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Abbreviation 
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APS Adenosine 5'-phosphosulfate 

AOM Anaerobic oxidation of methane 

bp Base pairs 

cmbsf Cm below the seafloor 
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CO Carbon monoxide 
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CoA Co-enzyme A 
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DsrA Dissimilatory sulfite reductase (Dsr) subunit A 
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N2 Molecular nitrogen 

NO3
-
 Nitrate 

NO2
-
 Nitrite 

PAPS 3′-phosphoadenosine-5′-phosphosulfate 

Qmo quinone-interacting membrane-bound oxidoreductase 

RAST Rapid Annotations using Subsystems Technology 

rRNA Ribosomal RNA 

rTCA Reductive Tricarboxylic acid (TCA) cycle 

Sat Sulfate adenylyltransferase 

S
0 

Sulfur 
SO4

2- Sulfate 
SO3

2- 
Sulfite 

SRB Sulfate reducing bacteria 

SMTZ Sulfate-methane transition zone 

TCA Tricarboxylic acid (TCA) cycle- Krebs cycle 

THF Tetra hydro folate 
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Abstract 
Methane is the most abundant hydrocarbon in the atmosphere and after CO2; it contributes for 

14% of global greenhouse gas emissions. Marine sediments are a large reservoir of methane 

where approximately 80% of the methane is formed through a biological process known as 

methanogenesis by methanogenic archaea. Despite the high rates of CH4 production in marine 

sediments, about 90% of methane flux from sediment is recycled through the microbial process, 

anaerobic oxidation of methane (AOM) with sulfate. The AOM is catalyzed by uncultivated 

anaerobic methanotrophic archaea (ANME-1, 2 and 3) which thus have a crucial role regulating 

the flux of methane from marine environments to the atmosphere. In this study, the functional 

potential of an ANME2c-dominated sediment horizon at 20-22cm below the seafloor in the G11 

pockmark at Nyegga has been investigated using a metagenomic approach. Total DNA was 

applied to 454-pyrosequencing and 142.8 MB (1001981 sequence reads) sequence information 

was assembled into 22706 contigs. The assembled contigs were clustered into 4 bins based on 

multivariate statistics of tetra-nucleotide frequencies combined with the use of interpolated 

Markov models, using Metawatt binner tool. Three of the metagenomic bins were imported into 

RAST for annotation. From the bins, genes encoding phylogenetic marker genes, 16S rRNA, 

Adenylylsulfate reductase (AprAB) and Methyl CoM reductase (Mcr) subunit A (McrA) were 

extracted. Phylogenetic analysis suggested that metagenomic bin II was of ANME2c and bin I 

was of Desulfobacteraceae. A complete set of genes encoding enzymes involved in reverse 

methanogenesis including Coenzyme F420- dependent N5N10-methylene tetrahydromethanopterin 

reductase (Mer) and Methyl CoM reductase (Mcr) was observed in the ANME2c bin. In the 

Desulfobacteraceae bin, the enzymes involved in three enzymatic reactions of the dissimilatory 

sulfate reduction pathway, Sulfate adenylyltransferase (Sat), Adenylylsulfate reductase (AprAB) 

and Dissimilatory sulfite reductase (DsrABC) were identified. Furthermore, the electron 

transporter proteins, QmoABC (quinone-interacting membrane-bound oxidoreductase) and 

DsrMJKOP complexes known to donate electron to AprAB and DsrABC, respectively, wer 

found in this bin. The presence of CO-dehydrogenase/acetyl-CoA synthase (Fd2−red), the key 

enzyme of acetyl-coenzyme A (CoA) pathway, in the Desulfobacteraceae and ANME-2c bins 

indicated a potential for CO2 fixation via this pathway in both groups of microorganisms. The 

obtained data did not reveal any information about substrate spectrum by the Desulfobacteraceae 

as no genes encoding an uptake hydrogenase, formate dehydrogenase and lactate dehydrogenase 

were identified.  The metagenomic analyses did not support the use of other electron acceptors 

like nitrate of iron/manganese by the ANME2c population.  However, the presence of gene 

fragments of a nitrogen fixation pathway in methanogenic archaea in the metagenomic data 

indicated a potential for this process in the community. Altogether, this study has fortified the 

partnership of ANME-2c and sulfate-reducing bacteria from the Desulfobacteraceae family, and 

revealed new information about other possible aspects of syntrophy, in addition to the methane 

oxidation coupled to sulfate reduction, in the Nyegga sediments.  
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1. Introduction 
The sea-bed may not seem like a hospitable habitat. Permanent darkness and isolation from 

photosynthetic pathways, high pressure and nearly freezing temperature (less than 4°C) 

characterize the sea-bed as a biologically inert environment. Deep-sea research in the nineteen 

century revealed that beside the vast desert-like plain of deep sea mud, this large habitat consists 

of a wide range of environments such as hydrothermal vents, ocean crust, cold-seep, trench and 

seamounts (Jorgensen and Boetius, 2007, Orcutt et al., 2011). Back in 1850s, Edward Forbes 

claimed the “azoic hypothesis” which states that no life exists below 300 fathoms (Anderson and 

Rice, 2006). Subsequently in the 1950s, analysis of sediment samples collected from the 

Philippine Trench at more than 10,000m depth (Zobell and Morita, 1959) , laid Forbes’s theory 

to rest. Samples were gathered on the Danish-Galathea Deep-sea Expedition and they showed the 

presence of millions of variable bacteria per gram (Jorgensen and Boetius, 2007, Zobell and 

Morita, 1959).  

All life on earth depends on access to the source of energy and carbon. No photosynthesis exists 

in the deep sea due to inadequate light at depth, therefore in the dark ocean metabolic strategies 

are based on chemical redox reactions rather than photosynthesis process (Orcutt et al., 2011). 

Furthermore, organisms in the dark ocean utilize different respiration pathways. These energy-

generating reactions are differently coupled, spatially, temporally and functionally (Jorgensen 

and Boetius, 2007, Orcutt et al., 2011). In the absence of light, energy is obtained when the 

coupled redox reactions are thermodynamically favorable and yield enough energy for ATP 

generation. Redox reactions involve the transfer of electron(s) between compounds; therefore, 

the metabolic reactions in the dark ocean are dependent upon the availability and speciation of 

electron donors and acceptors (oxidizable and reduceable compounds, respectively). The 

contribution of each electron donors and acceptors to the overall metabolic activity in any 

environment is dependent in part on their availability (Dahle et al., 2015). The dominant electron 

donors in the dark ocean include organic matter, molecular hydrogen, methane, reduced sulfur 

compounds, reduced iron and manganese, and ammonium. Oxygen, nitrate, nitrite, manganese 

and iron oxides, oxidized sulfur compounds and carbon dioxide are available electron acceptors 

in the dark ocean (Orcutt et al., 2011). 

1.1. Methane cycling 
Marine sediments are the largest reservoir of methane on earth (Knittel and Boetius, 2009, 

Reeburgh, 2007). At the continental margins large amount of methane are stored in the 

subsurface sediments as crystalline methane hydrates, dissolved in pore water and as free gas 

(Kvenvolden, 1993). Methane is one of the cornerstones of the global carbon cycle. In marine 

sediments, it is generated through abiotic (Sherwood Lollar et al., 2002, Kelley and Früh-Green, 

1999) and/or biotic processes (Kvenvolden and Rogers, 2005). Abiotic formation of methane 

occurs either by the thermal degradation of buried organic matters (Sherwood Lollar et al., 2002) 

or by the reaction of H2 and CO2 during reaction between mafic (i.e. magnesium and iron-rich) 
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rocks referred as the serpentinization process (Kelley and Früh-Green, 1999). The abiotic 

formation of methane represents only a small fraction of methane generation compared to the 

methane formed via biotic processes in marine environments (Thauer et al., 2008). Microbial 

production of methane from either CO2 plus H2 (Reaction 1), or from methylated compounds 

(formate, methanol, methylamines…), is known as methanogenesis. Only microorganisms from 

the Archaea domain can perform methanogenesis and biologically produce methane. These 

microorganisms, called methanogens, are strict anaerobes. All methanogens thus typically exist 

in anaerobic environments where the only available electron acceptor is CO2 (Kietavainen and 

Purkamo, 2015). 

                                                       CO2 + 4H2 → CH4 + 2H2O   (1) 

 Globally, about 80% of methane is formed by methanogenic archaea (Orcutt et al., 2011).  

Produced methane diffuses upwardly and can either served as a substrate for aerobic or anaerobic 

methane oxidation (AOM) or be emitted to the atmosphere (Liu and Whitman, 2008). In marine 

sediments, the main niche for AOM is a region of sulfate (SO4 
2 −

) and methane (CH4) interface 

known as sulfate-methane transition zone (SMTZ) (Iversen and Jorgensen, 1985). Since the 

production of methane undergoes bellow the sulfate-rich zone, sulfate is the first electron 

acceptor candidate for AOM. In this process methane serves as an electron donor and is 

converted to carbon dioxide (CO2) and reduced products are served as electron donors in the 

conversion of SO4 
2−

 to hydrogen sulfide (H2S) and water (Orcutt et al., 2011).  

Methane constitutes 14% of global greenhouse gas emissions (Cui et al., 2015). Although the 

methane concentration in the atmosphere is lower than the CO2 concentration, it contributes to 

~30% of the anthropogenic warming, with the radiative forcing of 0.48 Wm 2 in 2011, due to its 

capacity to trap heat in the atmosphere about 25 folds more than CO2 (Cui et al., 2015). Despite 

high rates of CH4 production in marine sediments, 80% of methane flux from sediment is 

recycled through microbial AOM (Knittel and Boetius, 2009). This process keeps the oceanic 

methane emission less than 2% of total global methane emission. The concentration of the 

methane differs from millimolar in marine sediments to nanomolar in ocean waters (Reeburgh, 

2007) . Thus, microbial methane oxidation plays an important role for sinking the atmospheric 

methane and keeping the balance of methane emission to the atmosphere. In other words, it has a 

great impact on global warming (Boetius et al., 2000a, Orcutt et al., 2011).  

1.1.1. Methanogenesis 

1.1.1.1. Methanogenes  

Seven methanogenic archaeal orders have been identified including Methanopyrales, 

Methanococcales, Methanobacteriales, Methanocellales, and Methanomicrobiales and 

Methanosarcinales (Costa and Leigh, 2014, Thauer et al., 2008) and Methanoplasmatales (Paul 

et al., 2012). Hydrogen serves as main electron donor for reduction of CO2, but formate, carbon 

monoxide (CO), and certain alcohols can provide the electrons for this process in some 
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methanogens (Madigan et al., 2015). Hence, they can be categorized into two groups depending 

on the methane generating pathways: chemolithoautotrophic methanogens and 

chemoorganotrophic methanogens. The chemolithoautotrophic methanogens use CO2 and H2 for 

all cellular purposes, from production of energy to production of their cellular building blocks, 

whereas chemoorganotrophic methanogens employ various carbon molecules containing methyl 

group such as acetate, methanol, methylamines, and methylsulfides as substrates (Kietavainen 

and Purkamo, 2015). 

1.1.1.2. Methanogenesis from CO2 +H2 

The methanogenesis involves series of biochemical reactions ultimately ending up with the 

formation of methane. Two different coenzymes participate in this process; 1) C1 carriers that 

carry C1 unit along the enzymatic pathway and 2) the redox coenzymes which donate electrons. 

The first group is respectively composed of Methanofuran, Methanopterin, Coenzyme M (CoM), 

and F430 coenzyme. The coenzyme F420 and 7-mercaptoheptanoylthreonine phosphate 

(Coenzyme B, CoB) donate electrons through methane formation pathway (Liu and Whitman, 

2008).  

 

  

 

Figure 1. Methanogenesis and AOM through reverse methanogenesis pathway. Adapted from 

(Hawley et al., 2014). 
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Methanogenesis (Figure 1.) in which eight electrons are transferred from H2 to CO2 is 

summarized as:  

 In the first step, a methanofuran (MFR)-containing enzyme activates CO2. Methanofuran, 

through its amino group, binds CO2 and reduces it to the formyl level. The protein 

ferredoxin, which is reduced by H2, is the immediate electron donor. 

 The C-1 moiety is transferred to a tetrahydromethanopetrin (H4MPT)-containing enzyme 

and forms formyl-H4MPT. The formyl group is dehydrated to methenyl and subsequently 

reduced to the methylene and methyl levels forming methyl-H4MPT. (Two separate 

steps). Reduced F420 supplies electrons for these steps. 

 A CoM- containing enzyme accepts the methyl group from methanopterin. 

 A methyl reductase (MCR) reduces methyl-CoM to methane. In this reaction coenzyme 

F430 transfers the CH3 group from CH3-CoM and forms a Ni
2+

-CH3 complex. Then CoB 

donates electrons to this complex and reduces it to methane forming a disulfide complex 

of CoM and CoB (CoM-S—S-CoB). 

 The terminal step is linked to energy conservation. In this step, the hetero-disulfide is 

reduced by F420 to regenerate the active form of coenzymes CoM-SH and CoB-SH. A 

hetero-disulfide reductase carries out this reduction. The reduction process is coupled to 

the pumping of protons across the membrane, generating a proton motive force and 

finally ATP is synthesized (Liu and Whitman, 2008). 

The MCR is thus the key enzyme in this pathway and mediates the final step in methanogenesis; 

heterodisulfide formation between CoM and CoB with concomitant release of methane. The 

holoenzyme contains three subunits, which are encoded by the mcr operon (mcrABCDG) 

(Figure 2.). Methanogenic MCR is a 300 kDa heterotrimeric apocomplex with α2β2γ2 

configuration. The active enzyme contains two binding sites that complex with two molecules of 

the 905 Da nickel porphyrin prosthetic group in F420 coenzyme (Ellefson and Wolfe, 1981, 

Ermler et al., 1997). The structure of the active site in the alph subunit in Methanothermobacter 

marburgensis is post-translationally modified involving thioglycineα445, N-

methylhistidineα257, S-methylcysteineα452, 5-(S)-methylarginineα271 and 2-(S)-

methylglutamineα400 (Ermler et al., 1997, Grabarse et al., 2000).  

 

 

Figure 2. The mcrABCDG operon; the organization of the genes encoding the Mcr subunits in most 

species of methanogens and  also in ANME-2c. Adapted from (Alvarado et al., 2014). 
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1.1.2. Anaerobic Oxidation of Methane (AOM)  

1.1.2.1. Anaerobic Methanotrophic Archaea (ANME) 

Anaerobic oxidation of methane, AOM, was first reported in marine sediments in 1976. 

Although the responsible microorganisms were not identified, AOM was reported to be coupled 

with sulfate reduction (Cui et al., 2015). Since then, extensive studies have been performed to 

identify the microorganisms catalyzing the process, their phylogeny and ecology as well as their 

biochemistry and energy conservation mechanisms (Callaghan, 2013, Cui et al., 2015, Knittel 

and Boetius, 2009). 

Three clades, responsible for AOM, are known as anaerobic methanotrophic archaea (ANME) 

and are classified as ANME-1, ANME-2, and ANME-3 (Orphan et al., 2001, Knittel et al., 

2005). The ANME are phylogenetically related to the methanogens (Figure 3.), but function as 

methanotrophs instead of methanogens and oxidize methane as an electron donor. Methane 

production has been only reported for ANME-1 (Lloyd et al., 2011).  Based on the 16S rRNA, 

ANME-1 is distantly affiliated with Methanosarcinales and Methanomicrobiales and divided 

into two subgroups, ANME-1a and ANME-1b (Knittel et al., 2005). 

Figure 3. Phylogenetic 

relationship of ANME and 

methanogenes based on 

16s rRNA gene sequences. 

ANME-2 and ANME-3 

have close affiliation with 

Methanosarcinales and 

Methanococcoides 

respectively. ANME-1 is 

distantly related to 

Methanosarcinales and 

Methanomicrobiales. 

Adopted from (Knittel and 

Boetius, 2009). 

 

 

ANME-2 belongs to Methanosarcinales (Knittel et al., 2005) and ANME-3 is related to the 

genera Methanococcoides (Niemann et al., 2006). Sequences affiliated with ANME-2 are 

classified into four distinct subgroups, designated ANME-2a, ANME-2b, ANME-2c, and 

ANME-2d (Figure 3.) (Mills et al., 2003, Orphan et al., 2001).  

ANME are often found to co-occur with Deltaproteobacteria (Table 1.1.) in the AOM sites and 

AOM is suggested to be mediated through synthrophic consortia of ANME together with sulfate-
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reducing bacterial partners, (SRB) (Knittel and Boetius, 2009). The process is catalyzed 

according to the overall reaction (Reaction 2) (Nauhaus et al., 2002). 

                                            CH4 + SO4
2-

 → HCO3
-
 + HS

-
 + H2O      (2) 

ANME-1 and ANME-2 are shown to form consortia with SRB of the genera Desulfosarcina–

Desulfococcus (DSS) (Boetius et al., 2000b, Orphan et al., 2002), whereas ANME-3 are 

associated with SRB of the genus Desulfobulbus (DBB) (Table 1.1.) (Niemann et al., 2006). 

Beside association of ANME with Deltaproteobacteria, association with other putative partners 

such as Sphingomonas spp. of Alphaproteobacteria and Burkholderia of Betaproteobacteria, has 

more recently been observed (Knittel and Boetius, 2009). 

1.1.2.2. Reverse methanogenesis 

The close phylogenetic relationship of ANMEs with methanogens are also reflected in their lipid 

structure, morphology/shape and by the presence of homologous genes for enzymes associated 

with the canonical seven-step methanogenic pathway (Figure 1. and Table 1.1.) (Cui et al., 2015, 

Hallam et al., 2004, Meyerdierks et al., 2010).  

The studies of mcr genes retrieved from AOM habitats dominated by ANME-1 and ANME-2 

populations, respectively, indicated highly conserved amino acid sequences and similar to the 

MCR involved in methanogenesis suggesting a fundamental role of MCR in reversed 

methanogenesis (Kruger et al., 2003, Knittel and Boetius, 2009). In 2004, in a metagenomic 

study by Hallam and colleagues (Hallam et al., 2004), genes encoding the reverse methanogenic 

pathways were found in fosmids of ANME. Later additional metagenomic and metaproteomic 

studies have supported that AOM occurs via the reverse methanogenesis pathway (Knittel and 

Boetius, 2009, Meyerdierks et al., 2005, Stokke et al., 2012). Notably, the enzyme N5,N10-

methenyl-tetrahydromethanopterin reductase encoded by mer is detected in ANME-2 and -3 but 

is not found in ANME-1 (Hallam et al., 2004, Stokke et al., 2012, Knittel and Boetius, 2009). 

Interestingly, the ANME MCR- complex was found to be overall similar in structure to the 

methanogenic enzyme and contains Ni, CoM and CoB, however, it differs in some details by a 

different F420 variant and post-translational modifications (Shima et al., 2012). 

1.1.2.2.1. Syntrophy and sulfate dependent AOM 

Synthrophic AOM with sulfate requires an electron-shuttle from ANME to the sulfate-reducing 

partner and several different mechanisms have been proposed and tested. Electrons have been 

hypothesized to be shuttled as an organic compound such as formate, acetate, glucose, lactate, 

molecular hydrogen, carbon monoxide and redox-active small molecules including phenazines 

and humic acids (Nauhaus et al., 2005). However, some experimental evidences and modelling 

studies have discarded the putative role of hydrogen, formate, acetate or methanol as syntrophic 

intermediates for sulfate reduction during AOM (Meyerdierks et al., 2010, Moran et al., 2008). 
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Table 1.1. The properties of three groups of ANME, adapted from (Cui et al., 2015). 

         ANME-1         ANME-2        ANME-3 

Common features    

Habitat Various anaerobic 

areas (marine 

sediments, cold seep, 

lake 

sediments, soils, oil 

field sediments, 

etc.) 

Various anaerobic 

areas (marine 

sediments, cold seep, 

lake 

sediments, soils, oil 

field 

sediments, etc.) 

Submarine mud 

volcanoes and 

marine methane 

seep 

Subgroup a, b a, b, c, d ND 

Pure culture No No No 

Features associated with SRB    

Associated SRB     Desulfosarcina 

          and 

    Desulfococcus 

      Desulfosarcina  

         and 

      Desulfococcus 

   Desulfobulbus 

Associated form      Often loose Often form structured 

consortia 

    Often form 

structured consortia 

Associated necessity No No No 

Single-cell form Often  Yes Yes 

Features related to methanogens    

Related methanogen Methanosarcinales     

and 

Methanomicrobiales 

  Methanosarcinales  Methanococcoides 

Shape Often rod shaped (like 

Methanobacteriales 

and 

Methanomicrobiales) 

Often coccoid shaped 

(like 

Methanosarcinales) 

Often coccoid     

shaped (like 

Methanosarcinales) 

Harbour mcrA Yes Yes Yes 

mcrA subgroup    a, b (identified)    c, d (identified) 

      e (possible) 

    f (identified) 

Produce methane Yes ND ND 

Autofluorescent under UV 

light (like methanogens) 

Yes Yes Yes 

 

Meyerdierks and colleagues (Meyerdierks et al., 2010) identified a cluster of genes encoding 

putative secreted multiheme c-type cytochromes in their metagenomic and metatrascriptomic 

datasets of ANME-1, and based on this finding they suggested direct electron transfer from 
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ANME-1 to the bacterial sulfate-reducing partner via an extracellular conductive matrix 

(Meyerdierks et al., 2010). 

Recently, another model has been proposed based on studies of an enrichment culture of 

consortia of ANME-2c and sulfate reducing bacteria (SRB) (Milucka et al., 2012). In this model, 

ANME is suggested to carry out both methane oxidation and sulfate reduction. Zero-valent sulfur 

is produced and disulfide is proposed as a key intermediate, taken up by the SRB 

(Deltaproteobacteria). This sulfur compound is subsequently disproportionated to sulfide and 

sulfate. The sulfate produced is reused in AOM by ANME (Figure 4.)(Reaction 3.). The 

expressed enzymes in the SRB, ATP sulfurylase (Sat) and dissimilatory sulfite reductase (Dsr), 

which are key enzymes in the canonical dissimilatory sulfate reduction pathway (Figure 4.) are 

suggested to rather take part in disulfide disproportionation. The mechanism for sulfate reduction 

by ANME was not identified and remains elusive. 

     7CH4 (aq) +8 SO4
2-

 + 5 H
+
 → 4HS

-
 + 7HCO3

-
 +11 H2O       G= - 26.5kJ mol

-1
 (CH4)         (3) 

         

Figure 4. Schematic model of anaerobic 

oxidation of methane coupled to sulfate 

reduction in the consortia of ANME 

and SRBs. ANME (red) simultaneously, 

oxidize methane anaerobically and 

reduces sulfate to zero-valent sulfur (S
0
, 

elemental sulfur) . Elemental sulfur reacts 

with sulfide and forms polysulfides. 

Deltaproteobacteria takes up the 

polysulfide and produce sulfate and 

sulfide through sulfate disproportionation. 

The produced sulfate may be re-used by 

the ANME, adapted from (Milucka et al., 

2012).                                                             

       

1.1.2.2.2. Nitrate/Nitrite-Dependent AOM  

Nitrate/nitrite-dependent AOM (Reaction 4. and Reaction 5.) has recently been described (Ettwig 

et al., 2010, Haroon et al., 2013b). So far, it has been reported only in different natural freshwater 

habitats (Cui et al., 2015). 

 

             5CH4 +8NO3
-
 +8H

+ 
→ 5CO2+ 4N2+ 14H2O          G

0
= -765  kJmol

-  
CH4        (4) 

             3CH4+8NO2
- 
+8H

+ 
→ 3CO2 +4 N2+ 10H2O           G

0
= -928  kJmol

-
 CH4          (5) 



 
14 SEPIDEH MOSTAFAVI 

Based on the genomic studies on Candidatus Methylomirabilis oxyfera an intra-aerobic” 

pathway of nitrite reduction was found (Ettwig et al., 2010). A disproportionation of NO2
-   

into 

NO and O2 provides O2 for methane oxidation, a mechanism that allows Candidatus 

Methylomirabilis oxyfera, to couple AOM to nitrite reduction without the aid of any other 

partner.  

Reconstruction of a genome of ANME-2d, based on metagenomic data, identified genes for 

nitrate reduction as well as the genes encoding a complete reverse methanogenesis pathway 

(Haroon et al., 2013). This ANME-2d was termed Candidatus Methanoperedens nitroreducens 

(Haroon et al., 2013a). Despite these hypotheses, the mechanism of AOM coupled to 

nitrate/nitrite reduction is still ambiguous. 

1.1.2.2.3. Metal Ion (Mn4+ and Fe3+)-Dependent Anaerobic oxidation of Methane  

In this process, methane oxidation is coupled with the reduction of metal ions such as (Mn
4+

) and 

iron (Fe
3+

). The mechanism and the microorganisms involved in this process are still unknown; 

however, ANME-1 and ANME-2, and An uncultivated group, affiliated with the marine benthic 

group D were dominant in the sediment where metal ion reduction seems to be coupled to AOM 

(Beal et al., 2009). 

1.2. Dissimilative Sulfate reduction  
Oxidized sulfur compounds including sulfate, elemental sulfur and thiosulfate are common electron 

acceptors that are available in the dark ocean (Orcutt et al., 2011). Sulfate (SO4
2-

), the most oxidized form 

of sulfur, is one of the most abundant anions in seawater and participates in anaerobic respiration 

reactions as an electron sink (Orcutt et al., 2011). It is utilized either as a sulfur source for 

biosynthetic reactions (known as assimilative sulfate reduction) or as an electron acceptor 

through energy-generating process (known as dissimilative sulfate reduction) (Madigan et al., 

2015). Assimilative sulfate reduction is widespread in many organisms such as plants, algae, 

fungi, and most prokaryotes whereas reduction of sulfate through the dissimilative sulfate 

reduction is restricted to a small fraction of prokaryotes population (Hansen, 1994, Madigan et 

al., 2015). Sulfate-reducing prokaryotes comprising both bacteria and archaea play a key role in 

anaerobic degradation in presence and even absence of sulfate, and are able to utilize a wide 

range of substrates such as fermentation products and intermediate breakdown products e.g. 

certain amino acids, glycerol, and fatty acids as well as H2 (Hansen, 1994). Almost all species of 

sulfate-reducing bacteria use Hydrogen as electron donors whereas this is not the case for other 

electron donors. For example marine sulfate-reducing bacteria utilize acetate and longer-chain 

fatty acids and species found in freshwater anoxic environments prefer lactate and pyruvate. 

Some species, such as Desulfosarcina and Desulfonema, grow chemolithotrophically and utilize 

H2 as an electron donor, SO4
2-

 as an electron acceptor, and CO2 as the sole carbon source. In 

organotrophic sulfate reducers, such as Desulfovibrio species, organic compounds e.g. lactate, 

pyruvate, or ethanol are oxidized to acetate with the production of hydrogen (Madigan et al., 

2011). 
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So far, isolation and characterization of any SRB partner of ANME, has not been successful and 

whether they are dependent on a true syntrophic relation or not remains unknown. However, the 

model by Milucka et al, may hint to a lifestyle including disproportionation of sulfur compounds 

(Milucka et al., 2012).  

In both assimilative and dissimilative reactions, the product is hydrogen sulfide (Figure 5.). 

Produced H2S through dissimilative reduction is excreted from the cell and is available for other 

organisms or it is free to react with other elements, such as metals. In contrast, hydrogen sulfide 

resulted in the assimilative reduction of sulfate is assimilated into organic sulfur compounds such 

as sulfur-containing amino acids (Madigan et al., 2015). 

 

Figure 5.Assimilatory 

and dissimilatory 

sulfate reduction 

pathways. Both of 

these pathways initiate 

with activation of 

sulfate by reacting with 

ATP. Adenosine 5'-

phosphosulfate (APS) is 

reduced to sulfite and 

finally to sulfide. 

Dissimilatory sulfate 

reduction costs 1 ATP, 

whereas assimilatory 

sulfate reduction costs 2 

ATPs.  Adopted from 

(Grein et al., 2013). 

 

 

The first step of both pathways includes activation of stable molecule of sulfate by reacting with 

ATP catalyzed by Sulfate adenylyltransferase, known as Sat. This enzyme catalyzes the transfer 

of the adenylyl group from ATP to inorganic sulfate, forming adenosine 5'-phosphosulfate (APS) 

and pyrophosphate (Hansen, 1994, Taguchi et al., 2004, H. D. PECK, 1962). During the 

prokaryotic assimilatory pathway APS is converted to 3′-phosphoadenosine-5′-phosphosulfate 

(PAPS). Subsequently PAPS is reduced to sulfite, and finally sulfite is reduced to sulfide (Crane 

and Getzoff, 1996, Madigan et al., 2015). In the dissimilatory pathway APS is reduced to sulfite by 

the APS reductase (Apr). Then sulfite is reduced to sulfide by dissimilatory sulfite reductase (Dsr) 

(Madigan et al., 2015).  
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Aps reductase is a αβ heterodimeric iron-sulfur flavoenzyme (Grein et al., 2013). The AprA 

subunit contains an FAD group whereas AprB subunit contains two [4Fe-4S] 2+/1+ clusters. 

Despite low sequence identity, the structure of the AprA is strongly similar to the family of 

flavoproteins such as fumarate reductase and aspartate oxidase. The AprB subunit contains the 

bacterial ferredoxin-like domain (Fritz et al., 2002). The reduction of sulfite to sulfide is 

catalyzed by a multi-meric dissimilatory sulfite-reductase DsrABC. DsrD is a small protein that 

is thought to have regulatory role in sulfite reduction (Caffrey and Voordouw, 2010, Mizuno et 

al., 2003). The DsrAB sulfite reductase forms a α2β2 unit. Each αβ unit contains siroheme 

cofactors, coupled to a [4Fe\4S] iron–sulfur cluster through the cysteine heme axial ligand. In 

active DsrAB, only one of the cofactors is catalytically active (Oliveira et al., 2008).  

It has been proposed that either intracellular or extracellular hydrogen cycling involve in the 

energy conservation in sulfate respiration (Keller and Wall, 2011, Ramos et al., 2012). The 

internal hydrogen can be produced from the catabolism of organic compounds such as lactate 

and pyruvate, and across the cytoplasmic membrane into periplasmic space. Either the internal 

produced hydrogen or external hydrogen is oxidized by the periplasmic hydrogenase to electrons 

and protons.  Generated protons gradually establish the proton motive force for ATP synthesis by 

ATPase. During dissimilative sulfate reduction eight electrons are transferred through a number 

of intermediate transport reactions leading to a proton motive force and gradually ATP synthesis 

by ATPase. Cytochrome c3 plays major role in transferring electrons from periplasmic 

hydrogenase to a membrane-associated protein complex, known as Hmc (Madigan et al., 2015) 

(Figure 6.). 

 

Figure 6. Electron transport and energy 

conservation in sulfate-reducing bacteria. H2 

with either external or internal origin is oxidized 

by the periplasmic hydrogenase to electrons and 

protons. The periplasmic cytochrome (cyt) c3, 

and a cytochrome complex (Hmc) transfer 

electrons to a transmembrane protein by which 

electrons are shuttled across the cytoplasmic 

membrane and delivered to the Apr and Dsr 

enzyme complexes. ATP is synthesized through 

the proton motive force by ATPase. Adopted 

from (Madigan et al., 2011). 

 

The electrons are transferred trough the membrane via the Qmo and DsrMKJOP complexes to 

the AprAB and Dsr respectively. Qmo is composed of three subunits A,B and C in which QmoA 

and QmoB are cytoplasmic and QmoC is membrane-bound (Grein et al., 2013). The QmoC 
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subunit constitutes a cytochrome b transmembrane domain and a hydrophilic cytoplasmic 

domain containing two [4Fe\4S] cluster binding sites. The cytochrome b domain facilitates the 

electron flow between the quinone pool and the cytoplasm (Grein et al., 2013, Ramos et al., 

2012). The QmoA and QmoB subunits are both flavoproteins (Grein et al., 2013). The direct 

protein-protein interaction between QmoABC and AprAB was also reported in Desulfovibrio 

spp, (Ramos et al., 2012). DsrMKJOP is a multimeric transmembrane complex shuttling the 

electrons across the membrane to Dsr. DsrMKJOP complex constitutes of two periplasmic 

subunits: DsrJ and DsrO, two integral membrane subunits: DsrM and DsrP, and a cytoplasmic 

subunit ,DsrK (Grein et al., 2013). The DsrMKJOP complex appears to be a combination of two 

sub-complexes: the DsrMK and the DsrJOP subunits in which the DsrJOP module possibly, 

involved in electron swap between the periplasm and the quinone pool, and DsrMK between the 

membrane pool and the cytoplasm. Although there are some evidences that the complex seems to 

function as a complete unit (Grein et al., 2013). 

1.3. Carbon fixation  
Access to the carbon source is one of the cornerstones of life formation. Organisms are classified 

into autotrophs and heterotrophs based on their ability to build all cell material solely from 

inorganic carbon present in their surroundings. Autotrophs utilize energy from either light 

(photoautotrophs) or inorganic chemical reactions (chemolitotrophs) and fix inorganic carbon 

e.g. CO2, CO into organic compounds for biosynthesis and also create a store of chemical 

energy. Carbon dioxide, CO2, is one of the most common inorganic carbon sources in nature. So 

far, six autotrophic pathways have been discovered including the Reductive pentose phosphate 

(Calvin-Benson) cycle, Reductive Acetyl-CoA (Wood-Ljungdahl) pathway, Reductive citric acid 

(Arnon-Buchanan) cycle, Dicarboxylate/4-hydroxybutyrate cycle, 3-Hydroxypropionate/4-

hydroxybutyrate cycle and 3-hydroxypropionate bi-cycle (Fuchs, 2011, Hugler and Sievert, 

2011).  

 

 

Figure 7. The 

phylogenetic 

distribution of the 

carbon fixation 

pathways. Adopted from 

(Hugler and Sievert, 

2011). 
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Since this study attempts to address the functional potential of the microorganisms involved in 

the Nyegga region i.e. ANME and Deltaproteobacteria, we present two alternative pathways 

which are used by sulfate reducing bacteria (SRBs) and methanogens (Figure 7.) (Hugler and 

Sievert, 2011).  

1.3.1. Wood-Ljungdahl pathway 
The acetyl-CoA pathway, also known as the Wood-Ljungdahl pathway is widely used by 

acetogenic bacteria and other Eubacteria and some Euryarchaeota (Ljungdahl, 1986, Wood, 

1991). Sulfate-reducing bacteria and methanogens are among the organisms that employ the 

reductive acetyl-CoA pathway for autotrophic purposes and reduce CO2 to acetate and utilize it 

as a source of cell carbon for cell biosynthesis.     

The acetyl-CoA pathway is the only autotrophic pathway that is not a cycle and can 

simultaneously fix CO2 and synthesize ATP by converting acetyl-CoA to acetate. It includes two 

linear pathways. Through one of these pathways requiring the coenzyme tetrahydrofolate, one 

molecule of CO2 is reduced to the methyl group and remains bound to a tetrahydropetrin.  The 

other molecule of CO2 is reduced to the carbonyl group through the other reaction, which is 

catalyzed by carbon monoxide (CO) dehydrogenase (Figure 8.). This is the key enzyme of 

acetyl-CoA pathway and contains Ni, Zn and Fe as cofactors. Finally combination of CO and 

CH3 groups with CoA results in acetyl-CoA (Madigan et al., 2015, Fuchs, 2011, Hugler and 

Sievert, 2011).  

Figure 8. Acetyl-

CoA pathway.  

The reduction of 

CO2 along two 

linear pathways; 

one molecule of 

CO2 is reduced to 

the methyl group 

of acetate, and the 

other molecule of 

CO2 is reduced to 

the carbonyl group. 

The two C1 units 

are then combined 

at the end to form 

acetyl-CoA, 

adopted from 

(Siegl et al., 2011). 
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Figure 9. Reductive citric acid cycle. The enzymes 

involved in this cylces are: 1) Malate dehydrogenase 

(NADH), 2) Fumarate hydratase, 3) Fumarate reductase, 

4) Succinyl-CoA synthetase (ATP-dependent), 5) 2-

Oxoglutarate synthase (Fd2− red), 6) Isocitrate 

dehydrogenase [NAD(P)H], 7) Aconitase, 8) ATP- 

citratelyase, 9) Pyruvate synthase (Fd
2−

 red), 10) 

Pyruvate:water dikinase and 11) PEP carboxylase. The 

produced acetyl-CoA can be used in either biosynthetic 

processes or energy generating process. Adopted from 

(Fuchs, 2011). 

1.3.2. Reductive citric acid cycle 
The reductive citric acid cycle, also known as Arnon-Buchanan, is employed by various groups 

of strict anaerobic (Aoshima, 2007) and even microaerobic Eubacteria (Hugler and Sievert, 

2011). The presence of this cycle also has been reported in Desulfobacter hydrogenophilus 

(Schauder et al., 1987).                                  

 This cycle is a reversal of the oxidative 

citric acid cycle (TCA or Krebs cycle) 

(Figure 9.) i.e. instead of oxidizing 

acetyl-CoA that is performed in 

heterotrophic organisms for ATP 

synthesis; it is used for the biosynthesis 

of acetyl-CoA from two molecules of 

CO2 (Fuchs, 2011). Most of the 

enzymes such as Malate 

dehydrogenase, Fumarate hydratase, 

Succinyl-CoA synthetase, Isocitrate 

dehydrogenase, Aconitate hydratase, 

are common in the oxidative and 

reductive TCA cycle; the difference is 

the direction in which the reactions 

operate. However, the enzymes 

involved in irreversible steps are 

replaced for reductive direction 

constituting the key enzymes of the 

reductive TCA cycle e.g. Fumarate 

reductase, Ferredoxin-dependent 2-

Oxoglutarate synthase (2- 

Oxoglutarate:ferredoxin 

oxidoreductase) and ATP citrate lyase 

(Fuchs, 2011, Hugler and Sievert, 

2011). The reductive TCA cycle 

operates in an energetically unfavorable 

direction (Fuchs, 2011). Two carboxylation reactions are accomplished in this cycle; first the 

reductive carboxylation of succinyl-CoA to 2-oxoglutarate and second the reductive 

carboxylation of 2-oxoglutarate to isocitrate. The key reaction of the rTCA cycle is the ATP-

dependent cleavage of citrate to acetyl-CoA and oxaloacetate by ATP citrate lyase (Fuchs, 2011, 

Hugler and Sievert, 2011). 
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1.4. Nitrogen fixation 
Ammonia is the major form of the fixed nitrogen, which is ready for assimilation into organic 

forms such as amino acids and nucleotides. However, it is not available in all habitats. The 

biological process, in which dinitrogen (N2)  is enzymatically reduced to  the form of compounds 

that can be used as nutrients, is called nitrogen fixation or diazotrophy (Madigan et al., 2015). It 

provides a source of nitrogen to the majority of the biosphere that cannot directly assimilate 

molecular nitrogen (N2). The diazotrophy is a practical strategy to overcome nitrogen limitation, 

specifically in the habitats where host organisms that derive carbon primarily from nitrogen-

depleted sources, such as CO2 (e.g. cyanobacteria and plants) and CH4 (e.g. anaerobic 

methanotrophic bacteria) (Dekas et al., 2014). Only certain prokaryotes including bacteria and 

the archaea can fix nitrogen. Some are free-living whereas others are associative symbioses and 

fix nitrogen only in association with certain host such as plants (Madigan et al., 2015). Although 

most of the bacterial phylogenetic groups, including green sulfur bacteria, Firmibacteria, 

actinomycetes, cyanobacteria and all subdivisions of the Proteobacteria are able to fix nitrogen, 

but in archaea, nitrogen fixation is mainly restricted to methanogens. The diazotrophy has been 

reported in a diazotrophic methanogen from hydrothermal vent fluid near the Juan de Fuca Ridge 

and ANME-2 at Eel River Basin (Dekas et al., 2009). 

Diazotrophy is catalyzed by a large enzyme complex, nitrogenase, consisting of two distinct 

proteins, dinitrogenase and dinitrogenase reductase. Both proteins contain iron, and 

dinitrogenase contains molybdenum in addition. Dinitrogenase consists of a cofactor called the 

iron–molybdenum cofactor, in which the actual reduction of N2 occurs. The activation and 

reduction of nitrogen molecule requires six electrons and is highly energy demanding process, 

due to the stability of the triple bond in N2. The electrons are transferred from the electron donors 

(e.g. ferredoxin or flavodoxin) to dinitrogenase reductase and then to dinitrogenase to reduce N2. 

Despite some differences, diazotrophy in methanogens operated with the same basic mechanism 

(Leigh, 2000). 

In methanogens, the proteins involved in nitrogen fixation are encoded by nif operon consisting 

of six nif genes (Figure 10.). The nifK and nifD encode for the beta and alpha subunits of 

denitrogenase respectively, whereas nifH encode the denitrogenase reductase. The bacterial and 

the archaeal sequences of these genes are clear homologues and the nif gene organization is so 

conserved among the methanogens (Leigh, 2000). The nifE and nifN encode proteins responsible 

for formation of a functional catalytic site of the nitrogenase. The nif genes are present as a 

single operon in methanogens whereas in bacteria the nif genes are organized in nif regulon 

consisting several operons (Leigh, 2000). 

    Figure 10. The organization of nif genes in methanogens. Adopted form (Leigh, 2000). 
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1.5. Metagenomic study 
Classic microbial ecology has relied on characterization and categorization of cultured micro-

organisms. However, the development of culture-independent molecular methods has had a 

tremendous impact on microbial ecology and allowed researchers to address two main questions 

“Who is there?” and “What are they doing there?”(Handelsman, 2004). It was shown that rRNA 

genes can be used as evolutionary chronometer in population monitoring. It provides information 

about the taxonomic composition and phylogenetic structure of a microbial community  (Woese, 

1987). 

Metagenomics refers to the comprehensive study of a collection of genetic material, constituting 

various genomes from a mixed community. As indicated by the Greek preposition ‘meta’, 

metagenomic studies target the identification of the total biological entities within a complex 

instead of the characterization of the single species (Zepeda Mendoza et al., 2015). Metagenomic 

not only circumvents culturing the organisms under study but also provides the phylogenetic 

properties of the environmental niche itself, and it can give an overview of its transcripts 

composition and the potential physiology of the abundant community members. This information 

provides us with a recipe to recreate or redesign microbial pathways, and even a part of the 

system in vitro (Ladoukakis et al., 2014). The effective bioinformatic pipeline for analysis of a 

metagenomic sample should cover certain successive tasks in order to extract information from 

the huge volume of short sequence reads and to result in a comprehensive and accurate 

assessment. It constitutes: (i) DNA extraction and DNA sequencing (ii) assembly, (iii) gene 

detection and gene annotation, (iv) taxonomic analysis, and (v) comparative analysis 

(Ladoukakis et al., 2014). 

Several methods exist to determine the accurate order of nucleotides within a DNA molecule. 

The Sanger conventional DNA sequencing relies on the principle of the dideoxy chain 

termination technique (Sanger et al., 1977). Despite major improvements during the years, 

limitations in throughput, scalability, speed, resolution, and cost have restricted the application of 

this technique. The inventions of Next-Generation sequencing technologies such as 454-

pyrosequencing (Ronaghi et al., 1998), Illumina (Bentley et al., 2008) and IonTorrent (Rusk, 

2011) have helped the scientists to overcome these barriers and decipher ambiguities in 

biological systems. Rapid developments in high-throughput sequencing (HTS) technologies have 

had a major impact on metagenomics analysis. Low costs and ease of these technologies have 

facilitated the possibility of studying wide range of samples from the human gut to 

environmental samples such as Antarctic lakes and hot springs (Ladoukakis et al., 2014). 

DNA sequencing technology cannot read whole genomes in one go and results in small pieces of 

DNA sequences, reads, between 20 and 30000 bases, depending on the technology used. There 

are two main computational approaches for assembly of the Next Generation Sequencing (NGS) 

data: mapping reads to a template genome and de novo. Through mapping approach, reads are 

mapped based on the reference genome, which is phylogenetically related to the sequenced 
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sample (Scheibye-Alsing et al., 2009). De novo assembly, also known as overlay-layout-

consensus (OLC), relies on algorithms that perform all possible comparisons between the 

millions of reads to find any overlaps between them (Zerbino and Birney, 2008). Although this 

approach is a very intensive computational task since the reference genome is not always 

available and because of the presence of the immense diversity of the genomic content in 

metagenomics studies, de novo assembly is the sole alternative approach.  

Since DNA extraction from metagenomic samples constitutes various genomes from a mixed 

community, it is impossible to separate and segregate DNA sequences before the DNA collection 

according to the microorganism they originated from. Nonetheless, this challenge may be 

addressed computationally through binning, in which contigs or reads that seem to arise from the 

same source of population, are clustered (Strous et al., 2012b). The proposed approaches for the 

binning problem can be divided into two groups; those that rely on similarity-based methods, 

such as BLAST (Huson et al., 2011) and hidden Markov models, and the compositional-based 

approaches such as tetra nucleotide frequencies, interpolated Markov models  and Markov chain 

Monte Carlo models (Ladoukakis et al., 2014, Strous et al., 2012a). The similarity-based 

methods are very robust specifically in grouping the contigs with sufficient length. (Strous et al., 

2012b). Compositional approaches are able to cluster the contigs harboring the genes that are not 

homologous to the reference species. (Strous et al., 2012b). 

There are several pipelines for automatically processing metagenomic dataset and integrating 

tools in the form of services such as CloVR metagenomics (Angiuoli et al., 2011), IMG/M 

(Markowitz et al., 2014) and RAST (Aziz et al., 2008). 
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2. Aim of the study 
Anaerobic methanotrophic archaea (ANME) play an important role in marine methane-rich 

sediment where they consume a substantial fraction of the methane rising from sub-surface 

reservoirs.  Although AOM coupled to sulfate reduction was discovered about three decades ago, 

the exact nature of the process is still poorly understood. According to previous metagenomic-

based analyses, methane oxidation is likely mediated by the symbiosis of ANME and SRBs via 

reverse methanogenesis but it still remains unresolved what kind of electron transport 

components and knowledge on energy conservation mechanisms mediate this process. In 

addition for the co-occurring Deltaproteobacteria, there is currently no information available on 

their metabolic flexibility (substrate), CO2 fixation pathways and on energy conservation 

mechanisms. 

The aim of this study was to obtain genome information of ANME-2c and its bacterial partner to 

learn more about the energy metabolism of putative key players taking part in AOM in general 

and specifically in the Nyegga cold seeps. The Nyegga cold-seeps have been subjected to several 

multidisciplinary geological studies and the microbial community structures have been 

identified, however the functional potential of this site has not been completely studied.   

The following sub-goals were set: 

 Identify genes encoding the major metabolic pathways for AOM. 

 Identify pathways involved in energy generation and biosynthesis e.g. CO2 and nitrogen 

fixation. 
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3. Experimental procedures 

3.1. Sampling site 

A push core sample (08ROV29) was collected from sediments the G11 pockmark in Nyegga 

(64°39.788’N; 05°17.317’E) in 2008 (Roalkvam et al., 2011). The Argus Bathysaurus remote 

operating vehicle system on the research vessel G.O.Sars was used for core sampling. Nyegga is 

located on the mid-Norwegian continental slope at ~730 meters water depth. From the south, it is 

surrounded by the Storegga Slide and Møre basins and by the Vøring Basin from the north 

(Hovland et al., 2005, Ivanov et al., 2010).  

Methane-enriched fluids emit vertically over time from Nyegga pockmarks, where the source is 

deeper thermogenic methane from gas hydrates and biogenic methane formed during the 

advection towards the sediments surface (Mazzini et al., 2006). Although a constant stream of 

gas bubbles is not visible in the G11 pockmark, the gas hydrates form a reservoir of methane in 

the sediment horizon below ~75-100 cm below seafloor (cmbsf).   

3.2. DNA isolation 
Total DNA was extracted by Dr. Irene Roalkvam from the push core, 08ROV29, from the 

sediment horizon at 20-22 (cmbsf). The sediments were stored at -80°C, and in total 4.661gr was 

used in 4 parallel DNA extractions (approximately 1 gr for each extraction). The RNA 

PowerSoil® total RNA isolation kit and RNA PowerSoil® DNA Elution Accessory kit supplied 

by MOBIO laboratories were used to first extract the RNA and then the DNA, following the kit 

protocols. The DNA in each sample was eluted in 60 µl elution buffer supplied by the kit. The 

Amicon® Ultra-0.5 Centrifugal Filter Devices (Merck Millipore) was used to concentrate the 

DNA. All the four samples were loaded on one column and centrifuged at 14.000xg for 5 min to 

remove the excess buffer. Then the column was centrifuged at 1000xg for 2 min to elute the 

DNA. Finally 24µl of DNA sample was obtained. The concentration of DNA was measured by 

A260/280 ratio measurements using a Cary 300 Bio UV–Vis Spectrophotometer (Varian Inc., Palo 

Alto, CA). The final concentration of DNA was 48.39ng/µl. In total 1.161µg DNA was sent for 

sequencing.  

3.3. Sequencing 
The DNA was subjected to 454-pyrosequencing by the GS-FLX Titanium system at the 

Norwegian Sequencing Centre (https://www.sequencing.uio.no). The pyrosequencing method 

was developed by Pål Nyrén and Mostafa Ronaghi and relies on the sequencing by synthesis 

principle where a single strand of the DNA (ssDNA) is sequenced along the synthesis of its 

complementary strand (Ronaghi et al., 1998). Incorporation of a nucleotide into the growing 

strand leads to the release of pyrophosphate, which is detected by light emission as a result of 

luciferase activity. The major steps in 454-pyrosequencing was reviewed by Mardis (Mardis, 

2008) and is presented in Figure 11.    

 

https://www.sequencing.uio.no/
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Figure 11.The major pyrosequencing steps. The 

genomic library is first fragmented and tagged with 

the adaptor sequences. The next step is the 

emulsion PCR in which clonal amplification occurs 

inside the micelles containing the fragment: bead. 

The beads are arrayed into a picotiter plate and are 

ready for sequencing. Incorporation of a nucleotide 

into the growing strand leads to the release of 

pyrophosphate, which is used by ATP sulfurylase. 

The produced ATP is up taken by Luciferase. 

Finally the light emission as a result of luciferase 

activity is detected.  Adopted from (Siqueira et al., 

2012). 

 

 The first step after DNA extraction and 

purification is the library fragmentation in 

which the genomic DNA is randomly 

sheared into short segments. These 

fragments are tagged with adapters on either 

side of the cut points. The adaptors are short 

DNA sequences used in the subsequent 

purification, quantification, amplification 

and sequencing steps. The tagged fragments 

are mixed with a population of agarose 

beads whose surfaces carry oligonucleotides 

complementary to the 454-specific adapter 

sequences on the fragment library. The 

ssDNA anneal the complementary oligos, so 

each bead is associated with a single 

fragment. The next step is the emulsion PCR 

in which each of the fragment: bead 

complexes are isolated into individual 

oil:water micelles that also contain PCR 

reactants. During the thermal cycling, clonal 

amplification occurs inside the micelles 

where each bead gets coated by 

approximately one million copies of the 

DNA fragments. The beads are arrayed into 

a picotiter plate with several hundred 

thousand wells, with a single bead in each 

well. Therefore, the ssDNA template is 

immobilized in the picotiter plate well. All 

the requirements for catalyzing the 

downstream pyrosequencing reaction steps 

are added into the wells (Mardis, 2008, 

Ronaghi et al., 1998). 

The ssDNA template is hybridized to a sequencing primer, and the sequencing occurs in the 

presence of the enzymes DNA polymerase, ATP sulfurylase, luciferase and apyrase, and the 

substrates adenosine 5´- phosphosulfate (APS) and luciferin. The addition of one of the four 

deoxynucleoside triphosphates (dNTPs) initiates the DNA synthesis if the complementary 

nucleotide is available on the template strand. DNA polymerase incorporates the correct, deoxy 

nucleotide (dNTP) into the template, which releases pyrophosphate (PPi). ATP sulfurylase 

catalyzes the conversion of PPi to ATP in the presence of adenosine 5´- phosphosulfate. 

Luciferase converts luciferin to oxyluciferin and visible light in the presence ATP. The intensity 
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in of the light is proportional to the amount of ATP. Finally, a pyrase degrades the 

unincorporated nucleotides and ATP, and the reaction is restarted with another dNTP (Ronaghi 

et al., 1998).  

3.4. Assembly 
All sequencing methods provide data in the form of short nucleotide sequences, known as reads.  

The reads represent amplified sections of DNA molecules, due to the shearing of DNA prior to 

the shotgun sequencing. Assembly is a critical step of any genome analysis, whether the data 

corresponds to single cell genomes or metagenomic samples (Miller et al., 2010). It refers to 

recreating the original sequence through aligning and merging of the reads to a set of contiguous 

coherent sequence (contig) constructs. It is also possible to construct super-contigs, also known 

as scaffolds, containing multiple contigs with the reliable connection between them (Miller et al., 

2010). The 454 GS FLX Titanium chemistry used in the sequencing of the DNA in this project 

produces reads with 400-500 base pair (bp) read lengths. One full plate was used in this project, 

which should give approximately 1,000,000 reads in one run. Reads were assembled by Dr. 

Runar Stokke using Newbler v2.5.3 provided by 454 Life Sciences/Roche with 98% identity and 

50 bp overlap as assembly criteria. Filtering of poor-quality sequences, repeats and to short reads 

was processed as implemented in the Newbler software. 

3.5. Metagenomic binning 
DNA extracted from environmental samples constitutes multiple genomes from a mixed 

community. Metagenomic binning refers to the clustering of assembled DNA contig/scaffold 

sequences for microbial physiology of mixed cultures using computational approaches. The 

proposed approaches for the binning problem can be divided into two groups: those that rely on 

homology-based methods, such as Megan (Huson et al., 2011) and hidden Markov models; and 

the composition-based approaches, such as tetra nucleotide frequencies, interpolated Markov 

models  and Markov chain Monte Carlo models (Ladoukakis et al., 2014, Strous et al., 2012b). 

In this project the assembled contigs were clustered using the composition-based MetaWatt 

Binner version 3.2. (Strous et al., 2012a). The MetaWatt Binner uses an unsupervised 

(comparison of the metagenomic contigs only to each other) method based on multivariate 

statistics of tetranucleotide frequencies, differential coverage and read mapping information to 

bin assembled contigs. Taxonomic classification in MetaWatt is performed by diamond blastx 

against a database of reference genome sequences downloaded from NCBI 

(http://www.ncbi.nlm.nih.gov/). The module for taxonomic classification in MetaWatt is 

described in the manual by fragmenting each contig down into 1000 bp size. These fragments are   

blasted separately against the database. The contig blast results are analyzed as follows: (1) The 

number of top-scoring hits for each reference taxon is counted for each contig, (2) when binning 

is performed, the counts are added for each taxon for all contigs in the bin, (3) results are 

displayed as a pie diagram for each bin. The diagram indicates the counts of the top-scoring taxa 

as a percentage of the total number of fragments generated.  

http://www.ncbi.nlm.nih.gov/
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The three major MetaWatt bins were imported into RAST for further metabolic analysis. 

3.6. Open reading frame (ORFs) detection and gene annotation 
There are two groups of software for gene detection; the ab initio programs and similarity-based 

programs. Ab initio programs such as GENIE and GENEID (Yok and Rosen, 2010)  recruit a 

training set with known annotation to define the parameters of their models to predict genes. The 

similarity-based programs utilize the external information of known sequences to predict genes. 

The well-known algorithm in this group is BLAST (Altschul et al., 1990, Mount, 2007, States 

and Gish, 1994) that searches the query sequence against a database of known protein sequences. 

The putative genes are translated to into functional proteins i.e. regarding the sequence length, 

and should begin with a start codon and end with an in-frame stop codon. 

In this study, open reading frames (ORFs) in assembled contigs were predicted by Dr. Runar 

Stokke, using the software Prodigal v.60 (Hyatt et al., 2010) with the options –metagenomic 

(better ORF prediction for highly fragmented metagenomic sequences) and translation table 11. 

All ORFs were searched for similarities to the NCBI RefSeq Protein Database, using a 

standalone version of BlastP (Altschul et al., 1990) with the options for best top hit with an e-

value 1x10
-6

. 

3.7. Data management 
The Rapid Annotations using Subsystems Technology (RAST) pipeline, is an automatic 

annotation server for microbial genomes designed for processing both raw sequence-reads 

datasets and already assembled contigs (Aziz et al., 2008). RAST has been built upon the 

framework provided by the SEED system (Overbeek et al., 2014) and constitutes four main tasks 

for metagenomic analysis: (1) Data normalization, (2) Using public databases for screening the 

sequences and for detecting the potential coding sequences, (3) Assessment of the results for 

functional gene annotation and taxonomic assignments, (4) Using the integrated SEED Viewer 

for result visualization. 

The SEED continually integrates annotations from a wide variety of sources such as NCBI 

conserved domain database (CDD), the KEGG Enzyme database, Swiss-Prot, IMG, data from 

metabolic modeling, expression data, and literature references verifying annotations to analyze 

different microbial genomes and selected bins from metagenomic data. It offers an online service 

for genome annotation and comparison. Each user can register and upload datasets for further 

annotation. 

The subsystems in seed are continuously subjected to quality control and the new subsystems are 

added to existing subsystems to cover previously un-annotated regions of the genomes. These 

strategies improve annotations in the SEED and their propagation via FIGfams into RAST. The 

genomes that annotated by RAST are then introduced into the SEED for further curation by 

SEED. In the other word, the SEED-based annotations comprises the cycle of SEED => FIGfam 

=> RAST => SEED. 
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3.8. Phylogenetic construction of linked AprBA, 16S rRNA and McrA sequences 
A phylogenetic tree was constructed from 107 full-length sequences (Appendix III) of linked A 

and B subunits of the adenosine 5′-phosphosulfate (APS)-reductase (AprBA) that are previously 

published (Stokke et al., 2012), in addition to the environmental AprBA sequences from the 

current Nyegga sediment metagenome (contig 00001). The combined dataset was submitted to 

the online PhyML program (http://phylogeny.lirmm.fr/) (Dereeper et al., 2008) for phylogenetic 

estimation. The multiple alignment of the sequences was performed using MUSCLE (Edgar, 

2004), and Gblocks (Castresana, 2000) mode was selected for alignment curation.  A maximum 

likelihood tree was constructed using the WAG amino acid substitution model matric. Bootstrap 

values were obtained from 100 replicates. Ribosomal RNA sequences, 16S rRNA, from the 

Methanosarcinaceae bin (contig01666) in addition to the 123 16S rRNA sequences (Appendix 

IV.) from different archaeal families were submitted to the online PhyML program (Dereeper et 

al., 2008) for phylogenetic tree construction. The processing steps and softwares used for tree 

construction were similar to the AprAB tree. The McrA genes (Appendix II.) were also recruited 

for phylogenetic tree construction. Same processing steps and softwares were applied for 36 

sequences to conduct the phylogenetic construction. Stability of the trees was tested by changing 

the parameters.  

For phylogenetic tree based on the 16S rRNA,the Newick file of the generated tree was 

submitted to the iTOL (Letunic and Bork, 2011) (http://itol.embl.de/) to edit and display the tree. 

The Newick files of the AprBA and McrA phylogenetic tree were submitted to the 

MEGA4(Tamura et al., 2007) for further edition and visualization.  

  

http://phylogeny.lirmm.fr/
http://itol.embl.de/
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4. Results and Discussion 

4.1. Metagenome and taxonomic binning 

The extracted DNA of Nyegga cold seep sediment (22cmbsf) was subjected to 454-

pyrosequencing. Initially, 1001981 sequence reads with an average read length of 342 bp and 

average sequencing depth of 7.8x were generated and resulted in a 142.8 MB assembly; with a 

total of 22706 contigs and 10979 contigs > 500 bp with average size of 1362 (Table 4.1). 

                        Table 4.1. Summary of Newbler v2.5.3 assembly. 

Feature Value 

Number of reads 1001981 

Number of assembled reads 420688 

Number of Partial 79558 

Number of Singletons 462969 

Number of Repeats 729 

Number of Outliners 25827 

Number Too Short 12210 

Number of assembled bases 18078455 

Number of Contigs >500bp 10979 

Total number of Contigs 22706 

Largest Contig size 35034 

Average Contig size 1362 

N50 Contig size 1660 

 

The binning was performed using Metawatt binner (Strous et al., 2012b) and a taxonomic profile 

was calculated for each bin. The contigs were binned into four bins with different qualities 

(Figure 12.). Only two of the four bins, bin I and II, had acceptable distinct taxonomic signature 

as well as a distinct sequencing coverage. The largest bin (bin I), with a GC content of 41.99% 

and assembly coverage of 12.09x contained 1545 contigs affiliated to the Desulfobacteraceae or 

in general Deltaproteobacteria. The genes designated to Archaea, Methanosarcinaceae were 

grouped into the bin II with the GC content of 49.79% and assembly coverage of 10.50x. 

Notably, both bins I and II contained contigs of other population of microorganisms, but the 

dominant species were clearly of Desulfobacteraceae and Methanosarcinaceae, respectively. 

Bin II harbored merely Archaea. The summary of the four bins is represented in Table 4.2. Bin 

III and IV, were examples of unsuccessful binning. Both bins, III and IV consisted of a mixture 

of contigs from different population which are distantly related e.g. in bin IV the contigs form 

Desulfobacteraceae population got mixed with the contigs from Methanosarcinaceae 

population. JS-1 and Candidate division OP9 bacterium family were categorized in the bin III 

with 730 contigs (Figure 12). 
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In order to further the taxonomic classification of bin I and II, respectively, genes encoding the 

evolutionary markers, AprBA and, 16S rRNA and McrA were extracted from the metagenomic 

bins after their annotation in RAST. The phylogenetic trees based on these genes were 

constructed to uncover what microbes are in our metagenomic sample and where those strains fit 

into the phylogenetic tree of life. The McrA and archaeal 16S rRNA, and AprBA genes were 

correctly clustered in the II and I bins, respectively.  

Figure 12. The figure shows an exploded pie chart of the taxonomic distribution of the extracted 

Metawatt bins I-IV (A-D). As inferred from the software, the distance of each pie slice from the center, is a 

measure for the median e-value of the associated hits, hence the larger the e-value the larger the distance from 

the center. Metawatt binner indicated that the dominant population in bin I and II are Desulfobacteraceae and 

Methanosarcinaceae respectively. 
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Table 4.2. The summary of the Metawatt binner version 3.2, binning.  

Bin    I   II  III  IV 

Contigs 1545 630 730 687 

Bin size (Mb) 5.32 1.64  1.10  1.24 

N50 contig length (nt) 4895  3301 1518 1913 

Percent GC % 41.99 49.79 36.88 45.17 

Assembly coverage, x 

(sequencing depth) 

12.09 10.50 7.16 10.70 

 

Analysis of the rRNA gene content of the metagenome showed the presence of rRNA genes in 

10 contigs. The 16S rRNA genes in contigs 00573 and 00658 showed high sequence identity to 

uncultured bacterium (AM229195.1 and JQ925104.1 respectively) and they were grouped into 

the third bin, which contained the mixture of Desulfobacteraceae and Methanosarcinaceae, 

whereas the 16S rRNA genes in contigs 02011 and 02868 were categorized in none of the bins 

uploaded into RAST. The 16S rRNA gene in contig01666 showed 99% percent of nucleotide 

identity to an uncultured archaeon 16S rRNA gene (clone fos0626f1; AJ890142) of ANME-2c 

(Meyerdierks et al., 2005). A simple phylogenetic analysis revealed that this 16S rRNA gene was 

affiliated with ANME-2c sequences (Appendix I).  

A complete MCR operon (Figure 13.) was present in the bin II and the order of the genes 

encoding the subunits of the MCR complex was similar to a previous report of the gene 

organization of this complex in ANME-2c (Figure 2.)(Hallam et al., 2003). 

 

Figure 13. The Methyl coenzyme M 

reductase operon presented in 

contig00332 and comparison of gene 

organization in this operon with other 

microorganisms. Orange: Methyl-

coenzyme M reductase subunit B, Blue: 

Methyl-coenzyme M reductase subunit D, 

Yellow: Methyl-coenzyme M reductase 

subunit C, Green: Methyl-coenzyme M 

reductase gamma subunit, Red: Methyl-

coenzyme M reductase subunit alpha. The 

sequence presented in contig 00332 was 

labeled as unknown. The other organisms 

belong to the methanogens, in the order of 

Methanomicrobiales. 

The unique McrA sequence presented in bin II (contig 00332) showed 91% sequence identity to 

the McrA sequence from ANME-2c (GZfos26B2; AAU83007.1). The phylogenetic analysis 
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further revealed that this sequence clustered with McrA from ANME-2c (GZfos26B2 and 

GZfos35D7) (Figure 14.). 

                                                    

Figure 14. Phylogenetic tree of McrA sequences, including McrA on contig00332 from the Nyegga 

sediment at 20-22 cmbfs horizon. The tree is based on a MUSCLE alignment and constructed with the 

PhyML program using 100 bootstrap values. 

Altogether, these results are in line with that 60% of the microbial community at this horizon in 

the Nyegga cold seep is dominated by ANME-2c (Roalkvam et al., 2011). Metawatt employs 

both compositional and homology approaches in order to cluster the contigs that arise from the 

same population (Strous et al., 2012b). In the taxonomic classification used in this study the 

database of reference genome sequences downloaded from NCBI (http://www.ncbi.nlm.nih.gov/) 

did not included sequences of ANME-2. This may explain why the Metawatt-analysis classified 

the contigs that presented in bin II, as Methanosarcinaceae rather than of ANME. ANME-2c is 

closely related to the Methanosarcinales (Knittel et al., 2005). In conclusion, the obtained results 

suggested that metagenome bin II represents ANME-2c. 

The full length genes of AprBA from bin I indicated 86% sequence identity with Desulfosarcina 

sp. (WP_027353074.1) in the family of Desulfobacteraceae. This AprBA sequence clustered 

with AprBA sequences originating from a microbial mat collected from the Black Sea (Figure 

15.) (Basen et al., 2011). A high AOM rate was reported for this microbial mat and the clustering 

of the Apr sequences with the Desulforsarcina-Desulfococcus group indicated that they 

originated from the bacterial partner in the methane-oxidizing consortium. The phylogenetic 

analysis of the AprBA sequences from Nyegga (22 cmbsf) thus suggested that bin I represented 

the bacterial partner of ANME-2c.  

http://www.ncbi.nlm.nih.gov/
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Figure 15. The phylogenetic tree of AprBA sequences, including AprBA on contig00001 from 

the Nyegga sediment from 22 cmbsf. The tree is based on a MUSCLE alignment and constructed 

with the PhyML program using 100 bootstrap values. 
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4.2. Annotation of metagenomic bins in RAST 
The bin I, II and IV were uploaded into RAST for annotation. Due to the poor quality of the bin 

III and since the focus of this study is the investigation of AOM coupled with sulfate reduction, 

this bin was disregarded and was not uploaded into RAST for further analysis. 

RAST uses public databases for screening the sequences and for detecting the potential coding 

sequences and tries to assign function to all genes in the genome. It performs this by grouping 

functions into operational subsystems and searching for the proteins that perform discrete 

functional roles. A subsystem is a collection of any number of proteins that are related in some 

functional or structural way and together implement a specific biological process or structural 

complex such as metabolic, signaling and regulatory pathway or structural complex. The 

summary of the three uploaded bins into RAST is presented in Table 4.3.  In the largest bin 

which belongs to the Desulfobacteraceae, only 34% of the protein-encoding genes were covered 

by subsystems i.e. could be designated as protein encoding genes (PEGs) that are present in at 

least one subsystem. This indicates that difficulties of gene annotation in fragmented 

metagenomic samples such as from the Nyegga sediments.  

Table 4.3. An overview of the three bins uploaded into RAST. 

Bin        I*             II *               IV 

Domain  Bacteria  Archaea  Bacteria 

Size 5,321,697 bp 1,635,327 bp 1,235,088 bp 

Number of 

Contigs 

(with PEGs) 

 

1545 

 

630 

 

687 

Number of 

Subsystems 

329 82 50 

 

In 

subsystem 

34%   
Non-hypothetical 1855 
hypothetical 76 

 

13%  
Non-hypothetical 239 
hypothetical 2 

 

10% 
Non-hypothetical 134 
hypothetical 974 

 

Out of 

subsystem 

66%  
Non-hypothetical 1167 
hypothetical 2741 

 

87% 
Non-hypothetical 473 

hypothetical 1186 
 

90% 
Non-hypothetical 352 
hypothetical 974 

 

Number of 

Coding 

Sequences 

 

5839 

 

1900 

 

1463 

Number of 

RNAs 

57 18 14 

*Based on the phylogenetic analysis, the bin I, II can be named as Desulfobacteraceae and ANME-2c, 

respectively. 
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4.3. Anaerobic oxidation of methane (AOM) 
In the ANME-2c bin, bin II, all genes encoding the enzymes involved in the seven steps of the 

methanogenic pathway were identified (Table 4.4.). Subunits of the enzymes involving in the 

methanogenesis pathway were annotated by RAST except the Coenzyme F420- dependent N5N10-

methylene tetrahydromethanopterin reductase (Mer) and Methylenetetrahydromethanopterin 

dehydrogenase (Mtd). The presence of a mer gene fragment, with the possible ANME-2c origin, 

was reported at the horizon (14–16 cmbsf) above our sample (Stokke et al., 2012). This result 

increased the possibility of finding these genes in our dataset although they were not annotated 

by RAST. The nucleotide sequence of mer was kindly provided by Dr.Stokke and was used as 

query sequence to find the possible similar sequence in our dataset using blast 

(http://blast.ncbi.nlm.nih.gov ). Contigs 02138 and 05889 were found to harbor a putative mer 

gene. These sequences were subjected to the blastx and the presence of mer was confirmed. The 

one, which is called mer1, was located adjacent to a TATA-box binding protein gene in contigs 

02138 (Figure 16A.) whereas contig 05889 contained only mer gene, designated mer2. Although 

contig 02138 was grouped in ANME-2c bin, RAST annotated only the TATA-box binding 

protein gene (Figure 16B.). Contig 05889 was not clustered in ANME-2c bin. 

 

 
Figure 16. Panel (A); the blastx result of the sequence of contig 02138. The mer gene (red) was shown 

adjacent to the TATA box binding protein gene (blue). Panel (B); visualization of the same contig by 

RAST. Only TATA box binding protein was indicated by RAST.  

 

http://blast.ncbi.nlm.nih.gov/
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Using the ORF finder (http://www.ncbi.nlm.nih.gov/gorf/orfig.cgi), provided by NCBI, two open 

reading frames were revealed that have the potential to encode the polypeptides with 187 and 

281 amino acids respectively. These sequences were applied to the blastp and the same results 

were obtained. The longer polypeptide belonged to Mer and the other one to the TATA box 

binding protein. The contig 05889, which was shorter than the 02138, contained an ORF which 

encoded a mer polypeptide with 225 amino acids (data not shown). The mer sequences in contig 

02138 and 05889 had respectively, 70% and 66% percent of nucleotide identity to mer from the 

known methanotroph Candidatus Methanoperedens nitroreducens (WP_048091521.1). Among 

the blastx top hits, the first one with high percent of nucleotide identity, 74%, belong to 

Methanococcoides burtonii (WP_011500359.1) within the order of Methanosarcinales. 

 Two sequences encoding methylenetetrahydromethanopterin dehydrogenase (mtd) were found 

in contigs 03373 and 08730 in blastx which were not annotated in RAST. According to the 

blastx result for mtd gene, both fragments of this gene were similar to members of 

Methanosarcinales with 72% and 74% of nucleotide identity, respectively. This percentage of 

identity to Methanosarcinales may be due to the lack of ANME-2c homolog sequences in public 

databases. Considering this and that ANME-2c related to the methanosarcina, the mer and mtd 

gene are likely to belong to the ANME-2c rather than the Methanosarcinales.  

Altogether, these results identified the presence of a complete methanogenesis pathway in 

ANME-2c bin, bin II, suggested a potential for the ANME-2c population at 20-22cmbsf horizon 

of Nyegga sediments, to perform oxidation of methane via reverse methanogensis from CH4 to 

CO2. Previously, it has been demonstrated that ANME-2a/b and ANME-2d (Haroon et al., 

2013a, Wang et al., 2014) have a complete reverse methanogenesis pathway, whereas ANME-1 

lacks mer gene (Stokke et al., 2012). Our results supported that all ANME-2 subgroups i.e. 

ANME-2a/b, ANME-2c, ANME-d possess all the required genes for a complete methane-

oxidizing pathway and are thus different from ANME-1 in this regard. 

A survey of bin II did not support the possibility of the occurrence of the other proposed 

mechanisms of AOM i.e. reduction of nitrate/ nitrite or metal ions coupled to AOM, as no key 

enzymes involved in these processes were found. Since the nitrate/ nitrite reduction dependent to 

AOM has been reported only in fresh water so far (Cui et al., 2015), the absence of the genes 

involved in this process was expected.  

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/gorf/orfig.cgi
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Table 4.4. Identification of methanogenesis-associated genes in the sediment from 22cmbfs 

of Nyegga cold seeps. 

Step Gene name Abbreviation Contig 

No. 

                   RAST 

1 Methyl-coenzyme M reductase subunit A mcrA 00332 fig|6666666.104924.peg.441 

 Subunit B mcrB 00332 fig|6666666.104924.peg.437 

 Subunit C mcrC 00332 fig|6666666.104924.peg.439 

 Subunit D mcrD 00332 fig|6666666.104924.peg.438 

 Subunit G mcrG 00332 fig|6666666.104924.peg.440 

2 Tetrahydromethanopetrin : coenzyme M 

methyltransferase subunit A 

 

mtrA 

 

00377 

 

fig|6666666.104924.peg.506 

 Subunit B mtrB 00377 fig|6666666.104924.peg.507 

 Subunit C mtrC 00377 fig|6666666.104924.peg.508 

 Subunit D  mtrD 00377 fig|6666666.104924.peg.509 

 Subunit E mtrE 00377           Not annotated 

 Subunit F mtrF 00377 fig|6666666.104924.peg.505 

 Subunit G mtrG 00377 fig|6666666.104924.peg.504 

 Subunit H mtrH 00377 fig|6666666.104924.peg.503 

3 Coenzyme F420- dependent  N5N10-

methylene tetrahydromethanopterin 

reductase 

mer1 

mer2 

 02138 

05889* 
 

          Not annotated 

4 Methylenetetrahydromethanopterin 

dehydrogenase 

mtd1 03373*  

          Not annotated 

  mtd2 08730*  

5 N(5),N(10)-

Methenyltetrahydromethanopterin 

cyclohydrolase 

mch 01532 

02264 

03490 

fig|6666666.104924.peg.1295 

fig|6666666.104924.peg.1486 

fig|6666666.104924.peg.1755 

6 Formylmethanofuran -

tetrahydromethanopterin N-

formyltransferase 

ftr 01632 fig|6666666.104924.peg.1320 

7 Formylmethanofuran dehydrogenase 

subunit A 

 

fmdA 

 

00221 

 

fig|6666666.104924.peg.273 

 Subunit B fmdB 00378 

03331 

fig|6666666.104924.peg.514 

fig|6666666.104924.peg.1716 

 Subunit C fmdC 00221 fig|6666666.104924.peg.274 

 Subunit D fmdD 00221 fig|6666666.104924.peg.274 

 Subunit E fmdE 00221 fig|6666666.104924.peg.271 

 Subunit F fmdF 00221 fig|6666666.104924.peg.272 

 Subunit G Not found      -                         - 

 Subunit H Not found      -                       - 
 * Contig not found in ANME-2c bin. 
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4.4. Sulfur metabolism 
RAST and blastx annotated all of the genes encoding enzymes required for the dissimilatory 

sulfate reduction pathway (Figure 5.) in the Nyegga metagenome from 22cmbsf (Table 4.5.). All 

enzymes were found in the Desulfobacteriaceae bin, bin I, and there were no similar sequences 

in the ANME-2c bin.  

Since both AprAB and DsrAB enzymes are soluble, they require a membrane-linked electron 

transporter partner. QmoABC and DsrMKJOP complexes transfer electrons from membrane to 

AprAB and DsrAB respectively (Figure 17.). The qmo genes are conserved in all sulfate-

reducing organisms and often found co-located with the aprAB genes (Grein et al., 2013). In the 

Nyegga metagenome, the genes encoding the AprBA and Sat were present in the largest contig, 

contig00001 in Desulfobacteriaceae bin, and are located adjacent to the genes encoding the 

QmoABC complex. The conserved gene organization of these genes in contig00001 from 

Nyegga sample and in other Desulfobacteriaceae is shown in Figure 18.  

 

 

Figure 17. Schematic 

organization of the electron 

transfer chain.  H2 is electron 

donor and sulfate is electron 

acceptor. Qmo and MKJOP 

complexes relay electrons 

from periplasm to the 

cytoplasmic enzymes APR and 

DSR respectively. APR 

catalyzes the reduction of 

Sulfate to sulfite and DSR 

reduces the sulfite to sulfide. 

Abbreviations: APS, 

adenosine-5'-phosphosulfate; 

AMP, adenosine 

monophosphate; MQ, 

menaquinone; MQH2, 

dihydromenaquinone. Adopted 

from (Spring et al., 2010). 
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Figure 19. The gene organization of 

Sulfite reduction-associated 

complex DsrMKJOP in contig00402 

and 00334 and three members of 

.Desulfobacteraceae. Yellow:DsrM, 

Borwon:DsrK, Green: DsrJ, Blue: 

Dsr:O, Red:DsrP 

 

Figure 18. The gene organization of the AprAB, QmoABC and sat genes in different 

Desulfobacteraceae.  1-Red: Adenylylsulfate reductase beta-subunit (AprB), 2-Brown: Adenylylsulfate 

reductase alpha-subunit (AprA), 3-Green: CoB--CoM heterodisulfide reductase subunit A (QmoA), 4-

Green: Heterodisulfide    A/methylviologen-reducing hydrogenase,subunit delta (QmoB), 5: 

Heterodisulfide reductase, subunit E, putative (QmoC) and 6-yellow: Sulfate adenylyltransferase (Sat). 

The unknown organism is Desulfobacteraceae which is present in 22cmbfs of Nyegga region. All these 

genes are present in contig00001, which is the largest contig in our dataset. All the other organisms 

presented in this figure are the member of Desulfobacteraceae. 

 

DsrMKJOP is a multimeric transmembrane complex that is encoded by the dsrMKJOP genes. In 

several organisms it has been observed that the dsrMKJOP genes cluster is associated with 

dsrAB cluster (Grein et al., 2013).The genes encoding the membrane-linked proteins, 

DsrMKJOP complex (Figure 19.) were annotated by RAST and present in contigs 00334 and 

00402 in the Desulfobacteraceae bin. In contrast to the AprBA operon, the genes encoding Dsr 

complex (contig00237) (Appendix V.) were not co-localized with the genes coding the 

DsrMKJOP complex (contig00334 and 00402). This might be due to the fragmentation of 

environmental samples, which occurs during the sample processing. Previous metagenomic and 

metaproteomic analyses of ANME dominated communities have only identified the presence of 

key enzymes of dissimilatory sulfate reduction pathway.  

      1                2                      3                         4                      5              6 

6 
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Table 4.5. Identification of genes encoding enzymes of dissimilatory sulfate reduction pathway in 

the sediment from 22cmbfs of Nyegga cold seeps. 

   Genes Abbreviation  Contig No.                  RAST 

Sulfate  Reduction    
Sulfate adenylyltransferase sat 00001 fig|6666666.104923.peg.28 

Adenylylsulfate reductase, subunit B aprB 00001 

02414 

fig|6666666.104923.peg.23 

fig|6666666.104923.peg.5184 

Adenylylsulfate reductase, subunit A aprA 00001 fig|6666666.104923.peg.24 

Sulfite Reduction    

Dissimilatory sulfite reductase, subunit 

alpha 

dsrA 00237 

01209 

fig|6666666.104923.peg.2198 

fig|6666666.104923.peg.4383 

Dissimilatory sulfite reductase, subunit 

beta 

dsrB 00237 

00339 

fig|6666666.104923.peg.2197 

fig|6666666.104923.peg.2636 

Dissimilatory sulfite reductase, subunit 

gamma 

dsrD 00090 

00303 

03728 

fig|6666666.104923.peg.1165 

fig|6666666.104923.peg.2457 

fig|6666666.104923.peg.5710 

Membrane-bound electron transfer to 

terminal acceptor 

   

Heterodisulfide reductase, subunit E, 

putative 

qmoC 00001 

00082 

00223 

fig|6666666.104923.peg.27 

fig|6666666.104923.peg.1115 

fig|6666666.104923.peg.2089 

Heterodisulfide reductase, subunit 

A/methylviologen-reducing 

hydrogenase,subunit delta 

QmoB 00001 

00082 

00138 

00138 

00223 

00223 

00444 

00463 

00736 

00779 

01111 

02396 

03445 

 

fig|6666666.104923.peg.26 

fig|6666666.104923.peg.1117 

fig|6666666.104923.peg.1575 

fig|6666666.104923.peg.1576 

fig|6666666.104923.peg.2090 

fig|6666666.104923.peg.2091 

fig|6666666.104923.peg.3054 

fig|6666666.104923.peg.3134 

fig|6666666.104923.peg.3751 

fig|6666666.104923.peg.3836 

fig|6666666.104923.peg.4305 

fig|6666666.104923.peg.5177 

fig|6666666.104923.peg.5628 

CoB--CoM heterodisulfide reductase 

subunit A 

QmoA 00001 

 

fig|6666666.104923.peg.25 

Sulfite reduction-associated complex 

DsrMKJOP multiheme protein DsrJ 

DsrJ 00334 

00402 

fig|6666666.104923.peg.2610 

fig|6666666.104923.peg.2878 

Sulfite reduction-associated complex 

DsrMKJOP iron-sulfur protein DsrO 

(=HmeA) 

DsrO 00334 

00402 

fig|6666666.104923.peg.2609 

fig|6666666.104923.peg.2877 
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Sulfite reduction-associated complex 

DsrMKJOP protein DsrM (= HmeC) 

DsrM 00334 

00402 

fig|6666666.104923.peg.2880 

fig|6666666.104923.peg.2881 

fig|6666666.104923.peg.5046 

Sulfite reduction-associated complex 

DsrMKJOP protein DsrK (=HmeD) 

DsrK 00334 

00402 

fig|6666666.104923.peg.2611 

fig|6666666.104923.peg.2879 

fig|6666666.104923.peg.2946 

Sulfite reduction-associated complex 

DsrMKJOP protein DsrP (= HmeB) 

DsrP 00334 

00402 

fig|6666666.104923.peg.2608 

fig|6666666.104923.peg.2876 

 

It has been proposed that the hydrogen cycling leads to energy conservation in sulfate respiration 

(Keller and Wall, 2011, Ramos et al., 2012) (Figure 6.). In this study, neither hydrogenases nor 

lactate dehydrogenases were identified; therefore, hydrogen cycling as an energy conservation 

mechanism seems unlikely. Altogether, our dataset could not address the mechanisms behind 

energy conservation in Desulfobacteraceae. 

4.4.1. Implications for models of AOM 

The metagenomic analysis of the Nyegga sediments has revealed genes encoding all reactions in 

the major metabolic pathway needed for AOM with sulfate. However, the data have not clarified 

which of the two putative key-players, ANME-2c or the Desulfobacteriaceae that perform 

sulfate reduction. According to the recent model proposed by Milucka (Milucka et al., 2012), 

ANME performs reduction of sulfate to zero-valent sulfur compounds (S
0
) through a non-

canonical pathway for dissimilatory sulfate reduction. The formed S
0
 is then taken up by the 

Deltaproteobacteria and is reduced to sulfide through disproportionation to sulfide and sulfate 

(Milucka et al., 2012). Although genes encoding enzymes of the canonical dissimilatory sulfate 

reduction pathway were found in the Desulfobacteraceae bin, they may catalyze 

disproportionation rather than dissimilatory sulfate-reduction. More studies are needed to clarify 

this. It has been shown that bacterial partner of ANME-2 and -3 are mostly from 

Desulfobulbaceae (Pernthaler et al., 2008), which capable of disproportionation using the known 

enzymes Sat, AprAB and Dsr (Lovley and Phillips, 1994). Enzymes involved in dissimilatory 

sulfate reduction pathway with the archaeal origins was not found, therefore the enzymatic 

mechanisms of sulfate reduction to S
0
, by archaea, still remains unclear (Milucka et al., 2012). In 

the current metagenomic dataset, the genes of enzymes involved in canonical dissimilatory 

sulfate reduction pathway were found in the Desulfobacteraceae bin, but due to the lack of 

geochemical information about the rate of the sulfate reduction: AOM at this site, it was not 

possible to support this hypothesis nor designated their role in disproportionation rather than 

canonical dissimilatory sulfate reduction pathway.       

The spherical shell-type or mixed type consortia of ANME-2c with sulfate reducing bacteria 

(SRB) was also reported (Milucka et al., 2012, Orphan et al., 2002, Knittel et al., 2005) and 

reinforced the hypothesis that, in AOM consortia, anaerobic oxidation of methane is mediated by 

ANME-2 and sulfate reduction is catalyzed by the ANME-associated SRB (Wegener et al., 2008, 
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Basen et al., 2011). Our metagenomic study indicated the presence of consortia in the selected 

sample. The similarity of the deduced Sat, AprA, AprB, DsrAB sequences to the sequences from 

the known Deltaproteobacteria (Desulfobacteraceae at family level) with high present of 

identity fortified the probability that the bacterial partner in the methane-oxidizing consortium is 

a member of this group. The phylogenetic assessment based on the combined AprBA (Figure 

15.) and 16srRNA (Stokke et al., 2012, Roalkvam et al., 2011) confirmed that 

Desulfobacteraceae constituted the dominant bacterial population at 22cmbfs of Nyegga cold 

seep sediment and proposed that this population might be associated bacterial partner of ANME-

2c.  

4.5. Carbon dioxide fixation 

The carbon assimilation of many methanogens, and sulfate reducing bacteria (SRB) through the 

reductive acetyl-CoA has been reported (Berg et al., 2010, Hugler and Sievert, 2011). 

Kellermann and colleagues (Kellermann et al., 2012) have reported preferentially assimilation of 

inorganic carbon by both archaea and bacteria mediating AOM in hydrothermal sediments. It 

was demonstrated that the methanotrophic archaea, ANME-1, utilize methane as an energy 

source and not for carbon assimilation, and act as autotrophic methane oxidizers. However, the 

carbon assimilation was strongly accelerated in the presence of methane (Kellermann et al., 

2012).  

The acetyl-CoA pathway in methanogens involve mostly the same enzymes as in the 

methanogenesis (Figure 20.), however, the enzyme Carbon monoxide dehydrogenase/acetyl-

CoA synthase is needed for catalyzing the formation of acetyl-CoA. Although methanogens and 

sulfate reducing bacteria share most of the steps in one-carbon metabolism, there are some 

differences (Figure 20.); the reduction of CO2 to formate and activation of formate is performed 

by Formate dehydrogenase and 10-Formyl-H4-folate synthetase using NADP in SRB, whereas 

this reaction is carried out by Formyl-methanofuran dehydrogenase and Formyl transferase using 

ferredoxin (Fuchs, 2011).  

Genes that encode enzymes responsible for the steps in the acetyl-CoA pathway were identified 

in our metagenomic dataset (Table 4.6) and the presence of these enzymes, specifically the key 

enzyme CO dehydrogenase/acetyl-CoA synthase, found in the both bins designated for ANME-

2c and Desulfobacteraceae, was in line with the previous reports and sugested CO2 fixation 

through acetyl-CoA pathway by these microorganisms. 
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.  

 

 

 

 

The enzymes: Formyl-methanofuran dehydrogenase (Fd
2−

red), 5,10-Methenyl-

tetrahydromethanopterin (H4 methanopterin) cyclohydrolase, 5,10-Methylene-H4-methanopterin 

dehydrogenase (F420H2) and 5,10-Methylene-H4-methanopterin reductase (F420H2) in ANME-2c 

bin are categorized in the one carbon metabolism in the subcategory of methanogenesis and are 

employed  to reduce CO2 to CH3 (Table 4.4.). Therefore, only the key enzyme of this pathway 

from ANME-2c bin was presented in table 4.6. Since the bacterial enzymes involved in acetyl-

CoA pathway differ from archaeal ones, the complete set of genes involved in this pathway from 

Desulfobacteraceae bin were analyzed and shown in table 4.6.  

 

 

Figure  20. Acetyl-CoA pathway in (a) acetogenic and related 

bacteria (b) methanogens. 1a) Formate dehydrogenase, 2a) 10-

Formyl-H4 folate synthetase, 3a) 5,10-Methenyl-H4 folate  

cyclohydrolase, 4a) 5,10-Methylene-H4 folate dehydrogenase, 5a) 

5,10-Methylene-H4folate reductase, 6a) Methyl-H4 folate: corrinoid 

iron-sulfur protein methyltransferase, 7a) Corrinoid iron-sulfur 

protein.1b) Formyl-methanofuran dehydrogenase, 2b) Formyl 

transferase, 3b) 5, 10-Methenyl-tetrahydromethanopterin, 4b) 5,10-

Methylene-H4-methanopterin dehydrogenase, 5b) 5,10-Methylene-

H4-methanopterin reductase, 6b) Methyl-H4-methanopterin: corrinoid 

iron-sulfur protein methyltransferase, 7b) Corrinoid iron-sulfur 

protein.8) CO dehydrogenase/acetyl-CoA synthase. The electron 

donors for each enzyme differ in bacteria and archaea. Adopted from 

(Fuchs, 2011). 
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Table 4.6. Identification of genes involved in CO2 fixation through acetyl-CoA pathway in ANME-

2c and Desulfobacteraceae present in the sediment from 22cmbfs of Nyegga cold seeps.  

 ANME-2C    

STEP GENES Contig No.                     RAST 
 CO dehydrogenase/acetyl-CoA synthase (Fd2−red) 

 

00319* 

02467 

04921 

05060 

09051 

 

 

             Not annotated 

 Desulfobacteraceae    

 GENE Contig NO.                  RAST 

1 Formate dehydrogenase chain D 00316** 

00334** 

fig|6666666.104923.peg.2524 

fig|6666666.104923.peg.2607 

 Formate dehydrogenase O alpha subunit 00241** fig|6666666.104923.peg.2209 

 Formate dehydrogenase-O, major subunit 00155** 

00534** 

fig|6666666.104923.peg.1667 

fig|6666666.104923.peg.3327 

 NAD-dependent formate dehydrogenase alpha subunit 00534** 

02941** 

04003** 

fig|6666666.104923.peg.3326 

fig|6666666.104923.peg.5416 

fig|6666666.104923.peg.5787 

2 10-Formyl-H4folate synthetase (ADP forming) 

 

Not Found                   - 

3 5,10-Methenyl-H4folate cyclohydrolase 

 

Not Found                   - 

4 5,10-Methylene-H4folate dehydrogenase 

 

Not Found                  - 

    

5 5,10-Methylene-H4folate reductase (Fd2− red) 

 

00444** 

00557** 

fig|6666666.104923.peg.3051 

fig|6666666.104923.peg.3383 

6 Methyl-H4folate:corrinoid iron-sulfur protein  Not Found   

7 Corrinoid iron-sulfur protein (CFeSP)     

 Larg subunit 00209** fig|6666666.104923.peg.1999 

 Small subunit 00444** fig|6666666.104923.peg.3050 

8 CO dehydrogenase/acetyl-CoA synthase (Fd2−red) 00209** 

06387 

10568 

fig|6666666.104923.peg.2001 

 

Another possible pathway for CO2 fixation is the reductive citric acid cycle (Figure 9.). This 

cycle has been found in various groups of anaerobic Deltaproteobacteria (Figure 7.). It is 

reversal of the citric acid cycle and generates acetyl-CoA from CO2 instead of oxidation of 

acetyl-CoA and production of energy. The genes encoding the Malate dehydrogenase, Fumarate 

hydratase, Isocitrate dehydrogenase and Aconitase were retrieved from Desulfobacteraceae bin, 

but the key enzyme ATP citrate lyase was absent (Table 4.7.). 

*Contigs found in ANME-2c bin / ** Contigs found in Desulfobacteriacaea bin 



 
45 SEPIDEH MOSTAFAVI 

Table 4.7. Identification of genes encoding the enzymes involved in reductive citric acid 

cycle in the sediment from 22cmbfs of Nyegga cold seeps. All the genes retrieved from 

Desulfobacteraceae bin. 

Gene Contig No. RAST 

Malate dehydrogenase 02090 fig|6666666.104923.peg.5012 

Fumarate hydratase class I 00546 

00751 

03999* 

fig|6666666.104923.peg.3353, 

fig|6666666.104923.peg.3778 

Isocitrate dehydrogenase 00423 

03480 

03480 

fig|6666666.104923.peg.2965, 

fig|6666666.104923.peg.5642, 

fig|6666666.104923.peg.5643 

Aconitate hydratase 00211 

00274 

01898 

01898 

01972 

fig|6666666.104923.peg.2016, 

fig|6666666.104923.peg.2359, 

fig|6666666.104923.peg.4878, 

fig|6666666.104923.peg.4879, 

fig|6666666.104923.peg.4933 
* Contig not found in Desulfobacteraceae bin 

The occurrence of SRB and ANME in marine sediment at methane seeps has been reported, 

however, none of the microorganisms involved in methanotrophic consortia have not yet been 

isolated in pure culture, and our understanding about these SRBs, which are mainly relatives of 

Desulfosarcina or Desulfobulbus, and the range of electron donors is still incomplete. SRB may 

be organotrophic, using organic carbon compounds, such as lactate, formate, acetate, and 

pyruvate, or lithoautotrophic, and use hydrogen gas (H2) as an electron donor. In another 

classification, SRB are grouped into two main groups: those that degrade organic compounds 

incompletely to acetate and those that degrade organic compounds completely to carbon dioxide. 

The latter group commonly also uses acetate as a growth substrate using either reductive citric 

acid cycle or acetyl-CoA pathway (Madigan et al., 2011). 

The experimental evidence have refuted the electron shuttle in form of an organic compound 

such as formate, acetate, glucose, lactate (Meulepas et al., 2010, Moran et al., 2008). In 

accordance with those studies no formate dehydrogenase and no lactate dehydrogenase have 

been annotated using RAST and Blastx in Desulfobacteraceae bin.  

According to our phylogenetic tree based on AprAB, SRB from Desulfobacteraceae family 

dominated at 22cmbfs of Nyegga sediments. It has been reported that CO2 is the main carbon 

source of the SRB partner in AOM consortia and direct methane uptake or uptake of methane-

derived organic intermediates is not significant in lipid biosynthesis in these microorganisms 

(Wegener et al., 2008). The presence of the gene encoding the key enzyme of the CO 

dehydrogenase/acetyl-CoA synthase (Fd2−red) fortifies the CO2 fixation by Desulfobacteraceae 

using the acetyl-CoA pathway.   

Dsulfosarcina (within the Desulfobacteraceae family) belongs to the group of SRB that degrade 

organic compounds completely to carbon dioxide and commonly also use acetate as a growth 
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substrate (Madigan et al., 2011). In this case, the enzymes of acetyl-CoA pathway might be used 

for acetate oxidation rather than CO2 reduction. The enzymes phosphotransacetylase and acetyl 

kinase, which are involved in acetate oxidation, were retrieved in our data set using blastx. They 

were not annotated by RAST. However, blasting the sequences of these genes showed high 

sequence identity to other microorganisms belonging to neither SRBs nor ANME-2c. Since these 

fragments are so short, it is difficult to assign them to a specific bin. This suggested that the 

enzyme, CO dehydrogenase/acetyl-CoA synthase present in Desulfobacteraceae, catalyzes the 

acetyl-CoA pathway in reductive direction rather than oxidative. However, due to the lack of 

physio-chemical information, meta-transcriptomic data and lack of the FISH and isotopic tracer 

results, it is impossible to prove the presence of acetate in the environment and predict its 

consumption and/or generation by each of the microorganisms present in consortia.  

Although the absence of ATP citrate lyase could diminish the probability of the recruiting the 

reductive citric acid cycle by Desulfobacteraceae to reduce CO2 but it has been reported that 

some bacteria that might harbor the reductive citric acid cycle do not contain an obvious gene for 

ATP citrate lyase and instead use another type of this enzyme (Fuchs, 2011). On the other hand 

most of the annotated enzymes are also involved in the citric acid cycle are present, but their 

presence in the dataset does not indicate their involvement in reductive or oxidative direction. 

Given that some facultative, strict anaerobes reverse the cycle for the complete oxidation of 

acetyl-CoA, in the presence of a suitable organic substrate and an electron acceptor such as 

sulfate (Fuchs, 2011). Therefore, it is difficult to elucidate the employment of this cycle for CO2 

fixation.  

4.6. Nitrogen fixation 
The nitrogenase complex carries out the fixation of nitrogen by reducing molecular dinitrogen 

(N2) to ammonium (NH
+

4). It consists of two protein complex; dinitrogenase and dinitrogenase 

reductase. In methanogens nitrogenase complex is encoded by a single operon consists of six 

genes. nifH encodes the homodimer of nitrogenase reductase, the α and β subunits of nitrogenase 

are encoded by nifD and nifK respectively, and  nifE and nifN are required for iron-molybdenum 

cofactor (FeMoCo) synthesis (Leigh, 2000). Based on the RAST annotation, no genes were 

identified that could be involved in N2-fixation. However, several fragments encoding the 

enzymes involved in the diazotrophy process were identified in Blastx file, belonging to the 

Methanosarcina (Table 4.8.). Due to the shortness of the sequences, only in contig 02484, nifH 

and nifD were co-located as tandem a sequences, which were consistent with the previous reports 

(Leigh, 2000). In addition, some sequences encoding proteins involved in iron-molybdenum 

cofactor biosynthesis were present, but not in a cluster. Although the nifH and nifD are present in 

our dataset, but the other requirements for the nitrogen fixation process are missed. It may be due 

to the highly fragmented dataset.  

The diazotrophiy is distributed widely among the prokaryotes including bacteria and archaea. 

Several bacteria carry out nitrogen fixation, whereas the methanogens are the only cultivated 
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archaeal group that has been shown to perform this process. Recently, nitrogen fixation in 

ANME-2 has been suggested (Dekas et al., 2014). The occurrence of ANME-2 in the consortia 

with SRBs has been reported and it has been suggested that ANME-2 are the dominant 

diazotrophs in deep-sea methane seep sediment (Dekas et al., 2014). Consistent with this, several 

short fragments with high identity to the bacterial nif operon genes were found in our dataset 

(data not shown). However, all were categorized in the broad groups, either the uncultured 

microorganisms or Deltaproteobacteria. Overall, the presence of sequences involved in the 

nitrogen fixation suggested a potential for the ANME to take part in this process. The shortness 

and fragmentation of the sequences may lead to difficulties in binning and finally gene 

annotation. This could be the possible reason why RAST was not able to annotate the genes 

involved in nitrogen fixation. This also illustrates how challenging it is to perform a 

metagenomic analysis when the fragments are short and the additional information is missing. 

  Table 4.7. The list of the archaeal nif operon genes. 

Gene Contig NO. Length (bp) 

Dinitrogenase iron-molybdenum cofactor biosynthesis  00366 363 

Dinitrogenase reductase, partial uncultured ,NifH 02484 246 

Dinitrogenase alpha subunit  02484 318 

Dinitrogenase reductase NifH, partial  03068 591 

Dinitrogenase alpha subunit  03299 1032 

Dinitrogenase reductase, partial  03432 420 

Dinitrogenase iron-molybdenum cofactor biosynthesis  03478 297 

Dinitrogenase iron-molybdenum cofactor biosynthesis 

protein  

04675 345 

 

Dinitrogenase reductase  10845 399 

5. Conclusion 
The culture-independent surveys of microbial assemblages within the methane-rich sediments 

from Nyegga have provided insight into microbial functions and population structure in this 

habitat. Combining phylogenetic information and analysis of the putative functional genes have 

provided a glimpse into specific microorganisms associated with the anaerobic oxidization of 

methane.  Phylogenetic evidences obtained in this study strongly support the involvement of a 

syntrophic consortium, consisting of ANME-2c, and SRB belonging to the Desulfosarcina–

Desulfococcus group, in AOM. A complete set of genes encoding enzymes involved in the 

reverse methanogenesis, dissimilatory sulfate reduction pathway and the electron transferring 

complexes, fortifies the mediation of methane oxidation coupled to sulfate reduction rather than 
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reduction of other electron acceptors. Although a complete set of genes involved in CO2 fixation 

were not retrieved, the identification of the key enzyme, CO-dehydrogenase/acetyl-CoA synthase 

in the dataset assigned to both dominant populations in this site is in consistent with reports of 

close relatives (methanogens, Desulfosarcina) to fix inorganic carbon through acetyl-CoA 

pathway.  The data obtained emphasize the importance of using multiple molecular approaches 

for the identification of major functional taxa in environmental samples and from a fundament 

for further more advanced meta-omics approaches involving meta-transcriptomic and meta-

proteomics. 

.  
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6. Future work 
Although the metagenomic approach used in this study allowed identification of genes encoding 

the key enzymes involved in major metabolic pathways in sulfate-dependent AOM, the acetyl-

CoA pathway and in nitrogen fixation in Nyegga cold seep sediments, there are still many 

missing parts to complete the whole picture of life in Nyegga methane seepage.  First, some of 

the identified pathways were incomplete and some of the identified genes were short and 

incomplete. This also made it problematic to identify for example the organization of genes in 

operons or gene clusters. The metagenomic data set consisted of 1001981 sequence reads. By 

collecting a higher number of reads with other sequencing technologies rather than the 454-

technology, used in this study, such as the Illumina technology, a higher number of reads could 

be achieved and more complete genome information could be obtained. This could also have 

improved the binning procedure.   

This project is a metagenome-based analysis i.e. predicting the functional metabolic capacity of 

this site based on the non-cultural studies performed on DNA level. Given that the presence of a 

gene does not represent its expression, hence, a metagenomic analysis needs to be coupled to 

metatranscriptomic and metaproteomic studies to give the better view of what is ongoing at this 

site. In addition, in the case of enzymes which are shared between two or more metabolic 

pathways, even the presence of active protein is not representative of the specific pathway, 

unless the additional information about the geological and geochemical condition of the site of 

interest is available. For example the annotation of the genes encoding for AprAB and Dsr 

subunits does not help us to clarify whether these enzymes catalyze disproportionation or 

dissimilatory sulfate reduction. In addition, information about the reaction rates of methane 

oxidation and sulfate-reduction, if the stociometry is 1:1 or not, would help to understand if for 

instance the SRB could catalyze other processes in addition to taking part in AOM.  

Moreover, FISH analyses are needed to evaluate if ANME-2c are associated to an SRB partner. 

Finally, culture-based experiments could facilitate other analyses for example isotopic tracer 

studies which could help to track different elements through biochemical reactions and their 

transfer among the organisms present in the culture.  
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Appendix 

                  

 
Appendix I. phylogenetic tree of 16SrRNA sequences, including 16S rRNA in contig01666 from 

the Nyegga sediment at 20-22cmbsf. The tree is based on a MUSCLE alignment and constructed with 

the PhyML program using 100 bootstrap values 
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Appendix II. List of selected McrA sequences and their accession NO. 

No. species Accsesion No. 
1 Methanomethylovorans hollandica WP_015325028.1 

2 Candidatus Methanoperedens nitroreducens KCZ72673 

3 uncultured archaeon GZfos35D7 AAQ63481.1 

4 uncultured archaeon GZfos26B2 AAU83007 

5 Black sea uncultured archaeon  CAE46369 

6 uncultured archaeon GZfos24D9  AAU82960 

7 uncultured archaeon GZfos30H9  AAU83544 

8 Black sea-uncultured archaeon  CBH39484 

9 uncultured archaeon GZfos11H11  AAU82226 

10 uncultured archaeon GZfos18B6  AAU82491 

11 uncultured archaeon GZfos9C4  AAU84252 

12 uncultured archaeon GZfos19C7  AAU82711 

13 uncultured archaeon GZfos13E1 AAU82276 

14 Eel River Basin- uncultured archaeon  AAQ63476 

15 Methanocaldococcus vulcanius M7  WP_012819563 

16 Methanocaldococcus infernus ME  ZP_04790423 

17 Methanobrevibacter smithii DSM 2375  ZP_03607827 

18 Methanocella arvoryzae  WP_012035370 

19 Methanoregula boonei  WP_012106121 

20 Methanobacterium paludisgi  WP_013826564.1 

21 Methanocaldococcus fervens AG86  WP_015791493 

22 Methanocaldococcus jannaschii DSM 2661 NP_247840 

23 Methanococcus aeolicus Nankai-3  WP_011973976 

24 Methanocorpusculum labreanum Z  WP_011833928 

25 Methanothermobacter thermautotrophicus str. Delta H  WP_010876788 

26 Methanosphaerula palustris E1-9c  WP_012618913 

27 Methanococcus maripaludis S2  WP_011171503 

28 Methanococcus vannielii SB  WP_011972678 

29 Methanosaeta thermophila PT  YP_843000 

30 Methanothermobacter marburgensis  WP_013296337 

31 Methanococcus voltae A3  ZP_02193000 

32 Methanosarcina mazei Go1  WP_011033189 

33 Methanosarcina acetivorans C2A  WP_011024419 

34 Methanosarcina barkeri str. Fusaro  WP_011305916 

35 Methanoculleus marisnigri JR1  WP_011843456 

36 Methanococcoides burtonii DSM 6242  WP_011500403 
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Appendix III. List of selected AprBA sequences and their accession NO . 

No. Species AprA 

Accession 

number 

AprB 

Accession 

number 

1 Chlorobium tepidum TLS NP_661759.1 NP_661758.1 

2 Chlorobium phaeobacteroides BS1 ACE04754.1 YP_001960236.1 

3 Chlorobium chlorochromatii CaD3 YP_379883.1 YP_379884.1 

4 uncultured alpha proteobacterium EBAC2C11 AAV31646.1 AAV31645.1 

5 Thiobacillus denitrificans ATCC 25259 YP_314630.1 YP_316041.1 

6 Thiobacillus denitrificans ATCC 25259 YP_316040.1 YP_314631.1 

7 Allochromatium vinosum DSM 180 AAC23621.1 YP_003443091.1 

8 Desulfotalea psychrophila LSv54 YP_064841.1 YP_064840.1 

9 Desulfovibrio vulgaris str. Hildenborough YP_010068.1 YP_010067.1 

10 Desulfovibrio desulfuricans subsp. desulfuricans str. 

G20 

YP_387606.1 YP_387605.1 

11 Syntrophobacter fumaroxidans MPOB YP_845177.1 YP_845176.1 

12 uncultured sulfate-reducing bacterium fosws39f7 CAJ31180.1 CAJ31179.1 

13 Thermodesulfobacterium commune DSM 2178 ABR92412.1 ABR92411.1 

14 Thermodesulfobacterium hveragerdense ABR92414.1 ABR92413.1 

15 Thermodesulfovibrio yellowstonii DSM 11347 YP_002249623.1 YP_002249624.1 

16 Desulfotomaculum nigrificans DSM 574 ZP_08112930.1 ZP_08112929.1 

17 Desulfotomaculum acetoxidans DSM 771 YP_003192912.1 YP_003192913.1 

18 Desulfotomaculum reducens MI-1 YP_001112002.1 YP_001112001.1 

19 Archaeoglobus veneficus SNP6 YP_004341170.1 YP_004341169.1 

20 Archaeoglobus profundus DSM 5631 YP_003400986.1 YP_003400987.1 

21 Archaeoglobus fulgidus DSM 4304 NP_070498.1 NP_070497.1 

22 Caldivirga maquilingensis IC-167 YP_001540111.1 YP_001540110.1 

23 Pyrobaculum arsenaticum DSM 13514 ABP50802.1 ABP50801.1 

24 Pyrobaculum calidifontis JCM 11548 ABO08848.1 ABO08849.1 

25 Desulfobacterium autotrophicum HRM2 YP_002601730.1 YP_002601731.1 

26 Desulfococcus oleovorans Hxd3 YP_001528885.1 YP_001528884.1 

27 Desulfohalobium retbaense DSM 5692 YP_003198828.1 YP_003198829.1 

28 Desulfovibrio salexigens DSM 2638 YP_002989836.1 YP_002989835.1 

29 Desulfovibrio magneticus RS-1 YP_002951917.1 YP_002951916.1 

30 Thioalkalivibrio sulfidophilus HL-EbGr7 YP_002512435.1 YP_002512436.1 

31 Desulfovibrio desulfuricans subsp. desulfuricans str. 

ATCC 27774 

YP_002480703.1 YP_002480704.1 

32 Desulfovibrio vulgaris str. 'Miyazaki F' YP_002437297.1 YP_002437298.1 

33 Desulfatibacillum alkenivorans AK-01 YP_002430735.1 YP_002430736.1 

34 Candidatus Desulforudis audaxviator MP104C YP_001718010.1 YP_001718011.1 

35 Candidatus Vesicomyosocius okutanii HA YP_001218952.1 YP_001218951.1 

36 Desulfovibrio vulgaris DP4 YP_967579.1 YP_967580.1 

37 Candidatus Pelagibacter ubique HTCC1062 YP_266257.1 YP_266256.1 

38 Desulfosarcina cetonica AEG42204.1 AEG42203.1 
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39 Desulfosarcina ovata AEG42192.1 AEG42191.1 

40 Desulfobacterium anilini ABR92539.1 ABR92538.1 

41 Desulfarculus baarsii ABR92547.1 ABR92546.1 

42 Desulfomonile tiedjei DSM 6799 ABR92551.1 ABR92550.1 

43 Thermodesulfatator indicus DSM 15286 YP_004625133.1 YP_004625134.1 

44 Desulfobacca acetoxidans DSM 11109 YP_004369796.1 YP_004369797.1 

45 Desulfobulbus propionicus DSM 2032 YP_004194237.1 YP_004194236.1 

46 Vulcanisaeta distributa DSM 14429 YP_003902509.1 YP_003902510.1 

47 Thermodesulfobium narugense DSM 14796 YP_004438339.1 YP_004438340.1 

48 Sideroxydans lithotrophicus ES-1 YP_003524335.1 YP_003524334.1 

49 Ammonifex degensii KC4 YP_003239057.1 YP_003239058.1 

50 Desulfovibrio aespoeensis Aspo-2 YP_004122772.1 YP_004122773.1 

51 Desulfomicrobium baculatum DSM 4028 YP_003159689.1 YP_003159688.1 

52 Pelodictyon phaeoclathratiforme BU-1 YP_002017013.1 YP_002017014.1 

53 Thioalkalivibrio sp. K90mix YP_003459318.1 YP_003459317.1 

54 Thioalkalivibrio thiocyanoxidans ARh 4 ZP_08928668.1 ZP_08928669.1 

55 Desulfonatronospira thiodismutans ASO3-1 ZP_07016333.1 ZP_07016332.1 

56 Desulfovibrio sp. ND132 ZP_08111962.1 ZP_08111961.1 

57 Candidatus Ruthia magnifica str. Cm (Calyptogena 

magnifica) 

YP_903358.1 YP_903357.1 

58 Thermodesulfobacterium sp. OPB45 YP_004627219.1 YP_004627220.1 

59 Desulfotomaculum kuznetsovii DSM 6115 YP_004516462.1 YP_004516461.1 

60 Desulfovibrio alaskensis G20 YP_387606.1 YP_387605.1 

61 Desulfotomaculum carboxydivorans CO-1-SRB YP_004498124.1 YP_004498125.1 

62 Desulfovibrio sp. FW1012B ZP_09131868.1 ZP_09131867.1 

63 Desulfotomaculum gibsoniae DSM 7213 ZP_09099083.1 ZP_09099084.1 

64 Desulfobacter postgatei 2ac9 ZP_09095985.1 ZP_09095984.1 

65 Desulfosporosinus meridiei DSM 13257 ZP_08983439.1 ZP_08983440.1 

66 Thiorhodovibrio sp. 970 ZP_08943161.1 ZP_08943162.1 

67 Thiocystis violascens DSM 198 ZP_08926409.1 ZP_08926410.1 

68 Thiorhodococcus drewsii AZ1 ZP_08823264.1 ZP_08823265.1 

69 Thiorhodococcus drewsii AZ1 ZP_08822682.1 ZP_08822681.1 

70 Thiocapsa marina 5811 ZP_08772813.1 ZP_08772812.1 

71 Desulfovibrio fructosovorans JJ ZP_07334194.1 ZP_07334195.1 

72 Desulfovibrio africanus str. Walvis Bay ZP_08421590.1 ZP_08421591.1 

73 Desulfurivibrio alkaliphilus AHT2 YP_003690785.1 YP_003690786.1 

74 Thermoproteus uzoniensis 768-20 YP_004337517.1 YP_004337516.1 

75 Vulcanisaeta moutnovskia 768-28 YP_004244206.1 YP_004244207.1 

76 gamma proteobacterium SCGC AAA001-B15 ZP_09063649.1 ZP_09063648.1 

77 Thermoproteus tenax Kra 1 YP_004892186.1 YP_004892187.1 

78 Desulfovibrio sp. A2 ZP_08867105.1 ZP_08867106.1 

79 Desulfovibrio sp. 6_1_46AFAA ZP_08842825.1 ZP_08842824.1 

80 delta proteobacterium MLMS-1 ZP_01288427.1 ZP_01288426.1 

81 endosymbiont of Tevnia jerichonana (vent Tica) ZP_08816020.1 ZP_08816021.1 

82 sulfate-reducing bacterium DSM 12567 ABR92545.1 ABR92544.1 
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83 sulfate-reducing bacterium DSM 15769 ABR92541.1 ABR92540.1 

84 sulfate-reducing bacterium DSM 14454 ABR92543.1 ABR92542.1 

85 Desulforhabdus sp. DDT ABR92557.1 ABR92556.1 

86 Desulforhabdus amnigena ABR92553.1 ABR92552.1 

87 Desulforhabdus sp. BKA11 ABR92555.1 ABR92554.1 

88 Desulfotomaculum sp. DSM 8775 ABR92586.1 ABR92585.1 

89 Desulfotomaculum thermocisternum ABR92594.1 ABR92593.1 

90 Desulfotomaculum luciae ABR92571.1 ABR92570.1 

91 Desulfotomaculum australicum ABR92565.1 ABR92564.1 

92 Desulfotomaculum solfataricum ABR92576.1 ABR92575.1 

93 Desulfotomaculum thermobenzoicum subsp. 

thermobenzoicum 

ABR92590.1 ABR92589.1 

94 Desulfotomaculum sp. DSM 7475 ABR92582.1 ABR92581.1 

95 Desulfotomaculum sp. DSM 7474 ABR92580.1 ABR92579.1 

96 Desulfotomaculum sp. DSM 7476 ABR92584.1 ABR92583.1 

97 Desulfotomaculum thermobenzoicum subsp. 

thermosyntrophicum 

ABR92592.1 ABR92591.1 

98 uncultured sulfate-reducing bacterium CAJ31201.1 CAJ31202.1 

99 Desulfotomaculum sp. DSM 7440 ABR92578.1 ABR92577.1 

100 Desulfosporosinus orientis DSM 765 AET67375.1 AET67374.1 

101 Desulfonatronovibrio hydrogenovorans ABR92460.1 ABR92459.1 

102 Desulfothermus naphthae ABR92458.1 ABR92457.1 

103 BS_Apr1_Black_Sea AEG42194.1 AEG42193.1 

104 BS_Apr2_Black_Sea AEG42196.1 AEG42195.1 

105 BS_Apr3_Black_Sea AEG42198.1 AEG42197.1 

106 BS_Apr4_Black_Sea AEG42200.1 AEG42199.1 

107 BS_Apr5_Black_Sea AEG42202.1 AEG42201.1 
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Appendix IV. List of selected 16S rRNA sequences and their accession no. 

No. Species Accession No. 

1 Pyrobaculum arsenaticum , strain PZ6 AJ277124 

2 Pyrobaculum oguniense AB087402 

3 Sulfolobus  tokodaii  AB022438 

4 Stygiolobus azoricus D85520 

5 Thermoproteus  tenax strain YS44 AY538162 

6 Acidianus brierleyi strain DSM 1651 NR_043409 

7 Acidianus ambivalens D85506 

8 Acidianus infernus D85505 

9 Uncultured archaeon CRA8-27cm, marine sediment clone CRA8 AF119128 

10 Methanobacterium formicicum strain KOR-1 JQ973735 

11 Methanobacterium formicicum strain MF NR_115168          

12 Methanobacterium formicicum strain DSM 1535 NR_025028 

13 Methanosphaera stadtmanii M59139 

14 Methanosphaera stadtmanae   DSM 3091 AY196684 

15 Methanosphaera stadtmanae strain MCB-3 NR_028236                  

16 Methanobacterium thermoautotrophicum AB020530 

17 Methanothermobacter thermautotrophicus strain delta H NR_042782 

18 Methanothermobacter thermautotrophicus strain AM1 HM228400    

19 Uncultured Methanobacteriales archaeon clone OTU_970 KP902328 

20 Uncultured Methanobacteriales archaeon from fresh water LN796353 

21 Uncultured Methanobacteriales archaeon, environmental samples LN796417 

22 Methanobrevibacter arboriphilus strain DH-1 AY196665 

23 Methanobrevibacter sp. ATM AF242652 

24 Methanobacterium ferruginis AB542743 

25 Methanobacterium petrolearium AB542742 

26 Methanobacterium bryantii strain MOH AY196657 

27 Methanobacterium oryzae AF028690 

28 Methanothermobacter wolfeii AB104858 

29 Halorubrum coriense  L00922 

30 Halococcus dombrowskii AJ420376 

31 Haloarcula argentinensis D50849 

32 Halorubrum sodomense D13379 

33 Haloferax denitrificans D14128 

34 Haloferax alexandrinus AB037474 

35 Halogeometricum borinquense AF002984 

36 Unidentified archaeon, clone pSSMCA108, from hydrothermal vent AB019740 

37 Unidentified archaeon, clone pMC2A10, from hydrothermal vent AB019739 

38 Uncultured archaeon 2MT1, from a Coastal Saltmarsh AF015981 

39 Uncultured archaeon CRA12-27cm AF119123 

40 Unidentified archaeon DNA, clone pMC2A203 AB019737 

41 Uncultured archaeon TA1f2, from marine sediments AF134390 

42 Uncultured archaeon TA1c9 AF134388 
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43 Uncultured archaeon TA1e6, from marine sediments AF134389 

44 Uncultured archaeon 2C84, from  Coastal Saltmarsh AF015978 

45 Methanocalculus halotolerans,  AF033672 

46 Methanoculleus bourgensis MS2 AY196674 

47 Methanofollis sp. N2F9704 AF262035 

48 Methanofollis tationis AF095272 

49 Methanofollis formosanus  AY186542 

50 Methanospirillum lacunae AB517986 

51 Methanoculleus chikugoensis AB038795 

52 Black sea cold seep, clone BS-K-F9   AJ578126 

53 Santa Barbara Basin clone SB-24a1F10 AF354134 

54 Santa Barbara Basin clone SB-24a1B11 AF354130 

55 Hydrate Ridge, clone HydBeg134 AJ578116 

56 Uncultured archaeon 2MT7 , a Coastal Saltmarsh AF015991 

57 Uncultured archaeon 2C83, a Coastal Saltmarsh AF015977 

58 Uncultured archaeon BA2H11fin, marine sediment AF134393 

59 Eel River Basin and Santa Barbara basin clone Eel-36a2A4  AF354128 

60 Eel River Basin and Santa Barbara basin clone  SB-24a1H2 AF354135 

61 Eel River Basin and Santa Barbara basin clone SB-24a1C12  AF354138 

62 Eel River Basin and Santa Barbara basin clone  Eel-36a2B9 AF354140 

63 Uncultured Methanosarcinales archaeon clone MOS1A_4113_G08 AY323222 

64 Eel River Basin clone Eel-36a2A5 AF354133 

65 Gulf of Mexico , Uncultured archaeon At425_ArD2 AY053472 

66 Hydrate Ridge sediment clone Hyd24-Arch07a AJ578112 

67 Santa Barbara Basin clone SB-24a1A12 AF354131 

68 Hydrate Ridge sediment  clone Hyd24-Arch19 AJ578104 

69 Santa Barbara Basin clone SB-17a1D3 AF354142 

70 Santa Barbara Basin clone SB-17a1B11 AF354141 

71 Hydrate Ridge Sediment clone HydBeg40 AJ578083 

72 Eel River Basin clone Eel-36a2A1 AF354129 

73 Gulf of Mexico, Uncultured archaeon AT425_ArE12 AY053474 

74 Hydaret Ridge Sediment clone HydBeg125 AJ578115 

75 Monterey Canyon, Calif. cold seep clone AMOS4A_4113_H05 AY323223 

76 Guaymas Basin sediment clone C1_R019 AF 419638 

77 Gulf of Mexico, clone GoM GC234 021R AY211695 

78 Gulf of Mexico gas hydrate clone GoM GC234 019R AY211694 

79 Hydrate Ridge sediment, clone HydBeg22 AJ578118 

80 Hydrate Ridge sediment, clone HydBeg34 AJ578085 

81 Hydrate Ridge sediment, clone HydCal75 AJ578092 

82 Hydrate Ridge sediment , clone HydBeg149 AJ578117 

83 Hydrate Ridge sediment, clone HydBeg41 AJ578095 

84 Hydrate Ridge sediment, clone HydBeg05 AJ578098 

85 Eel River Basin, Uncultured archaeon TA1a4 AF134384 

86 Eel River Basin, Uncultured archaeon isolate Eel-36a2E1 AF354139 

87 Guaymas Basin Sediment, clone C1_R048 AF419644 
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88 Gulf of Mexico, gas hydrate clone GoM GC234 634R AY211713 

89 Gulf of Mexico, gas hydrate clone GoM GC234 009R AY211692 

90 Monterey Canyon, Calif. Cold seep, clone AMOS1B_4113_F12 AY323221 

91 Guaymas Basin sediment, clone AT_R007 AF419650 

92 Hydrate Ridge sediment, clone fos0626f11 AJ890142 

93 Hydrate Ridge sediment, clone fos0629b6 AJ890141 

94 Mediterranean Sea mud volcano, clone AMSGC_32_A31 KF440345 

95 Mediterranean Sea mud volcano HQ588676 

96 Eel River Basin, clone Eel-36a2H11 AF354136 

97 Hydrate Ridge sediment, clone HydBeg92 AJ578119 

98 Hydrate Ridge sediment, clone HMMVBeg-32 AJ579330 

99 Haakon Mosby Mud Vulcano, clone HMMVBeg-34 AJ579327 

100 Methanococcus aeolicus Nankai-3 DQ195164 

101 Methanothermococcus okinawensis AB057722 

102 Methanococcus vannielii AY196675 

103 Methanotorris formicicus AB100884 

104 Methanothermococcus thermolithotrophicus DSM 2095 M59128 

105 Black sea microbial mat, clone BS-S-D7 AJ578134 

106 Black sea microbial mat, clone BS-SR-D3 AJ578141 

107 Hydrate Ridge, clone HydCal52 AJ578120 

108 Eel River Basin, clone Eel-36a2G10 AF354137 

109 Black sea microbial mat, clone BS-S-H1 AJ578138 

110 Hydrate Ridge, clone HydBeg01 AJ578084 

111 Guaymas clone A1-R013 AF419625 

112 Black sea microbial mat, clone BS-R-A1 AJ578131 

113 Black sea microbial mat, clone BS-SR-C1-Arch AJ578140 

114 Black sea microbial mat, clone BS-M-A7 AJ578129 

115 Black sea microbial mat, clone BSeua2 AF412943 

116 Eel river, Uncultured archaeon BA2F4fin AF134392 

117 Eel river, Uncultured archaeon TA2e12 AF134391 

118 Eel River, Uncultured archaeon BA1a1 AF134380 

119 Eel River, Uncultured archaeon TA1a6 AF134386 

120 Eel River, Uncultured archaeon BA1a2 AF134381 

121 Eel River, Uncultured archaeon BA1b1 AF134382 

122 Hydrothermal vent, clone pISA16 AB019758 

123 Hydrothermal vent clone pISA14 AB019759 
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AppendixV. Gene organization in Dsr operon presented in contigs 00339 and 00237, and in 

three other Desulfobacteraceae. Green: Dissimilatory sulfite reductase alpha subunit (DsrA), 

Red: Dissimilatory sulfite reductase beta subunit (DsrB), Orange: Dissimilatory sulfite reductase 

clustered protein (DsrD), Blue: Cobyrinic acid A,C-diamide synthase. The latter is categorized in 

the Sulfite reduction-associated complex DsrMKJOP and co-clustering genes subsystem and its 

role is Cobyrinic acid A,C-diamide synthase.  
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