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Notation and definitions

Here is a short list of some of the more frequently used notation used in this thesis.
Any other nonstandard notation used will be explained in the text.

Symbol Description

X, Y, Z, W, . . . random variables
x, y, z, w, . . . real numbers or nonrandom variables
f , g, f1, f2, fX, . . . marginal probability density functions
F, G, F1, F2, FX, . . . corresponding cumulative distribution functions
h and H multivariate density and distribution functions
P(A) probability of the event A
E(X) mean of X
Cov(X, Y) covariance between X and Y
corr(X, Y) or ρXY correlation between X and Y
Var(X) or σ2

X variance of X
SD(X) or σX standard deviation of X
I unit interval, [−1, 1]
R and R sets of real numbers, (−∞, ∞) and [−∞, ∞]
N (µ, σ2) normal distribution with mean µ and variance σ2

N (µX, µY, σ2
X, σ2

y , ρ) bivariate normal distribution with means
µX and µ2, variances σ2

X and σ2
Y and correlation ρ

U and V random variables uniformly distribution on I

Dom X domain of X
Ran X range of X

We will, for instance, let fX denote the probability density function of the random
variable X; but we will frequently omit any subscripts when it is clear from context
which variable is intended. We may also use f , g, h and other lowercase letters as
general functions. Again, the meaning will be clear from context.
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1
Introduction

Dependence between random variables is a much studied topic in probability and
statistics, and it is the subject of this thesis. We will look at various measures of the
strength and direction dependence, both from a theoretical and empirical point of
view.

Some of the measures characterise ‘overall dependence’, and these are discussed
in chapter 2. But the dependence between variables often varies over their support,
and the ‘local dependence’ is therefore of special interest. We will look closely at
two approaches to quantifying this dependence, and we will examine the properties
and problems of the resulting functions in chapter 3.

The global and local measures only capture some of the dependence in the
distributions, but in chapter 4 we will look at a function that describes the entire
dependence between two or more variables. This function – the copula – does
not depend on the marginal distributions, and is thus a pure dependence concept.
Moreover, some of our earlier measures can be expressed as transformations of this
copula.

Lastly, we will look at two types of graphical displays that may be of help in
determining if there is a dependence between two variables, and, possibly, to infer
which type of dependence there is.
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1.1 Continuous numbering

Note that, to make the text easier to follow, we use a continuous numbering of theor-
ems, lemmas, definitions and examples. This means that, for instance, example 3.4.2
can be followed by definition 3.4.3, which is followed by theorem 3.4.4, etc. Equa-
tions are numbered by sections.

1.2 Software used

All computer calculations and simulations were done on the statistical computing
software package R, version 2.1.1 or 2.2.0, running on the SuSE Linux 9.2 operating
system on an amd AthlonTM

xp 3200+ or an amd AthlonTM
xp 1600+ computer.

See R development core team (2005). All source code in the thesis is written for this
software package.
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2
Measures of global dependence

2.1 Concepts and definitions

A variable Y is said to be completely dependent on X if there exists a function f such
that Y = f (X) with probability one. If Y is completely dependent on X and X is
completely dependent on Y, we say that the two variables are (mutually) completely
dependent. The other extreme is of course independence between the variables.

We wish to have a measure of dependence – a real-valued function that measures
the degree of dependence between the two (or more) variables. There are a few
‘natural’ properties such a measure of dependence should have (Rényi 1959):

1. The measure, say h, should be defined for any pair (X, Y) of nonconstant
variables.

2. h(X, Y) = h(Y, X). We say that the measure is symmetrical.

3. 0 ≤ h(X, Y) ≤ 1.

4. h(X, Y) = 0 if and only if X and Y are independent.

5. h(X, Y) = 1 if Y is completely dependent of X or X is completely dependent
on Y.
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6. For all one-to-one functions (injective functions) α and β, h
(
α(X), β(Y)

)
=

h(X, Y). We say that the measure is transformation invariant.

7. If (X, Y) are bivariate normal (see section 2.2.1 on page 13), h(X, Y) should
be equal to the correlation coefficient (see equation 2.2 on page 12).

See also page 170 of Nelsen (1999) for references to discussions of and modifica-
tions of these properties. And note that most of them are easily extended to more
than two variables (see below for a few examples). Now let us also discuss a few
suggested properties of our own:

8. The range of h should be defined on an interval or a ratio scale.

9. The measure should not be symmetrical.

10. The measure should use natural (physical) units for ease of interpretation. In
other words, it should not be transformation invariant.

11. The measure should be comparable across different data sets and variables.

Of course, no measure of dependence can satisfy all of these properties, since,
for instance, property 2 and 9 are contradictory.

Range on an interval scale

A range being defined on an interval scale means that an increase in value from x
to x + ∆ is equivalent (by some meaningful definition of ‘equivalent’) to an increase
in value from y to y + ∆. A ratio scale has in addition a meaningful zero, so that, for
instance, a value of 2x means ‘twice as much association’ as a value of x.

Basically, we here require that the interior points of the range of h, not only the
endpoints 0 and 1, have a natural interpretation.

Symmetry or nonsymmetry

Symmetry was in property 2 on the preceding page (and in Rényi 1959) only
defined when measuring the association between two variables (though the variables
could be vectors). But it is easily extended to more variables, by requiring that
h(X1, . . . , Xn) = h(Xk1 , . . . , Xkn) (where k1, . . . , kn is a permutation of the numbers
1 to n). When there is no clear ‘cause and effect’ or ‘input and output’ relationship,
we may prefer a symmetrical measure of association.
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Now consider the case where X is a random variable which may take both posit-
ive and negative values, and let Y = X2. Knowledge of the value of X completely
determines the value of Y, and Var(Y | X) = 0. But knowledge of the value of Y
does not uniquely determine the value of X, since X can be either

√
Y or −

√
Y ,

i.e. Var(X | Y) 6= 0. In other words, Y is completely dependent on X but X is not
completely dependent on Y. We may here prefer a non-symmetrical measure of
association.

Transformation invariance

A transformation invariant measure of association is a measure which is invariant to
(a subset A of) all injective transformations of the variables. More precisely, if X
is a vector of variables (either random variables or observations), g is an arbitrary
function in A and h is the measure of association, we should have h

(
g(X)

)
= h(X).

We may be satisfied letting A contain only a subset of all possible transformations.
We may for example take A to be a set of linear functions, or a set of (strictly)
increasing functions. If a measure is invariant to strictly increasing transformations,
we call it a scale-invariant measure. We will in chapter 4 on page 69 see that the
measures of dependence that are scale-invariant are exactly those measures that
are dependent (in a mathematical sense) only on a functional of the multivariate
distribution called the ‘copula’.

In practical situations a measure of association which uses natural units could be
useful. Consider the example Y = βX + ε, where β is the measure of association
and X, Y and ε are random variables. This measure of association is obviously not
invariant to (even linear) transformations of X (β has to change for Y to have the
same distribution), but is useful nontheless, for example in predicting Y given X.
(And it can easily have a physical interpretation.) We will in this thesis mostly limit
our discussion to measures of associations which are invariant to (increasing) linear
transformations or which are scale-invariant.

Comparability

Measures of dependence are often used to compare the level of dependence among
different data sets, or to compare various models for the same data set. We may,
for instance, have observations of variables Y, X1 and X2, and wish to investigate
whether there is a greater level of dependence between Y and X1 than between Y
and X2.

11



We may also wish that the measure can be used on both continuous and on
discrete variables; however, we will in this thesis mostly limit our discussion to
absolutely continuous distributions and measures of dependence on these (but will
note when extensions to other distributions exist).

Finally, observe that different measures can be useful in different situations,
and which ones we use may depend on which features of the dependence we
are interested in. We will now look closer at a measure of dependence called
‘correlation’.

2.1.1 Measures of concordance

When looking at two random variables, we are often not only interested in the
degree of dependence, but also in its direction – whether ‘large’ values of one variable
is associated with ‘large’ values of the other (positive dependence), or with ‘small’
values (negative dependence). We will later give a proper definition of this notion
(called concordance), but let us first look at a few frequently used measures of
(directional) dependence. The most commonly encountered of these is called the
correlation:

2.2 Correlation and regression

Let X and Y be two random variables with existing second-order moments. The
covariance function is then defined as

Cov(X, Y) = E
[(

X −E(X)
)(

Y −E(Y)
)]

= E(XY)−E(X) E(Y).
(2.1)

We see that the the covariance will be positive (and ‘large’) when large (small) values
of X (that is, values greater than the mean) is associated with large (small) values
of Y with high probability; and the covariance will be negative when large (small)
values of X is associated with small (large) values of Y. We can now easily make
the covariance invariant to positive linear transformations: Assuming non-zero
variances, we define the correlation coefficient ρX,Y as

ρX,Y = corr(X, Y) =
Cov(X, Y)

SD(X) SD(Y)
. (2.2)

If one of the variances is zero, ρX,Y is defined to be zero.
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It can be shown (see, for example, Casella and Berger 2001, pages 172–173) that
−1 ≤ ρ ≤ 1 and that |ρ| = 1 if and only if Y is almost surely a linear transformation
of X. If X and Y are independent, the covariance (and the correlation) must be zero:

Cov(X, Y) = E(XY)−E(X) E(Y)

= E(X) E(Y)−E(X) E(Y) = 0.

The converse is not true; see section 2.4 on page 21 for a counterexample. Let now
(X1, Y1), . . . , (Xn, Yn) be a random sample from a bivariate distribution, and denote

∑n
i=1(Xi − X̄)(Yi − Ȳ) by SXY (and let SXX and SYY have corresponding definitions).

We can estimate the correlation coefficient by the sample correlation coefficient

RX,Y = ρ̂X,Y =
SXY√

SXX
√

SYY
. (2.3)

For information on bias and consistency, see the end of the following subsection.

2.2.1 Regression and correlation

Consider a pair of random variables (X, Y) with a bivariate distribution, where X
has the marginal mean µX and variance σ2

X 6= 0, and Y = α + βX + ε, where ε is
independent of X and has zero mean and variance σ2

ε 6= 0. We have:

µX = E(X)

µY = E(Y) = α + β E(X) = α + βµX

σ2
X = Var(X)

σ2
Y = Var(Y) = Var(α + βX + ε)

= β2 Var(X) + Var(ε)

= β2σ2
X + σ2

ε

ρX,Y =
Cov(X, α + βX + ε)

SD(X) SD(α + βX + ε)
=

β Cov(X, X)
σXσY

(2.4)

= β
σ2

X
σXσY

= β
σX

σY

Note that the squared correlation can be written:

ρ2
X,Y =

Var
(
E (Y | X)

)
Var(Y)

=
Var(α + βX)

Var(α + βX + ε)
. (2.5)
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The squared correlation can thus be viewed as the proportion of variance of
Y ‘explained’ by the linear association with X. Often the additional require-
ment that ε and X are normally distributed is imposed, and we write (X, Y) ∼
N (µX, µY, σ2

X, σ2
Y, ρ); see Bickel and Doksum (2001, pages 497–502).

2.2.1.1 Estimating the regression coefficients

Now consider the general linear case where we have a random sample X1, . . . , Xn

from a distribution (or Xi = xi are fixed numbers), and let Yi = α + βXi + εi, where
εi are i.i.d. random variables with zero mean and finite variances, i = 1, . . . , n. The
least-squares estimators of α and β are:

B = β̂ =
SXY

SXX

A = α̂ = Ȳ − BX̄.
(2.6)

These are unbiased estimators, and are also equal to the conditional maximum
likelihood estimators when the ε’s are normally distributed. Let us also introduce
the notation Ŷi = A + BXi for the predicted Y’s.

It is easily shown that the sample correlation coefficient RX,Y defined in equa-
tion 2.3 on the previous page can be written

RX,Y = B

√
SXX

n− 1√
SYY

n− 1

= B
SX

SY
. (2.7)

Note the similarity to ρXY in equation 2.4 on the preceding page. The parameters β,
σX and σY have all been replaced by their (unbiased) estimators.

When the Xi’s are fixed numbers and not random variables, we define the
coefficient of determination using the formula of the square of the sample correlation
coefficient, equation 2.3 on the previous page, with the Xi’s replaced by xi. We will
denote this statistics by R2

x,Y,
Like the square of the population correlation, the square of the sample correlation

can also be seen as the proportion of (sample) variance of Y ‘explained’ by the
linear association with X,

R2
X,Y = ∑ (Ŷi − ¯̂Y)2

∑ (Yi − Ȳ)2 = ∑ (Ŷi − Ȳ)2

∑ (Yi − Ȳ)2 , (2.8)
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or as the proportionate reduction in variation (sample variance) by the linear
regression on X,

R2
X,Y = ∑ (Yi − Ȳ)2 −∑ (Yi − Ŷ)2

∑ (Yi − Ȳ)2 = 1− ∑ (Yi − Ŷ)2

∑ (Yi − Ȳ)2 . (2.9)

These formulas have natural generalisations to multiple linear regression, Y =
α + ∑k

i=1 βiXi + ε. Consult any book on this topic for further details. But see
Kvålseth (1985) and Anderson-Sprecher (1994) for information on problems with
interpretation of, and definition of, R2

X,Y in nonlinear models, when transformations
are used and/or when model comparison of different models are of interest.

Also note that there are many other interpretations of R2
X,Y. See Rodgers and

Nicewander (1988), and Rovine and von Eye (1997) for a non-random sample of
some of these.

2.2.1.2 Consistency of estimates

The statistics RX,Y and R2
X,Y are biased (but consistent) estimators of ρX,Y and ρ2

X,Y,
respectively. And do note that we need to sample from the bivariate distribution
to get valid (that is, consistent) estimates; when we sample from a conditional
distribution, say Y | X, and let Xi = xi be fixed (chosen) numbers, the estimators
(Rx,Y and R2

x,Y) are usually not consistent, and can have arbitrary bias. Consider an
example where (X, Y) has a bivariate N (0, 0, 1, 1, ρ = 0.7) distribution and we have
a sample of one million observations, but where we have fixed the xi observations
so that half of them have a value of −λ and the other half the value λ, and we
have sampled Y from the conditional distribution. The slope is here equal to the
correlation: β = ρ = 0.7. Here is the result of one simulation where we try to
estimate the slope and the correlation (the output is slightly edited for readability):

> n = 10^6 # Number of observations
> rho = .7 # Correlation
> lambda = 2 # End points
>
> m = n/2
> x1 = rep( −lambda, m )
> x2 = rep( lambda, m )
> x = c( x1, x2 ) # Let half of them have the value −lambda, the other half lambda.
> y = rnorm(n, rho∗x, sqrt(1−rho^2)) # Generate y observations from
> # the conditional Y | X=x distribution.
>

15



> lm( y~x )$coefficients

(Intercept) x
0.0004948295 0.7007136920

> cor(x,y)

0.8908783

This shows that the estimate of α, the intercept, is 0.00, the estimate of beta, the
slope, is 0.70 and the estimate of the correlation is 0.89. More runs of the same
program gave approximately the same estimates. (Estimated standard error of the
statistic Rx,Y was 0.0002, computed from 100 simulations.)

While the estimate of β is very good (and the variance of the least-squares
estimator is σ2

Y/Sxx, so putting half of the xi observations on each endpoint thus
gives us the estimator with the lowest variance for the given range), the estimate
of the correlation is severely biased. Reducing λ to 0.2 gives us the estimates 0.70
and 0.19 for β and ρ, respectively. It can also be shown that the mean of Rx,Y is an
increasing function of λ (see references at the end of this section).

Note that we need not have the xi values split into two groups to observe
severe bias. Here is the result of a simulation with one million observations, where
the xi values had a (frequency) distribution similar to that of a standard normal
distribution, but with each observation scaled by a constant, c (before generating
the corresponding yi observations from the conditional Y | X = x distribution):

c β̂ Rx,Y

1.0 0.70 0.70
10.0 0.70 0.99
0.1 0.69 0.10

(Repeating the simulation several times gave approximately the same numbers.)
These results show that the sample correlation Rx,Y (or its square) should not be

used to estimate the population correlation (or its square), unless care is taken to
ensure that the distribution of the nonrandom xi’s mimics that of X, or at least that
they have approximately the same variance; for it can be shown that the mean of
Rx,Y is largely a function of the ratio of the variance of X and the (sample) variance
of the xi’s. And, indeed, for λ = 1, the sample correlation in the earlier two-split
example is (consistently) estimated to approximately 0.70.
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For more information on the distribution of Rx,Y under nonrandom sampling,
see Warren (1971) (and references therein), section 3.2 in van Belle (2002) and the
discussion on the book’s Web site.

2.2.2 Correlation in mixtures

We are now interested in expressing the correlation in a mixture of two distributions
as a function of the correlations in each distribution.

Let (X, Y) have the (bivariate) distribution H1 with probability p and H2 with
probability q = 1 − p. In other words, let (X, Y) = Z(X1, Y1) + (1 − Z)(X2, Y2),
where (X1, Y1) has distribution H1, (X2, Y2) has distribution H2, and Z is 1 with
probability p and 0 with probability q = 1− p.

We use the following notation:

E(X | Z = 1) = µX1 , E(X | Z = 0) = µX2 , E(Y | Z = 1) = µY1 ,

E(Y | Z = 0) = µY2 , SD(X | Z = 1) = σX1 , SD(X | Z = 0) = σX2 ,

SD(Y | Z = 1) = σY1 , SD(Y | Z = 0) = σY2 , corr(X, Y | Z = z) = ρz.

To express the correlation between X and Y, we can use the the two variance and
covariance identities

Var(X) = E
(
Var(X | Z)

)
+ Var

(
E(X | Z)

)
and

Cov(X, Y) = E
(
Cov(X, Y | Z)

)
+ Cov

(
E(X | Z), E(Y | Z)

)
.

Proof of the first identity can be found in Casella and Berger (2001, pages 167–168).
The proof of the second identity is similar. We now have

Cov(X, Y) = E
(
Cov(X, Y | Z)

)
+ Cov

(
E(X | Z), E(Y | Z)

)
= p Cov(X, Y | Z = 1) + q Cov(X, Y | Z = 0)

+ Cov
(
ZµX1 + (1− Z)µX2 , ZµY1 + (1− Z)µY2

)
= pρ1σX1 σY1 + qρ2σX2 σY2 + Cov

(
Z(µX1 − µX2), Z(µY1 − µY2)

)
= pρ1σX1 σY1 + qρ2σX2 σY2 + pq(µX1 − µX2)(µY1 − µY2).

And of course,

Var(X) = Cov(X, X) = pσ2
X1

+ qσ2
X2

+ pq(µX1 − µX2)
2,

Var(Y) = Cov(Y, Y) = pσ2
Y1

+ qσ2
Y2

+ pq(µY1 − µY2)
2.
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This gives us the correlation

ρX,Y =
pρ1σX1 σY1 + qρ2σX2 σY2 + pq(µX1 − µX2)(µY1 − µY2)√(

pσ2
X1

+ qσ2
X2

+ pq(µX1 − µX2)2
)(

pσ2
Y1

+ qσ2
Y2

+ pq(µY1 − µY2)2
) . (2.10)

When the means of the Xi’s are equal, the means of the Yi’s are equal and all the
variances are equal, this expression is simplified to

ρX,Y = pρ1 + qρ2, (2.11)

a weighted mean of the two correlations.
Now consider a mixture of two distributions (populations) with positive correla-

tion and parameters

µX1 = 0, µY1 = 4, µX2 = 3, µY2 = 0,

σX1 = σX2 = σX2 = σY2 = 1,

p = q = 1
2 and ρ1 = ρ2 = 1

2 .

We get a correlation of

ρX,Y = −
√

5
13

≈ −0.62.

We see the perhaps surprising result that – even though the correlations in the
subpopulations H1 and H2 are positive (both equal to one half) – the correlation in
the mixture population is negative. Figure 2.1 on the facing page illustrates why
this is so.

2.2.3 Rank correlation

Using transformed variables is one alternative to calculating the correlation directly.
This may, for instance, be desirable if the association between X and Y is thought
to be non-linear. Since the correlation measures the degree of linear association,
transforming the variables to a scale of measurement where the association is
believed to be approximately linear may be fruitful.

It is elementary to verify that when X and Y are continuous variables with
distribution functions F and G, respectively, U = F(X) and V = G(Y) are uniformly
distributed on I = [0, 1]; see Casella and Berger (2001, pages 54–55) for details. We
will now look at one, perhaps extreme, form of ‘transformed correlation’, called
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Figure 2.1: Scatterplot of 150 observations from an even mixture of two bivariate
normal distributions, both with correlation 1

2 , with the first distribution
having means µX1 = 0 and µY1 = 4, the second µX2 = 3 and µY2 = 0, and
all marginal distributions having unit variance. The correlation in the
mixture distribution is ρ ≈ −0.62, and the estimated correlation is r ≈
−0.67. We note that even though the correlations in each subpopulation
are positive, the overall correlation is negative. Equation 2.10 on the
facing page shows why results like this one can occur.
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rank correlation, Spearman’s rank order correlation or just Spearman’s rho. It is defined
as the correlation between U and V:

ρS(X, Y) = corr
(

F(X), G(Y)
)

= corr(U, V)

=
E(UV)−E(U) E(V)

SD(U) SD(V)

=
E(UV)− 1

4
1
12

= 12 E(UV)− 3. (2.12)

The sample rank correlation is calculated by replacing each value by its rank i,
and then calculating the usual sample correlation on these ranks. Naturally, both
the population and sample rank correlation share the same range as ordinary
correlation, [−1, 1].

Rank correlation is a measure of monotone association, and is invariant to all
increasing transformations of the original data. It is a very robust measure of
association, meaning that its estimator is not affected much by a few observations,
unlike in ordinary correlation, where one observation can completely determine
the value of the estimated correlation.

2.3 Kendall’s tau

Another popular rank-based measure of global association is Kendall’s tau. It is
based on the idea that two variables are positively dependent if large (small) values
of one variable tend to occur with large (small) values of the other variable.

We say that two observations (x1, y1) and (x2, y2) from a random variable (X, Y)
are concordant if and only if

q = (x1 − x2)(y1 − y2) > 0. (2.13)

If the inequality is changed to ‘strictly less than’, we say that the variables are
discordant. Now define Q = (X1 − X2)(Y1 − Y2), where (X1, Y1) and (X2, Y2) are
two independent samples from the (X, Y) distribution. Kendall’s tau, denoted by
τ, is a measure of concordance, and we define it as

τ = P(Q > 0)−P(Q < 0)

= 2 ·P(Q > 0)− 1. (2.14)
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(The last equality is true when the variables are continuous.)
In observations from a random sample of pairs of variables, τ is usually estimated

by

τ̂ =
the number of concordant pairs− the number of discordant pairs

the number of pairs
. (2.15)

Just like Spearman’s rho, Kendall’s tau is obviously invariant to strictly increasing
transformations, and both τ and its estimate take values in the interval [−1, 1].
For n > 10, τ̂ is, for most purposes, well approximated by a normal distribution.
See Mari and Kotz (2001) and references therein for details and other properties.

Finally, we note that Spearman’s rho can also be seen as a measure of concordance;
it is the probability of concordance minus the probability of discordance for (X, Y)
and (X′, Y′), where X′ and Y′ has the same marginal distributions as X and Y,
respectively, but are otherwise completely independent of (X, Y), and of each other.
In other words,

ρS(X, Y) = P
(
(X − X′)(Y −Y′) > 0

)
−P

(
(X − X′)(Y −Y′) < 0

)
. (2.16)

See Nelsen (1999, pages 134–136) for further details. There also exists several
important relationships between Spearman’s rho and Kendall’s tau. One of them is
the inequality −1 ≤ 3τ − 2ρS ≤ 1. The proof, along with other inequalities, can be
found in the book cited above, pages 141–146.

2.4 Problems with correlation

There are mainly two serious problems with correlation as a measure of association:
1) zero correlation does not imply independence, and 2) the range of correlation,
[−1, 1], is not attainable for all (pairs of marginal) distributions.

2.4.1 Zero correlation does not imply independence

While it is true that independent variables have zero correlation, the converse is
not true, as the following example shows.

Let X be any symmetric random variable with mean 0 and existing third moment,
and let Y = X2. We have Cov(X, Y) = E(XY) = E(X3) = 0. This is an extreme
example, where we have complete association (one variable is a function of the
other), but the correlation is still zero.
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The reason this happens is, of course, that the positive association for X ≥ 0
and the negative association for X < 0 ‘cancel each other out’. To illustrate this,
look at the correlation between W = |X| and Y = W2 = X2, where X has a
standard normal distribution. The distribution of W is called the standard folded
normal distribution.

The covariance is now Cov(W, W2) = E(W3)−E(W) E(W2). Straightforward
integration gives us the needed terms

E(W3) =
√

8
π

,

E(W) =
√

2
π

and

E(W2) = 1,

so the covariance is
√

2
π . Dividing by the standard deviations,

SD(W) =
√

1− 2
π

and

SD(Y) = 2,

gives us the correlation, ρW,Y = 1√
π−2

≈ 0.94. Similarly, the correlation between
−W and (−W)2 = W2 is − 1√

π−2
≈ −0.94.

This shows that conditional on X being non-negative, we have strong positive
correlation between X and X2, and conditional on X being negative, we have
strong negative correlation. In other words, the ‘local monotone association’ varies
over the support of X. We will in the next chapter give examples of measures of
local dependence which quantifies and formalises this notation of ‘local monotone
association’.

2.4.2 Correlation range not attainable

As previously mentioned, the correlation will always lie between −1 and 1. But
this range may not always be attainable. Before looking closer at this, though, let
us first look at a basic property of bivariate distribution functions: It is well known
that if (X, Y) has the distribution function H, then H has an upper and a lower
bound:

H−(x, y) ≤ H(x, y) ≤ H+(x, y). (2.17)
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Let F and G be the marginal distributions of X and Y. The bounds are then

H−(x, y) = max
(

F (x) + G (y)− 1, 0
)

and

H+(x, y) = min
(

F(x), G(y)
)
.

(2.18)

The proof of the right inequality in inequality 2.17 on the preceding page is almost
trivial, since P(X ≤ x, Y ≤ y) is never greater than P(X ≤ x) or P(Y ≤ y); thus, it
is never greater than the minimum of these these two marginal probabilities. The
proof of the left inequality is also simple: P(X ≤ x, Y ≤ y) = 1−P(X > x or Y >

y) ≥ 1−
(
P (X > x) + P (Y > y)

)
= F(x) + G(y)− 1. And since a probability must

always be non-negative, the result follows.
We note that the bounds H− and H+, called Fréchet bounds, are themselves

distribution functions. Let U have a uniform distribution on I. The upper bound
H+(x, y) is now the distribution function of (X, Y) =

(
F−(U), G−(U)

)
, and the

lower bound H−(x, y) is the distribution function of (X′, Y′) =
(

F−(U), G−(1−U)
)
,

where F− is the generalised inverse, F−(u) = inf {x | F(x) ≥ u} (and similar for G−).
See Joe (1997, pages 58–59) for details and proof.

We will later see extensions of these bounds to higher dimensions.
There are several (generalised) expressions for covariance listed in (Mari and

Kotz 2001, pages 151–152). One of the more useful is

Cov(X, Y) =
∫∫ (

H(x, y)− F(x)G(y)
)

dx dy. (2.19)

Using this and the formula for the correlation (equation 2.2 on page 12), we see
that two marginal distributions attain their minimum and maximum correlations
when their joint distribution is H− and H+, respectively.

Example 2.4.1

When F is the N (µX, σ2
X) distribution and G is the N (µY, σ2

Y) distribution, we
obtain the highest correlation when X = F−(U) and Y = G−(U) = G−(F(X)

)
(U being uniformly distributed on I), that is, when X has the N (µX, σ2

X) distri-
bution and Y can be written Y = µY + σY

X−µx
σX

.
Similarly, we attain the lowest correlation when X = F−(U) and Y = G−(1−

U) = G−(1− F(X)
)
, that is, when X has the N (µX, σ2

X) distribution and Y can
written Y = µY − σY

X−µx
σX

.
Obviously, the highest and lowest attainable correlations are here 1 and −1,

respectively.
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Let us now look at an example where the bounds are tighter than 1 and −1:

Example 2.4.2

If the two variables X and Y have lognormal distributions, the lower bound
is not attainable, since that would involve Y being written as Y = −aX + b for
positive a, which is not possible, since both X and Y are non-negative. But we
can also find closed-form expressions for the bounds. It can be shown (de Veaux
1976, cited in Shih and Huang 1992) that the maximum and minimum possible
correlation between two lognormal variables whose logarithms have a bivariate
normal distribution N (µX, µY, σX, σY, ρ) is

max corr(X, Y) =
eσXσY − 1√

(eσ2
X − 1)(eσ2

Y − 1)
and (2.20)

min corr(X, Y) =
e−σXσY − 1√

(eσ2
X − 1)(eσ2

Y − 1)
. (2.21)

For standard lognormal variables, these expressions reduce to give a possible
correlation range of [−1/e, 1]. Here, the upper bound corresponds to Y = X.
When we let one of σX or σY increase towards infinity (and let the other stay
constant), both the lower and the upper bound converge to zero.

Note that the above bounds are independent of ρ. And also note that the
restriction on the logarithms having a bivariate normal distribution can be
removed, as it includes the case of complete dependence, Y = s(X) (with prob-
ability 1) for some monotone function s, namely s(X) = G−(F(X)

)
(maximum)

and s(X) = G−(1− F(X)
)
, where F and G are the distribution functions of X

and Y, respectively.

Correlation estimates using equation 2.3 on page 13 are not restricted by these
bounds (consider a sample of size 2), but for large samples they will usually lie
inside the range (asymptotically almost surely).

This could in fact be used to estimate the bounds when analytical expressions
are difficult to obtain. We can use computers to quickly simulate many (perhaps
a few hundred thousand) uniform variables, insert these into the expressions for
maximum and minimum association and then estimate the resulting correlation.

When the marginal distributions are unknown, estimating the quantile functions
(the inverse of the distribution functions) and using these seem to give good results,
even for moderately many observations (how many depends on the distributions).
One variant on this method is computing the estimated correlation of the sorted
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sample (X(i), Y(i)) or (X(i), Y(n−i+1)), i = 1, . . . , n, as detailed in Shih and Huang
(1992).

Here is one example of this last method. Assume that we want to estimate
the maximum and the minimum correlation possible between a standard normal
variable and a standard lognormal variable, and, furthermore, that we are able
to simulate as many observations as we require from these distributions. We can
easily write a program to estimate the extremal correlations, based on, for example,
one hundred thousand observations (though as few as one hundred observations
usually give reasonable estimates in this case). The output has been slightly edited
for readability:

> n = 10^5 # One hundred thousand observations.
> x = rnorm(n) # From the standard normal distribution.
> y = rlnorm(n) # From the standard lognormal distribution.

> cor( sort(x), sort(y) ) # Estimated maximum correlation.
0.771875

> cor( sort(x), sort(y, decreasing=TRUE) ) # Estimated minimum correlation.
−0.7691114

It looks like the maximum and minimum correlation are approximately ±0.77. Note
that, in this simulation, the original observations were taken from independent
variables, but this method of estimating the extremal correlations will work just
as well when the variables are dependent (even highly dependent), as long as the
observation pairs are taken from a random sample.

Also observe that we can calculate the exact values fairly easy for these distribu-
tions. It is not difficult to show that we achieve the maximum correlation when X
is any standard normal distribution and Y can be written Y = eX:

Let F and G be the distribution functions of X and Y, respectively, and let U
be a variable uniformly distributed on I = [−1, 1]. X and Y can now be defined
as X = F−(U) and Y = G−(U), respectively. It follows from basic properties of
the standard lognormal distribution that Y can also be written Y = eX′

, where
X′ is a standard normal variable; in other words, X′ is a variable with the same
distribution as X, namely F. We have

G(y) = P(Y ≤ y) = P(eX′ ≤ y)

= P(X′ ≤ ln y) = F(ln y).
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Furthermore,

U = G(Y) = F(ln Y),

so

ln Y = F−(U),

and

Y = eF−(U) = eX.

We have the maximum covariance

max Cov(X, Y) = E(XeX)−E(X) E(eX) = E(XeX)− 0 ·E(ex)

= E(Xex) =
∫ ∞

−∞

1√
2π

xexe−
1
2 x2

=
∫ ∞

−∞

1√
2π

xe−
1
2 (x2−2x)

=
∫ ∞

−∞

1√
2π

xe−
1
2 (x−1)2+ 1

2

= e
1
2

∫ ∞

−∞

1√
2π

xe−
1
2 (x−1)2

= e
1
2 .

The last line follows from recognising the integral as the mean of a N (1, 1) variable.
Now, using the variances of X and eX, 1 and e2 − e, respectively1, we can calculate
the correlation:

ρX,Y =
Cov(X, Y)

SD(X) SD(Y)

=
e

1
2√

1 · (e2 − e)

=
1√

e− 1
≈ 0.763.

Similarly, the minimum correlation is − 1√
e−1

≈ −0.763, and we see that the
estimates were very close to the exact values.

1The formula for the variance of a lognormal variable can be found in Casella and Berger
2001, page 109, or in almost any basic statistics books.
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2.5 Problems with rank-based measures of association

If we measure association between variables by using rank-based measures of
association, both Spearman’s rho and Kendall’s tau have the problem that a value
of zero for the given statistic does not imply independence. All the examples
mentioned for correlation also holds for these measures.

However, the problem of reduced range for some distributions is no longer
present. Since Spearman’s rho is just ordinary correlation applied on the probability-
integral transformed variables, the bounds reduce to corr(U, 1−U) = −1 and
corr(U, U) = 1. And since Kendall’s tau is also invariant to transformations (of
the distributions, for the population measure, and of the observed values, for the
statistic), it shares the same range, [−1, 1].

2.6 Measures of concordance

We have previously looked at Spearman’s rho and Kendall’s tau – two ‘measures
of concordance’. But we have not specified any properties such a measure of
concordance should satisfy. Joe (1997, page 136) lists the following ‘desirable
properties’:

1. The measure, say k, should be defined for any pair (X, Y) of continuous
variables.

2. k(X, Y) = k(Y, X).

3. −1 ≤ k(X, Y) ≤ 1, with k(X, X) = 1 and k(X,−X) = −1.

4. k(X, Y) = 0 if X and Y are independent.

5. k(−X, Y) = k(X,−Y) = −k(X, Y).

6. For all increasing functions α and β, k
(
α(X), β(Y)

)
= k(X, Y).

We will use this as our definition of a measure of concordance (or concordance
measure). Note that Joe (1997, page 136) presented these properties in a different
notation, based on the concept of copulas. A copula is, basically, a function that
completely characterises the dependence between variables while being invariant
to strictly increasing transformations of the marginals; but we will leave the details
and definitions to chapter 4 on page 69.

27



Joe also added two other copula-based properties to the above list. These two
properties relate the concept of concordance and the concept of a copula, and
are not of much interest without having a fully developed theory of copulas.
Consequently, we omit the properties from our definition. The reader may consult
the work cited above for more information.

It should be clear from the definition that both Spearman’s rho and Kendall’s
tau are measures of concordance, while correlation is not. And if we were to
strengthen property 4 on the previous page to require equivalence between in-
dependence and zero concordance, none of the measures would satisfy all the
properties.

2.7 Other measures of dependence

We have so far only lightly touched on the subject of dependence measures; there
exists many other measures, some of them frequently used, that we have not looked
at. Surveys of these can be found in books such as Mari and Kotz (2001), Nelsen
(1999) and Joe (1997). See also the article Lehmann (1966).

2.8 Summary and conclusions

We have in this chapter looked at common measures of global dependence, and have
defined some desirable properties such measures should have. We have examined
three measures that are frequently used, and frequently used as ‘measures of
dependence’. We have looked at how these can, and can not, be estimated, and
we have explored some interpretations of these measures, and of their sample
counterparts.

The measure of dependence in mixtures of distributions, and in the relationship
between the dependence in the mixture and in each subpopulation, is of special
interest. We have therefore calculated an equation showing how the correlation in
a mixture can be expressed as a function of the correlation in two subdistributions.
This result will of course also hold analogously for Spearman’s rho, which is related
to ordinary correlation.

The relationship between the dependence in a mixture and the dependence
in its constituents is just one of several examples we have discussed that shows
how a single ‘global measure of dependence’ has serious problems capturing the
dependence between (two) variables. What we may need is a ‘measure of local
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dependence’, which can be allowed to vary over the range of values the variables
take. We will now, in the subsequent chapters, look at how such a measure can
reasonably be defined, what properties it should possess and a few examples of
such measures.
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3
Measures of local dependence

3.1 Introduction

As we have already seen, sometimes global measures of dependence do not contain
enough information on the nature of association. Here is one additional example:

We clearly have a positive association between the age and the height of human
beings: Older people – adults – are generally higher (on average) than younger
people – babies. Of course, we do not have complete association, since people of a
certain age vary much in height, and vice versa; but we expect the strength of asso-
ciation (based on a suitable global measure of dependence) to be somewhat high.

However, the strength of association is not constant: For humans aged 0–10, the
level of association will be high1, but for humans aged 40–50 (the same number of
years), it will be low, or even nil.

In the previous chapter, we looked at an example (section 2.4.1 on page 21),
Y = X2, where we had high positive correlation in one area (positive X), high

1The exact value, and what we consider a ‘high’ level of association, is of course a function of
the measure of dependence we use. We should choose a suitable measure based on the natural
properties of what we are measuring (for example, not use a measure based on a linear model of
association if we do not have good reason to believe the association to be linear) and the sampling
methodology used. The definition of ‘high’ and ‘low’ levels of association may also depend on
the context.
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negative correlation in a different area (negative X), but an overall correlation
of zero. Of course, in this case, we had Y being completely dependent on X, so
any reasonable measure of local dependence should show complete dependence.
But we may easily extend this example to one where we do not have complete
dependence, for example Y = X2 + ε where ε is ‘noise’ – perhaps a standard
normally distributed variable.

We clearly need a ‘local’ measure of association, or, in other words, a measure of
local dependence.

3.2 Properties of measures of local dependence

A ‘good’ local measure of association should preferably possess the same properties
as defined in section 2.1 on page 9 for global measures of association, with the
exception that property 4 is changed to only require independence to imply zero
local dependence, and not necessarily be implied by it. But, in addition, the measure
must be allowed to vary inside the support of the variables. In other words, the
measure should be a function of both the random variables and of mathematical
variables (real numbers). We may write this as h = hXY(x, y), where h is the measure
of local dependence, but we will usually leave the dependence on the random
variables implicit, and omit the subscript. We also note that any global measure of
dependence will, of course, also be a (constant) local measure of dependence.

Measures of local dependence may also be measures of ‘local concordance’; that
is, they may possess the properties of section 2.6 on page 27. And, in fact, the two
measures we will examine in this chapter are both ‘measures of local concordance’ –
in the sense that they include information on the sign of the dependence (loosely:
is Y locally an increasing or a decreasing function of X?). But they do not have all
the properties a real measure of concordance should have: One of the measures is
not symmetrical, and none of them are scale-invariant.

3.3 Correlation curves

Let us again look at the usual correlation in the linear case from section 2.2.1 on
page 13, which, as shown in equation 2.4 on page 13, can be written

ρ = β
σX

σY
=

βσX√
(βσX)2 + σ2

ε

. (3.1)

31



Bjerve and Doksum (1993) suggested a general local measure of association, the
correlation curve, based on localising ρ by conditioning on X:

ρ(x) =
β(x)σX√(

β(x)σX
)2 + σ2

ε (x)
(3.2)

where

µ(x) = E (Y | X = x)

β(x) = µ′(x)

σ2
ε (x) = Var(Y | X = x)

Whilst equation 3.1 on the previous page is based on the linear case, we here only
require that X is a continuous random variable, µ(x) is continuously differentiable
and all variances are finite. Y can be either discrete or continuous, or a mixture.

Note that the correlation curve does not require linear association or homosce-
dasticity (that Var(Y | X = x) is constant for all x). And in the linear, homoscedastic
case (see section 2.2.1 on page 13), β(x) = β (constant slope) and σ2

ε (x) = σ2
ε (con-

stant residual variance), so ρ(x) = ρ for all x. In other words, we have constant
local correlation.

3.3.1 A simple generalisation

Of course, any measure of location and scale can be used in defining a correlation
curve. Following Bjerve and Doksum (1993), let m(x) and τ(x) be measures of
location and scale of Y | X = x, and let τX be a measure of scale of X. We assume,
among other things, that the two measures of scale are of the same type (see the
cited article for further details). Now define the generalised correlation curve by

ρ(x) = ρX,Y(x) =
m′(x)τX√(

m′(x)τX
)2 + τ2(x)

. (3.3)

3.3.2 The multiple correlation curve

Blyth (1994) tried to generalise the correlation curve to the case of multiple covari-
ates by localising the multiple correlation coefficient from the linear homoscedastic
model,

Y = α + βTX + ε,
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where Var(X) = Σ, E(ε) = 0, Var(ε) = σ2
ε , and X and ε are independent. The

multiple correlation coefficient is here defined to be

ρ2 =
Var
(
E (Y | X)

)
Var(Y)

=
Var(α + βXT)

Var(α + βXT + ε)
=

βΣβT

βΣβT + σ2
ε

. (3.4)

Replacing the regression coefficients and residual variance with their conditional
analogues,

σ2
ε (x) = Var(Y | X = x) and

βi(x) =
∂

∂xi
E(Y | X = x),

we get the multiple correlation curve

ρ2(x) =
β(x)ΣβT(x)

β(x)ΣβT(x) + σ2
ε (x)

. (3.5)

It is not clear if this is a good measure of local association, and I see no convincing
arguments why it should be.

3.3.3 Basic properties of the correlation curve

Here are some basic properties of the correlation curve, taken from Bjerve and
Doksum (1993) and Doksum et al. (1994).

A well-defined range We easily see from the formula for the general correlation
curve, equation 3.3 on the preceding page, that −1 ≤ ρ(x) ≤ 1, with equality
holding if and only if σ2

ε (x) = Var(Y | X = x) = 0, the case where X
completely determines or ‘explains’ Y locally.

Independent variables and zero correlation When X and Y are independent, m(x)
is constant, so m′(x) = 0, and ρ(x) = 0 for all x (assuming that τ(x) 6= 0).

Function of standardised slope It is easy to see that ρ2(x) is an increasing function
of the standardised regression slope σxβ(x)/σ(x).

Invariance and equivariance Let X∗ and Y∗ be linear transformations of X and Y,
respectively. We have ρX∗,Y∗(x∗) = ±ρX,Y(x). See Bjerve and Doksum (1993)
for proof and further details.
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Y as a function of X Y = g(X) implies that the scale measure τ(x) is zero for all
x, and we easily see from equation 3.3 on page 32 that ρ(x) = ±1 (where we
define 0/0 = 1).

The converse, that ρ(x) = ±1 for all x implies that Y is almost surely a
function of X, is also true if τ(x) = 0 implies that Y = g(x) for some g. (This
property does hold for τ(x) = Var(Y | X = x).)

Regression dependence If P(Y ≤ y | X = x) is nonincreasing in x, we say that
Y is positively regression dependent on X, and this implies that ρ(x) ≥ 0. See
Lehmann (1966) for more information on regression dependence.

Symmetry and nonsymmetry The correlation curve is usually not symmetric; that
is, y = ρX,Y(x) and x = ρY,X(y) do not describe the same curve. Bjerve and
Doksum (1993) suggested a simple ad hoc extension:

ρ∗(x, y) =

sign
(
ρX,Y(x)

)√
ρX,Y(x)ρY,X(y) sign

(
ρX,Y(x)

)
= sign

(
ρY,X(y)

)
,

0 otherwise.

(3.6)

They offered no arguments why this last, symmertical measure should be a reason-
able measure, and I can find no arguments either. We will therefore dismiss it from
our consideration of possible measures of local dependence.

3.3.4 Estimating the correlation curve

There are several methods we can use to estimate the correlation curve, and the
best method depends on the data set studied. We will here take a brief look at two
estimation methods presented in Doksum et al. (1994), and which seem to work
well for a wide range of possible distributions. A more detailed description of these,
and references to theoretic studies of their properties, can be found in the cited
article. See also Blyth (1994) for a possible estimation method for grouped data.

3.3.4.1 Neighbourhood estimates

Neighbourhood estimates are natural estimates of mean, µ(x), scale, σε(x) and the
derivative of the mean, β(x), based on subsets of data pairs near x. Let k and x be
fixed numbers, and let Ik(x) be the set of indices of the xi’s closest to x, but with
an equal number, k/2, of xi’s on either side. If x = xi for some i’s, replace k by k
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minus the number of such xi’s. For k odd, replace k by k− 1. Now we can estimate
µp(x) = E(Yp | X = x) by the average of all yp

i , i ∈ Ik(x), and β(x) by

β̂(x) =
y+(x)− y−(x)
x+(x)− x−(x)

, (3.7)

where y+(x) is the average of all the yi with indices in Ik(x) and lying strictly to
the right of x (and similar for the other values).

The correlation curve can now be estimated by replacing each function in equa-
tion 3.2 on page 32 by its neighbourhood estimate. For estimating σX, we can
use any reasonable estimate (for example the sample standard deviation used
in equation 2.7 on page 14).

For details on conditions of consistency, on asymptotic confidence intervals and
on choice of k, consult Doksum et al. (1994).

Here is my implementation of neighbourhood estimates:

# x = x vector. Must be sorted in increasing order.
# y = y vector.
# x0 = the point the estimates should be evaluated at.
# k = smoothing parameter. Use (approximately) this many points to to calculate each estimate.
estimate.neigh = function( x, y, x0 = mean(x), k = .3∗length(x)^(6/7) )
{

n = length(x)
k = k − sum(x==x0) # Reduce k by 1 for each value of x equal to x0.
r = floor(k/2) # Use approx. kn/2 values to the left (and right) of x0.
mid.min = which.min( x < x0 ) # Index of first x equal to or greater than x0.
mid.max = which.max( x > x0 ) − 1 # Index of last x equal to x0 ...
if( all( x != x0 ) ) mid.max = mid.min # ... or of first x greater than x0 if none are equal.
if ( r > (mid.min−1) ) r = mid.min − 1 # Decrease value of r at boundaries, if necessary.
if ( r > n − mid.max ) r = n − mid.max
ys = y[ (mid.min − r):(mid.max + r) ] # The y values used.
n = length(ys) # Now calculate and return estimates of mu(x),

# sigma^2(x) and beta(x):
mu = sum( ys ) / k
mu2 = sum( ys^2 ) / k
sig2 = max( mu2 − mu^2, 0 )
xx = sum( x[ (mid.max+1):(mid.max+r) ] ) − sum( x[ (mid.min−r):(mid.min−1) ] )
beta = ( sum( y[ (mid.max+1):(mid.max+r) ] ) − sum( y[ (mid.min−r):(mid.min−1) ] ) ) / xx
rho = sd(x) ∗ beta / sqrt( sd(x)^2 ∗ beta^2 + sig2 )

list( "mu" = mu, "sig2" = sig2, "beta" = beta, "rho" = rho )
}

35



3.3.4.2 Kernel estimates

Kernel estimates are based on a similar idea to neighbourhood estimates, but
instead of using a fixed number of points on each side of x, we use a fixed window
with varying number of points, and weigh the points used according to their
distance to x.

Specifically, assume the xi’s are sorted, so x1 ≤ · · · ≤ xn. We define the function
µ̂p,k(x) as an estimate of µp,k(x) = ∂

∂xk−1 E(Yp | X = x):

µ̂p,k(x) =
n

∑
i=1

[
1

bk
p,k

∫ si

si−1

wp,k

(
x− u
bp,k

)
du Yp

i

]
, (3.8)

where wp,k are bounded, two times differentiable functions (kernels) with finite
support, si = (xi + xi+1)/2, i = 1, . . . , n− 1, s0 = x1, sn = xn and (p, k) is equal to
(1, 1), (2, 1) or (1, 2). We call bp,k = b(n)

p,k the bandwidths, and, for ease of notation, we
leave their dependence on n implicit. Basically, these determine how smooth our
estimated function will be. Higher values make the estimate smoother (decreases
the variance), but also increases the bias.

If we now let Wp,k(u) be the integral of wp,k(t) from −∞ to u, µ̂p,k(x) is easily
seen to be equal to

µ̂p,k(x) = −
n

∑
i=1

[
1

bk−1
p,k

(
Wp,k

(
x− xi

bp,k

)
−Wp,k

(
x− xi−1

bp,k

))
Yp

i

]
. (3.9)

When we can evaluate the integrals analytically, this latter formula is easy and
fast to use in computer implementations. And, as before, we estimate the correl-
ation curve by replacing each function in equation 3.2 on page 32 by its estimate
from equation 3.9.

The estimates used are the Gasser-Müller estimates introduced in Gasser and
Müller (1979) and further studied in Gasser and Müller (1984), and were based on
the assumption of constant conditional variance. In these two articles consistency
and asymptotic properties of the estimates are shown. These results were later
proved to hold (with slightly stricter assumptions) for the hetereoscedastic model
in Doksum et al. (1994). The details can be found in the article, but we note one
sufficient statement for (pointwise) weak consistency:

max
1≤i≤n

E(Y4 | X = xi) ≤ B < ∞, (3.10)
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as n → ∞, where B does not depend on the sample size, and

b(n) → 0 and

n(b(n))3 → ∞
(3.11)

(where b(n) are the three bandwidths, b(n)
1,1 , b(n)

1,2 and b(n)
2,1 .

Here is my implementation of these kernel estimates:

# x = x vector. Must be sorted in increasing order.
# y = y vector.
# x0 = the point the estimates should be evaluated at.
# b = smoothing parameter (bandwidth).
estimate.gasser = function( x, y, x0 = mean(x), b )
{

n = length(x)
Wp = function( u ) # The integral of w_p1(t) from −1 to u, p = 1, ..., 2.

{
(−u^3/4 + 3∗u/4 + 1/2)∗(abs(u) <1) + (u > 1)

}
W12 = function( u ) # The integral of w_12(t) from −1 to u.

{
(15∗u^4/16 + 15/16 − 15∗u^2/8)∗(abs(u) <1)

}
s = numeric(n+1) # Note: Vectors in R start at index 1, not 0.
s[1] = x[1] # s_0
s[n+1] = x[n] # s_n
s[2:n] = ( x[1:(n−1)] + x[2:n] ) / 2 # s_1, ... s_{n−1} = ...

sup = Wp( (x0 − s[2:(n+1)]) / b ) − Wp( (x0 − s[1:n]) / b ) # Now calculate and return estimates:

mu = − sum( sup ∗ y )
mu2 = − sum( sup ∗ y^2 )
sig2 = max( mu2 − mu^2, 0 )
beta = − sum( (W12( (x0 − s[2:(n+1)]) / b ) − W12( (x0 − s[1:n]) / b )) ∗ y ) / b
rho = sd(x) ∗ beta / sqrt( sd(x)^2 ∗ beta^2 + sig2 )
list( "mu" = mu, "sig2" = sig2, "beta" = beta, "rho"= rho )

}

This implementation is just meant as an illustration of the algorithm, and is not
optimised in any way. It uses the same bandwidths for the three estimates, but a
better approach is having different bandwidths and bandwidths that varies with x.
See Doksum et al. (1994) for a possible choice of better-performing bandwidths.
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However, the kernels used in the implementation are the optimal kernels –
the kernels which minimise the asymptotic mean square error. These can be
shown (Gasser et al. 1985) to be equal to

wk,1 =
3
4
(1− t2), |t| ≤ 1, k = 1, 2, and

w1,2 =
15
4

(t3 − t), |t| ≤ 1.

Figure 3.1 on the next page shows Gasser-Müller estimates for the four different
quantities, based on 150 observations from the model Y = X3 − X2 − 25X + ε(X),
where ε ∼ N (µ = 0, σ2 = X4) and X has a uniform distribution on [−6, 6].

It is easy to show that the correlation curve here converge to
√

108
109 ≈ 0, 995 as

|x| tends to infinity, and that it is equal to −1 when x is 0 (because the conditional
variance σε(x) is then 0).

Simple limit calculations show that if the ratio of the conditional mean and the
conditional variance converges to plus or minus infinity, that is, lim|x|→∞

β(x)
σ2

ε (x) =
±∞, the correlation curve will always converge to ±1. And if it converges to zero,
the correlation curve will also converge to 0. Finally, if it converges to a non-zero,
finite constant, the correlation curve will also converge to a (different) constant.

Increasing the bandwidths makes the estimated functions smoother, but, at the
same time, it increases the bias. The figure suggests that the estimators perform less
well at the boundaries, and this impression is confirmed by performing estimates
on other distributions. The problem was noted in the original articles (Gasser
and Müller 1979, 1984; Gasser et al. 1985), where the authors proposed using
special boundary kernels at the boundaries, and investigated their properties.
Using boundary kernels can improve the estimates greatly, but we will not look at
them in this thesis.

Note that there also exist other good estimators of the functions we are inter-
ested in, such as local polynomial kernel estimators. Any standard text on kernel
smoothing or local regression, such as Wand and Jones (1995), has more informa-
tion on this. And see Wilcox (2005) for a comparison of various estimators of the
conditional variance.

3.3.5 Correlation curves and transformations

While the correlation curve is invariant under linear transformations (except that the
sign may change), it is not invariant under other monotone transformations. Here
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Figure 3.1: Neighbourhood (left) and Gasser-Müller (right) estimates of the condi-
tional mean, the conditional variance, the derivative of the conditional
mean, and the correlation curve. The grey lines show the real values of
the various functions. The estimates are based on 150 observations from
the model Y = X3 − X2 − 25X + ε(X), where ε ∼ N (µ = 0, σ2 = X4)
and X has a uniform distribution on [−6, 6].
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is one example: Let Z ∼ N (µZ, σ2
Z) and let W = a + bZ + ε, where ε ∼ N (0, σ2

ε ).
Then the correlation (curve) is

ρZ,W(z) = ρZ,W =
βσZ√

(βσZ)2 + σ2
ε

, (3.12)

that is, constant. Let us now look at X = eZ and Y = eW . Conditional on X, Y has a
lognormal distribution, with mean

µ(x) = E(Y | X = x) = ea+b ln x+ 1
2 σ2

ε

= xbea+ 1
2 σ2

ε .

The slope is
β(x) = µ′(x) = bxb−1ea+ 1

2 σ2
ε ,

and the conditional variance is

Var(Y | X = x) = e2(a+b ln x+ 1
2 σ2

ε )(eσ2
ε − 1).

The variable X also has a lognormal distribution, with variance

Var(X) = Var(eZ) = eµx+ 1
2 σ2

X .

These equations follow from basic properties of the lognormal distribution (see,
for instance, Casella and Berger 2001, page 109). Inserting all of them into equa-
tion 3.2 on page 32 and doing some straightforward algebra, we get the correlation
curve

ρX,Y(x) = sign(b)

√√√√ b2x2(b−1)e2a+µx+σ2
ε + 1

2 σ2
x

x2(b−1)e2a+σ2
ε

(
b2eµx+ 1

2 σ2
x + x2(eσ2

ε − 1)
)

= sign(b)

√√√√ b2eµx+ 1
2 σ2

x

b2eµx+ 1
2 σ2

x + x2(eσ2
ε − 1)

(3.13)

We see that, although the correlation curve between Z and W is constant, the cor-
relation curve between X = eZ and Y = eW varies strongly with x. It may therefore
be difficult to look at the square of correlation curves as a general measures of the
‘proportion of local variability explained’ by the regression on x, which was the
interpretation suggested by Doksum et al. (1994).
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This interpretation is still reasonable, though, with some restrictions. In order for
the correlation curve to have a simple interpretation, we need to postulate that Y is
related to X in the following manner:

Y = m(X) + τ(X)ε. (3.14)

Here, m and τ are two general continuous functions (m being continously differen-
tiable) and ε is the ‘noise variable’ – a random variable independent of X and with
zero mean. We see that in the previous example Y and X were not related in this
manner (the ‘noise’ was in fact a multiplicative factor, not an additive term).

Under this additive model, what we now mean when we say that the correlation
curve is ρ(x0) at X = x0 is that if we extended the relationship between Y and X at
X = x0 to hold (linearly) for other values of X,

Y = m′(x0)X + τ(x0)ε, (3.15)

ρ2(x0) can be interpreted in the same way as R2
X,Y in section 2.2.1.1 on page 14 is.

But do note that ρ2(x), unlike R2
X,Y, is not a symmetrical measure.

In some cases, we can transform the two variables to achieve an additive (nonlin-
ear) regression model, but this is in general not possible. And if we do not know
what the (functional) relationship between the variables is, but still want to estimate
a correlation curve based on data alone, transforming the variables might not be
feasible, even if it is possible in theory.

3.4 The local dependence function

Holland and Wang (1987a) suggested a completely different measure of local
dependence. But before introducing it, let us briefly look at the concept of cross-
product ratios.

3.4.1 Cross-product ratios

A two-dimensional contingency table [Pij] describes a joint probability function for
two discrete random variables, say X and Y. All association between X and Y is
contained in the local cross-product ratios

αi,j =
Pi,j Pi+1,j+1

Pi,j+1 Pi+1,j
, (3.16)
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for all i and j where the probabilities exist. Together with the marginal distributions,
P(X = x) and P(Y = y), these uniquely determine the contingency table – the joint
distribution. See, for instance, Goodman (1969) and references therein for further
details.

The cross-product ratios, often called odds ratios (see Nelsen 1999, page 79, for an
explanation why), are much used as measures of dependence for discrete variables.
Consider a simple crosstabulation of ‘high’ and ‘low’ values of two variables:

low high

high c d
low a b

The numbers a, b, c and d are either the number of observations in each category or
the frequency (the number divided by the sum n = a + b + c + d). The cross-product
ratio is α = ad/bc. Under independence, we would expect the joint frequencies to
be approximately equal to the product of the corresponding marginal frequencies,
or, equivalently, the number of observations to be approximately equal to n times
this product.

When α = 1, we have ad = bc, and the ‘expected’ number of observations under
independence is equal to the observed frequencies. For example, for a:

â = n
a + b

n
a + c

n

=
(a + b)(a + c)

n

=
a2 + ab + ac + bc

a + b + c + d

=
a2 + ab + ac + ad

a + b + c + d

=
a(a + b + c + d)

a + b + c + d
= a.

And when ‘high’ observations of one variable occur together with ‘high’ observa-
tions of the other and, at the same time, ‘low’ observations occur together with ‘low’
observations, that is, we have relatively many observations in the ‘high, high’ and
‘low, low’ cells, α will be greater than 1, and we say that we have positive dependence.
When the observations are mostly placed in the ‘high, low’ and ‘low, high’ cells,
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α will be between 0 and 1, and we have negative dependence. We may also look
at the log odds function, θ = ln α, which, of course, will be negative for negative
dependence, positive for positive dependence and zero for independence. Note
that we can replace the relative frequencies with probabilities to get a population
measure of dependence for contingency tables (the ‘approximate’ statements above
will then hold exactly).

Finally, note that the (logarithm of the) cross product ratios in a contingency
table will remain unchanged when we multiply any row or column with a constant.
We say that the ratios are invariant to marginal replacements, or that the log odds is a
margin-free property of a distribution.

Holland and Wang (1987a) introduced a continuous analogue of this measure of
dependence, which they called the local dependence function:

3.4.2 Defining the local dependence function

Consider (X, Y) with the joint density f (x, y) defined on a (possible infinite)
cartesian product set, K. Partition K into a fine rectangular grid, and let Rx,y

denote the rectangle containing the point (x, y) and having sides of length ∆x and
∆y. We have

Px,y = P
(
(X, Y) ∈ Rx,y

)
≈ f (x, y) ∆x∆y, (3.17)

where f is the joint density function of (X, Y).
For each rectangle in the grid, pick one pair (x, y) contained in that rectangle.

Based on all these pairs, construct a contingency table with the elements Px,y. Now
consider the four cells (i, k), (i, l), (j, k) and (j, l) in K, with i < j and k < l:

(j, k) (j, l)
(i, k) (i, l)

The cross-product ratio is

α
(
(i, k), (j, l)

)
=

Pi,kPj,l

Pi,l Pj,k

≈ f (i, k)∆i∆k · f (j, l)∆j∆l
f (i, l)∆i∆l · f (j, k)∆j∆k

=
f (i, k) f (j, l)
f (i, l) f (j, k)

.
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Let θ
(
(i, k), (j, l)

)
= ln α

(
(i, k), (j, l)

)
. Now let us look at θ near the point (x, y):

1
∆x∆y

θ
(
(x, y), (x + ∆x, y + ∆y)

)
(3.18)

Letting ∆x and ∆y go towards zero and taking limits, we obtain

γ(x, y) = lim
∆x→0
∆y→0

θ
(
(x, y), (x + ∆x, y + ∆y)

)
∆x∆y

= lim
∆x→0
∆y→0

[
ln f (x, y) + ln f (x + ∆x, y + ∆y)

∆x∆y

− ln f (x, y + ∆y) + ln f (x + ∆x, y)
∆x∆y

]
= lim

∆x→0

1
∆x

[
lim

∆y→0

1
∆y
(
ln f (x + ∆x, y + ∆y)− ln f (x + ∆x, y)

)]
− lim

∆x→0

1
∆x

[
lim

∆y→0

1
∆y
(
ln f (x, y + ∆y)− ln f (x, y)

)]
= lim

∆x→0

1
∆x

[
∂

∂y
ln f (x + ∆x, y)− ∂

∂y
ln f (x, y)

]
=

∂2

∂x ∂y
ln f (x, y), (3.19)

which we will call the local dependence function. We assume both partial derivatives
are continuous (which implies that they are equal).

Example 3.4.1: Bivariate normal distribution

Let us look at the nondegenerate bivariate normal distribution (X, Y) ∼
N (µX, µY, σ2

X, σ2
Y, ρ). It has the following density and local dependence function:

f (x, y) =
1

2πσXσY
√

1− ρ2
exp

[
− 1

2 (1− ρ2)

((
x− µX

σX

)2

− 2ρ

(
x− µX

σX

)(
y− µY

σY

)
+
(

y− µY

σY

)2
]

.

∂

∂y
ln f (x, y) = − 1

2 (1− ρ2)

[
−2ρ

(
x− µX

σXσY

)
+ 2

(
y− µY

σY

)]

γ(x, y) =
∂2

∂x ∂y
ln f (x, y) =

ρ

1− ρ2
1

σXσY
. (3.20)

In other words, the (nondegenerate) bivariate normal distribution has constant
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local dependence (compare with section 3.3 on page 31, where we showed that it
has a constant local correlation curve). We can now easily invert equation (3.20)
to express the global correlation ρ as a function of the local correlation:

ρ(γ) =
−1±

√
1 + 4 (γσXσY)2

2γσXσY
(3.21)

We will in section 3.4.5 on page 49 see a complete characterisation of all bivariate
distributions with constant local dependence.

Let us now look at an example where we do not have constant local dependence,
but where the dependence is a function of only one of the variables:

Example 3.4.2: Not constant dependence

Let X ∼ N (0, σ2
X), and let Y = X2 + ε, where ε ∼ N (0, σ2

ε ). This is similar to
the example in section 2.4.1 on page 21, but we have added some noise so that
the (bivariate) distribution has a density and an associated local dependence
function.

A measure of local dependence should intuitively be negative for negative
values of x and positive for positive values of x, be increasing in |x| and be
decreasing in σε. And a quick calculation shows that this is true for the local
dependence function:

First, note that Y | X = x ∼ N (x2, σ2
ε ). We have:

γ(x, y) =
∂2

∂x ∂y
ln fX,Y(x, y)

=
∂2

∂x ∂y
ln
[

fX(x) fY|X(y | x)
]

=
∂2

∂x ∂y
ln fY|X(y | x)

=
∂2

∂x ∂y
ln

1√
2π σε

exp
[
− 1

2σ2
ε

(y− x2)2
]

=
∂2

∂x ∂y
−1
2σ2

ε

(y− x2)2 =
∂

∂x
−2
2σ2

ε

(y− x2)

=
2x
σ2

ε

. (3.22)

Note that we have not used that X is normal in the derivation; the expression
will be valid regardless of the distribution of X (but its domain will vary, and
will always be equal to the support of X).

45



As the calculations in the previous example showed, the local dependence function
only depends on the conditional distribution of Y given X or of X given Y. In other
words, it is invariant to marginal replacements, just like its discrete analogue.

3.4.2.1 Another way of deriving the local dependence function

Jones (1996) suggested a completely different way of deriving the local dependence
function, based on localising the correlation coefficient. Define the convenience
function

Mx0,y0(A, B) = E
(
wx0,y0(X, Y)AB)

)
−

E
(
wx0,y0(X, Y)A

)
E
(
wx0,y0(X, Y)B

)
E
(
wx0,y0(X, Y)

) , (3.23)

where A and B are two random variables. One ‘natural’ way of localising the
correlation is

ψ(x0, y0) =
Mx0,y0(X, Y)√

Mx0,y0(X, X)Mx0,y0(Y, Y)
. (3.24)

When wx0,y0(x, y) = 1 for all (x, y), we get the usual correlation coefficient ρX,Y.
A different wx0, y0, which localises the correlation around (x0, y0), is a bivariate
density:

wx0,y0(x, y) =
1

h1h2
K∗
(

x0 − x
h1

,
y0 − y

h2

)
. (3.25)

We see that the function K∗ is also a density, or kernel, and we will call h1 and
h2 the bandwidths. Jones suggested using a product density of identical sym-
metrical marginal distributions. We will now follow Jones’s derivation of the
local dependence function, but with some added details to make the exposition
clearer.

Let f = f (x, y) be the density of (X, Y). We are now interested in finding a
measure of local dependence based on equation 3.24, and we first define

gij(x0, y0) =
∫∫

uivjK(u)K(v) f (x0 − h1u, y0 − h2v) du dv. (3.26)

Using standard Taylor approximation, we have

f (x0 − h1u, y0 − h2v) = f (x0, y0)− uh1 f x(x0, y0)− vh2 f y(x0, y0)

+ 1
2 u2h2

1 f xx(x0, y0) + 1
2 v2h2

1 f yy(x0, y0) + uvh1h2 f xy(x0, y0) + o(h2
1 + h2

2),
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where f xy = ∂2 f
∂x∂y , and similar for the other functions. When h1, h2 → 0, equa-

tion 3.26 on the facing page becomes

g00 ∼ f , g10 ∼ −h1s2 f x,

g01 ∼ −h2s2 f y, g11 ∼ h1h2s2
2 f xy,

g20 ∼ s2 f , g02 ∼ h2s2 f ,

where s2 =
∫

u2K(u) du (and we leave the dependence of (x0, y0) implicit). The
first term of equation 3.23 on the preceding page contains

E
(
wx0,y0(X, Y)XY

)
=
∫∫

xy
1

h1h2
K
(

x0 − x
h1

)
K
(

y0 − y
h1

)
dx dy

=
∫∫

(x0 − h1u)(y0 − h2v)
1

h1h2
K(u)K(v) du dv,

which, using the gij notation, can be written

x0y0g00 − h1y0g10 − h2x0g01 + h1h2g11.

Similarly, we can write

E
[
wx0,y0(X, Y)X

]
E
[
wx0,y0(X, Y)Y

]
E
[
wx0,y0(X, Y)

]
as (

x0g00 − h1g10
)(

y0g00 − h2g01
)

g00
,

so the numerator of equation 3.24 on the facing page is

h1h2
(

g11 −
g01g10

g00

)
∼ h1h2

(
h1h2s2

2 f xy − 1
f

h1h2s2
2 f x f y

)
= h2

1h2
2s2

2

(
f xy − f x f y

f

)
,

and the denominator is the square root of the product of

x2
0g00 − 2h1x0g10 − h2

1g20 −
(x0g00 − h1g10)2

g00
= h2

1

(
g20 −

g2
10

g00

)
∼ h2

1s2 f

and h2
2s2 f . This gives us

h1h2s2
1
f

(
f xy − f x f y

f

)
,
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where all the functions are evaluated at (x0, y0). Renormalising, by dividing by the
constant h1h2s2, gives us

1
f

(
f xy − f x f y

f

)∣∣∣∣∣
(x0,y0)

=
∂2

∂x ∂y
ln f (x, y)

∣∣∣∣∣
(x,y)=(x0,y0)

= γ(x0, y0). (3.27)

3.4.3 Properties of the local dependence function

Here are some properties of the local dependence function, noted (and proved)
by Holland and Wang (1987a):

Independence and zero local dependence From equation 3.19 on page 44, we im-
mediately see that γ(x, y) = 0 for all (x, y) if and only if X and Y are
independent.

A margin-free measure The local dependence is a function only of the conditional
distribution of X given Y, or of Y given X. We say that γ is a margin-free
measure of dependence. The proof is obvious.

Unique joint distribution For any integrable function γ(x, y) defined over K =
(a, b) × (c, d), and for any continuous densities f (x) and g(y) defined on
(a, b) and (c, d), respectively, there is a unique joint density f (x, y) on K with
local dependence γ(x, y) and marginal distributions f (x) and g(y).

Sankaran and Gupta (2004) also showed that the local dependence function along
with the conditional means, E(Y | X = x) and E(X | Y = y), characterised at
least certain bivariate distributions, but did not supply a proof of the general
case.

3.4.4 Ordering of dependence

The local dependence function can sometimes also be used to compare the overall
dependence between different distributions. Holland and Wang (1987a) suggested
the following dependence ordering:

Definition 3.4.3: Positive dependence

Let f and g be two bivariate densities on the same support K, and with the
same marginal distributions. We say that g is more positively dependent than f
if and only if

γ f (x, y) ≤ γg(x, y) for all (x, y) ∈ K.
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We will denote this by f � g. We will also write (X, Y) � (W, Z) if and only
if f � g, where f and g are the joint density functions of (X, Y) and (W, Z),
respectively.

If the inequality is strict for at least one (x, y), we say that g is strictly more
positively dependent. And if the two densities have different marginals, we can
transform them in order to compare their dependence.

Theorem 3.4.4: The ordering � is a partial ordering

The ordering � is a partial ordering, that is

1. f � f (reflectivity),

2. f � g and g � h implies f � h (transitivity) and

3. f � g and g � f implies f = g (antisymmetry).

See the cited article for further details.

3.4.5 Constant local dependence

Recall that in example 3.4.1 on page 44, we showed that the bivariate normal dis-
tribution has constant local dependence. Jones (1998) found that the distributions
having constant local dependence θ are precisely the distributions that have the
joint density

f (x, y) = a(x; θ) b(y; θ) eθxy, (3.28)

where a(x; θ) and b(y; θ) are arbitrary functions (only restricted so that f (x, y) is
a real density). We now easily see that the conditional density of Y given X = x
is proportional to

b(y; θ) eθxy.

More details and one additional example of a distribution with constant local
dependence can be found in Jones (1998). With the exception of this example
(and the bivariate normal distribution), Jones did not find any other distributions
with the property of constant local dependence in the literature; and while it is
possible to create new distributions based on equation 3.28, ‘it is unclear why
such distributions might be useful apart from having constant dependence’ (Jones
1998).
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3.4.6 Dependence maps

The local dependence function is a function of both x and of y, and it is difficult
to graph and to interpret. Its values have no natural units, and are affected by
scaling. One example is equation 3.20 on page 44, where we showed that the local
dependence function is a decreasing function of the standard deviations of X and
Y in the bivariate case.

Jones and Koch (2003) suggested plotting a contour plot of (an estimate of) σXσYγ

instead of a contour plot of γ. They also noted that other (robust) measures of
scales could be used. But the main part of their paper was devoted to a type of plot
they named dependence maps.

A dependence map is a graphical display of an estimate of the local dependence
function on a two-dimensional grid over the values of X and Y we are interested in.
At each grid point, a colour representation of the value of the local dependence
function is shown. The colours are chosen so that it is easy to see if the local
dependence is positive or negative, and to compare the strength of the dependence
in various areas. Values where f̂ is near zero are not shown, for two reasons:
The local dependence is of little interest at these points, and its estimate is very
unreliable here.

One alternative, which Jones and Koch (2003) argued for, is to only use three
colours, to indicate values that are statistically significantly positive, statistically
significantly negative or not statically significantly different from 0 (for a user-
chosen significance level). Jones and Koch used a permutation test to calculate
values were statistically significant, and the reader is referred to their article for
details.

In contrast to Jones and Koch (2003), we will not use any significance tests
in our dependence maps; instead, we will use a (small) palette of colours to
indicate varying levels of local dependence. The colours used are based on the
recommendations of (Cleveland 1994, pages 230-233). But we note that a similar
approach could be used for the significance-based procedure: We could use different
colours for values that are significant at various levels (for example, at the 0.01,
0.05, 0.10, 0.2 and 0.4 level). The result of this procedure would be a dependence
map that is similar to our dependence map, but where the colour ‘axis’ has been
scaled nonlinearly.

Finally, we note that we can also construct three-dimensional dependence maps,
where the third dimension shows the estimated local dependence. See section 3.4.6.2
on page 59 for a short discussion, and an example, of such 3D dependence maps.
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3.4.6.1 Estimating the local dependence

To estimate the local dependence function, we can use equation 3.24 on page 46
and replace each expectation with the corresponding sample average. However,
Jones (1996) used a different (and incorrect) denominator. The corrected estimator,
which appears (in a different notation) in Jones and Koch (2003), is:

γ̂(x0, y0) =
ĝ11(x0, y0)− ĝ01(x0,y0)ĝ10(x0,y0)

ĝ00(x0,y0)

h2
1h2

2s2
2 ĝ00(x0, y0)

, (3.29)

where

ĝij(x0, y0) =
1
n

n

∑
k=0

Xi
kY j

k
1
h1

K
(

Xk − x0

h1

)
1
h2

K
(

Yk − y0

h2

)
(3.30)

and s2 is defined as before: s2 =
∫

u2K(u) du. The estimator can also be derived by
fitting the bilinear form a + bx + cy + dxy to the log density locally. Details can be
found in Jones and Koch (2003).

Jones and Koch (2003) also suggested using the following rule of thumb for
bandwidth selection:

hi =
σi

n
1
6

(
2
√

π
∫

K2(u) du∫
u2K(u)

) 1
3 (1− ρ2)

5
12

(1 + ρ2/2)
1
6

, i = 1, 2. (3.31)

Since the variances and the correlation are not usually known, they can be estimated
using sample variances and sample correlation.

Larger bandwidths give smoother dependence maps (less variance) but larger
bias, while smaller bandwidths give dependence maps that fluctuates more, with
‘spots’ of the opposite colour frequently occurring. Simulations seem to indicate
that using slightly higher bandwidths than the ones suggested by the rule of
thumb often works well, especially when it is reasonable to expect that the local
dependence is a smooth function, without fast fluctuations.

Here is my implementation of the local dependence estimator and of the depend-
ence map:

# x = x vector.
# y = y vector.
# points = number of grid points the local dependence should be estimated at.
# levels = (maximum) number of different levels used in the dependence maps.
# plot.zero = plot values close to zero as white if TRUE. If FALSE (the default),
# all values will be either magenta (positive) or cyan (negative).
# bw.scale = scale the automatically selected bandwidths by this vector.
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# quant = do not plot estimate where the density is less than this quantile of
# the discretised density.
locest = function( x, y, points = 50, levels = 7, plot.zero = FALSE, bwscale = c(1,1), quant = .6 )
{

require("lattice") # Needed for plotting the dependence map.

n = length(x)

levels = 2∗floor(levels/2) # Use an even number of levels.
if( plot.zero ) levels = levels + 1 # Or an odd number of levels, so 0 = white.

xmi = min(x) # Range of x and y, for use later.
xma = max(x)
ymi = min(y)
yma = max(y)

k = function(u) # Kernel function.
{

ifelse(u^2<1,(15/16)∗(1−u^2)^2,0)
}

kh = function(h, x) # Scaled kernel function.
{

k(x/h)/h
}

h = function(i) # Calculate automatic bandwidth.
{

if(i == 1)
s = sd(x) else s = sd(y)

r = cor(x,y)
s∗n^(−1/6)∗(10∗sqrt(pi))^(1/3)∗(1−r^2)^(5/12)/(1+r^2/2)^(1/6)

}

h1 = h(1)∗bwscale[1] # Calculate bandwidths, and scale them if necessary.
h2 = h(2)∗bwscale[2]
k2 = 1/7

gx = seq(xmi, xma, length = points) # Define the grid points where ...
gy = seq(ymi, yma, length = points) # ... estimates will be calculated.

# Now calculate the vectors used in the various estimates:
xy = x ∗ y
xx = outer(gx,x,"−") # Matrix of (x_0 − x_i) for all grid points x_0 and all x values x_i.
yy = outer(gy,y,"−") # Similar for y values.
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kh1 = kh(h1,xx)
kh2 = kh(h2,yy)
fxy = (kh1 %∗% (xy∗t(kh2))) / n # Sum the product of X_k^i Y_k^j and the two kernels ...
f1 = (kh1 %∗% t(kh2)) / n # ... over all data pairs, and divide by n.
fx = (kh1 %∗% (x∗t(kh2))) / n # Do this for all the four functions (fxy, f1, fx, fy) ...
fy = (kh1 %∗% (y∗t(kh2))) / n # ... needed in the estimate.

gam = (fxy − fx∗fy/f1)/ # Finally estimate the local dependence function.
((h1∗h2∗k2)^2 ∗ f1)

cutoff = quantile(f1,quant) # Determine cutoff value.
remv = f1 < cutoff
gam[remv] = NA # Mark all values where the density is lower than the cutoff as NA.
gam = gam ∗ sd(x) ∗sd(y) # Scale/normalise the estimated local dependence function.

xp <− yp <− x
for(k in 1:n) # Determine which grid point correspond to each data pair.

{
xp[k] = which.min(gx <= x[k])
yp[k] = which.min(gy <= y[k])

}

pcol = remv[cbind(xp,yp)] # For each data pair, determine whether the estimated ...
# ... local dependence should be plotted or not.

pcol = ifelse(pcol, "white", "black") # Determine colour of datapoints in scatterplot,
# depending on the background colour of the
# corresponding grid point. Note: When a datapoint
# falls on a boundary, parts of it may not be visible.

# Determine the highest observed local dependence (in absolute value).
# This will be used to select the colours in the dependence map so that
# zero dependence will be in the middle of the colour spectrum.
tp = max(abs(c(min(gam[!remv & !is.na(gam)]),max(gam[!remv & !is.na(gam)]))))

# Finally plot the dependence map, with all the data points overlaid.
l = levelplot(gam~x∗y, expand.grid( x = gx, y = gy),

panel = function(...) {
panel.fill(col = "black")
panel.levelplot(...)
panel.xyplot(x,y, col=pcol)

}, at = seq(−tp, tp, length = levels + 1),
col.regions = cm.colors(levels),
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)
print(l)

}

Figure 3.3 on page 56 shows the average of 1000 dependence maps based on
the same model as in figure 3.2 on the facing page (see the caption for calculation
details). The map is an estimate of the expected value of the dependence map
under this model.

Recall example 3.4.2 on page 45, where we looked at the local dependence
between X and Y = X2 + ε, where ε was independent of X. Figure 3.2 on the
facing page shows a dependence map calculated with the above algorithm, with X
and ε both having standard normal distributions. The dependence map captures
the negative dependence for negative X and the positive dependence for positive
X. It also seems to indicate that the local dependence may increase with |X|, but
additional simulations of the same model shows that this feature is often not visible
on the dependence map.

This is also true for simulations for a number of other models that I have tried (not
mentioned in this thesis). Whilst the dependence map usually manages to estimate
the sign of the local dependence, its size is much more difficult to estimate, even
with very many (thousands of) observations. For estimating the sign, a sample size
of 150 generally seems to suffice, except for distributions with complex dependence,
that is, a rapidly fluctuating local dependence sign.

Note that the value (colour) at each grid point should not be interpreted as a
measure of local dependence at the point, but as a measure of local dependence in
an larger area around the point. Since it is often natural to assume that the local
dependence function is a continuous function, this interpretation seems reasonable.

In the two earlier examples we looked at, the local dependence function was
either constant (example 3.4.1 on page 44) or depended on only one of the two
variables (example 3.4.2 on page 45). Let us therefore now look at an example
where the local dependence changes as a function of both variables:

Example 3.4.5: Local dependence in Cauchy distribution

Let (X, Y) have a bivariate Cauchy distribution (this was also used as an
example in Holland and Wang 1987a),

X =
Z1

W
and

Y =
Z2

W
,
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Figure 3.2: Dependence map of 150 observations from the distribution of (X, Y),
where X ∼ N (µ = 0, σ2 = 1) and Y = X2 + ε, ε ∼ N (µ = 0, σ2 = 1)
and independent of X. (This is a special case of example 3.4.2 on
page 45.) Magenta-coloured and cyan-coloured areas indicate (estim-
ated) positive and negative local dependence, respectively, and black
areas indicate low-density areas (where we do not have reliable estim-
ates of the local dependence). The black and white circles are the 150
observations. The dependence map captures the negative dependence
for negative X and the positive dependence for positive X. It also in-
dicates that the local dependence may increase with |X|, but additional
simulations of the same model shows that this feature is often not visible
on the dependence map.
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Figure 3.3: Average dependence map of 150 observations from the distribution of
(X, Y), where X ∼ N (µ = 0, σ2 = 1) and Y = X2 + ε, ε ∼ N (µ =
0, σ2 = 1) and independent of X (see figure 3.2 on the preceding page).
The map was made by creating 1000 dependence maps from this model,
before calculating the average value for each map point. The black area
was made identical to the one in figure 3.2, to aid in comparing the
two maps; however, do note that the number of colours used has been
doubled, and the range the colours represent has been changed. This
was done to increase the ‘depth’ resolution of the dependence map.
We see that the average dependence map captures the increasing (in
absolute value) local dependence for high x’s, but has some problems
near the boundary – the edge of the map. This is to be expected.
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where Z1, Z2 and W are independent, Z1 and Z2 are standard normal and W2

has a chi-square distribution with one degree of freedom. It can be shown
(Dunnett and Sobel 1954) that the density of (X, Y) is

f (x, y) = c(x2 + y2 + c)−
3
2 . (3.32)

Now we can easily calculate the local dependence function

γg(x, y) =
∂2

∂x ∂y
ln f (x, y)

=
∂2

∂x ∂y

[
ln c− 3

2
ln(x2 + y2 + c)

]
=

∂

∂x

[
− 3y

x2 + y2 + c

]
=

6xy
(x2 + y2 + c)2 . (3.33)

We see that the local dependence function changes sign in the origin; it is
positive in the first and third quadrant, and negative in the second and fourth
quadrant.

Because of its heavy tails, the Cauchy distribution frequently gives us values that
are extremely large compared to the bulk of observations (for example, the central
90% of observations). This makes it much more difficult to use scatterplots and
dependence maps to judge the dependence present in a data set (since most of the
data is squeezed into a tiny area on the plot). Figure 3.4 on the next page illustrates
this with a scatterplot from the bivariate Cauchy distribution.

One alternative is to transform the data, for example by a probability integral
transformation, where we look at (observations from) U = F(X) and V = F(Y),
where F is the cumulative distribution functions of X (and of Y), instead of looking
at (observations from) X and Y directly. We will in section 4.5 on page 78 show
that the sign of the local dependence function at each point will be the same at the
transformed points. For this example, this means that, since the local dependence
function of (X, Y) changes sign at the medians (0.5 quantiles) of the variables, the
local dependence function of the transformed variables (U, V) will change sign at
the point (0.5, 0.5).

In the bivariate Cauchy distribution, we do of course know the (univariate)
cumulative distributions, or can at least compute it numerically for each value, but
in most applications the marginal distributions will be as unknown to us as the
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Figure 3.4: Scatterplot of 150 observations from the bivariate Cauchy distribution
in example 3.4.5 on page 54. The bulk of the observations are clustered
in a small area, a few observations are scattered some distance off,
while one observation (top right) is very far away from the rest. Most
of the plot is empty space, and all this makes it difficult to see how
observations inside the main cluster are distributed, for example, if
there is dependence among them.
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joint distributions (and, consequently, as the local dependence functions). However,
we can use very simple and easy-to-compute estimates of the transformed variables.
Let x(1), . . . , x(n) be the sorted xi values. We now replace each x(i) by it transformed
rank value (see, for instance, Cleveland 1994, pages 136–137):

ui =
i− 0.5

n
. (3.34)

For example, the middle of the x(i) values (assuming n is odd) will get a u value
of .5. We define the v values similarly, based on y(i) values. A plot (scatterplot or
dependence plot) of the u values against the v values (both reordered so that the
pairs (ui, vj) match the original (x(i), y(j)) pairs) will now be similar to a plot using
real probability integral transformed values; see 5.1b and figure 5.1c on page 82 for
a comparison for scatterplots.

Figure 3.5 on the following page shows a dependence map based on 150 trans-
formed observations from the bivariate Cauchy distribution. We see that the sign
of the local dependence differ in odd-numbered and even-numbered quadrants,
but exactly where the change occurs is not clear (from looking at the map). Further
simulations indicate that increasing the bandwidths tend to make the estimates (of
the sign) somewhat better.

3.4.6.2 3D dependence maps

As we have already mention, it is possible to draw tree-dimensional plots of the
local dependence function. Figure 3.6 on page 61 shows an example. This is similar
to a dependence map, but the colour ‘axis’ has been drawn as a real vertical axis.
Seeing the 3D dependence map, perhaps from various angles, may help in visualising
how the dependence varies over the support (it is, for example, easier to judge
how fast the dependence changes by looking at the slopes), but the map provides
little additional quantitative information not found in the usual two-dimensional
dependence map.

Also, parts of the 3D dependence map (‘valleys’) may be obscured by other parts
(‘hills’), so the two-dimensional map may be the preferred graphical display of the
local dependence function.

But, of course, a combination of both a scatterplot, a density estimate contour plot,
a 2D and a 3D dependence map, and other graphical displays (see, for instance,
chapter 5 on page 81), along with various numerical measures, will be the a
convenient approach to exploring the dependence in bivariate distributions.

59



u

v

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

−2

−1

0

1

2

Figure 3.5: Dependence map of 150 transformed observations from the bivariate
Cauchy distribution in example 3.4.5 on page 54. The data set is exactly
the same as the one in figure 3.4 on page 58, but the observations have
been transformed using the rank transformation in equation 3.34 on
the preceding page, so that, for instance, the observations (u, v) near
(0.5, 0.5) will correspond to pairs of values (x, y) where x is approx-
imately the median of the xi’s and y is approximately the median of
yi’s. The dependence map has been calculated using the default options,
except for the argument ‘quant’, which has been set to 0.1, to ensure
that most of the map is filled with estimates (even where the estimates
are mainly based on a few observations). As before, magenta-coloured
and cyan-coloured areas indicate (estimated) positive and negative local
dependence, respectively, and black areas indicate low-density areas
(where we do not have reliable estimates of the local dependence). The
black and white circles are the 150 observations. We see that the sign
of the local dependence differ in odd-numbered and even-numbered
quadrants, but exactly where the change occurs is not clear (from look-
ing at the map). Increasing the bandwidths tend to make the estimates
(of the sign) somewhat better.

60



u
v

local dependence
Figure 3.6: Three-dimensional dependence map of 150 transformed observations

from the bivariate Cauchy distribution in example 3.4.5 on page 54. The
data set is exactly the same as the one in figure 3.4 on page 58, but
the observations have been transformed using the rank transformation
in equation 3.34 on page 59, so that, for instance, the observations
(u, v) near (0.5, 0.5) will correspond to pairs of values (x, y) where x is
approximately the median of the xi’s and y is approximately the median
of yi’s. The 3D dependence map shows the same information as the
ordinary dependence map in figure 3.5 on the facing page, but gives a
more immediate impression of how the local dependence changes over
the support. And as before, magenta-coloured and cyan-coloured areas
indicate (estimated) positive and negative local dependence, respectively.
The colours used are the same six as in the two-dimensional dependence
map, but their numerical values, that is, where on the vertical axis the
change from one colour to another occurs, are not exactly identical
(except for the change between magenta and cyan). The actual colours
used here are less important, anyway, since we can see directly how the
estimated local dependence changes.
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3.4.7 Local dependence in transformations

We will now look at the local dependence function in linear transformations. Let
(Z1, Z2) be two variables with density fZ1,Z2 and local dependence γZ1,Z2 , and let
X = a1 + b1Z1 and Y = a2 + b2Z2. It is now trivial to show that the density of
(X, Y) is

fX,Y(x, y) =
1

b1b2
fZ1,Z2

(
z1 − a1

b1
,

z2 − a2

b2

)
.

It follows that the local dependence function of (X, Y) is

γX,Y(x, y) =
∂2

∂x ∂y
ln

1
b1b2

fZ1,Z2

(
x− a1

b1
,

y− a2

b2

)
=

∂2

∂x ∂y
ln fZ1,Z2

(
x− a1

b1
,

y− a2

b2

)
=

1
b1b2

γZ1,Z2

(
x− a1

b1
,

y− a2

b2

)
. (3.35)

We see that the local dependence function scales as the product of the reciprocals of
the scale parameters b1 and b2. And observe that example 3.4.1 on page 44, where
we looked at the local dependence in the bivariate normal distribution, is a special
case of this result.

Holland and Wang (1987a) also noted a generalisation of this result to one-to-one
transformations. If S = c1(X) and T = c2(Y), where c1 and c2 are one-to-one and
differentiable functions, we have (with similar notation as before):

γS,T(s, t) =
[

d
ds

c−1
1 (s)

][
d
dt

c−1
2 (t)

]
γX,Y

(
c−1

1 (s), c−1
2 (t)

)
. (3.36)

The proof can not be found in the article, but it is similar to the one for linear
transformations, and straightforward.

3.4.8 Local dependence in mixtures

Consider a mixture of distributions; that is, let (X, Y) have the density

g(x, y) =
n

∑
i=1

pi fi(x, y), (3.37)

62



where fi(x, y) are bivariate density functions (with existing local dependence
functions) and pi are probabilities that sum to 1. We will now try to express the
local dependence of the mixture distribution as a function of the local dependence
in the subdistributions. To make the notation simpler, we denote g(x, y) by g,

∂2

∂x ∂y fi(x, y) by f XY
i , ∂

∂x fi(x, y) by f X
i , and ∂

∂y fi(x, y) by f Y
i . The local dependence

function of (X, Y) can now be written

γg(x, y) =
∂2

∂x ∂y
ln g(x, y)

=
∂

∂x
1
g

n

∑
i=1

pi f Y
i

= − 1
g2

(
∂

∂x
g
) n

∑
i=1

pi f Y
i +

1
g

n

∑
i=1

pi f XY
i

=
1
g

[
n

∑
i=1

pi f XY
i − 1

g

(
n

∑
i=1

pi f X
i

)(
n

∑
i=1

pi f Y
i

)]

=
1

∑n
i=1 pi fi

[
n

∑
i=1

pi f XY
i − 1

∑n
i=1 pi fi

n

∑
i=1

n

∑
j=1

pi pj f X
i f Y

j

]
. (3.38)

We see that the local dependence function in a mixture is not a simple function of
the local dependence function of the subdistributions. But if we assume that fi(x, y)
is zero in a two-dimensional open set Ak for all i 6= k, we have that for (x, y) in Ak,
equation 3.38 is simplified to

γg(x, y) =
1

∑n
i=1 pi fi

[
n

∑
i=1

pi f XY
i − 1

∑n
i=1 pi fi

n

∑
i=1

n

∑
j=1

pi pj f X
i f Y

j

]

=
1

pk fk

[
pk f XY

k − 1
pk fk

p2
k f X

k f Y
k

]
=

1
fk

[
f XY
k − 1

fk
f X
k f Y

k

]
=

∂2

∂x ∂y
ln fk(x, y)

= γ fk(x, y). (3.39)

In other words, the local dependence function of the mixture reduces to the local
dependence function of the one non-zero density function ( fk) for all (x, y) in
Ak. When the densities fi, i 6= k and their (first-order and second-order mixed)
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derivatives are ‘close’ to zero, that is, the subdistributions are well separated, the
same result holds approximately.

Mixtures of distributions where we in each subdistribution has monotone asso-
ciation (either all positive or all negative association) is one place where the local
dependence function is useful. Using dependence maps, we can discover areas
of positive or negative local dependence. Recall the example in section 2.2.2 on
page 17, where we had a mixture of two bivariate distributions, both with positive
correlation, but where the correlation in the mixture was negative. Figure 3.7 on
the facing page shows a dependence map for this distribution (this is the same
data set as in figure 2.1 on page 19). The map shows that we have positive local
dependence inside both point clouds.

This example is one where the result in equation 3.39 on the preceding page
holds approximately. Numerical calculations show that the local dependence in
most areas is approximately 2

3 (with several decimals correct); it is approximately
equal to the local dependence in each subpopulation (see equation 3.20 on page 44),
except for a narrow, but infinite, strip between the two subpopulations.

3.5 Regional dependence

Some of the ‘local dependence’ we may encounter in distributions come from the
structural form of their support, and is really a different type of dependence than the
ones we have looked at earlier in this chapter. We note that two variables are never
independent if their support is not a cartesian product set. (Remember that the
local dependence function is not defined in this case.) Here is one simple example:

Example 3.5.1: Structural dependence

Let (X, Y) have a bivariate uniform distribution on the unit disc, that is,

fX,Y(x, y) = π, x2 + y2 < 1.

The marginal densites of X and Y are

fX(x) = fY(x) = 2π
√

1− x2 , 0 < x < 1,

and we see that fX,Y(x, y) = 0 6= fX(x) fY(y) outside the support of (X, Y) but
inside the support of X and of Y.
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Figure 3.7: Dependence map of 150 observations from an even mixture of two
bivariate normal distributions, both with correlation 1

2 . This is the same
data set as in figure 2.1 on page 19, and the dependence map has been
calculated with default options. Magenta-coloured and cyan-coloured
areas indicate (estimated) positive and negative local dependence, re-
spectively, and black areas indicate low-density areas (where we do not
have reliable estimates of the local dependence). The black and white
circles are the 150 observations. The dependence map indicates that we
have positive local dependence (almost) everywhere (that is, inside the
two point clouds), even though the overall correlation is negative. Calcu-
lating the dependence map on different realisations of the same model
gives generally the same results (but with the smaller cyan-coloured
spots appearing in different places).
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In this example, we saw that the two random variables were not independent;
however, they do have several of the properties of independent variables, such
as constant conditional mean, E(Y | X = x) = E(Y) and E(X | Y = y) = E(X),
zero correlation and zero ‘local dependence’. (The local dependence function is not
defined here, but if we use the function in equation 3.19 on page 44 on the joint
density, we get the value 0.)

Based on these observations, Holland and Wang (1987b) introduced a concept of
quasi-independence for continuous variables (a similar concept did exist for contin-
gency tables). Two continuous variables X and Y are said to be quasi-independent if
and only if their joint density f (x, y) can be written as a product of functions of
either x or y alone: f (x, y) = a(x)b(y) for all (x, y) in the support of (X, Y). We see
that the variables in example 3.5.1 on page 64 are quasi-independent.

Holland and Wang also introduced a quasi-independent projection of a density
h = h(x, y) of two variables, X and Y (typically defined on a support which is not a
cartesian product set). The projection is a new density (on the same same support)
that can be written as f (x, y) = a(x)b(y), and where the marginal densities are
identical to the original marginal densities. See the article for further information.

A third idea introduced in the article was a (global) measure of regional depend-
ence, for ‘quantifying the degree of dependence due to region’ in the same article.
Again, the reader is referred to the article for further details.

3.6 Local dependence function of Bairamov and Kotz

Kotz and Nadarajah (2003) suggested a measure of local dependence based on
conditional moments (originally developed in a different article):

H(x, y) =
E
[(

X −E (X | Y = y)
)(

Y −E (Y | X = x)
)]√

E
[(

X −E (X | Y = y)
)2
]

E
[(

Y −E (Y | X = X)
)2
] . (3.40)

Following the naming in Mari and Kotz (2001, pages 175–176), we will call H(x, y)
the local dependence function of Bairamov and Kotz. We only include it in this thesis
for completion. Its properties can be found in the cited article, and will not be
reproduced here.

But we do note one property that may be of interest: In contrast to the correlation
curve and the local dependence function, the local dependence function of Bairamov
and Kotz is not constant for the bivariate normal distribution.
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3.7 Summary and conclusions

In this chapter, we have looked at the concept of a ‘measure of local dependence’,
and we have defined some properties such measures should possess. We have
looked at two candidate measure of local dependence – the correlation curve and
the local dependence function.

For the correlation curve, we have examined its properties, possible generalisa-
tions and two methods of estimating the curve, with computer implementations.
One of the more important features of a good measure of dependence is its in-
terpretability and its generality; in other words, can we use this measure to say
something meaningful about the dependence, and for a wide variety of distri-
butions? It turns out that the correlation curve is only meaningful as a measure
of local dependence in a subset of models – generalised additive models (with
a possible heteroscedastic error term). Transformations of variables from such a
model also suffer from lack of an easy interpretation, which limits the correlation
curve use as a general measure of local dependence.

One other criticism is the nonsymmetrical form of the curve – the correlation
curve is a function of only one variable. This may be appropriate in a pure ‘input–
output’ (perhaps ‘dose–response’) model of physical interactions, but in general, I
see this as shortcoming of the measure. For example, the correlation curve for the
transformed distribution in example 3.4.5 on page 54 (the Cauchy distribution) will
show zero dependence for both ρ(x) and ρ(y).

The other measure we have looked at is the local dependence function, which has
the benefit of being symmetrical, in the sense that it is a function of two variables,
and can be used to study the dependence in two-dimensional areas. It has (at
least) two possible derivations and interpretations: It can be seen as the continuous
analogue of the cross product ratios in a contingency table, or it can be seen as a
localisation of the usual correlation function. The exposition in the original proofs
of these two derivations were somewhat lacking in detail, and the descriptions in
this thesis should hopefully make the proofs easier to read and understand.

The first derivation was based on the cross product ratios, and these are a
much used measure of dependence in the discrete case, perhaps because of their
nice properties: The cross product ratios along with the marginal distributions
completely characterise the bivariate distribution, and they are invariant to marginal
replacements. They can, therefore, in one sense, be seen as a pure measure of
dependence.
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The two properties are shared, or, in fact, inherited, by the local dependence
function: The local dependence functions along with the marginal distributions
completely characterise the bivariate distribution, and, for a given bivariate distri-
bution, we can replace one of the marginals (leaving the conditional distribution
unchanged) without affecting the local dependence function.

We have also looked at a few other properties of the local dependence function,
and have examined how it can be estimated. Using this, we have developed an
effective computer implementation of the estimate. This implementation is very
fast, due to its use of the generalised outer product function and matrix based
operations to calculate the estimates. The program can also plot dependence maps,
two-dimensional graphical displays of the local dependence function, and these
maps are of special interest in that they make it possible to easily see how the
strength of the local dependence varies over the support.

Using several very simple examples, we have explored how the local dependence
behaves, and how good the dependence map manages to capture this behaviour.
Our conclusion is that the estimates of the sign of the local dependence are usually
good, but estimates of its numerical values are more problematic. But we note that
we have not found a natural interpretation of the numerical values either. But at
least the local dependence changes in a predictable way for transformed variables,
and transformations may be useful, especially for distributions with heavy tails.

The estimates also seem to have some problems near the boundaries of the sup-
port, and this is a well-known problem with these kinds of kernel estimates. They
will also have problems at other points of discontinuity (of any of the estimated
functions); see, for instance, (Wand and Jones 1995, section 2.11). It may be possible
to modify the estimates to use special ‘boundary kernels’. Some more work on
automatic bandwidth selection also needs to be done.

In the chapter on measures of global assciation, we looked at the dependence in a
mixture of two distributions, and saw that some common measures of dependence
were often not appropriate. In the current chapter, we have looked at the local
dependence function in mixtures, and shown that it is not a simple function of
the local dependence in each subdistribution; however, when the distributions
are well-separated, it is approximately reduced to the local dependence in the
subdistributions.

Finally, we have looked at the concept of regional or structural dependence,
which is a different kind of local dependence, and we have very briefly looked
the definition of an alternative measure of local dependence, the local dependence
function of Bairamov and Kotz.
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4
Copulas

4.1 Introduction

Let us look at some elementary properties of a vector-valued random variable,
X = (X1, . . . , Xn). The distribution (function) of X tells us which values the variable
can assume, and how often it on average assumes them; in other words, it tells us
P(X ∈ A) for arbitrary A. It also gives us complete information on the association
between subsets of X; that is, it tells us the value of

P
(
(Xi1 , . . . , Xik) ∈ A |

(
Xj1 , . . . , Xjl

)
∈ B

)
for all A, B.

The marginal distributions of X1 to Xn do not determine their joint distribution,
but their joint distribution does determine their marginal distribution. We say
that the distribution of X contains more information on the dependence between
the variables than the marginal distributions do (these contain no information,
except for some restrictions on which values X can take). In fact, as noted above, it
contains all the information.

Motivated by this, we will now look at probability-based measures of association
(among variables X1, . . . , Xn) that together with the marginal distributions uniquely
determine their joint distribution. We will call such functions dependence-defining.
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If d is such a function, this means that the joint distribution function H can be
written H(x, y) = d(F, G, x, y) for marginal distribution functions F and G. The
joint distribution function is of course itself such a function, but we are mainly
interested in a ‘smaller’ function – one which says as little as possible about
marginal distributions, while still defining the joint distribution together with the
marginals.

If we have two dependence-defining functions, f and g, we say that f � g if and
only if f can be expressed as a function of g. If f � g for all dependence-defining
functions g, we say that f is a smallest dependence-defining function. In this
chapter, we will look at such a function, called the copula. The information in this
chapter is chiefly taken from Nelsen (1999), but we will present it in a form which
hopefully makes the various definitions used more intuitively understandable.

It is not difficult to show that when a variable X has a continuous distribution
function F, then F(X) has a uniform distribution. When X1, . . . , Xn have distribution
functions F1, . . . , Fn, respectively, we say that the joint distribution function of
F1(X1), . . . , Fn(Xn) is the copula of X1, . . . , Xn. We will later define necessary and
sufficient statements for an arbitrary function to be a copula.

4.2 Defining distribution functions

A formal definition of a distribution function is needed when working with copulas,
and we will use a slightly more general definition of than the one usually used
in probability theory (we do not, for example, require left-continuity). All results
proved using our definition will therefore be valid for ‘ordinary’ distribution
functions too. But let us first look at some motivation. Consider a two-dimensional
random variable (X, Y). Let B be a rectangle (a 2-box) with lower-left corner (x1, y1)
and upper-left corner (x2, y2) (the coordinates need not be finite). A distribution
function for (X, Y), H(x, y) = P (X ≤ x, Y ≤ y) should satisfy P (B) = H(x2, y2)−
H(x2, y1)− H(x1, y2) + H(x1, y1) ≥ 0 for all rectangles B. We say that the H-area of
B is nonnegative. Note that a result in probability theory says that a probability
measure defined on rectangles can be uniquely extended to other sets, so it suffices
to look at probabilities of such sets. This concept of H-areas can be extended to
higher dimensions, where they are called H-volumes:

Definition 4.2.1: H-volume

Let S1, . . . , Sn be nonempty subsets of R, and let H be a real-valued function
in n variables with Dom H = S1 × · · · × Sn. Let B = [a, b] be an n-box with
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vertices in Dom H. The H-volume of B is defined to be

VH(B) = ∑ sgn(c)H(c), (4.1)

where the sum is taken over all vertices c of B, and sgn(c) is

sgn(c) =

 1 if ck = ak for av even number of k’s,

−1 if ck = ak for av odd number of k’s.
(4.2)

For example, the H-volume of the 4-box B = [x11, x12]× [x21, x22]× [x31, x32]×
[x41, x42] is

VH(B) = H(x12, x22, x32, x42)− H(x12, x22, x32, x41)− H(x12, x22, x31, x42)

+ H(x12, x22, x31, x41)− H(x12, x21, x32, x42) + H(x12, x21, x32, x41)

+ H(x12, x21, x31, x42)− H(x12, x21, x31, x41)− H(x11, x22, x32, x42)

+ H(x11, x22, x32, x41) + H(x11, x22, x31, x42)− H(x11, x22, x31, x41)

+ H(x11, x21, x32, x42)− H(x11, x21, x32, x41)− H(x11, x21, x31, x42)

+ H(x11, x21, x31, x41).

(4.3)

A distribution function should naturally be nondecreasing in each argument. But
in defining copulas, we will actually need a slightly different property:

Definition 4.2.2: n-increasing functions

A real-valued function H in n variables is said to be n-increasing if and only if
VH(B) ≥ 0 for all n-boxes B with vertices in Dom H.

Note that for n ≥ 2, that H is n-increasing neither implies or is implied by the
property that H is nondecreasing in each variable. But see lemma 4.2.4 on the next
page for an extra condition which does make H nondecreasing in each variable.

A distribution function H should also have the property that

H(x1, . . . , xi−1,−∞, xi+1, . . . , xn) = 0 for all i and all xj’s. (4.4)

More generally, we can define grounded functions:

Definition 4.2.3: Margins and grounded functions

Suppose that the domain of a real-valued function H in n variables is given by
Dom H = S1 × · · · × Sn, where each Sk has a least element ak. We say that H
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is grounded if and only if H(t) = 0 for all t in Dom H such that tk = ak for at
least one k.

If, in addition, each Sk is nonempty and has a greatest element, bk, we say
that H has margins, and the one-dimensional margins (simply called margins)
of H are the functions Hk with Dom Hk = Sk and

Hk(x) = H(b1, . . . , bk−1, x, bk+1, . . . , bn) for x in Sk. (4.5)

The k-dimensional margins are called k-margins, and are defined in the obvious
way.

Lemma 4.2.4: n-increasing functions nondecreasing in each argument

If S1, . . . , Sn are nonempty subsets of R and H is a grounded n-increasing
function with domain S1 × · · · × Sn, then H is nondecreasing in each argument.

Definition 4.2.5: Distribution functions

An n-dimensional distribution function is a function H with domain R
n such

that

1. H is n-increasing,

2. H(x) = 0 for all x in R
n such that xk = −∞ for at least one k, and

H(∞, . . . , ∞) = 1.

From this, it follows that distribution functions are grounded.

4.3 Defining copulas

Definition 4.3.1: Copula

An n-dimensional copula (an n-copula) is a grounded, n-increasing function C
with domain In, and with margins Ck, k = 1, . . . , n that satisfy Ck(u) = u for
all u in I.

An equivalent definition is:

Definition 4.3.2: Copula – alternative definition

A n-dimensional copula (an n-copula) is a function C from In to I which satisfy
these two properties:
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1. For every u in In

C(u) = 0 if at least one coordinate of u is 0, and (4.6a)

C(u) = uk if all coordinates of u except uk are 1. (4.6b)

2. For every a and b in In such that a ≤ b,

VC
(
[a, b]

)
≥ 0. (4.6c)

It can be shown that for any n-copula C, n ≥ 3, each k-margin of C is a k-copula,
2 ≤ k < n.

The following lemma will be used to show that couplas are uniformly continuous.
Its proof is somewhat complicated; see (Nelsen 1999, page 39) and the reference
therein.

Lemma 4.3.3

Let S1, . . . , Sn be nonempty subsets of R, and let H be a grounded n-increasing
function with domain Dom H = S1 × · · · × Sn and margins H1, . . . , Hn. Let
x = (x1, . . . , xn) and y = (y1, . . . , yn) be points in Dom H. Then

|H(x)− H(y)| ≤
n

∑
k=1

|Hk(xk)− Hk(yk)|. (4.7)

It now follows directly from this lemma that copulas a uniformly continuous:

Theorem 4.3.4: Copulas are uniformly continuous

Let C be an n-copula. Then for every u and v in In,

|C(u)− C(v)| ≤
n

∑
k=1

|uk − vk|. (4.8)

We now have a very important result that ties copulas to distribution functions:

Theorem 4.3.5: Sklar’s theorem (1959)

Let H be a joint distribution function with margins F1, . . . , Fn. Then there exists
an n-copula C such that for all x1, . . . , xn in R,

H(x1, . . . , xn) = C
(

F1(x1), . . . , Fn(xn)
)
. (4.9)
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If F1, . . . , Fn are continuous, then C is unique. Otherwise C is uniquely determ-
ined on Ran F1 × · · · × Ran Fn. Conversely, if C is a copula and F1, . . . , Fn are
distribution functions, then the function H is a joint distribution function with
margins F1, . . . , Fn.

When F1, . . . , Fn are continuous, C is simply the function which maps
(

F1, . . . , Fn
)

to H(x1, . . . , xn). When they are not continuous, it can be shown that C can be
extended to the closure of Ran F1 × · · · × Ran Fn by continuity, and then to In by
multilinear interpolation. The details, and proof that C really is a copula, can be
found in Nelsen (1999, page 41) and in the references listed there.

When the distribution function of a random variable is not strictly increasing, it
has no inverse, but we can define ‘quasi-inverses’:

Definition 4.3.6: Quasi-inverse functions

Let F be a distribution function. A quasi-inverse of F is any function F− with
domain I and range R such that

1. for u in Ran F, x = F−(u) can be any number such that F(x) = u;

2. for u not in Ran F, F−(u) = inf {x | F(x) ≥ u}.

Note that we have already used this concept, in example 2.4.2 on page 24.

It is immediately clear that for quasi-inverses F−1 , . . . , F−n of distribution functions
F1, . . . , Fn and u in In,

C(u1, . . . , un) = H
(

F−1 (u1), . . . , F−n (un)
)
, (4.10)

where H and C are as in theorem 4.3.5 on the previous page.
One important property of copulas are their invariance to increasing transform-

ations. We will, for ease of notation, show this for two variables, but the general
result, and its proof, is completely analogous. Similar results exist for decreasing
transformations and mixed transformations (where, for example, one transforma-
tion is increasing and the other decreasing).

Theorem 4.3.7: Copulas are invariant under increasing transformations

Let Z and W be to continuous random variables with copula CZ,W and distri-
bution functions FZ and GW , respectively, and let X = a(Z) and Y = b(W) for
increasing functions a and b. Furthermore, let CX,Y denote the copula of (X, Y),
and let FX and GY be the distribution functions of X and Y, respectively. We
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have FX(x) = P(X ≤ x) = P
(
a(Z) ≤ x

)
= P

(
Z ≤ a−(x)

)
= FZ

(
a−(x)

)
, and it

now follows that

CX,Y
(

FX(x), GY(y)
)

= P
(
a(Z) ≤ x, b(W) ≤ y

)
= P

(
Z ≤ a−(x), W ≤ b−(y)

)
= CZ,W

(
FZ
(
a−(x)

)
, GW

(
≤ b−(y)

))
= CZ,W

(
FX(x), GY(y)

)
.

In section 3.3.5 on page 38, we showed that the correlation curve for (eX, eY),
where (X, Y) had a bivariate normal distribution, had a completely different form
than the correlation curve for (X, Y) (constant correlation curve); and in section 3.4.7
on page 62 we saw the the local dependence function also changed, albeit in a
predictable and ‘nice’ manner. But the copula will stay the same for both these
pairs of variables.

4.4 Examples

We will now look at some simple examples of copulas.

Example 4.4.1: The independence copula

Let H be the joint distribution function of (X1, . . . , Xn) and F1, . . . , Fn be their
marginal distribution functions. Then the Xi’s are independent if and only if
H(x1, . . . , xn) = F1(x1) · · · Fn(xn) for all (x1, . . . , xn); that is, they are independ-
ent if and only if their copula C is C(u1, . . . , un) = u1 · · · un. We will denote this
copula by Π = Πn.

There also exists two copulas for ‘complete dependence’. Recall section 2.4.2 on
page 22, where we showed that for each pair of marginal distributions, there exists
an upper and a lower bound on their joint distribution function. The bounds, which
also charachterised the dependence, involved only the expressions F(x) and G(y),
and can thus be reformulated in terms of copulas. They can also be generalised to
multivariate distributions.

Following the notation in Nelsen (1999, page 42), we have

Wn(u) = max(u1 + · · ·+ un − n + 1, 0) and

Mn(u) = min(u1, . . . , un),
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and these are bounds of the multivariate distributions or, equivalently, the copulas:

Wn(u) ≤ C(u) ≤ Mn(u).

For n = 2, both the upper and lower bounds were distribution functions, and
we easily see that they have uniform marginals; in other words, the bounds are
themselves copulas.

For n greater than two, the upper bound Mn is still a copula (it corresponds
to a distribution with n ‘copies’ of one variable), but the lower bound is never a
copula. The bound is still tight, though, in the sense that for any n ≥ 3 and any
fixed u ∈ In, there exists an n-copula C such that C(u) = Wn(u).

Since the copula is a distribution function, it is sometimes of interest to use its
‘density’:

Example 4.4.2: Bivariate normal copula

We will now look at the copula of the bivariate normal distribution. Let (X, Y)
have this distribution, with marginals N (µX, σ2

X) and N (µY, σ2
Y) and with

joint distribution function H. Let Φ be the joint distribution function of a
standard normal bivariate distribution with the same correlation as (X, Y); that
is, H(x, y) = Φ

(
x−µX

σX
, y−µY

σY

)
. Let φ be the corresponding density, and let Φ

and φ be the standard normal distribution function and density, respectively.
We define

u = F(x) = Φ
( x− µX

σX

)
and

v = G(y) = Φ
(y− µY

σY

)
.

This gives us

C(u, v) = H(F−1(u), G−1(v))

= Φ

(
F−1(u)− µX

σX
,

G−1(v)− µY

σY

)
= Φ

(
Φ−1(u), Φ−1(v)

)
. (4.11)

Using elementary rules of differential calculus, we get the copula density

c(u, v) =
φ
(
Φ−1(u), Φ−1(v)

)
φ
(
Φ−1(u)

)
φ
(
Φ−1(v)

) . (4.12)
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Note that this copula does not depend on the means and variances of X and
Y; it is location and scale-invariant. This would also follow directly from the-
orem 4.3.7 on page 74 – the copulas’ invariance under increasing functions.

We have earlier looked at Spearman’s rho (section 2.2.3 on page 18) and Kend-
all’s tau (section 2.3 on page 20), and observed that these were invariant to strictly
increasing transformations of the variables. It is therefore natural to try to ex-
press them as functions of the underlying copula. The following result is proved
in (Nelsen 1999, page 135):

Example 4.4.3: Spearman’s rho as a copula concept

In equation 2.12 on page 20 we showed that Spearman’s rho for (X, Y) could
be written

ρS(X, Y) = ρS = 12 E(UV)− 3,

where U and V were the probability integral transformed variables of X and
Y: U = F(X) and V = G(Y). Since the distribution function of (U, V) is the
copula of (X, Y), we have

ρS = 12
∫∫

I2
uv dC(u, v)− 3

= 12
∫∫

I2
C(u, v) du dv− 3.

Remembering that the mean of a uniform distribution on I is 0.5, we see that
this can also be written

ρS = 12
∫∫

I2

[
C(u, v)− uv

]
du dv.

Or, in words, Spearman’s rho for (X, Y) is (a constant times) the ‘average
distance’ between the copula of (X, Y) and the independence copula.

A similar result can also be shown for Kendall’s tau (modified proof from Nelsen
1999, pages 127–128):

Example 4.4.4: Kendall’s tau as a copula concept

Let (X, Y) and (X′, Y′) be two independent samples from a continuous bivariate
distribution, with marginals F and G, and copula C. We have

τ = P
(
(X − X′)(Y −Y′) ≥ 0

)
−P

(
(X − X′)(Y −Y′) < 0

)
= 2 ·P

(
(X − X′)(Y −Y′) ≥ 0

)
− 1

= 2 ·
[
P(X ≥ X′, Y ≥ Y′) + P(X < X′, Y < Y′)

]
− 1.
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These probabilities can be evaluated using the copula:

P(X ≥ X′, Y ≥ Y′) = P(X′ ≤ X, Y′ ≤ Y)

=
∫∫

R2
P(X′ ≤ x, Y′ ≤ y) dC

(
F(x), G(y)

)
=
∫∫

R2
C
(

F(x), G(y)
)

dC
(

F(x), G(y)
)

=
∫∫

I2
C(u, v) dC(u, v).

Similarly, the same holds for P(X < X′, Y < Y′), and we get the result

τ = 4
∫∫

I2
C(u, v) dC(u, v)− 1. (4.13)

Kendall’s tau can thus be seen as a function of expected value of the copula
itself, inserted two uniform variables on I having the copula as their joint
distribution: τ = E

(
C(U, V)

)
− 1. Contrast this with Spearman’s rho, which

could be seen as a function of the expected value of the product of the variables:
ρS = 12 E(UV)− 3.

4.5 Local dependence and copulas

The local dependence function is not a copula concept, but, nevertheless, it may be
interesting to try to express it as a function of the copula and the marginal densities.
Recall that we have

C(u, v) = P
(

F(X) ≤ u, G(Y) ≤ v)
)

= P
(
X ≤ F−(u), Y ≤ G−(v)

)
= H

(
F−(u), G−(v)

)
,

where H is the joint distribution function of (X, Y). Let h and c be the density
functions corresponding to H and C, respectively. We use the notation

u = F(x), v = G(y)

cu(u, v) =
∂

∂u
c(u, v)

cv(u, v) =
∂

∂v
c(u, v)

cuv(u, v) =
∂2

∂u ∂v
c(u, v).
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The local dependence function is

=
∂2

∂x ∂y
ln

∂2

∂x ∂y
H(x, y)

=
∂2

∂x ∂y
ln

∂2

∂x ∂y
C
(

F(x), G(y)
)

=
∂2

∂x ∂y
ln c
(

F(x), G(y)
)

f (x)g(y)

=
∂

∂x
1

c
(

F(x), G(y)
)

f (x)g(y)
[
cv(u, v) f (x)g2(y) + c(u, v) f (x)g′(y)

]
=

∂

∂x
1

c(u, v)g(y)
[
cv(u, v)g2(y) + c(u, v)g′(y)

]
=

1
c(u, v)g(y)

[
cuv(u, v) f (x)g2(y) + cu(u, v) f (x)g′(y)

]
− cu(u, v) f (x)g(y)

c2(u, v)g2(y)
[
cv(u, v)g2(y) + c(u, v)g′(y)

]
=

1
c(u, v)

[
cuv(u, v) f (x)g(y) + cu f (x)g′(y)

1
g(y)

− cu(u, v)cv(u, v) f (x)g(y)
1

c(u, v)
+ cu f (x)g′(y)

1
g(y)

]
=

f (x)g(y)
c2(u, v)

[
cuv(u, v)c(u, v)− cu(u, v)cv(u, v)

]
. (4.14)

We recognise the factor multiplied by f (x)g(y) as the local dependence function
of (U, V). We now have a formula we can use to calculate the local dependence
function based on the copula and the marginal distributions. For a fixed mar-
ginal distribution, we can easily see the effect different copulas will have on the
local dependence. Note that we could also have calculated the result indirectly,
using equation 3.36 on page 62.

We can also remove the (functional) dependence on the marginal distributions by
‘copulising’ the bivariate distribution: Instead of looking at the local dependence
when X and Y have the values x and y, respectively, we look at the local dependence
when X and Y are at their qX and qY quantiles. In other words, we examine the
local dependence of F(X) and G(Y) at qX and qY. (See example 3.4.5 on page 54,
where we did just that.)

It is now elementary to verify that the copula of a copula is the original cop-
ula, so the local dependence in equation 4.14 on the previous page is reduced

79



to

γ(u, v) =
1

c2(u, v)

[
cuv(u, v)c(u, v)− cu(u, v)cv(u, v)

]
. (4.15)

This could of course also be calculated directly from equation 3.19 on page 44.

4.6 Summary and conclusions

In this chapter, we have looked at copulas – multivariate probability distribution
functions with uniform marginals. These do together with the marginal distribu-
tions completely characterise the multivariate distributions, and are invariant to any
increasing transformations of the original variables. They manage to capture exactly
what the extra information the multivariate distribution functions contain that is
missing from the univariate marginals, while at the same time being independent
(in one sense of the word) of marginal distributions. We may therefore rightfully
call them pure dependence functions, and it makes sense that any measure of (only)
dependence should only depend on the copula.

We have looked at how we can define the copulas in a mathematical manner,
and how we can interpret them from a statistical perspective. In an earlier chapter,
we looked at bounds on the bivariate distributions, and on how these relate to
(complete) dependence. These results were extended to multivariate distributions,
and related to copulas. We could also relate two measures of global dependence that
we had looked earlier to copulas, and we saw how this lead to new interpretations
of their meanings.

Finally, we tried to ‘copulise’ the local dependence function, to make it a copula
concept. We also observed that the local dependence of a copula could be seen as a
measure of local dependence at the quantiles of the original distribution.

The local dependence function and the copula has two very different invariance
properties: while the copula is invariant to increasing transformations of the mar-
ginals, the local dependence function is invariant to replacements of the marginals.
This means that we can replace one marginal distribution with another, leaving
the conditional distribution, and hence the local dependence function, intact. This
will, on the other hand, (usually) change the copula. The local dependence function
may thus be completely unaffected by marginal replacements which change global
measures of dependence, such as Spearman’s rho or Kendall’s tau, completely.
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5
Graphical methods

Graphical displays of distribution give us qualitative and some quantitative in-
formation about the association between variables. We might for instance plot
the mean of Y | X = x as a function of X. And when we have observations of
random variables, it is common to use scatterplots of pairs of variables. But the
marginal distributions of the variables can make it difficult to assess the degree of
dependence.

Figure 5.1 on the next page shows an example, based on Genest and Boies (2003).
We have 100 pairs of independent exponentially distributed variables, but the (lack
of) association is not apparent from a normal scatterplot. If we transform both
variables using their probability integral transformations, to make the random
variables marginally uniform, the association is easier to see. When the marginal
distributions are unknown, we can estimate the transformed variables by replacing
all variables with their ranks, perhaps using equation 3.34 on page 59.

5.1 Chi-plots

Fisher and Switzer (1985) have proposed a graphical method for investigating the
association between two random variables. Let (X1, Y1), . . . , (Xn, Yn) be a random
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(a) Untransformed variables. (b) Variables transformed
with distribution func-
tion.

(c) Rank-transformed
variables.

Figure 5.1: Scatterplot of transformations of 100 pairs of independent exponential
random variables, with marginal distributions.

sample from a bivariate (usually continuous) distribution, and define

Hi =
1

n− 1
#
{

j 6= i : Xj ≤ Xi, Yj ≤ Yi
}

,

Fi =
1

n− 1
#
{

j 6= i : Xj ≤ Xi
}

and (5.1)

Gi =
1

n− 1
#
{

j 6= i : Yj ≤ Yi
}

.

Assuming independence, Hi will approximately factor into FiGi, and the difference
Hi − FiGi can be seen as a measure of the degree of association. The difference has
an expected value of zero, and we note that, conditional on (Xi, Yi), it can be written
as a sum of independent variables, and thus it will be asymptotically standard
normal when we divide by the estimated standard deviation. The resulting variable
is

ki =
√

n (Hi − FiGi)√
Fi(1− Fi)Gi(1− Gi)

. (5.2)

The variable ki is not defined for those (at most four) i such that Fi(1− Fi)Gi(1−
Gi) = 0. In the following, we will, to be consistent with Fisher and Switzer (1985),
use χi = ki/

√
n as the variable of interest.

The numerator, Hi − FiGi, can be seen as the cross-product difference of the
relative counts in a 2 × 2 table made by partitioning the plane into quadrants
centred at (Xi, Yi). And χi is also equal to the sample correlation coefficient between
dichotomised variables (X′

ij equal 1 when Xj ≤ Xi and 0 otherwise, and similarly
for Y′

ij).

82



We now define a measure of the distance between (Xi, Yi) and the centre of the
data set:

λi = 4 si max
[(

Fi − 1
2

)2
,
(
Gi − 1

2

)2
]

si = sign
[(

Fi − 1
2

) (
Gi − 1

2

)] (5.3)

(Other measures of distance than λi are possible, and Fisher and Switzer (1985) list
several.)

A scatterplot of observations from (λi, χi) is called a χ-plot. We exclude the (at
most eight) points where |χi| ≥ 4(1/(n− 1)− 1

2 )2, since the asymptotic normal
approximation will be inappropriate here. Note that both λi and χi lie in the
interval [−1, 1].

To help us distinguish between natural scatter and real dependence, we super-
impose horizontal control lines at χ = ±cp/

√
n . We choose cp so that on average

approximately 100p% of the pairs would lie between the guidelines when X and
Y are really independent. Since the χ-values are not independent even when X
and Y are (see details in Fisher and Switzer 1985), the cp values are most easily
found by Monte Carlo methods. Fisher and Switzer (2001) list these approximate
values for p = 0.90, 0.95 and 0.99, respectively: 1.54, 1.78 and 2.18. My simulations
support these results. The lines will also remain approximately valid even when
one variable is nonstochastic.

Figure 5.2 on the next page shows three examples from bivariate normal distri-
butions. Of course, since χ-plots are functions of the ranks of the data, they can
not help us distinguish between linear association (which we have here) and other
forms of monotone association. But they can be helpful in assessing whether there
are monotone association or a more complex form of association. Let us look at
a few cases, based on examples in Fisher and Switzer (2001) and in Fisher and
Switzer (1985).

Consider an even mixture of a N (−1,−1, 1, 1,−.6) and a N (1, 1, 1, 1, .6) distri-
bution. Figure 5.3 on page 85 shows a typical scatterplot, a rank scatterplots and
a χ-plot from this distribution. It is based on a random sample of 150 pairs of
variables from the first distribution and 150 from the second. Since the domains
of the distributions overlap, it is difficult to judge the association from the normal
scatterplot, and a rank scatterplot gives the impression that the variables are inde-
pendent. But from the χ-plot, we clearly see that there is some sort of association,
as the points are grouped into two ‘lobes’. This pattern is typical of mixtures
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λ

χ

λ

χ

(a) Correlation ρ = 0.00 and
sample correlation r = 0.07.

λ
χ

λ
χ

(b) Correlation ρ = 0.30 and
sample correlation r = 0.47.

λ

χ

λ

χ

(c) Correlation ρ = 0.70 and
sample correlation r = 0.69.

λ

χ

λ

χ

(d) Correlation ρ = −0.95
and sample correlation r =
−0.95.

Figure 5.2: Four χ-plots showing samples of 50 pairs from bivariate normal dis-
tributions with means 0, standard deviations 1 and various levels of
correlation.
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of distributions with opposite monotone association. However, it is usually not
apparent unless we have at least 100 observations from the mixture distribution.

−3 0 3

−3

0

3

(a) Scatterplot. (b) Rank scatterplot. (c) χ-plot.

Figure 5.3: Scatterplot, rank scatterplot and χ-plot of observations from 300 pairs
from an even mixture of two bivariate normal distributions. For the
χ-plot, the resolution of the vertical axis near χ = 0 has been increased
by using the monotone transformation χ = sin( 1

2 πχ′) (where χ′ are the
original χ-values).

We get a completely different χ-plot from distributions with holes. Figure 5.4
on the next page shows an example, where we have 500 observations from two
independent standard normal variables, where approximately 75% of the pairs
inside a circle of radius 1 centred in the origin has been removed. More precisely, the
observations are observations from (X, Y), where X can written X = 1{X2+Y2>1}X′ +
IA(1− 1{X2+Y2>1})X′, where 1{X2+Y2>1} is 1 when X2 + Y2 > 1 and 0 when X2 +
Y2 ≤ 1, IA is a random variable that is 1 with probability 0.25 and 0 with probability
0.75, and X′ and Y′ are independent standard normal variables. Y is similary
defined.

There are no monotone association (and both the correlation and Spearman’s
correlation are less than 0.05), but the χ-plot clearly shows that the variables are not
independent. Note that if the hole was not centred in the middle of the distribution,
we would (naturally) get patterns more similar to the ones in figure 5.2 on the
facing page.

5.2 Kendall plots

Recall that when (X, Y) has a distribution with margins F and G, the distribution
function of F(X), G(Y) is the copula of (X, Y). This means that the transformed
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−3 0 3

−3

0

3

(a) Scatterplot. (b) Rank scatterplot. (c) χ-plot.

Figure 5.4: Scatterplot, rank scatterplot and χ-plot of observation from 500 pairs of
independent standard normal variables, where 75% of the observations
inside the unit circle have been removed. Again the resolution of the
vertical axis near χ = 0 has been increased for the χ-plot, by using the
same transformation as in figure 5.3 on the preceding page.

variables in figure 5.1b on page 82 are observations from this copula, and contain
all the information on the association between X and Y.

Based on this observation, Genest and Boies (2003) have proposed a graphical
measure of association between two variables, similar to the χ-plot and based on
the same concept as q-q plots (see Wilk and Gnanadesikan 1968).

In q-q plots, we plot (sample) quantiles from one distribution against (sample)
quantiles from a different distribution in order to compare the two distributions.
When the two distributions belong to the same location-scale family, the points will
lie on a straight diagonal line (approximately so if sample quantiles are used). And if
they belong to the exact same distribution, the straight line will have an orientation
of 45% degrees (when the same scale is used on both axes). Any deviation from
this can be used to judge the way the distributions differ, such as different location
(for example, mean or median), different scale (for example, variance), heavier or
lighter tails, or a more complex form of difference (see, for instance, Cleveland
1994, 1993). Instead of (theoretical) quantiles, we can also use (expected values of
the) order statistics, and this gives similar results.

Kendall plots (or K-plots) are based on a similar approach, using expected values.
We have (observations from) a random sample from a bivariate distribution. First
we define Hi as in equation 5.1 on page 82:

Hi =
1

n− 1
#
{

j 6= i : Xj ≤ Xi, Yj ≤ Yi
}

.
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Then we plot the expected values of the order statistics of the Hi against the
observed values under the hypothesis of independence. More specifically: First
order Hi to get H(1) ≤ · · · ≤ H(n), and compute wn,i, the expected value of the ith

order statistic H(i) in a random sample of size n. Then plot the pairs (wn,i, H(i)).
For convenience, Genest and Boies (2003) use the asymptotic null distribution of the
order statistics.

It is well-known (see, for instance, Casella and Berger (2001), page 229) that the
expected value of an order statistic from a continuous distribution with distribution
function K0 and density k0 is

wn,i = n
(

n− 1
i− 1

) ∫ 1

0
w k0(w)K0(w)i−1(1− K0(w))n−i dw. (5.4)

Genest and Rivest (1993) has shown that under mild regularity conditions, the
empirical distribution function Kn of H1, . . . , Hn is a

√
n -consistent estimator of

K(w) = P(H(X, Y) ≤ w), 0 ≤ w ≤ 1,

where H is the joint distribution function of (X, Y). Note that K depends only on
the copula of the bivariate distribution:

K(w) = P(H(X, Y) ≤ w)

=
∫ ∞

−∞

∫ ∞

−∞
1{H(x, y) ≤ w}dH(x, y)

=
∫ ∞

−∞

∫ ∞

−∞
1{C(F(x), G(y)) ≤ w}dC(F(x), G(y))

=
∫ 1

0

∫ 1

0
1{C(u, v) ≤ w}dC(u, v)

= P(C(U, V) ≤ w), (5.5)

where U and V are independent uniformly distributed variables on I. It is now easy
to show that when X and Y are independent (that is, H = F×G, or C(U, V) = UV),
we have

K(w) = K0(w) = P(UV ≤ w) = w− w ln(w), 0 ≤ w ≤ 1. (5.6)

Inserting this into equation 5.4, we can calculate wn,i, and plot H(i) against these
values. The plot should preferably be based on at least 50 observations. Figure 5.5
on the following page shows a K-plot for independent variables.
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Wn,i

H
(i)

Figure 5.5: K-plot of 100 pairs of observation from a bivariate standard normal
distribution with independent components.

For further details (and graphs), see the cited article.

5.3 Summary and conclusions

In this chapter, we have briefly looked at two graphical displays intended to help us
discover dependence structure in bivariate distributions. It is not easy to determine
the exact form of dependence from these displays, whence they are more useful as
diagnostic tools to dermine if there is a dependence.

Just like correlation curves and the local dependence function, they can be used
to discover if we have dependence of the ‘positive’ or ‘negative’ type, but unlike
these, they can also be used to determine if there are structural dependence, for
example, if there are holes or ‘almost holes’ in the distributions.
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6
Summary and future research

In this thesis, we have looked at various measures of global and local dependence.
Not surprisingly, the measures of global dependence turned out to be of limited use
when the dependence was not of a monotone type. We also found, as is well-known,
problems with the interpretation of one of the most frequently used measures of
dependence – the correlation.

It might be expected that measures of local dependence would improve the
situation, and, indeed, the two measures we looked at manage to capture more of
the dependence structure in bivariate distributions. With correlation curves, we
can see how the dependence varies over the support of one variable; however,
the correlation curve is intrinsically a nonsymmetric measure, it only applies to
some very restricted bivariate distributions and it can not always help us discover
monotone dependence that is a function of where we are in a two-dimensional
area.

The local dependence function, on the other hand, is a function of two coordinates,
and does help us here. Calculations and simulations indicate that it, and its estimate,
manage to capture (at least the ‘sign’ part of) the two-dimensional dependence.
Using two- and three-dimensional graphical displays of the local dependence
function, we have found it easy to see how the dependence changes when we move
over the support of the bivariate distributions. But despite its merits compared to
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the correlation curve and the global measures, the local dependence function has
its problems: we have not found any natural or ‘reasonable’ interpretation of its
numerical value (except its sign). And, the function does not capture structural
dependence.

One such function that does capture these type of dependence, and, in fact, any
type of dependence one could think of, is the copula. It is a pure ‘dependence
function’, and several of the measures we have looked at can be reformulated as
(non-invertible) transformations of the copula. Its rich dependence-characterising
property does not come without a price, though: the copula itself is difficult to
interpret as a measure of how strong the dependence is (locally).

Our last subject of interest in this thesis, two graphical displays, does not help us
with any of the above-mentioned problems. It does, however, give us a possibility to
infer if there is a dependence between two random variables, based on observations.
The displays may also indicate possible dependence models (copulas).

This thesis have only covered a tiny subset of all dependence measures, and
there are many avenues for future research. The subject of copulas and their
application enjoys much current interest, but it seems that simple measures of
local dependence has been somewhat neglected. For the local dependence function,
several improvements seem possible:

– Better automatic bandwidth selection.

– Other estimators, perhaps taking advantage of the fact that the measure is a
function only of a conditional distribution.

– Modifications of the current estimator to improve the behaviour at boundaries
(using boundary kernels?).

– Generalisations to more than two variables. Of course, we can look at pairwise
local dependences between the variables, but variables may be pairwise
independent while still having a rich multivariate dependence structure. Are
there any natural generalisations of the local dependence functions? If so,
what information does the sign of the generalised local dependence function
indicate?

– And last, but not least, what are possible interpretations of the value of the
local dependence function? Does there exist other derivations of the function
thay may help in the interpretation?

The thesis ends here.
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