
TECHNIQUES IN PARAMETERIZED

ALGORITHM DESIGN

Christian Sloper
Cand. Scient.

The University of Bergen
Norway

2005

ISBN 82-308-0108-8
Bergen, Norway 2006

TECHNIQUES IN PARAMETERIZED

ALGORITHM DESIGN

Christian Sloper
Cand. Scient.

Submitted as part of the requirements for

Doctor of Philosophy

Department of Informatics

The University of Bergen
Norway

2005

ABSTRACT

In this thesis we give a novel classification of techniques for designing parameterized
algorithms, together with research publications applying these techniques, in particular
Crown Decompositions, to various problems.

In Part I we argue that the currently known techniques can be organized into just four
general themes: Bounded Search Trees, Reduction Rules, Induction and Win/Win. The
four main themes and their variations are presented through an algorithmic skeleton and
illustrated by examples.

Part II contains four research papers that apply the techniques described in Part I on the
following problems: MAX INTERNAL SPANNING TREE, K3-PACKING, H -PACKING,
K1,s-PACKING, P2-PACKING, SET SPLITTING, and MAX CUT. The techniques used
include Win/Win, Bounded Search Trees, Greedy Localization, Crown Decomposition,
Modelled Crown Decomposition, Extremal Method, and Reduction Rules.

ACKNOWLEDGEMENTS

I would like to express my gratitude to several people for helping me write this thesis.

First and foremost, I thank Professor Jan Arne Telle, my advisor. Without his patient
guidance it would not have been possible for me to complete this work. Choosing him as
my advisor has proven to be one of the best decisions I have made.

Second, I would like to thank Michael Fellows and Jan Kratochvíl for letting me visit
them and their institutions and for supporting me for six months each.

I would also like to thank all my co-authors Marc Bezem, Carlos Cotta, Michael Fel-
lows, Pinar Heggernes, Tore Langholm, Daniel Lokshtanov, Pablo Moscato, Elena Prieto,
Frances Rosamond, and Jan Arne Telle.

Then I would like to thank Yngve Villanger for very useful conversation about many parts
of this thesis, and Olav Hjortås for his diligence when proofreading this thesis.

My mother, father, and brother deserve thanks for their unwavering support and faith in
me, especially in times it was not deserved.

Fortunately, my friends are too many to name, but they have all been instrumental in
keeping me in touch with the real world. I have never been able to voice how much you
all mean to me.

Finally, I would like to thank one person who in particular transcends all categories above.
Being my most prolific co-author, one of my closest friends, an advisor in life if not
science, and some have even claimed my Siamese twin separated at birth: Elena, thank
you.

CONTENTS

1 Introduction 1

1.1 Overview . 4

2 Notation and Definitions 6

2.1 Computational Model . 6

2.2 Sets . 6

2.3 Relations and Functions . 6

2.4 Basic Graph Theory . 6

2.5 Tree decompositions and Branch decompositions 7

2.6 O- andO∗-notation . 8

2.7 Computational Complexity . 8

2.8 Fixed Parameter Complexity . 9

2.9 Exact Algorithms . 10

I An overview of parameterized algorithm design techniques 11

3 Bounded Search Trees 12

3.1 Basic Search Trees - Controlled recursion 12

3.1.1 Examples of Bounded Search Trees 14

3.1.2 How Is It Used In Practice? . 15

3.2 Greedy Localization . 16

CONTENTS x

3.3 Color Coding . 17

3.3.1 Example of a Color Coding algorithm 18

4 Reduction rules 20

4.1 The basic reduction . 20

4.1.1 Examples of Reduction Rule algorithms 22

4.2 Crown Decomposition . 24

4.2.1 Example of a Crown Reduction rule 26

4.2.2 The Complexity of Crown Decomposition 28

5 FPT by Induction 31

5.1 The basics . 31

5.2 For Minimization - Iterative Compression 32

5.2.1 Example of ’Iterative Compression’ 32

5.2.2 How Is It Used in Practice? . 34

5.3 For Maximization - The Extremal Method 34

5.3.1 How is it used in practice? . 36

6 Win/Win 37

6.1 Basic Win Win - Best of two worlds . 37

6.1.1 Examples of Win/Win . 37

6.2 Graph Minor Theorem . 40

6.2.1 Example of a Graph Minor Algorithm 42

7 List of Problems 43

7.1 Branchwidth . 43

7.2 Cycle . 43

CONTENTS xi

7.3 Dominating Set . 43

7.4 Dominating Set on cubic graphs . 43

7.5 Feedback Vertex Set . 44

7.6 Hamiltonian Cycle . 44

7.7 Hitting Set . 44

7.8 Independent Set . 44

7.9 K3-Packing . 44

7.10 Max Cut . 44

7.11 Max Leaf Subtree . 45

7.12 Minor Order Test . 45

7.13 Odd Cycle Cover . 45

7.14 P2 Packing . 45

7.15 Planar Independent Set . 45

7.16 Dominating Set . 45

7.17 Short Nondeterministic Turing Machine Acceptance 46

7.18 Sized Crown . 46

7.19 Sorting . 46

7.20 Treewidth . 46

7.21 Vertex Cover . 46

II Papers - case studies 51

8 Max Internal Spanning Tree 52

8.1 Introduction . 52

8.2 Using Reduction Rules . 53

CONTENTS xii

8.3 Preliminaries . 55

8.4 k-Internal Spanning Tree is FPT . 55

8.5 Independent Set Structure . 56

8.6 Analysis of the running time . 60

8.7 Another path(width) to success . 61

8.8 Conclusions and Further Applications to Independent Set Structures . . . 62

9 Packing Stars 66

9.1 Introduction . 66

9.2 Introduction to Parameterized Algorithms 68

9.2.1 Preliminaries . 68

9.3 Parameterized complexity ofSTAR PACKING 69

9.4 The special case ofP2: a linear kernel 71

9.5 Running Time . 75

9.6 Conclusions and Further Research . 76

10 Packing Triangles 80

10.1 Introduction . 80

10.2 Preliminaries . 82

10.3 Reduction rules forK3-packing . 82

10.4 Reducing independent sets - crown reduction 83

10.5 Computing a cubic kernel . 86

10.6 Winning the FPT runtime race . 87

10.7 Packing arbitrary graphs . 89

10.8 Summary and open problems . 89

CONTENTS xiii

11 Fixed Parameter Set Splitting 93

11.1 Introduction . 93

11.2 Preliminaries . 94

11.3 Using Set Cover to improve running time 95

11.4 Reducing to a graph problem . 96

11.5 An application to Max Cut . 99

11.6 Conclusion . 100

1

INTRODUCTION

The fundamental realization that not all decision problems have algorithms with efficient
running time (unless the unlikely P=NP) was made in the sixties and early seventies [E65,
C71, K72]. Since then computer scientists have classified problems as ’good’: those that
are known to have algorithms with polynomial running time; and ’bad’: those that are
not.

Unfortunately, many or most of the problems we seek to solve on a day-to-day basis are
’bad’. The need to solve these problems has produced a variety of different ideas on how
to cope with them. One of the newest of these ideas is ’Parameterized Complexity’.

At the core of parameterized complexity lies the realization that most problems, espe-
cially in a practical setting, are not so generic as the abstract problem description we find
in problem collections like Garey and Johnson [GJ79]. We could for example know some-
thing about the input instances (e.g., graphs could have bounded treewidth or restricted
genus) or we might require something about the output solution (e.g., a solution may only
be interesting if it is not too large). Extra information like this is often possible to quantify
numerically and leads to the notion of a parameter.

In classical complexity the NP-complete problems are indistinguishable from each other
in terms of hardness. The introduction of a parameter changes this. We can show that a
problem that is otherwise intractable has an efficient algorithm as long as the parameter
is kept small. For other problems the introduction of a parameter does little to improve
the situation, and the problem remains intractable. This division of the classically insepa-
rable NP-complete problems is in itself interesting, and much work has been done on the
complexity theoretic aspect [DEFPR03, DF99, FG01, FG02, G99]. This is, however, not
the topic of this thesis. We will instead focus on the problems that do become tractable
in fixed parameter complexity and in particular on the known techniques for designing
algorithms for these problems.

As the field has developed in the last decade, various ideas have been put forward on
how to develop efficient parameterized algorithms. Since this field is quite young, the
contributing authors have been very free to devise new techniques and thus also name
their ideas. This has resulted in a myriad of names, and when techniques have again been

2

renamed by survey papers, we are left with a confusing tangle that can be difficult to
penetrate for new readers.

Aside from several survey articles there have been at least two comprehensive texts writ-
ten on parameterized algorithm design: Downey and Fellows’s seminal book ’Parameter-
ized Complexity’ [DF99] and the habilitation thesis of Rolf Niedermeier, ’Invitation to
Fixed-Parameter Algorithms’ [N02]. Downey and Fellows’s book came very early in the
history of parameterized complexity, and thus does not include the newer ideas. More-
over, it does not spend much time on classifying various techniques. Niedermeier’s habil-
itation thesis is dedicated to algorithmic techniques. He singles out Bounded Search Trees
and Kernelization as the two major techniques, and spends considerable time giving a de-
tailed explanation of both. Under the generic heading ’Further Algorithmic Techniques’,
Niedermeier lists Integer Linear Programming, Color Coding, Dynamic Programming
and Tree Decompositions.

Some of the techniques given a name in the literature include Bounded Search Tree
[DF99], Search Trees [N02], Data Reduction [N02], Kernelization [DF99] The Extremal
Method [FM+00], The Algorithmic Method [P05], Catalytic Vertices [FM+00], Crown
Reductions [CFJ04], Modelled Crown Reductions [DFRS04], Either/Or [PS03], Reduc-
tion to Independent Set Structure [PS04], Greedy Localization [DFRS04], Win/Win [F03],
Iterative Compression [DFRS04], Well-Quasi-Ordering [DF99], FPT through Treewidth
[DF99], Integer Linear Programming [N02], Color Coding [AYZ95], Method of Testsets
[DF99], and Interleaving [NR00].

According to this list, there are over twenty differently named techniques that could be
applied when we want to construct a fixed parameter algorithm for a problem. We feel
that this gives a wrong picture of parameterized algorithm design.

The number of distinct design techniques is in our opinion considerably fewer. Many of
the techniques build on the same general idea, and as a problem solver it is important to
be familiar with these general themes and ideas. The details will in any case vary from
problem to problem.

In this thesis we have attempted to present and categorize these general themes under the
four main headings: Bounded Search Trees, Reduction Rules, Induction, and Win/Win.
We have selected what we consider to be the most important and general techniques, and
consider the remainder to be either variations or combinations of the themes presented
in the first six chapters of this thesis. An illustration of the techniques we have chosen
to present, and the categorization we have chosen, can be seen in Figure 1.1. Let us
briefly mention techniques in the above list that are not in Figure 1.1. Data Reduction,
Kernelization are different names for Reduction Rules and Either/Or is an earlier name
for Win/Win. Catalytic Vertices is a variant of Reduction Rules, while Interleaving is a
combination of the techniques Bounded Search Tree and Reduction Rules. Integer Linear
Programming, which is based on a result by Lenstra [L83], can be viewed as a Win/Win

3

Figure 1.1: Our classification of parameterized algorithm techniques, labelled by chapter
number.

algorithm.

The thesis is in two parts, with the second part containing the main research contribution
in terms of published papers. The first part consists of chapters 2 through 6 and is an
overview of the various parameterized algorithm design techniques. For each technique,
we present a basic introduction, a few examples and the most important variations of the
main technique.

The examples we have included have been selected on the criteria that they should be as
simple as possible. This is because we want to focus on the core idea of the technique.
Thus, we have not been afraid to use well known examples from the literature whenever
we felt that these examples were the best to show the relevant technique.

For each basic technique, we provide an ’algorithm skeleton’ in pseudo-code giving a
rough outline of the algorithmic idea behind the technique. For most of the examples we
provide a pseudo-code algorithm, describing the algorithm as well as proving its correct-
ness.

When giving pseudo-code there is always a question of how close to ’real code’ it should
be. If the pseudo-code given is very close to a computer program, it is easier to translate
to real code and implement, but on the other hand it becomes more detailed and we lose
some flexibility which in turn lowers readability. We have tried to find a balance between
real code and readability, by giving pseudo-code in the style of an iterative program (e.g.
c++ or Java), but refraining from using too much detail. The algorithms are explained in
more detail in the text when needed.

1.1 OVERVIEW 4

1.1 OVERVIEW

The individual chapters are organized as follows:

Chapter 2 outlines the notation and basic definitions used in Part I.

Chapter 3 gives an overview of techniques using search trees to find optimal solutions.
Basic bounded search trees focus on limiting the fan-out and the height of a search tree.
We need to limit the height to a function ofk, and we show that it is sufficient to limit the
fan-out toO((log n)g(k) · f(k)) for arbitrary functionsf andg. In addition to the basic
search tree idea we have included Greedy Localization where we make use of a greedy
algorithm to obtain initial information that we then complete using a search tree. Finally
we describe the related Color Coding technique, that branches into a set of instances
where vertices have been pre-colored usingk colors.

Chapter 4 describes the techniques applying reduction to shrink the problem to a more
manageable size. This is often done through reduction rules, where we identify a local
structure in a graph. By modifying or removing this structure, we can reduce the size
of the graph or the parameter without introducing or removing solutions. Aside from
the basic reduction rule algorithms we cover the more advanced use of crown reduction
rules. We explain Crown reductions in detail as all of the case studies in Part II use crown
decompositions to some degree. In addition to an example of an algorithm using a crown
reduction rule, we include a section on its complexity where we prove that finding a crown
decomposition of a given size is NP-complete.

In Chapter 5 we show how induction can be used as a base for creating parameterized
algorithms. We show how a certificate for smaller instances can be updated to a certificate
for a larger instance. We discuss some of the requirements that is needed for an inductive
algorithm to be applicable and then describe two techniques that use induction at their
cores. For minimization we present Iterative Compression with several examples, and for
maximization we show that the natural inductive algorithm is equivalent to the algorithmic
version of the Extremal Method. We also present the Extremal Method in this chapter.

Chapter 6 gives a design technique that ties a problemA to a problemB in such a way that
both a ’Yes’ and a ’No’ answer forB can help us solveA. Since both cases are helpful
when designing algorithms forA this technique is dubbed ’Win/Win’. We showcase this
very strong technique by tyingPLANAR DOMINATING SET to BRANCHWIDTH and use
this relationship to give an elegantO∗(c

√
k) algorithm forPLANAR DOMINATING SET.

Here we also present the Graph Minor theorem, and show that it can be used to give
parameterized algorithms for graph problems whenever the ’Yes’-instances or the ’No’-
instances are closed under minors.

Chapter 7 is a list of the problems used in the first part of the thesis. We have included
this chapter as some of the problems are used more than once. Thus, in the text we will

1.1 OVERVIEW 5

list a problem with small caps and then give a reference to Chapter 7 where the complete
problem definition can be found. E.g.,PROBLEM (P7.15)is problem 15 of Chapter 7.
There is a bibliography for Part I at the end of this chapter.

Part II of the thesis is based on four published papers. Each chapter discusses one or more
parameterized problems, and gives algorithms and kernels for these using the techniques
described in part I.

Chapters 8, 9, 10, and 11 are copies of four published papers with merely typographic
changes.

Chapter 8 is a paper co-authored with Elena Prieto. It is based on the paper ’Either/Or:
Using Vertex Cover Structure in designing FPT-algorithms - the case ofk-Internal Span-
ning Tree’ [PS03] that originally appeared at the ’Workshop on Algorithms and Datas-
tructures’ in Ottawa, 2003. Some of the results were improved and a new version, ’Re-
ducing to Independent Set Structure — the Case ofk-INTERNAL SPANNING TREE’ has
been accepted to the ’Nordic Journal of Computing’ [PS05]. In this paper, we look at
the problem of constructing a spanning tree with many internal nodes. This paper uses a
Win/Win strategy together with a crown decomposition, obtaining a quadratic kernel for
the problem.

Chapter 9 is a paper co-authored with Elena Prieto titled ’Looking at the Stars’ [PS04].
This paper originally appeared at ’First International Workshop on Parameterized and
Exact Computation’ in Bergen, 2004. It has later been accepted for a special issue of
’Journal of Theoretical Computer Science’. Here we give a quadratic kernel for finding
vertex disjoint copies ofK1,s for any s, using the extremal method. We give a linear
kernel for finding vertex disjoint copies ofP2 using a crown reduction algorithm.

Chapter 10 is a paper co-authored with Michael Fellows, Pinar Heggernes, Frances Rosa-
mond and Jan Arne Telle titled ’Findingk disjoint triangles in an arbitrary graph’ [FHRST04].
This paper appeared at the conference ’Workshop on Graph-Theoretic Concepts in Com-
puter Science’ in Bonn, 2004. In this paper we discuss packing problems in general and
describe an algorithm for finding vertex disjoint copies ofK3 in graphs. We give a cu-
bic kernel and aO∗(2O(k log k)) algorithm for this problem using the technique Modelled
Crown Decompositions. Later this result has been improved [FKNRSTW04], giving a
better running time ofO∗(2O(k)).

Chapter 11 is the paper ’Fixed Parameter Set Splitting, Linear Kernel and Improved Run-
ning Time’ [LS05] co-authored with Daniel Lokshtanov. It appeared at the conference
’Algorithms and Complexity in Durham 2005’. Here we study two-colorings of hyper-
graphs and give a linear kernel for the problem and also an efficient algorithm based on
using Win/Win and crown decomposition techniques.

2

NOTATION AND DEFINITIONS

2.1 COMPUTATIONAL M ODEL

We will assume a single processor,random-access machineas the underlying machine
model throughout this thesis. In the random-access machine any simple operation (arith-
metic, if-statements, memory-access etc.) takes unit length of time. The word size is
sufficiently large to hold any number in our algorithms. We will not exploit this by for
instance encoding more than one natural number in each word.

2.2 SETS

A setis a finite or infinite collection of objects in which order has no significance, and no
object appear more than once. We will refer to the members of a set aselementsand the
notatione ∈ A is used to denote that ise an element of a setA. Similarly we usee /∈ A
to denote thate is not an element inA.

We will use the set of natural numbersN= {1, 2, 3, . . .}.
A partition of a setX is a set of nonempty subsets ofX such that every elementx in X
is in exactly one of these subsets.

2.3 RELATIONS AND FUNCTIONS

A binary relationR on two setsA andB is a subset of the Cartesian productA × B.
Given two setsA andB, a functionf is a binary relation onA×B such that for alla ∈ A
there exists precisely oneb ∈ B such that(a, b) ∈ f . We will use the notationf : A → B
to describe a functionf from A to B.

2.4 BASIC GRAPH THEORY

We assume simple, undirected, connected graphsG = (V, E), where|V | = n and|E| =
m. The neighbors of a vertexv are denoted byN(v), the closed neighborhoodN [v] =

2.5 TREE DECOMPOSITIONS ANDBRANCH DECOMPOSITIONS 7

N(v)∪{v}. For a set of verticesA ⊆ V , we haveN(A) = {v 6∈ A | uv ∈ E andu ∈ A}.
The subgraph ofG induced byA is denoted byG[A]. For ease of notation, we will use
informal expressions likeG − u to denoteG[V \ {u}], G − U to denoteG[V \ U], and
G− e to denoteG(V,E \ {e}), whereu is a vertex,U is a vertex set, ande is an edge in
G.

We say that amatchingM on a graphG is a set of edges of G such that no two of
them have a vertex in common. The largest possible matching on a graph withn nodes
consists ofn/2 edges, and such a matching is called aperfect matching. We writeV (M)
to indicate the set of vertices incident to the edges inM .

A tree is a connected graph without cycles. A disconnected graph without cycles is a
forest. Asubtreeof a graphG is a subgraph ofG that forms a tree. If a subtree contains
n− 1 edges, it is aspanning treeof G.

We say thatK1,s is a s-star or a star of sizes. The symbolPi denotes a path ofi + 1
vertices andi edges.

An H-packingW of G is a collection of vertex disjoint subgraphs ofG each isomorphic
to H. We will useV (W) to denote the vertices ofG that appear inW , andE(W) to
denote the edges.

Thecontractionof an edge of a graph, also callededge contraction, is the graph obtained
by replacing the two nodesv1, v2 with a single nodev3 such thatv3 is adjacent to the
union of the nodes to whichv1 andv2 were originally adjacent.

2.5 TREE DECOMPOSITIONS AND BRANCH DECOMPO -
SITIONS

Throughout the text and in particular in Chapter 6 we will make use of tree decompo-
sitions of graphs. Tree decompositions tries to give a measure of how tree-like a graph
is.

Definition 2.5.1 Let G = (V, E) be a graph. Atree decompositionof G is a pairX =
〈{Xi | i ∈ I}, T 〉, where eachXi is a subset ofV , called abag, andT is a tree with the
elements ofI as nodes. The following three properties must hold:

1. ∪i∈IXi = V ;

2. for every edge(u, v) ∈ E, there is ani ∈ I such that{u, v} ⊆ Xi;

3. for i, j, k ∈ I, if j lies on the path betweeni andk in T , thenXi ∩Xk ⊆ Xj.

2.6O- AND O∗-NOTATION 8

Thewidth tw(X) of X equalsmax{|Xi| | i ∈ I} − 1. Thetreewidthtw(G) of G is the
minimumk such thatG has a tree decomposition of widthk.

We will also use branch decompositions.

Definition 2.5.2 A branch decompositionof a graph G is a pair(T ; µ), whereT is a
tree with vertices of degree one or three andµ is a bijection from the set of leavesL of
T to E(G). Let e be an edge ofT . The removal ofe results in two subtrees ofT , say
T1 and T2. Let Gi be the graph formed by the edge set{µ(f) | f ∈ L ∩ V (Ti)} for
i ∈ {1, 2}. The middle setmid(e) of e is the intersection of the vertex sets ofG1 andG2,
i.e., mid(e) := V (G1) ∩ V (G2). The width of(T ; µ) is the maximum size of the middle
sets over all edges ofT , and the branch-width ofG, bw(G), is the minimum width over
all branch decompositions ofG.

2.6 O- AND O∗-NOTATION

It is commonplace to express the running time of algorithms withO-notation.

Definition 2.6.1 For a functionf : N → N, we writef(n) = O(g(n)) if there exists
constantsc andn0 such thatf(n) ≤ cg(n) for all n ≥ n0.

Since we throughout this thesis are talking about algorithms with exponential running
time, we will adopt theO∗ notation as seen in [W03], which suppresses the polynomials
in the running time and focus on the exponentials.

Definition 2.6.2 Given a functionf(n, k) we writef(n, k) = O∗(g(k)) if there exist a
k0, c, andn0 such thatf(n, k) ≤ g(k)nc for all k ≥ k0 andn ≥ n0

Thus the polynomial part of all terms are left out of the expression when usingO∗-
notation.

2.7 COMPUTATIONAL COMPLEXITY

Definition 2.7.1 Let A be an algorithm. Therunning time or time complexity of A
is the functionf : N→N, wheref(n) is the maximum number of steps thatA uses on
any input of lengthn. We also say thatA runs in timef(n) and thatA is anf(n) time
algorithm.

2.8 FIXED PARAMETER COMPLEXITY 9

A system oftime complexity classeshave been devised to classify problems according to
their time complexity. Each of these classes contain the problems that are asymptotically
equivalent in running time.

Definition 2.7.2 Time complexity class

Lett : N −→ N be a function. Thetime complexity classTIME(t(n)), is TIME(t(n)) ={L |
L is a language decided by anO(t(n)) algorithm.

The class P is the class of problems that are solvable in polynomial time. We consider
this class to be roughly equivalent to the class of problems that can be considered compu-
tationally easy to solve.

Definition 2.7.3 P=
⋃

k∈N TIME(nk)

The class NP is another major class of decision problems in complexity theory. In NP
we find all the problems that we can verify with polynomial algorithms. That is, any
’Yes’-instance for a problem in NP has a certificate that we can check in polynomial time.

Definition 2.7.4 NP = {L | ∃V such thatV is a verifier forL andV ∈ P}

Definition 2.7.5 A languageB is NP-complete if it satisfies the following: (1)B is in NP,
and (2) every languageA in NP is polynomial time reducible toB. If a problem satisfies
requirement2, we say that it is NP-hard.

Although it is unknown if P = NP, it is widely believed that this is not the case. For the
remainder of this thesis we will always operate under the assumption that P6=NP.

2.8 FIXED PARAMETER COMPLEXITY

We first define our notion of a parameterized problem, using the definitions given in
[N02].

Definition 2.8.1 A parameterized problemis a languageL ⊆ Σ∗×Σ∗ whereΣ is a finite
alphabet. The second component is called theparameterof the problem.

Definition 2.8.2 A parameterized problemL is fixed-parameter tractableif the question
’(x1, x2) ∈ L?’ can be decided in running timef(|x2|) · |x1|O(1), wheref is an arbitrary
function on nonnegative integers. The corresponding complexity class is called FPT.

2.9 EXACT ALGORITHMS 10

It is commonplace to only consider the languagesL ⊆ Σ∗×N as the set of parameterized
problems since almost all problems have a non-negative integer as parameter. For all
problems in this thesis, the parameter is an integer, so when it is needed the next smaller
values of a parameter is well defined.

It is not believed that allNP-complete problems are Fixed Parameter Tractable, the class
is split into a hierarchy of classes FPT⊆W[1]⊆W[2]⊆ · · · ⊆W[P]. Here the classes
W[1]⊆W[2]⊆ · · · ⊆W[P] are intractable, and we justify this by a completeness-result
not unlike classical complexity. It is proven in [CCDF97] thatk-SHORT NONDETER-
MINISTIC TURING MACHINE ACCEPTANCE(P7.17is W[1]-complete thus giving strong
natural evidence thatFPT 6= W [1].

Further background on parameterized complexity can be found in [DF99].

2.9 EXACT ALGORITHMS

Exact algorithms is a related field where we calculate the optimal solution for the problem
in question, spending exponential time if required. In exact algorithms we consider the
NP-hard maximization/minimization versions of the decision problems that Fixed Para-
meter Complexity tries to deal with. While we accept exponential running time in our
algorithms, the goal is to lower the exponential part of the function as much as possible.

Techniques from exact algorithms can often be used in parameterized algorithms and,
more importantly, the algorithms can often be combined with linear kernels to achieve
strong results for parameterized problems.

An excellent survey paper that can serve as an introduction to this area is written by
Woeginger [W03].

Part I

An overview of parameterized
algorithm design techniques

3

BOUNDED SEARCH TREES

In this chapter we will discuss the most common technique in parameterized algorithm
design, Bounded Search Trees. Here we seek to limit the computational load by making
an intelligent search for the optimal solution without searching the whole solution space.

We will first discuss the general idea in the bounded search tree technique, give a defini-
tion of a bounded search tree algorithm, and give some simple examples. We then discuss
the variant Greedy Localization, where we use a greedy algorithm to obtain some useful
initial information, and Color Coding, where we use a result from hashing theory to color
the vertices.

3.1 BASIC SEARCH TREES - CONTROLLED RECURSION

All combinatorial problems have a finite solution space, and a brute-force way to find an
optimal solution is to systematically search the entire space. In the Bounded Search Tree
technique we search only a part of this space. This is usually done in a tree-like fashion,
at each node deciding some part of the input, and creating one branch for each possible
choice. At each new branch we are left with an instance with additional information about
the solution. For parameterized problems this additional information can take several
forms, but often translates into a smaller parameter value and usually also a decrease in
the main input size.

Care must be taken to avoid the search tree becoming too large. To prove a problem to be
FPT we need to show that the height of the search tree is bounded by a function depending
only onk, and that the fan-out of the tree, i.e., the maximum number of children of a node,
isO((log n)g(k)f(k)) (see Theorem 3.1.1).

The height of the tree represents the maximum number of choices we are allowed to make
before we must be able to determine a solution. For subset problems (problems where we
must select a subsetV ′ ⊆ V (G) with some property) we usually regulate the height of the
tree by choosing one or more vertices for the solution at each level, thus decreasing our
parameterk. Since the problem usually is trivial whenk = 0, we have an upper bound on
the height of the tree.

3.1 BASIC SEARCH TREES- CONTROLLED RECURSION 13

However, it is not sufficient to control only the height. The vertex subset problems
have trivial nk search trees by having nodes with fan-outn. In addition to giving a
bound on the height it is necessary to show that the maximum fan-out of the tree is
O((log n)g(k)f(k)). We control the fan-out by carefully selecting the criteria to branch
on, described in a branching rule. A branching rule identifies a certain structure in
the graph (the left hand side LHS) and createsc ∈ O((log n)g(k)f(k)) new instances
(G1, k1), (G2, k2), . . . , (Gc, kc) such that the instance(G, k) is a ’Yes’-instance if and
only if at least one instance(Gi, ki) is a ’Yes’-instance.

Taking the above into consideration, we say that a bounded search tree algorithm is an
algorithm that:

• is recursive, and

• terminates with a polynomial time base case, and

• makesO((log n)g(k)f(k)) different recursive calls in each recursive step, and

• reaches a polynomial time base case in at mosth(k) nested recursive calls.

Algorithm BST with a setB of branching rulesBi : LHSi → (G1, k1), . . . , (Gci
, kci

)
Input GraphG, integerk

if G contains someLHSi then Call BST on instances(G1, k1), . . . , (Gci
, kci

)
elseUse polynomial algorithm to solve(G, k), if ’Yes’ then output ’Yes’ andhalt

Answer ’No’

Figure 3.1: An algorithm skeleton for Bounded Search Tree.

The running time of an algorithm that uses search trees is bounded by the number of nodes
of the search tree times the running time for each node. We assume polynomial running
time at each node in the search tree, thus only the size of the search tree contributes in
O∗-notation. It is normal that an algorithm checks for several different branching rules
and branches according to one of the cases that applies. Although search tree algorithms
can have many branching rules it is usually straightforward to calculate the search tree’s
worst case size. For the functions given above, an upper bound on the search tree is
O(((log n)g(k)f(k))h(k)). To show that this is an FPT-function we prove the following:

Theorem 3.1.1 There exists a functionf(k) such that(log n)k ≤ f(k)n for all n andk.

3.1 BASIC SEARCH TREES- CONTROLLED RECURSION 14

Proof. First recall that a logarithmic function grows slower than any root-function. That
is,

log n = o(n1/k) ∀k.

Which implies that

∀k ≥ 1 ∃n0 ≥ 1 such that∀n ≥ n0 log n < n1/k

Thus there must be a functionh(k) : N → N+ such that∀k ∀n ≥ h(k) log n < n1/k

and then∀k ∀n ≥ h(k) (log n)k < n.

So now the situation is that for alln > h(k) we have that(log n)k < n and the theorem
holds. If on the other handn ≤ h(k), thenlog n ≤ log h(k) and(log n)k ≤ (log h(k))k.
Yielding

(log n)k ≤ max{1, (log h(k))k} · n

2

We gave this proof showing that(log n)k is an FPT-function, but it is easy to extend this
to show thatO((log n)g(k)) is also anFPT -function.

As discussed in section 3.1.2, it is often possible to obtain better upper bounds by a more
careful analysis of the branching in the tree.

3.1.1 EXAMPLES OF BOUNDED SEARCH TREES

We present a few examples of bounded search tree algorithms, in particular anO∗(6k)
algorithm for PLANAR INDEPENDENT SET (P7.15) and anO∗(1.466k) algorithm for
VERTEX COVER (P7.21).

Theorem 3.1.2 PLANAR INDEPENDENTSET can be solved in timeO∗(6k).

Proof. In an instance(G, k) of PLANAR INDEPENDENTSET we know that for any max-
imal independent setS ⊆ V (G) and for anyv ∈ V (G) it is true thatN [v] ∩ S 6= ∅. If
this was not the case, we could includev to obtain a larger set, contradicting maximality.
This together with the well known fact that any planar graph contains a vertex of degree
at most5 (this follows trivially from Euler’s formula), allows us to continually branch
on a low degree vertexv selecting eitherv or one of at most five neighbors. Selecting
a vertex for the independent set lets us remove its closed neighborhoodN [v] from the
graph. This leaves us with at most six smaller instances, each with parameterk′ = k − 1.

3.1 BASIC SEARCH TREES- CONTROLLED RECURSION 15

As the problem is trivial when the parameter is 0, the size of the treeT (k) is bounded by
6 · T (k − 1). This recurrence relation becomesT (k) ≤ 6k. 2

Theorem 3.1.3 VERTEX COVER can be solved in timeO∗(1.466k).

Proof. To prove this we make two initial observations. First, that any valid vertex cover
must contain either a vertexv or all its neighborsN(v). Second, if a graph has only
vertices of degree less than three, thenVERTEX COVER is polynomial time solvable. The
second observation gives us a clear goal: we will try to reach a polynomial time instance
by branching on any vertex of degree higher than two. We can do this as each high degree
vertexv creates only two branches, where one branch decreases the parameter by one
and the other decreases the parameter by|N(v)| (three or more). The recursive function
T (k) ≤ T (k−1)+T (k−3) gives a bound on the size of the tree. This recursive function
can be solved by finding the largest root of its characteristic polynomialλk = λk−1+λk−3.
Using standard computer tools, this root can be estimated to 1.466, giving the desired
result.

2

We can see that both examples follow the outline given for search tree algorithms. They
are recursive, have a constant number of recursive calls in each iteration and reach a
polynomial base case in at mostk nested calls.

3.1.2 HOW I S I T USED I N PRACTICE ?

Bounded Search Trees is one of the most common and successful parameterized algorithm
design techniques in the field today and very many examples exist. The very powerful
VERTEX COVER (P7.21)algorithm by Chen, Kanj and Jia [CKJ01] achieving a running
time ofO(1.286k) is a bounded search tree algorithm and remains one of the most cited
parameterized algorithms. The main strength, some would claim also the main drawback,
of these algorithms is that they can often be continually refined by considering ever more
complicated cases. This allows for repeated improvement in theoretical performance, but
at the cost of elegance and clarity. There are examples where the algorithm reaches enor-
mous size. For example, the exact algorithm for Maximum Independent Set by Robson
[R01] has tens of thousands computer generated cases. Too many cases will also hurt
the practicality of implementing and running such algorithms, as each case causes un-
avoidable overhead. Some implementations of the vertex cover algorithm deliberately
skip some of the more advanced cases as they in most practical instances only slow the
algorithm down, as reported in [L04].

3.2 GREEDY LOCALIZATION 16

3.2 GREEDY L OCALIZATION

In this section we present a variation of the bounded search tree technique that uses a
clever first branching to start off the recursive search for the solution. We start with a
greedy algorithm to construct a solution. If the problem is of the correct size, then we
are done, otherwise we argue that any optimal solution must intersect with the greedy
solution in a certain way, giving us additional information which we use to branch.

A simple example for this isK3-PACKING (P7.9). Note that a faster algorithm for this
problem using a different technique can be found in Chapter 10.

Theorem 3.2.1 K3-Packing can be solved inO∗(
(
3k
k

) · (2k)!) time.

Proof. Note that we can obtain a maximalK3-packingC using a simple greedy algorithm.
If this packing is of sizek or larger we are done, if not we observe that everyK3 in any
optimal packingOpt must intersectC in at least one vertex (otherwise there would be a
K3 in G− C not included by the greedy algorithm).

Since our greedy set has less than3k vertices, we can now search fork vertices in the
intersectionV (C) ∩ V (Opt). There are at most

(
3k
k

)
ways to choose thesek vertices and

we create one branch for each of these possibilities.

In each branch we now havek partial sets, each containing one vertex. Our goal is to
complete such a collection of partial sets vertex by vertex. In each tree-node we will
again use a greedy tactic, by completing each of the partial sets to aK3 in a greedy
manner. If we succeed to complete allk setsS1, S2, . . . , Sk in a branch, we can safely
halt and answer yes, but most likely we will fail in completing some setSj. Assuming
there is a way to correctly complete the partial setsS1, . . . , Sk into k disjoint copies of
K3, the only reason we could fail to completeSj is because one of the earlier vertices we
had selected to be added toS1, S2, . . . , Sj−1, Sj+1, . . . , Sk should instead be inSj. Thus
we have identified a setQ of at most2k vertices of which at least one should belong to
Sj. Only at this point do we branch again, with fan-out equal to|Q|, creating one branch
for each possible addition toSj. We have in this way added one more vertex to our partial
set, and we can repeat the process on each new level. Since we start withk vertices, add
one vertex at each level and need3k vertices in total, the height of the tree is at most2k.

The total size of such a tree is at most
(
3k
k

) · (2k)!. Here,
(
3k
k

)
is a result of the initial

branching, and(2k)! is a factor since each setQ which we branch on has its size at any
levelh bounded by2k − h. 2

This is a bounded search tree algorithm, as we now argue. The algorithm is clearly recur-
sive and since we branch on the greedy solution we satisfy the requirement concerning
the fan-out,

(
3k
k

)
recursive calls in the first step, and then at most2k in the following

3.3 COLOR CODING 17

steps. Furthermore we terminate after at most2k nested calls with a trivially polynomial
instance.

3.3 COLOR CODING

Color Coding is a technique that was introduced by Alon, Yuster, and Zwick in their paper
’Color Coding’ [AYZ95]. Given an input to a parameterized graph problem we color the
vertices withk colors such that the structure we are looking for will interact with the color
classes in a specific way. To do this we create many branches of colored graphs, using a
family of perfect hash functions for the coloring.

Definition 3.3.1 A k-perfect family of hash functions is a familyH of functions from
{1, . . . , n} onto{1, . . . , k} such that for eachS ⊂ {1, . . . , n} with |S| = k there exists
anh ∈ H that is bijective when restricted toS.

Schmidt and Siegal [SS90] describe a construction of ak-perfect family of hash functions
of size2O(k) log2 n, and [AYZ95] describes how to obtain an even smaller one of size
2O(k) log n.

The technique applies a family of perfect hash functions to partition vertices of the input
graph intok sets, i.e.,k different colors. By the property of perfect hash families we know
that for anyk-sized subsetS of the vertices, one of the hash functions in the family will
color each vertex inS with a different color. Thus, if we seek ak-setC with a specific
property (e.g., ak-cycle), we know that if there is such a setC in the graph then its vertices
will, for at least one function in the hash family, be colored with each of thek colors. See
the algorithm skeleton in Figure 3.2.

A major drawback of these algorithms is that while the hash family has an asymptotically
good size, theO-notation hides a large constant. Thus, from a practical viewpoint the
color coding algorithms would be slower than, for example, a2k log k algorithm.

We argue that Color Coding is closer to Bounded Search Tree algorithms than any other
class of FPT algorithms. Although the algorithm skeleton in Figure 3.2 is recursive only
in the strictest terms (it calls itself 0 times), it satisfies the other three requirements much
better. The fan out is bounded by2O(k) log n which is a FPT function by Lemma 3.1.1,
and the height of our tree (the number of nested calls) is only1. The final requirement is
that the algorithm should terminate in a polynomial time base case. In Color Coding it
depends on the problem we are solving whether or not these base cases are polynomial.
Thus we feel it is correct to consider Color Coding an application of Bounded Search
Trees.

3.3 COLOR CODING 18

Algorithm Skeleton structure for Color Coding
Input: A graphG = (V,E) and an integerk.
Output: A ’Yes’ or a ’No’ answer

LetF be a family of perfect hash functions from{1, . . . , n} to {1, . . . , k} where|V | = n.

For each functionf ∈ F
Usef to colorV usingk colors.
run algorithm for the colored problem
if ’Yes’ then Answer ’Yes’ andhalt

End For
Output a ’No’ Answer.

Figure 3.2: A skeleton structure for ’Color Coding’

3.3.1 EXAMPLE OF A COLOR CODING ALGORITHM

To give a simple example of how to use this we give an algorithm for thek-CYCLE

(P7.2)problem, which asks for a cycle of length exactlyk. This problem is obviously
NP-complete since it is equivalent toHAMILTONIAN CYCLE(7.6) for k = n. Let us
consider algorithm ’k-cycle algorithm’ in Figure 3.3.

Theorem 3.3.1 The ’k-cycle algorithm’ is correct and runs in timeO∗(2O(k)k!).

Proof. Given an instance(G, k) we prove that the algorithm outputs ak-cycle if and only
if G contains ak-cycle.

In one direction the algorithm answers ’Yes’ and outputs a cycle. As the edges not deleted
from the graph go from color-classci to ci+1(mod k), the shortest cycle in the graph is of
lengthk and since the breadth first search only test for lengths up tok, we will not find
cycles longer thank. Thus if the algorithm outputs a cycle, it must be of lengthk.

For the other direction, assume in contradiction thatG has ak-cycleS = 〈s1, s2, . . . , sk, s1〉,
while the algorithm produces a ’No’ answer. SinceF is a perfect hash family, there exists
a functionf ∈ F such that the vertices{s1, s2, . . . , sk} all received different colors when
f was used as the coloring function. Since the algorithm tries every possible ordering
of the color classes, it will try〈f(s1), f(s2), . . . , f(sk)〉. Under this ordering, none of
the edges in the cycleS will be removed, and since we test every vertex of one color
classf(si), we will at some point test if there exists a cycle fromsi to itself and output a
’Yes’-answer, contradicting the assumption.

3.3 COLOR CODING 19

Algorithm k-cycle algorithm
Input: A graphG = (V,E) and an integerk.
Output: A subgraph ofG, isomorphic to a cycle of sizek, or a ’No’ answer

LetF be a family of perfect hash functions from{1, . . . , n} to {1, . . . , k}, where|V | = n.

For each functionf ∈ F
Usef to colorV usingk colors
For each orderingc1, c2, . . . , ck of thek colors

Construct a directed graph as follows:
for eachedge(u, v) ∈ E

if f(u) = ci andf(v) = ci+1(mod k) for somei
then replace edge with arc〈u, v〉

elsedelete edgeuv

For all v such thatf(v) = c1

Use breadth first search to test if there exists a cycleC from v to itself of lengthk
If suchC exists then outputC andhalt

End For
End For

End For
Output ’No’

Figure 3.3: An algorithm for thek-Cycle problem.

To calculate the running time, we know by [AYZ95] that we have a perfect hash family of
size2O(k) log n. Thus, the result follows as the number of orderings of thek color classes
is k!, and the rest is a polynomial factor. 2

Note that instead of investigating each possible ordering of the color classes in order to
find a cycle we could use a dynamic programming strategy. This would improve the
running time, but we have chosen this simpler version because we wish to emphasize the
color coding part of the algorithm.

4

REDUCTION RULES

In this chapter we look at various techniques that all include the application of reduc-
tion rules to transform a general instance into a manageable instance that preserves the
correct solutions. This includes the second of the two most common techniques in fixed
parameter algorithm design: kernelization or preprocessing. We discuss the basics first,
giving some examples and showing some of the pitfalls inherent in this technique. We
then continue with a more advanced version called Crown Decomposition.

4.1 THE BASIC REDUCTION

The fact that smaller and/or more structured instances are simpler to solve than large
and/or general ones is a banality. Nevertheless, this is what we want to exploit in this
technique. By gradually changing an instance, reducing it in size and imposing more
structure, we seek to reach a state where it can either be decided immediately or it has
been simplified sufficiently. In the context of size reduction, we say that an instance has
been sufficiently reduced when the size of the instance can be bounded by a functionf
which depends only onk. We call an instance that has been sufficiently reduced akernel.

The main tool to facilitate the reduction is thereduction rule. Each reduction rule iden-
tifies a certain structure LHS (the left-hand-side) in the instance and modifies it to RHS
(the right-hand-side), usually by deletion (RHS =∅). The identified structure and result-
ing change is usually of a fixed size, although more complicated reduction rules exist as
well.

If a reduction ruleA cannot be applied to an instance we say that the instance isirre-
ducible forA. That an instance is irreducible implies that it does not have the structure
the reduction rule applies to. In this way, we can use reduction rules to remove a certain
structure from an instance. This allows us to shed away trivial and/or polynomial solvable
parts of an instance, thus revealing the combinatorial hard core.

Normally a single reduction rule is not sufficient to reduce a problem to a kernel. We
usually require a set of reduction rules, where each rule in the set removes one type of
problematic structure. If a set of reduction rules is sufficient to reduce any instance of a

4.1 THE BASIC REDUCTION 21

Algorithm A complete setR of i ≥ 1 reduction rules of typeRi : LHSi → RHSi

Input GraphG, integerk

while G contains someLHSi

removeLHSi from G and replace byRHSi

end while
run a brute force algorithm on the reduced graph

Figure 4.1: An algorithm skeleton for a complete set of reduction rules.

problem to a kernel we call it acomplete set of reduction rules.

The process of reducing the problem in size to a kernel is calledkernelizationand can
be viewed as a preprocessing step for a brute force algorithm that will operate on the
reduced kernel. An algorithm skeleton for this can be seen in Figure 4.1. We will adopt
the following definition of a kernelization algorithm.

Definition 4.1.1 Let L be a parameterized problem, i.e.,L consists of pairs(x, k). A
kernelizationalgorithm for problemL is a polynomial time algorithm that reduces an
arbitrary instance(x, k) to an instance(x′, k′) such that the following is satisfied:k′ ≤
g(k) and|x′| ≤ f(k) whereg and f are arbitrary functions depending only onk, and
(x, k) ∈ L ⇐⇒ (x′, k′) ∈ L.

If f in the above definition is a linear function, we say that we have alinear kernel.
Likewise if f is a quadratic function, we say that we a have aquadratic kerneland so
on. The running time of the brute force algorithm is usuallyO∗(cf(k)) so it is always
interesting to have functionf of as low order as possible, preferably linear. Beware, in
the literature on graph problems it is common to consider a kernel to be linear if the
number of vertices is linearly bounded. It could be argued that it would be more correct
if a linear kernel implied that the number of verticesand the number of edges were both
bounded by a linear function ofk. In general, we adopt the common terminology for
graph problems and consider the size of a kernel to be the number of vertices it has.

Note that all problems in the classFPT have kernelization algorithms. As we will see in
the proof below, this is a simple observation, but it is important to point out the relation-
ship.

Theorem 4.1.1 A problemA is in FPT if and only ifA has a kernelization algorithm.

Proof. The fact that a problem is in FPT when it has kernelization algorithm is trivial.
After we have reduced the instance to a kernel, we can solve the problem with any brute

4.1 THE BASIC REDUCTION 22

force algorithm. Since the instance has sizef(k), the brute force algorithm will solve the
problem in FPT time.

In the other direction, we know by definition that a problem inFPT has an algorithm
that decides the problem in timeO(nαf(k)). Now consider an instance(x, k) where
|x| = n. If n ≥ f(k), the algorithm runs in timeO(nα+1) and is polynomial, this is akin
to reducing the problem to a trivial case. On the other hand, ifn ≤ f(k) then the instance
already is a problem kernel and the result holds. 2

4.1.1 EXAMPLES OF REDUCTION RULE ALGORITHMS

Vertex Cover

Here we will give the classical example of a quadratic kernelization algorithm forVER-
TEX COVER (P7.21). It is by far the simplest algorithm using reduction rule known to us
and illustrates the technique very well. We will make use of the following reduction rule,
due to S. Buss [DF99].

Reduction Rule 1 Assumev ∈ V (G) with deg(v) > k. ThenG has aVERTEX COVER

of k vertices if and only ifG− v has a vertex cover ofk − 1 vertices.

Proof. One direction is trivial, ifG− v has a vertex coverS of sizek − 1 then obviously
G has a vertex cover of sizek by addingv to S.

In the other direction, we assume that we have a vertex coverS of sizek. Assume thatv is
not inS. SinceS is a vertex cover, we must haveN(v) ∈ S, but then|S| ≥ |N(v)| > k,
contradicting that|S| = k. Thus we know thatv ∈ S and thenS − v is a vertex cover of
sizek − 1 for G− v. 2

Armed with this reduction rule we can create the algorithm in Figure 4.2.

Theorem 4.1.2 The ’k2 kernelization algorithm for Vertex Cover’ is correct and produces
a kernel ofO(k2) vertices for vertex cover in linear time.

Proof. Let us examine the reduced graphG′ that remains after thefor -loop has deleted all
vertices of degree more thank. This instanceG′ (with the parameterk′) has been obtained
from the input(G, k) by repeatedly applying Reduction Rule 1. Thus by correctness of
Reduction Rule 1 we know thatG′ has a vertex cover of sizek′ if and only if G has a
vertex cover of sizek.

Since the reduced graphG′ has vertices of degree at mostk, any vertex inV (G′) can
cover at mostk edges. Thus the total number of edges a vertex cover of sizek′ can cover

4.1 THE BASIC REDUCTION 23

Algorithm A k2 kernelization algorithm for Vertex Cover
In: A graphG = (V,E), integerk
Out: A kernel of at mostk2 vertices or a ’No’ answer

Let k′ = k
for eachv ∈ V

if deg(v) > k then
Deletev
Decreasek′ by 1

end if
end for

Delete vertices of degree 0, call the resulting graphG′ = (V ′, E ′)

if |E ′| > k′ · k then Output ’No’
elseOutput(G′, k′)

Figure 4.2: Ak2 kernelization algorithm for vertex cover

is at mostk′ · k, thus it is at this point safe to reject any graphG′ with more edges than
k′ · k.

It is easy to see that the algorithm works in linear time. It simply scans through the
vertices and deletes the vertices of degree more thank. 2

Max Cut

The next example we will give is how to obtain a kernel forMAX CUT (P7.10). For this
problem we will assume that the input is not necessarily connected.

Consider a graphG = (V,E) with c components. Observe that the edges of a spanning
forest ofG can be arranged such that every edge crosse one cut. It follows thatG has
a MAX CUT of at least|V (G)| − c edges, and thus for any nontrivial instance it holds
that |V (G)| − c < k. If the graph is disconnected we can connect it with the following
reduction rule:

Reduction Rule 2 Let G = (V, E) be a disconnected graph withc components, and let
v1, v2, . . . , vc contain one vertex from each component. We then have thatG has aMAX

CUT of size at leastk if and only ifG′ obtained fromG wherev1, v2, . . . , vc is replaced
byvc andN(vc) =

⋃
1≤i≤c N(vi) has aMAX CUT of size at leastk.

4.2 CROWN DECOMPOSITION 24

This is true as there for any optimal cut it is possible to arrange the vertices in each
component such thatv1, v2, . . . , vc is on the same side of the cut (if needed a components
vertices can be flipped along the cut).

After this reduction rule has been applied we have that|V (G′)| = |V (G)|−c+1. Inserting
this equation into|V (G)| − c < k we get that|V (G′)| ≤ k + 1 and we have the following
theorem:

Theorem 4.1.3 MAX CUT has a kernel of sizek + 1 vertices.

Note that this kernel will lead to an algorithm that is far from optimal. [MR99, P04, LS05]
all obtain a bound of2k edges forMAX CUT, and by using the strong exact algorithm
[FK02] for MAX CUT with running timeO∗(2|E|/4), we obtain a FPT running time for
Max Cut ofO∗(2k/2).

Planar Independent Set

For some problems obtaining a kernel is trivial. In the following example we bound the
size of the kernel without applying any reduction rules.

Theorem 4.1.1 DOMINATING SET ON CUBIC GRAPHS(P7.4)has a kernel of4k ver-
tices.

Proof. Observe that since the maximum degree of a vertex is 3, no vertex can dominate
more than 4 vertices. Thusk vertices can dominate no more than4k vertices. This gives
an immediate upper bound on any ’Yes’ instance. 2

The proof above leads to a linear kernel of4k vertices and12k edges. For many problems
this would be a very good result, but here it is terrible. By the same argument as in the
proof we see that no cubic graph has a dominating set of size less thann/4. Thus for
any non-trivial problem instance we havek ≥ n/4 and thus4k ≥ n, and the bound4k
obtained from the kernel is larger than the size of the instance itself.

This shows that it is important to be aware of the lower and upper bounds on interesting
instances of the problem one is working on. This can be of great help in finding trivial
kernels and estimating the quality of a suggested kernel.

4.2 CROWN DECOMPOSITION

The reduction rules we have seen so far have all been of fixed size and have focused on a
local structure in an instance, for example a vertex with particularly high or low degree.

4.2 CROWN DECOMPOSITION 25

Figure 4.3: Example of a crown decomposition. The matched edges are dashed

In the last few years, there has been some focus on reduction rules that do not follow this
pattern. In this section we will carefully study one type of these reduction rules, those
that are based oncrown decompositions.

Definition 4.2.1 A crown decompositionof a graphG = (V, E) is a partitioning ofV
into setsC, H, andR, whereC andH are nonempty, such that the following properties
are satisfied:

1. C is an independent set.

2. No edge between a vertex inC and a vertex inR.

3. There exists an injective mapm : H → C, such thatm(a) = b implies that
(a, b) ∈ E is an edge.

An illustration of a crown decomposition of a graph can be seen in Figure 4.3.

The main reason that crown decompositions are so useful, is that we have a very nice
lemma that tells us when we can find a crown decomposition in a graph. This lemma is
due to Chor, Fellows, and Juedes and can be found in [CFJ04].

Lemma 4.2.1 If a graph G = (V,E) has an independent setI ⊆ V (G) such that
|N(I)| < |I|, then a crown decomposition(C, H,R) for G such thatC ⊆ I can be
found in timeO(|V |+ |E|).

In reduction algorithms based on crown decompositions, we often see reduction rules
that do not necessarily reduce the graph in size but rather modifies the graph so that it
allows a larger independent setI. Eventually the lemma above is invoked, and we can
use the independent setI to obtain a crown decomposition. This crown decomposition is
then used to obtain a size reduction of the graph. A good example of this can be seen in
Chapter 8.

4.2 CROWN DECOMPOSITION 26

Figure 4.4: A crown reduction rule forVERTEX COVER, reducing the size of both the
graph and the parameter. HereLHS = (C ∪H) andRHS = ∅.

Although crown reduction rules were independently discovered by Chor, Fellows, and
Juedes [CFJ04] one should note that a similar type of structure has been studied in the
field of boolean satisfiability(SAT) under the name of ’autarchies’ [K00, K03]. As we
know the main goal of a satisfiability problem is to find a truth assignment for a clause set
over a set of variables. Anautarkyis a partial truth assignment (assigns true/false to only
a subset of the variables) such that each clause that contains a variable from the variables
determined by the partial truth assignment is satisfied.

In a matching autarky we require in addition that the clauses satisfied and the satisfying
variables form a matching cover in the natural bipartite graph description of a satisfiability
problem. It is easy to see that the matching autarky is a crown decomposition in the
bipartite graph.

The main protagonist for autarchies is Oliver Kullmann, who has developed an extensive
theory on several different types of autarchies. Unfortunately, aside from thematching
autarchiesdescribed above, the other types of autarchies do not transfer easily to general
graphs.

4.2.1 EXAMPLE OF A CROWN REDUCTION RULE

The simplest example of a reduction rule using a crown decomposition is perhaps the
following folklore algorithm which applies to the problemVERTEX COVER (P7.21), see
Figure 4.4.

Lemma 4.2.2 Given a crown decomposition(C,H, R) of a graphG = (V, E), thenG
has aVERTEX COVER of sizek if and only if G′ = G[V − (C ∪ H)] has aVERTEX

COVER of sizek′ = k − |H|.

Proof. Assume in one direction thatG′ has aVERTEX COVER S ′ where|S ′| = k − |H|.
We can then create aVERTEX COVER S for G by addingH to the vertex cover, that is

4.2 CROWN DECOMPOSITION 27

Algorithm Crown Kernelization
Input: A graphG = (V,E) and an integerk.
Output: A kernel of size at most4k or a ’No’ answer

do Create a maximal matchingM in G
if |V (M)| > 2k then output answer ’No’ andhalt
else

if |V (G)− V (M)| ≤ 2k then output (G, k) andhalt
else

Create crown decomposition(C, H, R)
Let G = G[V − (C ∪H)], andk = k − |H|

repeat

Figure 4.5: A4k kernelization algorithm for vertex cover.

S = S ′ ∪H. Observe thatH is incident to all edges inE(G)− E(G′).

In the other direction we assume thatG has aVERTEX COVER S of sizek. Due to the
matching betweenH andC we have|S ∩ (H ∪ C)| ≥ |H|. (A vertex cover has to pick
one vertex incident to each matched edge.) Thus the number of vertices inS covering
edges not incident toH ∪ C is at mostk − |H| and the result follows. 2

It is this reduction rule that is used to produce the2k vertex kernel mentioned in Chapter
5. It is also possible to reach a slightly weaker kernel of4k with a simple Win/Win
argument. We will give this algorithm here to show the reduction rule in practice.

Lemma 4.2.3 The algorithm Crown Kernelization either terminates with a correct no
answer or produces a kernel of at most4k vertices forVERTEX COVER.

Proof. To see that the algorithm always terminates, observe that the graph either gives an
output or reduces the graph. Since we can have at mostO(n) reductions, the algorithm
will eventually terminate.

We first show that a ’No’ answer is always correct. The algorithm will only output ’No’
if there is a maximal matchingM in G where|V (M)| > 2k. Since we have to pick at
least one vertex from each edge, the vertex cover for this graph is greater thank.

The algorithm modifies the instance(G, k), so we have to make sure we do not introduce
or remove any solutions. At any stage of the algorithm the current graph and parameter
has been obtained by repeated applications of the crown reduction rule. By Lemma 4.2.2,

4.2 CROWN DECOMPOSITION 28

we are thus guaranteed that the reduced instance is a ’Yes’-instance if and only if the input
instance is a ’Yes’-instance.

We have|V (G)| = |V (M)|+ |V (G)−V (M)| ≤ 2k +2k = 4k, so the algorithm outputs
only graphs of at most4k vertices. Thus, the lemma is correct. 2

4.2.2 THE COMPLEXITY OF CROWN DECOMPOSITION

It has been shown that one can determine in polynomial time if a graph has a crown
decomposition [ALS05]. The algorithm given in that paper will also find a crown decom-
position in polynomial time if one exists. However, the following theorem shows that it
is harder to find crowns if we give an additional requirement on the size ofH ∪ C. This
result has to our knowledge not appeared in the literature.

SIZED CROWN (P7.18)
Instance:G = (V,E)
Parameter: Positive integerk
Question: DoesG have a crown decomposition where|H ∪ C| = k?

Theorem 4.2.1 SIZED CROWN is NP-complete.

Before we begin the proof we describe two gadgets.

An: A complete bipartiteKn,n

A+1
n : A complete bipartite graphKn,n and one vertexx universal to one partition, for a

gadgetG′ = A+1
n , if V ′ = V (G′) we write x(V ′) to indicate as this special ’entrance’

vertexx.

One should note that both gadgets can form a crown on its own (one partition inH, and
one inC) and also note that if a vertex in a gadget is inC in a crown decomposition
(C,H, R), then this implies that all vertices universal to this gadget are inH, due to
crown-separation property.

Proof. It is obvious thatSIZED CROWN is in NP, to prove hardness we will reduce the
problem fromHITTING SET, given a collection of setsQ over a set of elementsX, is
there a subsetS ⊆ X, |S| = k such that∀Qi ∈ Q,S ∩Qi 6= ∅.
ConstructG with the following set of vertices:
VX = {vxi

| xi ∈ X}
V ′

X = {v′xi
| xi ∈ X}

VQ = {vQi
| Qi ∈ Q}

4.2 CROWN DECOMPOSITION 29

Kt,t

Kt,t Kz,z

VxVx

Vq

Figure 4.6: An incomplete illustration of G, here element 1 appears in set 1 and 3

and the following gadgets (with internal edges):
V

Xi,Qj

A = A+1
t ,∀xi, Qj wherexi ∈ Qj, t = |X|+ |Q|

VB = Az, andz = |VX ∪ V ′
X ∪ VQ|+

∑
xi∈Qj

V
Xi,Qj

A (the rest of the graph)

and edges:

E1 = {vxi
v′xi

| vxi
∈ VX , v′xi

∈ V ′
X}

E2 = {vxi
u | vxi

∈ VX , u ∈ V
Xi,Qj

A \ x(V
Xi,Qj

A)}
E3 = {xivQj

| vQi
∈ VQ, xj = x(V

Xi,Qj

A)}
E4 = {vQi

u | vQi
∈ VQ, u ∈ VB}

see also Figure 4.6 for clarity.

We now prove that(Q,X) has aHITTING SET of sizek if and only if G has a crown
decomposition wherek′ = |H ∪ C| = 2k + 2|Q|+ 2z + 2t|Q|.
(⇒:) Assume thatG has aHITTING SET S ′ of sizek. We will construct a crown decom-
position in the following manner. For each elementx′i ∈ S ′, let the corresponding vertex
vxi

∈ H, and letv′xi
∈ C. (in total2k vertices)

For all vQj
∈ VQ, let vQj

be in H. If the corresponding setQj was covered by some

elementxi (if more than one element coversQj, then select one arbitrarily), letx(V
Xi,Qj

A)

be inC and letV Xi,Qj

A be in(H ∪ C) as needed(in total2|Q|+ 2t|Q|).
Finally let VB be in(H ∪ C) as needed (in total2z vertices). It is easy to verify that (1)
there are no edges from a vertex inC to a vertex inV − H (2) Each vertex inH has a
private neighbor. This is a crown and it hask′ = 2k + 2|Q|+ 2z + 2t|Q| vertices.

(⇐:) Assume thatG has a crown of size exactly2k + 2|Q|+ 2z + 2t|Q|.

4.2 CROWN DECOMPOSITION 30

Observe thatVB is 2/3 of the vertices ofG thusVB∩C 6= ∅. This implies thatVB ⊆ (C∪
H) and thatVQ ⊆ H. Since the vertices inVQ must be matched, at leastq ≥ |Q| different
A+1

n gadgets will have their ’entrance vertex’ inC, thus at leastl complete bipartite graphs
are in(C ∪H).

If l > |Q| then|C∪H| ≥ 2z+|Q|+2tl ≥ 2z+|Q|+2t(|Q|+1) ≥ 2z+|Q|+2t|Q|+2t ≥
2z + |Q|+ 2t|Q|+ 2(|X|+ |Q|) ≥ 2z + 2|Q|+ 2t|Q|+ 2|X|+ |Q| > k′ contradicting.
Thus|Q| ≤ l ≤ |Q| holds.

The neighboring vertices inVX of each of these gadgets will thus be inH, in total r,
and each of them must match somewhere (toV ′

X or a to a gadget). Matching to a gadget
causes the crown to be too large thus each vertex must match to its neighbor inV ′

x. If
r > k then the size of the crown is more thank′, thus the elements corresponding to the
r ≤ k vertices inVX is aHITTING SET of size at most sk(if r < k, one can add arbitrary
elements to reach a hitting set of size exactlyk).

2

Note that this proof does not show thatSIZED CROWN is W[1]-hard. HITTING SET is
W[1]-hard, but the reduction above is not an FPT-reduction as the parameter in the crown
decomposition we reduce to is not solely dependent on the parameter in theHITTING

SET Problem we reduce from. To our knowledge, the question ifSIZED CROWN is FPT
or W[1]-hard is still open, and deciding it would require a different proof idea than we
have used here.

5

FPT BY INDUCTION

Here we present a technique closely related to mathematical induction. We show that if
we are provided a solution for a smaller instance(G, k) we can for some problems use
the information to determine the solution for one of the larger instances(G + v, k) or
(G, k + 1).

We will argue that the two techniques Iterative Compression and Extremal Method are
actually two facets of this inductive technique, depending on wether the problem is a
minimization problem or a maximization problem.

5.1 THE BASICS

In his bookIntroduction to Algorithms[M89] Udi Manber shows how induction can be
used as a design technique to create remarkably simple algorithms for a range of prob-
lems. He suggests that one should always consider how to solve a small instance and then
how to construct a solution based on solutions to smaller problems.

For example this technique leads to the well knownINSERTION SORT algorithm when
used on theSORTING PROBLEM (P7.19), as follows:

It is trivially true that we can arrange sequences of length 1 in increasing order. Assuming
that we could sort sequences of lengthn − 1, we can sort sequences ofn elements by
first sorting the firstn− 1 elements and then inserting the last element at its correct place.
Since the insertion takesO(n) time and it is done once for each element we have a total
running time ofO(n2).

The core idea of the technique is based on using the information provided by a solution for
a smaller instance. When an instance contains both a main input and a parameter input,
we must be clear about what we mean by ’smaller’ instances. Let(G, k) be an instance,
whereG is the main input andk the parameter. We can now construct three distinctly
different ’smaller’ instances(G−v, k), (G, k−1) and(G−v, k−1). Which one of these
to use ? Clearly, trying to solve(G, k − 1) for a minimization problem or(G − v, k) for
a maximization problem is harder than the original problem and can be disregarded. The

5.2 FOR M INIMIZATION - ITERATIVE COMPRESSION 32

combination of the two(G− v, k − 1) may have some merit in either case.

In the next section we show that using smaller instances of the type(G − v, k) is very
suitable for minimization problems and leads to a technique known as Iterative Compres-
sion. Then we show that using smaller instances of the type(G, k − 1) can be used to
construct algorithms for maximization problems and is in fact the technique known as the
Extremal Method.

5.2 FOR M INIMIZATION - I TERATIVE COMPRESSION

In this section we present Iterative Compression. This technique works well on minimiza-
tion problems. We will try to improve smaller instances of the type(G − v, k), i.e., the
graph instance minus one vertex.

Since it is an inductive method we can assume that we can compute the solution for the
smaller instance. Since our problems are decision problems, the solution can take two
forms, either a ’Yes’-answer or a ’No’-answer. We now wish to use the information
provided by the answer to compute the solution for(G, k). Because of the nature of this
technique we can assume that the algorithms are constructive and thus for a ’Yes’-instance
we also have a certificate that verifies that the instance is a ’Yes’-instance (recall that NP
is the class of problems with such certificates). However, for a ’No’-answer we receive
no extra information, but we still need to be able to calculate the solution for(G, k).

A class of problems where ’No’-answers carry sufficient information is the class ofmonotone
problems. We will say that a problem is monotone if the ’No’-instances are closed under
element addition. Thus if a problem is monotone we can immediately answer ’No’ for
(G, k) if (G− v, k) is a ’No’-instance.

Given a monotone problem we can use an algorithm skeleton as seen in Figure 5.1. The
algorithm will recursively call itself at most|V (G)| times, thus the running time of an
algorithm of this type isO(n) times the time it takes to compute a solution given a smaller
solution.

Note that some minimization problems are not monotone. Consider for instanceDOM-
INATING SET (P7.3), where the addition of a universal vertex always changes a ’No’
answer to ’Yes’ (unlessk ≥ n). For such problems we believe that this technique is ill
suited.

5.2.1 EXAMPLE OF ’I TERATIVE COMPRESSION’

We will give an algorithm for the problemFEEDBACK VERTEX SET using the technique
described in the previous section.FEEDBACK VERTEX SET (P7.5)is a monotone prob-
lem as adding new vertices will never help to cover existing cycles. Consider ’Feedback

5.2 FOR M INIMIZATION - ITERATIVE COMPRESSION 33

Algorithm skeleton Iterative Compression
Input: GraphG, integerk

if |V (G)| < k then run brute force algorithm, return answer andhalt
Choose arbitrary vertexv
Recursively call problem on instance(G− v, k), obtain solutionS
if S = ’No’ then answer ’No’
else Compute in FPT time a solution for(G, k) based onS

Figure 5.1: An algorithm skeleton for Iterative Compression, this technique assumes that
the problem is monotone.

Vertex Set Algorithm’ in Figure 5.2.

Algorithm ’FVS’
Input: GraphG, integerk

if |V (G)| ≤ k then return ’Yes’ andhalt
Choose arbitrary vertexv ∈ G
S = FV S(G− v, k)
if S = ’No’ then answer ’No’ andhalt

Let T = G− (S ∪ v), note thatT is a forest.
Create tree decomposition(X, I) of T .
Add S ∪ v to each bag inX to obtain tree decomposition(X ′, I) of width at mostk + 2.
run Treewidth algorithm for feedback vertex set on tree decomposition(X ′, I)
output answer from treewidth algorithm.

Figure 5.2: An inductive algorithm forFEEDBACK VERTEX SET.

Theorem 5.2.1 Algorithm ’FVS’ is correct, and solvesFEEDBACK VERTEX SET in FPT
time.

Proof. We will first prove that the algorithm does not incorrectly decide the answer before
running the treewidth sub routine. If the algorithm answers ’Yes’ because|V (G)| ≤ k,
it is correct as we can selectV as our feedback vertex set. If the algorithm answers
’No’ because(G− v, k) is a ’No’-instance, it is correct asFEEDBACK VERTEX SET is a
monotone problem.

5.3 FOR MAXIMIZATION - THE EXTREMAL METHOD 34

We assume the treewidth subroutine is correct so it remains to show that the algorithm
computes a tree decomposition of the graph with bounded treewidth. The algorithm com-
putes the graphT = G − (S ∪ v) which is a forest, and it is easy to construct a tree
decomposition of width 1 from this forest, having one bag for each edge. The algorithm
then addsS ∪ v to each bag to obtain a correct tree decomposition of widthk + 2.

It follows from results in [ALS91] thatFEEDBACK VERTEX SET is solvable in FPT time
if the treewidth is the parameter. This gives the desired result. 2

5.2.2 HOW I S I T USED IN PRACTICE ?

Two papers that use this type of induction are [RSV03] and [DFRS04]. In [RSV03], Reed,
Smith, and Vetta managed to show that the problemk-ODD CYCLE COVER (P7.13)(is
it possible to deletek vertices fromG to obtain a bipartite graph) is in FPT, thus settling a
long open problem in the field. By the induction hypothesis, assume that we can determine
if (G− v, k) is a ’No’ or a ’Yes’ instance fork-ODD CYCLE COVER. The induction step
is then in two parts. First, the trivial part: to show that if(G − v, k) is a ’No’-instance
then the inclusion of another vertex cannot improve the situation. The second part deals
with the situation when we have a positive certificateS consisting of thek vertices to
be deleted from(G − v, k) to make it bipartite. If we have such a certificateS, we can
conclude thatS ∪ {v} is a solution of size at mostk + 1 for G. The authors then show,
by a fairly complicated argument which we will not explain here, that given a solution of
size at mostk + 1 it is possible to determine in FPT time whether or not there exists a
solution of sizek.

A very similar use of induction is seen in [DFRS04] where Dehne, Fellows, Rosamond
and Shaw give a2k kernel forVERTEX COVER (P7.21)without using the complicated
Nemhauser-Trotter results [NT75]. By induction assume we can determine if(G− v) has
ak-VERTEX COVER, if no such cover exists we cannot find one forG either. On the other
hand if(G− v) has ak-VERTEX COVER S thenS ∪ {v} is ak + 1-VERTEX COVER for
G and by implication has an− (k +1)-INDEPENDENTSET. As long as|V (G)| > 2k +2
we know by Lemma 4.2.1 thatG has a crown decomposition, which in turn leads to a
reduction inG as seen in Lemma 4.2.2. This reduction continues until the graph has size
at most2k + 2, at which point we can test fork-VERTEX COVER using a brute force
algorithm.

5.3 FOR M AXIMIZATION - THE EXTREMAL M ETHOD

For maximization problems we consider smaller instances of the type(G, k − 1). Thus
we will induct onk instead of onn. Most maximization problem are trivial for(G, 0).

For the same reasons as before we need monotonicity in the problem, but since we are
inducting on the parameter we will instead require that the ’No’-instances are closed under

5.3 FOR MAXIMIZATION - THE EXTREMAL METHOD 35

parameter increment. That is, if instance(G, k) is a ’No’-instance then(G, k′) is also a
’No’-instance for allk′ > k. If a problem satisfies this we say it isparameter monotone.

For a parameter monotone problem we can modify the algorithm skeleton from the previ-
ous section to obtain an inductive algorithm for maximization problems, see Figure 5.3.

Algorithm skeleton for parameter monotone problems
Input: GraphG, integerk

if k = 0 then run brute force algorithm, return answer andhalt
Inductively call problem on instance(G, k − 1), obtain solutionS
if S = ’No’ then answer ’No’
elseCompute in FPT time a solutionS ′ for (G, k) based onS and returnS ′

Figure 5.3: An algorithm skeleton for parameter monotone problems.

One way to compute a solution for(G, k) based on the certificateS for the ’Yes’-solution
for (G, k − 1) is to make rules of the following type:

Either solutionS can be modified to be a solution for(G, k) or G has property
P .

Thus we either prove thatG is a ’Yes’-instance for(G, k) and can terminate, orG has a
specific propertyP . By creating a set of rulesR of this type we hope to impose enough
structure to prove a lemma of this type:

If no rule inR applies to(G, k) then|V (G)| < f(k).

The setR of rules can be augmented with normal reduction rules to remove unwanted
structures.

What we have described above is equivalent to theAlgorithmic Versionof theMethod of
Extremal Structureas described in Elena Prieto’s PhD thesis [P05].

The regularMethod of Extremal Structuretries to gradually improve a set of reduction
rulesR until it is possible to prove aboundarylemma of the following type:

If no rule inR applies to(G, k) and(G, k) is a ’Yes’-instance and(G, k + 1)
is a ’No’-instance, then|V (G)| ≤ f(k)

5.3 FOR MAXIMIZATION - THE EXTREMAL METHOD 36

Given such a boundary lemma and the fact that the problem is aparameter monotone
maximization problem we can immediately prove akernelizationlemma saying

If no rule in R applies to(G, k) and|V (G)| > f(k), then(G, k) is a ’Yes’-
instance.

When trying to prove the boundary lemma we consider the class

ER(k) = {G | (G, k) is irreducible underR, (G, k) is a ’Yes’-instance, and
(G, k + 1) is a ’No’-instance}.

If max{|V (G)| | G ∈ ER(k)} is a function ofk we can prove the boundary lemma,
otherwise we need to strengthen our reduction rules.

We can find new reduction rules by considering one of the graphs with the largest number
of vertices inER(k). We can in this way often identify crucial structures that need to be
taken care of with reduction rules before we can proceed.

5.3.1 HOW IS IT USED IN PRACTICE ?

The Extremal method has been successfully applied to a range of problems and we
will give a list with references here:MAX CUT [P04], MAX LEAF SPANNING TREE

[P05], NON-BLOCKER [P05], EDGE-DISJOINT TRIANGLE-PACKING [MPS04], K1,s-
PACKING [PS04],K3-PACKING [FHRST04],SET SPLITTING [DFR03], andMAX IN-
TERNAL SPANNING TREE [PS05].

For an example of the extremal method we refer the reader to Chapter 9 where we use the
Extremal Method to obtain a quadratic kernel forK1,s-packing.

6

WIN /WIN

Imagine that we solve our problem by first calling an FPT algorithm for another problem
and use both its ’Yes’ and ’No’ answer to decide in FPT time the answer to our problem.
Since we then ’win’ if its answer is ’Yes’ and we also ’win’ if its answer is ’No’, this is
called a ’Win/Win’ situation.

In this chapter we focus on this technique, which is in our opinion one of the strongest
techniques for creating parameterized algorithms. Indeed, according to [DH05] the only
known algorithms with sub-exponential running timeO∗(c

√
k) are algorithms based on

treewidth and branchwidth, and these fall into the Win/Win category.

6.1 BASIC W IN W IN - BEST OF TWO WORLDS

In Win/Win we make use of a relationship between two parameterized problemsA and
B. We can for some problems show that an instance either is a ’Yes’-instance for problem
A or a ’Yes’-instance for problemB. This can be useful for constructing an algorithm for
A if we can decide problemB in FPT time.

Consider the algorithm skeleton shown in Figure 6.1. We run our decision algorithmΦ for
problemB on inputI. If Φ returns a ’No’ answer, we know by the relationship between
A andB that A is a ’Yes’-instance(this can sometimes yield a non-constructive result
where we know thatA is a yes-instance but we have no certificate). Otherwise we have
obtained the knowledge thatI is a ’Yes’-instance forB, and ifΦ is constructive, we also
have a certificate. We then proceed to solveA with the extra information provided. In the
following subsection, we give examples of how this has been done in the literature.

6.1.1 EXAMPLES OF W IN /W IN

To our knowledge this technique was not given a self-standing discussion until [PS03]
and then under the name ’Either/Or’ (in relation only to vertex cover) and in [F03] where
it was given the name Win/Win. Thus, earlier papers using this technique will not point
out that a Win/Win technique is used.

6.1 BASIC WIN WIN - BEST OF TWO WORLDS 38

Algorithm: A Win/Win skeleton for problemA using problemB
Input: GraphG, parameterk
run FPT algorithmΦ for B on (G, k)
if (G, k) is a ’No’-instance forB then Output ’Yes’
else runuse structure given byΦ to solveA onG.

Figure 6.1: The classical Win/Win algorithm structure ,although other Yes/No relation-
ships betweenA andB may be used.

In the literature on parameterized algorithms there are several notable occurrences of a
Win/Win strategy. Many problems can be related toTREEWIDTH (P7.20)or BRANCH-
WIDTH (P7.1)and this is of great interest as there are many powerful algorithms that
solve NP-hard problems in FPT time if the parameter is the treewidth or the branchwidth
of the input graph.

One example of this isPLANAR DOMINATING SET (P7.16). We give an FPT algorithm
for PLANAR DOMINATING SET by showing that a planar graph with ak-dominating set
has low branchwidth. One way to prove this is via outerplanarity, as done in [AFN01].

Definition 6.1.1 A graphG is 1-outerplanarif there is a crossing-free embedding ofG
in the plane such that all vertices are on the exterior face. A graphG is r-outerplanarif
it has a planar embedding such that if all vertices on the exterior face are deleted, each
connected components of the remaining graph isr′-outerplanar for somer′ < r.

Vertices inr-outerplanar graphs are thus arranged intor layers and since a vertex can only
dominate vertices on its own and its two neighboring layers we have

Observation 6.1.1 A planar graph that has ak-dominating set isr-outerplanar for some
r ≤ 3k.

Due to Hjortås [H05] we have

Theorem 6.1.1 LetG be anr-outerplanar graph. ThenG has branchwidth at most2r+1.

Note that a weaker bound of3r + 1 follows from an old result by Bodlaender [B86].
Together with Observation 6.1.1 this gives

Corollary 6.1.1 A planar graph that has ak-dominating set has branchwidth at most
6k+1.

6.1 BASIC WIN WIN - BEST OF TWO WORLDS 39

Computing the branchwidth of a planar graph is polynomial, using the ’Ratcatcher’ al-
gorithm [RS94]. Using this we can construct a Win/Win algorithm forPLANAR DOM-
INATING SET as seen in Figure 6.2. The running time of this algorithm is dependent
on the dynamic programming algorithm forDOMINATING SET on graphs with bounded
branchwidth.

Algorithm Win/Win for PLANAR DOMINATING SET

Input: A graphG = (V,E) and an integerk.
Output: A ’Yes’ or a ’No’ answer

Run the Ratcatcher algorithm to test if branchwidth is more than 6k+1.
if branchwidth ofG > 6k + 1 then Output ’No’ andhalt
else runM INIMUM DOMINATING SET algorithm for graphs of bounded branchwidth

Figure 6.2: A Win/Win algorithm for Planar Independent Set

Theorem 6.1.2 [FT03] M INIMUM DOMINATING SET on graphs with branchwidth at
mostbw can be solved in timeO∗(23 log4 3bw)

Corollary 6.1.2 Algorithm ’Win/Win forPLANAR DOMINATING SET’ is correct and has
running timeO∗(214.265 k).

Proof. Observe that the algorithm is correct when it answers ’No’ when the branchwidth
bw is greater than6k + 1, as this follows directly from Corollary 6.1.1.

Otherwise the algorithm calls theM INIMUM DOMINATING SET algorithm from [FT03]
and answers accordingly.

The running time isO(214.265 k) as the ratcatcher subroutine is polynomial and we run the
M INIMUM DOMINATING SET algorithm with branchwidth at most6k + 1. 2

It is possible to show a much stronger relationship between the size of aPLANAR DOM-
INATING SET and treewidth. In [AFN01] it is shown that a planar graph that has a
k-dominating set has treewidth at most6

√
34
√

k, giving an algorithm of running time
O(c

√
k). As mentioned before it is only Win/Win algorithms of this type that are known

to give parameterized algorithms with subexponential running time for NP-hard problems.
The result in [AFN01] requires some work, and we will instead give a more elegant proof
of a c

√
k-algorithm from [FT04], which is based on the following result from [RS91].

Theorem 6.1.3 Let t ≥ 1 be an integer. Every planar graph with no(t × t)-grid minor
has branchwidthbw(G) ≤ 4t− 3.

6.2 GRAPH M INOR THEOREM 40

We can then prove the following Lemma.

Lemma 6.1.1 If G has branchwidthbw(G) > 8
√

k + 5 thenG has noPLANAR DOMI-
NATING SET of sizek.

Proof. Let t = 2
√

k + 2, since8
√

k + 5 = 4t− 3 we know by Theorem 6.1.3 thatG has
a (2

√
k + 2)× (2

√
k + 2) grid M as a minor.

Consider an embedding of graphG in the plane. We will now try to calculate a minimum
bound on the dominating set needed to dominate the vertices inM . A vertex v could
potentially dominate the entire outer face of the grid, but any vertex in any face of the
grid, or any vertex of the grid itself cannot dominate more than4 of the vertices in the
(2
√

k)×(2
√

k) innergrid, that isM minus it’s outer face. Thus we need2
√

k·2
√

k/4 = k
vertices to dominate the inner grid, plus at least one to dominate the outer face ofM . This
proves the lemma. 2

Thus we could modify the input Ratcatcher subroutine in Figure 6.2 to check if the graph
has branchwidth8

√
k + 5. This would give the following

Theorem 6.1.4 PLANAR DOMINATING SET can be solved in timeO∗(219.02
√

k).

[FT04] proves the even stronger result, that a planar graphG with bw(G) > 3
√

4.5
√

k

implies noPLANAR DOMINATING SET of sizek, giving aO∗(215.13
√

k) algorithm for the
problem, which is the fastest known.

6.2 GRAPH M INOR THEOREM

The famous Graph Minor Theorem can be used to prove membership for FPT. Note that
the proofs are nonconstructive and the algorithms contain hidden huge constants.

Definition 6.2.1 A graph H is a minor of a graphG, denotedH ¹m G, if a graph
isomorphic toH can be obtained fromG using the following three operations repeatedly.

1. Deleting an isolated vertex

2. Deleting an edge

3. Edge contraction

6.2 GRAPH M INOR THEOREM 41

The relation¹m forms an ordering of finite graphs, this ordering is clearly a quasi-order,
i.e,¹m is reflexive and transitive. However, the key result in this technique is the follow-
ing famous graph minors theorem due to Robertson and Seymour [RS99].

Theorem 6.2.1 Finite graphs are well-quasi-ordered by the minor ordering.

A quasi-order is awell-quasi orderingif there is no infinite antichain. Anantichainis an
infinite set of elements, no two of which are comparable in the ordering.

In order to see how this can be used to prove the existence of FPT algorithms, consider a
problemA with the property that for anyk the ’Yes’-instances are closed under minors.
In other words if a graphG is a ’Yes’-instance thenH such thatH ¹m G is also a ’Yes’-
instance. The pair(A, k) forms the minor-closed graph classAk consisting of all graphs
G such that(G, k) is a ’Yes’-instance. Now consider the graph class Minimal Forbidden
Minors ofAk, denotedMFM(Ak).

MFM(AK) = {G | G /∈ Ak and(∀H ¹m G,H ∈ AK ∨H = G)}

By definition, this class is an anti-chain of the¹m ordering of finite graphs.

Theorem 6.2.1 tells us thatMFM(Ak) is a finite set and its size is clearly only dependent
onk. Note that we can test if an input graphG is a member ofAk by checking if it contains
as a minor any of the graphs inMFM(Ak). The main subroutine is this problem:

M INOR ORDER TEST (P7.12)
Instance: GraphsG andH
Parameter:|V (G)|
Question: IsH ¹m G?

M INOR ORDER TEST is proven FPT by Robertson and Seymour [RS99]. Putting it all
together we get the algorithm skeleton in Figure 6.3.

This can be considered a Win/Win algorithm as we relate the problem we wish to solve to
the problem of checking if one of the forbidden minors appear in our problem instance.

Note that since the forbidden minors change ask grows, the algorithm itself also changes
(it needs to know the forbidden minors for eachk). Thus we need one algorithm for each
fixedk.

6.2 GRAPH M INOR THEOREM 42

Algorithm An algorithm skeleton for the Graph Minor technique
Input: A graphG = (V,E) and an integerk.
Output: A ’Yes’ or a ’No’ answer

Let MFM be the set of forbidden minors for the specified problem and the givenk.
for each minorH ∈ MFM

if H ¹m G then answer’No’ and halt
end for

answer ’Yes’

Figure 6.3: An algorithm skeleton for using graph minors which is applicable when the
class{G | (G, k) is a ’Yes’-instance} is closed under minors.

6.2.1 EXAMPLE OF A GRAPH M INOR ALGORITHM

Applying this technique is very simple. It suffices to check whether the ’Yes’-instances
are preserved under operation1, 2, and3 in Definition 3.

Consider the problemFEEDBACK VERTEX SET (P7.5).

Observation 6.2.1 If (G, k) is a ’Yes’-instance forFEEDBACK VERTEX SET andH ¹m

G, then(H, k) is a ’Yes’-instance forFEEDBACK VERTEX SET

Proof. We will show that ifG has a feedback vertex setS of sizek thenG′, k has a
feedback vertex set of sizek, whereG′ is obtained fromG by performing one of the three
operations: (1) edge deletion, (2) deletion of an isolated vertex and (3) edge contraction.

For operations (1) and (2) the result is trivial asS is a feedback vertex set inG′. For
operation (3) , where we replace two neighboring verticesv1 andv2 with a vertexv3, S is
a feedback vertex set forG′ unlessS containedv1 or v2, if that was the case we can add
v3 to S to obtain a feedback vertex set of sizek for G′.

By repeated application of the above argument we can prove the result for any minorH
of G. 2

We now have enough information to conclude thatFEEDBACK VERTEX SET is in FPT.
Although its extreme simplicity makes the technique very useful as a method for proving
membership in FPT, the number of forbidden minors is often quite large and also often
unknown. Thus, this technique is rarely viable as a tool for designing practical algorithms.

7

L IST OF PROBLEMS

In this appendix we list all problems used in the text in alphabetical order.

7.1 BRANCHWIDTH

Instance: A graphG = (V,E)
Parameter: A positive integerk
Question: DoesG have branchwidthk?

7.2 CYCLE

Input: A graphG = (V,E)
Parameter: A positive integerk
Question: Does there exist a cycle of lengthk in G?

7.3 DOMINATING SET

Input: A graphG = (V,E)
Parameter: A positive integerk
Question: Is there a setV ′ ⊆ V (G) such that|V ′| ≤ k

and for allv ∈ V , we haveN [v] ∩ V ′ 6= ∅?

7.4 DOMINATING SET ON CUBIC GRAPHS

Input: A graphG = (V,E) whose maximum degree is three
Parameter: A positive integerk
Question: Is there a setV ′ ⊆ V (G) such that|V ′| ≤ k

and for allv ∈ V , N [v] ∩ V ′ 6= ∅?

7.5 FEEDBACK VERTEX SET 44

7.5 FEEDBACK VERTEX SET

Input: A graphG = (V,E)
Parameter: A positive integerk
Question: Is there a setV ′ ⊆ V (G) such that|V ′| ≤ k

andV − V ′ contains no cycles?

7.6 HAMILTONIAN CYCLE

Input: A graphG = (V,E)
Question: Does there exist a cycle of lengthn in G?
Comment: Classical NP-complete problem. (Listed in [GJ79] as problem GT37.)

7.7 HITTING SET

Input: A collectionC of subsets of a setS
Parameter: A positive integerk
Question: Is there a setS ′ ⊆ S such that|S| ≤ k

andS ′ contains at least one element from each set inC?

7.8 INDEPENDENT SET

Input: A graphG = (V,E)
Parameter: A positive integerk
Question: Is there a setV ′ ⊆ V (G) such that|V ′| ≥ k

andE(G[V ′]) = ∅?

7.9 K3-PACKING

Input: A graphG = (V,E)
Parameter: A positive integerk
Question: Is there a collection ofk pairwise vertex disjoint

subgraphs ofG each isomorphic toK3?

7.10 MAX CUT

Instance: A graphG = (V,E)
Parameter: A positive integerk
Question: Is there a partitioning ofV into two sets

V ′,V ′′ such that the number of edges betweenV ′ andV ′′

is at least k?

7.11 MAX LEAF SUBTREE 45

7.11 MAX L EAF SUBTREE

Instance: A graphG = (V,E)
Parameter: A positive integerk
Question: DoesG have a subtree with at leastk leaves?

7.12 MINOR ORDER TEST

Instance: GraphsG = (V, E), H = (V, E)
Parameter: |V (H)|
Question: Is H ¹m G?

7.13 ODD CYCLE COVER

Input: A graphG = (V,E)
Parameter: A positive integerk
Question: Is there a setV ′ ⊆ V (G) such that|V ′| ≤ k

andV − V ′ is bipartite?

7.14 P2 PACKING

Input: A graphG = (V,E)
Parameter: A positive integerk
Question: Is there a collection ofk pairwise vertex disjoint

subgraphsG each isomorphic toP2?

7.15 PLANAR I NDEPENDENT SET

Input: A planar graphG = (V, E)
Parameter: A positive integerk
Question: Is there a setV ′ ⊆ V (G) such that|V ′| ≥ k

andE(G[V ′]) = ∅?

7.16 DOMINATING SET

Input: A planar graphG = (V, E)
Parameter: A positive integerk
Question: Is there a setV ′ ⊆ V (G) such that|V ′| ≤ k

and for allv ∈ V ,we haveN [v] ∩ V ′ 6= ∅?

7.17 SHORT NONDETERMINISTIC TURING MACHINE ACCEPTANCE 46

7.17 SHORT NONDETERMINISTIC TURING M ACHINE

ACCEPTANCE

Instance: A nondeterministic Turing machine M
Parameter: A positive integerk
Question: Will M halt in at mostk steps?

7.18 SIZED CROWN

Instance: A graphG = (V,E)
Parameter: A positive integerk
Question: DoesG have a crown-decomposition where|H ∪ C| = k?

7.19 SORTING

Instance: A sequence ofn integersx1, x2, . . . , xn

Question: What is the sequence of the same integers in increasing order?

7.20 TREEWIDTH

Instance: A graphG = (V,E)
Parameter: A positive integerk
Question: DoesG have treewidthk?

7.21 VERTEX COVER

Input: A graphG = (V,E)
Parameter: A positive integerk
Question: Is there a setV ′ ⊆ V (G) such that|V ′| ≤ k

andV − V ′ is an independent set?

BIBLIOGRAPHY

[ABFKN02] J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier. Fixed
parameter algorithms for dominating set and related problems on planar graphs,
Algorithmica, vol. 33, pages 461–493, 2002.

[AFN01] J. Alber, H. Fernau, and R. Niedermeier. Parameterized complexity: exponen-
tial speedup for planar graph problems.Proceedings of ICALP2001, LNCS 2076,
2001

[ALS91] S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable
graphs,Journal of Algorithms, Vol 12, issue 2, pages 308–340, 1991.

[ALS05] F. Abu-Khzam, M. Langston, and W. Suters. Fast, Effective Vertex Cover Ker-
nelization: A Tale of Two Algorithms,Proceedings, ACS/IEEE International Con-
ference on Computer Systems and Applications, Cairo, Egypt, January, 2005.

[AYZ95] N. Alon, R. Yuster, and U. Zwick. Color-Coding,Journal of the ACM, Volume
42(4), pages 844–856, 1995.

[B86] H. Bodlaender. Classes of graphs with bounded treewidth,TR RUU-CS-86-22,
Utrecht University, 1986.

[C71] S. Cook. The compexity of theorem-proving procedures,Proceedings of 3rd an-
nual ACM Symposium on Theory of Computing, Association for Computing Ma-
chinery, New York, pages 151–158, 1971

[CCDF97] Liming Cai, J. Chen, R. Downey, and M. Fellows. The parameterized com-
plexity of short computation and factorization,Archive for Mathematical Logic36,
pages 321–338, 1997

[CFJ04] B. Chor, M. Fellows, and D. Juedes. Linear Kernels in Linear Time, or How to
Savek Colors inO(n2) steps.Proceedings of WG2004, LNCS, 2004.

[CKJ01] J. Chen, I. Kanj, and W. Jia. Vertex cover: Further Observations and Further
Improvements,Journal of AlgorithmsVolume 41 , pages 280–301, 2001.

[DEFPR03] R. Downey, V. Estivill-Castro, M. Fellows, E. Prieto-Rodriguez, and F.
Rosamond. Cutting Up is Hard to Do: the Parameterized Complexity ofk-Cut and
Related Problems,Electronic Notes in Theoretical Computer Science78, pages
205–218, 2003.

BIBLIOGRAPHY 48

[DF99] R. Downey and M. Fellows. Parameterized Complexity,Springer-Verlag, 1999.

[DFRS04] F. Dehne, M. Fellows, F. Rosamond, P.Shaw. Greedy Localization, Iterative
Compression and Modeled Crown Reductions: New FPT Techniques and Im-
proved Algorithms for Max Set Splitting and Vertex Cover,Proceedings of IW-
PEC04, LNCS 3162, pages 271–281, 2004

[DFFPR05] F. Dehne, M. Fellows, H. Fernau, E. Prieto and F. Rosamond. Nonblocker:
Parameterized algoritmics for Dominating Set.to appear SOFSEM2006

[DH05] E. Demaine and M. Hajiaghayi. Bidimensionality: New Connections between
FPT Algorithms and PTASs,Proceedings of the 16th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA 2005), January 23–25, pages 590–601, 2005.

[E65] J.Edmonds. Paths, trees and flowers,Can.J.Math., 17, 3, pages 449–467, 1965.

[F03] M.Fellows. Blow-ups, Win/Wins and Crown Rules: Some New Directions in FPT,
Proceedings WG 2003, Springer Verlag LNCS 2880, pages 1–12, 2003.

[FKNRSTW04] M. Fellows, C. Knauer, N. Nishimura, P. Ragde, F. Rosamond, U. Stege,
D. Thilikos, and S. Whitesides. Faster fixed-parameter tractable algorithms for
matching and packing problems,Proceedings of the 12th Annual European Sym-
posium on Algorithms (ESA 2004), 2004.

[FG01] J.Flum and M. Grohe. Fixed parameter tractability, definability, and model
checking,SIAM Journal on Computing31: pages 113–145,2001

[FG02] J. Flum and M.Grohe. Describing parameterized complexity classes.Proceedings
of 19th STACS, LNCS 2285, pages 359–371,2002.

[FK02] S. Fedin and A. Kulikov. A2|E|/4-time Algorithm for MAX-CUT.Zapiski nauch-
nyh seminarov POMI, No.293, pages 129–138, 2002.

[FMRS00] M.R. Fellows, C. McCartin, F. Rosamond, and U.Stege. Coordinatized Ker-
nels and Catalytic Reductions: An Improved FPT Algorithm for Max Leaf Span-
ning Tree and Other Problems,Foundations of Software Technology and Theoreti-
cal Computer Science, 2000.

[FT03] F. Fomin and D. Thilikos. Dominating sets in planar graphs: Branchwidth and
exponentialspeed-up,14th ACM-SIAM SODA, pages 168–177, 2003.

[FT04] F. Fomin and D. Thilikos. A simple and fast approach for solving problems on
planar graphs,STACS, 2004.

[G99] M.Grohe. Descriptive and Parameterized complexity, In13th CSLLNCS 1683,
pages 14–31,1999.

BIBLIOGRAPHY 49

[GJ79] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness,W.H. Freeman, San Francisco, 1979.

[H05] O. Hjortås. Branch decompositions ofk-outerplanar graphs,Master thesis, Uni-
versity of Bergen, 2005

[K72] R.M. Karp, Reducibility among combinatorial problems’,Complexity of Com-
puter Computations, Plenum Press, New York, pages 85-103, 1972.

[K00] O. Kullmann. Investigations on autark assignments,Discrete Applied Mathemat-
ics, vol. 107, pages 99–138, 2000.

[K03] O. Kullmann. Lean clause-sets: Generalizations of minimally unsatisfiable clause-
sets,Discrete Applied Mathematics, vol 130, pages 209–249, 2003.

[L04] M. Langston. Private communication.

[LS05] D. Lokshtanov and C. Sloper. Fixed Parameter Set Splitting, Linear Kernel and
Improved Running Time,proceedings of ACID 2005, 2005

[L83] H. Lenstra. Integer programming with a fixed number of variables,Mathematics of
Operations Research, 8, pages 538–548, 1983.

[M89] U. Manber. Introduction to algorithms, a creative approach,Addison Wesley Pub-
lishing, 1989.

[MR99] M. Mahajan, V. Raman. Parameterizing above guaranteed values: MaxSat and
MaxCut,Journal of Algorithms, vol. 31, issue 2, pages 335-354, 1999.

[N02] R. Niedermeier. Invitation to Fixed-Parameter Algorithms.Habilitation thesis, un-
published, 2002

[NR00] R. Niedermeier and P. Rossmanith. A general method to speed up fixed parameter
algorithms,Information Processing Letters, 73, pages 125–129, 2000.

[NT75] G. Nemhauser and L. Trotter Jr. Vertex Packings: Structural properties and algo-
rithms,Mathematical Programming, 8, pages 232–248, 1975.

[P05] E. Prieto. Systematic kernelization in FPT algorithm design.PhD thesis

[P05b] E. Prieto. The Method of Extremal Structure on thek-Maximum Cut Problem,
Proceedings of Computing: The Australasian Theory Symposium (CATS Š05), Aus-
tralian Computer Science Communications, vol. 27(4), pages 119-Ű126, 2005.

[PS03] E. Prieto, C. Sloper. Either/Or: Using Vertex Cover Structure in designing FPT-
algorithms - the case of k-Internal Spanning Tree,Proceedings of WADS 2003,
LNCS vol 2748, pages 465–483.

BIBLIOGRAPHY 50

[PS04] E. Prieto, C. Sloper. Looking at the Stars,Proceedings of International Workshop
on Parameterized and Exact Computation (IWPEC Š04), LNCS vol. 3162, pages
138-Ű149, 2004.

[PS05] E. Prieto, C. Sloper. Reducing to Independent Set Structure — the Case ofk-
INTERNAL SPANNING TREE’ , Nordic Journal of Computing, to appear.

[R01] Robson. Finding a maximum independent set in timeO(2n/4)? Manuscript.

[RS91] N. Robertson, P.Seymour. Graph Minors X Obstructions to tree-decomposition,
Journal Combin. Ser. B., 52, pages 153–190, 1991.

[RS94] N. Robertson, P. Seymour. Quickly excluding a planar graph,Journal Combin.
Ser. B., 62, pages 323-348, 1994.

[RS99] N. Robertson, PD. Seymor. Graph Minors XX Wagner’s conjecture.To appear.

[RSV03] B.Reed, K.Smith, and A. Vetta. Finding Odd Cycle Transversals,Operations
Research Letters, 32, pages 299-301, 2003.

[SS90] J.P. Schmidt and A. Siegel. The spatial complexity of obliviousk-probe hash
functions.SIAM Journal of Computing, 19(5), pages 775–786, 1990.

[W03] G. Woeginger. Exact algorithms for NP-hard problems: A survey,Combinatorial
Optimization - Eureka! You shrink!, M. Juenger, G. Reinelt and G. Rinaldi (eds.).
LNCS 2570, Springer, pages 185–207, 2003.

Part II

Papers - case studies

8

MAX INTERNAL SPANNING TREE

Reducing to Independent Set Structure — the Case ofk-INTERNAL SPANNING

TREE1

Elena Prieto Christian Sloper

Abstract

Thek-INTERNAL SPANNING TREE problem asks whether a certain graphG
has a spanning tree with at leastk internal vertices. Basing our work on the
results presented in [PS03], we show that there exists a set of reduction rules
that modify an arbitrary spanning tree of a graph into a spanning tree with no
induced edges between the leaves. Thus, the rules either produce a tree with
many internal vertices, effectively deciding the problem, or they identify a
large independent set, the leaves, in the graph. Having a large independent set
is beneficial, because then the graph allows both ‘crown decompositions’ and
path decompositions. We show how this crown decomposition can be used
to obtain aO(k2) kernel for thek-INTERNAL SPANNING TREE problem,
improving on theO(k3) kernel presented in [PS03].

8.1 INTRODUCTION

The subject of Parameterized Complexity is motivated by an abundance of NP-complete
problems that have very different behavior when parameterized. These problems in-
cludes well-known problems likeDOMINATING SET, BANDWIDTH , SET SPLITTING,
and INDEPENDENT SET (for definitions the reader may refer to [GJ79]). Some of the
NP-complete are tractable when parameterized and admits very good parameterized al-
gorithms. A formal definition of the class of problems which are tractable when parame-
terized is defined as follows:

1This paper has been accepted to Nordic Journal of Computing and is due to appear.

8.2 USING REDUCTION RULES 53

Definition 8.1.1 (Fixed Parameter Tractability) A parameterized problemL ⊆ Σ∗ × Σ∗

is fixed-parameter tractableif there is an algorithm that correctly decides, in timef(k) nα,
for input (x, y) ∈ Σ∗ × Σ∗ whether or not(x, y) ∈ L, wheren is the size of the input
x, |x| = n, k is the parameter,α is a constant (independent ofk) andf is an arbitrary
function.

The class of fixed-parameter tractable problems is denoted FPT.

It is not believed that allNP-complete problems are Fixed Parameter Tractable, the class
is split into a hierarchy of classes FPT⊆W[1]⊆W[2]⊆ · · · ⊆W[P]. Here the classes
W[1]⊆W[2]⊆ · · · ⊆W[P] are intractable and we justify this by a completeness-result not
unlike classical complexity. In [CCDF97] Cai, Chen, Downey, and Fellows proved that
k-SHORT NONDETERMISTICTURING MACHINE ACCEPTANCE(Will a Nondetermistic
Turing Machine halt ink or less steps?) is W[1]-complete thus giving strong natural
evidence thatFPT 6= W [1].

Further background on parameterized complexity can be found in [DF98].

The problem we address in this paper concerns spanning trees, namelyk-INTERNAL

SPANNING TREE (DoesG have a spanning tree with at mostn−k leaves?). The problem
is NP-complete asHAMILTONIAN PATH can be considered a special case ofk-INTERNAL

SPANNING TREE by makingk = |V | − 2, andHAMILTONIAN PATH is NP-complete.

In Section 8.4 we use standard techniques to show thatk-INTERNAL SPANNING TREE

is in FPT. In Section 8.5 we describe how to use the boundedindependent set structure
to design an FPT algorithm fork-INTERNAL SPANNING TREE. We give an analysis of
the running time of the algorithm generated by the method in Section 8.6. In Section 8.7
we show how the independent structure allows a pathwidth decomposition which can be
useful for some problems, we illustrate this onNONBLOCKER, the dual ofDOMINATING

SET. We conclude with some remarks about future research. Also, as a consequence
of the preprocessing of the graph necessary to create our fixed-parameter algorithm, we
easily obtain a polynomial time 2-approximation algorithm fork-INTERNAL SPANNING

TREE.

8.2 USING REDUCTION RULES

Currently, the main practical methods of FPT algorithm design are based onkernelization
and bounded search trees. The idea of kernelization is relatively simple, and can be
quickly illustrated for theVERTEX COVER problem.

In kernelization we seek to bound the size of the input instance to a function of the pa-
rameter. To achieve this we preprocess the graph using reduction rules. Two examples
of reduction rules forVERTEX COVER are theleaf-ruleand theBuss-rule. The leaf-rule

8.2 USING REDUCTION RULES 54

states that given an instance(G, k) whereG has a pendant vertexv of degree 1 connected
to vertexu, then it is never wrong to includeu in the vertex cover instead ofv, as the
edgeuv must be covered andu possibly covers other edges as well. Thus(G, k) can
be reduced to(G′, k − 1), whereG′ = G − {u, v}. Another rule, the Buss-rule [B98],
states that if the instance(G, k) has a vertexu of degree greater thank, thenu must be in
everyk-vertex cover ofG, since otherwise all its more thank neighbors would have to be
included. Thus,(G, k) can be reduced to(G′, k − 1) whereG′ = G− u.

The term ‘Reduction rule’ is somewhat unfortunate as it seems to imply a rule that reduces
the graph in size. Although a reduction in size is a consequence, it is wrong to consider
this the goal. Reduction rules should not be viewed as a ‘reduction in size’ but rather as
a ‘reduction to structure’. In parameterized complexity the goal of the reduction process
is to prove that the problem is after preprocessing trivially decidable for any ‘large’ in-
stance, i.e., irreducible instances larger than a functionf(k), our kernel size. It is here
that reduction rules provide us with the necessary information about the structure of the
instance. In a sense, reduction rules are used to impose structure that allow us to make
claims about irreducible graphs.

It is easy to be led astray by reduction rules that only offer a reduction in size, since if they
do not also convey some useful structural information, then the rule is ultimately useless
from the point of view of kernelization. However, such a rule could of course be very
useful in practice as a preprocessing tool or in search tree algorithms.

To illustrate what we mean we again consider the leaf-rule and the Buss-rule for vertex
cover. After repeated application of both we reach a graph where neither rule can be
applied. We say that this graph isirreduciblefor our reduction rules. From the knowledge
that the rules do not apply we can conclude that the graph has two properties. First, from
the leaf-rule, we know that every vertex has degree at least 2. Second, from the Buss-rule,
we know that every vertex has degree at mostk.

Knowing that the minimum degree of the graph is at least two is important for ruling out
cases in the search tree analysis, but it does not provide any ‘useful’ structural information
as we both have arbitrarily large graphs with minimum degree at least two that have ak-
Vertex Cover, and others that do not have ak-Vertex Cover. However, with the Buss-rule
the situation is different. Knowing that every vertex has degree at mostk combined with
the fact that we can select at mostk of them is enough to conclude that no irreducible
yes-instance fork-Vertex Cover has more thank(k + 1) vertices. Thus we can trivially
decide any irreducible instance of size greater thanf(k) = k(k +1). We have a quadratic
kernel for vertex cover.

In this paper we show that we can learn something about the structure of the graph on
a global level without reducing the graph in size. We show that there exists a set of
reduction rules that modify an arbitrary spanning tree of a graph into a spanning tree with
no induced edges between the leaves. Thus, the rules either produce a tree with many

8.3 PRELIMINARIES 55

internal vertices, effectively deciding the problem, or they identify a large independent
set, the leaves, in the graph. Having a large independent set is beneficial, because then the
graph allows a ‘crown decomposition’. We show how this crown decomposition can be
used to obtain aO(k2) kernel for thek-INTERNAL SPANNING TREEproblem, improving
on theO(k3) kernel presented in [PS03].

8.3 PRELIMINARIES

We assume simple, undirected, connected graphsG = (V, E) where |V | = n. The
set of neighbors of a vertexv is denotedN(v), and the neighbors of a setS ⊆ V is
N(S) =

⋃
v∈S N(v)− S.

We use the simplerG \ v to denoteG[V \ v] andG \ e to denoteG = (V, E \ e) where
v ande is a vertex and an edge respectively. Likewise for sets,G \ V ′ denotesG[V \ V ′]
andG \E ′ denotesG = (V, E \E ′) whereV ′ is a set of vertices andE ′ is a set of edges.

We say that ak-internal treeT is a subgraph ofG, whereT is a tree with at leastk internal
vertices. IfV (T) = V (G) we say thatT is ak-internal spanning treeof G.

8.4 k-I NTERNAL SPANNING TREE IS FPT

Using Robertson and Seymour’s Graph Minor Theorem it is straightforward to prove the
following membership inFPT.

Lemma 8.4.1 Thek-INTERNAL SPANNING TREE problem is inFPT.

Proof. LetFk denote the family of graphs that do not have spanning trees with at leastk
internal vertices. It is easy to observe that for eachk this family is a lower ideal in the mi-
nor order. Less formally, let(G, k) be aNO-instance ofk-INTERNAL SPANNING TREE,
that is a graphG for which there is no spanning tree with at leastk internal vertices. The
local operations which configure the minor order (i.e., edge contractions, edge deletions
and vertex deletions) will always transform thisNO-instance into anotherNO-instance.
By the Graph Minor Theorem of Robertson and Seymour and its companion result that
order testing in the minor order isFPT[RS99] we can conclude thatk-INTERNAL SPAN-
NING TREE is alsoFPT. (An exposition of well-quasiordering as a method ofFPTalgo-
rithm design can be found in [DF98].) 2

Unfortunately, thisFPTproof technique suffers from being nonuniform and nonconstruc-
tive, and gives anO(f(k)n3) algorithm with a very fast-growing parameter function com-
pared to the one we obtain in Section 8.5.

8.5 INDEPENDENTSET STRUCTURE 56

We remark that it can be shown that all fixed graphs with a vertex cover of sizek are well-
quasi ordered by ordinary subgraphs and have linear time order tests [F03]. The proof of
this is substantially shorter than the Graph Minor Project and could be used to simplify
Lemma 8.4.1.

8.5 INDEPENDENT SET STRUCTURE

In this section we show how to obtain a quadratic kernel fork-INTERNAL SPANNING

TREE. We first give a set of reduction rules that either produces a spanning tree with the
desired number of internal vertices or shows that the graph has a large independent set.

We will then show that this structural information is enough to prove that any irreducible
instance has size at mostO(k2), improving the result obtained in [PS03]. Using acrown
decompositionwe are able to prove that any graph with a large independent set contain
redundant vertices that can be removed, reaching the desired kernel size.

Lemma 8.5.1 Any graphG has a spanning treeT such that all the leaves ofT are inde-
pendent vertices inG or G has a spanning treeT ′ with only two leaves.

Proof. Given a spanning treeT of a graphG, we say that two leavesu, v ∈ T are in
conflict if uv ∈ E(G). We now show that given a spanning tree withi conflicts it is
possible to obtain a spanning tree with less thani conflicts using one of the rules below:

1. If x andy are in conflict andz, the parent ofx has degree3 or more, then a new
spanning treeT ′ could be constructed using the edgexy in the spanning tree instead
of xz.

2. If x andy are in conflict and both their parents have degree2, then letx′ be the first
vertex on a path fromx to y that has degree different from 2. If there is no such
vertexx′ we know that the spanning tree is a Hamiltonian path and has only two
leaves. Otherwise we create a new spanning tree disconnecting the path fromx to
x′ (leavingx′) and connectingx to y, repairing the conflict betweenx andy. Since
x′ is now of degree at least2 we have not created any new conflicts.

The validity of the rules is easy to verify and it is obvious that they can be executed in
polynomial time. Lemma 8.5.1 then follows by recursively applying the rules until no
conflicts exist. 2

Observe that any application of the rules on a spanning tree produces a spanning tree with
more internal vertices, thus the reduction rules above are used less thank times.

8.5 INDEPENDENTSET STRUCTURE 57

For the remainder of the paper we assume that we obtained a spanning treeT where the
leaves are independent and we define the setA as the internal vertices ofT andB as the
leaves ofT . Observe thatA is a connected set andB an independent set.

Several corollaries follow easily from this Lemma. One of them gives an approxima-
tion for k-INTERNAL SPANNING TREE, the others relate the problem to the well-studied
INDEPENDENT SET.

Corollary 8.5.1 k-INTERNAL SPANNING TREE has a 2-approximation algorithm.

Proof. Note that sinceB is an independent set it is impossible to include more than
|A| elements ofB as internals in the optimal spanning tree, as otherwise the spanning
tree would contain a loop. The maximum number of internal vertices is at most2|A|,
and since the spanning tree generated by the algorithm in Lemma 8.5.1 has|A| internal
vertices, it is a 2-approximation fork-INTERNAL SPANNING TREE. 2

Corollary 8.5.2 If a graphG = (V, E) is aNO-instance for(n−k)-INDEPENDENTSET

thenG is a YES-instance fork-INTERNAL SPANNING TREE.

Proof. If a graph does not have an independent set of size greater then(n − k), then
|B| < (n− k) and|A| ≥ k, aYES-instance ofk-INTERNAL SPANNING TREE. 2

Corollary 8.5.3 If a graph G = (V, E) is a YES-instance for(n − k)-INDEPENDENT

SET thenG is a NO-instance for(2k + 1)-INTERNAL SPANNING TREE.

Proof. If G has an(n−k)-INDEPENDENTSET I then for each vertex inI that we include
as an internal in the spanning tree we must include at least one other vertex inV −I. Thus
at most2k vertices can be internal in the spanning tree and thereforeG is aNO-instance
for (2k + 1)-INTERNAL SPANNING TREE. 2

We now know that if a graph does not have an(n − k)-INDEPENDENT SET then it is a
YES-instance fork-INTERNAL SPANNING TREE. We will now show how we can use
this structural information to give a bound on the size of the kernel. To reduce the large
independent set we will use the crown-reduction technique seen in [CFJ03, FHRST04,
F03, ACFL04] to reduce the size of the independence set.

Definition 8.5.1 A crown decomposition(H,C, R) in a graphG = (V, E) is a parti-
tioning of the vertices of the graph into three setsH, C, andR that have the following
properties:

8.5 INDEPENDENTSET STRUCTURE 58

1. H (the head)is a separator inG such that there are no edges inG between vertices
in C and vertices inR.

2. C = Cu ∪ Cm (the crown)is an independent set inG.

3. |Cm| = |H|, and there is a perfect matching betweenCm andH.

Although being a recently introduced idea, some theory about the existence of crowns can
be found in literature.

The following theorem can be deduced from [CFJ03, page 7], and [F03, page 8].

Theorem 8.5.1 Any graphG with an independent setI, where|I| ≥ n/2, has a crown
decomposition(H,C,R), whereH ⊆ N(I) andC ⊆ I, and this crown decomposition
can be found in timeO(|V |+ |E|), givenI.

In [FHRST04] the following is observed:

Lemma 8.5.2 If a bipartite graphG = (V ∪ V ′, E) has two crown decompositions
(H, C, R) and (H ′, C ′, R′) whereH ⊆ V and H ′ ⊆ V , thenG has a crown decom-
position(H ′′ = H ∪H ′, C ′′ = C ∪ C ′, R′′ = R ∩R′).

From these two results we can deduce that if the independent set is sufficiently large then
there exists a crown-decomposition whereCu 6= ∅.

Theorem 8.5.2 Any graphG with an independent setI, where|I| ≥ 2n/3, has a crown
decomposition(H, C, R), whereH ⊆ N(I), C ⊆ I andCu 6= ∅, that can be found in
timeO(|V ||E|) givenI.

Proof. First observe that|Cm| ≤ |N(I)|. By Theorem 8.5.1,G has a crown decom-
position (H, C, R), whereH ⊆ N(I). If |C| ≥ n

3
then |C| > N(I) and the result

follows, otherwise|I \ C| ≥ n/3 and by Theorem 8.5.1G \ C has a crown decompo-
sition (H ′′, C ′, R′). By Lemma 8.5.2 these crown-decompositions can be combined to
a crown-decomposition(H ′′, C ′′, R′′). This process can be repeated until the combined
crown-decomposition(Ĥ, Ĉ, R̂) no longer satisfies|I \ Ĉ| > n

3
, thus|Ĉ| > |N(I)| and

the result follows. The algorithm in Theorem 8.5.1 is executed at mostn times, giving the
bound ofO(|V ||E|). 2

Using an approach similar to the one in [FHRST04], we create an auxiliary graph model
where a crown decomposition in the auxiliary graph infer reductions in the original graph.

8.5 INDEPENDENTSET STRUCTURE 59

Observe that vertices in the independent setB can only participate in a spanning tree
in two ways. Either they are leaves, or they are internal vertices between two or more
vertices inA.

We will define the model as the bipartite graphGI = (A′ ∪ B, EI) where: A′ = A ∪
(A × A), i.e., A and a vertexvv′ for every pairv andv′ in A. The edges ofGI are the
original edgesE and an edge between a vertexb ∈ B and a pair vertex ifb has edges to
both vertices of the pair.EI = E ∪ {(vv′)b | vv′ ∈ A′, b ∈ B, {vb, v′b} ⊆ E}.
We now prove the following reduction rule.

Reduction Rule 3 If GI has a crown decomposition(H, Cm ∪ Cu, R) whereH ⊆ A′

thenG has ak-internal spanning tree if and only ifG\Cu has ak-internal spanning tree.

Proof. One direction is trivial, ifG \ Cu has ak-internal spanning tree thenG obviously
has one, as we cannot get fewer internals by adding vertices to the graph.

We prove the other direction by construction. LetS∗ be ak-internal spanning tree inG.
S∗−C is a forestF . We will show that we can construct ak-internal spanning tree fromF
by using vertices fromCm to connect the components inF , showing thatCu is redundant.

Let Q be the components ofF . Observe that at most|Q| − 1 vertices fromC connected
the components inS∗ and that all these vertices are internal.

Let Qi andQj be two arbitrary components inQ that were connected by a vertexc ∈ C.
Let ui anduj be the vertices inQi andQj respectively of whichc is a neighbor inS∗.
Connect these vertices using the vertex inCm matched to the pair-vertexuiuj. Because
of the matching in the crown decomposition, this vertex is uniquely determined and never
used elsewhere in the construction. The number of components have decreased by one.
Repeat this process until all components inQ are connected. Note that we added|Q| − 1
internal vertices, thus we used at least as many vertices to connectF as the optimal
solution did.F is now a tree.

For every leafui in F which is not a leaf inS∗, append the vertex matched toui ∈ Cm.
As above, the vertex matched toui is uniquely determined and not used elsewhere in the
construction.

Note that the construction of thek-internal spanning tree never depends onCu, thusCu is
redundant. 2

Lemma 8.5.3 If G is reduced and|V (G)| > k2 + 2k thenG has ak-Internal Spanning
Tree.

8.6 ANALYSIS OF THE RUNNING TIME 60

Proof. Assume in contradiction to the stated lemma thatG is reduced and|V (G)| >
k2 + 2k, but thatG has nok-Internal Spanning Tree.

By assumption|A| < k, otherwise the tree produced in Lemma 8.5.1 would havek
internal vertices. Hence,|B| = |V (G) − A| > k2 + k. In GI we have that is|A′| <
k(k + 1)/2, i.e., |B| > 2|A′|. Thus by Lemma 9.4.3,GI has a crown with at least one
vertex inCu, contradicting the assumption thatG was reduced.

2

8.6 ANALYSIS OF THE RUNNING TIME

Our algorithm is similar to that found in [PS03] and works in several stages. It first calls
a regular spanning tree algorithm and then modifies it to make the leaves independent.
Then, if the spanning tree does not contain enough internals, we know that the spanning
tree’s leaves form an independent set. We use our crown reduction rule to reduce the
independent set, after which the graph is reduced in size toO(k2). Finally, we employ a
brute-force spanning tree algorithm to find an optimal solution for the reduced instance.

We can use a simple breadth-first search algorithm to obtain any spanning tree inG. This
spanning tree can thus be obtained in timeO(|V |+ |E|) [CLR90]. The conflicts (i.e., the
leaves in the tree which are not independent) can be detected in timeO(|E|) and repaired
in timeO(|V |).
Given a large independent set, a crown can be found in linear time. A maximal crown can
be found in timeO(|V ||E|). We have then identified the redundant vertices and we can
reduce the graph to aO(k2) kernel.

We now want to findk vertices in the kernel that can form the internals of a spanning tree.
We will in a brute force manner test every suchk-set, there are at most

(
k2

k

)
such sets. By

Stirling’s observation thatn
n
2 < n! < nn we have that

(
k2

k

)
is less thank

3
2
k. Note that

this can be rewritten as21.5k log k. We now have to verify if thesek vertices can be used as
the internal vertices of a spanning tree. To do this we try every possible construction of a
treeT with thesek vertices, by Cayley’s formula there are no more thankk−2 such trees.
This, again, can be rewritten as(2k log k−2 log k). Then we test whether or not each leaf in
T can be assigned at least one vertex in the remaining kernel as its leaf. This is equivalent
to testing if the leaves and the remaining kernel have a perfect bipartite matching, which
can be done in timeO(

√
|V | · |E|). In this particular bipartite subset there are not more

thanO(k3) edges giving us a total ofO(k4) for the matching. Thus for eachk-set we can
verify if it is a valid solution in2k log k · k2 time.

The total running time of the algorithm isO(22.5k log kk2 + |V ||E|).

8.7 ANOTHER PATH(WIDTH) TO SUCCESS 61

8.7 ANOTHER PATH (WIDTH) TO SUCCESS

If we cannot use crown-decompositions to reduce the graph efficiently, we can sometimes
make use of the fact that the independent structure allows an easy path-decomposition as
well. The notion of pathwidth was introduced by Robertson and Seymour [RS83].

Definition 8.7.1 Apath decompositionof a graphG = (V, E) is a sequence(X1, X2, . . . , Xr)
of subsets ofV such that:

1.
⋃

1≤i≤r Xi = V .

2. For all vw ∈ E, there is ani such that1 ≤ i ≤ r andv, w ∈ Xi.

3. For all 1 ≤ i0 ≤ i1 ≤ i2 ≤ r, we haveXi0 ∩Xi2 ⊆ Xi1.

Thewidth of a path decomposition(X1, X2, . . . , Xr) is max1≤i≤r |Xi|−1. Thepathwidth
of a graph is the minimum width over its path decompositions.

If we have an independent setI of sizen− g(k) we can create a path decomposition with
width g(k) in the following manner. LetI1, I2, . . . be an arbitrary ordering ofI. The path
decomposition is then the sequence of subsetsBj = I ∪ Ij. It is easy to convince oneself
that this construction satisfies the requirements of a path decomposition.

To give an example where this is useful, consider the parametric dual ofk-DOMINATING

SET, namelyk-NONBLOCKER. (DoesG = (V, E) have a subsetV ′ of sizek, such that
every element ofV ′ has at least one neighbor inV \ V ′ ?).

Lemma 8.7.1 k-NONBLOCKER can be solved in timeO(3k + nO(1)).

To show this observation, we first compute amaximalindependent set I. The complement
of I, I = V \I is a nonblocking set. Thus either|I| < k or G has ak-NONBLOCKER. We
can then compute a path decomposition with pathwidthk. Now, using the algorithm intro-
duced by Telle and Proskurowski [PT93] and further improved by Alber and Niedermeier
[AN02] we can compute a minimum dominating set (and thus maximal nonblocking set)
in timeO(3k +nα). The above algorithm actually solves the problem for the more general
treewidth decomposition in timeO(4k + nα), but since this is a path decomposition we
can avoid the costly functions combining subtrees of the decompositions. This result im-
proves on the running time of McCartin’s algorithm [McC03], which obtains aO(4k+nα)
algorithm by using a very different technique.

8.8 CONCLUSIONS ANDFURTHER APPLICATIONS TOINDEPENDENTSET

STRUCTURES 62

8.8 CONCLUSIONS AND FURTHER APPLICATIONS TO

I NDEPENDENT SET STRUCTURES

In this paper we have given a fixed parameter algorithm fork-INTERNAL SPANNING

TREE. The algorithm runs in timeO(22.5k log k · k2 + |V ||E|), which is the best currently
known for this problem. A natural question is whether or not the there is a2O(k) algorithm
for the problem.

We also give a 2-approximation algorithm for the problem. This could be further im-
proved, and the same idea could be used to find more approximation algorithms for other
related problems. We would like to note that a limited number of experiments suggest
that this algorithm is a very good heuristic.

We have shown the remarkable structural bindings betweenk-INTERNAL SPANNING

TREE and(n − k)-INDEPENDENT SET in Corollaries 8.5.2 and 8.5.3. We believe that
similar structural bindings exist betweenINDEPENDENTSET/VERTEX COVER (k-Vertex
Cover is of course equivalent to(n − k)-INDEPENDENTSET) and other fixed-parameter
tractable problems. We are confident that this inherent structure can be used to design po-
tent algorithms for these problems, especially when combined with constructive polyno-
mial time algorithms that produce either an independent set or a solution for the problem
in question. Crown decompositions seem to be a natural companion as it has shown it-
self useful in reducing independent sets in a range of problem [FHRST04, PS04, MPS04,
DFRS04, CFJ04].

We also show how the independent set structure allows an easy path decomposition and
show that this is useful fork-NONBLOCKER where we improve upon the existing FPT-
algorithms.

If large independent sets are the targets, but no such polynomialeither/oralgorithm can
be found, we may still use the quite practical FPTVERTEX COVER-algorithm to find
the vertex cover structure. The current state of the art algorithm forVERTEX COVER

runs in timeO(1.286k + n) [CKJ01] and has been proven useful in implementations by
groups at Carleton University in Ottawa and the University of Tennessee in Knoxville for
exact solutions for values ofn andk up to 2,500 [L03]. We believe that exploiting vertex
cover/independent set structure may be a powerful tool for designing algorithms for other
fixed parameter tractable problems for which structural bindings withINDEPENDENTSET

exist. For example, we suspect that the parameterized versions ofMAX LEAF SPANNING

TREE, M INIMUM INDEPENDENT DOMINATING SET and M INIMUM PERFECT CODE

are very likely to fall into this class of problems.

BIBLIOGRAPHY

[A03] F. Abu-Khzam. Private communication.

[ACFL04] F. Abu-Khzam, R. Collins, M. Fellows and M. Langston. Kernelization Al-
gorithms for the Vertex Cover Problem: Theory and Experiments.Proceedings
ALENEX 2004, Springer-Verlag,Lecture Notes in Computer Science(2004), to ap-
pear.

[AN02] J. Alber and R. Niedermeier. Improved tree decomposition based algorithms for
domination-like problems.Proceedings of the 5th Latin American Theoretical IN-
formatics (LATIN 2002), number 2286 in Lecture Notes in Computer Science, pages
613–627, Springer (2002).

[B98] S. Buss,listed as private communication in the book Parameterized Complexity

[CFJ03] B. Chor, M. Fellows, D. Juedes. Private communication concerning manuscript
in preparation.

[CFJ04] B. Chor, M. Fellows, D. Juedes. Linear Kernels in Linear Time, or How to Save
k Colors inO(n2) steps. To appear in proceedings 30th Workshop on Graph Theo-
retic Concepts in Computer Science (WG ’04), Springer Lecture Notes in Computer
Science, (2004).

[CCDF97] Liming Cai, J. Chen, R. Downey and M. Fellows. The parameterized com-
plexity of short computation and factorization.Archive for Mathematical Logic36
(1997), 321-338.

[CKJ01] J. Chen, I. Kanj, and W. Jia. Vertex cover: Further Observations and Further
Improvements.Journal of AlgorithmsVolume 41, 280-301 (2001).

[CLR90] T.H.Cormen, C.E.Leierson, R.L.Rivest,Introduction to Algorithms, MIT Press.

[DF98] R. Downey and M. Fellows.Parameterized ComplexitySpringer-Verlag (1998).

[DFRS04] F. Dehne, M. Fellows, F. Rosamond, P.Shaw. Greedy Localization, Iterative
Compression and Modeled Crown Reductions: New FPT Techniques and Improved
Algorithms for Max Set Splitting and Vertex Cover.To Appear at IWPEC04Springer
Lecture Notes in Computer Science, (2004).

BIBLIOGRAPHY 64

[DFS99] R. Downey, M. Fellows and U. Stege. Parameterized complexity: a framework
for systematically confronting computational intractability.Contemporary Trends in
Discrete Mathematics(R. Graham, J. Kratochvil, J. Nesetril and F. Roberts, eds.),
AMS-DIMACS Series in Discrete Mathematics and Theoretical Computer Science
49 (1999), 49-99.

[F03] M.Fellows. Blow-ups, Win/Wins and Crown Rules: Some New Directions inFPT.
Proceedings WG 2003, Springer Verlag LNCS 2880, pages 1-12, 2003.

[FHRST04] M.Fellows, P.Heggernes, F.Rosamond, C. Sloper, J.A.Telle, Finding k dis-
joint triangles in an arbitrary graph. To appear in proceedings30th Workshop on
Graph Theoretic Concepts in Computer Science (WG ’04), Springer Lecture Notes
in Computer Science, (2004).

[FMRS01] M. Fellows, C. McCartin. F. Rosamond and U. Stege. Spanning Trees with
Few and Many Leaves.To appear

[GMM94] G. Galbiati, F. Maffioli, and A. Morzenti. A Short Note on the Approximabil-
ity of the Maximum Leaves Spanning Tree Problem.Information Processing Letters
52 (1994), 45–49.

[GMM97] G. Galbiati, A. Morzenti and F. Maffioli. On the Approximability of some
Maximum Spanning Tree Problems.Theoretical Computer Science181 (1997),
107–118.

[GJ79] M. Garey and D. Johnson.Computers and Intractability: A Guide to the Theory
of NP-Completeness.W.H. Freeman, San Francisco, 1979.

[KR00] Subhash Khot and Venkatesh Raman.Parameterized Complexity of Finding
Hereditary Properties. Proceedings of COCOON. Theoretical Computer Science
(COCOON 2000 special issue)

[L03] M. Langston. Private communication.

[LR98] H.-I. Lu and R. Ravi. Approximating Maximum Leaf Spanning Trees in Almost
Linear Time.Journal of Algorithms29 (1998), 132–141.

[MPS04] L. Mathieson, E. Prieto, P. Shaw. Packing Edge Disjoint Triangles: A Parame-
terized View.To Appear IWPEC 04, Springer Lecture Notes in Computer Science,
(2004).

[McC03] Catherine McCartin. Ph.D. dissertation in Computer Science, Victoria Univer-
sity, Wellington, New Zealand, (2003).

[NR99b] R. Niedermeier and P. Rossmanith. Upper Bounds for Vertex Cover Further Im-
proved. In C. Meinel and S. Tison, editors,Proceedings of the 16th Symposium on
Theoretical Aspects of Computer Science, number 1563 in Lecture Notes in Com-
puter Science, Springer-Verlag (1999), 561–570.

BIBLIOGRAPHY 65

[PS03] E. Prieto, C. Sloper. Either/Or: Using Vertex Cover Structure in designing FPT-
algorithms - the case of k-Internal Spanning Tree,Proceedings of WADS 2003,
LNCS vol 2748, pp 465-483.

[PS04] E. Prieto, C. Sloper. Looking at the Stars,To Appear in proceedings of IWPEC04,
Springer Lecture Notes in Computer Science, (2004).

[PT93] J.A.Telle and A.Proskurowski. Practical algorithms on partialk-trees with an ap-
plication to domination-like problems.Proceedings WADS’93 - Third Workshop on
Algorithms and Data Structures.Springer Verlag, Lecture Notes in Computer Sci-
ence vol.709 (1993) 610-621.

[RS83] N. Robertson and P. D. Seymour, Graph minors. I. Excluding a forest,J. Comb.
Theory Series B, 35 (1983), pp. 39-61.

[RS99] N. Robertson, PD. Seymor. Graph Minors. XX Wagner’s conjecture.To appear.

9

PACKING STARS

Looking at the Stars1

Elena Prieto Christian Sloper

Abstract

The problem of packingk vertex-disjoint copies of a graphH into another
graphG is NP-complete ifH has more than two vertices in some connected
component. In the framework of parameterized complexity we analyze a
particular family of instances of this problem, namely the packing of stars.
We give a quadratic kernel for packingk copies ofH = K1,s. When we
consider the special case ofs = 2, i.e., H being a star with two leaves, we
give a linear kernel and an algorithm running in timeO(25.301kk2.5 + n3).

9.1 INTRODUCTION

The problem ofMAXIMUM H -MATCHING, also calledMAXIMUM H -PACKING, is of
practical interest in the areas of scheduling [BM02], wireless sensor tracking [BK01],
wiring-board design and code optimization [HK78] and many others.

The problem is defined as follows: LetG = (V,E) be a graph andH = (VH , EH) be
a fixed graph with at least three vertices in some connected component. AnH-packing
for G is a collection of disjoint subgraphs ofG, each isomorphic toH. In an optimiza-
tion sense, the problem that we want to solve would be to find the maximum number of
vertex disjoint copies ofH in G. The problem is NP-complete [HK78] when the graph
H has at least three vertices in some connected component. Note that in the case where

1This paper first appeared at the conference ’First International Workshop on Parameterized And Exact
Computation’ in September 2004. It was later invited and accepted to a special use of the Journal of
Theoretical Computer Science where it is due to appear [PS04].

9.1 INTRODUCTION 67

H is the complete graph on two nodes,H-packing is the very well studied (and polyno-
mial time solvable) problemMAXIMUM MATCHING. MAXIMUM H -PACKING has been
thoroughly studied in terms of approximation. The problem has been proved to be MAX-
SNP-complete [K94] and approximable within|VH |/2 + ε for anyε > 0 [HS89]. Several
restrictions have also been considered (planar graphs, unit disc graphs etc.) in terms of the
complexity of their approximation algorithms. For a review of these we refer the reader
to [AC99].

A recent result by [FHRST04] gives a general algorithm for packing an arbitrary graphH
into G. Their result gives a2O(|H|k log k+k|H| log |H|) algorithm for the general case, where
k is the number of copies ofH. It should also be noted that it is possible to achieve a
single exponential running time for this problem by adapting a result by Alon, Yuster, and
Zwick in [AYZ95].

Theorem 9.1.1 (Alon, Yuster, Zwick) LetS be a directed or undirected graph onk ver-
tices with treewidtht. LetG = (V, E) be a (directed or undirected) graph. A subgraph
of G isomorphic toS, if one exists, can be found in2O(k)|V |t+1 expected time and in
2O(k)|V |t+1 log |V | worst case time.

It is easy to see how to apply this problem to packing a graphH. Let the graphS in the
above theorem bek copies of a graphH. SinceS has treewidth at most|H|, we have
a 2O(k)|V ||H|+1 algorithm for the problem. Unfortunately the running time obtained by
Alon et al. [AYZ95] hides a considerable constant in the exponent making this algorithm
infeasible in practical terms.

We discuss the parameterized complexity of theMAXIMUM H -PACKING problem for the
case whenH belongs to the restricted family of graphsF = K1,s, a star withs leaves.
More formally:

K1,s-PACKING

INSTANCE: GraphG = (V, E), a positive integerk
QUESTION: Are there at leastk vertex disjoint instances ofK1,s in G?

This problem has already been studied within the framework of classical complexity the-
ory [HK86]. In their paper, Hell and Kirkpatrick studied the complexity of packing com-
plete bipartite graphs into general graphs. We include a brief introduction to this topic in
Section 9.2. In Section 9.3 we show that the general problem is tractable if parameterized,
and that we can obtain a quadratic kernel. In Section 9.4 we show that the special case of
packingK1,2’s has a linear kernel, and in Section 9.5 we give a quick algorithm for both
the general and special case. In contrast [FHRST04] obtains only anO(k3) algorithm for
packing a graph with three vertices, namelyK3.

9.2 INTRODUCTION TOPARAMETERIZED ALGORITHMS 68

9.2 INTRODUCTION TO PARAMETERIZED ALGORITHMS

A problem with main inputx and parameterk is said to be fixed parameter tractable if
there is an algorithm with running timeO(f(k)|x|O(1)), wheref is an arbitrary function.
In [F03] Mike Fellows presents a two-sided view of research on parameterized problems
which he dub ‘the two races’. First, that it is interesting to obtain better running time for
fixed parameter tractable problems, but also that is of interest to improve the size of the
kerneleven if this does not immediately lead to an improvement in running time.

Definition 9.2.1 A parameterized problemL is kernelizable if there is a parametric trans-
formation ofL to itself that satisfies:

1. The running time of the transformation of(x, k) into (x′, k′), where|x| = n, is
bounded by a polynomialq(n, k),

2. k′ ≤ k, and

3. |x′| ≤ h(k′), whereh is an arbitrary function.

Obviously the two views are not independent, as improvements in the latter could give
improvements in the first, but it is also important to note the following result by [DFS99],
which gives a stronger link between the two races:

Lemma 9.2.1 A parameterized problemL is in FPT if and only if it is kernelizable.

The two races are worth playing as they may lead to substantial improvements on the qual-
ity of the algorithms we design and also to new strategies for practical implementations
of these algorithms.

9.2.1 PRELIMINARIES

We assume simple, undirected, connected graphsG = (V,E) where|V | = n. The set
of neighbors of a vertexv is denotedN(v), and the neighbors of a setS ⊆ V , N(S) =⋃

v∈S N(v)\S. If J is a collection of graphs, thenV (J) is the set of vertices in the graphs
in J .

The induced subgraph ofS ⊆ V is denotedG[S].

We use the simplerG \ v to denoteG[V \ {v}] for a vertexv andG \ e to denoteG =
(V,E \ {e}) for an edgee. Likewise G \ V ′ denotesG[V \ V ′] andG \ E ′ denotes
G = (V,E \ E ′) whereV ′ is a set of vertices andE ′ is a set of edges.

We say thatK1,s is ans-star or a star of sizes. Pi denotes a path ofi + 1 vertices andi
edges.

9.3 PARAMETERIZED COMPLEXITY OF STAR PACKING 69

9.3 PARAMETERIZED COMPLEXITY OF STAR PACKING

In this section we prove a series of polynomial time preprocessing rules (reduction rules)
and eventually show that we can obtain a kernel ofO(k2) vertices for the parameterized
version ofK1,s-packing.

We use the following natural parameterization ofK1,s-PACKING:

k-K1,s-PACKING

INSTANCE: GraphG = (V, E)
PARAMETER: k
QUESTION: Are therek vertex disjoint instances ofK1,s in G?

In order to remove vertices of high degree, and remove useless edges between vertices of
low degree, we introduce the following reduction rules.

Lemma 9.3.1 Let G be a graph with a vertexv where deg(v) > k(s + 1) − 1. ThenG
has ak-K1,s-packing if and only ifG \ v has a(k − 1)-K1,s-packing.

Proof. If G has ak-K1,s-packing, thenG′ obviously has a(k − 1)-K1,s, asv cannot
participate in two different stars.

If G′ has a(k − 1)-K1,s-packing, we can create ak-K1,s-packing by addingv. Thek − 1
stars already packed cannot use more than(s + 1)(k − 1) of v’s neighbors, leavings
vertices forv to form a new star. 2

Lemma 9.3.2 Let G be a graph with neighboring verticesu and v where deg(u) ≤
deg(v) < s. ThenG has ak-packing if and only ifG′ = (V, E(G) \ uv) contains a
k-packing.

Proof. If G has ak-K1,s-packing, thenG′ has ak-K1,s-packing, asuv can never partic-
ipate in aK1,s. The other direction is trivial, ifG′ has ak-K1,s-packing, thenG has a
k-K1,s-packing as well. 2

In order to give a quadratic kernel for the fixed parameter version ofk-STAR PACKING

we will use a new technique first seen in [FM+00]. This technique borrows ideas from
extremal graph theory. We will show that any graph where Lemmas 9.3.1 and 9.3.2 do not
apply is either ‘small’ (having less thang(k) vertices) or has ak-K1,s-PACKING. We do
this by studying a ’border’-line graphG: A graph with ak-K1,s-packing, but no(k + 1)-
K1,s-packing. This allows us to make claims about the structure ofG and finally to prove
a bound on|V (G)|.

9.3 PARAMETERIZED COMPLEXITY OF STAR PACKING 70

A graph isreducedwhen Lemmas 9.3.1 and 9.3.2 can not be applied. In this sense both
these lemmas will be commonly referred to asreduction rules. As an additional reduction
rule, we delete vertices of degree 0, as they never participate in any star.

Lemma 9.3.3 (Boundary Lemma) If a graph instance(G, k) is reduced and has ak-K1,s-
packing, but no(k + 1)-K1,s-packing then|V (G)| ≤ k(s3 + ks2 + ks + 1).

Proof. Assume there exists a counterexampleG, such thatG is reduced and contains ak-
K1,s-packingW , but no(k+1)-K1,s-packing and has size|V (G)| > k(s3+ks2+ks+1).

Let Q = V \W . Let Qi be the vertices inQ that have degreei in the subgraph induced
by Q. We will now prove a series of claims that bound the number of vertices inQ.

Claim 1 ∀i ≥ s,Qi = ∅

Claim 2 A K1,s-starS ∈ W has at mosts2 + k(s + 1)− 1 neighbors inQ.

The following claim follows from Claim 2:

Claim 3 W has at mostk(s2 + k(s + 1)− 1) neighbors inQ.

Let R = V \ (W ∪ N(W)), i.e., the set of vertices ofQ which do not have
neighbors inW .

Claim 4 R is an independent set inG.

Claim 4 ensures us that all vertices inR have an edge to one or more vertex inQ. By
Claim 1, we know that each of the vertices inQ \ R have at mosts − 1 such neighbors
and thus by Claim 3, the total size ofR is at most(s− 1) · |Q \R|.
In total,G has size|V (G)| = |W |+|Q| ≤ k(s+1)+s·k·(s2+k(s+1)−1) = k(s3+ks2+
ks + 1), contradicting the assumption that the graph has more thank(s3 + ks2 + ks + 1)
vertices. This concludes the proof of the boundary lemma. 2

From this boundary lemma follows that any reduced instance that is still ‘big’ has ak-
K1,s-packing. Since the boundary given by Lemma 9.3.3 does not depend on the main
input, but only on the parameter and the problem in question, we can say that the reduced
instance is a ‘problem-kernel’ and that the problem is in FPT.

Lemma 9.3.4 (Kernelization Lemma) If a graphG is reduced and has|V (G)| > k(s3 +
ks2 + ks + 1), then it contains ak-K1,s-packing.

9.4 THE SPECIAL CASE OFP2: A LINEAR KERNEL 71

Proof. Assume in contradiction to the stated theorem that there exists a graphG of size
|V (G)| > k(s3 + ks2 + ks + 1), having nok-K1,s-packing.

Let k′ < k be the largestk′ for which G is a YES-instance. By the Boundary Lemma
9.3.3, we know that|V (G)| ≤ k′(s3 + k′s2 + k′s + 1) < k(s3 + ks2 + ks + 1). This
contradicts the assumption. 2

Thus for anyk-K1,s-packing we can prove a quadratic kernel. However, for the special
cases = 2, we can improve on this. This is the topic of the next section.

9.4 THE SPECIAL CASE OF P2: A LINEAR KERNEL

A 2-star can also be seen as a path with three vertices, denotedP2. For this special case
we can employ a different set of reduction rules to obtain a linear kernel for packingP2’s
into a graph.

k-P2-PACKING

INSTANCE: GraphG = (V, E)
PARAMETER: k
QUESTION: Are therek vertex disjoint instances ofP2 in G?

To improve on the quadratic kernel obtained in the previous section, we will make use of
a series of reduction rules based on the ideas of crown decompositions [CFJ03].

Definition 9.4.1 A crown decomposition(H,C, R) in a graphG = (V, E) is a parti-
tioning of the vertices of the graph into three setsH, C, andR that have the following
properties:

1. H (the head)is a separator inG such that there are no edges inG between vertices
belonging toC and vertices belonging toR.

2. C = Cu ∪ Cm (the crown)is an independent set inG.

3. |Cm| = |H|, and there is a perfect matching betweenCm andH.

There are several recent papers that use crown decompositions of graphs to obtain good
results in parameterized complexity [CFJ03, FHRST04, F03, ACFL04, PS04]. These
papers either apply the crown directly to the problem instance ([CFJ03, ACFL04]) or
create an auxiliary graph where they apply crown reduction techniques.

In this paper we instead modify the crown decomposition to fit our particular problem.
The first variation isdouble crown decompositionwhere each vertex inH has two vertices
from C matched to it (as opposed to only one). See Figure 9.1.

9.4 THE SPECIAL CASE OFP2: A LINEAR KERNEL 72

Definition 9.4.2 A double crown decomposition(H, C, R) in a graphG = (V, E) is a
partitioning of the vertices of the graph into three setsH, C, andR that have the following
properties:

1. H (head)is a separator inG such that there are no edges inG between vertices
belonging toC and vertices belonging toR.

2. C = Cu ∪ Cm ∪ Cm2 (the crown)is an independent set inG.

3. |Cm| = |H|, |Cm2| = |H| and there is a perfect matching betweenCm andH, and
a perfect matching betweenCm2 andH.

Figure 9.1: Example of ‘double crown’. The dashed lines indicate how each vertex inH
is matched to two vertices inC.

Another variation of the crown is thefat crown decompositionwhere instead of indepen-
dent vertices inC we haveK2’s as shown in Figure 9.2.

Definition 9.4.3 A fat crown decomposition(H, C, R) in a graphG = (V, E) is a par-
titioning of the vertices of the graph into three setsH, C andR that have the following
properties:

1. H (the head)is a separator inG such that there are no edges inG between vertices
belonging toC and vertices belonging toR.

2. G[C] is a forest where each component is isomorphic toK2.

3. |C| ≥ |H|, and if we contract the edges in eachK2 there is a perfect matching
betweenC andH.

Using the ‘crown’, ‘double crown’ and ‘fat crown’ we can create powerful reduction rules.

Lemma 9.4.1 A graphG = (V, E) that admits a ‘double crown’-decomposition(H, C, R)
has ak-P2-packing if and only ifG \ (H ∪ C) has a(k − |H|)-P2-packing.

9.4 THE SPECIAL CASE OFP2: A LINEAR KERNEL 73

R

C

H

Figure 9.2: Example of ‘fat crown’. As in the case of the ‘double crown’, the dashed lines
indicate the matching betweenH andCm and the dashed ellipses show to whichK2 the
vertex inH is matched.

Proof.

(⇐:) If G \ (H ∪ C) has a(k − |H|)-P2-packing then it is obvious thatG has ak-P2-
packing asH ∪ C has a|H|-P2-packing (v ∈ H andv’s matched vertices fromCm and
Cm2 form aP2).

(⇒:) We want to prove that ifG has ak-P2-packing thenG \ (H ∪ C) has a(k − |H|)-
P2-packing. Assume in contradiction that there exists a graphG′ that has a crown-
decomposition(H ′, C ′, R′) that contradicts the lemma. This implies thatH ′ ∪ C ′ par-
ticipates inx > |H ′| differentP2’s. SinceH ′ is a cutset, andC is an independent set in
the graph, everyP2 in G that has vertices inH ′ ∪ C ′ must contain at least one vertex of
H ′. Thus we can have at most|H ′| differentP2’s which is a contradiction. 2

Lemma 9.4.2 A graphG = (V, E) that admits a ‘fat crown’-decomposition(H, C, R)
has ak-P2-packing if and only ifG \ (H ∪ C) has a(k − |H|)-P2-packing.

The proof of Lemma 9.4.2 is analog to that of Lemma 9.4.1, thus omitted.

To apply crown-decompositions we need to know when we can expect to find one. A
very useful result in this regard can be deducted from [CFJ03, page 7], and [F03, page
8]. Fortunately, the results also apply to the variations of crown decomposition described
here.

Lemma 9.4.3 Any graphG with an independent setI, where|I| ≥ |N(I)|, has a crown
decomposition(H, C, R), whereH ⊆ N(I) that can be found inO(|V |+ |E|) time given
I.

Corollary 9.4.1 Any graphG with a collectionJ of independentK2’s where|N(V (J))| ≤
|J |, has a fat crown decomposition(H, C,R), whereH ⊆ N(V (J)), that can be found
in linear time, givenJ .

9.4 THE SPECIAL CASE OFP2: A LINEAR KERNEL 74

Proof. This follows from the previous Lemma. If we replace eachK2 with a single vertex,
then by Lemma 9.4.3 this graph admits a crown-decomposition. We can reintroduce the
K2’s to obtain a fat crown. 2

Lemma 9.4.4 Any graphG with an independent setI, where|I| ≥ 2|N(I)|, has a double
crown decomposition(H, C, R), whereH ⊆ N(I), that can be found in linear time given
I.

Proof. Let G be a graph with an independent setI ⊆ V (G) such that2|N(I)| ≤ |I|.
Create an identical graphG′, but for every vertexv ∈ N(I) add a copyv′, such that
N(v) = N(v′). By Lemma 9.4.3,G′ has a crown-decomposition(H, C, R) such that
H ⊆ NG′(I). We now claim that we can use this crown to construct a ‘double crown’
(H ′, C ′, R′) in G.

First observe thatv ∈ H if and only if v′ ∈ H. Assume in contradiction thatv ∈ H but
v′ /∈ H. The vertexv must be matched to some vertexu in C. SinceN(v) = N(v′), we
have thatv′ cannot be inC as it would contradict the fact thatC is an independent set.
Also v′ cannot be inR, as that would contradict thatH is a cut-set. Thusv′ must be inH,
contradicting the assumption.

With this observation, the result follows easily asH consists of pairs of vertices; a vertex
and its copy. Each pairv andv′ in H is matched to two verticesu1 andu2. In G, let v be
in H ′ and let it be matched to bothu1 andu2. Do this for every pair inH. It is easy to see
that this forms a double crown inG. 2

We will now describe a polynomial time preprocessing algorithm that reduces the graph
to a kernel of size at most15k. The process below either reduces the graph or produces
a packing of the appropriate size, thus we can reach a kernel by repeating the following
three steps:

Step 1. Compute an arbitrary maximal P2-packing
W . Let Q = V \W .

Step 2. Let X be the collection of components
in G[Q] isomorphic to K2. If |X| ≥ |N(X)|
in G then reduce by Lemma 9.4.2.

Step 3. Let I be the isolated vertices in G[Q].
If |I| ≥ 2|N(I)| in G, then reduce by
Lemma 9.4.1.

Lemma 9.4.5 If |V (G)| > 15k then the preprocessing algorithm will either find ak-P2-
packing or it will reduceG.

9.5 RUNNING TIME 75

Proof. Assume in contradiction to the stated lemma that|V (G)| > 15k, but that the
algorithm produces neither ak-P2-packing nor a reduction ofG.

By the assumption the maximal packingW is of size|W | < 3k. Let Q = V \W . Let Qi

be the vertices inQ that have degreei in the graph induced byQ.

Claim 5 ∀i ≥ 2, Qi = ∅

Proof of Claim 5.This is clear as otherwiseW could not be maxi-
mal. 2

Claim 6 |Q1| ≤ 6k

Proof of Claim 6.Assume in contradiction that|Q1| > 6k. This
implies that the number ofK2sX in Q is greater than3k, but then
|X| > |W |. By Corollary 9.4.1G has a ‘fat crown’ and should
have been reduced in step 2 of the algorithm, contradicting that no
reduction took place. 2

Claim 7 |Q0| ≤ 6k

Proof of Claim 7. Assume in contradiction that|Q0| > 6k, but
then|Q0| is more than2|W | and by Lemma 9.4.4G has a ‘double
crown’ and by Lemma 9.4.1 should have been reduced in step 3 of
the algorithm, contradicting that no reduction took place. 2

Thus the total size|V (G)| is |W |+ |Q0|+ |Q1|+ |Q2|+ · · · ≤ 3k + 6k + 6k + 0 = 15k.
This contradicts the assumption that|V (G)| > 15k. 2

Corollary 9.4.2 Any instance(G, k) of P2-packing can be reduced to a problem kernel
of sizeO(k).

Proof. This follows from the Lemma, as we can run the preprocessing algorithm until it
fails to reduceG. By Lemma 9.4.5, the size is then at most15k. 2

9.5 RUNNING T IME

For computing the kernel, we will run the preprocessing algorithmO(n) times. Since
a maximalk-packing ofP2’s can be computed inO(kn) time, the most time consum-
ing part is theO(|V | + |E|) time needed to compute a crown decomposition. Thus the
kernelization process can be completed inO(n3) time.

9.6 CONCLUSIONS ANDFURTHER RESEARCH 76

We will apply a straightforward brute-force algorithm on the kernels to find the optimal
solution. In the case ofP2-packing, we will select the center-vertices of theP2’s in a
brute force manner. There are

(
15k
k

)
ways to do this. By Stirling’s formula this expression

is bounded by25.301k. With k center vertices already selected, the problem reduces to a
problem on bipartite graphs, where the question is if the vertices on the left hand side
each can have two neighbors assigned to it. This can easily be transformed toMAXIMUM

BIPARTITE MATCHING by making two copies of each vertex on the left hand side.MAX -
IMUM BIPARTITE MATCHING can be solved in timeO(

√
|V ||E|) [HK73]. We now have

15k + k vertices, and thusO(k2) edges. We can solve each of these in timeO(k2.5), giv-
ing a running time ofO(25.301kk2.5) for the kernel. In total we can decide theP2-packing
problem in timeO(25.301kk2.5 + n3).

Applying the same technique for thes-stars we will achieveO(2O(k log k)kO(1)nO(1)),
which is asymptotically worse due to the quadratic kernel.

9.6 CONCLUSIONS AND FURTHER RESEARCH

Packing vertex-disjoint copies of a graphH into another graphG is NP-complete as long
asH has more than two vertices [HK78]. We have analyzed within the framework of pa-
rameterized complexity a specific instance of this problem, the packing of vertex-disjoint
stars withs leaves. We have proved that packingK1,2’s in a graphG, and equivalently
k-P2-PACKING, has a linear kernel.

Our algorithm fork-P2-PACKING runs in timeO(25.301kk2.5 + n3). This running time
arises from reducing the problem to a kernel of size15k. We believe that this kernel
can be further improved and thus the running time substantially decreased. However, it is
already much better than2O(|H|k log k+k|H| log |H|), the running time of the general algorithm
in [FHRST04].

We have also proved thats-Star Packing (K1,s-Packing) is in general fixed-parameter
tractable with a quadratic kernel size. We also gave an algorithm for the general case with
running timeO∗(2O(k log k)), but this is not an improvement over [FHRST04] or [AYZ95].

There are several related problems that could be considered in light of the techniques used
in Section 9.3. The most obvious one is the following:

k-K1,s-PACKING

INSTANCE: GraphG = (V, E)
PARAMETER: k
QUESTION: Are therek edge-disjoint instances ofK1,s in G?

This problem is fixed-parameter tractable whens is 2 or 3 using Robertson and Sey-
mour’s Graph Minor Theorem [RS99]: It can be easily proved that itsNO-instances are

9.6 CONCLUSIONS ANDFURTHER RESEARCH 77

closed under minors. The issue here is that this method is non-constructive and carries a
fast growing functionf(k). Possibly, applying similar arguments as those in Section 9.4
would lead to a much better running time.

Acknowledgements. We would like to thank Mike Fellows for all the inspiring
conversations leading to the completion of this paper.

BIBLIOGRAPHY

[ACFL04] F. Abu-Khzam, R. Collins, M. Fellows and M. Langston. Kernelization Al-
gorithms for the Vertex Cover Problem: Theory and Experiments.Proceed-
ings ALENEX 2004, Springer-Verlag,Lecture Notes in Computer Science
(2004), to appear.

[AC99] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela,
M. Protasi. Complexity and ApproximationSpringer Verlag(1999).

[AYZ95] N. Alon, R. Yuster, U. Zwick. Color-Coding,Journal of the ACM, Volume
42(4), pages 844–856 (1995).

[BM02] R. Bar-Yehuda, M. Halldórsson, J. Naor, H. Shachnai, I. Shapira. Schedul-
ing Split Intervals.Proceedings of the Thirteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 732-741 (2002).

[BK01] R. Bejar, B. Krishnamachari, C. Gomes, and B. Selman. Distributed con-
straint satisfaction in a wireless sensor tracking system.Workshop on Dis-
tributed Constraint Reasoning, International Joint Conference on Artificial
Intelligence, 2001

[CFJ03] B. Chor, M. Fellows, D. Juedes. An Efficient FPT Algorithm for Savingk
colors.Manuscript(2003).

[DFS99] R. Downey, M. Fellows, U. Stege. Parameterized Complexity: A Frame-
work for Systematically Confronting Computational Intractability.AMS-
DIMACS Series in Discrete Mathematics and Theoretical Computer Sci-
ence, Volume 49, pages 49-99 (1999).

[F03] M. Fellows. Blow-Ups, Win/Win’s, and Crown Rules: Some new Direc-
tions in FPT.Proceedings 29th Workshop on Graph Theoretic Concepts in
Computer Science, LNCS 2880(2003), pages 1-12.

[FHRST04] M.Fellows, P.Heggernes, F.Rosamond, C. Sloper, J.A.Telle, Exact algo-
rithms for finding k disjoint triangles in an arbitrary graph,Proceedings
30th Workshop on Graph Theoretic Concepts in Computer Science(2004)
LNCS 3353, pages 235-244

[FM+00] M.R. Fellows, C. McCartin, F. Rosamond, and U.Stege. Coordinatized Ker-
nels and Catalytic Reductions: An Improved FPT Algorithm for Max Leaf

BIBLIOGRAPHY 79

Spanning Tree and Other Problems,Foundations of Software Technology
and Theoretical Computer Science, LNCS 1974 (2000), page 240.

[HK73] J. Hopcroft and R. Karp. Ann5/2 Algorithm for Maximum Matchings in
Bipartite Graphs.SIAM Journal on Computing, 2 pages 225–231 (1973).

[HK78] P. Hell and D. Kirkpatrick. On the complexity of a generalized matching
problem.Proceedings of 10th ACM Symposium on theory of computing,
pages 309–318 (1978).

[HK86] P. Hell and D. Kirkpatrick. Packings by complete bipartite graphs.SIAM
Journal of Algebraic Discrete Methods, number 7, pages 199–209 (1986).

[HS89] C. Hurkens and A. Schrijver. On the size of systems of sets everyt of which
have an SDR, with application to worst case ratio of Heuristics for packing
problems.SIAM Journal of Discrete Mathematics, number 2, pages 68–72
(1989).

[K94] V. Kann. Maximum bounded H-matching is MAX-SNP-complete.Informa-
tion Processing Letters, number 49, pages 309–318 (1994).

[PS04] E.Prieto, C. Sloper. Creating Crown Structure — The case of Max Internal
Spanning Tree.Submitted

[RS99] N. Robertson, PD. Seymour.Graph Minors XX. Wagner’s conjecture, to
appear.

10

PACKING TRIANGLES

Finding k disjoint triangles in an arbitrary graph 1

Mike Fellows Pinar Heggernes Frances Rosamond
Christian Sloper Jan Arne Telle

Abstract

We consider theNP-complete problem of deciding whether an input graph
on n vertices hask vertex-disjoint copies of a fixed graphH. For H = K3

(the triangle) we give anO(22k log k+1.869kn2) algorithm, and for generalH an
O(2k|H| log k+2k|H| log |H|n|H|) algorithm. We introduce a preprocessing (ker-
nelization) technique based on crown decompositions of an auxiliary graph.
ForH = K3 this leads to a preprocessing algorithm that reduces an arbitrary
input graph of the problem to a graph onO(k3) vertices in polynomial time.

10.1 INTRODUCTION

For a fixed graphH and an input graphG, theH-packing problem asks for the maximum
number of vertex-disjoint copies ofH in G. TheK2-packing (edge packing) problem,
which is equivalent to maximum matching, played a central role in the history of classical
computational complexity. The first step towards the dichotomy of ’good’ (polynomial-
time) versus ’presumably-not-good’ (NP-hard) was made in a paper on maximum match-
ing from 1965 [E65], which gave a polynomial time algorithm for that problem. On the
other hand, theK3-packing (triangle packing) problem, which is our main concern in this
paper, isNP-hard [HK78].

Recently, there has been a growing interest in the area of exact exponential-time algo-
rithms forNP-hard problems. When measuring time in the classical way, simply by the

1This paper appeared at the conference ’30th International Workshop of Graph-Theoretic Concepts in
Computer Science’ and was published in the proceedings [FHRST04].

10.1 INTRODUCTION 81

size of the input instance, the area of exact algorithms forNP-hard problems lacks the
classical dichotomy of good (P) versus presumably-not-good (NP-hard) [W03]. How-
ever, if in the area of exact algorithms forNP-hard problems we instead measure time in
the parameterized way, then we retain the classical dichotomy of good (FPT - Fixed Pa-
rameter Tractable) versus presumably-not-good (W [1]-hard) [DF99]. It therefore seems
that the parameterized viewpoint gives a richer complexity framework. In fact, a formal
argument for this follows from the realization that the non-parameterized viewpoint, mea-
suring time by input size, is simply a special case of the parameterized viewpoint with the
parameter chosen to be the input size. Parameterized thus, any problem is triviallyFPT
and the race for the bestFPTalgorithm is precisely the same as the race for the best non-
parameterized exact algorithm. Note that for any optimization or decision problem, there
are many interesting possibilities for choice of parameter, that can be guided by both
practical and theoretical considerations, see for example [F03] for a discussion of five
different parameterizations of a single problem. In our opinion, the relevant discussion
for the field of exact algorithms forNP-hard problems is therefore not “parameterized or
non-parameterized?” but rather “which parameter?”

In this paper our focus is on parameterized algorithms for deciding whether a graphG has
k disjoint copies ofK3, with the integerk being our parameter. On input(G, k), whereG
is a graph onn vertices, anFPTalgorithm is an algorithm with runtimeO(nαf(k)), for a
constantα and an unrestricted functionf(k). We want, of course, bothα and the growth
rate off(k) to be as small as possible.

A practical spinoff from the field of parameterized algorithms forNP-hard problems has
been a theoretical focus on the algorithmic technique of preprocessing, well-known from
the heuristic algorithms community. In fact, the parameterized problems havingFPT
algorithms arepreciselythe parameterized problems where preprocessing can in polyno-
mial time reduce a problem instance(G, k) to a kernel,i.e., a decision-equivalent problem
instance(G′, k′) where the size ofG′ is bounded by a function ofk (only), and where also
k′ ≤ k [DFS97]. One direction of this fact is trivial, since any subsequent brute-force
algorithm on(G′, k′) would give an overallFPT algorithm. In the other direction, as-
sume we have anFPT algorithm with runtimeO(nαf(k)) and consider an input(G, k)
on n vertices. Ifn ≥ f(k) then the runtime of theFPT algorithm on this instance is in
fact polynomial and can be seen as a reduction to the trivial case. On the other hand, if
n ≤ f(k) then the instance(G, k) already satisfies the kernel requirements. Note that in
this case the kernel sizef(k) is exponential ink, and a smaller kernel is usually achiev-
able. For this reason, in the field of parameterized algorithms forNP-hard problems, it
can be argued that there are two distinct races [F03]:

• Find the fastestFPT algorithm for the problem.

• Find the smallest polynomial-time computable kernelization for the problem.

In this paper, we enter the parameterizedK3-packing problem into both these races, giv-

10.2 PRELIMINARIES 82

ing on the one hand anO(22k log k+1.869kn2) FPT algorithm, and on the other hand an
O(k3) kernelization. OurFPTalgorithm is derived by an application of a fairly new tech-
nique known as greedy localization [JZC04], and our kernelization algorithm by a non-
standard application of the very recently introduced notion of Crown Reduction Rules
[CFJ03, CFJ04, F03]. We end the paper by asking how well these two results onK3-
packing generalize toH-packing. It turns out that theFPT algorithm generalizes quite
easily, givingFPTalgorithms for deciding whether an input graphG hask disjoint copies
of an arbitrary connectedH. However, we presently do not see how to generalize the
kernelization algorithm.

Just in time for the final version of this paper we realized that Theorem 6.3 in [AYZ95]
can be used to give a2O(k) algorithm for graph packing using color coding. However, we
still believe our result to be of practical interest as the constants in color coding can be
impractical.

The next section gives some basic graph terminology. We then proceed in Sections 3, 4
and 5 with the kernelization results, before continuing with theFPT algorithm in Section
6 for K3 and in Section 7 for generalH.

10.2 PRELIMINARIES

We assume simple, undirected, connected graphsG = (V, E), where|V | = n. The
neighbors of a vertexv are denoted byN(v). For a set of verticesA ⊆ V , N(A) = {v 6∈
A | uv ∈ E andu ∈ A}, and the subgraph ofG induced byA is denoted byG(A). For
ease of notation, we will use informal expressions likeG \ u to denoteG(V \ {u}, E),
G \U to denoteG(V \U,E), andG \ e to denote(V,E \ {e}), whereu is a vertex,U is a
vertex set, ande is an edge inG. A subsetS of V is aseparatorif G \ S is disconnected.

An H-packingW of G is a collection of disjoint copies of the graphH in G. We will use
V (W) to denote the vertices ofG that appear inW , andE(W) to denote the edges. A
matchingis aK2-packing.

We will in the following two sections describe a set of reduction rules. If any of these
rules can be applied toG, we say thatG is reducible, otherwiseirreducible.

10.3 REDUCTION RULES FOR K3-PACKING

Let us start with a formal definition of the problem we are solving:

k-K3-PACKING (TRIANGLE PACKING)
INSTANCE: GraphG = (V, E)
PARAMETER: k
QUESTION: DoesG havek disjoint copies ofK3?

10.4 REDUCING INDEPENDENT SETS- CROWN REDUCTION 83

We say that a graphG has ak-K3-packing if the answer to the above question is “yes.” In
this section, we identify vertices and edges of the input graph that can be removed without
affecting the solution of thek-K3-PACKING problem.

Definition 10.3.1 If verticesa, b, andc induce aK3, we say that vertexa sponsorsedge
bc. Likewise, edgebc sponsorsvertexa.

We start with two simple observations that also give preprocessing rules useful to delete
vertices and edges that cannot participate in any triangle.

Reduction Rule 4 If e ∈ E has no sponsor thenG has ak-K3-packing ⇐⇒ G \ e has
a k-K3-packing.

Reduction Rule 5 If u ∈ V has no sponsor thenG has ak-K3-packing⇐⇒ G \ u has
a k-K3-packing.

Both observations are trivially true, and let us remove vertices and edges from the graph
so that we are left with a graph containing only vertices and edges that could potentially
form aK3.

Reduction Rule 6 If u ∈ V sponsors at least3k − 2 disjoint edges thenG has ak-K3-
packing⇔ G \ u has a(k − 1)-K3-packing.

Proof. (⇒:) This direction is clear as removing one vertex can decrease the number of
K3s by at most one.
(⇐:) If G\u has a(k−1)-K3-packingS, thenS can use vertices from at most3(k−1) =
3k − 3 of the disjoint edges sponsored byu. This leaves at least one edge that can form a
K3 with u, thus raising the number ofK3s tok. 2

10.4 REDUCING INDEPENDENT SETS - CROWN REDUC-
TION

In this section we will first give a trivial reduction rule that removes a specific type of
independent sets. This reduction rule is then generalized and replaced by a more powerful
rule that allows us to reduce any large independent set in the graph.

Reduction Rule 7 If ∃u, v ∈ V such thatN(u) = N(v) = {a, b} andab ∈ E, thenG
has ak-K3-packing⇔ G \ u has ak-K3-packing.

10.4 REDUCING INDEPENDENT SETS- CROWN REDUCTION 84

Proof. This is trivial as it is impossible to use bothu andv in anyK3-packing. 2

This reduction rule identifies a redundant vertex and removes it. The vertex is redundant
because it has a stand-in that can form aK3 in its place and there is no use for both
vertices. Generalizing, we try to find a set of vertices such that there is always a distinct
stand-in for each vertex in the set.

Definition 10.4.1 A crown decomposition(H,C,R) in a graphG = (V,E) is a parti-
tioning of the vertices of the graph into three setsH, C, andR that have the following
properties:

1. H (the head)is a separator inG such that there are no edges inG between vertices
belonging toC and vertices belonging toR.

2. C = Cu ∪ Cm (the crown)is an independent set inG.

3. |Cm| = |H|, and there is a perfect matching betweenCm andH.

Crown-decomposition is a recently introduced idea that supports nontrivial and powerful
preprocessing (reduction) rules for a wide variety of problems, and that performs very
well in practical implementations [CFJ03, F03, ACFL04]. It has recently been shown that
if a graph admits a crown decomposition, then a crown decomposition can be computed
in polynomial time [AS04]. The following theorem can be deduced from [CFJ03, page
7], and [F03, page 8].

Theorem 10.4.1Any graphG with an independent setI, where|I| ≥ n/2, has a crown
decomposition(H, C, R), whereH ⊆ N(I), that can be found in linear time, givenI.

For most problems, includingk-K3-PACKING, it is not clear how a crown decomposition
can directly provide useful information. We introduce here the idea of creating an auxil-
iary graph model where a crown decomposition in the auxiliary graph is used to identify
preprocessing reductions for the original graph.

Fork-K3-PACKING we will show that an auxiliary graph model can be created to reduce
large independent sets in the problem instance. Consider an independent setI in a graph
G. Let EI be the set of edges that are sponsored by the vertices ofI.

The auxiliary model that we consider is a bipartite graphGI where we have one vertex
ui for every vertexvi in I and one vertexfj for every edgeej in EI . For simplicity, we
let both sets{ej | ej ∈ EI} and{fj | ej ∈ EI} be denoted byEI . The edges ofGI are
defined as follows: letuifj be an edge inGI if and only if ui sponsorsfj.

We now prove the following generalization of Reduction Rule 7. This rule now replaces
rule 7.

10.4 REDUCING INDEPENDENT SETS- CROWN REDUCTION 85

Reduction Rule 8 If GI has a crown decomposition(H, Cm ∪ Cu, R) whereH ⊆ EI

thenG has ak-K3-packing⇔ G \ Cu has ak-K3-packing.

Proof. Assume on the contrary thatGI has a crown decomposition(H, Cm ∪ Cu, R),
whereH ⊆ EI andG has ak-K3-packingW ∗ but G \ Cu has nok-K3-packing. This
implies that some of the vertices ofCu were used in thek-K3-packingW ∗ of G.

Let H∗ be the set of vertices inH whose corresponding edges inG use vertices from
C = Cm ∪ Cu to form K3s in thek-K3-packingW ∗ of G. Note that vertices inCu can
only formK3s with edges ofG that correspond to vertices inH. Observe that each edge
corresponding to a vertex inH∗ uses exactly one vertex fromC. Further,|H∗| ≤ |H|.
By these two observations it is clear that every edge whose corresponding vertex is inH∗

can be assigned a vertex fromCm to form aK3. ThusCu is superfluous, contradicting the
assumption. 2

Observation 10.4.1 If a bipartite graphG = (V ∪V ′, E) has two crown decompositions
(H, C, R) and(H ′, C ′, R′) whereH ⊆ V andH ′ ⊆ V , thenG has a crown decomposi-
tion (H ′′ = H ∪H ′, C ′′ = C ∪ C ′, R′′ = R ∩R′).

It is easy to check that all properties of a crown decomposition hold for(H ′′, C ′′, R′′).

Lemma 10.4.1 If G has an independent setI such that|I| > 2|EI | then we can in poly-
nomial time find a crown decomposition(H, Cm ∪ Cu, R) whereH ⊆ EI , andCu 6= ∅.

Proof. Assume on the contrary thatG has an independent setI such that|I| > 2|EI | but
G has no crown decomposition with the properties stated in the lemma.

By Theorem 10.4.1 the bipartite modelGI as described above has a crown decomposition
(H, C = Cm ∪ Cu, R) whereH ⊆ N(I) and consequentlyC ⊆ I. If |I \ C| > |EI | then
GI\C has a crown decomposition(H ′, C ′, R′), whereH ′ ⊂ N(I). By Observation 10.4.1
(H, C, R) and(H ′, C ′, R′) could be combined to form a bigger crown. Let(H ′′, C ′′ =
C ′′

m ∪ C ′′
u , R′′) be the largest crown decomposition that can be obtained by repeatedly

finding a new crown inI \ C and combining it with the existing crown decomposition to
form a new head and crown.

By our assumptionC ′′
u = ∅. Since|C ′′

m| = |H ′′| ≤ EI and it follows from Theorem
10.4.1 that|I \ C ′′

m| ≤ |EI | (otherwise a new crown could be formed), we have that
|I| = |C ′′

m|+|I\C ′′
m| ≤ |EI |+|EI | ≤ 2|EI |, contradicting the assumption that|I| > 2|EI |.

2

10.5 COMPUTING A CUBIC KERNEL 86

10.5 COMPUTING A CUBIC KERNEL

We now introduce a polynomial time algorithm that either produces ak-K3-packing or
finds a valid reduction of any input graphG = (V, E) of at least a certain size. We show
that this algorithm gives anO(k3) kernel fork-K3-PACKING.

The algorithm has the following steps:

1. Reduce by Rule 1 and 2 until neither apply.

2. Greedily, find a maximalK3-packing W inG. If |V (W)| ≥ 3k thenACCEPT.

3. Find a maximal matchingQ in G \ V (W). If a vertexv ∈ V (W) sponsors more
than3k − 3 matched edges, thenv can be reduced by Reduction Rule 6.

4. If possible, reduce the independent setI = V \ (V (W) ∪ V (Q)) with Reduction
Rule 8.

We now give the following lemma to prove our result:

Lemma 10.5.1 If |V | > 108k3−72k2−18k, then the preprocessing algorithm will either
find ak-K3-packing or it will reduceG = (V, E).

Proof. Assume on the contrary to the stated lemma that|V | > 108k3 − 72k2 − 18k, but
that the algorithm produced neither ak-K3-packing nor a reduction ofG.

By the assumption the maximal packingW is of size|V (W)| < 3k.

Let Q be the maximal matching obtained by step 2 of the algorithm.

Claim 1 |V (Q)| ≤ 18k2 − 18k

Proof of Claim 1.Assume on the contrary that|V (Q)| > 18k2−18k. Observe
that no edge inG \ V (W) can sponsor a vertex inG \ V (W) as this would
contradict thatW is maximal, therefore all edges in the the maximal matching
Q are sponsored by at least one vertex inV (W). If |V (Q)| > 18k2 − 18k,
Q contains more than9k2 − 9k edges. Thus at least one vertexv ∈ V (W)
sponsors more than(9k2 − 9k)/3k = 3k − 3 edges. Consequentlyv should
have been removed by Reduction Rule 6, contradicting the assumption that
no reduction ofG took place. We have reached a contradiction, thus the
assumption that|V (Q)| > 18k2 − 18k must be wrong. 2

10.6 WINNING THE FPT RUNTIME RACE 87

Let I = V \ (V (W) ∪ V (Q)). Note thatI is an independent set.

Claim 2 |I| ≤ 108k3 − 90k2

Proof of Claim 2.Assume on the contrary that|I| > 108k3 − 90k2. Observe
that each edge that is sponsored by a vertex ofI is either in the subgraph ofG
induced byV (W), or is an edge betweenV (W) andV (Q). There are at most
|EI | = |V (Q)|·|V (W)|+|V (W)|2 ≤ (18k2−18k)·3k+(3k)2 ≤ 54k3−45k2

such edges.

By Lemma 10.4.1 there are no more than2|EI | = 108k3 − 90k2 vertices in
I, which contradicts the assumption that|I| > 108k3 − 90k2. 2

Thus the total size|V | is |V (W)|+ |V (Q)|+ |I| ≤ 3k + 18k2 − 18k + 108k3 − 90k2 =
108k3 − 72k2 − 18k. This contradicts the assumption that|V | > 108k3 − 72k2 − 18k.

2

Corollary 10.5.1 Any instance(G, k) of k-K3-PACKING can be reduced to a problem
kernel of sizeO(k3).

Proof. This follows from Lemma 10.5.1, as we can repeatedly run the algorithm until
it fails to reduce the graph further. By Lemma 10.5.1 the resulting graph is then of size
O(k3). 2

Note that aO(k3) kernel gives us a trivialFPT-algorithm by testing allO(
(

k3

3k

)
) subsets

in a brute force manner. This leads to anO(29k log k + poly(n, k)) algorithm. However,
we will show in the next section that anotherFPT technique yields a faster algorithm.

10.6 WINNING THE FPT RUNTIME RACE

In this section we give a faster FPT-algorithm using the technique of Greedy Localization
and a bounded search tree.

We begin with the following crucial observation.

Observation 10.6.1Let W be a maximalK3-packing, and letW ∗ be ak-K3-packing.
Then for eachK3 T of W ∗, we haveV (T) ∩ V (W) 6= ∅.

Proof. Assume on the contrary that there exists aK3 T in W ∗ such thatV (T)∩V (W) =
∅. This implies thatV (T) ∪ V (W) is aK3-packing contradicting thatW is a maximal
packing. 2

10.6 WINNING THE FPT RUNTIME RACE 88

Theorem 10.6.1 It is possible to determine whether a graphG = (V, E) has ak-K3-
packing in timeO(22k log k+1.869kn2).

Proof. Let W be a maximalK3-packing. If |V (W)| ≥ 3k we have aK3-packing.
Otherwise, create a search treeT . At each node we will maintain a collectionSi =
Si

1, S
i
2, . . . , S

i
k of vertex subsets. These subsets represent thek triangles of the solution,

and at the root node all subsets are empty.

From the root node, create a childi for every possible subsetWi of V (W) of sizek. Let
the collection at each nodei containk singleton sets, each containing a vertex ofWi.

We say that a collectionSi = Si
1, S

i
2, . . . , S

i
k is apartial solutionof a k-K3-packingW ∗

with k disjoint trianglesW ∗
1 ,W ∗

2 , . . . ,W ∗
k if Si

j ⊆ V (W ∗
j) for 1 ≤ j ≤ k.

For a childi, consider its collectionSi = Si
1, S

i
2, . . . , S

i
k. Add vertices toSi

1 such thatSi
1

induces aK3 in G, continue in a greedy fashion to add vertices toSi
2, S

i
3 and so on. If

we can complete allk subsets we have ak-K3 packing. Otherwise, letSi
j be the first set

which is not possible to complete, and letV ′ be the vertices we have added toSi so far.
We can now make the following claim.

Claim 1 If Si = Si
1, S

i
2, . . . , S

i
k is a partial solution then there exists a vertexv ∈ V ′ such

thatSi = Si
1, . . . , (S

i
j ∪ {v}), . . . , Si

k is a partial solution.

Proof of Claim 1. Assume on the contrary thatSi = Si
1, S

i
2, . . . , S

i
k is a

partial solution but that there exists no vertexv ∈ V ′ such thatSi = Si
1, (S

i
j ∪

{v}), . . . , Si
k is a partial solution. This implies thatV (W ∗

j)∩V ′ = ∅, but then
we could addV (W ∗

j) \ Si
j to Si

j to form a newK3, thus contradicting that it
was not possible to completeSi

j. 2

We now create one childu of nodei for every vertex inu ∈ V ′. The collection at child
u is Si = Si

1, (S
i
j ∪ {u}), . . . , Si

k. This is repeated at each nodel, until we are unable to
complete any set in nodel’s collection, i.e.,V ′ = ∅.
By Observation 10.6.1 we know that if there isk-K3-packing then one of the branchings
from the root node will have a partial solution. Claim 1 guarantees that this solution is
propagated down the tree until finally completed at level2k.

At each level the collectionsS at the nodes grow in size, thus we can have at most2k
levels in the search tree. Observe that at heighth in the search tree|V ′| < 2k − h,
thus fan-out at heighth is limited to 2k − h. The total size of the tree is then at most(
3k
k

)
2k · (2k−1) · · · · = (

3k
k

) ·2k! = (3k)!
k!

. Using Stirling’s approximation and suppressing

10.7 PACKING ARBITRARY GRAPHS 89

some constant factors we have(3k)!
k!

≈ 3.654k ·k2k = 22k log k+1.869k. At each node we need
O(n2) time to maximize the sets. Hence, the total running time isO(22k log k+1.869kn2) 2

Note that it is, of course, possible to run the search tree algorithm from this section on the
kernel obtained in the previous section. The total running time is thenO(22k log k+1.869kk6+
p(n, k)). This could be useful ifn is much larger thank as the additive exponential (rather
than multiplicative) factor becomes significant.

10.7 PACKING ARBITRARY GRAPHS

In their paper from 1978, Hell and Kirkpatrick [HK78] prove thatk-H-packing for any
connected graphH of 3 or more vertices isNP-complete. We will in this section show
that our search tree technique fork-K3-packing easily generalizes to arbitrary graphsH,
thus proving that packing any subgraph is in FPT.

k-H -PACKING

INSTANCE: GraphG = (V, E)
PARAMETER: k
QUESTION: DoesG have at leastk disjoint copies ofH?

Theorem 10.7.1 It is possible to determine whether a graphG = (V, E) has ak-H-
packing in timeO(2k|H| log k+2k|H| log |H|n|H|).

Proof. The proof is analogous to the proof of Theorem 10.6.1. However, as we no longer
can depend upon perfect symmetry inH (sinceH is not necessarily complete), we must
maintain a collection of ordered sequences at each tree-node. Each sequence represents a
partialH-subgraph.

The possible size ofV ′ increases tok|H| − k. Then when we want to determine whichv
of V ′ to add to the sequence, we must try everyv in every position inH. Thus the fan-out
at each node increases tok|H|2 − k|H|. The height of the tree likewise increases to at
mostk|H| − k. Thus the new tree size is

(
k|H|

k

)
(k|H|2 − k|H|)k|H|−k, which is strictly

smaller thankk|H||H|2k|H| or 2k|H| log k+2k|H| log |H|. 2

10.8 SUMMARY AND OPEN PROBLEMS

Our main results in the twoFPT races are:

(1) We have shown anO(k3) problem kernel for the problem of packingk triangles.

(2) We have shown that for any fixed graphH, the problem of packingk Hs is in FPT

10.8 SUMMARY AND OPEN PROBLEMS 90

with a parameter function of the formO(2O(k log k)) and more practical constants than
[AYZ95].

In addition to “upper bound” improvements to these initial results, which would be the
natural course for further research - now that the races are on - it would also be interesting
to investigate lower bounds, if possible.

It would be interesting to investigate the “optimality” of the form of ourFPT results in
the sense of [CJ03, DEFPR03]. Can it be shown that there is noO(2o(k)) FPT algorithm
for k-H -PACKING unlessFPT= M [1]?

Many parameterized problems admit linear problem kernels. In fact, it appears that most
naturally parameterized problems inAPX are inFPT and have linear problem kernels.
However, it seems unlikely thatall FPT problems admit linear kernels. We feel thatk-
Kt-PACKING is a natural candidate for anFPT problem where it may not be possible
to improve onO(kt) kernelization. Techniques for the investigation of lower bounds on
kernelization are currently lacking, but packing problems may be a good place to start
looking for them.

BIBLIOGRAPHY

[AS04] F. AbuKhzam and H. Suters, Computer Science Department, University of Ten-
nessee, Knoxville, private communications, Dec. 2003.

[AYZ95] N. Alon, R. Yuster, U. Zwick. Color-Coding. J. ACM, pp. 844-856, 1995

[ACFL04] F. Abu-Khzam, R. Collins, M. Fellows and M. Langston. Kernelization Al-
gorithms for the Vertex Cover Problem: Theory and Experiments.Proceedings
ALENEX 2004, Springer-Verlag,Lecture Notes in Computer Science(2004), to ap-
pear.

[CFJ03] B. Chor, M. Fellows, and D. Juedes. Savingk Colors in TimeO(n5/2). Manu-
script, 2003.

[CFJ04] B. Chor, M. Fellows, and D. Juedes. Linear Kernels in Linear Time, or How to
Save k Colors inO(n2) steps. Proceedings of WG2004, Springer-Verlag,Lecture
Notes in Computer Science(2004)

[CJ03] L. Cai and D. Juedes. On the existence of subexponential parameterized algo-
rithms.Journal of Computer and System Sciences67 (2003).

[DEFPR03] R. Downey, V. Estivill-Castro, M. Fellows, E. Prieto-Rodriguez and F. Rosa-
mond. Cutting Up is Hard to Do: the Parameterized Complexity ofk-Cut and Re-
lated Problems. Electronic Notes in Theoretical Computer Science 78 (2003), 205–
218.

[DF99] R. Downey and M. Fellows.Parameterized ComplexitySpringer-Verlag (1999).

[DFS97] R. Downey, M. Fellows and U. Stege, Parameterized Complexity: A Frame-
work for Systematically Confronting Computational Intractability, in:Contempo-
rary Trends in Discrete Mathematics, (R. Graham, J. Kratochvil, J. Nesetril and
F. Roberts, eds.), AMS-DIMACS Series in Discrete Mathematics and Theoretical
Computer Science 49, pages 49-99, 1999.

[E65] J.Edmonds. Paths, trees and flowers,Can.J.Math., 17, 3, pages 449-467, 1965.

[F03] M.Fellows. Blow-ups, Win/Wins and Crown Rules: Some New Directions inFPT.
Proceedings WG 2003, Springer Verlag LNCS 2880, pages 1-12, 2003.

BIBLIOGRAPHY 92

[HK78] P. Hell and D. Kirkpatrick. On the complexity of a generalized matching prob-
lem.Proceedings of 10th ACM Symposium on theory of computing, pages 309-318,
1978.

[HS89] C. A. J. Hurkens, and A. Schrijver. On the size of systems of sets every t of which
have an SDR, with an application to the worst-case ratio of heuristics for packing
problems,SIAM J. Disc. Math. 2, pages 68-72, 1989.

[JZC04] W. Jia, C. Zhang and J. Chen. An efficient parameterized algorithm form-set
packing,Journal of Algorithms, 50(1):106–117, 2004.r.

[K91] V. Kann. Maximum bounded 3-dimensional matching is MAX SNP-complete,In-
form. Process. Lett. 37, pages 27-35, 1991.

[W03] G. Woeginger. Exact algorithms forNP-hard problems: A survey,Combinatorial
Optimization - Eureka! You shrink!, M. Juenger, G. Reinelt and G. Rinaldi (eds.).
LNCS 2570, Springer, pages 185-207, 2003.

11

FIXED PARAMETER SET SPLITTING

Fixed Parameter Set Splitting, Linear Kernel and Improved Running Time1

Daniel Lokshtanov Christian Sloper

Abstract

We study the problem k-SET SPLITTING in fixed parameter complexity. We
show that the problem can be solved in timeO∗(2.6494k), improving on the
best currently known running time ofO∗(8k). This is done by showing that
a non-trivial instance must have a small minimalSET COVER, and using this
to reduce the problem to a series of small instances ofMAX SAT.

We also give a linear kernel containing2k elements and2k sets. This is done
by reducing the problem to a bipartite graph problem where we use crown
decomposition to reduce the graph. We show that this result also gives a
good kernel forMAX CUT.

11.1 INTRODUCTION

The problem we study in this short note isMAXIMUM SET SPLITTING. The transforma-
tion fromMAXIMUM SET SPLITTING to MAX CUT preserves the parameter and thus our
kernel applies for this problem as well.

k-SET SPLITTING

INSTANCE: A tuple (X,F , k) whereF is a collection of subsets of a finite
setX, and a positive integerk
PARAMETER: k

1This paper appeared at the conference ’Algorithms and Complexity in Durham’, 2005 and has later
been invited to a special issue of Journal of Discrete Algorithms [LS05].

11.2 PRELIMINARIES 94

QUESTION: Is there a subfamilyF ′ ⊆ F , |F ′| ≥ k, and a partition ofX into
disjoint subsetsX0 andX1 such that for everyS ∈ F ′, we haveS ∩X0 6= ∅
andS ∩X1 6= ∅?

SET SPLITTING, or HYPERGRAPHCOLORING as it is named in some sources, is a well
studied problem. A decision version of the problem appears in [GJ79] as problem [SP4].
It is APX-complete [Pe94] and there have been several approximation algorithms pub-
lished. The most notable are Anderson and Engebretsen [AE97] with a factor of0.7240,
and Zhang and Ling [ZL01] with a factor of0.7499.

In the area of parameterized algorithms there have been several results published. The
first by Dehne, Fellows, and Rosamond [DFR03] who give aO∗(72k) FPT algorithm.
Dehne, Fellows, Rosamond, and Shaw [DFRS04] then improved on this result giving a
O∗(8k) algorithm using a combination of the techniquesgreedy localizationandcrown
decomposition.

To improve the running time we show that any non-trivial solution ofSET SPLITTING has
a SET COVER of size at mostk. We can then reduce the problem to2k instances ofMAX

SAT with k clauses each. By using Chen and Kanj’s [CK04] exact algorithm with running
timeO∗(1.3247k) on each instance, we get a total running time ofO∗(2.6494k).

We will also show how we can use crown decomposition to obtain a linear kernel. We
do this by reducing the problem to a bipartite graph problem,BIPARTITE COLORFUL

NEIGHBORHOOD. We will use crown decomposition to reduce the graph; then show that
a simple greedy algorithm decides instances wherek ≤ |F|/2. Together the two results
give a linear kernel with at most2k elements and at most2k sets.

11.2 PRELIMINARIES

We assume that in aSET SPLITTING instance every set contains at least two elements of
X. This is a natural assumption as sets of size one cannot be split in any case.

We employ theO∗ notation introduced in [W03], which suppresses the polynomials in
the running time and focus on the exponentials. Thus for aO∗(2k) algorithm, there exists
a constantc such that the running time isO(2knc).

Throughout the text we will use lower case letters for elements, edges and vertices, capi-
tals for sets, and caligraphy for sets of sets, i.e.,x,X,X , respectively.

In graphs, the set of neighbors of a vertexv is denotedN(v), and the neighbors of a set
S ⊆ V is denotedN(S) =

⋃
v∈S N(v)− S.

11.3 USING SET COVER TO IMPROVE RUNNING TIME 95

11.3 USING SET COVER TO IMPROVE RUNNING TIME

Let a set cover be a subsetS ⊆ X such that for every setP ∈ F , we haveP ∩S 6= ∅. We
will prove that an instance either has a set cover of sizek or it has ak-SET SPLITTING.
As we will show, obtaining a small set cover allows us to reduce the problem to a series
of MAX SAT problems.

Lemma 11.3.1 Any instance(X,F , k) of Set Splitting that has aminimal set coverS,
has a partitioning ofX into disjoint subsetsX0 and X1 such that at least|S| sets are
split.

Proof. Let S = {s1, s2, s3, . . . , sn} be a minimal set cover in(X,F , k). By minimality
of S, we have that for allsi ∈ S there is a setPi ∈ F such thatS ∩ Pi = {si}. Since
every set is of size at least two we can obtain a split of each of these setsPi by partitioning
X0 = S andX1 = X − S. 2

We will now show that we can solve the problem of set splitting by creating at most2k

small instances (at mostk clauses) ofMAX SAT.

MAX SAT

INSTANCE: A collectionC of clauses over a set of variablesX
QUESTION: What is the truth assignment that satisfies the maximum number
of clauses?

A recent paper by Chen and Kanj [CK04] gives aO∗(1.3247m) algorithm forMAX SAT

wherem is the number of clauses in the formula. We will use this algorithm to solve our
MAX SAT instances.

Theorem 11.3.1Set Splitting can be solved in timeO∗(2.6494k)

Proof. We obtain a minimal set coverS by greedily selecting vertices to cover all sets. By
Lemma 11.3.1 we know thatS has size less thank, otherwise we can immediatly answer
’Yes’. Let P = {P | P ∈ F , P 6⊆ S}. It is clear that|P| < k, otherwise the partition
(S, X \ S) splits at leastk sets. The remaining sets are only affected by how we partition
S.

Observe that ifS was already partitioned into disjoint subsetsX ′
0, X

′
1 every set inP has

at least one member inX ′
0 or in X ′

1.

Assume we have a partitioning(X ′
0, X

′
1) of S. For each setR ∈ P, whereR is not split

by X ′
0, andX ′

1, create a clauseCR. If R contains an element inX ′
0 add literalsxi for each

11.4 REDUCING TO A GRAPH PROBLEM 96

elementxi ∈ R − S to CR. If R contains an element inX ′
1, then add literalsxi, for each

elementxi ∈ R− S to CR.

Adding an elementx to X ′
0 now corresponds to setting variablex false, and vice versa.

Observe that a setR ∈ P is split if and only if its clauseCR is satisfied. We can now
employ Chen and Kanj’s exact algorithm forMAX SAT. There are2k different partitions
of the set coverS, for each we construct an instance ofMAX SAT with at mostk clauses.
Thus we get a total running time ofO∗(2k · 1.3247k) = O∗(2.6494k). 2

11.4 REDUCING TO A GRAPH PROBLEM

The running time of the algorithm in the previous section is multiplicative, i.e., of the
formO(f(k) · nc). It is often advantagous to have the exponential function as an additive
term of the formO(f(k) + nc). We can achieve this by reducing, in polynomial time, the
problem to a kernel. Akernelis a smaller instance of the same problem where the size of
the instance is bounded by a functiong(k). If g(k) is a linear function we call the kernel
a linear kernel. Having a linear kernel is often advantagous when designing brute force
algorithms for a problem. In this section we show how a linear kernel can be achieved
usingcrown decompositon.

Recently the fixed parameter kernels for many problems have been improved using crown
decompositions. It is a common technique [FHRST04, PS04] to create an auxiliary graph
model from the problem instance and then show that a reduction (using crown decom-
position) in the graph model leads to reduction of the problem instance. This technique
would apply to this problem, but we will instead reduce our problem to a problem on
bipartite graphs.

We reformulate the problem as a problem on bipartite graphs. LetG(VF , VX , E) be a
bipartite graph, whereVF is a set of vertices with a vertexvM for each setM ∈ F , and
VX is a set of vertices with a vertexvx for each elementx ∈ X and let(vx, vM) ∈ E be
an edge ifx ∈ M .

The problem is now reduced to color the setVX black and white such that at leastk
vertices ofVF have acolorful neighborhood, i.e., at least one neighbor of each color. It is
easy to see that this problem is equivalent tok-SET SPLITTING.

k-BIPARTITE COLORFUL NEIGHBORHOOD(k-BCN)
INSTANCE: A bipartite graphG = (VF , VX , E), and a positive integerk
PARAMETER: k
QUESTION: Is there a two-coloring ofVX such that there exists a setS ⊆ VF
of size at leastk where each element ofS has a colorful neighborhood?

As mentioned we will use crown decomposition to reduce the problem. Crown decompo-

11.4 REDUCING TO A GRAPH PROBLEM 97

sition is particularly well suited for use in bipartite graphs, as Lemma 11.4.1 ensures us
the existence of a crown decomposition in any bipartite graph.

Definition 11.4.1 A crown decomposition(H, C, R) in a graphG = (V, E) is a par-
titioning of the vertices of the graph into three setsH, C, and R whereH and C are
nonempty such that they have the following properties:

1. H (the head)is a vertex separator inG, such that there are no edges inG between
vertices belonging toC and vertices belonging toR.

2. C = Cu ∪ Cm (the crown)is an independent set inG.

3. There is a bijective mappingf : H → Cm, wheref(v) = u ⇒ (u, v) ∈ E (i.e., a
perfect matching).

We can find the following lemma in [CFJ04].

Lemma 11.4.1 If a graph G = (V, E) has an independent setI ⊆ V (G) such that
|N(I)| < |I| then a crown decomposition(H,C,R) with C ⊆ I for G can be found in
timeO(|V |+ |E|).

Our main reduction rule is the following lemma that states that any crown decomposition
can be transformed to a crown decomposition where the head and crown can be removed
from the graph.

Lemma 11.4.2 Given a bipartite graphG = (VF , VX , E) where|VF | < |VX |, there exists
a nontrivial crown decomposition(H, C, R) such thatG is a ’Yes’-instance fork-BCN
⇐⇒ G′ = (VF \H,VX − C,E) is a ’Yes’-instance for(k − |H|)-BCN

Proof. Since|VF | < |VX | there exists a componentV ′
F ⊆ VF , V ′

X ⊆ VX where|V ′
F | <

|VX |′. By Lemma 11.4.1 we know that this component has a crown decomposition
(H ′, C ′, R′) whereH ′ ⊆ V ′

F . We now use this crown to identify another crown(H, C,R)
with the desired properties.

We assumeR 6= ∅, if this is not the case we can move a vertex fromCu toR. If Cu∪R = ∅
then|V ′

F | = |V ′
X |, contradicting|V ′

F | < |V ′
X |.

We iteratively compute this new crown in the following manner. LetH0 ⊆ H ′ be the
set of vertices ofH ′ that have a neighbor inVX − C. The setH0 is nonempty since
R 6= ∅ andH ′ is a vertex separator. LetC0 be the vertices ofC that are matched to

11.4 REDUCING TO A GRAPH PROBLEM 98

H0. Let Hi+1 = N(Ci) andCi+1 be the vertices matched toHi+1. Run iteratively until
Hi+1 = Hi then letH = Hi, C = {v | v ∈ VX , N(v) ⊆ H} andR be the remainder.

From the construction of(H,C,R) it is clear that this is a crown decomposition. We
proceed to show thatG is a Yes-instance fork-BCN if and only if G′ = (VF −H, VX −
C, E) is a YES instance for(k − |H|)-BCN.

In one direction assume on the contrary thatG is a Yes- instance fork-BCN, but that
G′ = (VF − H, VX − C,E) is a No instance for(k − |H|)-BCN. Then the removed
elementsC must have participated in a colorful neighborhood for more than|H| vertices
in VF . This is clearly impossible asN(C) ⊆ H.

In the other direction we have thatG′ = (VF − H, VX − C,E) is a Yes-instance for
(k − |H|)-BCN. We can assume that every vertex inVX − C has been colored. We can
now colorC such that every vertex inH has a colorful neighborhood. For every vertex
h ∈ H0 we can color the vertex matched toh different fromh’s neighbor inVX − C.
Observe that after coloringCj, all vertices inHj+1 − Hj have a neighbor inCj. Thus
we can obtain a colorful neighborhood for each vertexh ⊆ Hj+1 − Hj by coloring its
matched vertex appropriately. Thus every vertex inH has a colorful neighborhood andG
is a YES instance fork-BCN. 2

We say that a bipartite graph isirreducible if we cannot apply the reduction in Lemma
11.4.2. The following corollary follows directly.

Corollary 11.4.1 In an irreducible bipartite graphG = (|VF |, |VX |, E), we always have
|VX | ≤ |VF |.

We have obtained the inequality|VX | ≤ |VF |. We now show that we can obtain a sim-
ilar relationship between|VF | andk by analyzing the effectiveness of a simple greedy
algorithm for the problem.

Greedy algorithms forSET SPLITTING seem to do quite well, and it is indeed possible to
prove that there is a polynomial time algorithm that splits at least half of the sets. For our
graph problem this is the equivalent of proving that it is always possible to two-colorVX

such that at least half ofVF has a colorful neighborhood.

Lemma 11.4.3 It is always possible to find a partitioning(B, W) of VX such that at least
half of the vertices inVF have a colorful neighborhood.

Proof. For a subsetV ′
X ⊆ VX we defineM(V ′

X) = {vM | vM ∈ VF , N(vM) ⊆ V ′
X}. We

proceed by induction on the size ofV ′
X .

11.5 AN APPLICATION TO MAX CUT 99

Base case:If |V ′
X | = 1, thenM(V ′

X) = ∅. Thus the statement is trivially true.

Inductive Hypothesis: We assume that for all setsV ′
X ⊆ VX of sizen0 we can find

a partitioningB′,W ′ of V ′
X such that at least half of the vertices inM(V ′

X) has a
colorful neighborhood.

Inductive Step: Assume any setV ′′
X ⊆ VX where|V ′′

X | = n0 + 1. Let vx ∈ V ′′
X be an

arbitrary vertex inV ′′
X , and letM ′ = M(V ′′

X − vx) . By the inductive hypothesis
we can find a partitioningB′,W ′ such that half of the vertices inM ′ have a color-
ful neighborhood. Since every vertex inVF has degree at least 2, every vertex in
M(V ′′

X)−M ′ has at least one neighbor inB′ ∪W ′. We can assume without loss of
generality that half of the vertices ofM(X ′′) −M ′ have a neighbor inB′. Hence
the partitioningB′,W ′ ∪ {vx} ensures that at least half of the vertices inM(V ′′

X)
have a colorful neighborhood.

2

The following corollary follows directly from the above lemma. It is easy to design
a greedy algorithm that mimic the inductive procedure in the proof and produces the
necessary partitioning.

Corollary 11.4.2 All instances wherek ≤ |VF |/2 are trivially ’Yes’-instances.

Theorem 11.4.1k-BCN has a linear kernel where|VX | ≤ |VF | < 2k.

Proof. By Corollary 11.4.2 we have that for a nontrivial instance(G, k), k > |VF |/2. By
Corollary 11.4.1 we have that|VX | ≤ |VF | after reducing the graph. Thus the inequality
|VX | ≤ |VF | < 2k holds for the kernel. 2

The following corollary then follows by a transformation of the kernel back tok-SET

SPLITTING.

Corollary 11.4.3 k-SET SPLITTING has a linear kernel of2k sets and2k elements.

11.5 AN APPLICATION TO M AX CUT

In this section we mention that our kernelization result also applies to the more known
MAX CUT, which can be encoded usingSET SPLITTING.

11.6 CONCLUSION 100

MAX CUT

INSTANCE: A graphG = (V,E), and a positive integerk
PARAMETER: k
QUESTION: Is there a partitioning ofV into two setsV ′, V ′′ such that the
number of edges betweenV ′ andV ′′ is at least k?

Let the set of elementsX = V and for every edge(v, u) ∈ E create a set{v, u}. A
splitting of a setvu now corresponds to placingu andv in different partitions inMAX

CUT. The results onSET SPLITTING thus apply toMAX CUT.

Observation 11.5.1k-MAX CUT has a linear kernel of2k vertices and2k edges.

Using the best known exact algorithm for this problem, anO∗(2|E|/4) algorithm by Fedin
and Kulikov [FK02], we get a running time ofO∗(2k/2) which is equivalent to Prieto’s
algorithm in [P04] where she used theMethod of Extremal Structure, another well known
FPT technique, to reach a kernel ofk vertices and2k edges. Earlier Mahajan, Raman
[MR99] has used yet another technique to reach the same number of edges.

11.6 CONCLUSION

We have improved the current best algorithm forSET SPLITTING ofO∗(8k) toO∗(2.6494k)
using an observation about the size and structure of the minimal set covers in any set split-
ting instance.

We also obtained a linear kernel by using modelled crown decomposition. Our model
is different from the one seen in [DFRS04]. This shows how crown decompositions can
often be applied in many ways to a single problem, with varying results. This kernel also
applies to Max Cut equalling the best known kernels for this problem, but with a different
approach.

Having achieved a linear kernel for Set Splitting we believe that it is now possible to
improve the running time even further. Applying a variation of the transformation seen in
the proof of Theorem 11.3.1 it is possible to transform an instance ofSET SPLITTING to
an instance of Max Sat. Add two clauses for each set, with one literal for each variable.
In one clause all literals are positive and in the other all negative. The set is now split if
and only if both clauses are satisfied. With a2k set instance we have at leastk sets split
if and only if we have at least3k clauses satisfied. With our kernel, this direct approach
would be better than the method described in this paper if the Max Sat running time could
be improved belowO(2m/3), wherem is the number of clauses.

We would like to acknowledge Daniel Kral for insightful remarks.

BIBLIOGRAPHY

[AE97] G. Andersson and L. Engebretsen, Better approximation algorithms for set split-
ting and Not-All-Equal-Sat,Information Processing Letters, 65(1988) 305–311.

[CK04] J. Chen, I. Kanj, Improved Exact Algorithms for Max-Sat,Discrete Applied
Mathematics142(2004), 17–27.

[CFJ04] B. Chor, M. Fellows, and D. Juedes, Linear Kernels in Linear Time, or How to
Save k Colors inO(n2) steps, inProceedings of WG2004, LNCS(2004).

[DFR03] F. Dehne, M. Fellows, and F. Rosamond, An FPT Algorithm for Set Splitting, in
Proceedings WG2004 - 30th Workshop on Graph Theoretic Concepts in Computer
science,LNCS 2004.

[DFRS04] F. Dehne, M. Fellows, F. Rosamond, and P. Shaw, Greedy Localization, It-
erative Compression and Modeled Crown Reductions: New FPT Techniques and
Improved Algorithms for Max Set Splitting and Vertex Cover,Proceedings of IW-
PEC04LNCS 3162(2004), 271–281.

[FK02] S. Fedin and A. Kulikov, A2|E|/4-time Algorithm for MAX-CUT.Zapiski nauch-
nyh seminarov POMI, 293(2002), 129–138. English translation to appear in Journal
of Mathematical Sciences.

[FHRST04] M.Fellows, P.Heggernes, F.Rosamond, C. Sloper, J.A.Telle, Findingk dis-
joint triangles in an arbitrary graph,To appear WG2004

[GJ79] M. Garey and D. Johnson,Computers and Intractability: A Guide to the Theory
of NP-Completeness.(W.H. Freeman, San Francisco, 1979).

[MR99] M. Mahajan, V. Raman, Parameterizing above guaranteed values: MaxSat and
MaxCut,Journal of Algorithms31(1999), 335–354.

[P04] E. Prieto, The Method of Extremal Structure on thek-Maximum Cut Problem.
Manuscript, to appear

[PS04] E.Prieto and C. Sloper, Reducing to Independent Set Structure — the Case of
k-INTERNAL SPANNING TREE. To appear

[Pe94] E. Petrank, The hardness of approximation: Gap location,Computational Com-
plexity, 4(1994), 133–157.

BIBLIOGRAPHY 102

[W03] G. Woeginger, Exact Algorithms for NP-Hard Problems. A Survey, inProceed-
ings of 5th International Workshop on Combinatorial Optimization-Eureka, You
Shrink! Papers dictated to Jack Edmonds, M. Junger, G. Reinelt, and G. Rinaldi
(Festschrift Eds.) LNCS2570(2003), pp. 184–207.

[ZL01] H. Zhang and C.X.Ling, An improved learning algorithm for augmented naive
Bayes,Pacific-Asia Conference on Knowledge Discovery and Data Mining, LNCS
2035(2001), pp.581–586.

