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Maximizing fisheries yields while maintaining community
structure1

Jeppe Kolding, Nis S. Jacobsen, Ken H. Andersen, and Paul A.M. van Zwieten

Abstract: Under the ecosystem approach to fisheries, an optimal fishing pattern is one that gives the highest possible yield while
having the least structural impact on the community. Unregulated, open-access African inland fisheries have been observed to
sustain high catches by harvesting a broad spectrum of species and sizes, often in conflict with current management regulations
in terms of mesh and gear regulations. Using a size- and trait-based model, we explore whether such exploitation patterns are
commensurable with the ecosystem approach to fisheries by comparing the impacts on size spectrum slope and yield with the
different size limit regimes employed in the Zambian and Zimbabwean sides of man-made Lake Kariba. Long-term multispecies
data under fished and unfished conditions are used to compare and validate the model results. Both model and observations
show that the highest yields and low structural impact on the ecosystem are obtained by targeting small individuals in the
community. These results call for a re-evaluation of the size-based management regulations that are ubiquitous in most fisheries.

Résumé : Dans l'approche écosystémique des pêches, un régime d’exploitation optimal est celui qui donne le meilleur rende-
ment possible tout en ayant le plus faible impact structural sur la communauté. Il a été observé que des pêches continentales
africaines non réglementées et d'accès libre supportent de fortes prises à l'exploitation d'un vaste spectre d'espèces et de tailles,
souvent en contravention avec les règlements de gestion en vigueur concernant la taille des mailles et les engins. En utilisant un
modèle basé sur les tailles et des caractéristiques biologiques, nous examinons dans quelle mesure de tels régimes d'exploitation
sont compatibles avec une approche écosystémique des pêches, en comparant les impacts sur la pente des spectres de tailles et
sur le rendement des différents régimes de limites de taille employés sur les côtes zambiennes et zimbabwéennes du lac de
barrage Kariba. Des données multi-specifiques de longue durée collectées dans les conditions d'exploitation et de non-
exploitation sont utilisées pour comparer et valider les résultats du modèle. Le modèle et les observations montrent tous deux
que les rendements les plus élevés et un faible impact structural sur l'écosystème sont obtenus en ciblant les petits individus de
la communauté. Ces résultats soulignent la nécessité de réévaluer les règlementations de gestion bases sur les tailles, très
répandus dans la plupart des pêcheries.

Introduction
Size selectivity is deeply rooted in fisheries theory and it has

been a long-standing policy in fisheries management to protect
the juveniles and target the adults (Caddy 1999; Kolding and van
Zwieten 2011). These regulations are justified by the results of the
traditional yield-per-recruit models (Beverton and Holt 1957) that
are widely used for simulations to optimize relative yields as a
function of entry age and fishing pressure in single-species assess-
ments. The notion of growth overfishing by harvesting juvenile
fish is a result of these models and has become a universally
accepted truism for promoting targeting adults only. That so-
called nonselective fisheries or indiscriminate fisheries are de-
structive and depleting stocks is so paradigmatic that it usually
does not warrant any verification. Yet, there is increasing evi-
dence that the selective removal of adult fish causes adverse con-
sequences and does not achieve the global official goal of
maximizing sustainable yields (United Nations Convention on the
Law of the Sea (UNCLOS) 1982; World Summit of Sustainable
Development (WSSD) 2002) but instead causes destabilizing

changes in the structure of exploited populations and communi-
ties (Pope 1991; Anderson et al. 2008; Hsieh et al. 2010; Zhou et al.
2010; Garcia et al. 2012; Law et al. 2012, 2014).

However, maximizing yields is not the only global goal for fish-
eries management. The main objective of the internationally
agreed Convention of Biological Diversity (CBD 1992) is to develop
strategies for the conservation and sustainable use of biological
diversity in an equitable way, and the so-called “ecosystem ap-
proach” is the primary framework for reaching these objectives
(United Nations Environment Programme (UNEP) 2000). A priority
target of the ecosystem approach is to maintain ecosystem ser-
vices while conserving the ecosystem structure and functioning
(Malawi principle 5). The rationale is that ecosystem function and
resilience depends on a dynamic relationship within species,
between species and their abiotic environment, so that the con-
servation of these interactions and processes is of greater signifi-
cance for the long-term maintenance of biological diversity than
simple protection of species (UNEP Conference of the Parties to
the Convention on Biological Diversity (UNEP/CBD/COP) (1998).
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Thus one of the cardinal questions in the use of renewable biolog-
ical resources for an expanding human population is how we
maximize food production while making the least structural and
functional disturbances to ecosystems.

To mitigate many of the adverse ecological effects of selective fish-
ing while supporting sustainable fisheries, it has been suggested to
adopt a balanced harvesting strategy that distributes moderate fish-
ing pressure across the widest possible range of species, stocks, and
sizes of an ecosystem, in proportion to their natural productivity
(Garcia et al. 2012). Such a strategy would prescribe a higher fishing
mortality on small fast-growing individuals and species than on
larger slow-growing individuals. Although there are several studies
that theoretically support this strategy (Law et al. 2012, 2014, 2015;
Jacobsen et al. 2014), there are few empirical examples to serve as
evidence. One exception is the fishing pattern observed in several
high-yielding small-scale inland fisheries in Africa, where the rela-
tive proportion of the components in the fish community has been
largely maintained by a balanced reduction of all species and size
groups (Misund et al. 2002; Kolding et al. 2003a, 2003b; Kolding and
van Zwieten 2011, 2014). This less selective fishing pattern is achieved
by combining a large range of different mesh sizes and gear types,
often with a strong focus on small species and sizes (Kolding et al.
2015a) as they are the most productive and return the highest relative
catch per unit effort for the individual fisher. However, such a fishing
pattern, which typically involves “indiscriminate” fishing methods,
is under current management paradigms considered unethical, de-
structive, and often technically illegal, and as a consequence, there
are often strong conflicts within and between fishers and managers,
even under co-management situations (Kolding et al. 2014). Actually,
artisanal inland fisheries are considered the least successfully man-
aged fisheries in a recent global meta-analysis (Gutiérrez et al. 2011).

The aim of this paper is to examine the consequences of selective
and less selective fishing patterns in terms of total yield and commu-
nity structure. We use the case of man-made Lake Kariba (Fig. 1),
which for historic and political reasons has experienced very differ-
ent management regimes on its two shores (Zimbabwe on the south-

ern shore and Zambia on the northern shore) (Kolding et al. 2003a):
although Zimbabwe successfully enforced gear regulations and ef-
fort control until recently, the Zambian side can be considered an
open-access fishery with no enforcement of technical regulations.
We therefore have an example in which one-half of the same ecosys-
tem is managed by enforcing a selective fishing pattern (Zimbabwe)
and the other half employs a less selective fishing pattern (Zambia).
We apply a recent trait- and size-based multispecies model of the fish
community (Andersen and Pedersen 2010), which is particularly
suited to make an impact assessment of size-selective fisheries in
diverse communities (Andersen and Rice 2010) as it specifically ac-
counts for individual energy budgets and thus captures the indirect
effects of the change in community structure that a fishery might
cause. The model is calibrated to the fishing pattern, effort, and
community structure observed on the two shores of Lake Kariba. We
use the model to calculate the yield and community structure under
different fishing patterns and levels of fishing mortality. The results
confirm the observations that high fishing mortality on small and
juvenile fish can give high yields with limited changes to the com-
munity structure.

Methods

Lake Kariba
The data are from Lake Kariba (5300 km2), on the Zambezi River

in southern Africa, which is the world’s largest man-made reser-
voir by volume (180 km3) and is approximately equally shared
between Zambia on the northern bank and Zimbabwe on the
southern bank (Fig. 1). The Zambezi River provides about 80% of
the water inflow, and there is a natural limnological gradient in
the lake ecosystem from riverine characteristics in the shallow
effluent east that gradually change into a more lacustrine envi-
ronment near the 120 m dam wall to the west. The gradient in the
lake is also reflected in the fish communities, which are domi-
nated by potamodromous species in the eastern basin (Cyprinidae
and Distichodontidae) and more sedentary cichlids in the western

Fig. 1. Map of Lake Kariba on the Zambezi River between Zambia and Zimbabwe. Designated fishing areas in Zimbabwe are indicated, with
the rest being protected, while the whole Zambian side is open to fishing. Experimental fishing stations are shown in Zambia around
Sinazongwe (open circles) and from the protected nonfished Lakeside area in Zimbabwe near Kariba town (open square). Modified from
Kolding et al. 2003a.
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basin (Begg 1974). For cultural and political reasons, the two sides
of the lake have been exposed to very different management re-
gimes, which in retrospect can be considered a grand-scale eco-
logical experiment (Kolding et al. 2003a). While the Zimbabwean
side has been strictly managed and controlled in terms of licensed
fishers, restricted fishing grounds, and minimum mesh-size reg-
ulations, the Zambian side has virtually been an open-access fish-
ery with no enforcement of regulations since its independence in
1964. The result has been two very different scenarios of develop-
ment of the inshore stocks (Fig. 2), which can be considered ho-
mologous but mutually independent as very few of the demersal,
originally riverine, species venture across the deep pelagic zone
created by the lake (Ngalande 1995; Kolding et al. 2003a). Actually,
the pelagic middle of the lake was uninhabited by fish until the
introduction of the Tanganyika clupeid (Limnothrissa miodon or
kapenta) in 1967–1968 to fill this vacant niche. Presently, the kap-
enta fishery is the largest on the lake, yielding about 30 000 met-
ric tons (t) per year, and has virtually no bycatch of the inshore
species (Nyikahadzoi and Råkjær 2014). Although the overall fish
biomass has been fluctuating due to environmental climate-
driven variation (Karenge and Kolding 1995a, 1995b), the long-
term trend (measured as standardized catch per unit effort, CPUE)
in the Zimbabwe inshore fishery is stable (Fig. 2A), whereas it has
declined exponentially in Zambia (Fig. 2B) in accordance with the
usual expectations of increased effort. The total number of re-
corded nets over the period under investigation (1980–1994) is
about seven times higher in Zambia than in Zimbabwe, and the
corresponding average annual yield is approximately 6000 t in
Zambia versus 1200 t in Zimbabwe (Kolding et al. 2003a). The
average catch rates of the fishers (kg per 50 m net) are about 2.7 in
Zimbabwe compared with 2.0 in Zambia (Fig. 2). The relatively
small difference in catch rates despite the large differences in
effort and biomass is obtained by the Zambian fishers using a
suite of smaller mesh sizes starting from around 2 inches (50 mm),
whereas the Zimbabwean fishers are obeying the minimum legal
mesh size of 4 inches (102 mm) stretched mesh and above (Fig. 3).

Experimental fishing from the respective management institu-
tions on each side (Department of Fisheries in Zambia and Depart-
ment of Natural Park and Wildlife Services in Zimbabwe) has been
performed regularly over the whole period (i) in a protected area
with no other fishing near the town of Kariba in Zimbabwe and
(ii) on the fishing grounds close to Sinazongwe in Zambia from
1980 and onwards (Fig. 1). These data are described in detail in

Karenge (1992), Musando (1996), and Songore (2002) and summa-
rized in Kolding et al. (2003a). The experimental fishing consists of
standardized multifilament gillnet fleets with 13 mesh sizes rang-
ing from 1 to 7 inches in half-inch (13 mm) steps. All fish from the
experimental fishing are recorded by length, weight, sex, gonadal
stage, and mesh size in which they were caught. The experimental
fish data, covering the period 1980–1994 when the sampling de-
sign was homogenous and standardized on both sides of the lake,
consists of nearly 75 000 fish from 1059 samples from the unfished
area in Zimbabwe and close to 50 000 fish from 958 samples from
the fished area in Zambia. Both data sets are trimmed to cover the
nine mesh sizes (13 mm increments) in the 50–152 mm range to
correspond with the artisanal fishery. Thus, in summary, we have
four separate time series of information (Fig. 2): artisanal catch
and effort from two different and separate management re-
gimes in the same lake and experimental catch and effort with
individual-species demographic data from an unfished area (serv-
ing as baseline) and a heavily fished area. The fish species diversity
has gradually increased in the lake since its creation (Kolding and
Songore 2003), with no significant differences between the two
sides (Musando 1996; Kolding et al. 2003a), and the species com-
position in both the experimental fishery (Fig. 4) and the artisanal
fishery (Fig. 5) is practically identical on both sides along the gra-
dient, albeit the Zambian fishery contains a higher proportion of
small species due to the use of smaller mesh sizes. Thus the only
significant difference between the two sides of the lake is the
standing fish density and total landings.

Size-based model
The model is size- and trait-based and calculates the number

distribution of fish as a function of their size (w) and their maxi-
mum asymptotic size (W∞) as N(w, W∞). The model is based on a
few ecological assumptions, which are formalized in a set of math-
ematical equations (Table 1). The general model is described in
detail in Hartvig et al. (2011), and the specific setup used here is
described in Jacobsen et al. (2014) with a set of parameters cali-
brated to Lake Kariba (Table 2). Assumptions are made only at the
level of the individuals in terms of their physiology, their encoun-
ter with prey, and their reproductive capability. The central as-
sumption is that big individuals eat smaller individuals with a
log-normal size preference (Ursin 1973; Table 1, eq. M1). The size
preference is used to determine the amount of food that an indi-
vidual encounters, which depends on a search rate that scales

Fig. 2. Catch per unit effort time series in the Lake Kariba inshore demersal fishery. (A) Zimbabwe: artisanal mean annual kilograms per net
from catch assessment surveys (CAS; circles), total annual yield / total number of nets (triangles, trend not significant), and mean annual
experimental kilograms per 45 m net set (diamonds, trend not significant) in the mesh range 100–152 mm (comparable with artisanal mesh
range) from an unfished area. (B) Zambia: artisanal mean annual kilograms per net from CAS surveys (circles, trend not significant), mean
annual kilograms per net from Scholtz (1993) (triangles), and mean annual experimental kilograms per 45 m net set (diamonds, trend
significant, p < 0.01) in the mesh range 50–152 mm (comparable with artisanal mesh range) from the fished area. Redrawn from Kolding et al.
(2003a). (Available in colour online.)
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with individual weight (eq. M2) and the available prey (eq. M3).
Encountered prey is consumed with a functional response that
sets the feeding level of an individual (eqs. M4–M5), which is a
dimensionless number between 0 and 1 and a measure of satia-
tion. Consumed food is channeled into growth (eq. M6), and if the
individual is mature (eq. M7), energy is used for reproduction (eq.
M8–M9). To maintain coexistence of all asymptotic size groups,
recruitment is limited by a Beverton–Holt stock–recruitment re-
lationship (eq. M10). The consumption of the larger individuals is

translated into corresponding predation mortality on the smaller
individuals (eq. M12) such that there is a mass balance between
consumption (and thus growth) and mortality. Additionally, all
species are subject to a constant background mortality (eq. M12)
and fishing mortality (eq. M13). Prey for the smallest individuals
are accounted for by a resource spectrum of plankton with semi-
chemostatic growth (eqs. M14–M15). The individual-level pro-
cesses are scaled up to the community level by means of the
McKendric–von Foerster equation (eq. M16).

Fig. 3. Observed artisanal fishing pattern in Lake Kariba (Zambia (open bars) and Zimbabwe (hatched bars)) as relative distribution of
recorded mesh sizes in the 1980–1994 catch assessment surveys (Zambia) and a 1993 frame survey (Zimbabwe). Data from Department of
Fisheries (Zambia) and Department of National Parks and Wildlife (Zimbabwe).

Fig. 4. The observed size spectra (standardized number of fish caught) by species in Lake Kariba from demersal experimental gillnet surveys
1980–1994: (A) unfished area, Zimbabwe; (B) heavily fished Zambian fishing grounds (ref. Fig. 1 for locations). Different intercepts with no
significant difference between the slopes (regression lines) of the unfished (dashed lines) and the fished (continuous lines) communities
indicate a significantly lower standing biomass but almost equal species (relative to the natural limnological gradient) and size compositions
in the fished area. Modified from Kolding et al. (2003a) and Kolding and van Zwieten (2014). (Available in colour online.)
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The model is calibrated to Lake Kariba by (i) adjusting the car-
rying capacity of the resource (�) such that the simulated yields
are in the correct range and (ii) correcting the maximum uptake
rate (h, eq. M4) to fit the growth rates in the model to observed
growth trajectories in the lake (Kolding et al. 1992; Fig. 6). This
calibration causes all fish of the same weight class to have equal
growth and mortality and thus does not distinguish between slow-
and fast-growing varieties, but as Fig. 6 shows, the estimated
growth of the actual species in Lake Kariba does not diverge much
relative to size. The model consists of 19 different “asymptotic size
groups”, so that the community consists of a “species” within
each group with asymptotic sizes ranging from 12 g to 10 kg.
Fishing is composed of a large number of gillnets with different
mesh sizes (Fig. 3), each with their own bell-shaped size-selection
curves (Appendix A, Fig. A1); therefore, fishing is only selecting for
size, not for species. The fishing patterns used in the simulations
are estimated by using the observed mesh size distribution from
Zambia and Zimbabwe (Fig. 3). A fitted log-normal curve repre-
sents the selectivity of each mesh size (see Appendix A). To move
from individual mesh size selectivity to the total fishing pattern,
the selectivity for each mesh size is weighed by the number of
corresponding nets and summed (Appendix A, Fig. A3). The total
selection pattern by weight is modeled by estimating the param-
eters wm (maximum retention weight) and �m (standard devia-
tion) in eq. M13 for Zambia and Zimbabwe, respectively, by
converting length (L, in cm) (Appendix A, Fig. A3) to weight (w, in
g) from the standard length–weight relationship w = aL3, where a =
0.01. Both selectivity patterns have a hard cutoff, wF, at 10 and 50 g
for Zambia and Zimbabwe, respectively, to avoid catch of unrea-
sonably small fish.

Results
The slopes of the modelled size spectra (from ≈20 to 100 cm) are

similar to both the unfished (Lakeside) and the fished (Zambia)
experimental sampling stations (Fig. 7A). The main difference be-
tween the fished and the unfished areas is that the density of fish
by number is approximately 5 times lower in the Zambian area.
The size spectra from the community model show a remarkably
good fit with the observed size spectra in the catch curves of the
experimental nets (Fig. 7A), even though the model has been cal-
ibrated with only a few parameters (Table 2). The resemblance
between observations and simulations is limited to fish larger
than ≈25 cm, which largely corresponds with the size at which the
observed data are under-represented due to gear selectivity (Ap-

pendix A, Figs. A1, A2). The fished Zambian size spectrum is ob-
tained by applying the modeled fishing pattern (Fig. 7B; Appendix
A, Fig. A3) corresponding with the number of mesh sizes observed
in Zambia (Fig. 3). The Zimbabwean selection pattern is regulated
towards highest retention at larger sizes (Figs. 3 and 7B).

Figure 8 shows the total yields from the Zambian and Zimba-
bwean sides under increased effort using the fishing patterns
from Fig. 7B. The fishing effort used to simulate the observed
spectrum in Fig. 7A indicates that the Zambian fishery was still
not fully exploited under the observed fishing pattern (mesh sizes
and number of nets). Because the Zimbabwean side yielded five
times less (about 1200 t·year−1) on average, we can deduce from the
model that this fishery was only lightly exploited in relation to the
maximum potential yield at the time of the observations. We also
see that the fishing effort must be approximately 5.5 times higher
in Zambia to get a yield that is 5 times higher (Fig. 9). The number
of fishers in Zambia was on average three times higher than in
Zimbabwe, but they had about seven times more nets (Kolding
et al 2003a).

To evaluate the impact of fishing on the fish community struc-
ture, we use the size spectrum slope, calculated for fish between
10 and 7000 g. A low change in slope indicates little impact on the
relative size structure on the community. We find that the Zam-
bian fishery is not changing the slope significantly more than the
Zimbabwean fishery (Fig. 10), even though the yield is much
higher. The observed slope in the experimental catches from Zam-
bia is also not significantly different from the unfished area in
Zimbabwe (Figs. 4 and 7A). However, we also find that the yield
extracted from the Zambian side is closer to a point, where yield
stops increasing and the slope steepens if effort expands without
changing the fishing pattern. Moving beyond this point without
decreasing the mesh sizes further means that large fish in the
system are fished out relatively faster than the small fish and that
the community structure will change towards a less desirable
state from an ecosystem approach or diversity point of view. Nev-
ertheless, given the particular fishing patterns of the two fisher-
ies, the point at which the slope deteriorates is reached at a much
lower effort and yield in the selective fishery in Zimbabwe com-
pared with the less selective fishery in Zambia.

Discussion
With a conceptually relatively simple size-based model, we are

able to closely reproduce the observed fished and unfished com-
munity structures in Lake Kariba and thereby explain how the less

Fig. 5. Relative catch composition (percent weight) in the inshore fishery between 1980 to 1999 by major families in Zimbabwe and Zambia
based on catch assessment surveys (CAS). Modified from Kolding et al. (2003a). (Available in colour online.)
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selective fishery in Zambia is able to provide higher yield than the
more selective fishery in Zimbabwe, while still conserving the
relative community structure. The main points that emerge from
the model and are validated by the observations are that focusing
the fishing pattern under high effort on predominantly small
individuals produces little impact on the community and the larg-
est maximum yield, whereas at low effort, the highest individual
catch rates are obtained by focusing on larger individuals. These
findings are important, as the development of the uncontrolled
fishery on the Zambian side of Lake Kariba with increasing effort,
decreasing catch rates, and subsequently decreasing mesh sizes to
compensate for decreasing returns is conventionally interpreted
as emergent signs of overfishing. Despite producing a higher yield
while conserving relative community structure, the less selective
fishery in Zambia is conforming to conventional indicators of
destructive and unsustainable fishing patterns such as increased
use of illegal small-meshed gears, strongly reduced stock abun-
dance, and decreased mean size of fish in catches (Tweddle et al.
2015).

The paradox, however, as shown both by the empirical obser-
vations and theoretical results here, is that the uncontrolled open-

access fishery on the Zambian side of Lake Kariba appears to
attain the desired goals set in international agreements. By ignor-
ing the minimum mesh size regulations, the Zambian fishery
produces the highest sustainable yield (UNCLOS 1982) while main-
taining the relative fish community structure (CBD 1992). These
positive counterintuitive results of noncompliance are created by
a rational individual response to the open-access regime. When
effort grows and catch per unit effort decreases, it is a logical and
necessary reaction of individual fishers to gradually decrease their
mesh sizes to maintain an acceptable catch rate, albeit the result
is increasing amounts of small fish over a larger species diversity
as an increasing number of small species enter the fishery
(Kolding et al. 2015a). Thus, the increased effort is distributed over
a wider range of the fish community so that catch rates are main-
tained with limited change to the overall size structure of the
community (Fig. 10). This, so-called “fishing down process”
(Welcomme 1999) is generally considered as a sign of a deteriorat-
ing and harmful situation (Pauly et al. 1998; Tweddle et al. 2015),
with the added problem that an increasing number of fishing
methods become technically illegal as they target smaller and

Table 1. Model equations.

Encounter and consumption

Prey size selection (−)
�� w

wprey
� � exp���ln� w

�wprey
��2/(2�2)� M1

Volumetric search rate V(w) � �wq M2
Encountered food (g· year−1)

E(w) � V(w) �
0

max(W∞)

wprey�� w
wprey

��� Ni(wprey) 	 Nr(wprey)	dwprey

M3

Maximum consumption rate Imax � hwn M4

Feeding level (−) f(w) �
E(w)

E(w) 	 Imax

M5

Growth and reproduction

Somatic growth (g·year−1) gi(w, W∞,i) � (af(w)hwn � kwp)(1 � 
(w, W∞,i)) M6

Maturity ogive (−)

i(w, W∞,i) � �1 	 � w

�W∞,i
��10��1� w

W∞,i
�1�n M7

Recruitment

Egg production (eggs·year−1)
Rp(W∞,i) �

�
2w0

�
w0

W∞,i

(
f(w)hwn � kwp) 
(w, W∞,i)Nidw
M8

Maximum recruitment (eggs·year−1) Rmax(W∞,i) � K�r(
f0hw0
n � kw0

p)W∞,i
2n�q�3	a�W∞,i

M9

Recruitment (eggs·year−1)
R(W∞,i) � Rmax(W∞,i)

Rp(W∞,i)

Rp(W∞,i) 	 Rmax(W∞,i)

M10

Mortality

Predation mortality (year−1)
�p(wprey) � �

i
�

w0

∞

�� w
wprey

�(1 � f(w))V(w)Ni(w)dw
M11

Background mortality (year−1) �b,i � �0W∞,i
n�1 M12

Fishing mortality (year−1)

F � F0 exp��ln� w
wm

�2

2�m

� M13

Resource spectrum

Resource dynamics (g·year−1) �Nr(w)

�t
� r0wn�1(�(w) � Nr(w)) � �p(w)Nr(w)

M14

Carrying capacity (g�−1) �(w) � �r
�2�q	n for w � wcut

M15

Conservation equation �N(w, W∞,i)

�t
	

�gi(w)N(w, W∞,i)

�w
� ��p(w)N(w, W∞,i)

M16

Note: Units are in parentheses; dash indicates dimensionless unit.
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smaller fish (Kolding et al. 2015a). Our results, however, indicate a
need to reconsider this traditional evaluation.

In African inland fisheries, food is the major objective and small
fish often have the same price per unit weight as large ones
(Brummett 2000), confirming the high demand. Small fish, either
juveniles or species, have higher productivity per unit biomass
than large fish and are generally lower in the trophic chain
(Lorenzen 1996; Jennings et al. 2001; Brown et al. 2004). In many
fishes studied, the somatic growth of adults contributes less than
one-third and seldom more than half to the total production
(Morgan et al. 1980). In terms of food production, this means that
harvesting small fish and juveniles is most efficient as energy is
lost in metabolic costs when targeting large fish at higher trophic
levels. Furthermore, the Zambian fishing pattern does not impair
sustainability in terms of renewed recruitment of large slow-
growing species. In Lake Kariba, as in most other African inland
fisheries, the predominant gear is gillnets with a bell-shaped se-
lectivity curve (eq. M13). Thus a decrease in mesh sizes will not

affect the adults with a relatively large maximum size, the so-
called BOFFFs (big old fat fecund females; Hixon et al. 2014), as
more of these will escape being caught (Fig. 7B), securing contin-
ued reproduction. Adjusting the fishing mortality according to
productivity and thereby shifting the fishing mortality towards
small fish as the Zambian fishers do by decreasing the average
mesh sizes (Fig. 3) is in accordance with the “balanced harvest”
principle suggested by Garcia et al. (2012) to mitigate the adverse
effects of fishing on community structure and address food secu-
rity.

Although there is increasing evidence of the demographic,
structural, and genetic effects of selective fishing on adults, result-
ing in age truncations, species loss, increased instability, and
possible induced evolutionary effects (Rice and Gislason 1996;
Andersen and Brander 2009; Jørgensen et al. 2007), there are very
few known examples of balanced fishing across species and sizes.
Nearly all comprehensive observations on fished communities
come from managed fisheries, and these all have strong elements
of size-selective restrictions. In fact, for fisheries with limited in-
formation and lack of regular stock assessments, the cheapest and
easiest option for managers is to regulate the fishing pattern
through gear or size limitations (Misund et al. 2002; Kolding et al.
2014). Examples of less selective fishing therefore have to be found
among fisheries in which limited or no enforcement of formal
regulations exists. Among the latter are many small-scale fisheries
in developing countries that lack the resources for effective com-
pliance. In the few cases in which selectivity has been studied in
such fisheries, the results show that the rapidly adapting multi-
gear, multispecies artisanal fisheries often seem to be producing
an overall species, abundance, and size composition in their
catches that closely matches the ambient ecosystem structure
(Misund et al. 2002; Jul-Larsen et al. 2003; van Zwieten et al. 2011;
Kolding and van Zwieten 2014).

Harvesting natural ecosystems will inevitably make an impact
on abundance and selective exploitation on targeted species, and
sizes will change the community structure and composition. The
international agreements to keep fish communities at the levels
of maximum sustainable yields (UNCLOS 1982; WSSD 2002) while
making the least structural and functional disturbances to the
ecosystem (UNEP 2000) are therefore difficult objectives to recon-
cile (Hilborn 2007; Law et al. 2015; Kolding et al. 2015b). The fishing

Table 2. Parameters used in the size-based model.

Encounter and growth Value Unit


 Assimilation efficiencya 0.6 —
n Exponent of maximum consumptionb 0.75 —
h Factor of maximum consumptionc 28* g1−n·year−1

q Exponent of search volumed 0.75 —
p Exponent of standard metabolisme 0.75 —
k Factor of standard metabolismf 2.4 g1−n·year−1

� Factor for volumetric search rateg 5×10−9 g−q·year−1

� Preferred predator–prey mass ratioh 100 —
� Width of size-selection functioni 1.3 —
� Size at maturation relative to asymptotic sizej 0.25 —
f0 Expected feeding levelk 0.6 —
K Maximum recruitment factorl 1×104 —

Mortality

�0 Factor for background mortalitym 3 g1−n·year−1

a Physiological mortalityn 0.58 —

Resource spectrum

r0 Productivity of resource spectrumo 4 g1−p·year−1

�r Carrying capacity of resource spectrum 3.3×109* g�−1

wcut Cutoff size of resource spectrum 1 g

Fishing mortality

F0 Level of effort Free year−1

wF Smallest size caught Free g

Note: An asterisk (*) means that the parameter is specifically calibrated to
Lake Kariba.

aKitchell et al. (1977).
bJobling (Brown et al. 2004) states that 2/3 < n < ¾. We have used n = 3/4 to be

consistent with von Bertalanffy growth curves.
cAdjusted such that emergent growth rates are in the range of those observed.
dConsiderations on the bioenergetic budget of swimming predict a value of q

between 2/3 and 1 (Andersen and Beyer 2006).
eWest et al. (1997).
fThe data of Winberg (1956) indicate a standard (resting) metabolism factor for

fish of about 4 g0.25·year−1 at 10 °C.
gCalculated from the other parameters as specified in Andersen and Pedersen

(2010).
hUrsin (1973) and Jennings et al. (2001).
iUrsin (1973) finds � ≈ 1 for a single species. To account for species diversity

within trait class classes, this has been increased to � = 1.3.
jBeverton (1992).
kAndersen and Pedersen (2009).
lDetermines the relation between piscivory and zooplanktivory in early life

stages (Houle et al. 2013).
mAdjusted to lead to a background mortality of the same order (but lower)

than the predation mortality.
nThe physiological mortality describes the relative strength of predation; for

derivation, see Andersen and Beyer (2006).
oHartvig et al. (2011).

Fig. 6. Averaged estimated von Bertalanffy growth curves from
22 fish species in Lake Kariba (Kolding et al. 1992) ±1 SD (gray area)
and the emergent growth of 19 species in the size-based model
(black lines). The y axis is scaled by the asymptotic weight and the
x axis is time scaled by Wmat

1�n, which is proportional to age at
maturity.
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mortality on a population is shaped by a combination of “how” we
fish (fishing pattern) and “how much” we fish (fishing pressure),
but often the distinction between these two separate factors are
ignored and the effects become merged (Kolding and van Zwieten
2011, 2014). The minimum size regulations imposed in Lake Kariba
are typical for a large number of industrial and small-scale fisher-
ies, but as this study shows, such regulations are difficult to im-
plement unless enforced when the market has no particular size

preferences. The inherent tendency for many small-scale fishers
to violate size-based regulations has an economic basis and the
resulting universal conflict between managers and fishers over
size regulations is therefore largely futile and rarely has ecological
justification (Kolding and van Zwieten 2011).

Our results call for a re-evaluation of the size-based manage-
ment regulations that are ubiquitous in most fisheries if the

Fig. 7. (A) The observed size spectra (standardised number of fish caught) from the 1980–1994 experimental gillnet surveys in Lake Kariba
from the unfished (dotted black line) Lakeside area in Zimbabwe and the fished (dotted gray line) area in Zambia (Fig. 4) and the modeled
unfished (solid black line) and fished (solid gray line) size spectra (scaled with a constant factor c to get comparable units with observations).
Fish below ≈25 cm in the observed size spectra are not well sampled due to gear selectivity (see Appendix A). There is no significant difference
in the descending slopes between the fished and unfished distributions (Kolding et al. 2003a). (B) Modeled fishing selectivity pattern in
Zambia (solid black line) and in Zimbabwe (dashed gray line). The Zambian fishing pattern was used to generate the fished size spectrum in
part A.

Fig. 8. Yield from the less selective fishery on the Zambian side
(black line) and the selective fishery on the Zimbabwean side (gray
line) as a function of effort (F0) using the fishing patterns in Fig. 5.
Dotted lines are the expected F0 corresponding to the observed
≈6000 t·year−1 in Zambia and ≈1200 t·year−1 in Zimbabwe.

Fig. 9. The difference in yield between Zambia and Zimbabwe as a
function of relative effort. The yield and effort from Zambia are held
constant with F0 = 1, corresponding to the effort level used to model
the Zambian fished spectrum in Fig. 5A. To obtain a fivefold higher
yield in Zambia than Zimbabwe, the relative effort is ≈5.5 times higher.
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Convention on Biological Diversity principle of maintaining eco-
system structure is to be taken seriously. In contrast to conven-
tional expectations from standard fisheries theory, the unregulated
fishing pattern that has evolved on the Zambian side of Lake
Kariba seems to fulfill most of our goals: it is high yielding and
community structure conserving and sustains the livelihood of
many fishers. The negative sides are that the standing biomass
in the fished areas is typically low, with corresponding low indi-
vidual catch rates and, consequently, low individual revenue
(Burgess et al. 2015). The negative aspects, however, are more a
question of fishing effort (“how much” fishing) than of size regu-
lations (“how” to fish). If regulations are needed, it would there-
fore be better to control access than to regulate the fishing
pattern. Fisheries management is always a balance of trade-offs
(Link 2010; Andersen et al. 2014), and for many fisheries, particu-
larly in the Northern Hemisphere, the value of the catch is
strongly correlated with the size of the fish, in which case, size
restrictions combined with low effort may be appropriate. In
the developing world, however, food production, in particular
healthy food containing essential micronutrients, is still of major
importance (Food and Agriculture Organization of the United
Nations (FAO) 2014; High Level Panel of Experts on Food Security
and Nutrition (HLPE) 2014), and in such situations, a fishing pat-
tern such as the Zambian side of Lake Kariba seems to be optimal
from ecological, sociopolitical, and nutritional aspects (Kolding
et al. 2015a), the latter because small fish are usually sundried and
eaten whole, in contrast to large fish, which are filleted or
smoked, thereby losing many essential micronutrients (Longley
et al. 2014) in addition to being more expensive to process. We
hope that this study will inspire more research into how local
communities develop fishing patterns and how these affect the
fish community on which they depend.
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Appendix A. Fisheries selectivity patterns in Lake Kariba

1. Estimated selectivity in experimental nets

Fig. A1. Estimated log-normal selectivity curves on the experimental gillnet catches on the Zimbawean side of Lake Kariba (1980–1994) from
mesh sizes 38 mm to 178 mm and the combined estimated selectivity (thick black line). Estimation done in Pasgear II (Kolding and Skålevik
2011) using the SELECT method (Millar and Holt 1997). (Available in colour online.)

Fig. A2. The observed (gray bars) and corrected for selectivity (open bars) catches (relative frequencies by 1 cm intervals) in the experimental
gillnets catches on the Zambian side of Lake Kariba (1980–1994) from mesh sizes 50 mm to 152 mm. Superimposed (black line) is the
estimated overall log-normal selectivity curve. Catches of small fish are underrepresented relative to abundance due to selective catchability
from less than around 20 cm TL.
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2. Calculated selectivity in the artisanal fishery
The calculated selectivity patterns in Lake Kariba are based on

the predominant fishing gear: a gillnet with a log-normal bell-
shaped selectivity (Fig. A1). The individual mesh selectivity func-
tions are formulated as (Millar and Holt 1997)

(A1)
1
L

exp��1 	 log�mi

m1
� �

�2

2
�

�log(L) � �1 � log�mi

m1
��2

2�2
�

where L is fish length, �1 is a constant estimated by the SELECT
method, m1 the smallest mesh size in the series, mi is mesh size i,
and � is the spread. Parameters used are estimated in Fig. A1. To
obtain the total selection pattern, the relative heights of the indi-
vidual curves are adjusted by the number of observed nets of each
mesh size and summed for Zambia and Zimbabwe (Fig. A3).
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Fig. A3. The overall selectivity of artisanal gillnets in (A) Zambia
and (B) Zimbabwe (spread and length parameters from Fig. A1,
height from each mesh size from Fig. 3, main text). (C) The sum of
length-specific gillnet selectivities gives the total selectivity, or
fishing pattern, for Zambia (black circles) and Zimbabwe (gray
circles). The solid line is the modeled selectivity (eq. M13) in Zambia
(black) and Zimbabwe (gray).
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