Autonomic Operation of a Large High
Performance On-Line Compute Cluster

Oystein S. Haaland

Dissertation for the degree of philosophiae doctor (PhD)
at the University of Bergen

2015

Dissertation date: 10.12.2015



Abstract

A High-Level Trigger (HLT) system is composed of both hardware and software. Design-
ing the physical layout of the cluster mainly concerns the hardware; node distribution,
network layout, estimation of power requirements, defining hardware properties of the
nodes and so on. These are to a great extent derived from the processing topology to be
used in the software application, which in turn is chosen based on the nature of the data
to be processed.

In a project the size of HLT, it is challenging to predict the specifications of the hard-
ware to be bought in the future, while accounting for requirements that may change
as the project matures over time. The first part of the thesis is a review and an eval-
uation of the stages from early design to a fully operational HLT, presented from an
instrumentation and software engineering point of view.

Differences between computational science and software engineering became apparent
early on. The existing literature on the topic helps to understand the observations, and
from this understanding, suggestions for possible improvements that could benefit similar
projects in the future are made. Suitable concepts, technology and practices have been
identified by researching current trends and looking to other relevant fields of study.

The solutions that could be implemented and evaluated during the course of the work
on the thesis, are verified in prototypes. Autonomic computing has been an important
inspiration as well as the management specifications from the Distributed Management
Task Force (DMTF). A general observation is that there seems to be much that poten-
tially could be learned from software engineering, a field that has been working on large
scale software systems for a long time. Although one must be cautious and critical in
what is adopted, since not everything will apply. It goes without saying, that scientific
computing has its own contributions to the generic computing field. The prototypes
are described in the last part of the thesis, where also the acceptance criteria and other
results can be found.
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1. Introduction

High performance computing have become indispensable tools for problem solvers of
today. Domains as diverse as medicine, finance, meteorology, oil and physics all use
these number crunchers like never before to acquire new insight [1]. While the human
brain is a unique and marvelous thing - the most capable and versatile device yet observed
- there are some tasks where it comes short when compared to machines. Certain types of
problems are of such a nature that they are most easily solved by performing calculations
on large data sets. Doing this in a concise, predictable and efficient manner is where the
machine excels. In fact, many of most difficult and pressing problems might only be
solvable with the help of supercomputers [1].

The trend in computer history has gone from a powerful central machine with thin
clients to thicker clients with relatively powerful servers. This trend continues in the
history of supercomputers, where these machines used to be built as big mainframes, but
as time have passed, they are increasingly being built as clusters composed of Commercial
off-the-shelf (COTS) computers with fast interconnects.

Driven by the consumer market, the high volume production of such machines make
them cheap and widely available. With the performance increase consumer hardware
have seen over the last decade and the improved network connectivity, compute clusters
have become the preferred architecture for supercomputers [2].

The cost of using such a composed architecture, is increased complexity for the pro-
grammer who wants to formulate his or her problem [1]. Parallelism, pipelining, state
synchronization, message-passing are just some examples of what one might have to get
familiar with when working in High Performance Computing (HPC). After many years
of research and development, the HPC community is still faced with the challenge of
managing such a machine and presenting it as a unified system to its users in a way that
makes it easy to express the problems to be solved.

Throughout history, scientists have been used to building their own instruments for
performing experiments. But the complexity of the machines that are being built to-
day, requires expert knowledge outside the scientific application domain. In this case
knowledge related to the instrument itself, from computer science related fields, such as
informatics, software engineering and cluster management.

The work presented here, concerns a very specialized compute cluster used for online
event building, event filtering and data compression in High Energy Physics (HEP). It
is part of the ALICE online system, one of the experiments along the Large Hadron
Collider (LHC) accelerator at European Organization for Nuclear Research (CERN).

The main task of this dissertation is to undertake a critical performance review of
the ALICE HLT project. To look at how computing requirements were derived from
physics requirements (section 4.1) and how implementation was executed according to
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1. Introduction

these (sections 5.1 and 5.2). The angle of approach will therefore be in the intersection
between physics instrumentation and computer science. Special attention will be paid
to how changes in a fast-moving IT-industry have influenced requirements in the HLT
project and how the project has coped with such influence.

The discussion about implementation and performance will be followed up with sug-
gestions for improvements. The potential for improvement in a project like HLT spans all
the way from the large scope of project management to the smallest details of software
development practices. It can include suggestions for new designs and implementations
of missing infrastructure, all depending on the outcome of studies to be conducted. Rele-
vant improvements will be evaluated and conclusions will be made about their feasibility.
The conclusions will be summed up as a set of recommendations that will be presented
as a part of the result from this work.

A few of these concepts and designs that are most relevant to the perspective of
this thesis, will be sought verified or falsified in prototype implementations tested under
realistic conditions. The outcome of this testing will form the second part of the presented
result.

One component has already been identified as a desired addition to the HLT cluster;
an inventory database. Apart from keeping track of the inventory, it is the precondition
of resource management, an important service for making the the HLT more autonomous
and fault-tolerant. The implementation of such an inventory database will be used as a
verification of suggested software development practices as well as for actual design. A
second implementation, also targeting the same system, will be described for comparison
of approaches, methodologies and software development metrics.

The next chapter presents the general problem domain of software engineering and
scientific computing. Then follows a description of the context, that is LHC and ALICE,
in which HLT operates. The fourth chapter will describe HLT as it exists today in some
detail, including software, hardware and infrastructure, and there will be sections on
requirements and architectural design concepts. The fifth chapter is concerned with the
stages of development in HLT and how the design and implementation changed over
the years in order to accommodate for changing requirements. The focus will be on
the experiences and challenges throughout the process. The remaining sections of the
chapter will discuss the performance of various aspects of HLT.

The sixth chapter makes suggestions for improvements to HLT. About technology that
can be deployed and practices that can be used to improve upon the current project,
and for similar projects in the future. Chapter seven proposes a design for a common
architecture for (first and foremost non-core) HLT applications as well as design of other
tools that are currently missing in HLT. Prototypes of these designs are also presented
with the intention of verifying how suitable the suggestions are in the HLT cluster and to
evaluate them for future use. Chapter eight will list any results so far and finally there
will be a conclusive chapter that also takes a look forward.

16



2. Software engineering and scientific
computing

2.1. General concepts

Many science fields are involved simultaneously in building a system like the HLT. In ad-
dition to physics and instrumentation, there is an array of computer science related fields
also being applied in today’s experiments. The body of academic literature to draw from
is therefore large. Important sources includes Association for Computing Machinery [3]
(ACM), that covers many computer science sub-fields, among them software engineering
[4], in their special interest groups. Then there is the Journal of Computing in Science
& Engineering [5], which has held a workshop dedicated to Software engineering [6].

High Performance Computing is covered in the Journal of High Performance Comput-
ing Applications [7], supercomputing by the supercomputing conference series [8], and the
conference most specialized in HEP and generally most relevant for HLT is Computing
in High Energy and Nuclear Physics (CHEP).

Other relevant sources for this dissertation is the ACM International Conference on
Autonomic Computing, now called The ACM Cloud and Autonomic Computing Confer-
ence. Lastly, there is the System and Virtualization Management conference held by the
Distributed Management Task Force (DMTF).

2.2. Chasms and gridlocks

While Software Engineering (SE) has established itself as a field of study that the industry
can rely on for improving the ways in which we create software, it is not given that the
experience gained in the general software domain will be useful in the individual scientific
domains. Given the potential gains that can be achieved through software engineering
though, it is valuable to know which solutions are, and which are not, applicable to
scientific computing.

After having discovered what has been described as a chasm between SE researchers
and computational scientists in the field [9], and later observed that there seem to be a
productivity gridlock in computational sciences [10], it was eventually acknowledged that
software development in scientific computing is markedly different from other domains.

A study initiated by Sun [10], points out that properties that are important for scien-
tific computing, like performance, real-time constraints, hardware cost and portability,
holds much less significance in the software engineering community, who rather favors
maintainable code, robust programming languages and higher abstraction levels. With
such conflicting needs, there is no wonder why computational scientists are frustrated

17



2. Software engineering and scientific computing

with all the “fads” being imposed on them from the SE academics. Likewise, it is no sur-
prise that software engineering sees scientific computing as being arcane and primitive
in their ways of building software.

It has been suggested that the arrival of this state of mind has been due to a fun-
damental change in how application programming is viewed in the academic discussion
[11]. Computer science was from the beginning primarily concerned with the application
- the problem - itself, but not far into its own history, this focus changed, as one pre-
dicted methods would soon be found that could deliver automatic solutions to a set of
problems. Finding these generic methods that could be used to derive specific solutions
automatically therefore became the main occupancy of the researchers, neglecting to a
certain extent the problem domain.

This insistence on generic applicability, not taking into account the needs of the specific
domain, is considered to be the root cause of the chasm between practitioners and aca-
demics in todays scientific computing and software engineering communities [9]. While
focusing on domain-independent solutions has been fruitful over the years, it seems to
have run its course in providing further progress, and maybe is the frame of view it
imposes prohibitive for moving research forward. Having realized this, there is a grow-
ing interest from the SE community in trying to understand the characteristics of the
computational-heavy sciences, like HPC [12, 13].

Going off on a tangent, it is interesting and maybe sobering to be reminded of the as-
sessment about essential (creating the conceptual structure and abstract software entity)
and accidental (representing abstract concepts in programming language and producing
an executable product within given constraints) efforts in the Mythical Man-Month [14].
The chapter on “No Silver bullet” concludes that much have been achieved in reducing
accidental efforts - the transition from punch cards to interactive systems can serve as an
example - and that these improvements have been in the order of a magnitude or more,
the kind of scale that justifies being called fundamental changes. But that there is not
much more to be gained; there will be no change in the future that can be compared to
what has already been achieved, in continuing this vain.

One would now have to turn to essential efforts in the complexity of software engineer-
ing to progress, accepting that large improvements come in small increments accumulated
over long periods of time - there are no silver bullets left.

Considering the influence this book has had and its message, it is probably fair to
assume that it would be one of the voices that has spurred the direction that has been
taken. At the same time, its advice on setting realistic expectations and prepare for slow,
but steadfast progress is maybe a valuable input from the past in today’s hunt for higher
programmer productivity.

Returning to SE’s increased interest in scientific computing, the multidisciplinary de-
mands in HPC have been identified as one of the main challenges for improved program-
mer productivity [10]; not only do you need to be a domain expert in your scientific
branch, but also an expert in software optimization (often for a given hardware architec-
ture) and scalability (making the software run in a parallel to improve performance).

Related to this is another challenge: the accidental efforts resulting from the extra -
usually manual - work needed for achieving the high computational performance sought
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in HPC. These efforts do not directly contribute to solving the problem at hand, but are
rather tied to the chosen tooling and machinery used to describe and process the problem
[10].

With a fresh change of mind-set, where it is acknowledged that certain methods only
works for certain domains, one direction of effort has been to try, as a first step, to create
a taxonomy of methods and a taxonomy of application domains. With these in hand,
the following step would be to try to match methods to domains, to create a instrument
for advising domain experts of suitable methods for their field [11, 15].

An important part of this work will be to find the appropriate decomposition of
concepts that will result in the least possible overlap when mapping between the two
taxonomies. One can expect that the taxonomies and mappings to evolve together as
research moves forward, although it may take time, as even defining the application
taxonomy has proven to be challenging [16].

Along another axis, we have to remember that software engineering is still a young
field, we have yet to treat it like a proper science, with the strict demand for evidence
and applying the scientific (scrutiny) tools available. Adding that there currently is a lot
of handwaving, claiming it is difficult to know much about software development, while
at the same time observing that little effort is made in trying to move the field out of its
infancy and into maturity [17, 18].

With these initiatives finally happening, it is discouraging to learn about the reflections
on software engineering by long time members of the HEP community [19], that to a large
extent confirms and exemplifies recent findings; that of being entrenched in ones own
side of things and being unaware of recent research on software engineering in scientific
computing.

It seems nevertheless that the two sides agrees, that much can be gained by collaborat-
ing closer, but also realizing that effort is required from both sides. Software engineers
have to become better at addressing the scientific community by taking what they know
today from other domains, take it apart and try to re-apply the knowledge to the specific
scientific domains. The scientific computing communities on their hand must become
more open to change, and use the software engineering for what its supposed to be;
an aid in improving the software development for the various application domains that
heavily relies on software for their daily business.

Making software engineering part of the training in computationally-heavy sciences
is another suggestion [20]. It is not realistic to expect scientists to be experts in more
than one field, so the training would have to be practical and focusing on the basic tools
and techniques that are the most important. The attempts at educating scientists in
(practical, essential) software engineering have so far been encouraging and resulted in
verifiable improvements (around 20%) [21].

Trends, technology, tools and practices relevant in this respect are the topic of chapter
6.
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3. A Large lon Collider Experiment

ALICE is a general-purpose heavy-ion detector system designed to study strongly inter-
acting matter and the quark-gluon plasma produced in nucleus-nucleus collisions (Pb-Pb)
[22]. ALICE is composed of 18 sub-detectors. From the information produced, events can
be reconstructed and stored. The analysis itself is performed on large Grid [23] systems
after the data has been collected.

While having been designed for nucleus-nucleus collisions, ALICE is also capable of
detecting proton-proton interactions. LHC delivers proton-proton collisions most of the
year, while approximately one month, towards the end, is dedicated to Pb-Pb and p-Pb
runs.

Figure 3.1.: Setup of the ALICE detector system [24].

The purpose of LHC is to provide the experiments along its circumference with high
energy particle beams. Two beams are circulating inside the magnets of the 27 km long
LHC ring and are collided inside experimental caverns about 100 meters underground.
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3. A Large Ion Collider Experiment

Here, the collisions are recorded by the four main experiments - ALICE, ATLAS, CMS
and LHCb - before being transferred to central storage systems to be studied.

3.1. Detectors

ALICE has a classic collider setup with layers of tracking (and vertex) detectors at the
center closest to the interaction point and calorimeters in the outer layers [25], [26].
Triggering detectors are strategically placed according to their function, like TO and VO
which both have detector elements placed on either sides of the interaction point along
the beam direction.

The central barrel consists of a Time Projection Chamber (TPC) and Inner Tracking
System (ITS). The TPC is the largest contributor of data in the ALICE experiment
and the main tracking detector. The two end-plates of the TPC each have 18 sectors,
and each sector contains an inner and an outer readout chamber. These are multi-wire
proportional chambers with cathode pad readout [27]. In total there are 560000 pads in
the TPC and they are readout by Front-End Cards (FECs) that each can handle 128

pads - or channels. This means that each sector needs 121 FECs. A schematic view of
the TPC is shown in figure 3.2.
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Figure 3.2.: 3D view of the TPC field cage [28].

For the first run, the FECs were organized in 6 rows, each row being connected to a

Readout Controller Unit (RCU) with an attached Detector Data Link (DDL), as shown
in the overview picture in figure 3.3.
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Figure 3.3.: Schematic view of front end and readout electronics [28].

3.2. Trigger

The Central Trigger Processor (CTP) combines information from all the triggering detec-
tors and sends out trigger signals to Local Trigger Units (LTUs), where the final signals
are prepared and forwarded to (read-out) detectors. The entire trigger sequence in AL-
ICE is synchronized to the LHC clock. This signal along with the orbit signal (bunch
crossing) is received and distributed by modules in the Timing, Trigger and Control
system (TTC) in close coordination with the CTP. They are important for defining the
time-window for when a collision can be expected to happen. Following the crossing of
the bunches, triggering happens in quick succession through several predefined stages or
levels [22].

The high multiplicities during Pb-Pb has made it necessary to use electronics with
varying trigger timing needs for the different detectors. The typical “fast” trigger has
therefore been split in two; LO and L1, at ~ 1.2us and 6.5us respectively. It is for
the same reasons of high multiplicity that central collisions must be sand-boxed in their
own event by past-future protection to be reconstructible. This process corresponds to
the final hardware-trigger, L2, that lasts for 88us, which is also long enough to run
(hardware) trigger algorithms [22].

After a trigger sequence has completed, read-out is initiated and the detectors are
busy while extracting information from the event. The data is forwarded to DAQ/HLT
systems where the final decision is made regarding the destiny of an event.
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3. A Large Ion Collider Experiment

3.3. Data Acquisition

The data flow in ALICE starts when a 1.2 accept is issued. Detector signals are amplified,
shaped and digitized in the front-end electronics and transferred to the DAQ and HLT
systems via optical fibers.

DAQ receives the data in Local Data Concentrators (LDC), that can host up to two
DAQ - Read-Out Receiver Card (D-RORC) cards. Here event fragments are combined
into sub-events. These sub-events are sent to Global Data Collectors, where the complete
event is built and forwarded to temporary storage where the data is recorded while the
run is ongoing. After a completed run, the data is shipped to CERN Advanced STORage
manager [29] (CASTOR), where it is made available for analysis on a large computing
Grid [27].

In the D-RORC of the DAQ system, an exact copy of the data stream is made with
the help of optical splitters and forwarded through 454 DDL links to the HLT. After
passing through the HLT processing chain, the output is sent back to DAQ through 12
fiber links [27].

A schematic view of this data flow can be seen in the two figures 3.4 and 3.5. The
LDC and GDC machines of DAQ are commodity hardware, much like the nodes in HLT.
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Figure 3.4.: Overview of the data flow in ALICE, from readout electronics to when being
made available for analysis on the Grid. TDS is the temporary data storage
where data is buffered until the end of a run, when its finally published to
CASTOR |[22].
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Figure 3.5.: Overview of the logical DAQ components and the interaction with HLT[22].

3.4. Control systems

The ALICE experiment is operated and monitored by the Experiment Control System
(ECS) and the Detector Control System (DCS). These systems allow the entire experi-
ment to be controlled from the ALICE control room by trained shifters. While training is
essential for efficient day-to-day operation, it is still very important that the systems are
designed in such a way that the shifter doesn’t need to have intimate knowledge about
each and every sub-detector, and all the support systems of ALICE, to perform their
tasks. Much effort has therefore been put into the user interfacing parts of the control
systems, to only present essential information and only expose relevant controls there.
The primary task of the DCS is to ensure safe and correct operation of the experiment,
while ECS is the top-level control instance sitting atop of DCS and the other so-called
“online systems”; trigger, HLT and DAQ [27]. DCS is in this sense more directed to-
wards low-level instrumentation, allowing remote configuration, monitoring and control
of experiment equipment, while ECS is more concerned with higher-level operations.
With a long commissioning phase, it has been important to design both these system
to allow for partitioning of the experiment into smaller sub-systems in order to have
efficient testing. With partitioning, testing can be done by the individual sub-detectors
independent of the rest of the experiment, meaning it can for the most part be done
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in parallel. This partitioning is possible due the distributed and hierarchical decision
making of a Finite-State Machine (FSM) layer [30] that have been introduced in the
Supervisory Control and Data Acquisition (SCADA) system used by ALICE and the
other LHC experiments [27]. This system, called Joint Controls Projects [31] (JCOP),
is a framework based on the commercial Prozess Visualisierung und Steuerungs System
[32] (PVSS) package with additional components added according to the needs of the
experiments.

The measurements and parameters collected by DCS are also needed for the calibration
of the offline system when analyzing event data. Calibration data is collected from
the PVSS database and detector algorithms - running on DAQ machines - to be made
available for the analysis in a dedicated Offline Conditions Database (ocdb).

DCS also takes care of safety by interfacing all sensory systems in the experiment
cave that has to do with the operating environment of the experiment, like gas, smoke,
electricity, water and so on. One important design goal is therefore to allow for easy
integration of a broad range of equipment, from power supplies and VME creates to
computing devices and detector-specific electronics.

3.5. Offline Grid analysis

The Offline Project has developed the software for simulation, reconstruction, calibration,
alignment, visualization and analysis. All the original data from the experiments is stored
at two Tier-0 computer centers, one located at CERN and another in Hungary. The
responsibility of safe storage of this data is shared with large regional computing centers
called Tier-1. It is also these two infrastructures that share the majority of the organized
data processing load. Tier-2 data centers use Tier-1 for safe storage and do not have
permanent storage themselves. These are typically used for simulations and end-user
analysis [27]. This hierarchical organization in tiers is inspired by the Monarc model
[33].

A Grid middle-ware called AliEn [34] was developed by ALICE to orchestrate the
distribution and processing of data, and MonALISA is used for distributed, aggregated
monitoring [35].

After following the information flow from collision through detection, digitizing, trig-
gering and data acquisition to permanent storage, the data is finally analyzed on the Grid
infrastructure, producing physics results that are then published to the wider scientific
community.
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This chapter starts with a general introduction to triggering in HEP, before looking
at the requirements for HLT in ALICE and the conceptual design that defines the final
architecture. The remaining sections describes, in some detail, an HLT that is operational
today and that have come a long way in reaching the functional goals it was designed
for.

4.1. Triggering in High Energy Physics

Accelerators in High Energy Physics are typically linear or circular, although both types
can be used together in the same accelerator complex at different stages, as is the case
in LHC. Collisions happens either at a fixed target or by having two beams of particles
collide head-on with each other. The collisions themselves are what creates interesting
observables and as such they are called events.

At its core, HEP experiments are looking for signals in the event data that signifies
information that could be interesting physics. Much of the data produced by the LHC
experiments is in this regard considered uninteresting, as it is contains already known
physics and can therefore be discarded to save storage space and processing time [36].

The purpose of triggering in HEP experiments is to inform acquisition systems (DAQ)
about interesting events, so that data can be retrieved from detector electronics and
saved to permanent storage. Also within the event itself, there can be data that does
not contribute to any new physics. Selection of the regions that are interesting (Region
of Interest (ROI)) is therefore often provided for in triggering systems, as is also data
compression to further reduce the size.

A typical experiment setup in HEP is therefore composed of, in addition to the read-
out detectors, also triggering detectors, that will initiate readout of data from Front-End
Electronics according to predefined criteria. This is done in several stages, each con-
sidering larger parts of the events, but less data in total, as many of the events have
already been discarded. Each successive step can therefore spend a little longer time,
using increasingly more elaborate rules, in deciding which events should be passed on
further.

When events happen, it will in general take some time for the processes that creates
readable signals to complete. For instance, in drift chambers, there will be a delay
from when the particles pass through the gaseous volume until the induced charges,
representing the trajectory, reaches the electronics where it becomes available as signals
to trigger systems. This is the trigger latency of the system.

There is also readout latency, the time it takes to read out data, that might differ
amongst the detectors due to differences in electronics. A challenging part of building an
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experiment is to align all the participating systems in time, so that it becomes possible
to produce an accurate representation of the event.

While trigger electronics are designed to process events continuously, the detector read-
out rates only need to match the expected average rate (including the readout latency)
of a particular trigger condition. If the event rate outpaces the rate at which readout
electronics can extract data, a situation arise where the detector is not able to accept
events. This state of being busy shipping data is called dead-time [36].

Usually there will be hardware levels and a software level. The software level is what is
normally referred to as a High Level Trigger. This type of trigger reconstructs the event
data online and uses elaborate software algorithms to decide whether or not to keep an
event. Being software based, and having the time to reconstruct and analyze the events,
makes it a lot more flexible and powerful than its hardware-based siblings. Complex and
efficient event filtering is becoming more and more important with the increasing trigger
rates and data volumes of today [36]. Finally, a detector can also be constructed to self-
trigger, by continuously reading data from front-end electronics and performing online
(partial) event reconstruction that can be used to evaluate if the given event should be
selected or not [36].

In a software trigger, while the trigger sequence is ongoing, the data that is potentially
to be stored to disk - pending a trigger decision - must be kept in a pipeline. Also here,
if they arrive faster than they are processed, the events will start to pile up in a buffer
until there is no more space left, at which point the sending system will have to be told
to stop sending events until space has been freed up in the buffer.

4.2. Requirements

In the ALICE HLT, the amount of data coming out of the experiment after hardware
triggering, can still be as high as 25 GByte/s. The storage bandwidth, however, is
restricted to about 4 GByte/s and it is therefore necessary to introduce a HLT that can
reduce the data stream to permanent storage accordingly.

The ALICE HLT has been designed for the event selection and data compression needs
of ALICE. It is a compute cluster consisting of about 200 high-performance compute
nodes each made out of commodity computer hardware. Internally in the cluster, event
reconstruction is performed online before the compressed events are propagated to event
selection and triggering. The triggering decisions and ROI information can then be used
by Data Acquisition systems to select interesting events in a collision [22].

From a physicist point of view, HLT should function as just another tool or instru-
ment. The successful implementation of a HLT has to strike a balance between providing
a powerful tool for online data processing and practical /economical implementation from
a computer science/maintenance point of view. The high complexity of the system com-
bined with strict requirements is what makes the construction of HLT challenging.
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4.2.1. Functional requirements

The over-all objective of HLT is online data reduction without loss of quality. The main
functional requirements are given by the chosen strategies of achieving that objective

[27]:
e Event selection. (Trigger: accept or reject events based on detailed online analysis).

e ROI selection. (Select: Selects a physics region of interest within the event by
performing only a partial readout).

e Compression (Compress: Reduce the event size without loss of physics information
by applying compression algorithms on the accepted and selected data).

In general, the steps to accomplish this is to first read the data and reconstruct space
points, also called clusters. From the clusters, tracks can be reconstructed and from these
the global events are built. The reconstructed events are fed into the online analysis,
which output is used in the trigger algorithms that finally send the trigger decisions to
DAQ.

A trigger decision contains a list of DDLs to be read-out, where all links are included
in the case of an accepted event and none for a ejected event. ROI selection is therefore
in this context effectively a selection of a set of DDLs.

4.2.2. Non-functional requirements

The online aspect of HLT is an important difference to typical compute clusters; data
reduction is performed as the data stream travels through the system without any inter-
mediate persistent storage. Normally, the challenge in HPC is to run stable long enough
for the jobs to be able to finish. A modest fault rate in a batch system is not a serious
issue as the calculations can be restarted if something goes wrong. In contrast to this,
any faults, crashes or the like in an online system, results in less data taking time, which
leads to less statistics, and this has a direct impact on the physics results.

In batch processing, the problem to be solved is known to a central, uniform entity,
which does the job scheduling. The scheduler divides and distributes the problem to
worker nodes and gathers the results when jobs have completed. Whereas in HLT, the
structure of the data set is intrinsically given by the geometry of the experiment and
the units of work are the estimated - by benchmarking - loads of the individual analysis
processes.

The geometry along with the read-out infrastructure (in the way data arrives on the
DDL links) of the experiment therefore greatly affects the design and the layout of the
ALICE HLT cluster. Taking the TPC detector as an example; with each HLT node being
equipped with four DDL inputs, all four links from the outermost readout chamber of
one sector are mapped to a single node. For the inner readout chambers, two pairs of
links, each pair originating from a sector, are attached to one node.

In each rack there are three FEP nodes, two for the outermost readout chambers and
one for the innermost chambers, organized so that each rack covers two sectors. Such
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an organization ensures that at most two inner sectors or one outer sector is affected if
a node fails, and only two sectors are affected if the entire rack fails.

From the read-out electronics, the data arrives at the HLT in fibers, with a granularity
and composition that immediately allows for analysis components to start processing it
independently from neighboring information. This means that the processing in HLT can
be highly parallel. For instance cluster finding in one padrow of the TPC is independent
of cluster finding in the padrow next to it. This is similar for most detectors included in
HLT.

The stages of processing are also easily separable. This is maybe most clearly seen in
the TPC processing, where first, clusters are found in the raw data, then tracks are found
based on the cluster information. Tracks are first calculated within a limited region, like a
pad or sector in the TPC, then these tracks are merged with matching tracks considering
the combined detector volume. From this information, a global event is constructed,
that is fed to the event selection. In the end, data compression is done. This processing
hierarchy is illustrated in figure 4.1.

1
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Figure 4.1.: The six architectural layers of the HLT [27].

Clusters of today are built with COTS hardware and software, which promises lower
cost and shorter implementation time compared to custom solutions [1]. The drawback
of off-the-shelf products is that the feature set of a product might not completely match
the requirements of the customer. In particular, strict requirements regarding quality,
reliability and real-time performance may not be met in a system using off-the-shelf
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components.

The inherent risks of faults in COTS-based HPC clusters are further amplified in HLT
due to its online nature, its complex software configuration, and the strict requirements
for stability and reliability (stability in the sense of sustained operation over time and
reliability in the sense that the produced information can be trusted to be correct). This
makes it hard to ensure uninterrupted operation during a run. To meet this challenge,
HLT will have to be made resilient to potential failures both in hardware and software
by building in fault-tolerance.

Improved processing power is the reason clusters have become a successful architecture
for supercomputers, but clusters are a general approach to improve one or more aspects
of computing. Several aspects can be addressed at the same time, so that one can have
both high performance and improved fault-tolerance, depending on the chosen design.

The current state of research of fault tolerance in very large systems is discussed in
[37], which also features a detailed presentation of classes of fault tolerance and outlines
the motivation for future research in the field. The presented strategies are mainly those
of risk management; try avoiding faults to happen in the first place, try to minimize the
effects of faults and repair faults when they happen. The type of fault tolerance sought
built into the transport framework is active replication, which belongs in the “failure
effects avoidance” class.

Choosing COTS also makes it possible to get quickly started prototyping on small
systems that can gradually be expanded by adding more nodes as development progresses.
Over time, software can be moved from one hardware generation to the next with little
to no effort as long as the CPU architecture remains similar. The challenge is making
sure that the software scales well with the number of nodes.

A recurring strategy is therefore to buy hardware late or on-demand, getting the most
out of Moore’s law cost/performance-wise. This has also been the strategy for HLT,
which has been expanded according to the progress and stages of the experiment. For
instance when new detectors have been introduced in the processing chain or when higher
data rates from the detectors - i.e. due to higher energies or higher luminosity - increase
the demand for compute power. The computing needs are evaluated ahead of such events
and based on estimates, new equipment is acquired.

4.3. Hardware

Hardware-wise, the main components of a cluster are the nodes - the processing units, in-
terconnect, storage and input/output. Specialized hardware can also be used to improve
the efficiency of cluster management and thereby reduce operational cost. In ALICE, the
on-site computing facilities are organized in four rooms close to the pit, as can be seen
in figure 4.2. The level marked as CR2 is dedicated for the production environment of
HLT, while the development cluster is sharing CR3 with DCS.
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Figure 4.2.: Overview of the counting rooms, labeled CR1 through CR4, and the exper-
iment in the ALICE pit [38] .

Infrastructure nodes and central switches occupy four central racks close to the entry
point of network connectivity to CR2. Compute nodes are spread evenly out in the racks
so that they all get their fair share of power and cooling, and so that risk is minimized
if something should go wrong in a rack.
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Figure 4.3.: The HLT counting room CR2 [38].

The following will be a brief description of the hardware in HLT. For a more detailed
treatmeant of the subject, see [39].

4.3.1. Cluster nodes

A compute cluster is typically homogeneous in the sense that all the compute nodes are
composed of similar hardware. This makes maintenance and resource management easier.
In applications that process data in isolated steps, each with its own characteristics,
overall performance can be increased by employing a heterogeneous cluster, where each
machine type is tailored to a specific step in the processing chain. In HLT, there are two
types of cluster nodes: FEP nodes and compute nodes.

FEP nodes are the machines where the optical fibers from the experiment enter HLT.
These nodes are equipped with DMA engines that transfer the data stream directly into
the memory of the host.

There are two generations of compute nodes. The earliest being equipped with a large
number of disks and being enclosed in traditional rack chassis. In the later generation,
the node unit is a blade that is inserted into a chassis that can hold four blades at the
time. The blades can also contain a GPU instead of a motherboard, where the GPU is
connected to the motherboard of the blade below, meaning that there are two types of
the latest generation of compute nodes:

CPU node: General purpose compute nodes that can be organized in any way that
makes the most sense for a given configuration.
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GPU node: Nodes that have a powerful GPU, in addition to the CPU, that increases the
performance for certain types of processing. The GPUs used in HLT are NVIDIA
GTX 480 and NVIDIA GTX 580, having respectively 448 and 512 computing units
each.

Infrastructure and portal nodes are mostly similar to compute nodes in terms of hardware,
but typically also have extra equipment required for their task, such as Redundant Array
of Inexpensive Disks (RAID) controllers for storage servers.

The gateways, used for outside connections to the cluster, are smaller dedicated systems
that are less demanding when it comes to hardware. lu systems with the equivalent
processing power of a light laptop manage these tasks fine as long as they have enough
Ethernet ports to act as a gateway and firewall.

In total 117 FEP nodes are installed, 84 compute nodes - of which 64 are equipped
with a GPU, 4 portal nodes and 20 infrastructure nodes. The accumulated CPU core
count is 2740 and the total amount of memory 5.29 TB for the processing nodes [40].

4.3.2. Input and output (H-RORC)

Detector data transport is accommodated by fiber technology (DDL) and data formats
that are developed specifically for use in ALICE [22, 41].

The data stream coming from the experiment via DAQ enters the HLT through H-
RORCs (see 4.4). These are PCI cards with a FPGA co-processor that pumps the data
traffic into the HLT farm. A node can host at most two H-RORCs, each equipped with
two Destination Interface Units (DIUs) daughter-boards. The DDLs connected to the
DIU/Source Interface Unit (SIU) have a maximum bandwidth of 160 MB/s, while the
bandwidth over the Peripherial Component Interconnect (PCI) bus is 370 MB/s for each
H-RORC [27].

The H-RORC uses Direct Memory Access (DMA) to transfer the incoming data stream
from the on-board optical receiver (DIU) (via decoding and digitizing) directly to the
memory of the host without spending Central Processing Unit (CPU) cycles in the pro-
cess. The same card performs the reverse process pushing data to DAQ via the output
links of HLT, but in this case using SIUs, the counterpart of the DIU [27].
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Figure 4.4.: H-RORC data pump and FPGA coprocessor [27].

4.3.3. Processing

The processing characteristics of the target application will typically be the most im-
portant factor in determining the composition of computing devices. Some clusters will
make heavy use of GPUs while others will only use CPUs.

The logical separation of processing steps in HLT, as seen in figure 4.1 and the char-
acteristics of the involved algorithms, opens up opportunities for enhancing the perfor-
mance with the help of coprocessors in a heterogeneous processing environment. Such
co-processors have therefore been important components in the HLT design from the
very start.

The first step of the reconstruction process, cluster finding, can be done in the hardware
logic of the FPGA co-processor on the H-RORC [42]. Tracking, the second step, can be
done in GPUs [43]. The analysis components for both these steps were first developed
as software for easier verification of the algorithms and then the hardware version was
later extensively tested and verified against its software equivalent [43]. Both these co-
processors where successfully commissioned in time for heavy-ion runs in 2011, where
the increase in performance from these additions were crucial for achieving the required
data rates [44].

4.3.4. Storage

Another important design principle of HLT is to always keep the data that is being
processed in memory from it enters the Front End Processor (FEP) nodes until it leaves
HLT. This way, there will be no slowdown of the processing rate due to disk operations.
Compared to a traditional batch cluster with a shared data set, the distributed nature
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of the input and the hierarchical processing chain in HLT, makes it easier to implement
such a design. Nevertheless, for distributing information - such as when configuring the
application - to the compute nodes, a shared storage is needed also in HLT. This storage
needs to be highly efficient with regards to concurrent access and bandwidth so as to
keep the setup time for preparing the application low.

4.3.5. Interconnect

Clusters relies on network to move data between storage and processes. Low latency and
high bandwidth are increasingly more important as higher performance is sought. There
are tree separate networks in HLT:

e The physics application in HLT makes use of Infiniband to achieve high enough
rates for the data flow.

o All other traffic, like logging and most management tasks, use Gb Ethernet.

e An out-of-band management network (100 Mbit) that connects to either CHARM
cards or IPMI/BMC-enabled ports on the nodes are used for lower level manage-
ment and remote diagnostics.
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Figure 4.5.: Picture of counting room 2 at the ALICE experiment where the HLT is
located. In the racks, FEP machines are the ones in the middle and compute
nodes are in the top where also the fibers from the experiment can be seen.
Switches and infrastructure nodes are placed in 4 racks to the left at the very
far end of the two rows seen in the picture.

4.3.6. Cluster management (CHARM card)

To reduce operating cost, extensive remote management solutions were included in the
plans from the very start. The original design of the management solution included
functionality for [45, 46]:

e Automatic installation and self-test of nodes.
e Simple automatic diagnostics and recovery of crashed machines.
e Extensive monitoring of temperature inside the chassis of the nodes.

This was to be implemented by using a dedicated management card, the CHARM card,
and management software that later became SysMES.

The CHARM card is a PCI card with a FPGA, running a small linux system. The card
looks like a normal graphics card to the host and can forward the video signal over the
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network as a Virtual Network Computing [47] (VNC) connection. In addition to remote
view functionality, the card is also equipped with temperature sensors, connectors for
controlling the power of the host and an interface for mounting installation disk images
on the host over USB [48].

After Intelligent Platform Management Interface (IPMI) /Baseboard Management Con-
troller (BMC) [49] became a wide-spread standard common in server solutions, the need
for a custom management card diminished and the production was stopped. It is now
only the oldest FEP nodes that still have CHARM cards and these will only be supported
until the next generation of RORC cards become available, at which point the FEP nodes
will be upgraded to nodes with IMPI functionality included.

4.4. Software

Apart from the design and composition of the cluster itself, the H-RORC and CHARM
card, HLT is mostly a software project. Notable software contributions to the HEP
community are:

e The development of a HLT analysis framework and processing components (for
ALICE type of experiments) tuned for online use, with an emphasis on reuse of
existing offline code [50].

e The development of a flexible data transport framework that handles the traffic
between distributed components in a cluster [51].

e Integration of HLT analysis components into transport framework and the offline
environment (AliRoot) [50].

e Ports of certain software analysis components to hardware for increased perfor-
mance [43, 42].

e The development of a flexible triggering framework that can be used for event
selection (briefly described in [39]).

e Development of compression components [52].
e Integration with the control systems at the experiment site [39].

e Implementation of data exchange protocols to relevant databases such as the OCDB
[53].

e Development of Cluster monitoring and management software for High Perfor-
mance Computing [54].
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4.4.1. Software system anatomy

The source code repositories of the software used in the HLT project are listed in table
4.1. The hlt-alice repository contains transport framework, interfaces, hardware firmware
and configuration tools for the HLT analysis chain. The aliroot repository is mainly
used for the development of offline code in ALICE, but also contains the online analysis
components of HLT. It builds on the the Root data analysis framework [55] that is
developed at CERN and used throughout the LHC experiments.

Project name and source location Description

hlt-alice (all)

Transport framework, interfaces, control

svn+ssh://svn.cern.ch/reps/hlt-alice

AliRoot (reposible for HLT directory)
http://git.cern.ch/pubweb/AliRoot.git

Analysis components

SysMES (all) Distributed monitoring

KIP internal subversion

infologger (small percentage) Application logging

hlt cluster

root (none) Dependency of AIROOT

http://root.cern.ch/git /root.git

node-config (all)

hlt cluster

Scripted node configuration

documentation (all) Internal documentation

hlt cluster

Table 4.1.: Repositories containing software used by HLT. The involvement of HLT is
indicated in parenthesis next to the project name.

Further details of the sub-projects or modules can be seen in table 4.2.
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Table 4.2.:

project critical desc
aliroot:HLT True analysis
hlt-alice:BCL True support lib
hlt-alice:Build False build /release
hlt-alice:Components True data routing
hlt-alice: EVTREPLAY False  debug/monitor
hlt-alice:Framework True data routing
hlt-alice:H-RORC True hardware
hlt-alice: MLUC True support lib
hlt-alice:PSI False depricated
hlt-alice:PSI2 True kernel /hardware
hlt-alice: RFLASH False hardware/utility
hlt-alice:RunManager True operation
hlt-alice:SVN-Release-Tools False build /release
hlt-alice:SimpleChainConfigl True configuration
hlt-alice:SimpleChainConfig2 True configuration
hlt-alice: TPC-OnlineDisplay False debug/monitor
hlt-alice:TRD-Readout False debug/monitor
hlt-alice: TaskManager True operation
hlt-alice: Utility _Software False debug/monitor
hlt-alice:bigphys True kernel
hlt-alice:control True operation
hlt-alice:docs False documentation
hlt-alice:interfaces/DDLTestGui True interface
hlt-alice:interfaces/HCDBManager True interface
hlt-alice:interfaces/ecs-proxy True interface
hlt-alice:interfaces/fed-portal True interface
hlt-alice:interfaces/pendolino True interface
hlt-alice:interfaces/taxi True interface
hlt-alice:invdb False documentation
hlt-alice:monitoring False debug/monitoring
hlt-alice:restricted False admin
hlt-alice:tools False utility
hlt-alice:trunk True configuration
hlt-alice:util False utility
hlt-alice:utilities False debug/monitor

Software packages from the hlt-alice and aliroot repositories with a short
description. The packages necessary for HLT operation are those with critical
set to True. Projects labels are composed of <reponame>:<projectpath>,
where project path can be a sub-directory.
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4.4.2. The physics application

Due to the nature of the data that enters the system, HLT has been designed with a
distributed and hierarchical structure, where software components consider increasingly
larger parts of an event. The application software developed for HLT consists of:

e A publisher-subscriber framework that provides a way for analysis processes run-
ning in parallel to talk to each other.

e The runtime management and control of these components and their communica-
tion is done by control software called TaskManager.

e The initial analysis chain setup is created by chain configuration tools based on
input from templates, script-snippets and configuration files.

An overview of some of the software components and operations in HLT can be seen in
4.6.
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Figure 4.6.: Software components and actions involved in chain operation.
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4.4.2.1. Analysis framework

The stages of processing in HLT is divided in analysis components. Each type of com-
ponent performs a certain task for a certain part of the event. This is where the actual
computation in HLT is being done. The size of the input can vary from event to event,
so resource estimates of a process that depends on input, must be according to a worst
case scenario. The HLT analysis framework has a modular and well-defined inheritance
structure, and it is designed to work both online with HLT and offline with aliroot [50].

4.4.2.2. Data transport framework

The highly parallel processing in HLT makes the overall conceptual mapping of the data
flow mostly straight-forward. But when considering available resources on each node
and the details of the data transport framework itself, the full process placement quickly
becomes non-trivial.

The main tasks of the data transport framework are to distribute, gather and synchro-
nize data streams, making sure data flows as fluently and efficiently as possible between
analysis processes. The most difficult task being to synchronize the streams when event
fragments of the same event have different processing time. An example would be when
a padrow in the TPC has more cluster hits than the rest of the padrows that are fed
into the same tracker from the cluster finders. In this case, the events will have to be
queued up in the next processing stage until all needed event fragments are available for
the processing to begin.

The framework has also been designed to support fault-tolerance by using active repli-
cation and re-routing in the case of node failure. The data transport framework used in

HLT is described in detail in [56].

4.4.2.3. Chain configuration software.

Chain configurations are defined in XML-files with a set of domain specific tags related to
the detector layout of ALICE and the hardware resources in HLT. These domain specific
tags abstract some of details of the chain setup so that for instance identical sections
of a symmetric detector only have to be defined once. The chain configuration software
then has some knowledge about the detector layout that it uses to generate the exact
configuration (defines structure of detectors and how components are chained together)
based on the definitions in the configuration files.

Configuration files defining the available resources in HLT are the second type of input
to the configuration software. These are also XML-files, but simpler in structure as they
only define the nodes and their hardware configuration along with a list of available DDL
links. The last type of input are script templates or snippets for starting the involved
processes. All the configuration files and snippets are stored in the hlt-alice repository so
that it is possible to keep track of their history and to roll back in case of misconfiguration.

A predefined set of configurations, each tuned for a certain beam condition, are made
available to ECS which chooses one based on the type of run to be started. To be able to
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correctly setup a chain on only functional machines, the low-level configuration files have
to be generated before each run and is then distributed to all participating machines.

4.4.2.4. Interfaces

Figure 4.7 shows a conceptual overview of the many interfaces in HLT to external systems.
Those connections that are critical for HLT operation (ECS, DCS) are implemented
with redundant setups, including hardware, software and the physical connection itself.
Changing to a hot spare should happen without any intervention from operators [53].

DCS

Processed
events

Newly calculated
calibration data

Figure 4.7.: HLT interfaces to other systems of ALICE [53].

The DDL fiber links [57, 58] are the data stream interfaces of HLT. The data pack-
ets exchanged over these links are encapsulated in a well-known format according to
an agreed upon specification [59]. Conforming to this specification allows the readout
chain in ALICE to establish appropriate protocols for ensuring that the correct data is
produced.

The use of a FSM in the communication between control systems and sub-systems fits
very well with the internal TaskManager hierarchy of HLT, having one master TaskMan-
ager as the single point of control for the analysis chain. Between this top-level process
and the ECS, a proxy exists that maps the incoming state changes to corresponding
internal commands.

Apart from data flow and control systems, external interfaces are mainly needed for
calibration and monitoring:

e The Shuttle and Taxi portals, exports and imports, respectively, calibration data
between the ocdb and HLT [60][53]. With this information, analysis components
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can be properly calibrated before each run and the same system can recalibrate
components while a run is ongoing if needed. Analysis components are also a
source of calibration information in HLT. At the end of a run, all calibration objects
are gathered by a special subscriber component in the processing chain and made
available to be fetched by the offline shuttle [53].

e Additional parameters are fetched from the the DCS database, which contains in-
formation gathered from detectors and other equipment in the experimental setup.
Pendolino is the software in charge of this task.

e Lastly HOMER is used for online event monitoring, whose one of its outputs, the
event display, can be seen in the screenshot below 4.8. Details of the HOMER
manager implementation in HLT can be found in [39].

Lt

X

—1

Figure 4.8.: The event display showing one of the first pp collisions at 7TeV [39).

4.4.3. Software environment

Like all software, also cluster applications needs a certain environment for performing
its tasks. The most fundamental piece being the operating system, but the system
services are also critical for the operation of the main application. Other components or
modifications might also be needed depending on the requirements.

Initially, the Linux distribution Ubuntu was selected as the sole operating system
of HLT because of its up-to-date packages and increasing popularity. Over the years,
Ubuntu has become more and more of a desktop centered distribution and some of the
latest developments creates problems rather than improve the situation for the use case
of HLT. Other distributions and operating systems have therefore been put to use where
these make more sense. For instance OpenBSD [61] for firewall, Gentoo [62] (host) for
virtualization and Debian [63] (guest) for (virtualized) web services.
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For the FEP nodes, a patch [64] was applied to the Linux kernel that allows - by con-
figuration - the operating system to set aside large continuous blocks of system memory
for use as an efficient way of importing large amounts of raw data and make it available
to software running on the host system. This is where the RORC injects the data, with
the help of the PSI [65] driver, so that it becomes available for the data transport and
the analysis components.

The system services run on top of the operating system - and it is maybe the extent
of needed infrastructure support that sets distributed architectures the most apart from
others:

e Before being able to control a node, one must be able to address it. Identity services
(DHCP/DNS) assigns ip-addresses and host names to all the nodes. With this in
place, the nodes are able to communicate and other services can start.

e Access control for applications and users is normally implemented by a login (ssh)
and a directory service (LDAP) that together perform authentication and autho-
rization, and a distributed file system allows working on the same set of files from
all nodes.

e Many services also rely on a common synchronized clock (ntp) for their operation,
and such a common clock is critical for any meaningful centralized logging.

All these services need to be setup in a redundant configuration so that if a service or
the hardware it runs on fails, there will still be at least one instance left for the clients to
continue to work. This is typically achieved by having two or more entries in the client
configuration each pointing to a self-sustained instance of a service.

Setting up such a system is a matter of configuring the services according to the needs
of the project, but doing so requires a lot of knowledge and experience.

Lastly, in order to facilitate testing and in order to be able to quickly roll back in
case problems should arise during operation, a mechanism is needed that allows for easy
switching between application releases. In HLT, this is achieved by installing releases
alongside each other on the same operating system installation and preparing scripts that
change the active release with the help of a set of environment variables [39]. Environment
Modules [66], is a commonly used tool for this purpose and is also used in HLT. It
manipulates the system’s environment variables to ensure the correct versions of libraries
and binaries are loaded. A short description and case studies for this tool can be found in
[67]. Wrapper-scripts using Environment Modules have been provided for most operator
tasks. A thorough description of these scripts can be found in [39].

4.4.4. Cluster management software

Being a composed machine, a cluster requires elaborate software for supporting its oper-
ation. Examples of the many requirements that must be met include: to make efficient
usage of resources, being able to react to failures in an effective way and making de-
bugging easier. Several systems have been deployed in the HLT cluster to meet these
requirements and will be briefly described in this section.
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4.4.4.1. The SysMES Framework

System Management for Networked Embedded Systems and Clusters (SysMES) is an
automated management solution for networked devices, primarily targeting distributed
computing infrastructure like clusters. Clients running on a device communicates with a
central server that can dynamically deploy monitor and action objects to clients from an
operator layer. The client executes actions according to predefined rules and input from
monitors, either autonomously or in concert with central servers [54].

HLT has been one of the reference installations for the SysMES framework and the
SysMES team have been working in close collaboration with the rest of the HLT group
to have their management solution deployed and working correctly on the cluster.

4.4.4.2. Infologger

Infologger is a centralized logging system that is part of the DATE [68] software package
developed by the ALICE DAQ project. At the core is a central server that receives
messages from infologger daemons running on all the client nodes. Messages are inserted
into a MySQL database that have been setup (with a schema that matches the infologger
message format). The overall architecture is shown in figure 4.9.

‘ E ifoLoggerReader

",
s,
4

TCP/IP
TCP/IP

7 I

>
infoBrowser < | <:| infoLoggerServer

Console Central server

Local host

Figure 4.9.: DATE infoLogger architecture [69].

HLT software is linked during build time to a library that handles the communication
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between the client program and the local infologger daemon. Finally, a GUI program,
the InfoBrowser, shows the live stream of messages as they arrive at the server. This
GUI can also be used to query the entire database for previously logged messages.

With small adjustments the infologger system was made to work with the HLT soft-
ware. Messages from the analysis components are propagated through the analysis frame-
work and the transport framework to the infologger system. The logs from the transport
framework itself are also sent here.

The infologger installation for HLT was set up in a high availability cluster (Linux-HA)
[70] with automatic failover from a primary node to a hot standby. The MySQL database
was replicated with drbd [71] so that logs would be immediataly available in the case of
a failover.

4.4.4.3. Inventory database

Inventory databases are in general important for cluster administrators when managing
a cluster. For instance to know which part to order when something breaks, to keep track
of systems when reorganizing or to have relevant and up-to-date information available
when debugging.

An inventory database was implemented earlier in the project as a typical lamp-stack
[72]. Students were tasked with updating the database when new hardware arrived at
CERN and then administrators and other personnel using the cluster were supposed to
keep the database up to date during day-to-day operation.

The experiences from this first implementation was that such a database demands too
much time to be kept up-to-date. Also, there will always be the risk of human error when
information is entered into the system.

Part of the reason - at least an aggravating factor - was that there were a second place
for node information to be entered; in the LDAP configuration that was also used for
DHCP and DNS. At least IP address and node name would be required to be entered
here for a node to be integrated in the cluster. This duplication meant two places to
enter information that would have to be keept in sync manually.

This database has since been abandoned as the information became outdated and it
was too much work to keep it in sync with ongoing changes.
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The large scope of a collider like LHC and the novel nature of any HEP experiment
makes long term planning difficult during development, commissioning and first years of
operation. Being part of such an environment, the internal planning becomes a daunting
task for the participating collaborations, where schedules and requirements remain un-
certain and can change. The complexity and ambitiousness of the ALICE HLT, makes
it no less of a challenging environment.

This chapter therefore starts by giving a brief account of the initial phases, roughly di-
vided in a hardware/installation section (5.1) and a software/development section (5.2).
They serve as a backdrop for the performance evaluation that is the topic for the remain-
der of the chapter, starting with the more traditional and maybe simplistic ways, before
turning to a more recent and comprehensive approach found in HPC productivity.

The chapter concludes with a summary of the major points discussed so far, with the
intention to see what can be learned for similar projects in the future.

5.1. Installation, Commissioning and Upgrades

Due to a strategy of gradual expansion of the HLT cluster, several upgrades were planned
and implemented as the LHC program unfolded. Alongside the planned activity come
actions needed to tackle unforeseen issues. Solutions have to be found and the imple-
mentation has to be scheduled according to the LHC plans and available resources.

The general commissioning of HLT for first pp collisions is covered in great detail
in [39]. Here, a chronological list of the most noteworthy events follows, to give an
impression of how a gradual deployment can be carried out, and as a point of reference
for later sections.

5.1.1. Node installation

The first infrastructure hardware and FEP nodes arrived in early 2006. By the end of
summer there were enough machines installed to have test configurations running for
a full TPC sector. These machines became the testbed for the early integration work
needed to be done, and from this first small test setup, the cluster has been gradually
expanded until it reached its production capacity for LHC startup in 2008 and beyond
through the subsequent upgrades.

In 2007 the majority of the FEP nodes were installed, followed shortly by the first
pure compute nodes in 2008. The FEP nodes were later upgraded with new CPUs and
more memory. 117 FEP nodes are installed in total. During the preparations for the
first heavy-ion runs in 2011, the cluster reaches its final size and target capacity with the
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conversion of 32 existing compute nodes to GPU nodes, totalling 84 compute nodes, 64
of them equipped with GPUs. In addition there are 4 portal nodes and 20 infrastructure
nodes.

5.1.2. Network

The need for faster network connectivity was increasingly being investigated in 2010, until
it was decided that improved bandwidth and in particular better latency would greatly
benefit the HLT application. While Gb ethernet in a bonded configuration (using two
physical ports as one logical port with the combined bandwidth of the two) might have
been sufficient, a solution based on InfiniBand would leave enough headroom to be certain
that the network would not become a bottleneck.

A rather large intervention was then undertaken, where InfiniBand was deployed on the
cluster to replace Gb ethernet for the physics application. Cables were pulled throughout
the counting room and switches installed. Old nodes were upgraded with InfiniBand
cards, while all future nodes were bought with InifiniBand on-board.

The second major network intervention happened around the same time. Originally
all Gb switches were placed in a central rack next to patch panels where all cables from
the surrounding (CR2) racks were gathered. This layout led to a high cable density that
was not helped by having all the cables of foreseen future nodes also installed early on
in the project. Together with an intricate network configuration - i.e. some nodes with
bonding and some without - it became a complicated network scheme, with cabling so
dense and convoluted that it became a hindrance for efficient maintenance.

In early 2011 the Gb network cabling was therefore reworked and greatly simplified by
distributing switches to racks closer to the connected machines.

5.1.3. Storage and system services

As the system grew after the first prototype installation in the counting room, Andrew
File System (AFS) was set up as a distributed file system on the HLT cluster (ca. 2007).
In combination with kerberos and ldap, it provides a complete single-sign-on, directory
and file storage service for users and applications. This worked well until the cluster
grew close to its final size, at which point problems started to appear that were not well
understood. These issues were the main reason for replacing AFS by a more modern
parallel file system during the winter shutdown 2010/2011 [40]. Currently, FraunhoferF'S
and glusterfs is deployed on the cluster. Each tailored for different needs; performance
in HLT application and user homes respectively.

At the same time, LDAP /kerberos was removed completely from the cluster and re-
placed by normal user accounts and ssh with password-less login provided by public ssh
keys.

5.1.4. Clustering and virtualization

Initially there were many dedicated machines for all the services and connections needed
by HLT, such as HLT interfaces, infologger, core services and so on. Most of these are
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not demanding enough to warrant their own hardware, but such an approach is often
the most straightforward initially and it satisfies the redundancy requirements in the
case of HLT. Following the same pattern, the databases needed by services were installed
alongside the application locally on the same machine.

Having many nodes and services that are similar, but still need to be treated indepen-
dently results in inefficient use of resources and a rigid infrastructure that is unnecessarily
hard to maintain, increasing the workload on the administrator. A scenario like this can
be improved by centralizing services on a single powerful server, but this might come into
conflict with other requirements, as in the case of HLT, where a single machine would
not be able to provide the needed redundancy or fail-over capabilities.

Compared to a simple hot spare strategy, equally good or usually better fault-tolerance
can be achieved by having clustering implemented at the application layer. In partic-
ular database and storage can benefit from having clustering built-in this way, also for
improving performance.

At the hardware layer, one can further increase fault-tolerance and availability by shar-
ing highly redundant storage over the network or high bandwidth storage connectivity
(i.e. SAN). Other resources, like CPU and memory can be shared between services, either
in the traditional way, by running on the same node and under the same OS, but also in
a more flexible way with virtualizaton.

During the last few years, the prospect of virtualization of services has became more
attractive in HLT and consensus became that it would be advisable to move towards
consolidating hardware resources and services with the help of virtualization. With
virtualizaton, the resources of a host can be partitioned in any arbitrary number of ways,
s0 it’s easy to make OS instances with resources matching the requirements of a service.
In order to retain redundancy, the virtualization layer can also be clustered.

Clustering and virtualization has made it possible to create a flexible platform to
deploy virtual machines for most of our services. The increased use of virtualization has
led to easier management and more efficient use of resources as well as quicker recovery
from failure. Instead of having 4-6 nodes each running mysql, there are now two in
a clustered setup, sharing the same configuration. Instead of having many dedicated
machines, there is now a general purpose virtualization cluster which can host virtual
machines for services in HLT. There are fewer potential sources of error, fewer points of
entry from a security point of view and a more unified way to manage services.

This has left mostly gateways as the only dedicated infrastructure nodes in HLT. But
even here, the two entry points of HLT shares firewall configuration dynamically between
redundant pairs of machines.

5.1.5. Big design up front

It is common practice to take advantage of Moore’s law when designing a cluster and buy
hardware as late as possible in the process to have the highest return on investment. But
care must be taken in an industry where infrastructure and deployment can be influenced
by rapid developments in its technology sector; when a cluster deployment is planned
over many years and technology can substantially change within few years, there will be
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a risk that plans become outdated before the time arrives for installation.

Early HLT design documents spoke about a cluster of up to 500 nodes and 1000 CPUs
[22], while the final installation counts 225 nodes (which should equate to 450 CPUs
considering all nodes have dual-cpu motherboards) with a total of 2740 cores [40]. Plans
had been made out assuming that the racks in the counting rooms would be filled from
top to bottom. A scheme based on these assumptions was worked out for network layout
and cabling, and IP addresses were calculated based on the placement of nodes according
to this scheme.

Each time the compute farm was expanded, the computing density of the machines
available on the market had increased. First higher number of cores in each box, then
several nodes in the same space that earlier had housed one, then nodes were coupled with
GPUs, each with a large number of computing units (448 for NVIDIA GTX 480 and 512
for NVIDIA GTX 580). The most significant change in HLT, the increase in computing
density, has thus resulted in a much higher number of cores per network connection
per unit height than what was planned for. And while the initial assumptions greatly
influenced the deployment from the very beginning, the cluster layout was not evolved
to reflect the later change of reality.

Instead of having racks filled with nodes, the computing density has increased to the
point that only 4-7 boxes are needed in each rack to fulfill the computing needs of
HLT (2012). In the end, the original schemes (section 5.1.2) were much reworked and
simplified, but in the meantime, much time and effort was spent by administrators and
others on-site struggling with a complicated and rigid installation.

These observations resemble the signs of “big design up front”, where detailed planning
is performed early in the project, but the design documents are later not updated to
reflect a better understanding of how the system should be implemented [73][74]. A
strategy for reducing the effect of “big design up front” is iterative development which is
discussed in section 6.5.2.

5.2. Implementation and development

Preparing for participation in a HEP experiment is a long journey spanning many years.
It starts with simulations that are used to work out how the machinery should be put
together. When the collider infrastructure is defined and the most important properties of
the experiments are known, then the work of designing the data processing infrastructure
can begin. During this phase prototypes are built, tested and evaluated. The output
of these efforts are Technical Design Reports. These documents describe the systems to
be built in sufficient detail for development to be started and the project to enter the
implementation phase.

5.2.1. Developer infrastructure

A smooth and successful implementation phase depends heavily on a solid, common
infrastructure. Shared source code repositories and prototyping environments are the
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foundations of a collaborative and productive environment in this respect. Even more so
in an international project where institutes from all over the world participate.

Local prototyping clusters are used for testing smaller pieces in isolation, but for larger
tests and for integration with other ALICE systems (control (ECS/DCS) and data acqui-
sition (DAQ)), one will need a system available at the site early on in the preparations.
The cluster, while being built in the “CR2” counting room of the ALICE pit, was initially
used for this. But as commissioning grew closer, a second, smaller cluster was prepared
in the same facilities so that development and testing could continue in a realistic envi-
ronment without interfering with the main cluster.

A shared source code repository for HLT software - except for analysis components,
which were already in CERN/ALICE svn repositories - was setup at CERN in early 2011,
relatively late in the project. Before that, repositories were hosted by the respective
participating universities/institutes, and required login credentials at the site for write
access. In such a scenario, the threshold for contributions from other sites becomes
higher than it needs to be and effectively prevents/hinders certain useful practices, such
as “collective ownership of code” (section 6.5.6) in a distributed collaboration.

5.2.2. Debugging and testing

Running full-scale tests and trying to debug the system as a whole, causes the lack of good
tools for large, distributed systems to become apparent. HLT being an online/real-time
system further complicates matters, as the amount of information needed to reproduce a
faulty condition, is so resource-demanding that extracting it would be very difficult to do
without affecting the running system by using resources meant for the processing chain.
One could add dedicated infrastructure for the sole purpose of debugging, essentially
replicating large parts of the cluster, but that would be costly and probably difficult to
justify.

There are systems that individually supports an aspect of the required tooling - like
centralized logging, system visualization, data tracing/accounting - but the main chal-
lenge is to correlate and present the information in a helpful way to the operator and
experts. Potential useful tools are discussed in section 6.6.

Difficulty in testing smaller parts in isolation (unit tests) causes more testing to be
done on the production cluster, where bugs are discovered later on in the development
than what should have been necessary. With insufficient tooling, this quickly becomes
a time-consuming and frustrating exercise; it is difficult to look inside the system and
understand what is going on.

5.2.3. Build configuration

As can be seen in the table F.1, most packages in HLT did not make use of any build
configuration tools in the beginning. Also important dependencies, like ROOT and
AliRoot were in their early days lacking in this respect, but have since long had such
facilities added. The effort to produce CMake files for HLT started in 2008 and was
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completed in 2011. This was before the shared source code repository and it was therefore
difficult to have changes merged back into the original repository.

Build configuration allows for a portable code base that can be installed more easily to
a variety of target environments. Not only for developers on their local machine, but also
for deployment by administrators on clusters. If build configuration tools had been part
of the HLT software from the start, it would have been easier to setup the development
cluster in a nice and user-friendly way, so that it would have been more attractive to the
users.

5.2.4. Shell scripts

Without a standardized build system, the process of compiling and installing all the
software for HLT was automated by shell scripts instead - sometimes even in layers
- making the process complex, opaque and unfamiliar to the developer. Shell scripts
are also used in operator’s wrapper-scripts (4.4.3) and as part of the input to chain
configuration software (4.4.2.3). All these cases amounts to a considerable amount of
shell scripts in the HLT repositories (see A.3).

Shell scripts are invaluable tools for the system administrator for automating tasks
that are typically performed from the command line, but they are not a replacement for
a proper programming language. While there are legitimate uses of shell scripts in HLT,
they have also been the type of tool to turn to when having to patch together missing
pieces during commissioning and there is no suitable infrastructure available that can
simplify the implementation, nor is there enough time to properly design and implement
a solution.

There is no clear candidate technology for a common, flexible infrastructure meant for
communication between cluster software - something like a cluster bus or cluster api -
that can easily be deployed in such a scenario.

5.3. Scope and methodology

The main goals of the evaluation in this chapter are to get a good idea about the general
performance of the HLT project (project execution and end-product) and a better under-
standing of the more specific issues in the intersection between physics instrumentation,
scientific computing and software engineering. An important aspect in this regard is the
estimation of the effort involved in creating the HLT.

A recurrent theme in the literature on the interplay between scientific computing and
software engineering is that there seems to be an unfortunate distance between the two.
While there are programmer productivity issues in the various computational intensive
sciences, little is lent from software engineering regarding methods, knowledge and ex-
perience that can help improve the situation [10]. Likewise, the fields studying scientific
computing and software engineering in itself, have little contact with the application do-
main to ensure that the research that is being done really is relevant where it is meant
to be used. This has created a chasm between the two camps [9].
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HEP instrumentation in the form of a high level trigger is a type of HPC and therefore
belongs firmly to scientific computing. While the situation between scientific computing
and software engineering is of great interest, there will also be value in looking at the
HLT from the viewpoint of all involved fields and compare to research that treats those
fields individually. To this end, good sources of data have been sought in project artifacts
and relevant metrics have been identified.

Besides relevance, metrics have been selected while keeping in mind what can be ac-
complished in a satisfactory way as a single person contribution. This has in turn favored
metrics that can be derived by static analysis of project/software artifacts. With static
analysis, information can be extracted directly from the artifacts themselves, and third-
parties need not be involved. Alternative, likely more involved approaches, could for
instance be interviewing project members, performing code reviews of the source code
and so on.

According to [75], a metric is a parameter that is observable and measurable. It is
this definition that will be used here. The aspects that should be covered by a suitable
evaluation are:

Physics For the physics part one can refer to published articles for documenting the
performance or results achieved in HLT. Establishing further metrics for the physics
performance is outside of the scope of this text.

Operational performance Certain metrics are relatively simple to collect, for instance
those pertaining to the reliability of the operation, can be found by data mining
of logs and monitoring systems. Also the performance of software components are
interesting.

Project productivity For effort estimation, traditional software metrics like SLOC/CO-
COMO will be used, but they will also be complemented with a HPC productivity
analysis in order to get a more complete picture of the productivity in HLT.

Software quality Other metrics, like code coverage and code smells, that are relevant
for code quality will also be included.

Together they make up a good set of metrics for measuring overall the performance of
HLT and quantifying the experience of building the ALICE HLT.

5.4. Physics performance

Metrics for physics performance will not be extensively discussed, as these are thoroughly
documented in published articles. But a short summary and references for the most
important ones follows.

ALICE being specifically built for Pb-Pb collisions, the milestones of HLT are naturally
tied to the timetable of the heavy ion runs. These are usually scheduled for a period
of one month at the of the run period. The radioactive environment in the ALICE pit,
and the extensive protection around the experiment, means that there is rarely access
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to do anything with the equipment inside the magnets during a run period. For ALICE
this means that preparations for heavy ion runs needs to be completed typically almost
a year ahead of time. For HLT, the situation is different since it is situated in a counting
room further away from the experiment itself. Upgrades can therefore be performed in
a more timely manner.

In September 2008, the LHC startup was underway and first collisions were expected
to follow later the same year, but after only a few days of running, an incident [76] put
the machine out of operation until late 2009. But, when first collisions finally happened
on the 23rd of November 2009, HLT was contributing from the very start by calculating
the vertex position of the collected events [77]. Later on, when beam conditions had
stabilized, full reconstruction was performed on central barrel detectors and the muon
arm.

In November/December 2010, a major milestone was reached as ALICE saw the first
heavy-ion collisions [78], the type of collisions it was designed for.

While first heavy-ion in 2010 was exiting for ALICE, the heavy-ion runs in 2011 were
particularly exiting for HLT as it was the first time HLT contributed to data that is
stored for later analysis by performing selection and compression of reconstructed events

[44][40][79][80].

5.5. Operational performance

After many years of prototyping and commissioning, first collisions in ALICE were finally
observed in November 2009 [77]. Since then, HLT has been in stable operation, with
increasing operational performance [40]. The preparations of the HLT team met its
ultimate test with the heavy-ion runs in 2011 where events processed by HLT were
included in the heavy-ion data that was stored for later analysis [44].

For evaluating the operational performance of HLT, there are several sources of infor-
mation. DAQ provides a logbook [81] of all the runs with the most essential information
from all the detectors and sub-systems. The DAQ infologger (4.4.4.2) that was adopted
to be used in the HLT cluster records log messages from all the involved processes. Fur-
thermore, the system logs of the operating system, the SysMES application and ESMP
system, are informative sources, as are also the hardware devices (i.e. network switches)
with SNMP capabilities.

5.5.1. Mean time between failures

Uptime or Mean time between failures [37] (MTBF) is often used about the life-expectancy
of hardware components. As computer systems continue to grow and therefore also the
number of contained components in the systems, the risk of a part failing rapidly increases
[37].

HLT can be viewed from two sides in this context, both as a unit composed of smaller
hardware components and as part of a greater whole, the ALICE experiment. The fail-
ures of hardware components in HLT have not been recorded in a sufficiently systematic
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way to allow for extraction of interesting statistics, but the entries in the logbook con-
tains information about the length of a run and which detectors and sub-systems that
participated, as well as the end-of-run reason. It should therefore be possible to calculate
the MTBF of HLT, which would be a highly relevant metric for operational performance.

The weekly participation of HLT can be seen in figures 5.1 and 5.2. They show how
long of the total run time that the HLT was participating.

500000 ‘ Amount of run-time with HLT part|C|paFlon (weekly).

e—e total time
e—e time with hit

400000 R

| ;

300000 & b4
L3 | |

©° 2%
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Figure 5.1.: Amount of run-time - in accumulated seconds - with HLT participation per
week.
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Figure 5.2.: Percentage of run-time with HLT participation per week.

There can be many reasons why HLT does not participate, and while taking HLT out
of runs to perform testing or debugging still should be considered part of the “down time”,
it is maybe more interesting to investigate how often HLT is the cause of a failed run or
the reason why a run was stopped.

The “eor_reason” (eor: end of run) field in the logbook can be used as a quantitative
measure of what causes runs to stop, although it is probably not entirely accurate as a
portion of its input comes from shifters who might not always be able to determine the
exact reason for a failed run.

Figure 5.3 shows the distribution of the “eor_ field” field in physics (“partition
PHYSICS _17) runs with HLT enabled (“HLTmode > A”). To the left all runs are shown,
while only failed runs are shown to the right.
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Number of runs grouped by end of run reason. Failed runs grouped by end of run reason.
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Figure 5.3.: End of run reason. All runs to the left and failed runs to the right.

The general conditions for a successful run is that it started and stopped without any
issues in between. The two flags in the logbook that indicates success are: “ecs_success”
and “daq_success”. Success is therefore here defined as when both “ecs success” and
“daq_success” are true. In any other case, the run is considered to have failed.

There are two bigger sub-groups of end-of-run reasons: “SOR _failure” and “subsys-
tem failure”. The distribution of these for failed physics runs with HLT can be seen in
5.4.

SOR_failure grouped for failed runs. Subsystem_failure for failed runs.
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Figure 5.4.: Start of run failure to the left and subsystem failures to the right. The labels
are extracted directly from the data. In the right figure TR means trigger,
HL means HLT, FE means FERO and DC means DCS.

The SOR_ failure value shown for HLT in figure 5.4, is the sum of all SOR _ failure
values that are associated with HLT. These can be broken down to their individual values
as is shown in figure 5.5.
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SOR _failure grouped for HLT, failed runs.
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Figure 5.5.: SOR_ failure for HLT only.

All in all, it is clear that HLT does not differ much in comparison to the other sub-
systems in terms of operational performance. The numbers also show that apart from
operator and DAQ requests, it is the startup phase that is the most critical. This is not
surprising since this is when all the systems must be brought to a coordinated state.

5.5.2. Recorded log messages

The infologger system has been an invaluable debugging tool for the experts working with
the HLT, but despite its usefulness, it also has some clear limitations. Being basically a
centralized logging system, with a flat database, it offers not much more than existing
solutions like syslog [82], except for some domain specific fields and a customized GUI.

The vast amount of log messages presented to the user in the InfoBrowser is large
enough to be incomprehensible by the average shifter. Neither is there any assistance or
intelligence built into the GUI that can aid the shifter in problem resolution, except for
filtering by SQL-like syntax. The current setup should therefore be considered as purely
an expert tool, which requires the presence of experienced personnel to be able to debug
problems.

In systems with so many components in operation as in HLT, a demanding log stream
is to be expected. But early on in the commissioning, superfluous messages from analysis
components worsened the situation to the point where the infologger system could not
keep up with the flood of messages resulting from a crashing chain, inducing long recovery
times just for the infologger to soak up queued messages.

Since analysis components are initially mostly tested in isolation, one process at the
time, without any rate requirements, it does not matter much if a few debug messages
are emitted to better be able to verify the correct operation of a component. But when
deployed on the cluster, replicated in hundreds of instances, running at rates up to 1kHz,
the amount of a few debug messages per component will quickly add up.

Furthermore, lack of structure in the message format makes it hard to do any useful
aggregation of messages and also makes pattern matching difficult, which in turn lessens
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the usefulness of infologger as a reliable input to recovery mechanisms. Although doable,
complex data analysis is also hard to do on unstructured data. The graphs in appendix
E shows what is possible to extract from the data today. To facilitate more advanced
data processing, one should introduce structured logging for instance in the form of the
proposed industry standard Common Event Expression [37] (CEE) [83].

In conclusion, experts are required to be available on-site during operation in case
debugging is needed with the currently available tools.

5.6. Effort estimation and development performance

Despite programs being created to be executed by computers, the process of developing
software in larger projects is very much a human activity. The human aspect and the
intangible nature of software makes estimation of scope and effort inherently hard (see
for instance [84]).

For a systematic approach, one can make use of established techniques for software
cost estimation. These can be based on expert judgement or they provide algorithmic
models that will produce estimates based on some input. An overview and comparison
of several estimation techniques can be found in [85].

Algorithmic models mainly rely on software metrics and tuning of input parameters
for producing estimates. This can be frustrating during early development, when many
of the most useful metrics are not yet readily available (i.e. measuring lines of code is
impossible up-front), but for projects nearing the end of its development, metrics can be
extracted from project-artifacts. Techniques based on arithmetic models are therefore a
good fit for retrospective analysis, such as is the case for estimating the expected effort
involved in building the HLT. For making predictions about program size and involved
efforts beforehand, a method like Function Points would be better suited, as it is based
on information derived from the requirements [86].

While approaches that looks at OO attributes of the source code have seen increased
focus following OO becoming the predominant programming paradigm, some studies
question the validity of such approaches and suggests that they may not be any better
than pure size metrics [87]. So while Source Lines of Code (SLOC) - which is discussed
below - might seem like a primitive metric, it might still be as useful and relevant as any
other current metric, as others fail to improve upon it.

When evaluating a complex system such as HLT, one should consider the entire en-
terprise. Everything from management and human processes, to software and release
engineering, system administration and of course also the physics aspect which the HLT
is built for in the first place.

A relatively recent field of study that touches upon many of these points is HPC
productivity [88]. Together with more traditional, but related concepts, it would be very
useful for producing a better productivity measure of HLT.
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5.6.1. Source lines of code and the Constructive Cost Model

Constructive Cost Model (COCOMO ’81) is an algorithmic cost estimation model for
software introduced by Boehm in his book Software Engineering Economics in 1981
[84]. He derived his model by looking at data from several projects, identifying a set of
attributes that seemed to affect their duration, staffing and cost.

These attributes or parameters are used to tune the model, which main input is SLOC,
a common size metric used in software estimation. COCOMO therefore leans more
towards static analysis of artifacts when compared to other approaches like Function
Points or expert judgment.

COCOMO comes in three increasingly more complex forms; basic, intermediate and
detailed. The basic model will be sufficient for the usage here as the goal is only to get
a rough estimate. Estimating the cost drivers needed for the more complex variants is
often of little gain and can even make the estimates less accurate [89]. With the basic
model, the effort and the schedule parameters can be tuned according to the type of
project as described in the SLOCCount User’s Guide [90]:

e Organic: Relatively small software teams develop software in a highly familiar, in-
house environment. It has a generally stable development environment, minimal
need for innovative algorithms, and requirements can be relaxed to avoid extensive
rework.

e Semidetached: This is an intermediate step between organic and embedded. This
is generally characterized by reduced flexibility in the requirements.

e Embedded: The project must operate within tight (hard-to-meet) constraints, and
requirements and interface specifications are often non-negotiable. The software
will be embedded in a complex environment that the software must deal with as-is.

From these, embedded seems to be the best fitting description of HLT software.

The remaining consideration then, is if the hlt-alice repository should be considered
one big monolithic project or as several sub-projects, one per top-level directory. Table
5.1 shows the four possible combinations of organic/embedded and multi/mono project.
An overview with key data of the various repositories used by HLT is shown in section
4.4.1.
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Person Person Schedule Schedule
Developers Months  Years  Months Years SLOC

mono/embedded 177 7811 651 44 4 603040
mono/organic 44 1993 166 45 4 603040
multi/organic 62* 1775 148 28 2603040
multi/embedded 176* 5010 417 28 2603040
subprojects 275 4954 413 242 18 593132

Table 5.1.: COCOMO variants of the full hlt-alice repository together with an entry
where all subprojects are summed up. The numbers marked with an “*”
was not produced directly by sloccount, but summed up over the individual
project results. COCOMO numbers for external packages used in HLT can
be found in the appendix A.2.

The multiproject setting just affects how the calculations are being done, it does not
produce individual COCOMO results per sub-directory. Breaking the numbers further
down by considering sub-directories individually, improves the per project accuracy and
can facilitate more interesting analysis. Key numbers can be seen in table A.1.

Immediately these numbers seem higher than one would expect, and in fact, at least one
study has shown that in many cases, the COCOMO model is biased towards higher-than-
realistic numbers and goes on to explain this by arguing that COCOMO as presented
by Boehm is tied too closely to the environment from which it was originally derived;
aviation software with most likely stricter requirements than typical business applications
[89]. This must be kept in mind when these numbers are later used for comparisons.

5.6.2. Developer activity

Even by a cursory glance, the number of commits over time, as visualized in figure 5.6,
gives a good indication of the various phases in the HLT project. First, there is a long
prototyping stage, starting around 2000 lasting until development ramps up in 2005 /2006,
reaching a peak in 2008. Following years have high, but declining activity until reaching
a maintenance state in 2012.
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Figure 5.6.: Commit activity by year (top) and month (bottom) as produced by gitstats
[91]. Shows number of commits over time for the whole hlt-alice repository.

This corresponds well with the physics milestones mentioned in section 5.4; first colli-
sions were initially planned for 2008, but got delayed until 2009. First heavy-ion collisions
happened in 2010 and in 2011 HLT contributed to the triggering in ALICE as well as
compression of reconstructed events. From 2012 and onwards, the project enters a stable
phase where most functionality has been delivered and the activity winds down accord-
ingly.

Keeping in mind that repository statistics is purely a programing artifact, one can still
relate the phases and activity to those found in Rational Unified Process (RUP) [92] and
depicted in figure 5.7. Although one should consider early coding and prototyping to be
part of the analysis and design activity, and similarly the later maintenance work to be
part of the deployment, while the mapping of implementation to the commit activity is
more direct.
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Figure 5.7.: RUP phases and activities at the top [93], and a typical project profile below

[94].

Further detail and per-directory statistics can be produced by parsing the commit logs
directly from the repository. It then becomes easier to extract activity profile for each
module that can be compared to SLOC/COCOMO to see if there is any correlation. Key
numbers for commit logs are listed in appendix B.1 and table 5.2 collocate numbers from

both COCOMO and commit activity.
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months commits devs changes | SLOC devs months
hlt-alice 150 11611 27 4627306
BCL 130 175 2 53526 | 20731 11 137
Components 88 795 2 214878 | 82884 35 722
EVTREPLAY 0 6 1 1191 721 1 2
Framework 122 426 2 501069 | 81127 35 704
H-RORC 16 57 1 1370405 | 192976 70 1990
MLUC 128 237 4 66773 | 26898 14 187
PSI 69 109 2 47933 6313 4 33
PSI2 64 35 3 16904 8112 5 44
RFLASH 16 8 1 2173 1252 1 5
RunManager 16 32 1 7967 3320 3 15
SimpleChainConfigl 93 285 2 40818 | 13784 8 84
SimpleChainConfig2 47 207 2 25773 | 11777 7 69
TPC-OnlineDisplay 0 3 1 4357 571 1 2
TRD-Readout 1 2 1 2638 2247 2 10
TaskManager 104 155 2 25921 | 13223 8 80
Utility _Software 82 228 3 35170 | 20231 11 133
control 56 6433 14 686602 | 38259 19 285
interfaces 41 62 4 208019 | 38740 19 290
monitoring 9 19 2 4697 2239 2 9
restricted 39 89 5 14617
tools 54 245 4 40256 9111 6 51
trunk 81 281 1 40783 | 13765 8 84
util 57 8 1 2700 1193 1 4
utilities 81 61 4 20696 2441 2 10

Table 5.2.: Comparing COCOMO numbers (right of vertical line) to commit activity (left
of vertical line). Months for commit activity is the number of months between
the first and last registered commit. Changes is the number of lines that has
been changed in the commits.

It is difficult to draw any definite conclusions from these numbers. Author and devel-
opers corresponds here to the same thing, but timespan is just a rough estimate of the
time spent on a project, as work - as far as it is reflected by commits - might appear in
varying intensity over time. This is illustrated in the commit activity diagrams, which
shows how the activity of the various sub-projects spreads out in time, how they overlap,
and how authors worked on multiple related projects simultaneously. They give a good
at-a-glance impression of the development.
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Figure 5.8.: Diagram of commit activity per project over time, showing run-critical
projects. One dot represents a commit in time for the developer listed to the

left.
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Figure 5.9.: Diagram of commit activity per project over time, showing projects related
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Figure 5.10.: Diagram of commit activity per project over time, showing the remaining
projects in the main HLT repository. One dot represents a commit in time
for the developer listed to the left.
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5.6.3. HPC productivity

Computational performance, as measured by rate of performed operations, has for a long
time been the only benchmark applied to HPC, as exemplified by the top500 list [95]
and its accompanying LINPACK test suite [96]. But as data center usage continue to
rise and starts to consume non-negligible amounts of energy (about 1.5 % of the world
total in 2006 [97]), power efficiency in HPC is seeing increased attention, to the point
that there is now a green500 list where the ranking criteria is performance per watt [98].

Lately, an even broader meaning of performance in HPC has emerged as HPC pro-
ductivity. A model synthesis that includes several more criteria for benchmarking the
overall productivity in a HPC cluster, has been derived in [75]. It incorporates cost,
program size, execution efficiency and programming language expressiveness into a small
framework for productivity analysis.

In this model there is a clear relation between program size and project cost. The
seemingly unhelpful and obvious insight that the best way to decrease cost in a project is
by reducing the number of source code lines produced, have some interesting implications;
reuse of existing software and expressiveness of programming language should be very
interesting topics when discussing how to decrease cost.

The definitions of several important concepts in HPC productivity is given in the intro-
duction of [75]. Here, productivity is defined as utility over total cost and expressiveness
is said to quantify the abstractness of a programming language.

5.7. Software quality

It is the packages that are critical for operation, as indicated in table 4.2, that will be
included in the following discussion that attempts to get an impression of the state of
the software through the use of software metrics.

5.7.1. Technical debt

As a software system grows, it is only natural that the idea of its ideal structure changes
as the knowledge about its function increases. When a feature is about to be added, the
developer is often faced with a dilemma: should the existing code base first be modified
to fit a new and better understanding or should the feature be added in a possibly
sub-optimal way?

It is when features are added without regard to maintaining internal structure that
source code can deteriorate. Over time it will become increasingly harder to make mod-
ifications to the code. Technical debt [99] is important as an analogy for developers to
communicate why one should continuously pay attention to improving the structure of
source code so that the software stays maintainable and so that it is easy to add features
in the future.

Technical debt is not only about the sources code itself, but also supporting artifacts.
In HLT the lack of documentation and tests for large parts of the software is a clear sign
of technical debt.
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5.7.2. Code coverage

Testing is crucial for producing robust code. A typical metric for code quality is code
coverage, which is the ratio of executed lines over executable lines that have been ex-
ercised during tests in a project [100]. It is usually produced while running unit tests.
Unfortunately there are very few unit tests in HLT software. The transport framework,
the most crucial part of HLT, has none. Without unit tests and a test framework one
cannot easily work out the test coverage.

There are however some test programs and scripts spread throughout the source repos-
itories. From these one can still try to find the ratio of lines of test code to lines of source
code, by sorting files in two sets; test files and code files, with the sorting criteria being
whether or not the word “test” is part of the file’s path or name. This is an ad-hoc
approach that relies on common naming convention for getting the sorting right.

The results presented in tables 5.3 are quite far off from the suggested rule of thumb of
about 1:1 for Lines of Code (LOC) to Lines of Test (LOT). The relevance of this metric
is often debated though, as can be seen in discussions among members of the software
engineering community [101].

lot ratio code duplication

aliroot:HLT 0.00 0.26
hlt-alice:BCL 0.15 0.41
hlt-alice:Components 0.86 0.60
hlt-alice:Framework 0.04 0.34
hlt-alice:H-RORC 0.00 0.32
hlt-alice:MLUC 0.55 0.48
hlt-alice:PSI2 0.00 0.41
hlt-alice:RunManager 0.05 0.70
hlt-alice:SimpleChainConfigl 0.00 0.45
hlt-alice:SimpleChainConfig2 0.01 0.20
hlt-alice: TaskManager 0.04 0.25
hlt-alice:bigphys 0.00 0.00
hlt-alice:control 0.01 0.62
hlt-alice:interfaces/DDLTestGui 0.00 0.37
hlt-alice:interfaces/ HCDBManager 0.00 0.13
hlt-alice:interfaces/ecs-proxy 0.06 0.08
hlt-alice:interfaces/fed-portal 0.09 0.19
hlt-alice:interfaces/pendolino 0.04 0.24
hlt-alice:interfaces/taxi 0.00 0.04
hlt-alice:trunk 0.00 0.45

Table 5.3.: Software quality metrics for HLT software.

Although not very reliable, these numbers can be seen as indicators that the conditions
and tools that foster high quality software have not been in place during HLT develop-

71



5. Experience and performance

ment. They at least tell us that the testing situation is abysmal; it is not even possible
to get a reliable measure of how large portion of the code has been tested.

With low test coverage, more time is spent on manual testing and debugging since
problems are to a lesser extent caught during development, and more bugs also makes
it into the production system. Lack of unit tests in HLT software can also have been a
contributing factor to the low collective ownership, as it is harder (time-consuming to
check others code) for project owners to trust modifications from other developers to be
bug free without a proper test harness in place.

The amount of testing in a project is only an indirect indicator of software quality.
More direct indicators would be how time-consuming debugging is, how hard it is to add
new features, how fragile the system is during operation, etc. Some of these qualities are
also known as design smells [102]. They are symptoms of design principles having been
violated.

5.7.3. Code smells: code duplication

Effort estimation as done in section 5.6 is only scratching the surface of the state of
software in a project. Under the hood, it is interesting to see if it is possible to get a
better impression about the quality of the source code by looking for code- or design
smells. Code smells are signs of bad software design that can make it difficult to work
with the source code as is. Discovery of code smells should normally trigger a refactoring
before any new code is added.

Most smells are about keeping the logical elements small and coherent; methods and
classes should not be too big and they should mainly be doing one thing. Code duplication
is one of the smells as defined by Beck and Fowler in their book on refactoring [103]. It
is easy to discover with static source code analysis and removing it carries a high reward.

Several tools exists that can be used to extract this number from source code, see for
instance [104] and [105]. Simian has been used to produce the numbers for HLT that can
be seen in table 5.3.

It shows that the code duplication in the core software of HLT is quite high. In
a survey of research in clone detection, the percentage of code duplication for typical
software systems lies within the range of a few percent and up to around 20% [106].
Most HLT packages have numbers above this higher bound.

5.8. Summary

The very nature of large experiments makes them unpredictable and difficult to plan as
they are always about learning while building something new. And when doing something
for the first time, one cannot easily rely on past experience. There are however plenty of
opportunities to borrow from similar experiences and practices from other fields.

Many lessons can be learned from the installation, the commissioning and the upgrades
of the HLT cluster. As always, the right amount of qualified and experienced people, at
the right time and place, is crucial for smooth operation and a successful project. These
are challenges shared with any other collaboration in experimental physics. Nevertheless,
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framing these general observations in the context of HLT, can provide useful insights for
similar future projects.

The HLT project has succeeded in fulfilling its functional requirements and has de-
livered a High Level Trigger satisfying the expectations of the ALICE experiment. Still
there are elements of the original design documents that are not reflected in the current
implementation. Deviations are to be expected due to the evolving nature of an exper-
iment, something also acknowledged by early design documents, but also problematic
design and project management can lead to friction in project execution, resulting in
unforeseen changes, reduced scope and a struggle to deliver what was promised.

The real-time redundancy/failover in the processing chain is one example of something
that has not been completed, although it was initially considered an important feature
for reliable operation of the HLT and the transport framework had been prepared for it.

Similarly for the management solutions, one can say that they have not yet become as
sophisticated as they initially were intended to be, in that they still require quite a bit
of configuration and adoption to the site where it is installed to perform their tasks.

From the software development point of view, one can see some signs of code smells in
HLT, as has been mentioned earlier in this chapter 5.7.3. In particular code duplication
seems very high. A likely cause of such smells is the general lack of supporting artifacts
(unit tests, documentation), and to some extent, infrastructure in HLT:

e The low amount of structured, automated tests in HLT makes it difficult to leverage
modern software engineering practices. This is unfortunate as the complexity of
HLT could really benefit from such practices to confidently be able to guarantee a
robust end-product.

e Proper build configuration is not only important for portability, but also in that
it allows for further automation. Most importantly continuous integration and
packaging. The introduction of build configuration was much too late in the project
to be as useful as it could have been.

e Hardware-wise, the infrastructure for the development and commissioning has been
good. But, it has been difficult for users to make full use of the development cluster
due to immature software and lack of configuration, as the main cluster required
most of the attention from the administrators.

e A common shared source repository was added when implementation was mostly
done and commissioning well under way, too late in the project to be able to get
the full benefit from using it.

The lack of good tools for debugging large, distributed systems, a common challenge
in the HPC industry, also affects a project like HLT. The real-time nature of HLT adds
considerably to this challenge. Getting involved in ongoing research efforts that seeks to
improve the tooling situation would be one way of becoming more proficient in solving
problems in the HLT cluster. The few tools that are available today are mentioned in
the next chapter 6.6.3.
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Improved tooling extends to logging and statistics, where structured logging would be
a welcome improvement, as would better ways to unify and correlate information from
all sources in a cluster.

For most of these issues it is tempting, and probably correct, to conclude that the scope
of the project has not been met with sufficient resources. But, it is maybe precisely for
this reason, that one would expect a greater eagerness to make use of practices that can
aid the project towards a steady, predictable process, increasing the quality and value of
the end-result.

Up-front design and lack of a process for keeping design and implementation in syn-
chronization with a changing reality can lead to wasting a lot of precious resources for
implementing elements that might not even be needed in the end.

The relatively large portion of scripts (see A.3 and 5.2.4) can be seen as an indication
that the effort of commissioning the HLT software in the production system was underes-
timated and that the overall plans were lacking in aspects related to end-user interaction
and software management.

The upshot is that although the system is working fine today, the HLT was brought to
its current state through a lot of debugging and laborious integration work, that could
have been reduced by making greater use of established practices. It is rarely a question
of if - normally the needed software for an experiment will be made to work sufficiently
well - the question is for what price? What could have been saved if SE was successfully
applied in HLT?

Furthermore, lack of artifacts, like documentation and automated testing, is going to
make it difficult to build on, and extend the current code base for future projects. This
is an unfortunate outcome considering the potential savings.

The experience in HLT resonates well with research that suggests that knowledge form
software engineering is not being picked up by the scientific computing community [10],
as discussed in chapter 2.
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The time and money invested in the experiment makes for a strong incentive to keep
the sub-systems of the experiments in operation for as long as the machine is running
and there is an opportunity to collect data. Increasing reliability and maintainability in
compute clusters is crucial in delivering high quality services throughout the lifetime of
a typical HEP experiment.

At the same time, the complexity of real-time high-performance systems like the HLT
in ALICE makes reliable operation a challenge that requires personnel on-site to keep
the system running. A more self-managed system would reduce the reliance on people
on-site and thereby also operational cost. Beyond the functional requirements, these are
some of the most important motivational drivers when designing and deploying a HPC
cluster in HEP.

While a “holistic” approach is useful for having the best understanding of a system, it
is also important to set the appropriate scope for the work discussed in the remainder
of this text. The focus will from here on mainly be on the software aspect of HLT, in
particular for the non-core applications, and it will be from a cluster administration and
software engineering point of view.

This chapter will start by reviewing current trends, techniques and ideas that can be
useful in improving the HLT. The challenges experienced in HLT are the same as the
computer industry at large is facing these days; the increasing difficulty of handling the
complexity in large computer systems. As a result, topics that deals with this aspect will
be of particular interest.

6.1. The autonomic computing initiative

One way of handling complex systems, is to make each and every constituent part
smarter, more aware of itself, more self-contained and more autonomous [107]. The
autonomic computing initiative from IBM is maybe the most well-known attempt at
achieving this. In the manifest from 2001, their vision was announced:

IBM has named its vision for the future of computing "autonomic comput-
ing." This new paradigm shifts the fundamental definition of the technology
age from one of computing, to one defined by data. Access to data from
multiple, distributed sources, in addition to traditional centralized storage
devices will allow users to transparently access information when and where
they need it. At the same time, this new view of computing will necessitate
changing the industry’s focus on processing speed and storage to one of de-
veloping distributed networks that are largely self-managing, self-diagnostic,
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and transparent to the user [108].

According to IBM, a software system adhering to this paradigm, must exhibit these
fundamental properties from a user perspective [108]:

e Flexible. The system will be able to sift data via a platform- and device-agnostic
approach.

e Accessible. The nature of the autonomic system is that it is always on.

e Transparent. The system will perform its tasks and adapt to a user’s needs without
dragging the user into the intricacies of its workings.

The autonomic computing manifesto [108] then goes on to define 8 elements (later
reduced to four: Self-configuring, Self-healing, Self-protecting and Self-optimizing) that
characterize autonomic computing. This text is concerned mainly with the points 1-3
and to some extent 7 (about favoring open and non-proprietary solutions), as these are
the most relevant for HLT:

1. An autonomic computing system needs to "know itself" - its components must also
possess a system identity. Since a "system" can exist at many levels, an autonomic
system will need detailed knowledge of its components, current status, ultimate
capacity, and all connections to other systems to govern itself. It will need to know
the extent of its "owned" resources, those it can borrow or lend, and those that
can be shared or should be isolated.

2. An autonomic computing system must configure and reconfigure itself under vary-
ing (and in the future, even unpredictable) conditions. System configuration or
"setup" must occur automatically, as well as dynamic adjustments to that config-
uration to best handle changing environments.

3. An autonomic computing system never settles for the status quo - it always looks
for ways to optimize its workings. It will monitor its constituent parts and fine-tune
work flow to achieve predetermined system goals.

To introduce autonomic computing in HLT, a natural place to start would be to in-
crease the self-awareness of the cluster and its software. For that there needs to be
in place a mechanism for gathering information and making it available to interested
parties.

Information about the cluster could either be gathered up front to a central place,
queried on-demand, pushed on change or by a combination of any of these. For dis-
tributed applications it is convenient if information is available on the very same machine
as the participating process is running. But for processes that operates more globally on
the cluster, such as data mining, extraction of statistics, and similar, it might be desir-
able to have dedicated instance for the heavier queries and hence a centralized service to
complement a distributed one.

This is very much in line with the point of of transparent access to data mentioned in
the vision above, and also aligns well with the requirements of HLT; the need for resource
management, which in turn needs an inventory database as one of its inputs.
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6.2. Current trends and relevant concepts

The technological advancement has a tendency of finding its own way, independent of
grand visions, and it is therefore important to also understand the current trends. Many
topics in computer science and software engineering embodies techniques and approaches
that HLT could benefit from. What will be mentioned in this section is in no way
exhaustive, but includes the fields considered to be most relevant.

6.2.1. Increased performance of dynamic (interpreted) languages

The concept of high level languages has been with us for a long time, although what has
been considered a high-level language has changed over the years. Languages that we
today may think of as low-level - like for instance C - were earlier considered high-level
to their contemporary alternatives.

In software engineering, the notion that the productivity in terms of lines of codes
per time unit is constant, independent of programming language, has been a long hold
rule of thumb, that has also been verified in smaller studies [109]. This implies that
a language with high expressiveness can implement more functionality than a language
with lower expressiveness in the same time period, something that is reflected in function
point to SLOC translation tables [110]. It also means, as mentioned in section 5.6.3, that
when project cost is tightly coupled to the size of a program, expressiveness becomes a
very interesting criterion when evaluating programming language for use in a project.
The difficulties of weighting expressiveness and performance in HPC are discussed in
[75], where also a formula is given that can help in deciding when a high-level dynamic
language is or is not the most appropriate choice.

Due to their productivity and ease of use, dynamic, high-level languages have seen
increased popularity over the years [111]. The high level of abstraction makes it easier
to address larger conceptual parts at the time and thereby allows faster development of
complex software. With less actual code, there is also less room for making mistakes,
an observation that has spurred the suggestion that there is a rather strong connection
between SLOC and number of defects [17].

Programmer productivity is further helped if the language is interpreted, which is often
the case with dynamic languages. Without the compilation step, interpreted languages
have shorter development cycles, and a more exploratory style of programming is pos-
sible as the threshold to try new approaches is low, and the feedback is in most cases
instantaneous.

A dynamic programming language allows programs to change their code and struc-
tures during runtime, enabling certain ways of expressing functionality not possible with
static languages [111]. Usually a dynamic language will also be dynamically typed, and
conversely, a static language statically typed. But the difference between the two lies
mainly in how type checks are performed. Statically typed languages performs type
checks during compilation, while dynamically typed languages does type checking during
runtime.

For this reason, static typing can help catch a certain class of bugs early on during
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compilation that otherwise would only have surfaced during runtime with dynamic typ-
ing. With proper test coverage though, which is important independent of language type,
there would in practice be little difference, as the most important code paths would have
been exercised during testing, catching the bugs before being put into production. Also,
by using a modern Integrated Development Environment (IDE), syntax highlighting and
code completion will help catch syntactical errors and ensure correctness while code is
being written, further reducing the risk of introducing defects.

The advantages of higher-level code are therefore well-known as are the disadvantages;
it has always been about weighing development cost against execution efficiency. While
the productivity of dynamic/high-level languages is rarely disputed, the association with
interpreting makes performance the most often heard concern about their use when
compared to compiled languages. Normally interpreted programming languages are fast
enough for most applications, but the performance sought in HPC have traditionally
warranted the use of Fortran, C or C+-+.

But what we might be witnessing in recent years, is that the current generation of
high-level languages are being treated to classic (language transformation to compiled
language) as well as more recent approaches (just-in-time compilation) to enhancing
performance, while at the same time a flourishing developer community has sprung up,
building highly efficient data structures and data handling libraries (PyTables, Numpy,
Pandas are just a few examples for python) for these languages.

While high-level languages have for a long time been part of the scientists and the
HPC builders toolbox, these recent changes effectively reduces the traditional disadvan-
tages to the point where high-level languages might soon be a viable alternative also for
computational-intensive tasks.

The next logical step in the strive towards even higher-level languages, for reasons of
even higher programmer productivity, is maybe already seen in declarative extensions
being added to popular libraries and programming frameworks/languages.

With declarative languages, the programmer states what the program should do and
the runtime environment or compiler takes care of the details of how it should be done
[112]. One of the goals of declarative approach is to avoid side-effects; the application de-
veloper is confined in an environment where he can easily articulate his problem without
having to worry about implementation details and getting those details right.

These are on the other hand taken care of by the language designer or library developer,
offering a nice separation of work where both professionals can invest their effort and use
their talent where it makes the most sense. These benefits extends to the source code
itself, where separation of concerns, is since long, generally considered to be a good
practice in software construction [113].

The QML language of Qt [114][115] is a good example. It lets the user define UT ele-
ments, transitions and states in a simple JSON-inspired language, while behind the scene,
there is a hardware accelerated scene graph that translates the high level declarations
into efficient execution [116].

Object storage layers, like ORMs, are another area where declarative extensions can be
found. Normal object definitions are here augmented by decorators or hints that enables
the declarative layer to mirror live objects to persistent storage and keep them in sync,
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without the developer having to write any storage layer code in between. The declarative
extension of Sqglalchemy [117] serves as a good example of how this can be done.

As for scientific computing and massively parallel applications, research is ongoing to
see if one can apply declarative programming to these contexts as well, and to see if it
will lead to programming systems that makes it easier for the scientist to harness the
power of multicore machines [118].

6.2.2. Growth of Free and Open Source Software (FOSS)

Sharing of source code has been a natural part of programming communities since the
inception of software. The ideals of sharing, transparency and peer-review in Free and
Open-Source Software (FOSS) are the same as those science are built on. This might be
the reason why FOSS is so wide-spread in scientific communities.

It still took a while before the FOSS concepts we know today found its final shape and
was formalized through creation of licenses [119], such as those approved by the Open
Source Initiative [120] and the Free Software Foundation [121].

Later, acceptance in the commercial and business world have gradually followed until
today when many of the largest enterprises are building their fortunes in the cloud on
top of FOSS and mobile devices are increasingly being powered by more or less open
operating systems (android). To more and more businesses it makes sense to take part
in the collaborative development of commodity software, such as operating systems, web
stacks, browsers and office suites, and then compete with offerings that builds value
on top of that [122]. By participating, one can influence the direction of commodity
software, while the development cost is shared amongst the collaborating parties.

FOSS, being free as in gratis, makes it a great enabler of code reuse. Studies shows
that code reuse is at least as frequent in FOSS as in proprietary software [123]. Quality
is also generally on par with proprietary software, as shown for instance in the yearly
reports by coverity [124], a firm specializing in static code analysis.

The strongest point of FOSS though, is maybe the flexibility that comes with availabil-
ity of source code and thereby being able to make changes in the entire software stack,
and being able to mix and match a plethora of software packages freely, to get as close
as possible to the wanted solution.

6.2.3. Clusters, the Grid and Cloud

A cluster is a collection of two or more locally connected computers, configured and
equipped to behave as one (bigger) coordinated machine with the purpose of improving
one or more properties of its operation - be it availability, concurrency or raw perfor-
mance. Clusters are commonly used in science to reduce the processing time of simula-
tions and data analysis by running work-loads in parallel.

When geographically dispersed clusters are interconnected to form an ever bigger com-
puting infrastructure, it is called a Grid, taking its initial namesake from another per-
vasive infrastructure; the power grid [125]. Grid was introduced on the advent of LHC,
when it was realized that it would not be possible to host all the needed computing re-
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sources at CERN alone [25]. Both Grids and clusters often behaves as one big application
or system, performing massive tasks for many users, usually for the same organization
or field of study.

Cloud can be thought of as the unification of physical nodes and infrastructure - so
in ways similar to clusters and the Grid - but equipped in such a way as to allow for
its resources to be split up in virtual computing units of arbitrary size. Its ability to
easily provision virtual resources makes it ideal for commercial usage where the same
infrastructure can host services for all kinds of businesses in all kinds of sizes.

While cloud is for now mostly available as commercial offerings - either in the form
of services or infrastructure - solutions like openstack [126], can be used to build private
cloud infrastructure. Started by rackspace and NASA, openstack is free to be setup by
cloud providers and private companies alike, giving the benefit of having a common cloud
infrastructure in both domains, as well as being vendor independent.

This should be interesting also to the scientific community in the near future, perhaps
not for core computational and long running operations, but rather for workloads and
usage patterns that are more transient, and for handling peak loads when needed, offload-
ing existing Grid infrastructure. A sign of such interest was the recent announcement
that Rackspace would join openlab at CERN to collaborate on openstack [127].

6.2.4. Loose coupling and the resurgence of REST

It is generally considered good practice to have a high internal cohesion and low external
coupling in software components [128]. In this context, cohesion means that the func-
tionality contained in a component is to a large extent related, while coupling is the
degree of reliance of a component on the internals of another component.

Components of loosely coupled systems can more easily be developed independently
from each other, allowing a more flexible and rapid development. This is one out of
several scalability parameters in distributed systems. The concept of an API can serve
as an example of a method that helps decouple software components. The main purpose
of an API is to hide implementation details for client code, making it easier to reuse
software components; the underlying implementation can be changed/improved at any
time, as long as the API itself remains the same.

Loosely coupled can also denote an architectural style that makes it easy for a system to
scale out processes to compute nodes, a feature naturally favored by distributed systems
such as clusters, Grids and cloud. Cloud itself and in particular SaaS - Software as a
Service, are examples of how successful loosely coupled systems can be in helping to
massively scale software in the market today.

For distributed computer systems to have any meaningful operation, they will in-
ternally have to agree upon a scheme for how information should be exchanged. In
applications that make use of a client-server architecture, this is typically accomplished
by defining a communication protocol that must then be implemented by the software
that is to be compatible.

Software protocols are similar to the conventions of normal conversation. The initiator
of the exchange, usually the client, announces its intentions to interact with the server
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and will subsequently get a reply. There might be a hand-shake and authentication of the
user that acts through the client. Then requests or commands are sent from the client
to the server and responses are returned. There are many examples of such protocols,
each adopted to its domain; email (smtp, imap, pop3), www (http), telnet, snmp.

Where protocols are very much about the details of how communication is to be per-
formed, Remote Procedure Call (RPC)/Remote Method Invocation (RMI), which is typ-
ically implemented on top of existing protocols, hides these details, and instead intends
to let the developer focus on the objects and resources in the application by allowing
remote and local objects to be manipulated in (almost) the same way. RPC/RMI is
a codified way to construct generic APIs in a consistent way for business and domain
specific applications (over a given wire protocol) ensuring interoperability and optionally
language-native bindings.

While calling remote procedures is what RPC/RMI excels at, RPC/RMI can be limited
in its capabilities of transferring objects. Strings, numbers and simple structures will
work well, but if the RPC/RMI solution is constructed to be inter-operable between
programming languages, it will be difficult to serialize complex objects in a way that is
compatible with all the individual features of the involved languages.

Common Object Request Broker Architecture (CORBA) and Distributed Component
Object Model (DCOM) are two standards that try to go beyond RPC/RMI and pro-
vide truly distributed object architectures, by letting objects be defined in an Interface
Definition Language (IDL), which then can be used to generate stubs for most popular
programming languages. With a common definition of the objects in a framework where
automatic generation of native bindings is well-supported, it is much easier to exchange
full fledged objects over the network. On the other hand, relying heavily on a deeply
integrated tooling solution, represents one type of coupling where one stands the risk of
being limited by the options available in the development environment.

In the end, it depends on the application; for a service that is meant to be accessed
by a web browser, the final presentation will be practically flat as it is laid out on the
page, while many business applications will benefit from richer object representations
and hierarchies.

After a development towards increasingly capable and sophisticated, but at the same
time more complex and committee-driven specifications for exchanging information -
culminating in CORBA primarily for business internals and later WS-*/SOAP for web
services - we are now witnessing a reverse trend as popularity of RESTful ([129]) APIs
is outgrowing that of SOAP, and CORBA is rarely mentioned anymore. In a way it has
become full circle as REST - as a way of designing distributed systems [130] - is very
much about using the HTTP protocol in an optimal way as is. Advocating to:

“mazximize the use of the pre-existing, well-defined interface and other built-in
capabilities provided by the chosen network protocol, and minimize the addi-
tion of new application-specific features on top of it.”[131]

With the most famous example being the world wide web itself. While REST is by
no means a new concept, the ubiquity of the www has made the HTTP protocol the
de-facto standard allowing it through corporate firewalls and home routers alike. For
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developers today, HTTP and REST is the best choice for reaching the largest audience
when delivering a distributed application/service.

6.2.5. NoSQL - unstructured and simplified for scalability

The recent interest in NoSQL and other unstructured storage shows that relational
databases are not always the best option for implementing data persistence. With very
large amounts of data, in applications that are both read and write intensive, the over-
head of the Atomicity, consistency, isolation, durability [132] (ACID) mechanisms offered
by relational databases will make them slower compared to systems that do not perform
as elaborate integrity checking.

Relational databases scales well within single-system setups, but not so easily by dis-
tributing the database across many physical systems. Here, NoSQL-based systems tends
to fare better. NoSQL can also handle unstructured data, such as documents, multi-
media and social media, efficiently. The trade-offs for NoSQL are on one hand, speed
and scalability, and on the other hand, weaker data integrity, less precision and weaker
support for complex data models.

6.2.6. Asynchronous and event driven

In the early 2000, the increasing usage of the internet raised concerns about the scalability
of the then current web servers. This was postulated as the c10k problem; how to handle
10 000 concurrent connections [133]. Synchronous models with blocking I/O were blamed
for not scaling well for large number of clients and it was suggested that asynchronous
engines would fare much better. The ongoing shift from Apache towards nginx is a strong
indicator of the implications of this realization.

Recently, a new document dubbed c¢10m as a namesake to its predecessor, was begun
[134]. It summarizes what was done to solve the cl0k problem and then proceeds to
suggests what needs to be done for achieving 10 million transactions per second in the
near future.

The framing is fresh in that it acknowledges that hardware is certainly capable of
handling these kind of rates and goes on to suggest that it is the software, and in particular
the popular OSes of today, that are the limiting factor, because they were not designed
with these types of workloads in mind. The solution seems to be to go outside the
kernel with the challenging tasks and run them in user space in much more specialized
environments [135].

6.2.7. The high-level, resource-elastic and friction-less future

In “The New Kingmakers”’ [136] it is argued that FOSS have freed the developer from
much of the bureaucracy in getting started with a software project, and that cloud
technology has had a similar effect for hardware. Much of the earlier friction is gone, and
as a result of being able to move faster with projects, developers have become empowered
to take greater part in technology decisions; a potentially self-feeding effect.
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Developers tends to lean towards pragmatism and using the best tool for the job, rather
than relying on technology that is “designed by committee” or enforced by company poli-
cies. Such a polyglot mindset can be the reason for the general increase in technology
diversity and the recent popularity of unstructured storage and RESTful services. These
are light-weight and straight-forward alternatives to more traditional solutions, charac-
terized by a very low threshold for getting started using them and wide availability.

There are maybe no earth-shattering trends currently underway, but rather, as is often
the case, slow working evolution and refinement of earlier ideas, continuously expand-
ing our knowledge and repertoire of technology. The combined effect, however, can
be profound. Less friction and increased productivity from - now more viable - high-
level programming languages, promise a future where less code can do much more work
by leveraging a vast machinery of distributed and carefully orchestrated computing re-
sources.

From this we can extract a few guidelines for developing the (HPC) software systems
of the future:

e Leverage the large body of available Free and Open Source Software as ready-made
building blocks.

e Start out using high-level programming languages with high programmer produc-
tivity. Only turn to compiled languages for performance critical parts of the system
when there are no other options.

e Design software systems to be loosely coupled to allow for scalability.

6.3. Middleware and distributed management

Middleware is functionality related to distributed computing captured in reusable pack-
ages. It forms a layer between applications and the operating system, across nodes and
even sites. Typical tasks for middleware includes handling of message passing between
processes and persisting information that is processed by the system.

Middleware is commonly used to create services for exposing application functionality
in interfaces that can easily be consumed by client code. Organizing distributed applica-
tions as services has become known as SOA - Service Oriented Architecture. Services are
encapsulation of software functionality between processes, representing modularity at a
high abstraction level and can in this regard be considered one way of practicing code
reuse (section 6.5.3). For increased automation and easier integration, one can make use
of an Enterprise Service Bus to orchestrate SOA deployment.

For efficient exchange and storage of information it is wise to use a common data
model and compatible serialization formats. Doing so also simplifies the implementation.
Technology suitable for creating such a model and related middelware for HLT will be
discussed next, as well as suitable specifications for distributed management.

83



6. Possible improvements

6.3.1. Object-Relational Mapping

Object-Relational Mapping (ORM) is a programming technique for persisting data from
object-oriented programming languages to relational databases. An Object-relational
mapper is a software package that implements this conversion in a generic way, so that
it can be applied to any object model to make it easier to implement persistent storage
of objects to RDBS.

The advantages of ORM are the sum of the advantages of the two concepts it com-
bines; Object Oriented Programming and Relational Database Management Systems.
Object-oriented programming has since long been the predominate paradigm in software
engineering. It promises better coding efficiency as software can be modeled closer to
real-life objects, making it easier to grasp for humans. And it offers code encapsula-
tion, so that the source code can be organized and subsequently engaged at the most
suitable abstraction level for the task at hand. Relational Database Management Sys-
tems (RDBMS) are proven technology that have strong referential integrity and handles
concurrency well. RDBMS have good overall performance, scaling fairly well, as well as
elaborate security mechanisms.

Examples of ORMs are:

e Hibernate [137] for Java. It was one of the first of such mappers and is maybe also
the most well-known.

e Sqlalchemy [138] for python is an ORM that includes a declarative way of defining
objects, further simplifying the process of mapping objects to databases.

In addition, the fact that an ORM is a layer in between the business logic and permanent
storage can bring benefits of its own, as it often means that the database back-end is
made interchangeable. This makes it easier to scale up to more capable back-ends during
the application life-time, from smaller memory based databases for prototyping/devel-
opment /testing to full-blown server implementations for deployment. It also means that
the properties of persistent storage - such as high-availability and scalability - can be
manipulated through careful selection and configuration of database solution, mostly
independently from the rest of the system.

The abstraction also makes the programs more vendor independent and less depen-
dent on a specific database technology. On the other hand, there is a risk of becoming
dependent on the mapper technology chosen.

6.3.2. Inter-process communication/remote API access

Twisted is an event driven network engine [139] that offers several ways of remote com-
munication between processes. It ships with a lot of ready-made functionality that can
be used as building blocks to quickly build distributed applications.

PerspectiveBroker is a Twisted module that offers easy copying of objects between pro-
cesses and something described as “translucent access” to remote objects. The meaning
being that a remote method can be called in a similar way as if it was used on a local
object, except it is clearly marked as being remote [140].
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Asynchronous communication can also be achieved by deploying a message queue.
AMQP Advanced Message Queuing Protocol is an open standardized protocol commonly
used by several implementations.

ZeroM@Q [141] was developed as a response to the gradually more committee driven
standardization process of AMQP. It advertises itself as an intelligent transport layer,
concerned mainly with transport and leaving the queuing to be handled by the developer.
It has built-in set of sockets that makes it easy to construct a wide range of network
topologies, such as publisher-subscriber and many more. It is extremely fast and efficient,
supporting practically all relevant programming languages [141].

Lastly, a typical infrastructure for exchanging information between applications in
enterprise is Enterprise Service Bus (ESB). Examples of implementations include Web-
sphere from IBM and Biztalk from Microsoft.

6.3.3. Data serialization

Serialization is the process of organizing a program’s live data-structures or objects in
such a way that they can be stored to disk or sent over the network for later to be easily
restored in a semantically equivalent form. Serialization formats are often used between
different systems and an important attribute is therefore interoperability.

Extensible Markup Language (XML) is maybe the most well-known human-readable
format for interchange of information between applications and has a strong position in
enterprise applications, in particular those that needs to integrate with a range of different
systems. JavaScript Object Notation (JSON) is gaining a lot of traction following the
wide-spread use of javascript, the programming language that it has been derived from.
JSON objects can easily be transfered in and out of a javascript engine, and it is therefore
popular in web services and REST-like implementations that communicates mainly with
the web browser. JSON is considered lighter and less complex, while perhaps lacking in
verification and built-in query tooling, when compared to XML.

Human-readable formats have the advantage of being easy to inspect visually, while
binary formats can offer more efficient encoding of data. Defining binary formats in
an IDL can help facilitate implementations in a variety of languages by automatically
generating code. This is an approach used by Protocol Buffers from google [142] and
Thrift [143] from Facebook.

There are also binary variants of JSON, such as BSON [144] that is used in mongodb
[145] and MessagePack [146].

6.3.4. Service discovery

Service discovery is a general term for describing automatic detection of devices and
services on a computer network. Two standards, Zeroconf [147] and Service Locator
Protocol [148] (SLP) [148], are commonly used to implement service discovery software
for operating systems.

Avahi [149], a Zeroconf implementation, has already been used in HLT for announcing
the connection points of data sinks in the publisher-subscriber framework. This is where
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the event display is connected in order to show events directly from the data stream
within HLT.

Unfortunately, the requirements were not sufficiently worked out, so the suggested
solution and in particular its implementation did not fit well with the final requirements.
See appendix D for more information.

The automation offered by service discovery; announcement of newly started services,
continuously monitoring for new services and resolving of connection information of dis-
covered services, fits well with the self-configuring capability known from autonomic com-
puting, and is therefore natural to include as a part of an autonomic computing solution.
However, it should be investigated if OpenSLP [150] is a better fit than Avahi. DMTF
has already standardized on using SLP for service discovery of Web-Based Enterprise
Management [151] (WBEM) services [152].

6.3.5. DMTF management standards and the WBEM stack

The technology mentioned so far, are basic building blocks that can be used to implement
higher level designs of distributed systems. For distributed management systems, there
already exists a set of complementary specifications, collectively called WBEM, that can
be used to ensure development of compatible systems. WBEM itself builds on established
web technologies and standards, like XML for serialization, HTTP for transport protocol
and SLP for service discovery.

A core standard is the Common Information Model [153] (CIM), a model that describes
the elements and the connections in-between in a managed environment. CIM is defined
in Managed Object Format [154] (MOF), a IDL for describing managed objects, but is
also distributed in XMI format in support of existing modeling tools, in particular UML
modellers.

The model is then made available to clients with a CIMOM, the server in a WBEM
stack, and providers are used to feed the information to the CIMOM from the clients. Two
prominent implementations are SBLIM [155] and OpenPegasus [156]. The development
and maintenance of the WBEM standards is overseen by the DMTF.

6.4. Developer tooling

The software developer’s toolbox necessarily includes the most immediate tools for writ-
ing source code and finding mistakes, like an editor or IDE and debuggers. But tools for
source code management, automation, testing and build systems are also important for
a software engineering practitioner.

These can all be used independently by developers, but setting up common infrastruc-
ture saves a lot of work for the individual developer and opens up a whole new range of
opportunities for improving the software engineering aspect of a project.
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6.4.1. Source code management

HLT’s source code repositories are all hosted in subversion, a modern incarnation of
the traditional centralized Source Code Management (SCM) system. While centralized
systems have for a long time been the only option, much of the innovation and momentum
in source code management is now happening in the increasingly popular distributed
version control systems (DVCS), git being perhaps the most prominent example. The
many online collaboration services, offering hosted services (such as github [157] and
bitbucket [158]) for these tools have helped propel this trend.

The main advantage of a DVCS, is that commits can be done locally, at ones own
discretion, without having to be concerned about breaking code for others. Changes can
be committed whenever it feels natural in smaller incremental steps, rather than in larger
pieces, making it easier to keep a good history and narrowing the scope for when having
to look for bugs.

With DVCS, each copy of the source tree is by its own right a full repository. Commits
can be amended, reordered and duly prepared before changes are shared by pushing and
pulling commits between repositories, often with an authoritative repository in between.

Cheap and powerful branching is another strong point of DVCS. One could say that
DVCSs are more agile in this regard, and that they better support the work-flow of
the individual developer (thereby enabling better practices), in addition to the general
benefits traditional SCM systems brings to a project.

Most DVCS have functionality that allows them to work with a subversion repository
remotely, while still allowing the user to operate the local copy as if it was distributed.
It is therefore fully possible to have a gradual transition from a centralized repository
towards a distributed one, by having users switch when ready.

6.4.2. Task automation

Shell scripts are perfect tools for automation of tedious and repetitive tasks. Sequences
of commands can be safely stored in a file from where they can be run as many times as
desired. Scripts are however not great for writing larger software systems, as has been
mentioned earlier in section 5.2.4.

It is therefore common in automation systems, in particular for cluster-management
and provisioning, to have the higher level logic written in a more capable programming
language, while the lower layers are calling command-line tools and scripts.

Examples of this include Puppet, Saltstack, Rundeck and many more. These are to a
varying degree transparent in their usage of underlying comman-line tools. In some cases
its completely hidden and a DSL - domain specific language, is used to describe tasks.

At the low-end of abstraction, but with high transparency is fabric. Fabric is a tool
for streamlining and automating execution of tasks on the command-line [159]. It is a
thin layer between Python and the shell that makes it easy to execute related blocks of
commands either with the included fab command-line tool or from within other Python
programs. When a task is described in Fabric, it captures both the step-by-step instruc-
tions for how a task is to be performed and the details of command-line options and
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arguments that are supplied to the tools in each step. In other words; the tool-set con-
figuration of a project. Software like Fabric allows for a consistent way of running tasks
across packages independent of differences in the underlying tools.

This can also be useful for continuous integration, where a single piece of glue code can
be used on the integration server for all packages complying with the same specification.
The continuous integration server then only have to deal with a unified and well-defined
set of commands or tasks.

Within a fabric file, explanations and examples can be added with docstrings [160],
which is a way of writing comments that flows well within the source code itself. Doc-
strings are well-understood by documentation creation software such as sphinx [161] and
epydoc [162], and are included in the output of such tools inside generated API docu-
mentation. Tasks that normally would be run from traditional shell scripts, often having
no documentation at all, can in this way easily be run - and documented - by using
normal Python conventions and tools, in a solution that is quite close to the ideas in
literal programming (section 6.5.5).

6.4.3. Build configuration

A proper build system is the first step towards predictable, controlled software devel-
opment. In most software projects, a configuration or build system suitable for the
application is included from the very beginning, since it is a great help for the developer
to automate the build process as well as providing a recipe that can be used by others
who wish to compile and use the software, for instance collaborating developers.

“make” has been the traditional build tool for a long time in the UNIX world. It is a
low level tool in the sense that much of the functionality will have to be written by the
developer. Autotools [163], has codified the usual tasks that you would have to provide
yourself in make. It knows how to compile binaries, libraries and documentation.

In recent years, CMake [164] has become a popular alternative to Autotools due to
having arguably simpler syntax and being less complex. Both Autotools and CMake are
dependency aware and can configure the sources to be built for different platforms as
opposed to pure make.

The relative simplicity of CMake may be attributed to the fact that it only needs
one file for supporting all major platforms. From this file, build and project files are
generated for existing build tools on the target platform. CMake can therefore be seen
as a meta build system, where the responsibility to ensure that supported platforms
have working build tool chains lies with the CMake community, rather than with the
application developer [165].

When the infologger was adopted to the HLT cluster, CMake files were produced to
replace the make-files included in the DATE package. The DATE package was made to
be used with SLC [166], but the improved build process made the transition to Ubuntu
easier by automatically choosing correct compiler options and allowing the configure
process to look for correct paths of needed libraries. In other words, the build process
had become more portable.
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The experience from the infologger inspired the effort to introduce CMake in the trans-
port framework, which like many other packages in HLT, has for a long time only had
hand-written make files.

With a properly configured build system, several versions of a library can be installed
at the same time and dynamically linked binaries will still be able to select the correct
library without having to consult environment variables. This can be achieved by setting
the correct RPATH in the library of the binary as is explained in [167]. Such a change,
together with proper packaging, would make the use of the modules system mostly re-
dundant and would have reduced the amount of needed shell scripts, and thereby its
draw-backs (see section 5.2.4), considerably.

6.4.4. Testing and continuous integration

The CMake suite also contains tools for testing (CTest) and packaging (CPack). When
CMake [164] scripts were added to the infologger, CTest [164] functionality was enabled
too, so that it would be possible to do acceptance testing of the infologger functionality
when merging with new releases of the DATE package. The full cycle testing described
in appendix F.3, means that all of the mechanics in the infologger is exercised in an
automated way.

CTests are defined in the CMake files much in the same way as build targets for
binaries or libraries are. The ADD_ TEST command takes a binary or script, with
optional command line arguments, run this command and looks for the exit code to see
if the test failed or succeeded. CTest follows typical linux conventions where an exit
code of zero means success and anything else is regarded as failure [168]. Failures are
summarized after a test run has completed.

Unit tests can also be run this way and external tools can be integrated with CTest.
For instance the Valgrind tool suite [169] for analyzing software problems such as memory
leaks, and Gceov [170] for code coverage.

All of the test results can be gathered and shipped to a central build dashboard called
CDash [171], where the trends over time can be observed. The CDash package can also
function as a simple build server which the client nodes pull for information on when
builds should be initiated, effectively performing continuous integration. Still, CDash is
firstly a dash-board for build results. Other, much more powerful CI solutions exists out
there, the most well-known being jenkins [172], but also cruisecontrol [173] and buildbot
[174].

Continuous integration with unit tests and acceptance tests for the complete system,
not only subsystems as done by the individual developer, vastly improves the quality
assurance in a software project and has almost become a mandatory practice in software
engineering.

Together with software analysis and metrics, continuous integration helps to increase
the understanding of the application and the development process. It becomes easier to
make good estimates and steer the development in the wanted direction.

With full test coverage and sophisticated acceptance testing all performed regularly by
a continuous integration server, there is not much more that can be done to ensure that
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the application will work as expected. One might just as well release the application
when a round of testing has completed. This is what has recently become known as
continuous delivery [175].

6.4.5. Packaging and deployment

CPack supports creating source, DEB [176] and RPM [177] packages. Dependency infor-
mation can optionally be included so that the package manager can automatically install
dependent packages in advance. DEB packages were created for the infologger and could
be directly injected into the locally maintained Ubuntu package repository.

This repository is also used for patched packages and for packages that are not available
in the official repositories. Conflicts between local and official packages are resolved by
pinning [178], a feature available in Advanced Package Tool [179] (APT), the package
management tool used by Ubuntu.

By using existing tools that are built into the core of the distribution, all the benefits
of using a proper package manager are ensured and all the available infrastructure that
comes with it is available.

6.5. Software engineering practices

With common infrastructure and proper tooling in place, one can start to consider which
software engineering practices can be useful for a given project. In the context of HLT,
there are a few issues that immediately spring to mind. Most agile practices are meant
to be used in teams working closely together on the same software product. Thus they
might be difficult to apply in a distributed and diverse development group, as is the case
for HLT. Secondly, many practices are considered to be most effective when used together
as a set of coordinated practices. Making use of just a few of them might therefore be of
little use. This section suggests a list of practices that are generally considered to have
a positive effect, while still being relevant to HLT.

6.5.1. Code review/inspection

Code review or inspection is by many considered to be the most effective way of reducing
bugs in code. Studies have shown that it can catch 60-90% of bugs even before the code
has been executed [180]. It is most effective the first time one or more persons sits down
to systematically read through code, and within the first hour of reading [181].

6.5.2. lterative development

When software development became an industry of its own, it inherited the production
flow from traditional manufacturing. Here the steps are typically separated into distinct
phases, one feeding into another - design, implementation, testing, manufacturing - giving
it the name of the visual analogy of a water-fall [182].
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The intangible nature of software makes it harder for stakeholders to reason about
the desired end-product. It is difficult to articulate and communicate what a software
product should look like and how it should behave. And so in the end, the agreed-upon
requirements might not lead to the desired product.

Iterative development is a response to the traditional water-fall method of development.
With smaller scope of each iteration and the possibility of having a positive feedback-
loop, it tries to be more forgivable to changing requirements and let the process and
software adopt as the common understanding of the system grows.

Estimation becomes easier and the quality of the estimates improves throughout the
project. Each iteration should (according to agile methods) end with updated artifacts
that can be used as input to metrics. Good metrics can be used to further improve
estimates for the next iterations.

This way, iterative development can help alleviate some of the problems discussed ear-
lier, for instance with big design up front (section 5.1.5) and in making metrics available
earlier for effort estimation (section 5.6); metrics could be available already by the first
iteration and not only at the end of the project.

6.5.3. Code reuse

The general virtues of code reuse, and its promise as the saviour of ever-increasing de-
velopment costs (together with high level languages), have been touted at least since the
seminal “Mythical Man-Month” [14]. Also the presentation of HPC productivity (section
5.6.3), suggests that code reuse should be a good approach for saving cost, but takes care
to warn that a high percentage of reuse can be more difficult to achieve in HPC than
other fields due to code optimizations made for the target hardware platform and the
specific nature of the application itself [75].

Apart from the effort saved from not having to actually write the parts that are being
reused, code reuse improves code quality as the code being reused normally has seen
more testing and bug fixing than something created from scratch, basically leveraging
earlier work.

Still, for all the alleged advantages, the vision of code reuse has never come to fruition
in the way many had hoped for and many remain skeptical of its potential.

6.5.4. Test Driven Development

Test Driven Development [183] (TDD) encourages writing tests before implementing
functionality. A test without any supporting code should fail and then just enough
functionality to make the test pass must be written. When coupled with a practice
of always looking for opportunities for refactoring, this approach is very effective in
gradually and continuously improving the design of the software.

The small coding steps resulting from the usage of refactoring and TDD (see for in-
stance Refactoring [184] and Refactoring to Patterns [185]) makes bugs visible early and
since the scope of change is small, problems are easy to pin-point. The source code
appears more transparent, comprehensible and well-tested. Furthermore, test code can
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serve as working examples for documentation, showing how to use the software at hand
from a developer perspective.

Having a solid test suite builds confidence in the developer, making him or her feel
safer about regressions being caught if they were to be introduced during development.
While TDD has the potential to increase robustness of a software system, it relies on
proper infrastructure and scaffolding, like unit testing software, build systems, mocking
and continuous integration, to function effectively.

The general lack of unit tests and continuous integration in HLT (section 5.2.3) makes
TDD very difficult to practice at the current state. A lot of work is required to get in
place the needed preconditions for TDD.

6.5.5. Executable documentation and literal programming

Working software will always have higher priority than producing documentation. By
making documentation part of the coding process, the hope is that it will encourage
keeping documentation in sync with changes in the software.

Taking Python as an example, comments in source code are advised to follow a con-
vention called docstrings [160]. These can be extended with reStructuredText [186] and
doctests [187] to bring more structure to the documentation and to embed tests in the
comments, respectively. When combined with automated test tools, these extensions
can bring the development process closer to concepts like executable documentation and
literate programming [188].

Executable documentation is not a well-established term in the literature, but can
be seen mentioned in the context of executable specification [189] and Framework for
Integrated Test (FIT) [190]. FIT and the more recent FitNesse [191] are collaborative
tools for acceptance testing, where specifications are defined in tabular views that can
easily be edited by non-programmers. While the input to FIT is Hyper Text Markup
Language [192] (HTML), these files can be created in office applications - or wikis in
the case of FitNesse - before being exported to the FIT software. These tools helps
contrast what an application should do and what it is actually doing. They use human
language to a large extent, which greatly improves communication between stakeholders
and developers. In addition to be the actual specification, these live documents, also
captures much of what would normally be considered to be documentation. This is an
additional motivational factor for using such tools.

Literate programming takes these ideas to its logical conclusion by putting the human
language at the center of attention. The source text of a literate program is written
very much like prose, but with the added feature of macros that can be used to hide
complexity and interweave blocks of traditional programming language statements. Also
here, documentation and executables are extracted from the same sources. Despite hav-
ing been around for a while, literate Programming has never really caught on. However,
ideas from literate programming seem to have inspired more recent efforts in improving
the specification/documentations writing process, such as the Behaviour Driven Devel-
opment [193] (BDD) methodology [193].

BDD builds on the experience from TDD, but moves the focus away from strictly
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thinking about tests towards talking about what behavior software should have. The
motivation is also here to bridge the communication gap between the stakeholders and
developers. Much of the development of tools for BDD is happening in dynamic lan-
guages, with cucumber [194] being a prominent example.

6.5.6. Collective Code Ownership

Common infrastructure makes it possible to practice collective code ownership as it
is known from Extreme Programming (XP) [195]. Collective code ownership is often
mistaken for non-ownership, which would normally lower the quality of the software,
but the emphasis should be on the “collective ownership” of a system or subsystem.
However, for collective code ownership to work well, several other practices from extreme
programming must be in place, such as extensive unit test suites, continuous integration
and strong coding guidelines [196].

The benefit of practicing collective code ownership, is that developers typically feel
a greater responsibility for the software and have a greater stake in its success. They
are empowered to makes changes that accommodates their own design, as long as they
make sure that no unit tests are broken. The burden of communication overhead and
bureaucracy is therefore reduced to a minimum. Instead creativity and drive in the
development process is stimulated, while still allowing for the overall design to improve.

6.5.7. Model driven engineering (code generation)

In a software project, working out the specific details of the target domain and finding the
relations between the contained elements is often the most difficult and time consuming
part, while the implementation afterwards can be straight-forward albeit still laborious.

Given that a good model is found, and the steps for producing a representation of the
model in code are trivial, then the particular case at hand lends itself well to model driven
engineering, where if sufficient tooling is in place, the defined models can be transformed
directly into code.

6.6. Monitoring, logging and debugging

It is important to clarify in the planning stage which components already exist and can
easily be reused in the implementation, and which pieces are missing and will have to
be built from scratch. When modifications are needed in order to adopt software to the
needs of a project, those efforts must be weighted against the effort of building something
new.

The temptation to create something new will often be strong, but one should keep in
mind that:

e In-house developed software often take longer to finalize than expected; there is
more work then what was anticipated.

e Maintenance work can be shared by more hands in a bigger collaboration.
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e Packages initially deemed unfit will improve over time, maybe faster than expected,
and can make the in-house effort redundant.

e A “greenfield” effort (i.e. starting from scratch) might be much greater than par-
ticipating, and contributing, the missing parts to a project that currently does not
satisfy the requirements.

In short, there are several reasons why re-evaluation of the software needs in a project
can be beneficial at a later stage of the development. If needs are found that are not
currently being served optimally by HLT software, alternatives should be identified and
installed to complement existing functionality. In particular when considering that HLT
has become of age and many new projects have sprung up since its inception.

Section 7.2 in the next chapter will evaluate existing packages that can be put to use
in HLT. The rest of this section will discuss improvements for systems that are already
deployed and areas where new development might be needed.

6.6.1. Live monitoring and logging

HLT employs several systems for live monitoring. For the physics application itself,
there is the infologger, that is described in 4.4.4.2 and 5.5.2. For cluster management
in general there is the in-house developed SysMES package and ESMP. ESMP provides
in addition chain control and graphs of resource usage on the compute nodes. All these
distributed applications send their data to a central database in their own application-
specific streams. This makes it difficult to correlate log events in timeseries data.

There are a few simple measures that could be made to improve upon the loggging in
HLT:

e Centralized logging is supported in the rsyslog dacmon used in the cluster and can
be enabled for the system logs of all the nodes for easier access and correlation.
The centralized database can be setup with a web interface for showing the live
feed and for querying of past log messages. This would add system logs to the
existing centralized information sources.

e The in-house developed systems can also be setup to log to a centralized rsyslog
in addition to their main service. This way, one could have both system and
applications logs merged into one unified stream.

e SNMP information from the HLT hardware can also be gathered centrally with a
tool such as cacti in addition to the monitors deployed by SysMES.

Using a centralized and unified logging system with all the available sources (syslog [82],
snmp [197], infologger) is achievable with existing tools. There is, however, a tool missing
that can help correlate and present the wealth of information in a prompt and intuitive
way.

e An alternative here could for instance be Splunk [198], which advertises filtering
and correlation of information from multiple (log and monitoring) sources as one
of its strengths.
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e For monitoring there are several solutions available that could supplement already
deployed systems:

Nagios [199]: industry standard IT infrastructure monitoring.

Zenoss [200]: monitoring and management of IT infrastructure.

— Ganglia [201]: scalable, distributed monitoring system for high-performance
computing.

Lemon [202]: server/client based monitoring system.

munin: [203]: The light-weight alternative for smaller installations.

The main sources for data-mining would be the logbook and the infologger database,
but also SysMES and ESMP stores interesting data, as well as the bug tracking system
(Savannah both HLT and ALICE). In the bug tracking system, issues are reported man-
ually by experts, rather than by automatically by software. The logbook is in this regard
a combination, containing both machine created information and reports added by shift
personnel.

For better data analysis and improved pattern matching one should consider deploy-
ing structured log messages in addition to centralized logging. Improving support for
structured log messages has seen renewed interest lately ([204], [205]). The technical
specifications needed are already in place [82, 206] and the logging community is pushing
to implement support in the standard logging software found in today’s Linux distribu-
tions.

In light of these recent developments, one should consider moving away from infologger
and rather use a standard logging system that offers centralized logging and the option
to send structured log events. rsyslog, which is currently in use should in the near future
meet both of these requirements.

6.6.2. Metrics gathering and visualization

Related to monitoring and sophisticated logging is the gathering and visualization of
metrics, both business and hardware metrics. Visualization is also important for moni-
toring.

There are several things here that could be improved in HLT. There are ready-made
packages that can be installed: StatsD [207] for business metrics, collectd [208] for hard-
ware metrics. The metrics can be fed to graphite [209] or rrdtool [210] for time series
storage and real-time visualization. Also past-time visualization is provided.

6.6.3. Debugging large and complex systems

The live monitoring just mentioned is of course very useful, but must be considered a
precondition for any meaningful operation of such a system. The transport framework
do have the possibility to do event accounting, meaning one can get a detailed dump of
how the events are traversing the chain of components.
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Except for event accounting, the tools available for debugging include the command-
line and the normal UNIX tools, such as gdb, strace and similar. Connecting to a
problematic process with gdb and stepping through a malfunctioning routine can be
extremely helpful, but when there are thousands of processes spread over a couple of
hundred nodes, it will quickly become difficult to follow the distributed program flow.

The standard tools don’t scale well, but there exists some commercial tools, that
claims to do so, such as TotalView [211]. This package can be used in scalable debugging,
meaning it handles parallelism in distributed processes as was well as in threads. Packages
such as these seem to be tuned for usage with Message Passing Interface (MPI) though,
which is not used by HLT.

6.7. Summary

Reducing the amount of mundane and repetitive work has been a great benefit from the
automation enabled by software innovation. Initiatives like autonomic computing are
pushing automation and autonomous systems to handle the growing complexity in large
computer systems.

With autonomic computing, current trends and established practices in software en-
gineering as as guidance, this chapter has presented suggestions for improvements that
can be beneficial for projects like the ALICE HLT.

Much of what is said about methodologies and technology in this chapter is generally
applicable to software projects. This can be taken as an indication that software devel-
opment in HLT, and maybe HEP in general, could have much to gain by making use of
established practices from the software industry:

e Increased use of agile practices, in particular those related to test-driven develop-
ment, such as unit testing, mock objects [212] and continuous integration would
have made it more feasible to test sub-systems thoroughly in isolation, improving
the quality and robustness of the code.

e Collective code ownership could have helped created a an environment in HLT
which could attract new talent while also keeping developers that was already
involved.

e Increasing the use of supporting software artifacts, would improve maintainability,
so that one could more easily build on top of the existing code base throughout the
lifetime of the experiment, but also so that the code can more easily be reused in
other projects.

e Making use of some sort of executable documentation as described in sections 6.4.2
and 6.5.5 would have significantly improved the quality and relevance of documen-
tation for cluster administration. This in turn would have helped the continuity in
the project, avoiding much of the redundant (re)work being done for infrastructure
and cluster administration.
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In moving towards a more formal process in stages, a first step can be establishing
guidelines for all new development to follow, to make sure one moves in a coherent
direction. Next, one can establish design documents that describes in more detail how
things are working and how things should be done.

To the list in the summary of current trends, one can add guidelines from the developer
tooling and software engineering practices subsections:

e A common repository for source code should be used.
e Prepare continuous build- and integration servers for use by the project.

e Use service discovery and strings instead of hard coded IP addresses and port
numbers.
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Earlier chapters have addressed HPC in HEP/HLT in successively smaller scope, finally
narrowing it down to cluster management software in this chapter. The composed cluster
architecture enabled by COTS, has its inherent challenges in that the risk of malfunction
- in hardware and software - grows with the number of components in a system, and
thereby, the size of compute clusters. Although the situation is improving, hard problems
remains that are yet to be fully resolved, while clusters continue to grow in size [37].
Cluster management software is here to help us cope with these challenges.

In this chapter, design concepts and technology that can improve the autonomic aspects
of HLT management software, will be evaluated and verified or falsified in prototypes.
The methods and techniques that have been suggested in earlier chapters for improving
the development process, will be sought used to aid the development and for creating
metrics that can be compared to those presented earlier. Making use of the suggestions
made, will provide an opportunity for an evaluation of those said suggestions as well.

7.1. General requirements

In a system like HLT, where so many different software packages must work together, one
of the most noticeable omissions from the original design documents, is a common and
unified infrastructure for communication between applications. While the data-transport
framework is the way of transferring data between analysis components, and the task-
manager is used for setting up and controlling an analysis chain, there is no common
command and control system that can be used by all applications.

Most applications therefore have their own way of exchanging messages in HLT and
common functionality is bound to be implemented repeatedly. Opportunities for code
reuse and building more powerful, cooperating applications, are lost. Not leveraging
reuse in software building leads to higher maintenance cost and having to rely on more
people for knowing all the systems in day to day operation. The general benefits of code
reuse are briefly discussed in 6.5.3.

The lack of frameworks or middle-ware that helps making it easier to write distributed
cluster software is a general one. More specific to clusters like HLT are the benefits
that could come from better resource management and automated solution for gathering
inventory information. In addition to functional requirements, it is also the intention to
verify or falsify some of the suggestions made in earlier chapters. This places additional
restrictions on the implementation:

o Make use of high-level dynamic language. See if recent advances have made dy-
namic languages more competitive also in compute-intensive environments where
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performance earlier has been a prohibiting factor. Check the effect of applying opti-
mizations like Just-in-time compilation (JIT) and Software Transactional Memory
(STM) in PyPy [213] or adding partly static typing like made possible in Cython
[214].

e Research object-oriented remote invocation mechanisms to be used in the imple-
mentation, with the premise that such mechanisms will make it easier to implement
natural language queries for management scripting/coding in line with the funda-
mental user properties of autonomic computing (section 6.1).

7.2. Existing software

The best possible case of reuse is when an existing software package can be deployed as
is, without modifications. Software can gain some flexibility by being made configurable,
and sometimes, tweaking configuration options will be enough for integration in the
target environment. It can, however, be difficult to find a package that matches exactly
with the requirements of a project, and it is therefore important in the planning stage to
take sufficient time to investigate the available options.

As the WBEM technologies are made for management of distributed systems, software
packages built on these are of high relevance. Amongst the mature and active implemen-
tations there are both commercial (|215]) and open source ([156], [155]) offerings. Most
implementations have been written in C++ or Java, but there is also a python client
library and provider interface for working with WBEM infrastructure, called PyWBEM
[216].

There are also management solutions which are not based on WBEM technology, with
a stronger focus on clusters. BrightCluster Manager [217] is a commercial and feature-full
representative of these, while the open source Pacemaker [218| together with Corosync
[219] can be used to provide highly available services. The Corosync Cluster Engine,
a core infrastructure for highly available clusters, provides the messaging layer, while
Pacemaker [218] is a scalable High-Availability cluster resource manager layered on top
of Corosync. This type of high availability software packages are very useful for system
services such as DNS, DHCP, NTP and file servers. For the HLT application, these tools
might not be very useful by themselves, but they could be part of the solution to bring
high-availability to the HLT chain. A similar solution to the Pacemaker and corosync
combination, Linux-HA with heartbeat [70], was successfully used to add high availability
to the infologger setup in HLT (see 4.4.4.2).

Similar to the cluster managers are the workload managers or task queues. The Simple
Linux Utility for Resource Management [220] (SLURM) is an open source, fault-tolerant,
and highly scalable cluster management and job scheduling system for large and small
Linux clusters [220]. It is used by many of the most performant computer systems in the
world.

The difference between these solutions and the concepts they embody is rarely clear-
cut. The functionality needed in a cluster can be supported by a single solution or a
combination of several. Some, like the Bright Cluster Manager combines most of the
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aspects in one package, while others can be used both stand-alone and in combination
with others. One will often have to weigh “turn-key” and closed, with flexibility and
maintenance when evaluating their suitability.

For secondary purposes, but also made for scaling management of distributed infras-
tructure, there are good solutions for advanced logging, several solutions for monitoring
and some for debugging, as can be seen listed in section 6.6.

A bus-like infrastructure for information exchange, including functionality for keeping
track of active nodes and services, would go a long way in being a solution for making
construction of communicating applications easier. A lot of the needed functionality for
this can be found in the packages just listed, and ideally more time should have been
spent on evaluating them for getting a full understanding of how they work and what
they can provide in the context of HLT.

However, having the privilege to observe the HLT project throughout its life-cycle
and taking the requirements defined into consideration, it becomes evident that it is
infrastructure similar to WBEM that is sought, but not with the confines of distributed
management only. Rather the information exchange should be more generic, including
most kinds, with the possible exception of high throughput data flows.

When it comes to commercial solutions, they are inherently difficult in that they are
usually closed. Study of the source code and contribution in an academic context can
be problematic. The goal to investigate the feasibility of using dynamic languages in the
core of the infrastructure, also disqualifies the reviewed solutions.

Finally, the packages just discussed are to a greater extent polished products with a
more or less well-defined application domain, while it would also be possible to choose
from integrated infrastructure like ESB or more low-level technologies like ZeroMQ@), in
deciding which building blocks should be used and which granularity is suitable for an
implementation.

7.3. Cluster API

Several applications and software packages are used to operate and manage the HLT
cluster. Some are in-house developed, some are developed at CERN, while others are
standard packages installed along the operating system. These applications together with
their configuration is what makes up the "HLT application", meaning how hardware and
software are put together - applied - to perform a certain task.

Many of these applications will need access to the same information and they would
benefit from being able to make use of functionality already implemented elsewhere.
This requires a type of shared means of communication that is rarely employed amongst
cluster applications today, despite the existence of the fundamental technology needed,
as can be seen in service oriented, REST and similar architectures.

In HLT, there have been no common guidelines or standardized ways of implementing
inter-application communication. It is only applications with the explicit purpose of
transferring data between systems (ALICE Off-line framework (AliRoot) interfaces) or
software that were made to work together from the beginning (ie. TaskManager and
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pub-sub framework) that exchange information.

7.3.1. Use cases and requirements

Use cases are presented for the core functionality as well as for typical client services
in order to build a complete picture of what a solution should look like. Client service
examples are largely based on existing HLT software. The use cases used to derive the
core requirements are shown in figure 7.1, while use cases that are relevant for cluster
management and in particular the HLT cluster can be found in appendix C.
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The discussed use cases are mainly concerned with facilitating access to existing func-
tionality in distributed software services, and as such, the core application must support
the operations that will help fulfill this goal. These are summarized in the following

functional requirements:

e [t must provide the mechanism for making existing code definitions available over a
common API protocol to remote and local client code, with little to no modification

of the original sources.
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o It must allow client code to browse for methods made available as described in the
point above, without the client having to know the location - be it local or remote
- of the method.

e Finally it must provide the mechanics needed to let announced methods be called
by browsing client code, and return values as needed.

Non-functional requirements are derived from suggestions and guidelines in earlier
chapters:

e There should be support for the most commonly used programming languages in
HLT (see table A.3): C++, Java, Python and simple programs for command-line
usage.

e Functionality should be possible to make available in Graphical User Interface
(GUI), Command Line Interface (CLI) and web applications.

7.3.2. Design

Announcement and browsing of peer services can be implemented by using existing so-
lutions for service discovery, such as Avahi or SLP. Service discovery hides the details of
IP addresses and port numbers, and instead allows the programmer to address services
by human readable strings. Daemons and developer libraries for service discovery are
available for all major Linux distributions.

For automating announcement and browsing of methods, one can use reflection and
introspection. Reflection is the act of dynamically discovering the internals of a program
while it is being executed - and acting upon the information found [221]. It can therefore
be used to construct a service API on-the-fly by scanning live code, for instance when a
service is dynamically loaded. Introspection is similar to reflection, but here a distinc-
tion is made between the process that goes on inside the service to create an external
representation of its internals and the peer discovery between services for learning about
remote methods - the latter denoting introspection.  In the long-term, it is also the
goal to largely automate the presentation and interaction in a web interface based on
introspection of the generated API’s.

The point of a common communication framework is of course that it should be used
by all kinds of applications, but in HLT, as in many other clusters, there are use cases
more concerned with the data flow in the main application, while the rest focus on the
control and information presentation part. It would therefore be beneficial to divide
the use cases vertically, resulting in a layered architecture, where both layers extend
throughout a cluster, but are used for different purposes.

The command and presentation part - from here on called clusterapi - will be the core
of the developed prototype and the scope will be limited to this layer from here on, while
the data flow part (clusterbus?) should be seen as a possible future extension. It should
nevertheless be mentioned that such an extension would have to handle high data rates
and volumes in advanced routing configurations. Message Queues, such as ZeroMQ [222]
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or RabbitMQ [223|, might be good candidate technology for an implementation. Some
use cases for such a system have been collected and are listed in appendix C.9.

Taking these preliminary technology choices into consideration with the overall re-
quirements, one can start to flesh out the design:

e Clusterapi will be implemented as a peer-to-peer network of typical UNIX/Linux
daemons whose main purpose is to maintain a shared up-to-date lookup table of
all clusterapi methods in a cluster.

e Methods will be organized in name-spaces according to the service they belong to
in order to avoid name-collisions and to make it easier to navigate.

e In order to achieve this, the daemon will first have to be able to learn about all
other clusterapi daemons running in the cluster. Service discovery will be used to
implement discovery of clusterapi instances between nodes:

1. When a node comes up, clusterapi announces its presence via service discovery
SLP and the node queries for already running daemons. Any already running
daemon will be notified of the new node and references will be kept for those
nodes that have been discovered.

2. Likewise, when a node is stopped or becomes unavailable, it will be announced
to remote peers so that references can be updated accordingly.

e Clusterapi will provide methods for listing available services in a cluster, and meth-
ods for starting and stopping them. The pattern is very similar as for node/daemon
discovery:

1. Services that are started will have their methods made dynamically available
in the local clusterapi instance by the help of reflection. When all methods
of a service are ready, the presence of the service will be communicated to
all remote instances, which will then perform introspection to discover the
methods and to keep a references for the future.

2. Likewise, when stopping a service, the service with its methods will be removed
and an announcement to that effect will be distributed to remote instances
which will update their local references accordingly.

Dynamic, high-level languages, lend themselves well to reflection. In the case of the clus-
terapi prototype, twisted (Python) will be used to create a XML-RPC API. A language
agnostic service API implemented in XML-RPC, can easily be consumed by client pro-
grams in virtually any programming language. A clusterapi implementation would have
to implement these protocols for discovery and introspection in order to be compatible.

7.3.3. Core concepts

Conceptually, clusterapi can bee seen as a directory service of distributed methods that
are of common interest to software in a given cluster. It should enable creation of
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unified, cluster-wide and language-agnostic APIs, that makes the functionality of software
deployed in a cluster easily available to client code and clusterapi enabled packages.

Since a system like this would first and foremost benefit developers in simplifying how
to build cooperating cluster applications, it can be useful to try to envision how code
would look like in the finalized system. Consider then the following, where node state
information is used to decide whether or not to start a virtual machine on a node, as a
short demonstration for how such an interface could look like for HLT:

Algorithm 7.1 Demonstration code for envisioned clusterapi.

from clusterapi import inventorydb , sysmes

for node in inventorydb.getAllNodes():
if not node.state = PARTICIPATES IN_RUN:
sysmes.startVirtualMachine (node)

From this short snippet one can see that the majority of the code is made out of pre-
defined methods. By being conscious about adding new methods as they are discovered
to be of general use, a vocabulary will be established over time, that will also help define
the application domain of the cluster.

Clusterapi defines the high-level protocols and technologies that should be used for
announcement and discovery of nodes and the respective methods of the loaded modules
on a node. At the core, the clusterapi design is about these concepts:

Unified access There is one shared codified way of accessing remote functionality and
make functionality available for remote consumption. Unified access here also in-
cludes the abstraction of the location of distributed - and for the cases it applies -
centralized information.

Defining the application domain Defining a vocabulary for the application domain in
a system-wide API is a constructive way of finding the limits of a system and what
it should be able to do. Doing so shifts the focus from the underlying technology
towards the application domain, bringing the programming environment closer to
the domain experts.

Sharing of functionality By defining and formalizing an api for the application domain,
it becomes easier to reuse code across applications. Instead of duplicating code
that deals with the cluster in general over several applications, one can implement
functionality to be shared in the clusterapi and use it from the application. This
might require a change of mindset, as one would have to think about which part of
the functionality that is about to implemented, can be useful to other applications.

Discoverable Definition of the domain and unified access should be supported by intro-
spective functionality, such as service discovery for discovering all clusterapi enabled
machines and introspection of the modules loaded in the respective clusterapi in-
stances to discover all available methods. With this information in hand, reflection
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can be used to build the presentation layer automatically, acting as a user-friendly
mirror of the information available in the system. This is in line with the data
centric view of autonomic computing.

Loosely coupled With a loosely coupled architecture, there are no strong requirements
for programming language, operating system or technology used by the client ap-
plication internally, which means the possibility of vendor lock-in is reduced.

Language agnostic It is beneficial if the api is language agnostic, so that developers
can more freely choose which tool to use for a given job. This would make the
functionality available to many types of users. System administrators could access
the api from shell scripts. Physics applications could use C++ and management
applications could be accessing the API via languages such as python and Java.

Flexible usage Clusterapi should not impose restrictions, architectural or otherwise, in
the ability of client code to be used stand-alone. It should rather encourage a struc-
ture that allows client programs to be flexibly used, for instance on the command-
line also outside a clusterapi context. This way modules can be useful in more
settings and development /testing is simplified. One should easily be able to write
a small script that can also be consumed by the bigger infrastructure.

7.3.4. Implementation

The remainder of this section will describe the current implementation in more detail.

7.3.4.1. Process management

Process management is needed for starting and stopping services in clusterapi. It is
typical to run services as daemons, with the operation controls not visible to the user
in a GUI, but running in the background, always being active when the host system is
powered.

There are several solutions available for daemonization and related tasks that can be
used to support this functionality in clusterapi. From researching alternatives, super-
visord [224] was found to have suitable process management and to already provide a
XML-RPC interface for remote access. In addition there is also a mechanism for an-
nouncing process state changes to processes that are marked - in the configuration file
- as event listeners, making it easier to know when to trigger the announcement of a
service.

Supervisor starts up the processes and takes care of all low-level process management,
like redirection of standard input/output, error handling and logging. It holds a direct
reference to the child processes, so it will always know if the process is running, it does
not have to infer the state from the existence of a Process Identifier (pid) file.

Using supervisor leads to an implementation where clusterapi itself is being managed
by supervisor when starting up, making supervisord a hard dependency. The two will
always have to be started together as a lower requirement for providing the full clusterapi
functionality.
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This should be fine, though, as one should see the two as one instance having cooper-
ating components, each with separate concerns; supervisor for low-level management of
processes and the core clusterapi for providing the abstraction of locality for distributed
services. This separation is also advantageous for reliability, as non-clusterapi function-
ality of services managed by supervisor would not be affected by potential problems in
clusterapi itself. Instead of a full service failure, it would rather be sufficient to manually
recover clusterapi functionality.

0s API Client
l—~ supervisor . clusterapi |<— 1 clusterapi J
supervisor
hwdc
— | hwdc | =——

—e parent - child process control
<—> XMI -RPC ftraffic

Figure 7.2.: Overview of process control and XML-RPC traffic in clusterapi. In this case,
two services have been started; hwds and hwdc. Their methods have been
exposed through the clusterapi and supervisord manage the processes.

7.3.4.2. Local service reflection

As part of this prototype, the functionality of supervisord has been augmented in two
ways; with a XML-RPC extension that allows connection information of services defined
in the supervisord configuration file to be looked up by clusterapi and by loading the
clusterapi as a child-process under the event-listener configuration stanza, so that events
emitted by supervisord are propagated to clusterapi.

This means clusterapi will be notified when a service is started and will be able to look
up the service’s connection information through a XML-RPC call (getXmlrpcUrl) if it
has been defined in the supervisord configuration file under the environment option of
the service. Events are communicated with a text protocol over standard input/output.

When having been started by supervisord, clusterapi will first query the supervisord
XML-RPC interface of its (through known port on localhost) methods and add all of them
to its own sub-handler under the namespace “supervisor”. At this stage the clusterapi is
ready for use, with all supervisord methods being exposed by clusterapi, the clusterapi
instance being announced to peers and peers having been browsed.

From here on, processes can be started by clusterapi. This will trigger an event in
supervisord when the process is running, that is propagated to clusterapi. The event
contains the process name of the service which can be used with the getXmlrpcUrl call
that will return the connection information needed to talk to the service.
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If there is a valid response, the service will be inspected and its methods will be added
under a new sub-handler in the clusterapi. If a process is stopped, the corresponding
sub-handler will be removed, including its methods. This dynamic addition and removal
of local clusterapi compatible service methods is depicted in figure 7.3.

: Clusterapi : supervisor : hwds

i
|
0: supervisor.listServices 0: listServices 1

’ ]

1: supervisor.startProcess(hwds) 1: startProcess(hwds) 1

—
| I

2: processRunning: hwds

3: getXmlirpcUrl(hwds)

[
| I

4: listMethods(xmirpcUrl)

—
| I

5: addService(hwds)

1]

6: hwds.listNodes 6: listNodes a
7: supervisor.stopProcess(hwds) 7: stopProcess(hwds) 7:

° i
8: processStopping: hwds '|

9: removeService(hwds)

Figure 7.3.: Supervisor and clusterapi interaction. Here shown when starting a third
process, calling a method on the started service and finally stopping the
same process.

7.3.4.3. Remote service discovery

Since local and remote services both are made available over a XML-RPC interface, once
a node with a clusterapi instance has been found, the same mechanics are used with
remote hosts as for local service introspection. It is only the clusterapi instance itself
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that is being exposed through service discovery in the traditional sense, the presence of
clusterapi-enabled sub-services are mediated through clusterapi itself.

The current service discovery implementation used in clusterapi is Avahi [149]. The
experience from using it with the analysis chain in the HLT cluster suggests that it might
not be well suited for installations with a large number of nodes (see 6.3.4). Implemen-
tations of SLP - or just using plain DNS service records - would probably be a more
scalable choice. An example of a startup sequence with two hosts can be seen in figure
7.4.
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Figure 7.4.: Sequence diagram of two clusterapi instances starting up on two hosts, using
service discovery. They act as peers, having symmetric sequences. The
announcement and browse steps sets everything up so that the following
steps are driven by events.
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7.3.4.4. Eventloop

Clusterapi uses the eventloop of the event-driven twisted framework. The loop is shared
between the XML-RPC service, the supervisor event listener and the service discovery
listener. The two listeners will call methods on the service class when receiving events
from external processes - the supervisord and the Avahi daemon. This is shown in figure
7.5 and a diagram of the involved classes can be seen in 7.6.

D-Bus
newHost

addHost

eventloop XML-RPC proxy

addService

stdin/stdout
newService
Figure 7.5.: Service discovery and the supervisrod listener shares the event loop with the
XML-RPC proxy. Service discovery information is communicated over a D-

Bus interface, while supervisor communicates over a standard input/output
line-based protocol.

AvahiEventlistener

+ listProcedures()

+ __init_ ()
+ start()
+ publish_service()
Clusterapi 1 1 + stop()
+ resolved_service()
+_init_() o

+ resolve_error()

+ new_service()

+ remove_service()

+ service_browser_failure()

+ add_xmlrpc_service()

+ inspect_xmlrpc_service()
+ inspect_supervisord()

+ add_remote_service()

+ remove_remote_service()
+ xmirpc_listNodes()

SupervisorEventListener

1 +__init_ ()
+ process_state_running()
* + process_state_stopped()

DynamicSubhandler + connectionMade()
+ lineReceived()

+ __init_ ()
+ add_method()

Figure 7.6.: Class diagram of clusterapi.
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7.3.4.5. Method dispatch

When having established clusterapi as a single point for method dispatch, it becomes a
point where optimizations can be made on behalf of the user. If a method happens to
be available both locally and remotely for a clusterapi instance, it should ideally call the
local one, assuming that the “closest” one is the most efficient. It will eventually be an
exercise in weighing bandwidth usage when querying over the network to resource usage
for storing/caching locally. The ability to choose the method that should yield the best
performance can be sought built into the method dispatch mechanism.

One way of doing this would be to have a presorted list of hosts per method ordered
by response time and always call immediately the one with the currently best rating,
assuming that it is more important for the overall response time to save time in deciding
which one will be the fastest now, than the potential gain in selecting the actual optimal
method location.

The response time for the host is recorded after each call and the list reordered if needed
so that its always the host with the lowest response time that sits at the top of the stack.
The previous response time is seen as a good enough indicator for where a method call
should be made and it will adjust itself continuously over time, accommodating a form
of load-balancing.

When starting afresh, such a list should be pre-populated with values that would
initially favor local methods, or one could use the response time of pinging the remote
hosts - for instance gathered during service discovery - as initial seed values.

A proposal for a suitable data structure is shown in listing 7.2 and a sequence diagram
of two consecutive calls are depicted in figure 7.7.
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Algorithm 7.2 Data structure in JSON representation for method dispatch.

1. Method name, including module name—space, is used as a key
for a dictionary lookup.

2. The value is a list of tuples, where each tuple contains
the location (hostname) and a weight.

3. The weight corresponds to an approximation of the expected
latency based on earlier recorded values. It is in other
words an heuristic , not necessarily entirely accurate
for the given moment, but an estimate considered good
enough .

4. Per default, the method with the lowest weight is choosen
(its at the top of the stack).

5. The method is executed and the time it takes is recorded
for the location and stored in the sorted dictionary.

6. The dictionary is reordered if needed.

"methodl. servicel ’: |
(10, ’localhost ),
(20, ’1.some.host.org’),
(27, ’2.some.host.org’),
I
"method2. servicel 7: |
(10, ’localhost ’)
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C capi h1| |h2

—_— w5 || ——— >
(h2,21) | | =——
27
m1 m1
R (h2, 21) b m1 >
(h1,27) | | <

Figure 7.7.: Method dispatch example for two consecutive method calls. The increased
response time for host 1 causes a reordering so that the next call to method
1 goes to host 2.

7.3.5. Core API

The core methods of clusterapi/supervisor:

Clusterapi.add _remote capi Called when a clusterapi instance has been discovered
by Avahi. Takes hostname, address and port as arguments and add these to an
internal dictonary. Then calls “add xmlrpc_service” with the service information.

Clusterapi.remove remote capi Called when a clusterapi instance has been discovered
to not be active anymore. Removes references to the remote clusterapi instance
from the internal dictionary.

Clusterapi.add xmlrpc service Called when supervisor announces a new XML-RPC
service. If the new service has connection information from supervisor, a connection
will be made, the service will be inspected and its methods added to clusterapi.

Clusterapi.remove xmlrpc_service Called when a XML-RPC service goes away. The
service will be removed from its sub-handler.

Clusterapi.listMethods List all methods available in a clusterapi service.
Clusterapi.listNodes List all hosts known to the clusterapi instance.

supervisor.getAllProcessinfo Get information of all the processes supervisor manage.
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supervisor.getProcessinfo Get information about a partucular process.
supervisor.startProcess Start a process.

supervisor.stopProcess Stop a process.

7.3.6. Future improvements

In developing the current prototype into more mature implementation, there are several
possible extensions that would increase the versatility of clusterapi and broaden its a
appeal, if added.

At first there is security that has been deliberately left out of the prototype scope
under the assumption that most clusters are operated in a protected environment with
access only allowed through protected gateways, and therefore not being considered an
important enough aspect to be demonstrated in a prototype.

However, with better authentication and access control, it would be possible to allow
greater interaction from a broader audience without fear of misuse or someone breaking
the system - deliberately or not. For best results, such mechanisms should probably be
implemented at the core of clusterapi. Kerberos would be a candidate for distributed
authentication with its single-sign-on functionality that could be integrated in clusterapi.

Secondly, there is potentially a lot of functionality overlap between clusters. Certain
operations related to the underlying technologies used are independent of the main cluster
application. With a division in core functionality and sub-services, there will still be a lot
of service functionality that can be shared across clusters. Thus, such functionality could
be shared as standardized libraries bundled with the clusterapi. Good examples would
for instance be services that integrate closely with system services, such as inventory
gathering and user management, services that typically integrate closely with system
services (domain controllers, single sign in systems, distributed storage, (LDAP, kerberos,
AFS...).

7.4. Inventory database

In HLT there is a lot of hardware to manage for the system administrators. Keeping
an inventory of all the nodes, their contained parts and other cluster hardware, can
quickly become tedious and prone to error. Luckily, collecting information from computer
systems is a task that lends itself well to automation and there already exists many tools
for extracting hardware information locally.

Keeping the inventory information up to date, with short delays from a change happens
until it can be queried, enables the information to be used as the foundation for resources
management in many forms. In the case of HLT, it is the chain configuration and task
manager tools that would benefit the most from this information. One would then be
able to ensure that the analysis chain is started only on nodes that are known to be in
good shape. But also, if made sophisticated enough, the chain could be equipped with
redundant components for fail-over purposes, thereby improving the resilience to failure
in HLT.
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A simple system could be made up with a remote shell executing the appropriate
command-line tools and putting the information straight into flat tables in a database.
While this would most likely work and be relatively easy to implement, it might be
desirable to choose an approach which organizes data in a more structured way, so that
more sophisticated queries can be made. The CIM maintained by DMTF is designed
exactly for the purpose of modeling the structure of distributed computer systems and
is therefore a natural choice.

An inventory database is a great example of a service that would benefit from integra-
tion into a clusterapi service. Seen in conjunction with resource management, it might
even be considered as a component belonging close to the core of a clusterapi solution.

This section will show how the CIM model has been implemented with the help of an
ORM for storage of inventory information. Remote object manipulation will be added
to the CIM+ORM combination with the intention of exploring a “remote persistent
object” concept for the information transport. Finally, the service will be integrated
into clusterapi so it can be managed from there and the contained information is made
available for easy presentation to the user.

7.4.1. Use cases and requirements

The purpose of an inventory database is to present inventory information in a combined
view compiled from all relevant hardware resources in a cluster. Further requirements
are:

e Given that a hardware device has been added to the system, the information gath-
ered must be available also when the device is unavailable for being queried for
information.

e Information must be persisted over time and must survive full cluster outage, im-
plementing persistence to permanent storage if needed.

e A solution should be designed so that functionality for adding notes - to keep a log
of the history of a device - can be easily added.

e The persistence mechanism chosen should be OO-like, for it to be easier to make
the CIM model in the inventory database available in a management /verification
language that is close to natural languages.

The use cases for an inventory database are shown in figure 7.8.
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Inventory database

% R show inventory information
administrator
add incident information

get state i i éé
resource management

Figure 7.8.: Use cases for the inventory database.

7.4.2. Design

A centralized server for storing the information and clients submitting information to
the server when it changes, is the architecture that best supports the given requirements.
A peer-to-peer solution might also have been possible, but would make it harder to
implement persistence.

While having the benefit of a predefined system management model in CIM, it is still
necessary to evaluate it for the given application and to decide on an implementation
strategy. Given the requirements, ORM was chosen as the target object persistence
mechanism for its strong relational features - that should support CIM very well - and
for being a mature approach, having been known and used in the software industry for a
long time. Three implementation options were considered for general object persistence
in HLT:

1. Use an existing CIM implementation like sblim or openpegasus and integrate it
with the HLT software.

2. Create a new model to be implemented with an ORM.
3. Implement CIM with the help of an ORM.

There was initially no need for the full instrumentation that was offered in existing
WBEM solutions, as only information gathering would be required for an inventory
database. The investigated implementations would in this case carry functionality that
would not necessarily be useful in HLT. It was also believed that being in control of
the full implementation would allow for tighter integration, as well as being able to
build stronger OO capabilities - and thereby a more intuitive and native feel for multiple
programming languages. Finally, the prospect of being able to use a RDBS back-end
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promised an easy way for having high-availability and scalability almost for free, as these
are features frequently found in database products.

The requirements of an inventory database also favors a slight architectural variation
of the typical WBEM stack. These are mainly distributed, where a CIMOM runs on
every node or equipment being managed by the WBEM deployment and therefore has
to be “alive” for information to be available.

Whereas an inventory database requires additional persistence and query functional-
ity, and thereby centralized features, distributed and centralized features can complement
each other and lead to more flexibility for the developer, opening up for more use cases.
Heavy processes requiring a lot of structure in their queries can use central resources,
without affecting the rest of the system. While distributed processes can use informa-
tion available locally or ask a nearby node instead of having all distributed processes
communicate with a central point.

The early investigation of the use of CIM in HLT therefore concluded that existing
solutions were not suitable performance- and feature-wise and that the third option would
be the way to proceed.

7.4.3. Remote Persistent Objects

In coming up with a an intuitive way for how the information gathering ought to work,
one might envision it like this:

1. When starting up, the client asks the server for its current representation of the
node in the form of an object.

2. The server returns a reference to such an object to the client. There are two
possibilities:

a) An empty skeleton if it is the first time the client connects and there is no
information on record yet for the given client.

b) An object populated with the information currently known by the server about
the client.

3. The client then keeps the remote object up-to-date, for as long as it is running, by
comparing it to the local state of the node.

4. Any operation performed locally on the object by the client should be propagated
back to the server, all the way to persistent storage, due to a remote persistent
object mechanism.

Since the hardware discovery client will only communicate inventory information to the
hardware discovery server, this communication channel is completely private to the hard-
ware discovery service. Omne can therefore choose message passing technology without
having to take external requirements much into consideration.

PerspectiveBroker in the twisted framework offers, amongst other things, “translucent”
access to objects. It will be as if the model in the central server is extended directly to
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the clients, where it can be easily manipulated. All while the twisted machinery takes
care of keeping the traffic asynchronous. The choice of perspective broker in hwdiscover
has partially been motivated by its highly object-oriented remote calling functionality,
to see if it can support a closer to natural-language scripting/programming environment
in line with the requirements.

When combined with an ORM, it becomes a powerful “remote persistent object” solu-
tion. An implementation of such a concept would propagate a change made to a remote
object all the way back to persistent storage.

Remote Persistent Objects can be implemented by combining CIM, Object-Relational
Mapping and Inter-Process communication. The solution presented here, use classes
prepared for sqlalchemy to which twisted remote object decorators are added. This way,
by using existing libraries, a lot of functionality has been added with little effort, while
the result remains intuitive and easy to use.

7.4.4. Implementation

Two inventory database implementations have been developed in the HLT project. One
python-based, following the design above, the other one written in Java, developed to
be integrated into the SysMES framework. Both implementations use CIM+ORM as
their internal information model and they are conceptually similar, although tailored to
slightly different usage; resource management and system management.

An important motivation for choosing a solution based on CIM and ORM, was to
investigate the feasibility of supporting simultaneous access to CIM information from
multiple ORM compatible implementations, observing if there would be any interoper-
ability issues between implementations written in different languages. The sophisticated
ORMs available for Java and Python (hibernate and sqlalchemy) have made them good
subjects for such an experiment. Having two similar implementations in different lan-
guages is also an opportunity for a comparative study of the performance and features
of the two languages and the ORM packages.

The effort of designing this type of inventory gathering solution can be divided in two
major tasks:

e Creating a programming language representation of a CIM model instance as well
as the corresponding object-relational mapping.

e Create the mechanics/infrastructure that will automatically keep the data in the
CIM model instance up to date.

The CIM+ORM mapping itself is described in detail in [225] and the design of a
inventory gathering systems making use of such a mapping is first described in [226].

In CIM, there are three aspects to consider; structure, behavior and constraints. The
HLT mapping is mainly concerned with structure, like data types, arrays and inheritance.
Behavior (methods), except for Create, Retrive, Update and Delete (CRUD) operations,
are not strictly needed. Constraints refers to features for keeping data consistent and safe,
for instance checking data types or ensuring referential integrity. These maps in many
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cases to features found in databases, but could also be implemented in a programming
language if needed.

The selected ORM approach can be seen as a combination of the second and the third
way of implementing exchange of management information that is described in the CIM
infrastructure specification [227]. Since it is a combination of the two, it can offer shared
access to the information not only by software binding to common application objects,
but also at the SQL-level, if the ORM-layer is constructed in a compatible way, so that
the resulting SQL from the ORM’s can work on the same data set. Of course there is a
third alternative in that it will always be possible to access the information by pure SQL
outside the context of any ORM.

Clusterapi will be used to make inventory data accessible to clients. The top-level
Cimpy class has been equipped with a serialization method that is inherited by all CIM
classes. It can serialize the data of an instantiated object to JSON for easy consumption
by user interfaces.

The CIM+ORM python implementation has been given the name cimpy. The majority
of the Cimpy source code is generated by the sblim mof-compiler [155]. It takes MOF
files as input and outputs models in a new format according to the selected back-end.

cim
.» mofc ~——3m cimpy

Figure 7.9.: Cimpy generation.

A back-end has been developed that produces python source code with all the needed
sqlalchemy and twisted code in place to make the concept of Remote Persistent Objects
work. From the CIM MOF files, concrete classes are translated into joined table inheri-
tance [228], while the abstract part is implemented as a normal class hierarchy without
being associated with any tables. The leaf classes in the abstract class hierarchy are used
as mixins to provide the columns for concrete classes according to the expected behavior
in OOP inheritance.

Initially, sqlalchemy did not allow attribute overriding in a mixin inheritance hierarchy
as needed for the selected approach to work. This was communicated to the sqlalchemy
project along with a patch [229] that fixed the issue. The patch was accepted and included
in the subsequent release [230].

Also included in the Cimpy package is a factory module that can be used to ease object
creation, and the hwinfo module that is used by the clients to look up each of the values
for the CIM properties. The Unified Modeling Language (UML) diagram in figure 7.10
shows the classes included in the generation so far.
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The information gathering is implemented by two daemons, one being the central data
store and the other gathering the information on the node. These are called hwdserver
and hwdclient, respectively. In CIM terms, Cimpy is used as an object repository, but
also as a storage mechanism in hwdserver. The client should make use of inotify [231] or
a similar event sourced notification of system changes, to have an end-to-end push based
information flow, avoiding any blocking components when propagating updates to the
CIM model. The startup sequence of hwdiscover when integrated in clusterapi is shown
in figure 7.11.
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integrated in clusterapi. Actions are triggered by a third process, Nge.

123



7. Design and implementation

For equipment that cannot run a full client by itself, one can create fake clients that
employs the appropriate protocol to bridge the communication between hwdiscover and
otherwise incompatible systems. SNMP-enabled devices, for instance switches, would
be a relevant example in this regard. There are also APIs defined for CIM providers.
Implementing support for providers of other WBEM-stacks would allow reusing a lot of
existing work.

Traditionally WBEM stacks have been implemented in a mostly distributed way, where
the queries themselves are distributed from the user client to the server (CIMOM) on
the device. The hwdiscover design differs in that it can be distributed and centralized
at the same time. Information is gathered and stored on the nodes as it changes, while
at the same time it is pushed to a central server. Information can be fetched from both
kind of locations; the node from which the information originates and the central data
store depending on the use case. More details on WBEM can be found in section 6.3.5.

The first stage of development of the inventory database prototype has been focused
on exploring the remote persistent object concept and to prepare for java/python ORM
interoperability. The second stage has been about integrating the inventory database
with clusterapi. See figure 7.12 for a conceptual overview of hwdiscover and how it
interacts with other systems.

Browser capi
= = e |

<~——t |[capi component e |

capi capi
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inotify ]

Kernel
;;S))rlsc Database -3

Figure 7.12.: Conceptual overview of hwdiscover and interaction with related systems.
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By integrating the inventory database in clusterapi, the information-access can be
made location-independent, meaning that distributed access will appear to be local to
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client code even though information might be fetched from a remote location. The actual
access can either go to the central server, directly to the node in question, or to a local
cache depending on which is most suitable. Centralized or direct access should have to
be specified explicitly to take precedence over local cache, though.

Clusterapi should provide most of the functionality to achieve this, although a central
storage will be a distinct feature of hwdiscover. In addition to being a non-volatile
storage, a central object server can be used for complex queries concerned with the
cluster as a whole and for querying historical data, as it will be able to keep a longer
history of information than the client. Although clusterapi adds important features, the
core functionality of hwdiscover should still work stand-alone for the sake of flexibility
and loose coupling, in accordance with suggested guidelines.

7.5. Presentation and user interaction

It should be possible to deliver user interaction in multiple ways; graphical, web and
command-line. The technology choices made so far should not exclude any of these ways
of allowing the user to interact with the system.

During development and testing of clusterapi, capictl.py, a rudimentary CLI client has
been developed that can make XML-RPC calls to the clusterapi service and print the
result to the screen. it was created both to be run as a dedicated clusterapi shell with
direct access to clusterapi commands, but also from the defaults shell’s command-line in
batch mode, so that it can be used to execute capi commands from typical bash scripts.

But most of the work related to user interaction has gone into development of a web
based solution since these are easy to deploy, easy to make available and share many of
the advantages of traditional GUIs. The web based solution has been given the name
Nge. It is a XML/XSLT based engine that generates structured output - such as a set
of web pages - for a site defined in XML. Its main feature is a built-in mechanism for
interacting with python code through special tags in the XML file. During parsing, the
engine will read method information from these tags, resolve the appropriate method in
predefined components and finally invoke it.

The design of Nge centers around a site file, wherein an entire web application can
be defined. The site file contains pages, that each corresponds to something that would
logically be viewed together in a screenful. Pages can be defined inside the main site file,
but can also be imported from other files, like so:

<page name="’index’’ include="’filepath.xml’’ />

An incoming request will typically contain a parameter defining which page should be
viewed from those defined in the site file. If no page is given, the default is to render a
page named index. On each request, the site file is parsed and processed by a SAX-parser
from when hitting the start tag of the specified page until its corresponding end tag is
found. The parser is implemented with a “parser controller” object that holds - at any
given time - a reference to exactly one actual parser that is changing according to the
context being processed. The parser events are forwarded from the parser controller to
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the currently active parser which handles the information received. One can think of it as
a “linked-list context-recursive parser”, where the program flow descends parser objects
recursively, while keeping a reference to the previous one, so that it can rewind as parsing
completes. The involved classes can be seen in figure 7.13.

SiteParser
+ startElement()
+ endElement()
+ characters()
BaseParser
+__init__()
+ characters()
+ component_iterator()
NgeParser + component_templater()
+ __init_ ()
+ startElement()
+ endElement()
+ characters() PageParser
+ add_start_element() PR
ni
+add_content_to_current() " ;anE;ment()
+ current_node_to_parent() + endElement()
ComponentParser
+_init__()

+ startElement()
+ endElement()

ComponentlteratorParser |
|
J

ComponentTemplateParser

Figure 7.13.: Class diagram for nge parser.

The reason for this design is to be able to scope the parser objects to the context
they are working in, so that there is less need to keep track of state in the system and
synchronize state amongst parsers. The parser objects are only “alive” when they are
needed and only active one at the time.

The parser controller starts by creating a SiteParser object and setting it to be the
current parser. Upon being created, the SiteParser creates a new XML/DOM document
that is to be built from the information read by the SAX-parser. This xml document
is attached to the ParserController. A reference to the ParserController is handed over
with each method call triggered by SAX events, so that through this reference, the active
parser will always have access to the xml doc being built.

The site parser, upon finding the page asked for by the client, will load the page parser
and set the current parser to this new object in the parser controller. The procedure is
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much the same as before, except when finding control structures or template tags, then
component parsers will be activated that can load and execute components that acts as
a bridge for calling python code from the site document. The page parser also handles
an optional template page, that if present, will be included in all the pages defined for
a site. This is handled by looking for the type attribute of a page tag and checking if
it has the value “template”. The parsing ends when the end page tag for the requested
page is found.

The resulting document is passed on to the last step, where it is transformed into
its final rendering format (normally HTML) by a XSL style sheet. The definition of
how to express the site construction is in this way made independent from the output
format. One could output XML, pure HTML, HTML with CSS/javascript or pure text
for that matter, given the appropriate XSLT is provided. This potentially also allows for
targeting multiple devices with one site definition.

During parsing, it is the <site>, <page>, <template> and <for-each> tags that
have their own context parsers. The component tags; template and for-each will be
replaced with the result from the component processing and will never be seen by the
XSLT processor. Other tags that don’t require their own context, are just added to the
document being built along the way.

The programming language definitions that are to be made available for use within a
site document, are organized in python modules called, in Nge terms, components. A
predefined scheme for naming and placement of files will look up a reference such as
“SomeComponent.withMethod” by looking for a class called “SomeComponent” in com-
ponents/somecomponent/ _init _ .py under the project directory. The class, if found,
will be dynamically loaded and the method resolved and prepared for being executed.
The methods will have to be defined according to this scheme and be present in a compo-
nent, but the actual class and method definitions can be located elsewhere and imported
to the component according to conventional practice in Python.

From within the XML site file, python code can be called from control structures and
template helpers, like in “template” and “for-each” tags, or from buttons and links. For
all these, a “call” parameter will be honored by the parser as well as optional method
parameters that are matched with the signature of the method. When a call returns,
python’s string formatting [232] features are used to match results from components to
the tags enclosed by the component tags. In addition to filling out the static tags as
way of a templating system, this then also becomes the way of controlling which data is
passed on from one component to another. Listings 7.3 and 7.4 shows some examples of
these concepts.
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Algorithm 7.3 Example of calling python code from for-each tags.

<l—
Example 1

Call listNodes and use the results as an arguments to
listMethods. Assuming the reult is a list, each item
will be enclosed in item tags.
—_—>
<list >
<for—each call="ClusterApi.listNodes" return="nodename:{}">
<item>{nodename}</item>
<list >
<for—each call="ClusterApi.{nodename}.system.listMethods">
<item >{}</item>
</for—each>
</list >
</for—each>
</list >

<l—— The resulting XML tree could look like: —>

<list >

<item>nodel </item>

<list >
<item>someMethodl</item>
<item>someMethod2</item >
<item>someMethod2</item>

</list >

</list >

<!—— The XSLT translation to HIML would produce: —>
<ul>
<li>nodel</li>

<ul>
<1i >someMethod1</1i >
<li >someMethod2</1i >
<li >someMethod2</1i >

</ul>

</ul>
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Algorithm 7.4 Example of calling python code from link tags.

<l—

Example 2

Calling startProcess for "someProcessl" on "localhost"

This would be rendered as a link labelled "start" pointing

to a page called index.

—_—

<link label="start"
call="ClusterApi.nodel.supervisor.startProcess"
arg="hwdc">index </link >

<l—

The XML tree generation and xslt translation would produce the

following HIML

—_—

<a href="7page=index \
&call=ClusterApi.nodel.supervisor.startProcess \
&arg=hwdc" target=" _self">start </a>

Template/control structures vs. buttons/links also represents two different modes of
interacting with python code. With the former, components are invoked as part of
rendering of a page, while the latter will trigger the calling of the given method from
an already rendered page and immediately return the user to the same page. In the
latter case, if the execution of a method has changed the state and if on the same page
there are components executed by templates/control structures, the content might change
accordingly when the page is re-rendered. It is these two mechanisms working together
that provides the mechanics for producing interactive web applications.

In the case of clusterapi, since it is based on XML-RPC, the component implementation
is a simple XML-RPC proxy, only extended so that it can be pre-configured to connect
to the correct port for clusterapi. Requests that it receives will be forwarded to the
actual clusterapi end-point, like a transparent proxy. An overview of how interaction
between nge and clusterapi is implemented is shown in figure 7.14 and the data flow in
the involved systems can be seen in figure 7.15. Also relevant is the sequence diagram of
hwdiscover, clusterapi and nge interaction in figure 7.11.
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xslt stylesheet

1. listMethods; < 3:-&page=cpu___
2. [ml m2,

4. etC u _ 6.HML
5. cpu(hz 2.7G}

Figure 7.14.: Interaction between nge and clusterapi.

inventory db client inventory db server
inventory db client

clusterapi
inventory db client

Figure 7.15.: High level overview of command and information flow in clusterapi, inven-
tory database and nge. Communication between clusterapi instances are
shown as well as information flow for the inventory database instancese.

As the structure of the cimpy model is known and well-defined, it should be possible, by
using service discovery and introspection, to automatically resolve and execute methods
in clusterapi from nge to retrieve hwdiscover information and automatically present it in
a nge site.

The work to achieve this has not been completed, but an early prototype compo-
nent has been developed that uses manually defined methods made available through
clusterapi to access the information in the hwdiscover database.
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Algorithm 7.5 A page excerpt from a Nge site definition that will fetch BIOS infor-
mation for all nodes in a hwdiscover store and present it as can be seen in figure 7.16.

<page name="bios_element">

<section name="content">
<header level="2">BIOSElement</header>
<table>
<row>
<theader>Node</theader>
<theader>Manufacturer</theader>
<theader>ReleaseDate</theader>
<theader>Version</theader>
</row>
<for-each call="ClusterApi.hwds.getBIOSElement">
<row>
<cell>{NodeName}</cell>
<cell>{Manufacturer}</cell>
<cell>{ReleaseDate}</cell>
<cell>{Version}</cell>
</row>
</for-each>
</table>
</section>

</page>

In listing 7.5, an example is shown, where the hwdiscover component is used to retrieve
information gathered by hwdiscover. That page definition contained in a site file would
render the information shown in the screenshot in figure 7.16.
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@« -2

@ | [6] | httpriimsdevoinvertoryd xmi7page=bios_element

Inventory database

Index Node list Operating System BIOS Element Processor Ca

BIOSElement

Node Manufacturer ReleaseDate Version
cndevl Phoenix Technologies LTD 2008-05-19  V1.03
cndev3  Phoenix Technologies LTD 2008-05-19 V1.03
cndev2  Phoenix Technologies LTD 2008-05-19 V1.03
fepdevl American Megatrends Inc. 2008-07-10 V2.04"
fepdevd® American Megatrends Inc. 2008-07-04 WV1.04"
fepdev? American Megatrends Inc. 2008-07-04 W1.04"
fepdevl 2 American Megatrends Inc. 2008-07-04 WV1.04"
cndev5 Phoenix Technoloagies LTD 2008-05-19  V1.03

Figure 7.16.: Screen shot of the Nge inventory database.

In the same way that remote interfaces can be generated dynamically, one can also
generate documentation and even mix the two in a presentation layer so as to achieve a
variant of executable documentation (see section 6.5.5). For example a web page with the
documentation text intertwined with buttons and other controls for actually performing
tasks mentioned in the text.

7.6. Rounding out the autonomic aspects

The three preceding sub-sections describes the most complete prototypes and represents
the majority of the implementation work that has been done. Their functionality have
been prioritized due to being relevant from an autonomic computing and distributed
management point of view, while at the same time also having relevance for the HLT
cluster. Here follow the lesser developed designs, that while not having progressed as far,
are nevertheless important for the full picture and a “holistic” approach.

The requirements and design of a communication layer in HLT, match up quite well
with the WBEM technologies defined by DMTF, and integrating these specifications
would most likely go a long way in satisfying the immediate needs in a cluster like HLT.
However, one of the goals of clusterapi, is to investigate what benefits there can be from
making greater use of the dynamic features found in modern interpreted languages when
implementing distributed management solutions.

There is also a slight difference in focus, where WBEM technologies is more concerned
by the devices produced by manufacturers and how these can easily be manipulated by
providers, clusterapi is more about the domain of the application, allowing the specifica-
tion of what compute and management operations should be provided in a given cluster
application.
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While choosing a slightly different implementation path than WBEM, there is no
reason to shy away from DMTF standards altogether as they can very well form the
basis for other approaches to building distributed management systems. The CIM model
for instance, has been used in the inventory solution and communication in WBEM is
based on open web standards that are similar to XML-RPC used in clustarpi.

Autonomic computing and WBEM technologies are the main design drivers and the
inspiration for the developed software described in this chapter. The former being the
lofty vision of how large scale computing can work in the future, while WBEM/DMTF
technologies are a set of very concrete standards (blueprints) for implementing manage-
ment software in distributed environments. They are in this way complementary angles
to working on distributed infrastructure.

In the grander scheme of autonomic computing, the immediate benefit of an inventory
database and gathering system is as a source of input for intelligent process placement
or resource management. An inventory database can be seen as the first step towards
autonomic computing as it enables “self-consciousness” or more precisely; provides the
structure for being able to reason about oneself, for a distributed computing infrastruc-
ture.

As for the core concepts of clusterapi, these align very well with the autonomic manifest
in underlining the importance of unified control, as well as the importance of using open
standards [233]. The resource management needs in HLT reflects the issues addressed
by the topic of self-configuration [234]. Resource management with intelligent process
placement can be built on top of the automated inventory gathering found in hwdiscover
and clusterapi. Finally, nge relates to the presentation and control aspect of autonomic
computing.

If the inventory database is the inner self-knowledge of an autonomic system, clusterapi
the definition of possible actions in a cluster (including getting inventory information),
then resource management is the enforcing of a policy about resource priorities in the
cluster. Answering the question about who/what should have access to a given resource
at any given time.

Efficient resource usage - in terms of peak performance, nominal throughput and up-
time - is important for reaching the design goals of HLT with the given investment in
equipment. In HLT, information from resource management systems could be used to
aid the chain configuration in setting up and operating a running chain in a timely man-
ner, with as little manual intervention as possible. High availability would be required,
so the system would have to be able to quickly and automatically adjust the resource
information - for instance in case of a failing node or hardware - that is fed to the live
configuration systems of the physics application.

Another use case would be during development when testing analysis chains on com-
mon infrastructure. The developer must then be able to ask for the needed resources
and to specify if it should be exclusive access or not. Here, exclusive access would be
needed for example for performance testing when there should be no interference that
could affect the benchmark results. Shared access would allow several users to access the
same resources simultaneously, which should not cause problems for i.e. functionality
testing during development. One could also imagine finer grained access policies, such
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as sharing the computing power, while for instance proxies to other services and port
ranges are exclusive to one user.

Algorithm 7.6 Example of fictitious command-line interaction. Similar operation
should also be available from a web interface. In both cases, the interaction should
be done towards the same service interface.

$ capi resource list nodes:
—> list available nodes, highlighting those available

$ capi resource reserve nodes 2
$ capi chain status:
—> taskmanager and ecs—proxy is off
$ capi chain prepare/start:
—> start proxy and runmanager with correct parameters
$ capi chain configure:
—> configure the chain with the available resources
$ capi chain start—tools:

—> start ecs—gui, infologger and tmgui

Logging is an important existing source of information that can be used as a feedback
mechanism; as a way of learning about ones behavior and interaction with the surround-
ings. It is such feedback that can allow knowledge to evolve and heuristics to be employed
in an autonomic system.

As suggested by autonomic computing, from simple, less sophisticated concepts, one
can over time build greater intelligence, that ultimately can result in verification systems
and languages. When having defined the application domain in a clusterapi, it will be a
good foundation for building a generic verification module that can be used to ensure that
the cluster is in a consistent, good state. The methods and services made available in the
clusterapi could be used as the foundation for a vocabulary (the nouns) in a language to
express rules.

Examples of how such verification rules could look like:

All <nodes> should have the same hardware configuration
except <Node.memory> of <node> which should be 12 GB.
All  volumes should have RO/RW on same machine/partition
and RO on different machine
All <nodes> should only use RO volumes during run.

Figure 7.17 shows how such a module could be built on top of clusterapi.
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cluster operation must be optimal

[ e ogesiof same & sysmes.status must

node.type should not be ERROR
have the same hw conf —_

all <node- type> ahould |

L <node-type> should il <node-type> Should

have same amount have same number have same
of memory of cpu's disk (apac\ty
( A A A Parser/interpreter |
v v v v xml-rpc interface
r, Types()  getl "type") b, [mem..]) getSymesStatus()
Lclusterapi SysMES

Figure 7.17.: Example of how a verification language could look.
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This chapter starts with a summary of the implementation status of the prototypes, to
make it clear which parts of the designs are considered implemented and which parts
are still only ideas. Then follows a section on metrics and artifacts, before the main
implementation delivery is attempted verified through an acceptance test. Finally there
is a section on performance testing for packages where such testing has been performed.

8.1. Implementation status

The prototypes are implemented as described in the design and implementation chapters
and are as such considered complete with the exceptions mentioned in this section.

8.1.1. Clusterapi

Method dispatch in clusterapi supports calling specific local or remote nodes, but calling
a method on “some node” according to an algorithm as described in 7.3.4.5 is not yet in
place. No big challenges is foreseen though, in implementing the algorithm described for
location abstracted method dispatch. In fact, one could imagine several more types of
method calling such as those shown in table 8.1.

‘ method “url” suggested call target
Currently implemented:
ClusterApi.nodel.listNodes given node
ClusterApi.listNodes local node

Envisioned for the future:

ClusterApi.listNodes one node according to algorithm
ClusterApi.localhost.listNodes local node
ClusterApi.all.listNodes all nodes
ClusterApi.[nodel, node2].listNodes all specified nodes
ClusterApi.[x].listNodes any x number of unspecified nodes

Table 8.1.: Implemented and envisioned future method call types in Clusterapi.

8.1.2. Cimpy

The provided CIM implementation is already large enough to provide useful information
for cluster management and flexible enough that accumulated information can be viewed

136



8. Results and testing

(i.e. total amount of memory of all nodes) as well as tabular views along different axes;
information from all nodes for a given hardware device, and information of all hardware
devices for a given node.

There are however more parts of the cimpy package that could be automatically gen-
erated, such as the factory helpers. Also certain aspects of the automated OR-mapping
could be improved. In particular better handling of polymorphic relationships is currently
the greatest hindrance to automatically translate larger parts of the CIM.

The remote persistent objects currently uses “referencable” objects in twisted parlor.
Amongst the translucent object types there is also a cached variant that would be more
suitable for the idea of remote persistent objects. A cached version would also presumably
be more efficient.

8.1.3. Hwdiscover

The inventory database has reached the first stage of automation, where data collection
is triggered when the service is started - for instance upon each boot - and activity
eventually ends as the gathering is completed by the client. The method to trigger
collection on the clients is exposed in clusterapi, so the next step would be to periodically
trigger information gathering or enable UI control through Nge.

Ultimately, the goal is, as mentioned earlier, to trigger updating of information in
the hwdiscover system by continuously listen to system change events from sources like
inotify. A heartbeat mechanism would also be helpful for indicating which nodes are
online and which are not. With these steps completed, the inventory database could
already be used as a rudimentary resource manager, although without any authentication
and authorization beyond access to the cluster.

8.1.4. Nge

From Nge one can currently call predefined methods in hwdiscover that are exposed by
clusterapi, but remembering that the structure of CIM is well-known, it would be rela-
tively easy to expose query functionality directly in Nge, so that one could do something
like:
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Algorithm 8.1 General query for hwdiscover ORM store.

<l—
Calling the query method with a query that will return
all computer systems.

—

<for—each

call="Clusterapi.hwds.query"
query="CIMComputerSystem">

<item >{NodeName}</item>

<l—— or even better? —>
<item >{CIMComputerSystem . NodeName} < /item >

</for—each>

8.2. Developer tooling, metrics and artifacts

Unit tests, code coverage and static code analysis have been prepared for all the software
packages presented in the implementation chapter. Typical tools were used for these
tasks, like nose [235] for unit testing, coverage [236] for code coverage and pylint [237]
for static analysis. Exceptions were made for unit testing of Hwdiscover and clusterapi,
which uses trial [238], twisted’s own system for unit testing, due to the asynchronous
nature of twisted.

Ohcount, used here for counting source code lines, is similar to sloccount, although
more recent. It supposedly has better support for newer languages. It is used by the
http://www.ohloh.net/ web page for code analysis of the projects listed at the site. It
counts comments and blanks, as opposed to sloccount, and can show these separated or
summed up in a total count, giving a maybe more accurate view of a project.

The results produced by these tools can be seen in section 8.2. Fabric was used
for running the tools and for documenting their usage in line with the section about
executable documentation (6.5.5).

All these tools have been purposely employed with automated testing and continuous
integration in mind, although no fully automated system has yet been prepared. Writing
unit tests along the way have helped structure and organize the code in a testable and
modular way.
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‘ Metric/artifact 2012 ‘ cimpy ‘ hwdiscover ‘ clusterapi ‘ nge ‘
Unit test tool nosetest trial trial nosetest
Test coverage 76% 96% 74% 81%
Static code analysis (pylint) | -5.05/10 | -5.00/10 3.34/10 | 0.37/10
ohcount 12321 1800 4850 8032
Metric/artifact 2014 cimpy | hwdiscover | clusterapi nge
Unit test tool nosetest trial trial nosetest
Test coverage 76% 73% 67% 91%
API docs (add coverage?) sphinx sphinx sphinx sphinx
Static code analysis (pylint) | -3.15/10 |  0.30/10 3.46/10 | 4.56/10
ohcount 13397 3186 8712 6507

Table 8.2.: Tables showing the latest unit test, coverage and lint results for cimpy, hwdis-
cover, clusterapi and nge. Extracted on two occasions, the first one on
14.04.2012 and the second during june 2014.

When compared to HLT software (see for instance section 5.6), we see that the metrics
and artifacts presented here are in general in a much better shape. It is still difficult
to say anything about the relative code quality, though, in particular considering the
considerable amount of testing the HLT software has received through commissioning
and production time. Also, metrics such as these say nothing about suitability for its
designed purpose or about robustness of the design.

Presumably, though, the development process has been made easier with these artifacts
in place and one could expect it to be quicker for new developers to become productive
in an environment with stronger support from artifacts, although the major productivity
factor is likely to be the difference in project size and complexity.

8.3. Full scenario integrated acceptance test

The results presented in chapter 5 and the suggestions made in chapter 6 are core deliv-
erables for the work in this dissertation as are the prototypes described in the implemen-
tation chapter. To verify that the prototypes created meets the requirements set forth,
one has to define a reasonable acceptance criteria.

Unit tests effectively document working functionality of small pieces and with high
test coverage one can be quite confident that most functionality will work as expected.
For larger parts and for systems interacting with each other, functional requirements can
be verified by integration tests and acceptance tests, whose goals are to determine if the
functionality of the use cases are working as expected.

In the implementation chapter, the operation of the prototypes is described in de-
tail through sequence diagrams, but always in isolation so as to keep the focus on the
functionality being described in the surrounding text. A way to demonstrate that re-
quirements have been meet then, is to define a test sequence that covers a full life-cycle
session of all the prototypes working together and stepping through the core use cases
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shown in figures 7.1 and 7.8, in the core API listed in 7.3.5. It is this approach that is
attempted below in the test script and the accompanying log.

A test script has been created to execute and document the acceptance test. It uses
Vagrant [239] to create an environment with multiple virtual machines that can be used
for realistic testing of multi-node interaction.

capictl.py (section 7.5), that has been developed for general testing, is used by the
script to execute clusterapi methods on the command-line. To demonstrate user inter-
action emanating from the the UI in Nge, a head-less webkit engine [240] is used to
programatically simulate browser navigation and to store screenshots of the states as the
test execution progresses.

The script was implemented with fabric [241] to make it easier to group related parts
and to be able to run those said selected parts in isolation during development. Fabric
also conveniently labels the output with node name and whether the given line is input
or output, making it easier to follow. A listing of the full test scirpt can be found in
appendix G.1.

In plain english, the sequence is as follows:

1. Base clusterapi startup on single node. Relevant figures: 7.2 and 7.3.
a) The supervisord is started with a configuration that will also start the clus-
terapi service and a hwds service.

b) When the supervisord and hwds service signals that they are ready, clusterapi
will inspect them, and make their methods available under two sub-handlers.

¢) The clusterapi instance is announced to the network through service discovery.

2. Start of a service with the help of the capictl.py command line tool. Relevant
figures: 7.3.

a) The hwdc service is started by the command line client calling the startProcess
method of supervisor that has been exposed by clusterapi.

b) When the hwdc services signals that its ready, clusterapi will inspect it and
add its methods to a new sub-handler.

¢) The hwdc services itself, collects information when started and sends it to the

hwds service.

3. Start Nge and emulate a user navigating the UI and showing information. Relevant
figure: 7.14.
a) The Nge service is started from the command line in the same way as the

hwdc service. It has no methods that are exposed through clusterapi, so there
is no introspection.

b) Navigation to the node list in the clusterapi-hwdiscover section is emulated
and a screenshot made showing one node listed.

¢) Navigation to the clusterapi-supervisor page is emulated and a screenshot
made showing the current state of the services known to supervisor.
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4. Start second clusterapi instance, making it a distributed configuration. Relevant
figure: 7.4.

a) The second node starts in the same way as the first one.

b) The second node will then notice that there exists another clusterapi service
on the network and proceed to browse it and add the remote methods to its
own registry of methods.

¢) The first node will likewise notice the presence of another clusterapi instance
and will also browse the remote instance and add methods to its own registry.

5. Start hwdc service on second instance through Nge UI. Relevant figure: 7.11.

a) The hwdc service is started and introspected in the same way as in earlier
steps.
b) Same navigation as in previous step is done to show that there now is two

nodes in the node list and that there are now two nodes with their respective
services listed in the supervisor view.

The log of running the full script is shown in listing G.2. A process tree is used to
show how processes are organized under supervisor and clusterapi method calls to show
how the API dynamically changes as a response to the actions performed on it. The
screenshots produced by the test script is shown in chronological order in figures 8.1, 8.2
and 8.3.
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Test pages overview

Clusterapi - hwdiscover

Testing hwdiscover through clusterapi.

Index Nodelist — Operating System  BIOS Element  Processor Capabilties  Memory — Disk
Partitions  Disk Drive  Ethemet ports  F

List of nodes on cluster

+ nodel.local

Supervisor dashboard using clusterapi
Test page index

Supervisor dashboard

nodel

Process Status Description Start Stop Info
clusterapi RUNNING pid 26567, uptime 0:00:29 start stop info
echo STOPPED Not started start stop info

hwdc RUNNING pid 26638, uptime 0:00:13 start stop info
hwds RUNNING pid 26568, uptime 0:00:29 start stop info
nge RUNNING pid 26708, uptime 0:00:03 start stop info

Figure 8.1.: Screenshots showing status information right after Nge has been started.
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Supervisor dashboard using clusterapi
Test page index

Supervisor dashboard

node1

Process Status Description Start Stop Info
clusterapi RUNNING pid 26567, uptime 0:00:43 start stop info
echo STOFPED Not started stant stop info

hwde  RUNNING pid 26638, uptime 0:00:27 start stop info
hwds  RUNNING pid 26568, uptime 0:00:43 start stop info

nge RUNNING pid 26708, uptime 0:00:17 start stop info
node2

Process Status Description Start Stop Info
clusterapi RUNNING pid 22798, uptime 0:00:04 start stop info
echo STOPPED Not started start stop info
hwde STOFPED Not started stant stop info

Figure 8.2.: Screenshot showing a new node appearing in the supervisor dashboard after
the second clusterapi instance have been started.
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Supervisor dashboard using clusterapi
Test page index

Supervisor dashboard

nodel

Process Status Description Start Stop Info
clusterapi RUNNING pid 26567, uptime 0:00:45 start stop info
echo STOPPED Not started start stop info

hwdc  RUNNING pid 26638, uptime 0:00:29 start stop Info

hwds RUNNING pid 26568, uptime 0:00:45 start stop info
nge RUNNING pid 26708, uptime 0:00:19 start stop info
node2

Process Status Description start Stop Into
clusterapi RUNNING pid 22798, uptime 0:00:06 start stop info
echo STOPPED Not started start stop info

hwdc RUNNING pid 22800, uptime 0:00:02 start stop info

Test pages overview

Clusterapi - hwdiscover

Testing hwdiscover through clusterapi.

Index  Modelist  Operating System  BIOS Element  Processor Capabilities  Memory — Disk
Partitions ~ Disk Drive  Ethemet ports  Processors

List of nodes on cluster

* nodel.local
* node2

Figure 8.3.: Screenshots showing how status has changed after the hwd client has been
started on the second clusterapi instance.

The test log shows that the execution of the acceptance test executed as expected and
as such it should validate the design to a satisfying degree. For even stronger verification,
one could for instance do a code review. Otherwise, confidence in the reliability of a design
is something that is built over time, perhaps with the help of extended tests in varying
scenarios, and of course when observed in produciton.
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8.4. Performance and scalability

For hwdiscover, testing has been done in several environments, from the local develop-
ment machine to the HLT production cluster. Key numbers for the various systems are
listed in table 8.3.

Early tests on the development cluster showed that it takes approximately 10 seconds
to gather all information from the 20 included nodes. The init script was started in
parallel on the nodes with the help of a distributed shell utility. When collection is run
in parallel like this, the load on the central hwdiscover store node will saturate a single
CPU core, while when running in serial, it will stay around 30%. For the individual
clients, collection is completed within a second including start and stop of the service
daemon. The load during this time is at most 20% of a single CPU core.

Location ‘ Nodes ‘ Time ‘ CPU load ‘ Memory ‘ File size
dev cluster serial 8 +1 | 723 seconds 32% 0.2%
dev cluster parallel 8 +1 | 713 seconds 98% 0.2%
hwinfo (lower bound) | 7200 | 7.3 seconds 1.3 MB
prod cluster 7200 | 722 minutes 3.8 MB

Table 8.3.: A table showing number of nodes, time to complete, CPU load, memory usage
and file size for the inventory database in different testing environments when
collecting all inventory information. All measurements are performed with
the top command line tool .

The last test on the production cluster was conducted in mid-May 2013 just days before
the cluster was shut down. The latest version of cimpy and hwdicover was installed on the
nodes where the client were to be run and hwdiscover server was setup on a development
server, a powerful node functioning as a workstation for people working on the cluster.
Sqlite with files stored in /tmp was used as database backend for the hwdisvocer through
cimpy. Clusterapi and nge was also installed alongside the server to allow for browsing
the information collected.

Ubuntu packages were prepared for all the software, including an updated version
of sqlalchemy needed for cimpy to work properly on the eventually aging Ubuntu LTS
release installed on the cluster.

In order to have a control measurement - a lower bound for total information gathering
time - hwinfo was run stand-alone by the help of a distributed shell (dsh) on all nodes,
only extracting information, printing it to screen and piping the output to a file. This
took about 7.3 seconds and resulted in a combined output of about 1.3 MB. This is
without any object creation or sending of objects over the wire.

Testing hwdiscover concurrently by starting the service with dsh, worked out well for
the majority of the clients, until reaching a certain number of nodes, when the rest would
seemingly take forever to finish and the test had to be stopped. There was little time
left for optimizing the test execution to find the threshold for when a gathering would
complete without issues in optimal time. It is therefore only a sequential test (for loop
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on the command line) that has been completed for all nodes.

The current implementation can handle a cluster the size of HLT without any notice-
able impact on the cluster application performance. When collecting information in the
HLT production cluster a single server handled about 200 nodes and the full collection
took 22 minutes. The size of the resulting database was 3.8 MB as compared to the
output generated by hwinfo output of 1.3 MB.

The large difference between running a few clients (1 takes one second and 20 takes
10 and running many ~200 takes about 20 minutes) clearly shows that there is an issue
with scaling. A thorough investigation has not yet been done to determine the limiting
factor, although earlier tests and the general impression suggests that the performance of
the hwdiscover application as a whole is currently limited by CPU-usage on the server.
As such, it is also yet to be determined if the somewhat disappointing performance
is due to design problems or rather just implementation blunders. It could be that
PerspectiveBroker and Twisted has been a poor choice for the implementation, although
this is unlikely, as Twisted has been used for much tougher tasks before.

8.5. Evaluation of suggestions and validity of guidelines

In terms of evaluating the suggestions made in chapter 6 and in particular the guidelines
in section 6.2.7 in the context of the implementation work done in chapter 7, the first
experience that comes to mind is maybe that with FOSS. The software written in here
rests heavily on existing solid open sources libraries and frameworks, leveraging many
man-years worth of work.

The contribution mentioned in 7.4.4 (about attribute overriding in sqlalchemy) shows
another important advantage of open source; one is not hindered by depending on others
if problems should arise. It can always be within the developer’s reach to move a project
forward by resolving issues, even if they are discovered in someone else’s software. In
this case, when a fix was found and contributed back to the project, the solution was
easily included in the main source repository and featured in the next patch release.
Once included it would be carried with the package and there is no need to maintain it
yourself.

A similar case was with the bigphys driver mentioned in section 4.4.3. Here the HLT
project was able to mold the linux kernel into doing a very specific thing that would fit
well with the designs decided upon. But opposed to the former case, here the source
code was not shared with an upstream project and it was therefore no one to share the
maintenance with.
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With the launch of the LHC programme, the field of high energy physics entered the large
scale computing era in full force. We are still seeing this development unfold and finding
its ways in becoming an even more integral part of future experiments. Being part of
such an important point in scientific computing history makes HLT an interesting case to
study. The experience in designing, building and operating HLT to meet the expectations
of the ALICE collaboration holds valuable lessons for future projects.

In addition to having delivered the expected physics performance it is clear from the
evaluation in section 5.5 that the operational performance of HLT is on par with other
sub-systems in ALICE, meaning that the main purpose has been achieved for HLT.
Although current tooling and infrastructure require experts available on-site for efficient
debugging if the need should arise during operation. This is not unlike most other
systems, but one ambitious early vision was that of a more autonomous system that
would only require remote access by experts.

The description of gradual deployment in the two first sections of chapter 5 shows
signs of “big up front design” and a low awareness for keeping designs in tune with with
a changing reality. Potentially being the cause of painful restructuring of infrastructure.
This could in turn be caused by inexperienced personnel on-site in the beginning and/or
generally low continuity of on-site personnel during commissioning. There are also indi-
cations that some aspects of the design/commissioning has been underspecified in that
certain parts of the system had to be patched together with scripts.

As for the general development performance, it is difficult to make strong conclusions
partly because of lack of artifacts. But some data has been extracted and compared,
and while the planned HPC performance review was not undertaken, much of the re-
quired data has been collected and could be reused in a future study, supplementing the
work presented in here. If nothing else, the project profile, in the shape of developer
activity (section 5.6.2), resembles what one would expect in an iterative project and also
corresponds well with the expected activity according to the run schedule.

Software quality is related to design and artifacts. While also difficult to evaluate,
lack of artifacts such as documentation is a clear sign of technical debt, as are near non-
existent code coverage. Also code duplication, one of the code smells seems very high for
run-critical software. Having said that, HLT has seen extensive manual testing during
commissioning and has had more than satisfying operational performance.

The suggested improvements revolve around autonomic computing and well-known
software engineering practices that are deemed to be a good fit for a project like HLT.
The suggestions starts with deriving a few general guidelines for large scale systems based
on current trends, including;:

e use readily available FOSS as building blocks
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e use high level languages as far as possible
e design loosely coupled for scalability

Then follows suggestions for suitable middleware technology, a presentation of relevant
specifications for management software and specific suggestions for developer tooling, in
particular a continuous integration toolchain is presented to which the initial set of build
files was contributed.

With this developer tooling in place, certain software engineering practices are un-
locked, such as Test Driven Development, while others greatly benefit; Iterative de-
velopment and Collective Code Ownership, while others again are considered almost
universally useful independent of available tooling; Code review.

Closing off the suggestions are some which could be deployed with relatively little effort,
such as enabling centralized logging for system services and supplemental monitoring
solutions that could be installed.

The second major part of this thesis is the designs and implementations described in
chapter 7. Three larger packages are presented; the clusterapi, the inventory database
(hwdiscover and cimpy) and nge, all built to work together in supporting aspects of an
autonomic environment. The test application being an inventory database.

Of particular novelty, is perhaps two concepts embodied in the designs:

e remote persistent objects

e the idea of using ORMs derived from a common model as a language agnostic data
exchange

The implementation was tested and verified in chapter 8. The acceptance script and
the resulting output can be found in appendix G. Although the defined acceptance tests
have been successful, much testing and refinement remains to determine if these packages
would work in a production environment and indeed if the concepts would be as helpful
as intended.

A tentative goal was also to exercise, during the development part of this thesis, some
of the practices suggested. It is somewhat limited what can be attempted as a single
person, but as mentioned in chapter G, much tooling, metrics and artifacts have been
produced in line with best practices and in the preparation for continuous integration.

Maybe the most important lesson that can be learned from the experience of building
the HLT is that there is potentially a large body of experience to draw from, in an
industry that has been working on large scale software systems for a long time already;
that software engineering is a field from which scientific computing today could learn a
lot. While at the same time one will have to acknowledge that scientific computing and
experimental setups have challenges that are unique and cannot necessarily be helped
by traditional software engineering. Furthermore, scientific computing will have its own
experiences and knowledge to contribute to the common computing field. Either way,
better communication and exchange of ideas is likely to be fruitful.

This thesis points at some of the practices, tools and visions that could be useful
to apply in the context of clusters like the HLT. Autonomic computing has been an
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important source of inspiration for the work herein. Designs have been presented and
essential parts have been implemented as prototypes for verification.

Just as new solutions have been presented as possible improvements to existing systems
in HLT in this thesis, the pace of innovation has brought yet newer software that now
could be seen as ready solutions to some of the problems - or parts of problems - attempted
solved by the prototypes in here.

This will always be a risk when working on a project over several years. Nevertheless it
is important to see concepts worked through from start to end in a stable environment to
be able to make a judgement about one’s ideas. Jumping from the latest new technology
to the next is going to be an everlasting chase. It is then better to evaluate after a
prototype has been completed what can be modified to work with new solutions or what
can be replaced with new components.

One could even consider this a most important duty for a software practitioner, that
is crucial for maintaining a healthy environment where software production can reach
its full potential; where the building blocks are continuously refined and cruft [242] is
removed without hesitation.
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A. SLOC count

The COCOMO data in section 5.6.1 was generated using David A. Wheeler’s 'SLOC-
Count’ [90]. The general configuration is also described in this section, while details,
including exact command line parameters, are stored in fabric scripts in the hlt-alice
source repository.

A.l. Internal packages

cost devs person months schedule months SLOC

BCL 1540555 11 137 12 20731
control 3213758 19 285 15 38259
RFLASH 53071 1 5 4 1252
PSI2 499674 5 44 8 8112
tools 574397 6 51 9 9111
monitoring 106610 2 9 5 2239
bigphys 25963 1 2 3 690
SVN-Release-Tools 18789 1 2 3 527
Framework 7920113 35 704 20 81127
MLUC 2105702 14 187 13 26898
SimpleChainConfig2 781582 7 69 10 11777
SimpleChainConfigl 944024 8 84 10 13784
EVTREPLAY 27369 1 2 3 721
TPC-OnlineDisplay 20687 1 2 3 571
interfaces 3262304 19 290 15 38740
utilities 118254 2 10 5 2441
TaskManager 898109 8 80 10 13223
util 50084 1 4 4 1193
Components 8126391 35 722 21 82884
trunk 942463 8 84 10 13765
Utility Software 1496076 11 133 12 20231
PSI 369842 4 33 8 6313
RunManager 171040 3 15 6 3320
H-RORC 22404582 70 1990 28 192976
TRD-Readout 107067 2 10 5 2247

Table A.1.: COCOMO numbers for individual sub-projects in hlt-alice, showing number
of developers, person months, scheduled months. Cost is given in US dollars.
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A.2. External packages

Package SLOC person months scheduled months devs cost
aliroot 2716157 9679.74 81.77 118.38 108966810
infologger 11051 29.91 9.09 3.29 336677
root 1730727 6030.47 68.31 88.28 (67886219
Totals 4457935 15740.12 159.17 209.95 177189706

Table A.2.: SLOC numbers for external packages used in HLT.

A.3. Programming languages

SLOCCount can also provide information about which programming languages are in
use in a project. For HLT this information can be seen in table A.3. The most common
languages are C++, C, Java and Python.

Language Lines Percentage Language Lines Percentage

cpp 3395408 76.17
cpp 471571 69.05
. fortran 771564  17.31
java 97196 14.23 .

. . ansic 232833  5.22

ansic 63198 9.25

sh 30108 0.68
python 23896 3.50

perl 11075 0.25
sh 11824 1.73

python 7891 0.18
asm 5523 0.81

php 5957 0.13
xml 3150 0.46
. tel 1733 0.04
jsp 2913 0.43

csh 651 0.01
tel 2436 0.36

ruby 553 0.01
perl 964 0.14

pascal 135 0.00
csh 257 0.04 java 97 0.00
Total 682928 100 .

Total 4457935 100

Table A.3.: Statistics of programming languages used in HLT. Internally developed pack-
ages to the left and external packages to the right. The tables shows actual
number of lines per programming language and percentage of total number
of lines.
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B. Git statistics

The commands and procedures that have been used to produce the date presented in
this section are captured in fabric scripts that can be found either in the same repository
as this thesis or in the hlt-alice repository.

The subversion repositories was checked out locally by useing the “git svn” command
that allows git to work with a remote subversion repository. This allowed the use of
gitstats, the tool that seemed most appropriate for gathering the data needed for the
repository statistics.
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name timespan commits authors changes
/ 4234 days, 1:54:26 33532 34 6667663
/BCL 3969 days, 0:18:01 175 2 53526
/Components 2542 days, 2:17:46 793 2 214851
/EVTREPLAY 8 days, 18:24:01 6 1 1191
/Framework 3564 days, 2:48:15 425 2 501068
/H-RORC 196 days, 3:11:58 53 1 1312392
/MLUC 3919 days, 22:12:35 237 4 66773
/PSI 2104 days, 20:36:44 109 2 47933
/PSI2 1965 days, 20:50:15 35 3 16904
/RFLASH 517 days, 3:59:23 8 1 2173
/RunManager 492 days, 2:54:59 32 1 7967
/SimpleChainConfigl 2595 days, 3:55:09 284 2 40814
/SimpleChainConfig2 1432 days, 11:53:43 207 2 25773
/TPC-OnlineDisplay 7 days, 4:33:52 3 1 4357
/TRD-Readout 39 days, 20:33:06 2 1 2638
/TaskManager 2833 days, 18:26:33 154 1 25915
/Utility _Software 2139 days, 11:25:09 225 3 35051
/control 1318 days, 5:48:29 23330 22 2370443
/interfaces 1276 days, 1:30:23 63 5 298348
/monitoring 37 days, 1:28:48 5 1 4081
/restricted 1206 days, 23:33:38 89 5 15633
/tools 1321 days, 0:04:14 204 4 37793
/trunk 2472 days, 20:44:11 281 1 40783
Jutil 1759 days, 6:09:19 8 1 2700
/utilities 2181 days, 3:15:31 41 2 11685

Table B.1.: Key numbers showing the timespan and total number of; commits, authors
and lines changed for the individual sub-projects of the hlt-alice repository.
More information about the tools used can be found here in the appendix B.
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C. Use cases

Examples of modules and operations that are relevant for the HLT cluster.

C.1. Actors
e users
— shifters
— experts
— developers
— administrators

e applications
— core applications
x TaskManager/processing chain
* tcpdump
— support applications
SysMES
x Infologger
* Logbook

*

* Resource manager/inventory database
* nge

— homer-client

¢ RORC
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A

applications

7
; e

core applications support applications

XX X X R

RORC tepdump Resource manager/inventory database Logbook Infologger SysMES

A

users

> 2 e o

administrators Experts shifters Developers

Figure C.1.: Overview of actors.

C.2. Chain operation

Run-control tools need to be able to give the TaskManager commands. ESMP needs to
retrieve status information from the TaskManagers.
Operations:

get taskmanager status
start/stop processing chain
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X

Ecs-proxy

\ Clusterapi: chain control module
% ~
start/stop processing chain
Developers %

\ JR—

— |
TaskManager
get taskmanager status
Experts

—

R

ESMP

Figure C.2.: Use case diagram of chain operations.

C.3. Resource management

Resource management is something that touches the entire system. It should be used
to make sure that only healthy machines are used during operation. It could be used to
make idle machines in the production cluster available for other tasks. It should be used
to manage the development cluster.

Behind resource management there should be an automatically updated inventory
database.

e Chain configuration tools will need to know about available resources when deciding
where a process should be run, so that only healthy machines are used during data
taking.

Operations:

nodes with rorc
nodes with gpu

cpu count in node
memory amount in node

e For properly testing new code, the HLT has a development cluster. This cluster is
used for many different types of task. From running smaller test chains to batch
jobs to simple debugging and testing. Need to automate the management of such

resources.

Operations:
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list vacant nodes

reserve nodes

non-exclusive reserve nodes
release nodes

Clusterapi: resource module

list vacant nodes

reserve nodes

R

Developers )
non-exclusive reserve nodes

release nodes %

mar

nodes with rorc

nodes with gpu

\

—
&
&
&

R

Chain configuration

cpu count in node

memory amount in node

Figure C.3.: Use case diagram for resource management.

C.4. Cluster administration/Service management

These are common tasks for a system administrator to perform in any computer system.
Depending on type of user and cluster, a user will want to be able to:

e Authenticate to the system.

e Be authorized for using resources.
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— This normally means access to the file system so that files can be stored in a
home directory.

— But it can also mean the use of compute resources, such as a certain amount
of nodes or CPU/memory/disk for a given amount of time.

Operations:

add/remove a user
add/remove a user to a group
change password for user

Clusterapi: administration module

= (oD

administrators
add/remove user to group

‘l%%%

R 2R

authorization Idap

change user password
passwd
users authentication

Figure C.4.: Use case diagram for cluster administration.

C.5. Data stream connection

The output of the data stream is normally a stream of serialized objects. These objects
are processed and the output can for instance be histograms presented as graphics on a
web page or events viewed in a 3d display.

e The TCPDumpSubscriber is the connection point for the event display and con-
sumers of histograms that are produced by the HLT processing chain. Sending the
same data to many clients is expensive. Multicast would reduce the network load.

Operations:

pub-sub connection
multicast connection

e Histograms produced by the HLT processing chain must be presented to shifters in
the control room for data quality monitoring. Currently histogram data is dumped
to a machine inside the cluster and a web server runs a script that creates the final
histograms that is presented to the user in a browser.
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Operations:

view all histograms

event dlsplay

Clusterapi: data stream module

— pub-sub i f i
% % monitoring

tcpdump — — 1 homer-client
multicast connection
amore
view all histograms %

shifters

data quallty monitoring

Figure C.5.: Use case diagram for data stream connections.

C.6. Statistics retrieval

Statistics for the operational performance of HLT is useful for performance evaluation.
Currently this is gathered from various databases with stand-alone programs manually.
Operations:

amount of logmessages
distribution of logmessages
operational performance
meantime to failure

failure cause

The response here could either be raw data in the form of csv or even graphs and ready-
made histograms.
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Clusterapi: statistics module

amount of log messages

i:%

Infologger

distribution of log messages

; 5 operational performance
Experts %
meantime to failure Logbook

-

failure cause

Figure C.6.: Use case diagram for statistics retrieval.

C.7. RORC control

The RORC cards can be used for playback of events from disk for more realistic testing.
During normal operation, it is also important for experts to be able to query the status
information.

Operations:

start/stop rorc replay
load rorc replay files
get rorc event/buffer status

Clusterapi: RORC module

% start/stop rorc replay
Developers
load rorc replay files %

RORC
% S — get rorc event/buffer status

Experts

Figure C.7.: Use case diagram for RORC control.
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C.8. SysMES
Run-control needs to know which state the cluster is in according to SysMES, to allow
operation or not for a given user.

Operations:

get sysmes status

R

shifters Clusterapi: SYMES module

E é —
get sysmes status — i
dcs

L — SysMES

Chain configuration

Figure C.8.: Use case diagram for SyMES operations.

C.9. Clusterbus use cases

Use cases were also gathered as input from individuals in the HLT group. These where
to a great extent formulated more as wishes rather than properly justified use cases.
They are nevertheless mentioned here for the sake of completeness and for showing the
different perspectives on what is needed in HLT. These are for the most part related
to a high performance data centric framework for routing data, as briefly mentioned in
section 7.3.2.

e Should enable push. An event mechanism for the data stream in addition to poll.

e Should be possible to proxy the raw data stream.

Should be able to handle millions of messages per seconds.
e Should be able to use multi-cast in cases where it makes sense.

e Should be possible for a client to request a subset of data it is actually interested
in.

Should be possible to secure connection points with authentication/authorization.
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D. Service discovery of data sinks

Being able to tap into the transport framework of HLT and read events directly from the
data flow, is useful for debugging, quality assurance or just for generating a certain type
of test data. The TCPDumpSubscriber can be connected to any other component in the
framework and dumps the data it receives to a normal TCP port from where it can be
read by other applications outside the main transport framework. This is for instance
used to connect the event display to the data stream so that events can be read and
shown in the control room.

Since the HLT chain was foreseen to be configured dynamically, a mechanism was
needed for retrieving the connection information for such TCPDumpSubscribers. Service
discovery, as mentioned in 6.3.4, can be used to for such a tasks. The operational
implementation in HLT can be summarized as:

1. The data sinks (TCPDumpSubscriber) start up and announce their host name,
port and service name via the Avahi service discovery mechanism.

2. When the data flow in HLT starts, additional information is added to the TXT
field of a service record about what kind of data is available on this particular sink
and this information is propagated to all Avahi-enabled nodes.

3. This means that portal and gateway machines have this information available in
their local Avahi daemon and can serve it over a XML-RPC interface to machines on
other networks that wants to connect to the internal data sinks via port forwarding
on portals and gateways machines.

The there was a slight mismatch between initial and final requirements that led to sub-
optimal use of service discovery technology, announcing much more information over
Avahi then what it was designed for. Not only information for connecting to the service,
but also information about the data provided by the given TCPDumpSubscriber.

In addition, Avahi is not tuned for large clusters, but rather for small home networks
and has been specifically designed with strict security considerations [243] to minimize
the risk of potential attacks. This means that in large networks with many nodes, Avahi
won’t necessarily see all of them. For this reason, the version used in HLT had to be
patched in order to increase the cache size of the Avahi daemon to make it work in our
setup. The patched Avahi packages were produced and distributed through local package
repository with the tools provided with the distribution.
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E. Log data mining

The infologger database as described in 4.4.4.2 has collected log messages throughout the
runs since the very beginning. From July 2010, the regular dumps of the database were
stored for later analysis instead of just being deleted. These dumps have been merged
into a single database that can be used to mine for data regarding logging and error
conditions in HLT. Vital information about this database is shown in table E.1.

Data set Time span Total number of messages | Database size in GB
1 2010-07-22 - 2010-10-29 178247483 27GB
2 2010-10-29 - 2011-12-07 202685049 32GB
Combined | 2010-07-22 - 2011-12-07 380932532 59GB

Table E.1.: Overview of the data sets. MySQL[244] is used with the innodb engine and

the database size is measured by the size of the message. MYD file .

The graphs of the dumps show the distribution of the various types of log messages
over time (E.1, E.2).
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Figure E.1.: Total number of log messages per day .
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E. Log data mining

Figure E.2.: Total number of log messages per wek .

Python|245], SQLAlchemy|138] and matplotlib[246] packages were used to extract data
from the infologger database and create the graphs that is shown in 5.5.2. The source
code for these scripts can be seen in listing E.1.
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E. Log data mining

Algorithm E.1 Script that queries the infologger database for basic information.

#1/usr/bin/env python
# —x— coding: utf—8 —x—

_Created _on_Wed_Jun__1_14:05:27_2011

_@author: _Oystein_Senneset _Haaland
nmnn

from sqlalchemy import create engine, MetaData
from sqlalchemy import Table, Column, TIMESTAMP, func
from sqlalchemy.sql import select

connectionUrl = "mysql://infologger: gee8Chao@kallen/infologger"
engine = create engine (connectionUrl)

meta = MetaData ()
meta.bind = engine

messages = Table(’messages’, meta, Column(’timestamp’, TIMESTAMP
), autoload=True)

hltproxy = Table( ' hltproxy’, meta, Column(’timestamp’, TIMESTAMP
), autoload=True)

meta.create all ()

def numberOfElements () :
result = messages.count () .execute ()
return result.scalar ()

def timeSpan () :

from datetime import datetime

query select (|
func .MIN(messages.c.timestamp) .label ("startDate")
func .MAX(messages.c.timestamp).label ("endDate")

1)

row = engine.execute(query). first ()

return datetime.fromtimestamp (row.startDate), datetime.

fromtimestamp (row.endDate)

print "INFOLOGGER_STATISTICS"

print "\nTables_in_database:"
for table in meta.sorted tables:

print table, ":_", messagesygolumns

print "\nTime_span:"

startDate , endDate = timeSpan ()

print "%s_—_%s" % (startDate, endDate)
print "\nNumber_of_elements_in_this_dataset:"
print numberOfElements ()




F. Software configuration/build system

F.1. The Software packages of HLT

‘ Package Beginning of HLT 720067 ‘ Current
ROOT Bash/make Bash/make and CMake
AlLIROOT make CMake
EVTREPLAY make make
HRORC-tools
SysMES Ant?
infologger make make and CMake
€CS-Proxy make make
taxi make make
pendolino make make
BCL make CMake effort started
Components make CMake effort started
Framework make CMake effort started
MLUC make CMake effort started
PSI2 make CMake effort started
RunManager make CMake effort started
SimpleChainConfig make CMake effort started
TaskManager make CMake effort started
Analysis framework | Had autotools? And shell scripts? | Now in ALIROOT. Uses CMake

Table F.1.: Build systems in HLT software.
ware _catalog.lyx). Where it says make, pure make is meant, not with any

autotools assistance.

(see docs/SoftwareCatalog/soft-

In ROOT Bash is used configuration and make for

building. Lately CMake support have been added. Infologger was originally
only pure make files. With the adoption to HLT, CMake files was added .
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F. Software configuration/build system

F.2. CMake example

e CMake example from the infologger also showing how CPack and CTest function-
ality is enabled.

e The test scripts used for integration testing are included to demonstrates how
acceptance testing can be done with CMake.

F.3. Full cycle testing of infologger

Full cycle testing (acceptance/integration testing) simulates real-life running of the sys-
tem, exercising all the involved components in the software package. After modifications
have been made and the source is compiled, tests were run with CTest for each test set
like this:

1. Setup of test database with default infologger schema in dedicated test directory.
2. Start server and connect to database. Start client daemon and connect to server.

3. Log test messages by using included command-line tool. The messages would be
delivered via the infologger library to the client daemon from which they would be
sent through to the server and finally the database.

a) log a message or messages according to a pattern

b) check that pattern appears in the database

4. tear-down of test environment
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G.

Acceptance test

G.1. Test script

nmmnn

_Ac

imp

ceptance_test _for_clusterapi

ort time

from ghost import Ghost
from contextlib import contextmanager

from fabric.api import local , env, run, task
from fabric.api import hosts, execute, cd, prefix

env
env

env
env

gho

.use_ssh_ config = True
.ssh_config path="node ssh.config"

.directory = '~ /git/clusterapi’
.activate = ’source_/home/vagrant /. virtualenvs/capi/bin/
activate’

st = Ghost ()

base_url = "http://localhost:3030/"

i

# Helpers

i

@Qco
def

ntextmanager
virtualenv () :
with cd(env.directory):
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G. Acceptance test

with prefix (env.activate):
yield

def pstree():

nnn

__._Print_clusterapi_process_tree
nnn

print "\nClusterapi_process_tree:"

run ("pstree_—la_ ‘supervisorctl_pid ‘")

HHH
# Test steps

iiaia

Qtask
@hosts (["nodel"])
def stepl_ start_ first_ capi():

nnn

_oooStepol:_Start_clusterapi_on_the_first_node.
nmnn

with virtualenv ():

print "\nStart_supervisord_with_the_clusterapi_
configuration."

run ("supervisord .—c_supervisord nodel.conf")

time . sleep (5) # Sleep until it must be
ready

print "After_starting_clusterapi,_show_the_current_
status."
pstree ()

print "Check_that_the_core_services_are_running:"
assert "RUNNING" in run("supervisorctl_status_clusterapi
||)

assert "RUNNING" in run("supervisorctl_status_hwds")

print "Check_that_the_clusterapi_service_is_listed_in_
avahi:"

assert "clusterapi@" in run("avahi—browse_—c_ _clusterapi
. _tep")
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@task

G. Acceptance test

print "List_all_the_sub—handlers_(supervisor ,_hwds)"
run ( ’python_capictl.py_listSubHandlers’)

print "List_top—level_clusterapi_methods_and_module_
introspection_methods"
run ( 'python_capictl.py_system.listMethods’)

print "List_sub—handler_methods"
run ( 'python_capictl.py_listSubHandlerMethods_supervisor

)

run ( 'python_capictl.py_listSubHandlerMethods_hwds’)

)

print "Show_that_the_hwd_database_is_empty_before_
calling _capi_method"
res _get nodes = run(’python_capictl.py_hwds.getNodes’)

@hosts (["nodel"])
def step2 start_ hwd_client():

nnn

ceooStepo2:_Start _hwdc_and_show_status .

nnn

with virtualenv ():

print "Use_capictl_to_start_hwdc_on_nodel"

run ( ’python_capictl.py_supervisor.startProcess_hwdc’)

time . sleep (5) # Sleep wuntil 1t must be
ready

pstree ()

# Check that hwdc is up and running
assert "RUNNING" in run("supervisorctl_status_hwdc")

# List modules, now assure hwdc is there
assert "hwdce" in run(’python_capictl.py_listSubHandlers’

)

# List methods for hwdc
run ( 'python_capictl.py_listSubHandlerMethods_hwdc’)

# Show that the hwd database has been wupdated

res = run( ’'python_capictl.py_hwds.getNodes’)
#assert len(res) > len(res_get_mnodes)

171




111
112
113
114
115
116

117
118
119
120
121
122
123

124

125

126
127
128
129

130
131
132
133
134
135
136
137
138
139
140

141
142

143
144
145

146

G. Acceptance test

@task
@hosts ([ "nodel"])
def step3 start nge():
nnn
e_..Step_3:_Start_nge_and_capture_screenshots_to_show_current_

status
nmnn

with virtualenv ():
run ( ’python_capictl.py_supervisor.startProcess_nge’)

# Show the current state (only one node)

# In the the clusterapi—hwdiscover page after mnavigating to
the node list page

page, resources = ghost.open(base url + "clusterapi—
hwdiscover.xml")
page, resources = ghost.click(’a[href="7?page=node list"]’,

expect loading=True)
ghost.capture to("01 node list 1.png")

# In the clusterapi—supervisor page:

page, resources = ghost.open(base url + "clusterapi—
supervisor .xml")

ghost .capture to("02 capi supervisor 1.png")

Qtask
@hosts (["node2"])
def step4 start second_capi():

nnn

eoooStep_4:_Start_a_second_clusterapi_instance_in_a_seccond_node
nmnn

with virtualenv ():

print "\nStart_supervisord_with_the_clusterapi.
configuration ."

run ("supervisord_—c_supervisord _node2.conf")

time . sleep (5) # Sleep until it must be

ready

# Show the current state in the clusterapi—supervisor page

page, resources = ghost.open(base url + "clusterapi—
supervisor .xml")

ghost .capture to("03 capi_ supervisor 2.png")

172




147
148
149
150
151

152
153
154

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

170
171
172
173
174
175

176
177
178
179
180
181
182
183
184

G. Acceptance test

## Start the hwdc client on the second node from nge

# NOTE: This does not work:

#page , resources = ghost.click (' table#node2 a#hwdc_ start’,

expect_loading=True)

# NOTE: Have to do this:

selector string = "table#node2_>_tr:nth—child (4)_>_td:nth—

child (4) >_a"

## Printing node information ...

#javascript = """
#(function () {
#var element = document. querySelector('%s’);
#return element.nodeName;
#1) () ;
77&//////

# Clicking something . ..

javascript = """
HHHHHHHH (function_ () _{
uuuuuuuuuuuu var_element _=_document . querySelector ("%s ") ;
HHHHHHHHHHHH var_evt_=_document . createEvent ("MouseEvents") ;

HHHHHHHHHHHH evt.initMouseEvent (" click",_true ,_true,_window,_1,_

HHHHHHHHHHHHHHHH false ,_false ,_false ,_false ,_0,_element);
uuuuuuuuuuuu return_element . dispatchEvent (evt);

nnn

result , resources = ghost.evaluate(javascript %
selector string, expect loading=True)

# 1. Show the difference in clusterapi—supervisor
ghost .capture to("04 capi_ supervisor 3.png")

# Wait for hardware discovery to complete
time. sleep (5)

# 2. Show the differences in the clusterapi—hwdiscover

page, resources = ghost.open(base url + "clusterapi—
hwdiscover.xml")
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G. Acceptance test

185 page, resources = ghost.click(’a[href="?page=node list"]’,
expect _loading=True)

186 ghost.capture_to("05_ node_ list_2.png")

187

188

189 |def delete hwdiscover _db():

190 with virtualenv () :

191 run ("rm_—f_../ hwdiscover /hwdiscover.sqlite")

192

193 | Qtask

194 |def stop clusterapi():

195 nnn

196 | ____Stop_clusterapi

197 HHHHH nn

198 with virtualenv () :

199 run(’supervisorctl_shutdown’)

200

201 | @task

202 |def full acceptance_test():

203 nmnn

204 |____Full_acceptance_test .

205

206 | ____Showing_first _one_node,_then_two_nodes_being_manipulated_
with_clusterapi

207 | ____commands_from_command—line ,_then_later_also_via_Nge.

208 HHHH”””

209

210 # Start the two virtual machines.

211 #local ("vagrant up nodel’)

212 #local ("vagrant up node2’)

213

214 # Preparations/cleanup of previous runs

215 execute (delete_hwdiscover _db, hosts=["nodel"])

216

217 # Step 1: start the first wvagrant instance (nodel) and
supervisor with

218 # clusterapi. Hwds is also started.

219 #local ("vagrant up nodel”)

220 execute (stepl _start_first_capi, hosts=["nodel"])

221

222 # Step 2: Start the hwd client

223 execute (step2 start _hwd_client, hosts=["nodel"])

224

225 # Step 3: Start nge
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G. Acceptance test

# Here we would like to demonstrate GUI functionality with

Nge,

# forinstance with the help of ghost.py to click around in
the Ul

execute (step3 _start _nge, hosts=["nodel"])

# Step 4: Start second capi instance
#local ("vagrant up node2")
execute (step4d start second capi, hosts=["node2"])

# NOTE: Could show wind—down; stop sub—services and show the
difference

# again .
# Finally full stop:

# Stop all clusterapi and virtual machine instances
#execute (stop_clusterapi, hosts=env.hosts)
#execute (stop clusterapi, hosts=["nodel"])

#local (’vagrant halt node2’)
#local ("vagrant halt nodel’)

G.2. Test log

[nodel] Executing task ’delete_hwdiscover_db’
[nodel] run: rm -f ../hwdiscover/hwdiscover.sqlite
[nodel] Executing task ’stepl_start_first_capi’

1

2

3

4

5 |Start supervisord with the clusterapi configuration.
6 | [nodel] run: supervisord -c supervisord_nodel.conf
7 |After starting clusterapi, show the current status.
8
9
0
1

Clusterapi process tree:
1
1

[nodel] run: pstree -la ‘supervisorctl pid°
[nodel] out: supervisord /home/vagrant/.virtualenvs/
capi/bin/supervisord -c¢ supervisord_nodel.conf

12 | [nodel] out: python clusterapi/clusterapi.py

13 | [nodel] out: twistd /home/vagrant/.virtualenvs/capi
/bin/twistd --nodaemon --pidfile=hwds_nodel.pid
hwdserver --database=sqlite:///hwdiscover.sqlite

14 | [nodel] out:
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G. Acceptance test

Check that the core services are running:

[nodel] run: supervisorctl status clusterapi

[nodel] out: clusterapi RUNNING
pid 26567, uptime 0:00:07

[nodel] out:

[nodel] run: supervisorctl status hwds

[nodel] out: hwds RUNNING
pid 26568, uptime 0:00:08

[nodel] out:

Check that the clusterapi service is listed in avahi:
[nodel] run: avahi-browse -c _clusterapi._tcp
[nodel] out: + ethl IPv6 clusterapi@nodel.local

_clusterapi._tcp local
[nodel] out: + ethl IPv4 clusterapi@nodel.local
_clusterapi._tcp local

[nodel] out:

List all the sub-handlers (supervisor, hwds)
[nodel] run: python capictl.py listSubHandlers
[nodel] out: [’nodel’, ’supervisor’, ’system’]
[nodel] out:

List top-level clusterapi methods and module
introspection methods

[nodel] run: python capictl.py system.listMethods

[nodel] out: [’listSubHandlerMethods’,

[nodel] out: ’listSubHandlers’,

[nodel] out: >listNodes’,

[nodel] out: ’listAllSubHandlerMethods’,

[nodel] out: ’nodel.methodHelp’,

[nodel] out: ‘nodel.listMethods’,

[nodel] out: ’nodel.methodSignature’,

[nodel] out: ’system.methodHelp’,

[nodel] out: ’system.listMethods’,

[nodel] out: ’system.methodSignature’,

[nodel] out: ’supervisor.system.methodHelp’,
[nodel] out: ’supervisor.system.listMethods?’,
[nodel] out: ’supervisor.system.methodSignature’,
[nodel] out: ’nodel.supervisor.system.methodHelp’,
[nodel] out: ’nodel.supervisor.system.listMethods’,
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G. Acceptance test

[nodel] out:
methodSignature’]
[nodel] out:

List sub-handler methods
[nodel] run:

’nodel.supervisor.system.

python capictl.py listSubHandlerMethods

getProcessXmlrpcUrl’,
addProcessGroup’,
clearAllProcesslLogs’,
clearlLog’,
clearProcesslog’,
clearProcessLogs’,
getAPIVersion’,
getAllConfiglInfo’,
getAllProcessInfo’,
getIdentification’,
getPID’,
getProcessInfo’,
getState’,
getSupervisorVersion’,
getVersion’,

readlLog’,
readMainLog’,
readProcessLog’,
readProcessStderrlLog’,
readProcessStdoutLog’,
reloadConfig’,
removeProcessGroup’,
restart’,
sendProcessStdin’,
sendRemoteCommEvent ’,
shutdown’,
startAllProcesses’,
startProcess’,
startProcessGroup’,
stopAllProcesses’,
stopProcess’,
stopProcessGroup’,
tailProcessLog’,
tailProcessStderrlLog’,
tailProcessStdoutLog’,

supervisor

[nodel] out: [’clusterapi.
[nodel] out: ’supervisor.
[nodel] out: ’supervisor.
[nodel] out: ’supervisor.
[nodel] out: ’supervisor.
[nodel] out: ’supervisor.
[nodel] out: ’supervisor.
[nodel] out: ’supervisor.
[nodel] out: ’supervisor.
[nodel] out: ’supervisor.
[nodel] out: ’supervisor.
[nodel] out: ’supervisor.
[nodel] out: ’supervisor.
[nodel] out: ’supervisor.
[nodel] out: ’supervisor.
[nodel] out: ’supervisor.
[nodel] out: ’supervisor.
[nodel] out: ’supervisor.
[nodel] out: ’supervisor.
[nodel] out: ’supervisor.
[nodel] out: ’supervisor.
[nodel] out: ’supervisor.
[nodel] out: ’supervisor.
[nodel] out: ’supervisor.
[nodel] out: ’supervisor.
[nodel] out: ’supervisor.
[nodel] out: ’supervisor.
[nodel] out: ’supervisor.
[nodel] out: ’supervisor.
[nodel] out: ’supervisor.
[nodel] out: ’supervisor.
[nodel] out: ’supervisor.
[nodel] out: ’supervisor.
[nodel] out: ’supervisor.
[nodel] out: ’supervisor.
[nodel] out:

[nodel] out:

’system.listMethods’,
’system.methodHelp’,
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G. Acceptance test

[nodel] out: ’system.methodSignature’,
[nodel] out: ’system.multicall’]
[nodel] out:

[nodel] run: python capictl.py listSubHandlerMethods
hwds

[nodel] out: <twisted.python.failure.Failure <class °’
xmlrpclib.Fault’>>

[nodel] out:

Show that the hwd database is empty before calling
capi method

[nodel] run: python capictl.py hwds.getNodes

[nodel] out: <twisted.python.failure.Failure <class ’
xmlrpclib.Fault’>>

[nodel] out:

[nodel] Executing task ’step2_start_hwd_client’

Use capictl to start hwdc on nodel

[nodel] run: python capictl.py supervisor.
startProcess hwdc

[nodel] out: True

[nodel] out:

Clusterapi process tree:

[nodel] run: pstree -la ‘supervisorctl pid*¢

[nodel] out: supervisord /home/vagrant/.virtualenvs/
capi/bin/supervisord -c supervisord_nodel.conf

[nodel] out: python clusterapi/clusterapi.py

[nodel] out: {python}

[nodel] out: twistd /home/vagrant/.virtualenvs/capi
/bin/twistd --nodaemon --pidfile=hwds_nodel.pid
hwdserver --database=sqlite:///hwdiscover.sqlite

[nodel] out: twistd /home/vagrant/.virtualenvs/capi
/bin/twistd --nodaemon --pidfile=hwdc_nodel.pid
hwdclient

[nodel] out: lsb_release -Es /usr/bin/
lsb_release -r

[nodel] out: (swapon)

[nodel] out: {twistd}

[nodel] out:

[nodel] run: supervisorctl status hwdc
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[nodel] out: hwdc RUNNING
pid 26638, uptime 0:00:08
[nodel] out:

[nodel] run: python capictl.py listSubHandlers

[nodel] out: [’nodel’, ’hwds’, ’supervisor’, ’system’
, ’hwdc’]

[nodel] out:

[nodel] run: python capictl.py listSubHandlerMethods
hwdc
[nodel] out: [’hwdc.test’,

[nodel] out: ’hwdc.update’,

[nodel] out: ’system.methodHelp’,
[nodel] out: ’system.listMethods’,
[nodel] out: ’system.methodSignature’]

[nodel] out:

[nodel] run: python capictl.py hwds.getNodes
[nodel] out: ’["nodel.local"]’
[nodel] out:

[nodel] Executing task ’step3_start_nge’

[nodel] run: python capictl.py supervisor.
startProcess nge

[nodel] out: True

[nodel] out:

[node2] Executing task ’step4_start_second_capi’

Start supervisord with the clusterapi configuration.
[node2] run: supervisord -c supervisord_node2.conf

Done.
Disconnecting from vagrant@127.0.0.1:2222... done.
Disconnecting from vagrant@127.0.0.1:2200... done.
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