantial amounts of bioinformatics libraries for the given language: CPAN 

for Perl (http://www.cpan.org), CRAN for R (http://cran.r-project.org), RubyGems for Ruby 

(http://rubygems.org), and Hackage for Haskell (http://hackage.haskell.org). Multiple 

application-domain-agnostic public registries were developed for Web services during 

ÔÈÅ Ȱ3/!0 rushȱ ÏÆ ÔÈÅ ÐÒÅÖÉÏÕÓ ÄÅÃÁÄÅȟ ×ÉÔÈ ambitious features (e.g. ÔÈÁÔ ÔÉÍÅȭÓ 

registry from Seekda or http://www.membrane-soa.org/soa-registry), but to my knowledge 

none withstood the course of time without deterioration . 

Within the domain of bioinformatics, bigger institutes usually publish catalogues 

advertising the tools and databases the institute provides (e.g. NCBI at http:// ncbi.nlm.

nih.gov/guide/all, EBI at http://www.ebi.ac.uk/services, SIB via ExPASy at http://expasy.org, or 

http://www.dmoz.org/Science/Biology/Bioinformatics
http://directory.fsf.org/
http://www.cpan.org/
http://cran.r-project.org/
http://rubygems.org/
http://hackage.haskell.org/
http://www.membrane-soa.org/soa-registry
http://ncbi.nlm.nih.gov/guide/all
http://ncbi.nlm.nih.gov/guide/all
http://www.ebi.ac.uk/services
http://expasy.org/
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the Weizmann Institute of Science in Rehovot at http://miw.weizmann.ac.il). Similarly, 

distributed infrastructures such as DAS  maintain registries of compatible  Web 

services (http://dasregistry.org); shared librar y efforts that follow common guidelines 

register the compliant  libraries  (e.g. Bioconductor at http:// master.bioconductor.org/

packages/release and BioJS at http:// biojs.io); and initiatives such as O|B|F document their 

achievements and affiliated projects (http:// www.open-bio.org/wiki/Projects). 

More representative selections of bioinformatics tools ɀ not specific to a project, 

network, or institution ɀ have been created in various forms ranging from journal 

articles (e.g. Gilbert 1998, 1999, online at http://iubio.bio.indiana.edu/soft/molbio/Listings.html) 

to websites, from personal listings (such as the spreadsheets I made for myself in order 

to write this chapter) to global projects. A great number of catalogues, registries, and 

repositories is available within the field , with substantial differences in types of tools 

or other resources they collect, in the amount and type of information  they provide 

about the listed items, and in functionality they enable: ways of searching, accessing, 

exporting, or other. 

The IUBio Archive for Biology ɀ conceived in 1989 and maintained by Don Gilbert 

(http://iubio.bio.indiana.edu) ɀ is a historically valuable archive of downloadable software 

and other resources. Bio Catalog (also Bio-Catalog or BioCatalog, Rodriguez-Tomé 1998, 

archived at http://iubio.bio.indiana.edu/soft/biosoft-catalog) was a catalogue of software for 

molecular biology and genetics, developed since 1992 within Généthon, co-founded by 

CEPH (http://www.cephb.fr/en), and later maintained at the EBI. In a similar style, DBcat 

was constructed at Infobiogen with contribution from Centre National de Séquençage 

and Généthon (Discala et al. 1999, 2000). Around the same time, Christian Burks created 

the Molecular Biology Database List (Burks 1999) of databases published in the Nucleic 

Acids Research ɉ.!2Ɋ ÊÏÕÒÎÁÌȭÓ annual special issue dedicated to databases (Bateman 

2005, Galperin et al. 2015). This list has since been updated annually with the NAR 

Database Issue, under changing names and by changing maintainers (e.g. Baxevanis 

2000). Several database catalogues were developed until today, storing both 

overlapping and distinct types of information about the databases, for example: 

BioRegistry with  annotation generated from other resources, including rich 

attribution  data and terms from the MeSH vocabulary (http://bioregistry.loria.fr, Devignes 

et al. 2010); MIRIAM Registry with monitoring  of online availability (Juty et al. 2012); 

BioDBCore catalogue at the BioSharing portal (Galperin and Fernández-Suárez 2012); or 

the Integbio Database Catalog merging information from other Japanese database 

catalogues (http://integbio.jp/dbcatalog/en). 

In the last paragraph, let me mention a few influential collections of different types of 

tools or information. Bioinformatics Links Directory  is a catalogue of web links to 

bioinformatics tools and databases (Fox et al. 2005, Brazas et al. 2012), including ones 

ÐÕÂÌÉÓÈÅÄ ÉÎ ÁÎÏÔÈÅÒ .!2ȭÓ ÁÎÎÕÁÌ special issue, the Web Server Issue (Benson 2007, 

2015). The Bioinformatics Links Directory has only limited information and navigation 

http://miw.weizmann.ac.il/
http://dasregistry.org/
http://master.bioconductor.org/packages/release
http://master.bioconductor.org/packages/release
http://biojs.io/
http://www.open-bio.org/wiki/Projects
http://iubio.bio.indiana.edu/soft/molbio/Listings.html
http://iubio.bio.indiana.edu/
http://iubio.bio.indiana.edu/soft/biosoft-catalog
http://www.cephb.fr/en
http://bioregistry.loria.fr/
http://integbio.jp/dbcatalog/en
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Fig. 3. A workbench. WÉÔÈ ȰÉÎÔÅÇÒÁÔÅÄȱ 
tools ÁÎÄ Ȱ×ÏÒËÆÌÏ× ÒÅÃÉÐÅÓȱ ɉÔÏÐ ÌÅÆÔɊ. 
© Northern Tool + Equipment. Fair use. 

functionality, but catalogues links to thousands of tools. myExperiment (Goble et al. 

2010) is a repository of automated workflows defined in specific workflow languages 

(mostly graphical) executable in particular workbenches. BioCatalogue (not the 

previously mentioned Bio Catalog) is a registry for bioinformatics Web services (Bhagat 

et al. 2010) with community  annotation inspired by social websites. In some cases, an 

internally -maintained catalogue of tools for computational biologists at a sizeable 

research institute may ɀ in addition to its main purpose of serving the internal users ɀ 

present a useful representative list with rich institute -unspecific information  about 

numerous bioinformatics tools: for example the WÅÉÚÍÁÎÎ )ÎÓÔÉÔÕÔÅȭÓ "ÉÏ0ÏÒÔÁÌ 

(http://bioportal.weizmann.ac.il/toolbox/overview.html). Special cases are registries that are 

maintained openly by their users in form of wikis, with a combination of structured 

informatio n and free text with further documentation and comments such as ÕÓÅÒÓȭ 

experiences. Within bioinformatics , the main such example is the Software Hub of the 

SEQanswers wiki  (SEQwiki, http://seqanswers.com/wiki/Software, Li et al. 2012a) dedicated 

to software for analysing sequencing data. The last example catalogue is OMICtools 

(Henry et al. 2014), a publicly accessible portal with contents owned by a small company 

STATSARRAY LLC. It provides information about thousands of bioinformatics tools, 

categorised and searchable as steps in typical computational biology workflows for 

analysing several types ÏÆ ȰÏÍÉÃȱ ÂÉÏÌÏÇÉÃÁÌ ÄÁÔÁ. Although limited to a set of 

stereotypical workflows, it offers this way a visual aid for more accessible navigation. 

Workbenches  

The term workbench originates from an 

analogy with actual workbenches for 

manual work. A workbench provides a 

stable, heavy-duty platform on top of which 

the work can be done conveniently. Various 

tools such as hammers, wrenches, or vices 

can be used on a workbench, attached to it, 

or possibly stored in some integrated 

toolboxes (Fig. 3). )Ô ÉÓ Á ÕÓÅÒȭÓ ÃÈÏÉÃÅ ×ÈÉÃÈ 

tools they use on a workbench, as long as 

the tools fit. 

http://bioportal.weizmann.ac.il/toolbox/overview.html
http://seqanswers.com/wiki/Software
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Workbenches for bioinformatics and computational biology follow the same principles 

as workbenches for manual work. A bioinformatics workbench provides an integrated 

analysis platform which aims at enabling convenient  data analysis, minimising usÅÒȭÓ 

effort . Various computational tools and data resources can be used in a workbench. In 

the best case, a user can add the tools they need, as long as they are somehow 

compatible with the workbench. However, adding custom tools requires effort with 

most workbenches. In workbenches that are publicly accessible over the Web, 

selections of tools are provided, covering the domain of research a workbench targets 

(e.g. sequence analysis and evolution, structure bioinformatics, or genomics). On the 

other hand, the workbeÎÃÈÅÓ ÔÈÁÔ ÁÒÅ ÉÎÓÔÁÌÌÁÂÌÅ ÁÔ Á ÕÓÅÒȭÓ local facilit y come often 

ÂÕÎÄÌÅÄ ×ÉÔÈ Á ȰÓÔÁÒÔ ËÉÔȱ ÏÆ ÍÁÉÎ ÔÏÏÌÓ ÆÏÒ ÔÈÅ ÇÉÖÅÎ ÄÏÍÁÉÎȢ 

To enable a convenient data analysis, workbenches integrate other essential 

functionality , in addition to computational tools and data services. They may include 

data  management, visualisation, storage, or occasionally editing; management and 

execution of automated workflows , workflow design, or scripting; and access to high -

performance computing  facilities. 

Workbenches usually provide an accessible interactive graphical user interface ɀ 

typically in form of a web application ɀ providing the integrated tools and analysis 

functionality with a unified look -and-feel, mutual interoperability , and usability  

without typing commands or scripting (Fig. 4, p.37, Fig. 5, p.39). Other forms of accessing 

the integrated functionality of a workbench may, however, be included in addition to 

GUIs, allowing flexibility  and accessibility for various groups of users and usage 

scenarios. 

Workbenches often include functionality that aims at enabling transparency  and 

reproducibility  of the performed analyses: for example recording analysis steps (the 

workflow) , details of the particular steps, provenance metadata; or enabling users to 

add human-written documentation. Such documentation, together with the performed 

workflow and used and obtained data, can often be shared publicly, enabling 

convenient publishing  of transparent and reproducible results. In addition, various 

resources such as data and workflows can be shared between individual users or user 

groups, a useful functionality for collaborative  work. Tools compatible with a 

particular workbench can usually be published in dedicated repositories, enabling 

sharing  of effort of making the tools compatible (i.e. typically wrapping them with a 

given kind of interface). 

From historical examples other than the various toolkits popular through the history 

of bioinformatics (p.17), HASSLE (Doelz 1994, Doelz et al. 1994) was a highly sophisticated 

system integrating distributed resources around Europe, far ahead of its time. GDE 

(Genetic Data Environment, Fig. 4) was an interactive graphical workbench for multiple 

sequence alignment (Smith et al. 1994, Eisen 1997), while SeqPup was an interactive 

graphical sequence editor (Gilbert 1999), both with access to custom computational 
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Fig. 4. Screenshot of the GDE workbench from Eisen 1997. 

 

tools. HUSAR (Heidelberg Unix Sequence Analysis Resources, Senger et al. 1995) is an 

institution -specific system at the German Cancer Research Center in Heidelberg, based 

on GCG (Devereux et al. 1984) and with restricted access, still functional today. Vector 

NTI was a complex and extendable commercial workbench covering a broad spectrum 

of bioinformatics (reviewed in Lu and Moriyama 2004). 

Since the beginning of the 21st century, the development of integrated analysis systems 

thrived in bioinformatics, resulting in a plethora of workbenches with diverse 

specialisations and designs. These include expandable, multi-functional interactive 

GUIs (more on p.19) that are rather narrowly specialised for a certain type of data: e.g. 

ones for molecular structure analysis, Jalview (Clamp et al. 1998, 2004, Waterhouse et al. 

2009, Troshin et al. 2011) with functionality comparable to GDE but state-of-art, 

Norwegian J-Express for gene expression and similar analyses (Dysvik and Jonassen 

2001, Stavrum et al. 2008) and MotifLab for analysis of regulatory regions in genomes 

(Klepper and Drabløs 2013), or the popular Cytoscape for analysis and visualisation of 

networks (Shannon et al. 2003, Yeung et al. 2008, Lopes et al. 2010). 

Workflow systems focus on functionality including the design of automated workflow s, 

their administration  and execution. These are for example the well-known Taverna 

(Oinn et al. 2004, Hull et al. 2006, Wolstencroft et al. 2013), or from the newer ones e.g. the 

easy-to-use Armadillo (Lord et al. 2012) with data management and visualisation, and a 

pretty graphical workflow  editor. 

Workbenches available for use on publicly accessible web servers reached a 

considerable level of popularity, especially the comprehensive GenePattern (Reich et al. 

2006) and Galaxy (Giardine et al. 2005, Goecks et al. 2010), both with active communities of 

users and contributors. In addition to access at the public web servers, these 

×ÏÒËÂÅÎÃÈÅÓ ÃÁÎ ÂÅ ÉÎÓÔÁÌÌÅÄ ÌÏÃÁÌÌÙ ÏÎ Á ÕÓÅÒȭÓ ÃÏÍÐÕÔÅÒ ÏÒ ÁÎ ÉÎÓÔÉÔÕÔÅȭÓ ÓÅÒÖÅÒȢ 
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Thanks to a well-targetted community building and promotion, instances of Galaxy 

were deployed at various sites, with various sets of tools available. Such instances are 

often locally customised versions, e.g. the publicly accessible Genomic HyperBrowser 

(Sandve et al. 2010, 2013). Some institution -specific systems for access to local high-

performance computing resources use tweaked versions of Galaxy, for example at the 

Institut Pasteur (slides http:// wiki.sb-roscoff.fr/ ifb/images/c/cc/Galaxy_Day_Institut_Pasteur.pdf), 

occasionally replacing single-site ȰÈÏÍÅ-ÍÁÄÅȱ ÓÏÌÕÔÉÏÎÓ, such as at the University of 

Oslo where the new Galaxy-based LifePortal (http://lifeportal.uio.no, Kumar et al. 2015) 

replaced the previous, easy-to-use BioPortal (Kumar et al. 2009) with a simple web user 

interface. 

Institut Pasteur and other sites provide also Mobyle, a popular workbench for 

sequence and structure analysis, with convenience features such automatic data 

retrieval and re-formatting, or suggesting tools and operations for the next step within 

a workflow  (Néron et al. 2009). Chipster is a powerful workbench provided by the 

Finnish CSC - IT Center for Science, with extensive support for scripting and graphics 

(Kallio et al. 2011). Likewise the previous ones, Chipster is open-source and installable 

for free, with a restricted-access instance at CSC (http:// chipster.csc.fi/access.shtml). UGENE  

(Okonechnikov et al. 2012) is another free and open-source, locally installable workbench 

that gained certain popularity, with optional commercial support. An interesting 

system is GenomeSpace, going one level up and integrating various workbenches and 

other tools, with convenient data management and sharing (http://genomespace.org, 

posters Reich et al. 2013, Garamszegi et al. 2015). 

Non-free commercial systems are for example the CLC Bio workbenches 

(http://clcbio.com), or the user-friendly Geneious (http://geneious.com), with an old, slightly 

limited version available for free as Geneious Basic (Kearse et al. 2012, Fig. 5). BaseSpace 

is a comprehensive, accessible, and easy-to-use environment for computational biology 

(http:// basespace.illumina.com). BaseSpace is free for use, with charging announced for 

data above 1TB, providing access to numerous free and non-free tools, mostly non-

transparent. 

Notable among recent developments for convenient deployment and execution of 

automated workflows ɀ with Linux command-line tools ɀ in high-performance 

computing facilities are e.g. Arvados and Nextflow. Arvados is a freely installable open-

source system with functionality including data versioning and parallelisation, 

additionally provided as a commercial service (http:// arvados.org). Nextflow is a free and 

accessible tooling for deploying and executing automated workflows on a growing 

number of supported cluster systems, with support for various scripting languages 

(poster Di Tommaso et al. 2014, update on slides http://speakerdeck.com/pditommaso/nextflow-a-

tool-for-deploying-reproducible-computational-pipelines). 

 

http://wiki.sb-roscoff.fr/ifb/images/c/cc/Galaxy_Day_Institut_Pasteur.pdf
http://lifeportal.uio.no/
http://chipster.csc.fi/access.shtml
http://genomespace.org/
http://clcbio.com/
file:///C:/Users/Matus/Work/thesis%20&%20future/http:/geneious.com
http://basespace.illumina.com/
http://arvados.org/
http://speakerdeck.com/pditommaso/nextflow-a-tool-for-deploying-reproducible-computational-pipelines
http://speakerdeck.com/pditommaso/nextflow-a-tool-for-deploying-reproducible-computational-pipelines
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Fig. 5. A screenshot of the graphical user interface of the Ge neious Basic workbench.  Geneious Basic  
(Kearse et al. 2012) offered a good selection of data-retrieval, computational, and visualisation tools, with a 
playful user interface. Newer versions of Geneious are not available for free anymore, but this older 
Geneious Basic is still available in Bio-Linux, leading us to the next section. 

 

System distributions  

Operating systems ɀ on personal computers nowadays most commonly Windows, Mac 

OS X, or some kind of Linux (properly GNU/Linux) ɀ are normally distributed and 

installed together with a set of tools for basic tasks: GUIs, editors, APIs, a web browser, 

etc.. These system distributions (not ȰÄÉÓÔÒÉÂÕÔÅÄ ÓÙÓÔÅÍÓȱ ÉÎ ÓÅÎÓÅ ÏÆ ÂÅÉÎÇ ÄÅ-

centralised, but of being distributed as goods for the users) can be installable as a 

whole from e.g. DVDs or downloadable files. Some Linux distributions come already 

pre-equipped with a selection of well-tested ÂÉÏÉÎÆÏÒÍÁÔÉÃÓ ÔÏÏÌÓȢ 3ÕÃÈ Ȱ"ÉÏ ,ÉÎÕÃÅÓȱ 

make bioinformatics tools accessible and availabl e ÆÏÒ ÕÓÅÒÓȭ ÐÅÒÓÏÎÁÌ ÃÏÍÐÕÔÅÒÓ ÁÎÄ 

ÔÈÅÉÒ ÉÎÓÔÉÔÕÔÉÏÎÓȭ ÓÅÒÖÅÒÓȟ without  having to search, choose, and install the tools, 

manage their dependencies, or sometimes compile them. They are with few exceptions 

free  and open-source . In addition, Ȱ"ÉÏ ,ÉÎÕÃÅÓȱ can usually be booted up from a so-

called live CD, DVD, or USB stick, so that users do not have to install them at all if they 

only need them temporarily, for example within a training  workshop or an occasional 

ÁÎÁÌÙÓÉÓȢ Ȱ,ÉÖÅȱ ÅØÁÍÐÌÅÓ ÉÎÃÌÕÄÅ Bioknoppix (not maintained anymore, 

http://bioknoppix.hpcf.upr.edu), bioSLAX (http://bioslax.com), and especially the 

comprehensive and well-supported Bio-Linux (http://environmentalomics.org/bio-linux, Field 

et al. 2006) which is based on the usability -oriented Ubuntu distribution. A specialised 

http://bioknoppix.hpcf.upr.edu/
http://bioslax.com/
http://environmentalomics.org/bio-linux
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Linux distribution that partially overlaps with bioinformatics is e.g. OSDDlinux for 

chemo-informatics and drug discovery (http://www.osdd.net/news-updates/osddlinux). 

Main Linux distributions are equipped with package management software which 

enables users to add new applications or libraries from dedicated repositories, without 

complications with installation, versions, compilation, and especially dependency 

management, making the system installations maintainable  without complex 

administration . A couple of Linux distributions  contain large numbers of 

bioinformatics tools available in their package repositories: Gentoo Linux 

(http://packages.gentoo.org/category/sci-biology?full_cat), and especially the foundational 

Debian which many Linux distributions are based on, including Ubuntu. Debian is the 

well-tested, reliable , well-supported, strictly free  and transparent  operating system 

maintained by an organisation of volunteers (Murdock 1994, Perens 1997). Debian users 

can, however, install non-free packages additionally . Debian contains a broad selection 

of free bioinformatics and life-scientific tools that are integrated into Debian by the 

Debian Med initiative (Möller et al. 2010, http://www.debian.org/devel/debian-med). Debian 

Med is, using the Debian terminology, Á ȰDebian Pure BÌÅÎÄȱ: a subset of Debian for a 

particular target-group of users, with an associated community that develops it and 

provides user support. Debian Med and Bio-Linux, the two main Linux initiatives for 

computational biology, evolved into a single integrated community, where the majority 

of Bio-,ÉÎÕØȭÓ ȰÂÉÏȱ ÐÁÃËÁÇÅÓ ÉÓ ÍÁÉÎÔÁÉÎÅÄ ÕÎÄÅÒ $ÅÂÉÁÎ -ÅÄ, with few additional 

ones that so far are Bio-Linux-only. It may be interesting to mention also Qlustar 

(http://qlustar.com), an example of a commercial distribution for high-performance 

ÃÏÍÐÕÔÉÎÇ ÉÎ ȰÓÕÐÅÒÃÏÍÐÕÔÅÒȱ ÃÅÎÔÒÅÓȢ 1ÌÕÓÔÁÒ ÉÓ ÂÁÓÅÄ ÏÎ $ÅÂÉÁÎ ÁÎÄ Ubuntu, so 

Debian Med and Bio-Linux can smoothly be used inside it, and it has an edition with  

somewhat limited functionality available for free to non-commercial use. 

Virtual machines can be used to run one system installation inside another, for example 

Bio-Linux inside Mac OS X. Virtual machines can also be moved between different 

ÐÈÙÓÉÃÁÌ ÃÏÍÐÕÔÅÒÓȟ ÁÎÄ ÃÁÎ ÂÅ ÒÕÎ ÉÎ ÃÏÍÍÅÒÃÉÁÌ ȰÃÌÏÕÄÓȱ if users pay, or in 

specialised supercomputing centres if users have access to them, paid or free (e.g. 

http://research.csc.fi/computing-infrastructures). Using virtual machines running on remote 

computational services, one of the phenomena hidden behind the marketing buzzword 

ÏÆ ȰÃÌÏÕÄ ÃÏÍÐÕÔÉÎÇȱȟ ÍÁËÅÓ ÈÉÇÈ-performance computations usable and accessible 

to researchers flexibly , without the need for purchasing, installing, and maintaining 

the necessary hardware. Increasing number of bioinformatics tools are available as 

fully -installed virtual machines, that users can immediately deploy and start using 

locally, on a virtualisation-ÅÎÁÂÌÅÄ ÓÅÒÖÅÒȟ ÏÒ Á ȰÃÌÏÕÄȱ service. Examples include 

PredictProtein (Kaján et al. 2013, http://rostlab.org/services/ppmi), JBrowse (Skinner et al. 

2009), and Galaxy (Afgan et al. 2010). Examples of virtual machines equipped with 

comprehensive sets of bioinformatics tools are DNALinux (http://dnalinux.com) and 

CloudBioLinux (http://cloudbiolinux.org, Afgan et al. 2012), the latter containing a 

substantial portion of contemporary bioinformatics tools via integration from various 

http://www.osdd.net/news-updates/osddlinux
http://packages.gentoo.org/category/sci-biology?full_cat
http://www.debian.org/devel/debian-med
http://qlustar.com/
http://qlustar.com/content/qlustar-basic-edition
http://research.csc.fi/computing-infrastructures
http://rostlab.org/services/ppmi
http://dnalinux.com/
http://cloudbiolinux.org/
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repositories including Bio-Linux, Bio*, and Bioconductor. With CloudBioLinux, the 

×ÈÏÌÅ ÂÉÏÉÎÆÏÒÍÁÔÉÃÓ ȰÌÁÂÏÒÁÔÏÒÙȱ ÉÓ available  ÉÎ ȰÁ ÃÏÕÐÌÅ ÏÆ ÃÌÉÃËÓȱȟ ÏÎ Á ÕÓÅÒȭÓ local 

computer or in an eventual supercomputing facility. A light-weight alternative to 

virtual machines are software containers limited to one family of operating systems, 

such as the popular Docker for Linux systems (http://docker.com). In addition to 

installable tools and system distributions, virtual machines and software containers 

are the only other option for analysing sensitive data  ɀ provided that the virtual 

machine is verified safe ɀ inside isolated computing environments (such as TSD at the 

University of Oslo, http://www.uio.no/tjenester/it/forskning/sensitiv/hjelp/brukermanual). 

1.4. Standardising information and data representation  

Bioinformatics and computational biology have data in the centre of gravity: analysing 

biological data, comparing data, interpre ting data, producing data that suggest new 

relations in nature. When researchers succeed in finding new insights, the excitement 

is naturally about the content of the data and some nice plots to present the results. 

LÅÓÓ ÅÆÆÏÒÔ ÍÁÙ ÂÅ ÐÕÔ ÉÎÔÏ ȰÎÏÎ-ÃÏÎÔÅÎÔȱ ÑÕÁÌÉÔÉÅÓ ÏÆ ÔÈÅ ÄÁÔÁ ÓÕÃÈ ÁÓ ÆÏÒÍÁÔȟ 

readability, terminology, consistency, reproducibility, or compatibility and 

comparability (interoperability) with other data. Similar holds when developing new 

computational tools or databases: the functionality and the content of the output or 

ÓÔÏÒÅÄ ÄÁÔÁ ÁÒÅ ÎÁÔÕÒÁÌÌÙ ÔÈÅ ÍÁÉÎ ÆÏÃÕÓȟ ×ÈÉÌÅ ÆÌÅØÉÂÉÌÉÔÙ ÏÆ ÉÎÐÕÔÓ ÁÎÄ ÔÈÅ ȰÎÏÎ-

ÃÏÎÔÅÎÔȱ ÑÕÁÌÉÔÉÅÓ ÏÆ ÔÈÅ ÏÕÔÐÕÔ ÁÒÅ ÓÅÃÏÎÄÁÒÙȢ (Ï×ÅÖÅÒȟ ×ÈÅÎ ÔÈÅ ÒÅÓÕÌÔÓ ÁÎÄ ÔÏÏÌÓ ÁÒÅ 

later used by other researchers in their analysis workflows, the accessibility , 

usability  and reusability , interoperability  with other data, and of course 

provenance  and reliability  of the data become of great importance. In order to 

mitigate the vast creative chaos in bioinformatics data, various types of efforts have 

been initiated and implemented. 

Data formats  

We can broadly say that a data format is a particular way of structuring information so 

ÔÈÁÔ ÃÏÍÐÕÔÅÒ ÐÒÏÇÒÁÍÓ ÃÁÎ ÒÅÁÄ ÁÎÄ ȰÕÎÄÅÒÓÔÁÎÄȱ ÉÔȠ ÏÆ ÒÅÐÒÅÓÅÎÔÉÎÇ ÉÎÆÏÒmation as 

data items; and of encoding the data in computer memory or on a data medium. A 

particular type of data ɀ for example a sequence of nucleotides of a gene with basic 

information about the gene ɀ can be represented in many ways, in various formats. In 

http://docker.com/
http://www.uio.no/tjenester/it/forskning/sensitiv/hjelp/brukermanual
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Fig. 6. Examples of sequence records in FASTA format. 4 different  records of the same sequence in the 
same format (FASTA), but with differently formatted accompanying information. Highlighted in blue is 
database, green identifier, red taxon, and violet version. 

order to have a set of tools smoothly interoperable  with each other, minimising the 

needs for converting formats when they are used together in a workflow, the tools 

should accept and output a particular type of data in a common format. There are 

numerous de-facto standard formats which are usable with broad spectra of 

bioinformatics tools, e.g. the tab-separated textual GFF (http://gmod.org/wiki/GFF3) and 

BED (Kent et al. 2002) for information about genomes, genes, biopolymers, their parts, 

and related measured or inferred values. These formats are to some extent readable 

also to humans, while similar ly structured bigBed (Kent et al. 2010) and BAM (Li et al. 

2009) are, in contrast, compressed into binary files or blobs in order to save data 

volume for transfer and storage. 

Specifications of data formats often allow certain freedom of representing some parts 

of the recorded information. An obvious example among bioinformatics data formats is 

the FASTA format (http://www.ncbi.nlm.nih.gov/BLAST/blastcgihelp.shtml) ɀ a widely used 

textual format for genetic and biopolymer sequences ɀ which leaves the structuring  of 

accompanying information open (Fig. 6). Using the same format in different ways among 

various tools may hamper the interoperability, too. 

In order to achieve better interoperability with tools, and in some way easier 

implementation or integration with other data, a machine-understandable 

specification of a data format can be provided in a schema language. A data schema can 

also be called a data model, and allows a degree of automation  in processing data 

instances, such as in parsing, validating, printing, or compressing, by using available 

programmatic libraries that are not specific to a particular data format. XML formats 

are usually defined in a dedicated XML Schema (XSD, http://www.w3.org/XML/Schema, 

http://www.w3.org/2001/XMLSchema). XML formats in bioinformatics are for example 

MAGE-ML for microarray data (Spellman et al. 2002), SBML for models in systems 

biology (Hucka et al. 2003, 2004), CML and PDBML for molecular structure (Murray-Rust 

et al. 2001, Westbrook et al. 2005), phyloXML and NeXML for phylogenetic data (Han and 

Zmasek 2009, Vos et al. 2011, 2012), or recently BDML for spatiotemporal dynamics of 

biological objects (Kyoda et al. 2015). In addition to formats specialised on a particular 














































































