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Fingolimod (FTY720) is approved for treatment of relapsing–remitting multiple sclerosis. In vitro studies have
found that fingolimod stimulates remyelination in cerebellar slices, but in vivo animal studies have not detected
any positive effect on cerebral remyelination. The discrepant findings could be a result of different mechanisms
underlying cerebral and cerebellar remyelination. The cuprizone model for de- and remyelination was used to
evaluate whether fingolimod had an impact on cerebellar remyelination in vivo. We found that fingolimod did
not have any effect on cerebellar remyelination, number of mature oligodendrocytes, microglia or astrocytes
when fed after cuprizone exposure.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Fingolimod (FTY720) is a non-selective sphingosine 1-phosphate
(S1P) receptor modulator that regulates lymphocyte trafficking and re-
tains lymphocytes within the lymph node. It is widely used for the treat-
ment of relapsing–remittingmultiple sclerosis (RRMS). S1P receptors are
also expressed on neuroglia and fingolimod could therefore have a role in
neuroprotection and remyelination independent on its role on peripheral
lymphocytes (Brinkmann et al., 2010; Groves et al., 2013; Sobel et al.,
2015). It has been demonstrated that fingolimod enhances oligodendro-
cyte survival (Miron et al., 2008a,b), as well as remyelination in
organotypic cerebellar slices in vitro (Miron et al., 2010). However,
fingolimod is not able to promote remyelination in the corpus callosum
(Hu et al., 2011; Kim et al., 2011; Slowik et al., 2015) or cerebral cortex
(Slowik et al., 2015) of mice after experimentally induced demyelination.
Different mechanisms seem to underlay cortical and white matter
eks of recovery; β-APP, amyloid
kinje layer; GL, granule layer.
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remyelination (Gudi et al., 2009), as well as cerebellar remyelination
(Skripuletz et al., 2010), suggesting that the discrepant findings could
have resulted from comparisons of different brain areas.

The cuprizone model is a T cell independent experimental model of
toxic CNS demyelination. The copper chelator bis-cyclohexanone
oxaldihydrazone (cuprizone) induces apoptosis of mature oligodendro-
cytes with subsequent myelin disruption, microglia activation, astro-
gliosis and infiltration of blood monocytes (macrophages) (Blakemore,
1973a; Torkildsen et al., 2008; Praet et al., 2014). Themodel demonstrates
acute, selective demyelination with subsequent spontaneous remye-
lination after five weeks of cuprizone exposure (Blakemore, 1973b;
Skripuletz et al., 2011; Wergeland et al., 2012). Although most studies
using this model have focused on corpus callosum demyelination, demy-
elination and remyelination in the cerebellum have been well-studied
and described (Groebe et al., 2009; Skripuletz et al., 2010), making it an
idealmodel to study the effects of fingolimod on cerebellar remyelination
in vivo.
2. Methods

2.1. Mice

Five-week-old female c57Bl/6 mice (total n = 32) were purchased
from Tacomic, Tornbjerg, Denmark. Mean weight was 18.5 g +/− SD
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1.1. The mice were acclimatized for 12 days prior to the experiment.
They were housed by six together in GreenLine type II cages with
open top (Scanbur, Karlslunde, Denmark), in standard laboratory condi-
tions. Cage maintenance was performed once a week and the animals
were handled by the same individuals throughout the experimental pe-
riod. Food and tapwater were available ad libitum throughout the accli-
matization and experimental period. The experimentwas carried out in
accordance with the European Laboratory Animal Science Associations
recommendations, and the protocol was approved by the Norwegian
Animal Research Authority (permit 2013*5682).

2.2. Study design, cuprizone administration and fingolimod treatment

To induce demyelination, all mice were fed with 0.2% cuprizone
(Sigma, St. Louis, MO, USA) mixed into ground mouse chow for six
weeks. Cuprizone exposure was then discontinued. Control group (no
demyelination) got normal mouse chow for the entire period. To study
the effect on cerebellar remyelination, fingolimod was reconstituted in
distilled water and given orally 1×/d by gavage at 1 mg/kg (Hu et al.,
2011; Kim et al., 2011; Deshmukh et al., 2013) body weight from week
five. Cuprizone exposure and fingolimod treatment overlapped with
one week to make sure that the drug was taken up and phosphorylated
to its active compound while cuprizone was still present. For compari-
son, animals in the cuprizone control group (maximal demyelination)
were given the same volume of water (vehicle) by gavage. To study
the dynamic effect of fingolimod on remyelination, animals in each
group (n = 4) were sacrificed at weeks 5, 6 (1 wr), 7 (2 wr) and 9
(4 wr) as illustrated in Fig. 1. The animals were anesthetized with mid-
azolam (Dormicum; F. Hoffmann-La Roche AG, Basel, Switzerland) in
combination with fentanyl/fluanisone (Hypnorm, VetaPharma Ltd., UK)
and sacrificed by cardiac puncture. Cerebelli were removed, post-fixed
in 4% paraformaldehyde (PFA) and cryo-preserved.

2.3. Immunohistochemsitry

Sagittal 8 μm sections were cut on a Leica CM1960 cryostat. Antigen
retrieval was performed using the 2100 Retriever and Diva decloaker
buffer as described by the manufacturer (Dako, Glostrup, Denmark),
unless otherwise specified. Antibodies used: Iba1 (1:1000, Wako
chemicals 019-19741), GFAP (1:1000, Sigma G3893), NOGO-A (1:500,
Millipore AB5664P), β-APP (1:1000, Abcam ab32136), PLP1 (1:1000,
AbD Serotec MCA839G), MBP (1:500, without antigen retrieval,
Abcam ab24567), and neurofilament (1:1000, Millipore MAB1615).
Secondary antibodies were Alexa Fluor 488 and 594 anti-mouse or
anti-rabbit. Pictures were taken with a Nikon TE2000, with a 10× or
40× objective, or a Leica Confocal SP2 with 40× or 63× objective. Mye-
lin was analysed by visual scoring of demyelination on a scale from 0
(no demyelination) to 3 (total demyelination), as previously described
(Skripuletz et al., 2010; Wergeland et al., 2011). Results are given as a
mean between the score for PLP1 and MBP. For cell number analysis,
numbers are given as a mean from 2 pictures within the subcortical
Fig. 1. Study design.Micewere fedwith cuprizone for 6weeks. Fromweek 5, either fingolimod o
at 5 weeks cuprizone exposure (cuprizone control), 1 wr, 2 wr, and 4 wr (A). Mouse cerebellum
Purkinje cell and internal granule layer (B). Wr: weeks of recovery. IHC: immunohistochemist
region and 2 pictures from the cerebellar cortex (Fig. 1b). β-APP was
measured by counting particles in the range of 10–600 pixels using
the FIJI software. 2–4 sections were analysed for each animal per anti-
body. All analyses were done blinded.

2.4. Statistics

One-way analysis of variance (ANOVA) was used to analyse para-
metric data, followed by Fisher's least significant difference (LSD) for
post-hoc analysis when applicable. Kruskal–Wallis H-test was used to
analyse non-parametric data. Statistical analyses were done using IBM
SPSS statistics 22.

3. Results

3.1. Mice

After five weeks of cuprizone exposure, cuprizone-exposed mice
had a mean weight 18.5 g +/− 1.1 (SD) compared to 22.1 +/− 1.2
(SD) in healthy controls (p b 0.0001). There were no significant differ-
ences between mice randomized to fingolimod or vehicle treatment
(p = 0.23). After ending cuprizone exposure, no significant weight dif-
ference between fingolimod and vehicle treated mice was observed at
any time points (data not shown). One mouse died of unknown cause.

3.2. Remyelination

To evaluate cerebellar de- and remyelination, PLP1- andMBP- stain-
ingwas scored in the subcortex and two areas of rostral parts of cerebel-
lar cortex as shown in Fig. 1b. The myelin scores are provided as the
mean of PLP1 andMBP scores. Subcortical demyelination of the cerebel-
lum was robust and significant in animals exposed to cuprizone (p b

0.0005) (Fig. 2). After 2 weeks of recovery, there was a mild and signif-
icant subcortical remyelination for both placebo (p b 0.0005) and
fingolimod (p = 0.05). After 4 weeks of recovery, remyelination was
clearer (p b 0.0005 for both placebo and fingolimod compared to the
cuprizone control group), although not complete (significant demyelin-
ation for both groups compared to the control group, p b 0.0005).
Cuprizone exposure led to mild demyelination of the cerebellar cortex
that did not reach significance on group level (p = 0.054). Single com-
parison between the control group and cuprizone control group showed
significant demyelination. Similar single comparison showed significant
remyelination after 4 weeks (both placebo and fingolimod) compared
to the cuprizone control group. There were no significant effects of
fingolimod at any time points, neither in the cerebellar subcortex nor
in the cerebellar cortex (Fig. 2).

3.3. Axonal damage

Accumulation of β-APP was measured to study acute axonal dam-
age. Cuprizone exposure led to a significant increase in β-APP positive
r placebo (vehicle) was given by gauge. Micewere sacrificed and cerebellum taken for IHC
with rectangles showing the regions examined with IHC, red; subcortical region, green;

ry.



Fig. 2. Effect of fingolimod on remyelination in cerebellum of cuprizone-exposed mice. Robust subcortical demyelination was apparent after 5 weeks of cuprizone exposure compared to
untreated controls. After 2 weeks of recovery, both placebo and fingolimod groups were significantly remyelinated and remyelination proceeded throughout the recovery period (A).
Cuprizone exposure led to a mild, but not significant, demyelination of the cerebellar cortex (B). Representative pictures show myelination (PLP1 and MBP) in the subcortex and cortex
ofmouse cerebellum for control, 5 weeks of cuprizone exposure and after 4weeks of fingolimod/placebo treatment. For subcortex, higher magnification pictures (63×) of the regionwith
highest degree ofmyelination (arrow) and lowest degree ofmyelination (arrowhead) are given (C). 2–4 sectionswere analysedper animal (n=3–4). ###p b 0.001 to control group. ***pb

0.001, *p b 0.5 to cuprizone group. Scale bars: 250 μm for subcortex (10×), 25 μm for subcortex (63×) and 50 μm cortex (63×).
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axons in the subcortical region (p b 0.0005) (Fig. 3a). Therewas no loss of
neurofilament positive axons after cuprizone treatment (Fig. 3b). After
1 week of recovery β-APP positive axons were almost not detectable,
and the levels remained low and close to baseline in the recovery period
(p b 0.0005 for all groups compared to 5 weeks of cuprizone exposure).
There were no differences in the number of β-APP positive axons
between fingolimod- and placebo treated mice. In cerebellar cortical
regions, no β-APP positive axons were detected (results not shown).



Fig. 3. Effect from fingolimod on accumulation of subcortical β-APP accumulation and
neurofilment integrity. Five weeks of cuprizone exposure led to an increased subcortical
accumulation of β-APP with no change of neurofilament integrity. After 1 week of recov-
ery β-APP positive axons were hardly detected. Fingolimod did not affect the accumula-
tion of β-APP particles throughout the recovery period (A). Subcortical β-APP (red) and
neurofilament (green) staining of control, after 5 weeks of cuprizone exposure and after
4 weeks of recovery (B). 2–4 sections were analysed per animal (n = 3–4). β-APP: amy-
loid β precursor protein. ***p b 0.001. Scale bar 25 μm.
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3.4. Mature oligodendrocytes, astrocytes and microglia

Cuprizone exposure led to a significant subcortical and cortical loss
of NOGO-A positive mature oligodendrocytes (p = 0.003 and p =
0.001). In both regions, the number of NOGO-A positive oligodendro-
cytes increased during the recovery period, reaching normal levels by
4 weeks of recovery. Fingolimod did not have any significant effect on
NOGO-A positive (mature) oligodendrocytes (Fig. 4a and b).

There was a subcortical increase in GFAP-positive astrocytes after
5 weeks of cuprizone treatment (N4-fold, p b 0.0005) (Fig. 4 c). During
remyelination, the number of GFAP-positive astrocytes remained high
in both placebo- and fingolimod-groups, with no significant differences
at any time points. In the cerebellar cortex, there were no changes in
number of GFAP-immunopositive astrocytes at any time points.
In line with previous studies (Groebe et al., 2009; Ingwersen et al.,
2012), 5 weeks of cuprizone exposure led to a robust subcortical in-
crease in Iba1-positive microglia/macrophages (12-fold, p b 0.0005)
(Fig. 5a). It has previously been found that cuprizone-induced
microgliosis is a combination of strong local proliferation of brain resi-
dent microglia and infiltration of blood-derived monocytes (macro-
phages) (Praet et al., 2014). In this study, microglia and infiltrated
macrophages were not distinguished and are referred to as microglia.
During the recovery phase, the number of microglia steadily decreased,
although not to normal levels. In the cerebellar cortex, therewas no sig-
nificantmicrogliosis (Fig. 5b). Fingolimod did not have any effect onmi-
croglia numbers at any time points.

4. Discussion

The aim of this study was to investigate the possible effect of
fingolimod on cerebellar remyelination in vivo by using the cuprizone
model. We analysed three time points during the recovery phase with-
out detecting any effect of fingolimod on cerebellar remyelination. We
did not detect any effect of fingolimod on maturation of oligodendro-
cytes, microglia numbers or GFAP positive astrocytes in the recovery
period after cuprizone induced demyelination.

The cuprizone mouse model is a highly reproducible and well
described animal model used to study mechanisms underlying de-
and remyelination (Torkildsen et al., 2008; Wergeland et al., 2012;
Praet et al., 2014). Previous work from our group has shown that a vita-
min D rich diet can reduce demyelination (Torkildsen et al., 2009;
Wergeland et al., 2011) and promote remyelination (Nystad et al.,
2014) in the corpus callosum of cuprizone-exposed mice.

In line with previous studies (Groebe et al., 2009; Skripuletz et al.,
2010), cuprizone exposure induced cerebellar demyelination. Subcorti-
cal regions were severely demyelinated, while demyelination was
minor in the cerebellar cortex after five weeks of cuprizone exposure.
We did not detect remyelination after the first week of recovery, sug-
gesting that cerebellar remyelination is delayed compared to the rapid
remyelination seen in the corpus callosum (Skripuletz et al., 2008;
Wergeland et al., 2012). Remyelination is known to be initiated by pro-
liferation and migration of oligodendrocyte precursor cells towards the
lesion site where theymature intomyelin formingmature oligodendro-
cytes in a process that is dependent on a plethora of growth factors and
signalling molecules (Praet et al., 2014). S1P is considered a survival
factor for mature oligodendrocytes (Jaillard et al., 2005) and when
fingolimod is given together with cuprizone, it protects mature oligo-
dendrocytes from apoptosis (Kim et al., 2011). In our study, fingolimod
was given after cuprizone-induced remyelination, at a time point where
hardly any mature oligodendrocytes were present in the demyelinated
area. The number of NOGO-A positivemature oligodendrocytes steadily
increased during the recovery phase, corresponding to subcortical
remyelination, without any influence from fingolimod.

It has been shown that fingolimod may have neuroprotective prop-
erties, reducing axonal damage in the corpus callosum after acute and
chronic cuprizone-induced demyelination (Slowik et al., 2015). Howev-
er, we did not detect any effect of fingolimod on axonal damage in the
cerebellum, as subcortical β-APP positive axonswere almost at baseline
levels after one week of remyelination and there were no differences in
neurofilament levels or number of APP-positive axons between placebo
and fingolimod groups throughout the recovery phase.

Cuprizone exposure resulted in sustained subcortical astrogliosis
throughout the remyelination period. This is in linewith previous studies
(Groebe et al., 2009; Hibbits et al., 2012), and has been suggested that
astrocytes promote remyelination by supporting oligodendrocyte differ-
entiation and recruitment of microglia/macrophages to lesion sites (Nair
et al., 2008; Praet et al., 2014; Tanaka and Yoshida, 2014). Five weeks of
cuprizone exposure induced extensive subcortical microgliosis, which
declined during the recovery phase independent of fingolimod treat-
ment. This is in line with recent results from the corpus callosum



Fig. 4. Effect from fingolimod onmature oligodendrocytes and astrocytes inmouse cerebellum after cuprizone exposure. Numbers of NOGO-Apositive oligodendrocyteswere significantly
reduced in the subcortex (A) and cortex (B) after 5 weeks of cuprizone exposure. During the recovery period, there was a steady increase in NOGO-A positive oligodendrocytes in both
regions, reaching normal levels after 4 weeks of recovery (A and B). Cuprizone exposure led to robust subcortical astrogliosis that sustained during the recovery phase (C). No astrogliosis
was seen in the cerebellar cortex (D). NOGO-A positive mature oligodendrocytes (red) and GFAP-expressing astrocytes (green) in subcortex and cortex in control, 5 weeks of cuprizone
exposure and after 4 weeks of recovery (E). 3–4 sections were analysed per animal (n = 3–4). ***p b 0.001, **p b 0.01,*p b 0.05 to cuprizone, ###p b 0.001 to control group, GL: granule
layer. Scale bar 25 μm.
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(Slowik et al., 2015). Whether fingolimod has any clinical significant
effect on microglia is debated (Groves et al., 2013). The use of different
experimental model systems, inducing CNS damage with different aeti-
ologies, could be a plausible explanation for the discrepant findings. Re-
generative functions of microglia depend on their phenotype. Microglia
in a pro-inflammatory state are considered inhibitory to remyelination
while microglia in an anti-inflammatory state could promote
remyelination by phagocytosis of myelin debris and secretion of cyto-
kines and growth factors (Miron and Franklin, 2014). In this study we
analysed the total number of microglia without distinguishing between
different functional phenotypes and it is therefore possible that
fingolimod has functional effects on microglia that we did not detect.
However, regardless of any effects on microglia functions, we did not
find that fingolimod promotes remyelination in the cuprizone model.

Fingolimod is effective in preventing acute attacks in RRMS by
internalising T cells in the lymph nodes (Brinkmann et al., 2010;
Ingwersen et al., 2012). From murine models it has been found that
fingolimod is distributed to and phosphorylated to its active form



Fig. 5. Effect from fingolimod onmicroglia inmouse cerebellum after cuprizone exposure. There was extensive subcortical microgliosis (Iba1) after 5 weeks of cuprizone exposure which
steadily decreased during the recovery period. There were no differences between fingolimod and placebo groups (A). No microgliosis was detected in cerebellar cortex after 5 weeks of
cuprizone exposure (B). Representative pictures showmicroglia in the subcortex and cortex in control, 5weeks of cuprizone exposure and after 4weeks of recovery (C). 3–4 sectionswere
analysed per animal (n = 3–4). ***p b 0.001 to cuprizone. #p b 0.05, ###p b 0.001 to control group. PL: Purkinje layer. GL: granule layer. Scale bar 25 μm.
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within the brain (Meno-Tetang et al., 2006). It has therefore been sug-
gested thatfingolimod couldmodulate immune responses and promote
CNS regeneration by targeting neurons and neuroglia (Miron et al.,
2008c; Groves et al., 2013). As S1P is involved in immune cell trafficking,
vascular homeostasis and cell communication in the CNS, it has been
suggested that S1P canmediate activation and proliferation of neuroglia
during inflammatory responses (Brinkmann, 2007). Results from the
present study show that there is no effect of fingolimod on maturation
of oligodendrocytes, astrogliosis or microgliosis in the cerebellum after
cuprizone exposure. This indicates that modulating neuroglial S1P re-
ceptors by fingolimod does not have any clear regenerative effects al-
though it has been found to have some neuroprotective effects during
cuprizone induced CNS damage (Kim et al., 2011).

5. Conclusions

We show that fingolimod does not affect cerebellar remyelination,
number of mature oligodendrocytes, microglia or astrocytes in the re-
covery phase after cuprizone-induced demyelination. This suggests
that fingolimod does not have any effect on cerebellar remyelination
in vivo. Our conclusions are in line with the previous reported in vivo
studies on the corpus callosum (Hu et al., 2011; Kim et al., 2011;
Slowik et al., 2015), but differ from the in vitro study using organotypic
cerebellar slices (Miron et al., 2010). We suggest that the discrepant
results are caused by the use of different experimental models and
not by different effects from fingolimod on cerebral and cerebellar
remyelination.
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