TECHNIQUES IN PARAMETERIZED
ALGORITHM DESIGN

Christian Sloper
Cand. Scient.

The University of Bergen
Norway

2005

ISBN 82-308-0108-8
Bergen, Norway 2006

TECHNIQUES IN PARAMETERIZED
ALGORITHM DESIGN

Christian Sloper
Cand. Scient.

Submitted as part of the requirements for

Doctor of Philosophy

Department of Informatics

The University of Bergen
Norway

ABSTRACT

In this thesis we give a novel classification of techniques for designing parameterized
algorithms, together with research publications applying these techniques, in particular
Crown Decompositions, to various problems.

In Part | we argue that the currently known techniques can be organized into just four
general themes: Bounded Search Trees, Reduction Rules, Induction and Win/Win. The
four main themes and their variations are presented through an algorithmic skeleton and
illustrated by examples.

Part Il contains four research papers that apply the techniques described in Part | on the
following problems: MAX INTERNAL SPANNING TREE, K3-PACKING, H-PACKING,

K, s-PACKING, P5-PACKING, SET SPLITTING, and MAX CuT. The techniques used
include Win/Win, Bounded Search Trees, Greedy Localization, Crown Decomposition,
Modelled Crown Decomposition, Extremal Method, and Reduction Rules.

ACKNOWLEDGEMENTS

I would like to express my gratitude to several people for helping me write this thesis.

First and foremost, | thank Professor Jan Arne Telle, my advisor. Without his patient
guidance it would not have been possible for me to complete this work. Choosing him as
my advisor has proven to be one of the best decisions | have made.

Second, | would like to thank Michael Fellows and Jan Kratochvil for letting me visit
them and their institutions and for supporting me for six months each.

| would also like to thank all my co-authors Marc Bezem, Carlos Cotta, Michael Fel-
lows, Pinar Heggernes, Tore Langholm, Daniel Lokshtanov, Pablo Moscato, Elena Prieto,
Frances Rosamond, and Jan Arne Telle.

Then I would like to thank Yngve Villanger for very useful conversation about many parts
of this thesis, and Olav Hjortas for his diligence when proofreading this thesis.

My mother, father, and brother deserve thanks for their unwavering support and faith in
me, especially in times it was not deserved.

Fortunately, my friends are too many to name, but they have all been instrumental in
keeping me in touch with the real world. | have never been able to voice how much you
all mean to me.

Finally, I would like to thank one person who in particular transcends all categories above.
Being my most prolific co-author, one of my closest friends, an advisor in life if not
science, and some have even claimed my Siamese twin separated at birth: Elena, thank
you.

1

CONTENTS

Introduction 1
1.1 OVEIVIEW . . . o o e e 4
Notation and Definitions 6
2.1 ComputationalModel 6
2.2 SelS . .. 6
2.3 Relationsand Functions oo 6
2.4 BasicGraphTheory e 6
2.5 Tree decompositions and Branch decompositions 7
2.6 O-andO*-notation 8
2.7 Computational Complexity 8
2.8 Fixed Parameter Complexity 9
2.9 ExactAlgorithms 10
An overview of parameterized algorithm design techniques 11
Bounded Search Trees 12
3.1 Basic Search Trees - Controlled recursion 12
3.1.1 Examples of Bounded SearchTrees 14
3.1.2 HowlsltUsed InPractice? 15

3.2 GreedyLocalization. 16

CONTENTS X

3.3 ColorCoding e 17
3.3.1 Example of a Color Coding algorithm 18
4 Reduction rules 20
4.1 Thebasicreduction 20
4.1.1 Examples of Reduction Rule algorithms 22
4.2 Crown Decomposition 24
4.2.1 Example of a Crown Reductionrule 26
4.2.2 The Complexity of Crown Decomposition 28
5 FPT by Induction 31
51 Thebasics 31
5.2 For Minimization - Iterative Compression 32
5.2.1 Example of 'lIterative Compression’ 32
5.2.2 HowlsltUsedinPractice? 34
5.3 For Maximization - The Extremal Method 34
5.3.1 Howisitusedinpractice? 36
6 Win/Win 37
6.1 Basic Win Win-Bestoftwoworlds 37
6.1.1 Examplesof Win/Win 37
6.2 Graph Minor Theorem 40
6.2.1 Example of a Graph Minor Algorithm 42
7 List of Problems 43
7.1 Branchwidth. 43

CONTENTS Xi

7.3 DominatingSet 43
7.4 Dominating Setoncubicgraphs o oL 43
7.5 Feedback VertexSet 44
7.6 HamiltonianCycle 44
7.7 Hitting Set. e 44
7.8 IndependentSet 44
7.9 K3-Packing 44
7.10 Max Cut 44
7.11 MaxlLeafSubtree 45
7.12 MinorOrderTest 45
7.13 Odd Cycle Cover e 45
7.14 P2Packing 45
7.15 PlanarIndependentSet 45
7.16 Dominating Set 45
7.17 Short Nondeterministic Turing Machine Acceptance 46
7.18 Sized Crown 46
7.19 Sorting e e 46
7.20 Treewidth L 46
7.21 Vertex Cover 46
Il Papers - case studies 51
8 Max Internal Spanning Tree 52
8.1 Introduction 52

8.2 UsingReductionRules 53

CONTENTS Xii

10

8.3 Preliminaries 55
8.4 k-Internal Spanning TreeisFPT 55
8.5 Independent Set Structure 56
8.6 Analysis ofthe runningtime 60
8.7 Another path(width)tosuccess 61
8.8 Conclusions and Further Applications to Independent Set Structures . . . 62
Packing Stars 66
9.1 Introduction 66
9.2 Introduction to Parameterized Algorithms 68
9.2.1 Preliminaries e 68
9.3 Parameterized complexity 8fAR PACKING 69
9.4 The special case #f,: alinearkernel 71
95 RunningTime 75
9.6 Conclusions and FurtherResearch 76
Packing Triangles 80
10.1 Introduction 80
10.2 Preliminaries 82
10.3 Reductionrules faKs-packing. L. 82
10.4 Reducing independent sets - crown reduction 83
10.5 Computingacubickernel 86
10.6 Winning the FPT runtimerace 87
10.7 Packing arbitrarygraphs o o 89

10.8 Summary andopenproblems 89

CONTENTS Xiii

11 Fixed Parameter Set Splitting 93
11.1 Introduction 93
11.2 Preliminaries 94
11.3 Using Set Cover to improve runningtime 95
11.4 Reducingtoagraphproblem 96
11.5 AnapplicatontoMaxCut 99

11.6 Conclusion s 100

1

INTRODUCTION

The fundamental realization that not all decision problems have algorithms with efficient
running time (unless the unlikely P=NP) was made in the sixties and early seventies [E65,
C71, K72]. Since then computer scientists have classified problems as 'good’: those that
are known to have algorithms with polynomial running time; and ’bad’: those that are
not.

Unfortunately, many or most of the problems we seek to solve on a day-to-day basis are
'bad’. The need to solve these problems has produced a variety of different ideas on how
to cope with them. One of the newest of these ideas is 'Parameterized Complexity’.

At the core of parameterized complexity lies the realization that most problems, espe-
cially in a practical setting, are not so generic as the abstract problem description we find
in problem collections like Garey and Johnson [GJ79]. We could for example know some-
thing about the input instances (e.g., graphs could have bounded treewidth or restricted
genus) or we might require something about the output solution (e.g., a solution may only
be interesting if itis not too large). Extra information like this is often possible to quantify
numerically and leads to the notion of a parameter.

In classical complexity the NP-complete problems are indistinguishable from each other
in terms of hardness. The introduction of a parameter changes this. We can show that a
problem that is otherwise intractable has an efficient algorithm as long as the parameter
is kept small. For other problems the introduction of a parameter does little to improve
the situation, and the problem remains intractable. This division of the classically insepa-
rable NP-complete problems is in itself interesting, and much work has been done on the
complexity theoretic aspect [DEFPRO03, DF99, FG01, FG02, G99]. This is, however, not
the topic of this thesis. We will instead focus on the problems that do become tractable
in fixed parameter complexity and in particular on the known techniques for designing
algorithms for these problems.

As the field has developed in the last decade, various ideas have been put forward on
how to develop efficient parameterized algorithms. Since this field is quite young, the

contributing authors have been very free to devise new techniques and thus also name
their ideas. This has resulted in a myriad of names, and when techniques have again been

renamed by survey papers, we are left with a confusing tangle that can be difficult to
penetrate for new readers.

Aside from several survey articles there have been at least two comprehensive texts writ-
ten on parameterized algorithm design: Downey and Fellows’s seminal book 'Parameter-
ized Complexity’ [DF99] and the habilitation thesis of Rolf Niedermeier, 'Invitation to
Fixed-Parameter Algorithms’ [NO2]. Downey and Fellows’s book came very early in the
history of parameterized complexity, and thus does not include the newer ideas. More-
over, it does not spend much time on classifying various techniques. Niedermeier’s habil-
itation thesis is dedicated to algorithmic techniques. He singles out Bounded Search Trees
and Kernelization as the two major techniques, and spends considerable time giving a de-
tailed explanation of both. Under the generic heading 'Further Algorithmic Techniques’,
Niedermeier lists Integer Linear Programming, Color Coding, Dynamic Programming
and Tree Decompositions.

Some of the techniques given a name in the literature include Bounded Search Tree
[DF99], Search Trees [NO2], Data Reduction [N02], Kernelization [DF99] The Extremal
Method [FM+00], The Algorithmic Method [P05], Catalytic Vertices [FM+00], Crown
Reductions [CFJ04], Modelled Crown Reductions [DFRS04], Either/Or [PS03], Reduc-
tion to Independent Set Structure [PS04], Greedy Localization [DFRS04], Win/Win [FO3],
Iterative Compression [DFRS04], Well-Quasi-Ordering [DF99], FPT through Treewidth
[DF99], Integer Linear Programming [NO2], Color Coding [AYZ95], Method of Testsets
[DF99], and Interleaving [NROQ].

According to this list, there are over twenty differently named techniques that could be
applied when we want to construct a fixed parameter algorithm for a problem. We feel
that this gives a wrong picture of parameterized algorithm design.

The number of distinct design techniques is in our opinion considerably fewer. Many of
the techniques build on the same general idea, and as a problem solver it is important to
be familiar with these general themes and ideas. The details will in any case vary from
problem to problem.

In this thesis we have attempted to present and categorize these general themes under the
four main headings: Bounded Search Trees, Reduction Rules, Induction, and Win/Win.
We have selected what we consider to be the most important and general techniques, and
consider the remainder to be either variations or combinations of the themes presented
in the first six chapters of this thesis. An illustration of the techniques we have chosen
to present, and the categorization we have chosen, can be seen in Figure 1.1. Let us
briefly mention techniques in the above list that are not in Figure 1.1. Data Reduction,
Kernelization are different names for Reduction Rules and Either/Or is an earlier name
for Win/Win. Catalytic Vertices is a variant of Reduction Rules, while Interleaving is a
combination of the techniques Bounded Search Tree and Reduction Rules. Integer Linear
Programming, which is based on a result by Lenstra [L83], can be viewed as a Win/Win

Fixed Parameter Algorithm Design Techniques

Search Trees Reduction Rules Induction Win/Win
(3) 4) ®) (6)

) Reduction to Graph Minors

Greedy Color Crown lterative Extremal raph |)
Localization Coding Decomposition Compression Method éf;iesrifggipé (Well-quasi-ordering)
(32) (4.4) (4‘2> (52) (5|3) o (62)
Mg;ioevlvlﬁd Algorithmic
Decomposition n(]f(t)hg)d

(8.5)

Figure 1.1: Our classification of parameterized algorithm techniques, labelled by chapter
number.

algorithm.

The thesis is in two parts, with the second part containing the main research contribution
in terms of published papers. The first part consists of chapters 2 through 6 and is an
overview of the various parameterized algorithm design techniques. For each technique,
we present a basic introduction, a few examples and the most important variations of the
main technique.

The examples we have included have been selected on the criteria that they should be as
simple as possible. This is because we want to focus on the core idea of the technique.
Thus, we have not been afraid to use well known examples from the literature whenever
we felt that these examples were the best to show the relevant technique.

For each basic technique, we provide an ’algorithm skeleton’ in pseudo-code giving a
rough outline of the algorithmic idea behind the technique. For most of the examples we
provide a pseudo-code algorithm, describing the algorithm as well as proving its correct-
ness.

When giving pseudo-code there is always a question of how close to real code’ it should
be. If the pseudo-code given is very close to a computer program, it is easier to translate
to real code and implement, but on the other hand it becomes more detailed and we lose
some flexibility which in turn lowers readability. We have tried to find a balance between
real code and readability, by giving pseudo-code in the style of an iterative program (e.g.
c++ or Java), but refraining from using too much detail. The algorithms are explained in
more detail in the text when needed.

1.1 OVERVIEW 4

1.1 OVERVIEW
The individual chapters are organized as follows:
Chapter 2 outlines the notation and basic definitions used in Part I.

Chapter 3 gives an overview of techniques using search trees to find optimal solutions.
Basic bounded search trees focus on limiting the fan-out and the height of a search tree.
We need to limit the height to a function bf and we show that it is sufficient to limit the
fan-out toO((logn)9®) - f(k)) for arbitrary functionsf andg. In addition to the basic
search tree idea we have included Greedy Localization where we make use of a greedy
algorithm to obtain initial information that we then complete using a search tree. Finally
we describe the related Color Coding technique, that branches into a set of instances
where vertices have been pre-colored ugirmplors.

Chapter 4 describes the techniques applying reduction to shrink the problem to a more
manageable size. This is often done through reduction rules, where we identify a local
structure in a graph. By modifying or removing this structure, we can reduce the size
of the graph or the parameter without introducing or removing solutions. Aside from
the basic reduction rule algorithms we cover the more advanced use of crown reduction
rules. We explain Crown reductions in detail as all of the case studies in Part Il use crown
decompositions to some degree. In addition to an example of an algorithm using a crown
reduction rule, we include a section on its complexity where we prove that finding a crown
decomposition of a given size is NP-complete.

In Chapter 5 we show how induction can be used as a base for creating parameterized
algorithms. We show how a certificate for smaller instances can be updated to a certificate
for a larger instance. We discuss some of the requirements that is needed for an inductive
algorithm to be applicable and then describe two techniques that use induction at their
cores. For minimization we present Iterative Compression with several examples, and for
maximization we show that the natural inductive algorithm is equivalent to the algorithmic
version of the Extremal Method. We also present the Extremal Method in this chapter.

Chapter 6 gives a design technique that ties a probléma problem? in such a way that

both a 'Yes’ and a 'No’ answer foB can help us solvel. Since both cases are helpful
when designing algorithms fot this technique is dubbed "Win/Win’. We showcase this
very strong technique by tyinBLANAR DOMINATING SET to BRANCHWIDTH and use

this relationship to give an elegaét(cV*) algorithm for PLANAR DOMINATING SET.

Here we also present the Graph Minor theorem, and show that it can be used to give
parameterized algorithms for graph problems whenever the "Yes’-instances or the 'No’-
instances are closed under minors.

Chapter 7 is a list of the problems used in the first part of the thesis. We have included
this chapter as some of the problems are used more than once. Thus, in the text we will

1.1 OVERVIEW 5

list a problem with small caps and then give a reference to Chapter 7 where the complete
problem definition can be found. E.d?>ROBLEM (P7.15)is problem 15 of Chapter 7.
There is a bibliography for Part | at the end of this chapter.

Part I of the thesis is based on four published papers. Each chapter discusses one or more
parameterized problems, and gives algorithms and kernels for these using the techniques
described in part I.

Chapters 8, 9, 10, and 11 are copies of four published papers with merely typographic
changes.

Chapter 8 is a paper co-authored with Elena Prieto. It is based on the paper 'Either/Or:
Using Vertex Cover Structure in designing FPT-algorithms - the cagdmtiernal Span-

ning Tree’ [PS03] that originally appeared at the "Workshop on Algorithms and Datas-
tructures’ in Ottawa, 2003. Some of the results were improved and a new version, 'Re-
ducing to Independent Set Structure — the Case-biTERNAL SPANNING TREE' has

been accepted to the 'Nordic Journal of Computing’ [PS05]. In this paper, we look at
the problem of constructing a spanning tree with many internal nodes. This paper uses a
Win/Win strategy together with a crown decomposition, obtaining a quadratic kernel for
the problem.

Chapter 9 is a paper co-authored with Elena Prieto titled 'Looking at the Stars’ [PS04].
This paper originally appeared at 'First International Workshop on Parameterized and
Exact Computation’ in Bergen, 2004. It has later been accepted for a special issue of
'Journal of Theoretical Computer Science’. Here we give a quadratic kernel for finding
vertex disjoint copies of<; ; for any s, using the extremal method. We give a linear
kernel for finding vertex disjoint copies @% using a crown reduction algorithm.

Chapter 10 is a paper co-authored with Michael Fellows, Pinar Heggernes, Frances Rosa-
mond and Jan Arne Telle titled 'Findirigdisjoint triangles in an arbitrary graph’ [FHRSTO04].
This paper appeared at the conference "Workshop on Graph-Theoretic Concepts in Com-
puter Science’ in Bonn, 2004. In this paper we discuss packing problems in general and
describe an algorithm for finding vertex disjoint copiesiof in graphs. We give a cu-

bic kernel and a*(2°(k1°e%)) algorithm for this problem using the technique Modelled
Crown Decompositions. Later this result has been improved [FKNRSTWO04], giving a
better running time 0©*(2°*)).

Chapter 11 is the paper 'Fixed Parameter Set Splitting, Linear Kernel and Improved Run-
ning Time’ [LS05] co-authored with Daniel Lokshtanov. It appeared at the conference
'Algorithms and Complexity in Durham 2005’. Here we study two-colorings of hyper-
graphs and give a linear kernel for the problem and also an efficient algorithm based on
using Win/Win and crown decomposition techniques.

2

NOTATION AND DEFINITIONS

2.1 COMPUTATIONAL MODEL

We will assume a single processoaindom-access machiras the underlying machine
model throughout this thesis. In the random-access machine any simple operation (arith-
metic, if-statements, memory-access etc.) takes unit length of time. The word size is
sufficiently large to hold any number in our algorithms. We will not exploit this by for
instance encoding more than one natural number in each word.

2.2 FETS

A setis a finite or infinite collection of objects in which order has no significance, and no
object appear more than once. We will refer to the members of a st¢mentand the
notatione € A is used to denote that isan element of a set. Similarly we use: ¢ A

to denote that is not an element inl.

We will use the set of natural numbe¥s- {1,2,3,...}.

A partition of a setX is a set of nonempty subsets &fsuch that every elementin X
is in exactly one of these subsets.

2.3 RELATIONS AND FUNCTIONS

A binary relation R on two setsA and B is a subset of the Cartesian produttx B.
Given two setsd and B, afunctionf is a binary relation omd x B such that for alb € A
there exists precisely ordec B such thata,b) € f. We will use the notatiorf : A — B
to describe a functiorf from A to B.

2.4 BAsiC GRAPH THEORY

We assume simple, undirected, connected graphs(V, E), where|V| = n and|E| =
m. The neighbors of a vertex are denoted bw (v), the closed neighborhoall[v] =

2.5 TREE DECOMPOSITIONS ANDBRANCH DECOMPOSITIONS 7

N(v)U{v}. Forasetofverticed C V,we haveN(A) = {v € A | uv € F andu € A}.
The subgraph of; induced byA is denoted by[A]. For ease of notation, we will use
informal expressions lik&' — « to denoteG[V \ {u}], G — U to denoteG[V \ U], and
G — etodenoteG(V, E'\ {e}), whereu is a vertexU is a vertex set, aneis an edge in
G.

We say that amatching M on a graphG is a set of edges of G such that no two of
them have a vertex in common. The largest possible matching on a graph witles
consists of./2 edges, and such a matching is callgokafect matchingWe write V' (M)

to indicate the set of vertices incident to the edge&/in

A tree is a connected graph without cycles. A disconnected graph without cycles is a
forest. Asubtreeof a graphG is a subgraph ofr that forms a tree. If a subtree contains
n — 1 edges, it is apanning treef G.

We say thatk; , is as-star or a star of size. The symbolP, denotes a path of + 1
vertices and edges.

An H-packingWW of GG is a collection of vertex disjoint subgraphs@feach isomorphic
to H. We will useV (W) to denote the vertices aF that appear i¥, and E(IV) to
denote the edges.

The contractionof an edge of a graph, also calledge contractionis the graph obtained
by replacing the two nodes,, v, with a single nodes; such thatv; is adjacent to the
union of the nodes to whichy, andv, were originally adjacent.

2.5 TREE DECOMPOSITIONS AND BRANCH DECOMPO -
SITIONS

Throughout the text and in particular in Chapter 6 we will make use of tree decompo-
sitions of graphs. Tree decompositions tries to give a measure of how tree-like a graph
is.

Definition 2.5.1 LetG = (V, E)) be a graph. Aree decompositionf GG is a pair X' =
({X, | i eI}, T), where eachX; is a subset of/, called abag andT is a tree with the
elements of as nodes. The following three properties must hold:

1. Uier X; =V
2. for every edgéu,v) € F, thereis ani € I such that{u,v} C X;;

3. fori, 5,k € 1, if j lies on the path betweerandk in T, thenX; N X, C X.

2.6 O- AND O*-NOTATION 8

Thewidth tw(X') of X equalsmax{|X;| | i € I} — 1. Thetreewidthtw(G) of G is the
minimumk such that has a tree decomposition of widkh

We will also use branch decompositions.

Definition 2.5.2 A branch decompositionf a graph G is a pair(T; 1), whereT is a
tree with vertices of degree one or three ands a bijection from the set of leavdsof

T to E(G). Lete be an edge of. The removal ot results in two subtrees @f, say
Ty and T,. LetG; be the graph formed by the edge $etf) | f € L N V(T4)} for

i € {1,2}. The middle setwid(e) of e is the intersection of the vertex setof and Gs,
i.e.,mid(e) := V(G1) N V(Gy). The width of(T; 1) is the maximum size of the middle
sets over all edges df, and the branch-width ofr, bw(G), is the minimum width over
all branch decompositions @f.

2.6 (O-AND O*-NOTATION

It is commonplace to express the running time of algorithms @ithotation.

Definition 2.6.1 For a functionf : N — N, we write f(n) = O(g(n)) if there exists
constants: andng such thatf(n) < cg(n) for all n > ny.

Since we throughout this thesis are talking about algorithms with exponential running
time, we will adopt the)* notation as seen in [WO03], which suppresses the polynomials
in the running time and focus on the exponentials.

Definition 2.6.2 Given a functionf(n, k) we write f(n, k) = O*(g(k)) if there exist a
ko, ¢, andng such thatf (n, k) < g(k)n° for all k > kg andn > ng

Thus the polynomial part of all terms are left out of the expression when 8ing
notation.

2.7 COMPUTATIONAL COMPLEXITY

Definition 2.7.1 Let A be an algorithm. Theunning time or time complexity of A

is the functionf : N—N, where f(n) is the maximum number of steps thatuses on
any input of length:. We also say thatl runs in timef(n) and thatA is an f(n) time

algorithm.

2.8 AXED PARAMETER COMPLEXITY 9

A system oftime complexity classdsave been devised to classify problems according to
their time complexity. Each of these classes contain the problems that are asymptotically
equivalent in running time.

Definition 2.7.2 Time complexity class
Lett : N — N be afunction. Théme complexity clas$IME(t(n)), is TIME(t(n)) ={L |

L is a language decided by af(¢(n)) algorithm.

The class P is the class of problems that are solvable in polynomial time. We consider
this class to be roughly equivalent to the class of problems that can be considered compu-
tationally easy to solve.

Definition 2.7.3 P= | J, .y TIM E(n*)

The class NP is another major class of decision problems in complexity theory. In NP
we find all the problems that we can verify with polynomial algorithms. That is, any
"Yes’-instance for a problem in NP has a certificate that we can check in polynomial time.

Definition 2.7.4 NP = {L | 3V such thatis a verifier forL andV € P}

Definition 2.7.5 A languageB is NP-complete if it satisfies the following: (B)is in NP,
and (2) every languagd in NP is polynomial time reducible tB. If a problem satisfies
requiremene, we say that it is NP-hard.

Although it is unknown if P = NP, it is widely believed that this is not the case. For the
remainder of this thesis we will always operate under the assumption-#iN@®P

2.8 HXED PARAMETER COMPLEXITY

We first define our notion of a parameterized problem, using the definitions given in
[NO2].

Definition 2.8.1 A parameterized probleis a languagel. C ¥* x ¥* whereX is a finite
alphabet. The second component is calledgammetepf the problem.

Definition 2.8.2 A parameterized problem is fixed-parameter tractabléthe question
'(x1,12) € L?" can be decided in running timg(|z,|) - |71|°Y), wheref is an arbitrary
function on nonnegative integers. The corresponding complexity class is called FPT.

2.9 EXACT ALGORITHMS 10

It is commonplace to only consider the languages >* x N as the set of parameterized
problems since almost all problems have a non-negative integer as parameter. For all
problems in this thesis, the parameter is an integer, so when it is needed the next smaller
values of a parameter is well defined.

It is not believed that alNP-complete problems are Fixed Parameter Tractable, the class
is split into a hierarchy of classes FEW[1]CW[2]C --- CWI[P]. Here the classes
W[1]CW[2]C --- CWIP] are intractable, and we justify this by a completeness-result
not unlike classical complexity. It is proven in [CCDF97] thHatSHORT NONDETER-
MINISTIC TURING MACHINE ACCEPTANCE(P7.17is W[1]-complete thus giving strong
natural evidence that PT" # W[1].

Further background on parameterized complexity can be found in [DF99].

2.9 EXACT ALGORITHMS

Exact algorithms is a related field where we calculate the optimal solution for the problem
in question, spending exponential time if required. In exact algorithms we consider the
NP-hard maximization/minimization versions of the decision problems that Fixed Para-
meter Complexity tries to deal with. While we accept exponential running time in our

algorithms, the goal is to lower the exponential part of the function as much as possible.

Techniques from exact algorithms can often be used in parameterized algorithms and,
more importantly, the algorithms can often be combined with linear kernels to achieve
strong results for parameterized problems.

An excellent survey paper that can serve as an introduction to this area is written by
Woeginger [WO03].

Part |

An overview of parameterized
algorithm design techniques

3

BOUNDED SEARCH TREES

In this chapter we will discuss the most common technique in parameterized algorithm
design, Bounded Search Trees. Here we seek to limit the computational load by making
an intelligent search for the optimal solution without searching the whole solution space.

We will first discuss the general idea in the bounded search tree technique, give a defini-
tion of a bounded search tree algorithm, and give some simple examples. We then discuss
the variant Greedy Localization, where we use a greedy algorithm to obtain some useful
initial information, and Color Coding, where we use a result from hashing theory to color
the vertices.

3.1 BASIC SEARCH TREES- CONTROLLED RECURSION

All combinatorial problems have a finite solution space, and a brute-force way to find an
optimal solution is to systematically search the entire space. In the Bounded Search Tree
technique we search only a part of this space. This is usually done in a tree-like fashion,
at each node deciding some part of the input, and creating one branch for each possible
choice. At each new branch we are left with an instance with additional information about
the solution. For parameterized problems this additional information can take several
forms, but often translates into a smaller parameter value and usually also a decrease in
the main input size.

Care must be taken to avoid the search tree becoming too large. To prove a problem to be
FPT we need to show that the height of the search tree is bounded by a function depending
only onk, and that the fan-out of the tree, i.e., the maximum number of children of a node,
is O((logn)?® f(k)) (see Theorem 3.1.1).

The height of the tree represents the maximum number of choices we are allowed to make
before we must be able to determine a solution. For subset problems (problems where we
must select a subseét C V(G) with some property) we usually regulate the height of the
tree by choosing one or more vertices for the solution at each level, thus decreasing our
parametek. Since the problem usually is trivial whén= 0, we have an upper bound on

the height of the tree.

3.1 BASIC SEARCH TREES- CONTROLLED RECURSION 13

However, it is not sufficient to control only the height. The vertex subset problems
have trivial n* search trees by having nodes with fan-aut In addition to giving a
bound on the height it is necessary to show that the maximum fan-out of the tree is
O((logn)?™® £(k)). We control the fan-out by carefully selecting the criteria to branch
on, described in a branching rule. A branching rule identifies a certain structure in
the graph (the left hand side LHS) and creates O((logn)™ f(k)) new instances

(G1, k1), (Ga, k), ..., (G, k.) such that the instancg, k) is a 'Yes'-instance if and

only if at least one instandé;, k;) is a 'Yes'-instance.

Taking the above into consideration, we say that a bounded search tree algorithm is an
algorithm that:

* isrecursive, and
 terminates with a polynomial time base case, and

« makesO((logn)™ f(k)) different recursive calls in each recursive step, and

reaches a polynomial time base case in at most nested recursive calls.

Algorithm BST with a setB of branching rules3; : LHS; — (G1,k1), ..., (G, k.,)
Input GraphG, integerk

if G contains somé.H S; then Call BST on instancef~, k1), ..., (G, ke,)
elseUse polynomial algorithm to solvg, k), if 'Yes’ then output 'Yes’ anchalt

Answer 'No’

Figure 3.1: An algorithm skeleton for Bounded Search Tree.

The running time of an algorithm that uses search trees is bounded by the number of nodes
of the search tree times the running time for each node. We assume polynomial running
time at each node in the search tree, thus only the size of the search tree contributes in
O*-notation. It is normal that an algorithm checks for several different branching rules
and branches according to one of the cases that applies. Although search tree algorithms
can have many branching rules it is usually straightforward to calculate the search tree’s
worst case size. For the functions given above, an upper bound on the search tree is
O(((logn)9® f(k))"*)). To show that this is an FPT-function we prove the following:

Theorem 3.1.1 There exists a functiofi(k) such that(log n)* < f(k)n for all n andk.

3.1 BASIC SEARCH TREES- CONTROLLED RECURSION 14

Proof. First recall that a logarithmic function grows slower than any root-function. That
IS,
logn = o(n'/*) Vk.

Which implies that

Vk >13ny > 1suchthatn > ny, logn < n'/*

Thus there must be a functidr{k) : N — N* such thatvk Vn > h(k) logn < n'/k
and thervk Vn > h(k) (logn)k < n.

So now the situation is that for all > h(k) we have thatlogn)* < n and the theorem
holds. If on the other hand < h(k), thenlogn < log h(k) and(logn)® < (log h(k))~.
Yielding

(logn)* < max{1, (log h(k))*} - n

|

We gave this proof showing théliog n)* is an FPT-function, but it is easy to extend this
to show thatO((log n)™*)) is also anf” PT-function.

As discussed in section 3.1.2, it is often possible to obtain better upper bounds by a more
careful analysis of the branching in the tree.

3.1.1 EXAMPLES OF BOUNDED SEARCH TREES

We present a few examples of bounded search tree algorithms, in particutzin &)
algorithm for PLANAR INDEPENDENT SET (P7.15 and anO*(1.466%) algorithm for
VERTEX COVER (P7.2).

Theorem 3.1.2 PLANAR INDEPENDENTSET can be solved in tim&*(6*).

Proof. In an instanc€G, k) of PLANAR INDEPENDENTSET we know that for any max-

imal independent set C V(G) and for anyv € V(G) itis true thatN[v] NS # (. If

this was not the case, we could include& obtain a larger set, contradicting maximality.
This together with the well known fact that any planar graph contains a vertex of degree
at mostb (this follows trivially from Euler’s formula), allows us to continually branch

on a low degree vertex selecting eithew or one of at most five neighbors. Selecting

a vertex for the independent set lets us remove its closed neighboipddrom the
graph. This leaves us with at most six smaller instances, each with paradmetér— 1.

3.1 BASIC SEARCH TREES- CONTROLLED RECURSION 15

As the problem is trivial when the parameter is 0, the size of theTtfé¢ is bounded by
6 - T(k — 1). This recurrence relation becomggk) < 6. O

Theorem 3.1.3 VERTEX COVER can be solved in tim&*(1.466%).

Proof. To prove this we make two initial observations. First, that any valid vertex cover
must contain either a vertex or all its neighborsV(v). Second, if a graph has only
vertices of degree less than three, tM#RTEX COVER is polynomial time solvable. The
second observation gives us a clear goal: we will try to reach a polynomial time instance
by branching on any vertex of degree higher than two. We can do this as each high degree
vertexv creates only two branches, where one branch decreases the parameter by one
and the other decreases the parametg\oy)| (three or more). The recursive function

T(k) <T(k—1)+T(k—3) gives a bound on the size of the tree. This recursive function
can be solved by finding the largest root of its characteristic polynoxhial *— 4 \¢—3,

Using standard computer tools, this root can be estimated to 1.466, giving the desired
result.

a

We can see that both examples follow the outline given for search tree algorithms. They
are recursive, have a constant number of recursive calls in each iteration and reach a
polynomial base case in at mdshested calls.

3.1.2 How IsIT USEDIN PRACTICE ?

Bounded Search Trees is one of the most common and successful parameterized algorithm
design techniques in the field today and very many examples exist. The very powerful
VERTEX COVER (P7.21)algorithm by Chen, Kanj and Jia [CKJO01] achieving a running
time of O(1.286%) is a bounded search tree algorithm and remains one of the most cited
parameterized algorithms. The main strength, some would claim also the main drawback,
of these algorithms is that they can often be continually refined by considering ever more
complicated cases. This allows for repeated improvement in theoretical performance, but
at the cost of elegance and clarity. There are examples where the algorithm reaches enor-
mous size. For example, the exact algorithm for Maximum Independent Set by Robson
[RO1] has tens of thousands computer generated cases. Too many cases will also hurt
the practicality of implementing and running such algorithms, as each case causes un-
avoidable overhead. Some implementations of the vertex cover algorithm deliberately
skip some of the more advanced cases as they in most practical instances only slow the
algorithm down, as reported in [LO4].

3.2 GREEDY LOCALIZATION 16

3.2 GREEDY LOCALIZATION

In this section we present a variation of the bounded search tree technique that uses a
clever first branching to start off the recursive search for the solution. We start with a
greedy algorithm to construct a solution. If the problem is of the correct size, then we
are done, otherwise we argue that any optimal solution must intersect with the greedy
solution in a certain way, giving us additional information which we use to branch.

A simple example for this i$(;-PACKING (P7.9) Note that a faster algorithm for this
problem using a different technique can be found in Chapter 10.

Theorem 3.2.1 K3-Packing can be solved i@*((%) - (2k)!) time.

Proof. Note that we can obtain a maximik-packingC' using a simple greedy algorithm.

If this packing is of size: or larger we are done, if not we observe that evEgyin any
optimal packingDpt must intersectC' in at least one vertex (otherwise there would be a
K3 in G — C not included by the greedy algorithm).

Since our greedy set has less tisdnvertices, we can now search fbrvertices in the
intersection/ (C') N V(Opt). There are at mos(t*,f) ways to choose thegevertices and
we create one branch for each of these possibilities.

In each branch we now havepartial sets, each containing one vertex. Our goal is to
complete such a collection of partial sets vertex by vertex. In each tree-node we will
again use a greedy tactic, by completing each of the partial setsifg ia a greedy
manner. If we succeed to complete alsetsS;, S, ..., S, in a branch, we can safely
halt and answer yes, but most likely we will fail in completing some$etAssuming
there is a way to correctly complete the partial s&ts. . ., .S, into & disjoint copies of
K3, the only reason we could fail to complefeis because one of the earlier vertices we
had selected to be added$9, Ss, ..., S;_1,5,+1, ..., Sk should instead be iy;. Thus

we have identified a sé&p of at most2k vertices of which at least one should belong to
S;. Only at this point do we branch again, with fan-out equglt2f creating one branch
for each possible addition t§,. We have in this way added one more vertex to our partial
set, and we can repeat the process on each new level. Since we starivweitices, add
one vertex at each level and ne¥dvertices in total, the height of the tree is at mdkt

The total size of such a tree is at md§t) - (2k)!. Here, (") is a result of the initial
branching, and2k)! is a factor since each sétwhich we branch on has its size at any
level h bounded bk — h. O

This is a bounded search tree algorithm, as we now argue. The algorithm is clearly recur-
sive and since we branch on the greedy solution we satisfy the requirement concerning

the fan-out, (%") recursive calls in the first step, and then at nistin the following

3.3 CoLOR CODING 17

steps. Furthermore we terminate after at n¥shested calls with a trivially polynomial
instance.

3.3 CoLOR CODING

Color Coding is a technique that was introduced by Alon, Yuster, and Zwick in their paper
'Color Coding’ [AYZ95]. Given an input to a parameterized graph problem we color the
vertices withk colors such that the structure we are looking for will interact with the color
classes in a specific way. To do this we create many branches of colored graphs, using a
family of perfect hash functions for the coloring.

Definition 3.3.1 A k-perfect family of hash functions is a family of functions from
{1,...,n}onto{1,...,k} such that for eaclt C {1,...,n} with |S| = k there exists
anh € H that is bijective when restricted t©.

Schmidt and Siegal [SS90] describe a construction/eparfect family of hash functions
of size 29" log? n, and [AYZ95] describes how to obtain an even smaller one of size
20() Jog n.

The technique applies a family of perfect hash functions to partition vertices of the input
graph intok sets, i.e.k different colors. By the property of perfect hash families we know
that for anyk-sized subset of the vertices, one of the hash functions in the family will
color each vertex irb with a different color. Thus, if we seek/asetC' with a specific
property (e.g., &-cycle), we know that if there is such a gétn the graph then its vertices
will, for at least one function in the hash family, be colored with each okthelors. See

the algorithm skeleton in Figure 3.2.

A major drawback of these algorithms is that while the hash family has an asymptotically
good size, the)-notation hides a large constant. Thus, from a practical viewpoint the
color coding algorithms would be slower than, for exampl@:'e&* algorithm.

We argue that Color Coding is closer to Bounded Search Tree algorithms than any other
class of FPT algorithms. Although the algorithm skeleton in Figure 3.2 is recursive only

in the strictest terms (it calls itself O times), it satisfies the other three requirements much
better. The fan out is bounded BY*) log n which is a FPT function by Lemma 3.1.1,

and the height of our tree (the number of nested calls) is bnlhe final requirement is

that the algorithm should terminate in a polynomial time base case. In Color Coding it
depends on the problem we are solving whether or not these base cases are polynomial.
Thus we feel it is correct to consider Color Coding an application of Bounded Search
Trees.

3.3 CoLOR CODING 18

Algorithm Skeleton structure for Color Coding
Input: A graphG = (V, E) and an integek.
Output: A’Yes’ or a’No’ answer

Let 7 be a family of perfect hash functions frofa, ..., n} to{1,..., k} where|V| = n.

For each functionf € F
Use f to colorV usingk colors.
run algorithm for the colored problem
if 'Yes’ then Answer 'Yes’ andhalt
End For
Output a 'No’ Answer.

Figure 3.2: A skeleton structure for 'Color Coding’

3.3.1 EXAMPLE OF A COLOR CODING ALGORITHM

To give a simple example of how to use this we give an algorithm forkti@&vyCLE
(P7.2)problem, which asks for a cycle of length exactly This problem is obviously
NP-complete since it is equivalent tdAMILTONIAN CYCLE(7.6) for & = n. Let us
consider algorithmZ-cycle algorithm’ in Figure 3.3.

Theorem 3.3.1 The k-cycle algorithm’ is correct and runs in tim@* (2°®) k).

Proof. Given an instancé’, k) we prove that the algorithm outputg:ecycle if and only
if G contains &:-cycle.

In one direction the algorithm answers 'Yes’ and outputs a cycle. As the edges not deleted
from the graph go from color-clagsto c;;i(mod), the shortest cycle in the graph is of
length %k and since the breadth first search only test for lengths up ¥ee will not find

cycles longer that. Thus if the algorithm outputs a cycle, it must be of length

For the other direction, assume in contradiction thi&ias ak-cycleS = (s, so, . . ., Sk, S1),
while the algorithm produces a'No’ answer. SiriEes a perfect hash family, there exists
afunctionf € F such that the verticeSsy, so, . . ., s} all received different colors when

f was used as the coloring function. Since the algorithm tries every possible ordering
of the color classes, it will try(f(s1), f(s2),..., f(sx)). Under this ordering, none of

the edges in the cycl§ will be removed, and since we test every vertex of one color
classf(s;), we will at some point test if there exists a cycle frepto itself and output a
"Yes’-answer, contradicting the assumption.

3.3 CoLOR CODING 19

Algorithm k-cycle algorithm
Input: A graphG = (V, E) and an integek.
Output: A subgraph of7, isomorphic to a cycle of sizk, or a’'No’ answer

Let F be a family of perfect hash functions frofa, ..., n} to{1,...,k}, where|V| = n.

For each functionf € F
Use f to colorV usingk colors
For each ordering;, cs, . . ., ¢, Of thek colors
Construct a directed graph as follows:
for eachedge(u,v) € FE
if f(u) =c;andf(v) = ¢ip1(mod k) fOr somei
then replace edge with ar, v)
elsedelete edgew

For all v such thatf (v) = ¢
Use breadth first search to test if there exists a cgcfeom v to itself of lengthk
If suchC exists then output’ andhalt
End For
End For
End For
Output 'No’

Figure 3.3: An algorithm for thé-Cycle problem.

To calculate the running time, we know by [AYZ95] that we have a perfect hash family of
size2°®) log n. Thus, the result follows as the number of orderings ofitleelor classes
is k!, and the rest is a polynomial factor. O

Note that instead of investigating each possible ordering of the color classes in order to
find a cycle we could use a dynamic programming strategy. This would improve the
running time, but we have chosen this simpler version because we wish to emphasize the
color coding part of the algorithm.

A

REDUCTION RULES

In this chapter we look at various techniques that all include the application of reduc-
tion rules to transform a general instance into a manageable instance that preserves the
correct solutions. This includes the second of the two most common techniques in fixed
parameter algorithm design: kernelization or preprocessing. We discuss the basics first,
giving some examples and showing some of the pitfalls inherent in this technique. We
then continue with a more advanced version called Crown Decomposition.

4.1 THE BASIC REDUCTION

The fact that smaller and/or more structured instances are simpler to solve than large
and/or general ones is a banality. Nevertheless, this is what we want to exploit in this
technique. By gradually changing an instance, reducing it in size and imposing more
structure, we seek to reach a state where it can either be decided immediately or it has
been simplified sufficiently. In the context of size reduction, we say that an instance has
been sufficiently reduced when the size of the instance can be bounded by a fynction
which depends only oh. We call an instance that has been sufficiently redudeztiael

The main tool to facilitate the reduction is threduction rule Each reduction rule iden-
tifies a certain structure LHS (the left-hand-side) in the instance and modifies it to RHS
(the right-hand-side), usually by deletion (RH®))} The identified structure and result-

ing change is usually of a fixed size, although more complicated reduction rules exist as
well.

If a reduction ruleA cannot be applied to an instance we say that the instanoe-dis
ducible for A. That an instance is irreducible implies that it does not have the structure
the reduction rule applies to. In this way, we can use reduction rules to remove a certain
structure from an instance. This allows us to shed away trivial and/or polynomial solvable
parts of an instance, thus revealing the combinatorial hard core.

Normally a single reduction rule is not sufficient to reduce a problem to a kernel. We
usually require a set of reduction rules, where each rule in the set removes one type of
problematic structure. If a set of reduction rules is sufficient to reduce any instance of a

4.1 THE BASIC REDUCTION 21

Algorithm A complete sefk of ; > 1 reduction rules of typ&; : LHS;, — RHS;
Input GraphG, integerk

while G contains somé. H S;
removelL HS; from GG and replace by H S;
end while
run a brute force algorithm on the reduced graph

Figure 4.1: An algorithm skeleton for a complete set of reduction rules.

problem to a kernel we call it @omplete set of reduction rules

The process of reducing the problem in size to a kernel is cakiedelizationand can

be viewed as a preprocessing step for a brute force algorithm that will operate on the
reduced kernel. An algorithm skeleton for this can be seen in Figure 4.1. We will adopt
the following definition of a kernelization algorithm.

Definition 4.1.1 Let £ be a parameterized problem, i.&Z, consists of pairgz, k). A
kernelizationalgorithm for problem. is a polynomial time algorithm that reduces an
arbitrary instance(z, k) to an instancgz’, k') such that the following is satisfied! <
g(k)and|z’'| < f(k) whereg and f are arbitrary functions depending only dn and
(x,k) e L <= (2/,k) € L.

If f in the above definition is a linear function, we say that we havieear kernel
Likewise if f is a quadratic function, we say that we a havguadratic kerneland so

on. The running time of the brute force algorithm is usu@ly(c/®) so it is always
interesting to have functioyi of as low order as possible, preferably linear. Beware, in
the literature on graph problems it is common to consider a kernel to be linear if the
number of vertices is linearly bounded. It could be argued that it would be more correct
if a linear kernel implied that the number of verticasd the number of edges were both
bounded by a linear function df. In general, we adopt the common terminology for
graph problems and consider the size of a kernel to be the number of vertices it has.

Note that all problems in the clagsPT have kernelization algorithms. As we will see in
the proof below, this is a simple observation, but it is important to point out the relation-
ship.

Theorem 4.1.1 A problemA is in FPT if and only if4 has a kernelization algorithm.

Proof. The fact that a problem is in FPT when it has kernelization algorithm is trivial.
After we have reduced the instance to a kernel, we can solve the problem with any brute

4.1 THE BASIC REDUCTION 22

force algorithm. Since the instance has sfzg), the brute force algorithm will solve the
problem in FPT time.

In the other direction, we know by definition that a problemFi#7 has an algorithm
that decides the problem in tim@(n“f(k)). Now consider an instancer, k) where
|z| = n. If n > f(k), the algorithm runs in timé&(n®*1) and is polynomial, this is akin
to reducing the problem to a trivial case. On the other handdif f (k) then the instance
already is a problem kernel and the result holds. O

4.1.1 EXAMPLES OF REDUCTION RULE ALGORITHMS

Vertex Cover

Here we will give the classical example of a quadratic kernelization algorithra f&-

TEX COVER (P7.21) Itis by far the simplest algorithm using reduction rule known to us
and illustrates the technique very well. We will make use of the following reduction rule,
due to S. Buss [DF99].

Reduction Rule 1 Assume € V(G) with deg(v) > k. ThenG has aVERTEX COVER
of k vertices if and only ifY — v has a vertex cover df — 1 vertices.

Proof. One direction is trivial, ifG — v has a vertex cove$ of sizek — 1 then obviously
G has a vertex cover of sizeby addingv to S.

In the other direction, we assume that we have a vertex coeésizek. Assume that is
notin S. SincesS is a vertex cover, we must havé(v) € S, but then|S| > |N(v)| > k,
contradicting thatS| = k. Thus we know that € S and thenS — v is a vertex cover of
sizek — 1 for G — v. O

Armed with this reduction rule we can create the algorithm in Figure 4.2.

Theorem 4.1.2 The k% kernelization algorithm for Vertex Cover’ is correct and produces
a kernel ofO(k?) vertices for vertex cover in linear time.

Proof. Let us examine the reduced gra@hthat remains after thier-loop has deleted all
vertices of degree more than This instancé&;’ (with the parametet’) has been obtained
from the input(G, k) by repeatedly applying Reduction Rule 1. Thus by correctness of
Reduction Rule 1 we know th&t’ has a vertex cover of siz€ if and only if G has a
vertex cover of sizé.

Since the reduced graph’ has vertices of degree at mdstany vertex inV/(G’) can
cover at mosk edges. Thus the total number of edges a vertex cover of:5zan cover

4.1 THE BASIC REDUCTION 23

Algorithm A k? kernelization algorithm for Vertex Cover
In: AgraphG = (V, E), integerk
Out: A kernel of at mosk? vertices or a 'No’ answer

Letk' =k
foreachv e V
if degv) > k then
Deletev
Decreasé’ by 1
end if
end for

Delete vertices of degree 0, call the resulting gréph= (V', E’)

if |[E'| > k' - k then Output 'No’
elseOutput(G', k')

Figure 4.2: Ak? kernelization algorithm for vertex cover

is at mostt’ - £, thus it is at this point safe to reject any graphwith more edges than
k' - k.

It is easy to see that the algorithm works in linear time. It simply scans through the
vertices and deletes the vertices of degree more than O

Max Cut

The next example we will give is how to obtain a kernelkax CuT (P7.10) For this
problem we will assume that the input is not necessarily connected.

Consider a grapliy = (V, E) with ¢ components. Observe that the edges of a spanning
forest of G can be arranged such that every edge crosse one cut. It follow& thas
aMax CuT of at least|V (G)| — ¢ edges, and thus for any nontrivial instance it holds
that|V'(G)| — ¢ < k. If the graph is disconnected we can connect it with the following
reduction rule:

Reduction Rule 2 Let G = (V, E) be a disconnected graph withcomponents, and let
vy, U, . . ., V. CONtain one vertex from each component. We then havetinats aM AX
CurT of size at leask if and only if G’ obtained fromG wherewv, v, .. ., v. is replaced
by v. and N (v.) = ;.. N(v;) has aMAx CuT of size at leask.

4.2 CROWN DECOMPOSITION 24

This is true as there for any optimal cut it is possible to arrange the vertices in each
component such that, vs, . . . , v. IS on the same side of the cut (if needed a components
vertices can be flipped along the cut).

After this reduction rule has been applied we have{tfig&:’)| = |V (G)|—c+1. Inserting
this equation intdV (G)| — ¢ < k we get thatV (G")| < k+ 1 and we have the following
theorem:

Theorem 4.1.3 MAX CuT has a kernel of sizé + 1 vertices.

Note that this kernel will lead to an algorithm that is far from optimal. [MR99, P04, LS05]
all obtain a bound ofk edges folMAx CuT, and by using the strong exact algorithm
[FK0O2] for MAX CUT with running time©*(2/#1/4), we obtain a FPT running time for
Max Cut of O*(2+/2),

Planar Independent Set

For some problems obtaining a kernel is trivial. In the following example we bound the
size of the kernel without applying any reduction rules.

Theorem 4.1.1 DOMINATING SET ON CUBIC GRAPHS(P7.4)has a kernel oftk ver-
tices.

Proof. Observe that since the maximum degree of a vertex is 3, no vertex can dominate
more than 4 vertices. Thusvertices can dominate no more thénvertices. This gives
an immediate upper bound on any 'Yes’ instance. O

The proof above leads to a linear kerneliéfvertices and 2k edges. For many problems

this would be a very good result, but here it is terrible. By the same argument as in the
proof we see that no cubic graph has a dominating set of size less:fHanThus for

any non-trivial problem instance we hake> n/4 and thusik > n, and the boundk
obtained from the kernel is larger than the size of the instance itself.

This shows that it is important to be aware of the lower and upper bounds on interesting
instances of the problem one is working on. This can be of great help in finding trivial
kernels and estimating the quality of a suggested kernel.

4.2 CROWN DECOMPOSITION

The reduction rules we have seen so far have all been of fixed size and have focused on a
local structure in an instance, for example a vertex with particularly high or low degree.

4.2 CROWN DECOMPOSITION 25

Figure 4.3: Example of a crown decomposition. The matched edges are dashed

In the last few years, there has been some focus on reduction rules that do not follow this
pattern. In this section we will carefully study one type of these reduction rules, those
that are based ocrown decompositions

Definition 4.2.1 A crown decompositionf a graphG = (V, E) is a partitioning of/
into setsC, H, and R, whereC' and H are nonempty, such that the following properties
are satisfied:

1. C'is an independent set.
2. No edge between a vertexdhand a vertex ink.

3. There exists an injective map : H — C, such thatm(a) = b implies that
(a,b) € Eis an edge.

An illustration of a crown decomposition of a graph can be seen in Figure 4.3.

The main reason that crown decompositions are so useful, is that we have a very nice
lemma that tells us when we can find a crown decomposition in a graph. This lemma is
due to Chor, Fellows, and Juedes and can be found in [CFJO04].

Lemma4.2.1If a graph G = (V, E) has an independent sét C V(&) such that
|IN(I)] < |I], then a crown decompositiofC, H, R) for G such thatC' C I can be
found in timeO(|V| + |E)).

In reduction algorithms based on crown decompositions, we often see reduction rules
that do not necessarily reduce the graph in size but rather modifies the graph so that it
allows a larger independent skt Eventually the lemma above is invoked, and we can
use the independent skto obtain a crown decomposition. This crown decomposition is
then used to obtain a size reduction of the graph. A good example of this can be seen in
Chapter 8.

4.2 CROWN DECOMPOSITION 26

(G'k-[HI)

Figure 4.4: A crown reduction rule fov ERTEX COVER, reducing the size of both the
graph and the parameter. Hevé/ S = (C' U H) andRH S = 0.

Although crown reduction rules were independently discovered by Chor, Fellows, and
Juedes [CFJ04] one should note that a similar type of structure has been studied in the
field of boolean satisfiability(SAT) under the name of 'autarchies’ [KOO, KO3]. As we
know the main goal of a satisfiability problem is to find a truth assignment for a clause set
over a set of variables. Aautarkyis a partial truth assignment (assigns true/false to only

a subset of the variables) such that each clause that contains a variable from the variables
determined by the partial truth assignment is satisfied.

In a matching autarky we require in addition that the clauses satisfied and the satisfying
variables form a matching cover in the natural bipartite graph description of a satisfiability

problem. It is easy to see that the matching autarky is a crown decomposition in the
bipartite graph.

The main protagonist for autarchies is Oliver Kullmann, who has developed an extensive
theory on several different types of autarchies. Unfortunately, aside frommabehing
autarchiesdescribed above, the other types of autarchies do not transfer easily to general
graphs.

4.2.1 EXAMPLE OF A CROWN REDUCTION RULE

The simplest example of a reduction rule using a crown decomposition is perhaps the
following folklore algorithm which applies to the problefERTEX COVER (P7.21) see
Figure 4.4.

Lemma 4.2.2 Given a crown decompositiof, H, R) of a graphG = (V, E), thenG
has aVERTEX COVER of sizek if and only if G’ = G[V — (C U H)] has aVERTEX
CoVeRrof sizek’ = k — |H|.

Proof. Assume in one direction th&t’ has avERTEX COVER S’ where|S’| = k — |H|.
We can then create MERTEX COVER S for G by addingH to the vertex cover, that is

4.2 CROWN DECOMPOSITION 27

Algorithm Crown Kernelization
Input: A graphG = (V, E) and an integek.
Output: A kernel of size at mostk or a 'No’ answer

do Create a maximal matchiny in G
if |V (M)| > 2k then output answer 'No’ anchalt

else
if |V(G)—V(M)| < 2kthen output (G, k) andhalt
else
Create crown decompositidd@’, H, R)
LetG =GV — (CUH)|,andk = k — |H|
repeat

Figure 4.5: A4k kernelization algorithm for vertex cover.

S = S"U H. Observe that{ is incident to all edges it (G) — E(G’).

In the other direction we assume tl@thas avVERTEX COVER S of sizek. Due to the
matching betwee/ andC' we have|S N (H U C)| > |H|. (A vertex cover has to pick
one vertex incident to each matched edge.) Thus the number of verti¢esanering
edges not incident t&/ U C'is at mostk — | H | and the result follows. O

It is this reduction rule that is used to produce #evertex kernel mentioned in Chapter
5. It is also possible to reach a slightly weaker kernelibfwith a simple Win/Win
argument. We will give this algorithm here to show the reduction rule in practice.

Lemma 4.2.3 The algorithm Crown Kernelization either terminates with a correct no
answer or produces a kernel of at mdstvertices forVERTEX COVER.

Proof. To see that the algorithm always terminates, observe that the graph either gives an
output or reduces the graph. Since we can have at §0s} reductions, the algorithm
will eventually terminate.

We first show that a 'No’ answer is always correct. The algorithm will only output 'No’
if there is a maximal matching/ in G where|V (M)| > 2k. Since we have to pick at
least one vertex from each edge, the vertex cover for this graph is greatér. than

The algorithm modifies the instan¢€, k), so we have to make sure we do not introduce
or remove any solutions. At any stage of the algorithm the current graph and parameter
has been obtained by repeated applications of the crown reduction rule. By Lemma 4.2.2,

4.2 CROWN DECOMPOSITION 28

we are thus guaranteed that the reduced instance is a Yes'-instance if and only if the input
instance is a 'Yes'-instance.

We havelV (G)| = [V(M)[+|V(G) — V(M)| < 2k + 2k = 4k, so the algorithm outputs
only graphs of at mostk vertices. Thus, the lemma is correct. O

4.2.2 THE COMPLEXITY OF CROWN DECOMPOSITION

It has been shown that one can determine in polynomial time if a graph has a crown
decomposition [ALS05]. The algorithm given in that paper will also find a crown decom-
position in polynomial time if one exists. However, the following theorem shows that it
is harder to find crowns if we give an additional requirement on the sizé ofC. This

result has to our knowledge not appeared in the literature.

SizeD CROWN (P7.18)

Instance’G = (V, E)

Parameter: Positive integkr

Question: Does; have a crown decomposition wheré U C| = k7

Theorem 4.2.1 Sizeb CROWN is NP-complete.

Before we begin the proof we describe two gadgets.

A,,: A complete bipartite,, ,

Al A complete bipartite graplk’, ,, and one vertex: universal to one partition, for a
gadgetG’ = At if V! = V(G') we write (V) to indicate as this special 'entrance
vertexa.

One should note that both gadgets can form a crown on its own (one partitiénand
one inC) and also note that if a vertex in a gadget is(inn a crown decomposition
(C, H, R), then this implies that all vertices universal to this gadget aré/ jrdue to
crown-separation property.

Proof. It is obvious thatSizeEpD CROWN is in NP, to prove hardness we will reduce the
problem fromHITTING SET, given a collection of set§ over a set of element¥’, is
there a subset C X, |S| = k such thatVQ; € Q, S N Q; # 0.

Construct’z with the following set of vertices:
Vx ={v,, | z; € X}
Vi = {v), | 2 € X}
VQ - {UQi QZ € Q}

4.2 CROWN DECOMPOSITION 29

Figure 4.6: An incomplete illustration of G, here element 1 appears in set 1 and 3

and the following gadgets (with internal edges):
V9 — AF v, Q; wherex; € Q;,t = |X| + Q)
Ve =A.,andz = [Vx UVL U Vo[+ 32, <o, V9 (the rest of the graph)

and edges:

E = {Ug;ﬂ);i | Uy, € VX’U;Z- c V)/(}

Ey = {vg,u | vy, € Vx,u € VAX“QJ' \:E(Vf“Qj)}
X;,Q;

By = {209, | vo, € Vo,2; = 2(V3 ")}

E, = {UQiu | vg, € Vo,u € VB}

see also Figure 4.6 for clarity.

We now prove that@, X) has aHITTING SET of sizek if and only if G has a crown
decomposition wherg’ = |H U C| = 2k + 2|Q| + 2z + 2t|Q).

(=:) Assume that7 has aHITTING SET S’ of sizek. We will construct a crown decom-
position in the following manner. For each elemeht S’, let the corresponding vertex
v., € H,and letv), € C. (in total 2k vertices)

For allvg, € Vg, letvg, be in H. If the corresponding sep; was covered by some
elementz; (if more than one element covelys, then select one arbitrarily), Ie(Vj(i’Qj)
be inC and Ieth{i’Qﬂ' be in(H U C) as needed(in tot&]| Q| + 2t|Q)]).

Finally let Vz be in(H U C) as needed (in tot&z vertices). It is easy to verify that (1)
there are no edges from a vertexahto a vertex inV — H (2) Each vertex inH has a
private neighbor. This is a crown and it Wes= 2k + 2|Q| + 2z + 2t|Q| vertices.

(«<:) Assume thati has a crown of size exact®t + 2|Q| + 2z + 2t|Q)|.

4.2 CROWN DECOMPOSITION 30

Observe thats is 2/3 of the vertices of7 thusVz N C # (). This implies thal’z C (C'U
H)andthatly, C H. Since the vertices iy must be matched, at least> |Q)| different
A1 gadgets will have their 'entrance vertex'dh thus at leastcomplete bipartite graphs
arein(CUH).

If I > |Q|then|CUH| > 22+|Q|+2tl > 22+ |Q|+2t(|Q|+1) > 22+|Q|+2t|Q|+2t >
22 + Q| + 2t|Q] + 2(| X | + |Q]) > 2z + 2|Q| + 2t|Q| + 2| X | + |Q| > k' contradicting.
Thus|Q| <1 < |Q| holds.

The neighboring vertices iy of each of these gadgets will thus be A in total r,
and each of them must match somewheré{{oor a to a gadget). Matching to a gadget
causes the crown to be too large thus each vertex must match to its neighbor lin

r > k then the size of the crown is more th&ah thus the elements corresponding to the
r < k vertices inVy is aHITTING SET of size at most &(if » < k, one can add arbitrary
elements to reach a hitting set of size exaglly

a

Note that this proof does not show tifaatzep CROWN is W[1]-hard. HITTING SET is
WI[1]-hard, but the reduction above is not an FPT-reduction as the parameter in the crown
decomposition we reduce to is not solely dependent on the parameter HithenG

SET Problem we reduce from. To our knowledge, the questi@hdaED CROWN is FPT

or W[1]-hard is still open, and deciding it would require a different proof idea than we
have used here.

5

FPTBY INDUCTION

Here we present a technique closely related to mathematical induction. We show that if
we are provided a solution for a smaller instari¢e k) we can for some problems use

the information to determine the solution for one of the larger instafGes v, k) or

(G, k+1).

We will argue that the two techniques Iterative Compression and Extremal Method are
actually two facets of this inductive technique, depending on wether the problem is a
minimization problem or a maximization problem.

5.1 THE BASICS

In his bookIntroduction to AlgorithmgM89] Udi Manber shows how induction can be

used as a design technique to create remarkably simple algorithms for a range of prob-
lems. He suggests that one should always consider how to solve a small instance and then
how to construct a solution based on solutions to smaller problems.

For example this technique leads to the well kndWISERTION SORT algorithm when
used on théSORTING PROBLEM (P7.19) as follows:

Itis trivially true that we can arrange sequences of length 1 in increasing order. Assuming
that we could sort sequences of length- 1, we can sort sequences ofelements by

first sorting the firsk: — 1 elements and then inserting the last element at its correct place.
Since the insertion take8(n) time and it is done once for each element we have a total
running time ofO(n?).

The core idea of the technique is based on using the information provided by a solution for
a smaller instance. When an instance contains both a main input and a parameter input,
we must be clear about what we mean by 'smaller’ instances(®¢et) be an instance,
whereG is the main input and the parameter. We can now construct three distinctly
different 'smaller’ instance§& — v, k), (G, k—1) and(G — v, k —1). Which one of these

to use ? Clearly, trying to solvg, k — 1) for a minimization problem ofG — v, k) for

a maximization problem is harder than the original problem and can be disregarded. The

5.2 FOR MINIMIZATION - ITERATIVE COMPRESSION 32

combination of the tw@G — v, k — 1) may have some merit in either case.

In the next section we show that using smaller instances of the(type v, k) is very
suitable for minimization problems and leads to a technique known as Iterative Compres-
sion. Then we show that using smaller instances of the t¢pé — 1) can be used to
construct algorithms for maximization problems and is in fact the technique known as the
Extremal Method.

5.2 FOR MINIMIZATION - |ITERATIVE COMPRESSION

In this section we present Iterative Compression. This technique works well on minimiza-
tion problems. We will try to improve smaller instances of the tyge— v, k), i.e., the
graph instance minus one vertex.

Since it is an inductive method we can assume that we can compute the solution for the
smaller instance. Since our problems are decision problems, the solution can take two
forms, either a 'Yes’-answer or a 'No’-answer. We now wish to use the information
provided by the answer to compute the solution(iGr k). Because of the nature of this
technique we can assume that the algorithms are constructive and thus for a’Yes’-instance
we also have a certificate that verifies that the instance is a "Yes'-instance (recall that NP
is the class of problems with such certificates). However, for a 'No’-answer we receive
no extra information, but we still need to be able to calculate the solutiofGfok).

A class of problems where 'No’-answers carry sufficient information is the classobtone
problems. We will say that a problem is monotone if the 'No’-instances are closed under
element addition. Thus if a problem is monotone we can immediately answer 'No’ for
(G, k) if (G —v,k)isa’No-instance.

Given a monotone problem we can use an algorithm skeleton as seen in Figure 5.1. The
algorithm will recursively call itself at mogt/(G)| times, thus the running time of an
algorithm of this type i€)(n) times the time it takes to compute a solution given a smaller
solution.

Note that some minimization problems are not monotone. Consider for instzmae
INATING SET (P7.3) where the addition of a universal vertex always changes a 'No’
answer to 'Yes’ (unlesg > n). For such problems we believe that this technique is ill
suited.

5.2.1 EXAMPLE OF | TERATIVE COMPRESSION’

We will give an algorithm for the problefREEDBACK VERTEX SET using the technique
described in the previous sectiodREEDBACK VERTEX SET (P7.5)is a monotone prob-
lem as adding new vertices will never help to cover existing cycles. Consider 'Feedback

5.2 FOR MINIMIZATION - ITERATIVE COMPRESSION 33

Algorithm skeleton Iterative Compression
Input: GraphdG, integerk

if |V (G)| < k then run brute force algorithm, return answer alnalt
Choose arbitrary vertex

Recursively call problem on instan¢€ — v, k), obtain solutionS

if S ="No’ thenanswer 'No’

else Compute in FPT time a solution f¢6, k) based ort

Figure 5.1: An algorithm skeleton for Iterative Compression, this technique assumes that
the problem is monotone.

Vertex Set Algorithm’ in Figure 5.2.

Algorithm 'FVS’
Input: GraphdG, integerk

if |V(G)| < k then return 'Yes’ andhalt
Choose arbitrary vertex € G
S=FVS(G—wv,k)

if S ="No’ thenanswer 'No’ andhalt

LetT = G — (S Uw), note thatl" is a forest.

Create tree decompositi@rx, /) of 7'.

Add S U v to each bag inX to obtain tree decompositidX”’, I) of width at mostt + 2.
run Treewidth algorithm for feedback vertex set on tree decomposifion/)

output answer from treewidth algorithm.

Figure 5.2: An inductive algorithm fdFEEDBACK VERTEX SET.

Theorem 5.2.1 Algorithm 'FVS’ is correct, and solveSEEDBACK VERTEX SET in FPT
time.

Proof. We will first prove that the algorithm does not incorrectly decide the answer before
running the treewidth sub routine. If the algorithm answers 'Yes’ becgdugg)| < k,

it is correct as we can selett as our feedback vertex set. If the algorithm answers
'No’ because(G — v, k) is a 'No’-instance, it is correct @SEEDBACK VERTEX SET is a
monotone problem.

5.3 FOR MAXIMIZATION - THE EXTREMAL METHOD 34

We assume the treewidth subroutine is correct so it remains to show that the algorithm
computes a tree decomposition of the graph with bounded treewidth. The algorithm com-
putes the grapli’ = G — (S U v) which is a forest, and it is easy to construct a tree
decomposition of width 1 from this forest, having one bag for each edge. The algorithm
then addsS U v to each bag to obtain a correct tree decomposition of widH.

It follows from results in [ALS91] thaFEEDBACK VERTEX SET is solvable in FPT time
if the treewidth is the parameter. This gives the desired result. O

5.2.2 How IsIT USED IN PRACTICE ?

Two papers that use this type of induction are [RSV03] and [DFRS04]. In [RSVO03], Reed,
Smith, and Vetta managed to show that the proble@pp CycLE CoVER (P7.13)(is

it possible to deleté vertices fromG to obtain a bipartite graph) is in FPT, thus settling a
long open problem in the field. By the induction hypothesis, assume that we can determine
if (G—wv,k)isa’No’ ora’Yes' instance fok-ObD CyCLE COVER. The induction step

is then in two parts. First, the trivial part: to show that@ — v, k) is a 'No’-instance

then the inclusion of another vertex cannot improve the situation. The second part deals
with the situation when we have a positive certificAteonsisting of thet vertices to

be deleted from{G — v, k) to make it bipartite. If we have such a certificatewe can
conclude thatS U {v} is a solution of size at mogt+ 1 for G. The authors then show,

by a fairly complicated argument which we will not explain here, that given a solution of
size at mosk + 1 it is possible to determine in FPT time whether or not there exists a
solution of sizek.

A very similar use of induction is seen in [DFRS04] where Dehne, Fellows, Rosamond
and Shaw give &k kernel forVERTEX COVER (P7.21)without using the complicated
Nemhauser-Trotter results [NT75]. By induction assume we can deterniiie-ifv) has
ak-VERTEX COVER, if no such cover exists we cannot find one foeither. On the other
hand if(G — v) has ak-VERTEX COVER S thenS U {v} is ak + 1-VERTEX COVER for

G and by implication hasa— (k+ 1)-INDEPENDENTSET. As long agV (G)| > 2k +2

we know by Lemma 4.2.1 that has a crown decomposition, which in turn leads to a
reduction inG as seen in Lemma 4.2.2. This reduction continues until the graph has size
at most2k + 2, at which point we can test fot-VERTEX COVER using a brute force
algorithm.

5.3 FOR MAXIMIZATION - THE EXTREMAL METHOD

For maximization problems we consider smaller instances of the(t¥pe — 1). Thus
we will induct onk instead of om. Most maximization problem are trivial f@r=, 0).

For the same reasons as before we need monotonicity in the problem, but since we are
inducting on the parameter we will instead require that the 'No’-instances are closed under

5.3 FOR MAXIMIZATION - THE EXTREMAL METHOD 35

parameter increment. That is, if instanE®, k) is a 'No’-instance ther{G, k') is also a
'No’-instance for allk’ > k. If a problem satisfies this we say itpgarameter monotone

For a parameter monotone problem we can modify the algorithm skeleton from the previ-
ous section to obtain an inductive algorithm for maximization problems, see Figure 5.3.

Algorithm skeleton for parameter monotone problems
Input: GraphG, integerk

if & = 0 then run brute force algorithm, return answer ainalt
Inductively call problem on instandé-, £ — 1), obtain solutionS

if S ="No’ then answer 'No’

elseCompute in FPT time a solutio$f for (G, k) based ort and returns’

Figure 5.3: An algorithm skeleton for parameter monotone problems.

One way to compute a solution fo&, k) based on the certificatefor the "Yes’-solution
for (G, k — 1) is to make rules of the following type:

Either solutionS can be modified to be a solution f@¥, k) or G has property
P.

Thus we either prove that is a 'Yes'-instance fofG, k) and can terminate, @ has a
specific propertyP. By creating a set of rule® of this type we hope to impose enough
structure to prove a lemma of this type:

If no rule in R applies to(G, k) then|V(G)| < f(k).
The setR of rules can be augmented with normal reduction rules to remove unwanted

structures.

What we have described above is equivalent toAlgorithmic Versiorof the Method of
Extremal Structureas described in Elena Prieto’s PhD thesis [PO5].

The regulaMethod of Extremal Structurigies to gradually improve a set of reduction
rules R until it is possible to prove Boundarylemma of the following type:

If no rule in R applies to(G, k) and (G, k) is a 'Yes'-instance an, k + 1)
is a 'No’-instance, thenV (G)| < f(k)

5.3 FOR MAXIMIZATION - THE EXTREMAL METHOD 36

Given such a boundary lemma and the fact that the problenperameter monotone
maximization problem we can immediately provkanelizationemma saying

If no rule in R applies to(G, k) and|V (G)| > f(k), then(G, k) is a'Yes'-
instance.

When trying to prove the boundary lemma we consider the class

Er(k) = {G | (G, k) is irreducible under?, (G, k) is a 'Yes'-instance, and
(G,k+ 1) is a’No-instance}.

If max{|V(G)| | G € Eg(k)} is a function ofk we can prove the boundary lemma,
otherwise we need to strengthen our reduction rules.

We can find new reduction rules by considering one of the graphs with the largest number
of vertices inEr (k). We can in this way often identify crucial structures that need to be
taken care of with reduction rules before we can proceed.

5.3.1 HOW IS ITUSED IN PRACTICE ?

The Extremal method has been successfully applied to a range of problems and we
will give a list with references hereMax CuT [P04], MAX LEAF SPANNING TREE

[PO5], NON-BLOCKER [P05], EDGE-DISJOINT TRIANGLE-PACKING [MPS04], K ;-
PACKING [PS04], K3-PACKING [FHRSTO04], SET SPLITTING [DFRO03], andMAX IN-
TERNAL SPANNING TREE[PSO05].

For an example of the extremal method we refer the reader to Chapter 9 where we use the
Extremal Method to obtain a quadratic kernel for ,-packing.

6

WIN/WIN

Imagine that we solve our problem by first calling an FPT algorithm for another problem
and use both its 'Yes’ and 'No’ answer to decide in FPT time the answer to our problem.
Since we then 'win’ if its answer is 'Yes’ and we also 'win’ if its answer is 'No’, this is
called a 'Win/Win’ situation.

In this chapter we focus on this technique, which is in our opinion one of the strongest
techniques for creating parameterized algorithms. Indeed, according to [DHO5] the only
known algorithms with sub-exponential running tirG¥ (¢*) are algorithms based on
treewidth and branchwidth, and these fall into the Win/Win category.

6.1 BasiCc WIN WIN - BEST OF TWO WORLDS

In Win/Win we make use of a relationship between two parameterized probleamsl

B. We can for some problems show that an instance either is a "Yes’-instance for problem
A or a’Yes'-instance for problem®. This can be useful for constructing an algorithm for

A if we can decide problem® in FPT time.

Consider the algorithm skeleton shown in Figure 6.1. We run our decision algabifom
problemB on input/. If ® returns a 'No’ answer, we know by the relationship between
A and B that A is a 'Yes'-instance(this can sometimes yield a non-constructive result
where we know thatl is a yes-instance but we have no certificate). Otherwise we have
obtained the knowledge thatis a 'Yes’-instance for3, and if & is constructive, we also
have a certificate. We then proceed to solvevith the extra information provided. In the
following subsection, we give examples of how this has been done in the literature.

6.1.1 EXAMPLES OF WIN/WIN

To our knowledge this technique was not given a self-standing discussion until [PS03]
and then under the name ’Either/Or’ (in relation only to vertex cover) and in [FO3] where
it was given the name Win/Win. Thus, earlier papers using this technique will not point
out that a Win/Win technique is used.

6.1 Basic WIN WIN - BEST OF TWO WORLDS 38

Algorithm: A Win/Win skeleton for problem using problemB
Input: GraphG, parametek

run FPT algorithm® for B on (G, k)

if (G, k) is a’No’-instance forB then Output "Yes’

else runuse structure given b¥ to solveA onG.

Figure 6.1: The classical Win/Win algorithm structure ,although other Yes/No relation-
ships betweenl and B may be used.

In the literature on parameterized algorithms there are several notable occurrences of a
Win/Win strategy. Many problems can be relatedif®EEWIDTH (P7.20)or BRANCH-

WIDTH (P7.1)and this is of great interest as there are many powerful algorithms that
solve NP-hard problems in FPT time if the parameter is the treewidth or the branchwidth
of the input graph.

One example of this iIPLANAR DOMINATING SET (P7.16) We give an FPT algorithm
for PLANAR DOMINATING SET by showing that a planar graph withkadominating set
has low branchwidth. One way to prove this is via outerplanarity, as done in [AFNO1].

Definition 6.1.1 A graph G is 1-outerplanaif there is a crossing-free embedding Gf

in the plane such that all vertices are on the exterior face. A gr@ph r-outerplanaif

it has a planar embedding such that if all vertices on the exterior face are deleted, each
connected components of the remaining graph-isuterplanar for some’ < r.

Vertices inr-outerplanar graphs are thus arranged intyers and since a vertex can only
dominate vertices on its own and its two neighboring layers we have

Observation 6.1.1 A planar graph that has @-dominating set ig-outerplanar for some
r < 3k.

Due to Hjortas [HO5] we have
Theorem 6.1.1 LetG be anr-outerplanar graph. Thetr has branchwidth at mogt-+1.

Note that a weaker bound &f + 1 follows from an old result by Bodlaender [B86].
Together with Observation 6.1.1 this gives

Corollary 6.1.1 A planar graph that has a&-dominating set has branchwidth at most
6k+1.

6.1 Basic WIN WIN - BEST OF TWO WORLDS 39

Computing the branchwidth of a planar graph is polynomial, using the 'Ratcatcher’ al-
gorithm [RS94]. Using this we can construct a Win/Win algorithm FaaNAR DOM-
INATING SET as seen in Figure 6.2. The running time of this algorithm is dependent
on the dynamic programming algorithm fBroMINATING SET on graphs with bounded
branchwidth.

Algorithm Win/Win for PLANAR DOMINATING SET
Input: A graphG = (V, E) and an integek.
Output: A’Yes’ or a’'No’ answer

Run the Ratcatcher algorithm to test if branchwidth is more than 6k+1.
if branchwidth ofGG > 6k + 1 then Output 'No’ andhalt
else runMINIMUM DOMINATING SET algorithm for graphs of bounded branchwidth

Figure 6.2: A Win/Win algorithm for Planar Independent Set

Theorem 6.1.2[FT03] MINIMUM DOMINATING SET on graphs with branchwidth at
mostbw can be solved in timé@= (231084 3bw)

Corollary 6.1.2 Algorithm "Win/Win forPLANAR DOMINATING SET is correct and has
running timeQ*(214-265%),

Proof. Observe that the algorithm is correct when it answers 'No’ when the branchwidth
bw is greater thalwk + 1, as this follows directly from Corollary 6.1.1.

Otherwise the algorithm calls tHd INIMUM DOMINATING SET algorithm from [FTO3]
and answers accordingly.

The running time ig)(2!425%) as the ratcatcher subroutine is polynomial and we run the
MINIMUM DOMINATING SET algorithm with branchwidth at most + 1. O

It is possible to show a much stronger relationship between the siz€ofar DoM-
INATING SET and treewidth. In [AFNO1] it is shown that a planar graph that has a
k-dominating set has treewidth at masy34v/k, giving an algorithm of running time
(’)(c‘/E). As mentioned before it is only Win/Win algorithms of this type that are known
to give parameterized algorithms with subexponential running time for NP-hard problems.
The result in [AFNO1] requires some work, and we will instead give a more elegant proof
of ac‘/E-algorithm from [FTO4], which is based on the following result from [RS91].

Theorem 6.1.3Lett > 1 be an integer. Every planar graph with ri6 x ¢)-grid minor
has branchwidthbw(G) < 4t — 3.

6.2 GRAPHMINOR THEOREM 40

We can then prove the following Lemma.

Lemma 6.1.1 If G has branchwidtlbw(G) > 8v/k + 5 thenG has noPLANAR DoOMI-
NATING SET of sizek.

Proof. Lett = 2v/k + 2, since8vk + 5 = 4t — 3 we know by Theorem 6.1.3 thét has
a(2Vk +2) x (2Vk + 2) grid M as a minor.

Consider an embedding of graphin the plane. We will now try to calculate a minimum
bound on the dominating set needed to dominate the verticés.imA vertex v could
potentially dominate the entire outer face of the grid, but any vertex in any face of the
grid, or any vertex of the grid itself cannot dominate more thaof the vertices in the
(2vE) x (2vk) innergrid, that isM minus it's outer face. Thus we need/k-2vk/4 = k
vertices to dominate the inner grid, plus at least one to dominate the outer fateldfis
proves the lemma. O

Thus we could modify the input Ratcatcher subroutine in Figure 6.2 to check if the graph
has branchwidti8v/% + 5. This would give the following

Theorem 6.1.4 PLANAR DOMINATING SET can be solved in tim@+ (21902 V),

[FTO04] proves the even stronger result, that a planar geaptith bw(G) > 3v4.5Vk
implies NOPLANAR DOMINATING SET of sizek, giving a0* (2!%13 V%) algorithm for the
problem, which is the fastest known.

6.2 GRAPH MINOR THEOREM

The famous Graph Minor Theorem can be used to prove membership for FPT. Note that
the proofs are nonconstructive and the algorithms contain hidden huge constants.

Definition 6.2.1 A graph H is a minor of a graphG, denotedH =,, G, if a graph
iIsomorphic toH can be obtained fron’ using the following three operations repeatedly.

1. Deleting an isolated vertex
2. Deleting an edge

3. Edge contraction

6.2 GRAPHMINOR THEOREM 41

The relation=,,, forms an ordering of finite graphs, this ordering is clearly a quasi-order,
l.e, =,, is reflexive and transitive. However, the key result in this technique is the follow-
ing famous graph minors theorem due to Robertson and Seymour [RS99].

Theorem 6.2.1 Finite graphs are well-quasi-ordered by the minor ordering.

A quasi-order is avell-quasi orderingf there is no infinite antichain. Aantichainis an
infinite set of elements, no two of which are comparable in the ordering.

In order to see how this can be used to prove the existence of FPT algorithms, consider a
problem A with the property that for any the "Yes'-instances are closed under minors.

In other words if a grapli- is a 'Yes'-instance the/ such thatd <,, G is also a 'Yes'-
instance. The paifA, k) forms the minor-closed graph cladg consisting of all graphs

G such that G, k) is a 'Yes'-instance. Now consider the graph class Minimal Forbidden
Minors of A, denotedV/ F'M (Ay).

MFM(Ag) = {G| G ¢ Ay and(VH =<, G, H € Ax vV H = G)}

By definition, this class is an anti-chain of thg, ordering of finite graphs.

Theorem 6.2.1 tells us thaf F'M (Ay) is a finite set and its size is clearly only dependent
onk. Note that we can test if an input graphis a member ofd;, by checking if it contains
as a minor any of the graphs i F'M (A). The main subroutine is this problem:

MINOR ORDERTEST(P7.12)
Instance: Graph& and H
Parameter{V (G)|

Question: IsH =<,, G?

MINOR ORDER TESTIs proven FPT by Robertson and Seymour [RS99]. Putting it all
together we get the algorithm skeleton in Figure 6.3.

This can be considered a Win/Win algorithm as we relate the problem we wish to solve to
the problem of checking if one of the forbidden minors appear in our problem instance.

Note that since the forbidden minors change gsows, the algorithm itself also changes
(it needs to know the forbidden minors for edgh Thus we need one algorithm for each
fixed .

6.2 GRAPHMINOR THEOREM 42

Algorithm An algorithm skeleton for the Graph Minor technique
Input: A graphG = (V, E) and an integek.
Output: A’Yes’ or a’No’ answer

Let M F'M be the set of forbidden minors for the specified problem and the given
for each minotH € M FM

if H <, G then answer’No’ and halt
end for

answer’Yes’

Figure 6.3: An algorithm skeleton for using graph minors which is applicable when the
class{G | (G, k) is a’Yes'-instance is closed under minors.

6.2.1 EXAMPLE OF A GRAPH MINOR ALGORITHM

Applying this technique is very simple. It suffices to check whether the "Yes'-instances
are preserved under operatibr2, and3 in Definition 3.

Consider the probleREEDBACK VERTEX SET (P7.5)

Observation 6.2.11If (G, k) is a’'Yes'-instance foFEEDBACK VERTEX SETand H =,
G, then(H, k) is a 'Yes'-instance fOFEEDBACK VERTEX SET

Proof. We will show that if G has a feedback vertex s&tof size k thenG’, k has a
feedback vertex set of siZze whereG’ is obtained fronG by performing one of the three
operations: (1) edge deletion, (2) deletion of an isolated vertex and (3) edge contraction.

For operations (1) and (2) the result is trivial &ds a feedback vertex set ifi’. For
operation (3) , where we replace two neighboring vertigemndv, with a vertexvs, S is

a feedback vertex set f@i’ unlessS containedv; or vs, if that was the case we can add
v3 t0 S to obtain a feedback vertex set of sizéor G'.

By repeated application of the above argument we can prove the result for any fhinor
of G. O

We now have enough information to conclude tRBEDBACK VERTEX SET is in FPT.

Although its extreme simplicity makes the technique very useful as a method for proving
membership in FPT, the number of forbidden minors is often quite large and also often
unknown. Thus, this technique is rarely viable as a tool for designing practical algorithms.

7

LIST OF PROBLEMS

In this appendix we list all problems used in the text in alphabetical order.

7.1 BRANCHWIDTH

Instance: A graphG = (V, E)
Parameter: A positive integerk
Question: DoesG have branchwidti?

7.2 CYCLE

Input: A graphG = (V, E)
Parameter: A positive integerk
Question: Does there exist a cycle of lengthin G?

7.3 DOMINATING SET

Input: A graphG = (V, E)

Parameter: A positive integerk

Question: Isthere aset’ C V(G) suchthatV'| < k
and for allv € V', we haveN [v] N V' # ()?

7.4 DOMINATING SET ON CUBIC GRAPHS

Input: A graphG = (V, E) whose maximum degree is three
Parameter: A positive integerk
Question: Isthere aset’ C V(G) such thatV’| < k

and forallv € V, N[v] N V' # (?

7.5 FEEDBACK VERTEX SET 44

7.5 FEEDBACK VERTEX SET

Input: A graphG = (V, F)

Parameter: A positive integerk

Question: Isthere aset’ C V(G) such thatV’| < k
andV — V' contains no cycles?

7.6 HAMILTONIAN CYCLE

Input: A graphG = (V, E)
Question: Does there exist a cycle of lengthin G?
Comment: Classical NP-complete problem. (Listed in [GJ79] as problem GT37.)

7.7 HITTING SET

Input: A collectionC of subsets of a set
Parameter: A positive integerk
Question: Isthere aset’ C S suchthatsS| <k
and S’ contains at least one element from each sét™

7.8 INDEPENDENT SET

Input: A graphG = (V, E)

Parameter: A positive integerk

Question: Isthere aset’ C V(G) such thatV’| > k
andE(G[V']) = 0?

7.9 K3-PACKING

Input: A graphG = (V, E)

Parameter: A positive integerk

Question: Is there a collection of pairwise vertex disjoint
subgraphs of; each isomorphic taé3?

7.10 Max CuT

Instance: Agraplir = (V, E)

Parameter: A positive integér

Question: Is there a partitioning &f into two sets
V',V such that the number of edges betwé&&randV”
is at least k?

7.11 MAX LEAF SUBTREE 45

7.11 MAX LEAF SUBTREE

Instance: Agraplir = (V, E)
Parameter: A positive integér
Question: Doess have a subtree with at leasteaves?

7.12 MINOR ORDER TEST

Instance: GraphsG = (V,E), H = (V, E)
Parameter: |V (H)|
Question: IsH =<,, G?

7.13 ObD CYCLE COVER

Input: A graphG = (V, E)

Parameter: A positive integerk

Question: Isthere aset’ C V(G) such thatV’| < k
andV — V' is bipartite?

7.14 P2 RACKING

Input: AgraphG = (V, E)

Parameter: A positive integerk

Question: Is there a collection of pairwise vertex disjoint
subgraphg~ each isomorphic t@,?

7.15 PR.ANAR INDEPENDENT SET

Input: A planar graphz = (V, E)

Parameter: A positive integerk

Question: Isthere aseV’ C V(G) such thatV’| > k
andE(G[V']) = 0?

7.16 DOMINATING SET

Input: A planar graphz = (V, E)

Parameter: A positive integerk

Question: Isthere aset’ C V(G) such thatV’| < k
and for allv € V,we haveN[v] N V' # ()?

7.17 SHORT NONDETERMINISTIC TURING MACHINE ACCEPTANCE 46

7.17 3HORT NONDETERMINISTIC TURING MACHINE
ACCEPTANCE

Instance: A nondeterministic Turing machine M
Parameter: A positive integerk
Question: Will M haltin at most: steps?

7.18 3zeD CROWN

Instance: A graphG = (V, E)
Parameter: A positive integerk
Question: DoesG have a crown-decomposition wheié U C| = k?

7.19 SORTING

Instance: A sequence of integersry, oo, ..., T,
Question: What is the sequence of the same integers in increasing order?

7.20 TREEWIDTH

Instance: A graphG = (V, E)
Parameter: A positive integerk
Question: DoesG have treewidth:?

7.21 VERTEX COVER

Input: A graphG = (V| E)

Parameter: A positive integerk

Question: Isthere aset’ C V(G) suchthatV’| < k
andV — V' is an independent set?

BIBLIOGRAPHY

[ABFKNO2] J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier. Fixed
parameter algorithms for dominating set and related problems on planar graphs,
Algorithmica vol. 33, pages 461-493, 2002.

[AFNO1] J. Alber, H. Fernau, and R. Niedermeier. Parameterized complexity: exponen-
tial speedup for planar graph problen®soceedings of ICALP2001NCS 2076,
2001

[ALS91] S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable
graphsJournal of AlgorithmsVol 12, issue 2, pages 308—-340, 1991.

[ALSO05] F. Abu-Khzam, M. Langston, and W. Suters. Fast, Effective Vertex Cover Ker-
nelization: A Tale of Two AlgorithmsProceedings, ACS/IEEE International Con-
ference on Computer Systems and Applicati@gro, Egypt, January, 2005.

[AYZ95] N. Alon, R. Yuster, and U. Zwick. Color-Codingpurnal of the ACMVolume
42(4), pages 844-856, 1995.

[B86] H. Bodlaender. Classes of graphs with bounded treewitith,RUU-CS-86-22
Utrecht University, 1986.

[C71] S. Cook. The compexity of theorem-proving proceduRsceedings of 3rd an-
nual ACM Symposium on Theory of ComputiAgsociation for Computing Ma-
chinery, New York, pages 151-158, 1971

[CCDF97] Liming Cai, J. Chen, R. Downey, and M. Fellows. The parameterized com-
plexity of short computation and factorizatiokchive for Mathematical Logi86,
pages 321-338, 1997

[CFJO4] B. Chor, M. Fellows, and D. Juedes. Linear Kernels in Linear Time, or How to
Savek Colors inO(n?) stepsProceedings of WG2004, LNCZ004.

[CKJO1] J. Chen, I. Kanj, and W. Jia. Vertex cover: Further Observations and Further
ImprovementsJournal of Algorithms/olume 41 , pages 280-301, 2001.

[DEFPRO3] R. Downey, V. Estivill-Castro, M. Fellows, E. Prieto-Rodriguez, and F.
Rosamond. Cutting Up is Hard to Do: the Parameterized ComplexttyQit and
Related Problemd;lectronic Notes in Theoretical Computer Scie& pages
205-218, 2003.

BIBLIOGRAPHY 48

[DF99] R. Downey and M. Fellows. Parameterized Comple8gyinger-Verlag 1999.

[DFRS04] F. Dehne, M. Fellows, F. Rosamond, P.Shaw. Greedy Localization, lterative
Compression and Modeled Crown Reductions: New FPT Technigques and Im-
proved Algorithms for Max Set Splitting and Vertex Coveroceedings of IW-
PECO04 LNCS 3162, pages 271-281, 2004

[DFFPRO5] F. Dehne, M. Fellows, H. Fernau, E. Prieto and F. Rosamond. Nonblocker:
Parameterized algoritmics for Dominating Setappear SOFSEM2006

[DHO5] E. Demaine and M. Hajiaghayi. Bidimensionality: New Connections between
FPT Algorithms and PTAS$roceedings of the 16th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA 2003anuary 23-25, pages 590-601, 2005.

[E65] J.Edmonds. Paths, trees and flow&an.J.Math,. 17, 3, pages 449-467, 1965.

[FO3] M.Fellows. Blow-ups, Win/Wins and Crown Rules: Some New Directions in FPT,
Proceedings WG 200&pringer Verlag LNCS 2880, pages 1-12, 2003.

[FKNRSTWO04] M. Fellows, C. Knauer, N. Nishimura, P. Ragde, F. Rosamond, U. Stege,
D. Thilikos, and S. Whitesides. Faster fixed-parameter tractable algorithms for
matching and packing problemBroceedings of the 12th Annual European Sym-
posium on Algorithms (ESA 20Q042004.

[FGO1] J.Flum and M. Grohe. Fixed parameter tractability, definability, and model
checking,SIAM Journal on Computingl: pages 113-145,2001

[FGO02] J. Flum and M.Grohe. Describing parameterized complexity cla3ssseedings
of 19th STACS.NCS 2285, pages 359-371,2002.

[FKO2] S. Fedinand A. Kulikov. 2/F/4-time Algorithm for MAX-CUT. Zapiski nauch-
nyh seminarov POMIN0.293, pages 129-138, 2002.

[FMRSO00] M.R. Fellows, C. McCartin, F. Rosamond, and U.Stege. Coordinatized Ker-
nels and Catalytic Reductions: An Improved FPT Algorithm for Max Leaf Span-
ning Tree and Other Problem&undations of Software Technology and Theoreti-
cal Computer Scien¢000.

[FTO3] F. Fomin and D. Thilikos. Dominating sets in planar graphs: Branchwidth and
exponentialspeed-ufpdth ACM-SIAM SODApages 168-177, 2003.

[FTO4] F. Fomin and D. Thilikos. A simple and fast approach for solving problems on
planar graphsSTAC$2004.

[G99] M.Grohe. Descriptive and Parameterized complexityl3th CSLLNCS 1683,
pages 14-31,1999.

BIBLIOGRAPHY 49

[GJ79] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completenes¥y.H. FreemanSan Francisco, 1979.

[HO5] O. Hjortas. Branch decompositions bfouterplanar graphsviaster thesis, Uni-
versity of Bergen2005

[K72] R.M. Karp, Reducibility among combinatorial problem&€pomplexity of Com-
puter ComputationsPlenum Press, New York, pages 85-103, 1972.

[KOO] O. Kullmann. Investigations on autark assignmeridsscrete Applied Mathemat-
ics, vol. 107, pages 99-138, 2000.

[KO3] O. Kullmann. Lean clause-sets: Generalizations of minimally unsatisfiable clause-
sets,Discrete Applied Mathematicsol 130, pages 209-249, 2003.

[LO4] M. Langston. Private communication.

[LSO5] D. Lokshtanov and C. Sloper. Fixed Parameter Set Splitting, Linear Kernel and
Improved Running Tim@roceedings of ACID 2002005

[L83] H. Lenstra. Integer programming with a fixed number of variabathematics of
Operations Researcl8, pages 538-548, 1983.

[M89] U. Manber. Introduction to algorithms, a creative approadidison Wesley Pub-
lishing, 1989.

[MR99] M. Mahajan, V. Raman. Parameterizing above guaranteed values: MaxSat and
MaxCut,Journal of Algorithmsvol. 31, issue 2, pages 335-354, 1999.

[NO2] R. Niedermeier. Invitation to Fixed-Parameter Algorithidabilitation thesisun-
published, 2002

[NROO] R. Niedermeier and P. Rossmanith. A general method to speed up fixed parameter
algorithms,Information Processing Letterg3, pages 125-129, 2000.

[NT75] G. Nemhauser and L. Trotter Jr. Vertex Packings: Structural properties and algo-
rithms, Mathematical Programming, pages 232—-248, 1975.

[PO5] E. Prieto. Systematic kernelization in FPT algorithm dedriiD thesis

[PO5b] E. Prieto. The Method of Extremal Structure on thklaximum Cut Problem,
Proceedings of Computing: The Australasian Theory Symposium (CATS S05), Aus-
tralian Computer Science Communicatiomsl. 27(4), pages 118126, 2005.

[PS03] E. Prieto, C. Sloper. Either/Or: Using Vertex Cover Structure in designing FPT-
algorithms - the case of k-Internal Spanning TrBepceedings of WADS 2003
LNCS vol 2748, pages 465-483.

BIBLIOGRAPHY 50

[PS04] E. Prieto, C. Sloper. Looking at the StRreceedings of International Workshop
on Parameterized and Exact Computation (IWPEC SDHICS vol. 3162, pages
138U149, 2004.

[PSO5] E. Prieto, C. Sloper. Reducing to Independent Set Structure — the Cése of
INTERNAL SPANNING TREE', Nordic Journal of Computingo appear.

[RO1] Robson. Finding a maximum independent set in tifi{g™/#)? Manuscript.

[RS91] N. Robertson, P.Seymour. Graph Minors X Obstructions to tree-decomposition,
Journal Combin. Ser. B52, pages 153-190, 1991.

[RS94] N. Robertson, P. Seymour. Quickly excluding a planar grapimnal Combin.
Ser. B, 62, pages 323-348, 1994.

[RS99] N. Robertson, PD. Seymor. Graph Minors XX Wagner’s conjeclarappear

[RSV03] B.Reed, K.Smith, and A. Vetta. Finding Odd Cycle Transversajgrations
Research Letters882, pages 299-301, 2003.

[SS90] J.P. Schmidt and A. Siegel. The spatial complexity of oblivibysobe hash
functions.SIAM Journal of Computindl9(5), pages 775-786, 1990.

[WO03] G. Woeginger. Exact algorithms for NP-hard problems: A sur@ambinatorial
Optimization - Eureka! You shrinkM. Juenger, G. Reinelt and G. Rinaldi (eds.).
LNCS 2570, Springer, pages 185-207, 2003.

Part Il

Papers - case studies

38

MAX INTERNAL SPANNING TREE

Reducing to Independent Set Structure — the Case df-INTERNAL SPANNING
TREE!

Elena Prieto Christian Sloper
Abstract

Thek-INTERNAL SPANNING TREE problem asks whether a certain gragh

has a spanning tree with at ledsinternal vertices. Basing our work on the
results presented in [PS03], we show that there exists a set of reduction rules
that modify an arbitrary spanning tree of a graph into a spanning tree with no
induced edges between the leaves. Thus, the rules either produce a tree with
many internal vertices, effectively deciding the problem, or they identify a
large independent set, the leaves, in the graph. Having a large independent set
is beneficial, because then the graph allows both ‘crown decompositions’ and
path decompositions. We show how this crown decomposition can be used
to obtain aO(k?) kernel for thek-INTERNAL SPANNING TREE problem,
improving on theD(k?) kernel presented in [PS03].

8.1 INTRODUCTION

The subject of Parameterized Complexity is motivated by an abundance of NP-complete
problems that have very different behavior when parameterized. These problems in-
cludes well-known problems likBOMINATING SET, BANDWIDTH, SET SPLITTING,

and INDEPENDENT SET (for definitions the reader may refer to [GJ79]). Some of the
NP-complete are tractable when parameterized and admits very good parameterized al-
gorithms. A formal definition of the class of problems which are tractable when parame-
terized is defined as follows:

1This paper has been accepted to Nordic Journal of Computing and is due to appear.

8.2 USING REDUCTION RULES 53

Definition 8.1.1 (Fixed Parameter Tractability) A parameterized probléntT ¥* x >*
is fixed-parameter tractabitthere is an algorithm that correctly decides, in tirfigc) n®,
for input (z,y) € ¥* x ¥* whether or not(x,y) € L, wheren is the size of the input
x, |z| = n, k is the parametery is a constant (independent bf and f is an arbitrary
function.

The class of fixed-parameter tractable problems is denoted FPT.

It is not believed that alNP-complete problems are Fixed Parameter Tractable, the class
is split into a hierarchy of classes FEW[1]CW[2]C --- CWI[P]. Here the classes
W[1]CW][2]C - .- CWI[P] are intractable and we justify this by a completeness-result not
unlike classical complexity. In [CCDF97] Cai, Chen, Downey, and Fellows proved that
k-SHORT NONDETERMISTIC TURING MACHINE ACcCEPTANCE(Will a Nondetermistic
Turing Machine halt ink or less steps?) is W[1]-complete thus giving strong natural
evidence that'PT" # W1].

Further background on parameterized complexity can be found in [DF98].

The problem we address in this paper concerns spanning trees, nafhelyERNAL
SPANNING TREE (DoesG have a spanning tree with at mest & leaves?). The problem
is NP-complete aBlAMILTONIAN PATH can be considered a special casg-0NTERNAL
SPANNING TREEby makingk = |V| — 2, andHAMILTONIAN PATH is NP-complete.

In Section 8.4 we use standard techniques to showitHatTERNAL SPANNING TREE

is in FPT. In Section 8.5 we describe how to use the boumagependent set structure

to design an FPT algorithm fdr-INTERNAL SPANNING TREE. We give an analysis of

the running time of the algorithm generated by the method in Section 8.6. In Section 8.7
we show how the independent structure allows a pathwidth decomposition which can be
useful for some problems, we illustrate thisONBLOCKER, the dual ofDOMINATING

SET. We conclude with some remarks about future research. Also, as a consequence
of the preprocessing of the graph necessary to create our fixed-parameter algorithm, we
easily obtain a polynomial time 2-approximation algorithm#eFNTERNAL SPANNING

TREE

8.2 USING REDUCTION RULES

Currently, the main practical methods of FPT algorithm design are badestoelization
and bounded search treesThe idea of kernelization is relatively simple, and can be
quickly illustrated for theV ERTEX COVER problem.

In kernelization we seek to bound the size of the input instance to a function of the pa-
rameter. To achieve this we preprocess the graph using reduction rules. Two examples
of reduction rules fo ERTEX COVER are theleaf-ruleand theBuss-rule The leaf-rule

8.2 USING REDUCTION RULES 54

states that given an instan@&, k) whereG has a pendant vertexof degree 1 connected
to vertexu, then it is never wrong to include in the vertex cover instead of, as the
edgeuv must be covered and possibly covers other edges as well. THGS k) can
be reduced t4G’, k — 1), whereG' = G — {u,v}. Another rule, the Buss-rule [B98],
states that if the instancé;, k) has a vertex. of degree greater than thenu must be in
everyk-vertex cover of7, since otherwise all its more thameighbors would have to be
included. Thus(G, k) can be reduced t@&', k — 1) whereG' = G — u.

The term ‘Reduction rule’ is somewhat unfortunate as it seems to imply a rule that reduces
the graph in size. Although a reduction in size is a consequence, it is wrong to consider
this the goal. Reduction rules should not be viewed as a ‘reduction in size’ but rather as
a ‘reduction to structure In parameterized complexity the goal of the reduction process

is to prove that the problem is after preprocessing trivially decidable for any ‘large’ in-
stance, i.e., irreducible instances larger than a funcfidn, our kernel size. It is here

that reduction rules provide us with the necessary information about the structure of the
instance. In a sense, reduction rules are used to impose structure that allow us to make
claims about irreducible graphs.

Itis easy to be led astray by reduction rules that only offer a reduction in size, since if they
do not also convey some useful structural information, then the rule is ultimately useless
from the point of view of kernelization. However, such a rule could of course be very
useful in practice as a preprocessing tool or in search tree algorithms.

To illustrate what we mean we again consider the leaf-rule and the Buss-rule for vertex

cover. After repeated application of both we reach a graph where neither rule can be

applied. We say that this graphiigeduciblefor our reduction rules. From the knowledge

that the rules do not apply we can conclude that the graph has two properties. First, from
the leaf-rule, we know that every vertex has degree at least 2. Second, from the Buss-rule,
we know that every vertex has degree at niost

Knowing that the minimum degree of the graph is at least two is important for ruling out
cases in the search tree analysis, but it does not provide any ‘useful’ structural information
as we both have arbitrarily large graphs with minimum degree at least two that have a
Vertex Cover, and others that do not havie-Yertex Cover. However, with the Buss-rule

the situation is different. Knowing that every vertex has degree at mosmbined with

the fact that we can select at mdsbf them is enough to conclude that no irreducible
yes-instance fok-Vertex Cover has more thdt{k + 1) vertices. Thus we can trivially
decide any irreducible instance of size greater th@n = k(k + 1). We have a quadratic
kernel for vertex cover.

In this paper we show that we can learn something about the structure of the graph on
a global level without reducing the graph in size. We show that there exists a set of
reduction rules that modify an arbitrary spanning tree of a graph into a spanning tree with
no induced edges between the leaves. Thus, the rules either produce a tree with many

8.3 PRELIMINARIES 55

internal vertices, effectively deciding the problem, or they identify a large independent
set, the leaves, in the graph. Having a large independent set is beneficial, because then the
graph allows a ‘crown decomposition’. We show how this crown decomposition can be
used to obtain &(k?) kernel for thek-INTERNAL SPANNING TREE problem, improving

on theO(k?) kernel presented in [PS03].

8.3 PRELIMINARIES

We assume simple, undirected, connected graphs (V, E) where|V| = n. The
set of neighbors of a vertex is denotedN (v), and the neighbors of a sét C V' is
N(S) =Upes N(v) = S.

We use the simplef \ v to denoteG[V \ v] andG \ e to denoteG = (V, E \ e) where
v ande is a vertex and an edge respectively. Likewise for $&ts,V’ denotes7 [V \ V']
andG \ £’ denotegs = (V, E'\ E’) whereV" is a set of vertices an#’ is a set of edges.

We say that &-internal treeT’ is a subgraph of/, whereT is a tree with at leagt internal
vertices. IfV(T') = V(G) we say thafl" is ak-internal spanning treef G.

8.4 k-INTERNAL SPANNING TREE IS FPT

Using Robertson and Seymour’s Graph Minor Theorem it is straightforward to prove the
following membership iFPT.

Lemma 8.4.1 Thek-INTERNAL SPANNING TREE problem is inFPT.

Proof. Let 7, denote the family of graphs that do not have spanning trees with atdeast
internal vertices. It is easy to observe that for eathis family is a lower ideal in the mi-

nor order. Less formally, |GG, k) be aNo-instance oft-INTERNAL SPANNING TREE,

that is a grapld for which there is no spanning tree with at leashternal vertices. The

local operations which configure the minor order (i.e., edge contractions, edge deletions
and vertex deletions) will always transform thi-instance into anotheXo-instance.

By the Graph Minor Theorem of Robertson and Seymour and its companion result that
order testing in the minor order EP T[RS99] we can conclude thatINTERNAL SPAN-

NING TREEIs alsoFPT. (An exposition of well-quasiordering as a method=®&f T algo-

rithm design can be found in [DF98].) O

Unfortunately, thid=PT proof technique suffers from being nonuniform and nonconstruc-
tive, and gives ad(f (k)n?) algorithm with a very fast-growing parameter function com-
pared to the one we obtain in Section 8.5.

8.5 INDEPENDENTSET STRUCTURE 56

We remark that it can be shown that all fixed graphs with a vertex cover of simewell-

quasi ordered by ordinary subgraphs and have linear time order tests [FO3]. The proof of
this is substantially shorter than the Graph Minor Project and could be used to simplify
Lemma 8.4.1.

8.5 INDEPENDENT SET STRUCTURE

In this section we show how to obtain a quadratic kernellfdNTERNAL SPANNING
TREE. We first give a set of reduction rules that either produces a spanning tree with the
desired number of internal vertices or shows that the graph has a large independent set.

We will then show that this structural information is enough to prove that any irreducible
instance has size at ma®8{k?), improving the result obtained in [PS03]. Usingrawn
decompositiorwe are able to prove that any graph with a large independent set contain
redundant vertices that can be removed, reaching the desired kernel size.

Lemma 8.5.1 Any graphG has a spanning tre@ such that all the leaves df are inde-
pendent vertices ity or G has a spanning tre@” with only two leaves.

Proof. Given a spanning tre# of a graphG, we say that two leaves, v € T arein
conflictif wv € E(G). We now show that given a spanning tree witbonflicts it is
possible to obtain a spanning tree with less thaanflicts using one of the rules below:

1. If z andy are in conflict and, the parent ofc has degre& or more, then a new
spanning tre€” could be constructed using the edggein the spanning tree instead
of zz.

2. If x andy are in conflict and both their parents have degrgben letz’ be the first
vertex on a path from: to y that has degree different from 2. If there is no such
vertexz’ we know that the spanning tree is a Hamiltonian path and has only two
leaves. Otherwise we create a new spanning tree disconnecting the path toom
2’ (leavingz’) and connecting: to y, repairing the conflict betweenandy. Since
2’ is now of degree at leagtwe have not created any new conflicts.

The validity of the rules is easy to verify and it is obvious that they can be executed in
polynomial time. Lemma 8.5.1 then follows by recursively applying the rules until no
conflicts exist. O

Observe that any application of the rules on a spanning tree produces a spanning tree with
more internal vertices, thus the reduction rules above are used legstinzes.

8.5 INDEPENDENTSET STRUCTURE 57

For the remainder of the paper we assume that we obtained a spannifigvitesre the
leaves are independent and we define thedsas the internal vertices af and B as the
leaves ofl". Observe thatl is a connected set arigl an independent set.

Several corollaries follow easily from this Lemma. One of them gives an approxima-
tion for £-INTERNAL SPANNING TREE, the others relate the problem to the well-studied
INDEPENDENT SET

Corollary 8.5.1 k-INTERNAL SPANNING TREE has a 2-approximation algorithm.

Proof. Note that sinceB is an independent set it is impossible to include more than
|A| elements ofB as internals in the optimal spanning tree, as otherwise the spanning
tree would contain a loop. The maximum number of internal vertices is at 2nast

and since the spanning tree generated by the algorithm in Lemma 8.5/.4|haternal
vertices, it is a 2-approximation far-INTERNAL SPANNING TREE. O

Corollary 8.5.2 IfagraphG = (V, E) is aNo-instance for{n — k)-INDEPENDENTSET
thenG is a YES-instance fork-INTERNAL SPANNING TREE.

Proof. If a graph does not have an independent set of size greater(ithent), then
|B| < (n — k) and|A| > k, aYEs-instance ofc-INTERNAL SPANNING TREE. O

Corollary 8.5.3 If a graph G = (V, E) is a YES-instance for(n — k)-INDEPENDENT
SET thenG is a No-instance for(2k + 1)-INTERNAL SPANNING TREE.

Proof. If G has ann—k)-INDEPENDENTSET [then for each vertex i that we include
as an internal in the spanning tree we must include at least one other veitexinThus
at most2k vertices can be internal in the spanning tree and theréfasea No-instance
for (2k + 1)-INTERNAL SPANNING TREE. a

We now know that if a graph does not have (@an— k)-INDEPENDENTSET then it is a

Y Es-instance fork-INTERNAL SPANNING TREE. We will now show how we can use

this structural information to give a bound on the size of the kernel. To reduce the large
independent set we will use the crown-reduction technique seen in [CFJ03, FHRSTO04,
FO3, ACFLO04] to reduce the size of the independence set.

Definition 8.5.1 A crown decompositioi/,C, R) in a graphG = (V, E) is a parti-
tioning of the vertices of the graph into three sétsC, and R that have the following
properties:

8.5 INDEPENDENTSET STRUCTURE 58

1. H (the head)s a separator in7 such that there are no edgesGhbetween vertices
in C' and vertices inR.

2. C'=C,Uc,, (the crown)is an independent set @.

3. |Cl = |H

, and there is a perfect matching betwe@n and H.

Although being a recently introduced idea, some theory about the existence of crowns can
be found in literature.

The following theorem can be deduced from [CFJ03, page 7], and [FO3, page 8].

Theorem 8.5.1 Any graphG with an independent sét where|I| > n/2, has a crown
decompositio H, C, R), whereH C N(I) andC C I, and this crown decomposition
can be found in tim&(|V| + | E|), givenl.

In [FHRSTO04] the following is observed:

Lemma 8.5.2 If a bipartite graphG = (V U V', F) has two crown decompositions
(H,C,R) and (H',C",R') whereH C V and H' C V, thenG has a crown decom-
positon(H" = HUH'.C"=CUC' R"=RNR).

From these two results we can deduce that if the independent set is sufficiently large then
there exists a crown-decomposition whéte+# ().

Theorem 8.5.2 Any graphG with an independent sét where|I| > 2n/3, has a crown
decomposition H, C, R), whereH C N(I), C C I andC, # 0, that can be found in
timeO(|V||E|) givenl.

Proof. First observe thatC,,| < |N(I)|. By Theorem 8.5.1(3 has a crown decom-
position (H,C, R), whereH C N(I). If [C] > % then|C| > N(I) and the result
follows, otherwisg/ \ C| > n/3 and by Theorem 8.5.& \ C' has a crown decompo-
sition (H”,C", R’). By Lemma 8.5.2 these crown-decompositions can be combined to
a crown-decompositiofH”, C”, R"). This process can be repeated until the combined
crown-decompositioriFl, C, R) no longer satisfie§ \ C| > 2, thus|C| > |N(I)| and

the result follows. The algorithm in Theorem 8.5.1 is executed at mbstes, giving the
bound ofO(|V || E|). O

Using an approach similar to the one in [FHRSTO04], we create an auxiliary graph model
where a crown decomposition in the auxiliary graph infer reductions in the original graph.

8.5 INDEPENDENTSET STRUCTURE 59

Observe that vertices in the independent Betan only participate in a spanning tree
in two ways. Either they are leaves, or they are internal vertices between two or more
vertices inA.

We will define the model as the bipartite graph = (A’ U B, E;) where: A’ = AU
(A x A),ie., Aand a vertexv' for every pairv andv’ in A. The edges of7; are the
original edges® and an edge between a vertex B and a pair vertex ib has edges to
both vertices of the pai; = E'U {(vv')b | vv' € A", b € B, {vb,v'b} C E}.

We now prove the following reduction rule.

Reduction Rule 3 If G; has a crown decompositiofH, C,, U C,, R) whereH C A’
thenG has ak-internal spanning tree if and only @ \ C,, has ak-internal spanning tree.

Proof. One direction is trivial, ifG \ C, has ak-internal spanning tree the® obviously
has one, as we cannot get fewer internals by adding vertices to the graph.

We prove the other direction by construction. I$tbe ak-internal spanning tree i&.
S*—C'is aforestF'. We will show that we can construckainternal spanning tree fromh
by using vertices frond’,, to connect the components ify showing that’, is redundant.

Let @ be the components df. Observe that at mosf)| — 1 vertices fromC' connected
the components i8* and that all these vertices are internal.

Let); and(; be two arbitrary components g that were connected by a vertex C.

Let u;, andu; be the vertices irf); and (), respectively of whiche is a neighbor inS*.
Connect these vertices using the vertexip matched to the pair-vertexu;. Because

of the matching in the crown decomposition, this vertex is uniquely determined and never
used elsewhere in the construction. The number of components have decreased by one.
Repeat this process until all componentg)mre connected. Note that we addéd — 1

internal vertices, thus we used at least as many vertices to cohhastthe optimal
solution did. F’ is now a tree.

For every leafu; in F which is not a leaf inS*, append the vertex matcheddp € C,,.
As above, the vertex matched#pis uniquely determined and not used elsewhere in the
construction.

Note that the construction of theinternal spanning tree never dependsgnthusC,, is
redundant. O

Lemma 8.5.3 If G is reduced andV' (G)| > k? + 2k thenG has ak-Internal Spanning
Tree.

8.6 ANALYSIS OF THE RUNNING TIME 60

Proof. Assume in contradiction to the stated lemma tais reduced andV (G)| >
k? + 2k, but thatG has nok-Internal Spanning Tree.

By assumption A| < k, otherwise the tree produced in Lemma 8.5.1 would have
internal vertices. HenceB| = |V(G) — A| > k* + k. In G; we have that igA’| <
k(k+1)/2,i.e.,|B| > 2|A’|. Thus by Lemma 9.4.37,; has a crown with at least one
vertex inC,,, contradicting the assumption th@twas reduced.

8.6 ANALYSIS OF THE RUNNING TIME

Our algorithm is similar to that found in [PS03] and works in several stages. It first calls
a regular spanning tree algorithm and then modifies it to make the leaves independent.
Then, if the spanning tree does not contain enough internals, we know that the spanning
tree’s leaves form an independent set. We use our crown reduction rule to reduce the
independent set, after which the graph is reduced in sizZ&(t3). Finally, we employ a
brute-force spanning tree algorithm to find an optimal solution for the reduced instance.

We can use a simple breadth-first search algorithm to obtain any spanning&e&is
spanning tree can thus be obtained in tith@V'| + | E|) [CLR90]. The conflicts (i.e., the
leaves in the tree which are not independent) can be detected idtini#) and repaired
intime O(|V]).

Given a large independent set, a crown can be found in linear time. A maximal crown can
be found in timeO(|V||E|). We have then identified the redundant vertices and we can
reduce the graph to@(k?) kernel.

We now want to find: vertices in the kernel that can form the internals of a spanning tree.
gy e 2
We will in a brute force manner test every suelset, there are at mo@’;) such sets. By

Stirling’s observation thatz < n! < n" we have that(’f) is less tharkz*. Note that

this can be rewritten &&-5*!°¢* We now have to verify if thesk vertices can be used as

the internal vertices of a spanning tree. To do this we try every possible construction of a
treeT with thesek vertices, by Cayley’s formula there are no more tha&r? such trees.

This, again, can be rewritten &&+'°s*=2l°s*) Then we test whether or not each leaf in

T can be assigned at least one vertex in the remaining kernel as its leaf. This is equivalent
to testing if the leaves and the remaining kernel have a perfect bipartite matching, which
can be done in imé&(+/|V] - | E|). In this particular bipartite subset there are not more
thanO(k?) edges giving us a total @ (k*) for the matching. Thus for eadhset we can

verify if it is a valid solution in2*1°e* . k2 time.

The total running time of the algorithm @(225 6% k2 + |V || E)).

8.7 ANOTHER PATH(WIDTH) TO SUCCESS 61

8.7 ANOTHER PATH (WIDTH) TO SUCCESS

If we cannot use crown-decompositions to reduce the graph efficiently, we can sometimes
make use of the fact that the independent structure allows an easy path-decomposition as
well. The notion of pathwidth was introduced by Robertson and Seymour [RS83].

Definition 8.7.1 A path decompositioaf a graphG = (V, E) is a sequenceXy, Xs, ..., X,)
of subsets oV such that:

1. UlSiST X, =V.
2. Forallvw € E, there is ani such thatl < < randv,w € X;.

3. Forall 1 < iy < i < i, <r, we haveX,, N X;, C Xi,.

Thewidth of a path decompositiofiX;, X, ..., X,) ismax; <;<, | X;| — 1. Thepathwidth
of a graph is the minimum width over its path decompositions.

If we have an independent sebf sizen — g(k) we can create a path decomposition with
width g(k) in the following manner. Lef;, I, ... be an arbitrary ordering df. The path
decomposition is then the sequence of subBets: T U [;. Itis easy to convince oneself
that this construction satisfies the requirements of a path decomposition.

To give an example where this is useful, consider the parametric déaDafMINATING
SET, namelyk-NONBLOCKER. (DoesG = (V, E) have a subsét” of sizek, such that
every element of/’ has at least one neighborin\ V' ?).

Lemma 8.7.1 k-NONBLOCKER can be solved in timé& (3 + n®W),

To show this observation, we first computmaximalindependent set |. The complement

of I, I = V'\ I is a nonblocking set. Thus eithgl < k or G has a-NONBLOCKER. We

can then compute a path decomposition with pathwidiNow, using the algorithm intro-
duced by Telle and Proskurowski [PT93] and further improved by Alber and Niedermeier
[ANO2] we can compute a minimum dominating set (and thus maximal nonblocking set)
intime O(3*+n%). The above algorithm actually solves the problem for the more general
treewidth decomposition in timé(4* + n®), but since this is a path decomposition we
can avoid the costly functions combining subtrees of the decompositions. This result im-
proves on the running time of McCartin’s algorithm [McCO03], which obtaidy &* +n®)
algorithm by using a very different technique.

8.8 CONCLUSIONS ANDFURTHER APPLICATIONS TOINDEPENDENTSET
STRUCTURES 62

8.8 CONCLUSIONS AND FURTHER APPLICATIONS TO
| NDEPENDENT SET STRUCTURES

In this paper we have given a fixed parameter algorithmifdNTERNAL SPANNING
TREE. The algorithm runs in timé(225%leek . ;2 V|| E]), which is the best currently
known for this problem. A natural question is whether or not the there#*a algorithm
for the problem.

We also give a 2-approximation algorithm for the problem. This could be further im-
proved, and the same idea could be used to find more approximation algorithms for other
related problems. We would like to note that a limited number of experiments suggest
that this algorithm is a very good heuristic.

We have shown the remarkable structural bindings betwe&RTERNAL SPANNING
TREEand(n — k)-INDEPENDENT SET in Corollaries 8.5.2 and 8.5.3. We believe that
similar structural bindings exist betwe&DEPENDENTSET/V ERTEX COVER (k-Vertex

Cover is of course equivalent fa — %)-INDEPENDENTSET) and other fixed-parameter
tractable problems. We are confident that this inherent structure can be used to design po-
tent algorithms for these problems, especially when combined with constructive polyno-
mial time algorithms that produce either an independent set or a solution for the problem
in question. Crown decompositions seem to be a natural companion as it has shown it-
self useful in reducing independent sets in a range of problem [FHRSTO04, PS04, MPS04,
DFRS04, CFJ04].

We also show how the independent set structure allows an easy path decomposition and
show that this is useful fok-NONBLOCKER where we improve upon the existing FPT-
algorithms.

If large independent sets are the targets, but no such polyneithel/oralgorithm can

be found, we may still use the quite practical FFERTEX CoVvER-algorithm to find

the vertex cover structure. The current state of the art algorithnV#RTEX COVER

runs in timeO(1.286* + n) [CKJO1] and has been proven useful in implementations by
groups at Carleton University in Ottawa and the University of Tennessee in Knoxville for
exact solutions for values efandk up to 2,500 [LO3]. We believe that exploiting vertex
cover/independent set structure may be a powerful tool for designing algorithms for other
fixed parameter tractable problems for which structural bindingsSMWItHEPENDENTSET

exist. For example, we suspect that the parameterized versidhafL EAF SPANNING
TREE, MINIMUM INDEPENDENT DOMINATING SET and MINIMUM PERFECT CODE

are very likely to fall into this class of problems.

BIBLIOGRAPHY

[AO3] F. Abu-Khzam. Private communication.

[ACFLO4] F. Abu-Khzam, R. Collins, M. Fellows and M. Langston. Kernelization Al-
gorithms for the Vertex Cover Problem: Theory and ExperimeRteceedings
ALENEX 2004 Springer-Verlaglecture Notes in Computer Scien@904), to ap-
pear.

[ANO2] J. Alber and R. Niedermeier. Improved tree decomposition based algorithms for
domination-like problemsProceedings of the 5th Latin American Theoretical IN-
formatics (LATIN 2002)number 2286 in Lecture Notes in Computer Science, pages
613-627, Springer (2002).

[B98] S. Busslisted as private communication in the book Parameterized Complexity

[CFJO3] B. Chor, M. Fellows, D. Juedes. Private communication concerning manuscript
in preparation.

[CFJ04] B. Chor, M. Fellows, D. Juedes. Linear Kernels in Linear Time, or How to Save
k Colors inO(n?) steps. To appear in proceedings 30th Workshop on Graph Theo-
retic Concepts in Computer Science (WG '04), Springer Lecture Notes in Computer
Science, (2004).

[CCDF97] Liming Cai, J. Chen, R. Downey and M. Fellows. The parameterized com-
plexity of short computation and factorizatiofcchive for Mathematical Logi86
(1997), 321-338.

[CKJO1] J. Chen, I. Kanj, and W. Jia. Vertex cover: Further Observations and Further
ImprovementsJournal of Algorithms/olume 41, 280-301 (2001).

[CLR90] T.H.Cormen, C.E.Leierson, R.L.RiveBtfroduction to AlgorithmsMIT Press.
[DF98] R. Downey and M. Fellowsarameterized Complexifypringer-Verlag (1998).

[DFRS04] F. Dehne, M. Fellows, F. Rosamond, P.Shaw. Greedy Localization, Iterative
Compression and Modeled Crown Reductions: New FPT Techniques and Improved
Algorithms for Max Set Splitting and Vertex Cové@o Appear at IWPECO08&pringer
Lecture Notes in Computer Science, (2004).

BIBLIOGRAPHY 64

[DFS99] R. Downey, M. Fellows and U. Stege. Parameterized complexity: a framework
for systematically confronting computational intractabil@®pntemporary Trends in
Discrete MathematicgR. Graham, J. Kratochvil, J. Nesetril and F. Roberts, eds.),
AMS-DIMACS Series in Discrete Mathematics and Theoretical Computer Science
49 (1999), 49-99.

[FO3] M.Fellows. Blow-ups, Win/Wins and Crown Rules: Some New DirectiortH.
Proceedings WG 2003&pringer Verlag LNCS 2880, pages 1-12, 2003.

[FHRSTO04] M.Fellows, P.Heggernes, F.Rosamond, C. Sloper, J.A.Telle, Finding k dis-
joint triangles in an arbitrary graph. To appear in proceedB@h Workshop on
Graph Theoretic Concepts in Computer Science (WG, '8gyinger Lecture Notes
in Computer Science, (2004).

[FMRSO01] M. Fellows, C. McCartin. F. Rosamond and U. Stege. Spanning Trees with
Few and Many LeavedJo appear

[GMM94] G. Galbiati, F. Maffioli, and A. Morzenti. A Short Note on the Approximabil-
ity of the Maximum Leaves Spanning Tree Problénfiormation Processing Letters
52 (1994), 45-49.

[GMM97] G. Galbiati, A. Morzenti and F. Maffioli. On the Approximability of some
Maximum Spanning Tree Problem$heoretical Computer Scienc81 (1997),
107-118.

[GJ79] M. Garey and D. Johnso@omputers and Intractability: A Guide to the Theory
of NP-Completenedd/H. Freeman, San Francisco, 1979.

[KROO] Subhash Khot and Venkatesh Ram&arameterized Complexity of Finding
Hereditary Properties Proceedings of COCOON. Theoretical Computer Science
(COCOON 2000 special issue)

[LO3] M. Langston. Private communication.

[LR98] H.-I. Lu and R. Ravi. Approximating Maximum Leaf Spanning Trees in Almost
Linear Time.Journal of Algorithm<9 (1998), 132-141.

[MPSO04] L. Mathieson, E. Prieto, P. Shaw. Packing Edge Disjoint Triangles: A Parame-
terized View.To Appear IWPEC 04Springer Lecture Notes in Computer Science,
(2004).

[McCO03] Catherine McCartin. Ph.D. dissertation in Computer Science, Victoria Univer-
sity, Wellington, New Zealand, (2003).

[NR99b] R. Niedermeier and P. Rossmanith. Upper Bounds for Vertex Cover Further Im-
proved. In C. Meinel and S. Tison, editoRroceedings of the 16th Symposium on
Theoretical Aspects of Computer Scigneember 1563 in Lecture Notes in Com-
puter Science, Springer-Verlag (1999), 561-570.

BIBLIOGRAPHY 65

[PS03] E. Prieto, C. Sloper. Either/Or: Using Vertex Cover Structure in designing FPT-
algorithms - the case of k-Internal Spanning Treepceedings of WADS 2003
LNCS vol 2748, pp 465-483.

[PS04] E. Prieto, C. Sloper. Looking at the Stais Appear in proceedings of IWPEC04
Springer Lecture Notes in Computer Science, (2004).

[PT93] J.A.Telle and A.Proskurowski. Practical algorithms on paktimees with an ap-
plication to domination-like problem&roceedings WADS’93 - Third Workshop on
Algorithms and Data Structure§pringer Verlag, Lecture Notes in Computer Sci-
ence vol.709 (1993) 610-621.

[RS83] N. Robertson and P. D. Seymour, Graph minors. I. Excluding a fareSgmb.
Theory Series B35 (1983), pp. 39-61.

[RS99] N. Robertson, PD. Seymor. Graph Minors. XX Wagner’s conjecliarappear

9

PACKING STARS

Looking at the Stars'
Elena Prieto Christian Sloper
Abstract

The problem of packing vertex-disjoint copies of a grapH into another
graphG is NP-complete ifH has more than two vertices in some connected
component. In the framework of parameterized complexity we analyze a
particular family of instances of this problem, namely the packing of stars.
We give a quadratic kernel for packirigcopies of H = K; ;. When we
consider the special case o= 2, i.e., H being a star with two leaves, we
give a linear kernel and an algorithm running in tié25-30tk k25 4 p3),

9.1 INTRODUCTION

The problem ofMAXIMUM H-MATCHING, also calledMAXIMUM H-PACKING, is of
practical interest in the areas of scheduling [BM02], wireless sensor tracking [BKO1],
wiring-board design and code optimization [HK78] and many others.

The problem is defined as follows: Lét = (V, E) be a graph and! = (Vy, Ey) be

a fixed graph with at least three vertices in some connected componerfi.-gacking

for GG is a collection of disjoint subgraphs 6f, each isomorphic td7. In an optimiza-

tion sense, the problem that we want to solve would be to find the maximum number of
vertex disjoint copies off in G. The problem is NP-complete [HK78] when the graph

H has at least three vertices in some connected component. Note that in the case where

1This paper first appeared at the conference 'First International Workshop on Parameterized And Exact
Computation’ in September 2004. It was later invited and accepted to a special use of the Journal of
Theoretical Computer Science where it is due to appear [PS04].

9.1 INTRODUCTION 67

H is the complete graph on two node$;packing is the very well studied (and polyno-

mial time solvable) problenMAXIMUM MATCHING. MAXIMUM H-PACKING has been
thoroughly studied in terms of approximation. The problem has been proved to be MAX-
SNP-complete [K94] and approximable withi; | /2 + ¢ for anye > 0 [HS89]. Several
restrictions have also been considered (planar graphs, unit disc graphs etc.) in terms of the
complexity of their approximation algorithms. For a review of these we refer the reader
to [AC99].

A recent result by [FHRSTO04] gives a general algorithm for packing an arbitrary gfaph
into G. Their result gives @°(Iklogk+klH|log |H) glgorithm for the general case, where

k is the number of copies aoff. It should also be noted that it is possible to achieve a
single exponential running time for this problem by adapting a result by Alon, Yuster, and
Zwick in [AYZ95].

Theorem 9.1.1 (Alon, Yuster, Zwick) Le$ be a directed or undirected graph dnver-
tices with treewidtht. LetG = (V, E) be a (directed or undirected) graph. A subgraph
of G isomorphic toS, if one exists, can be found 2Y® |V |**+! expected time and in
20|/ |+ 1 1og |V | worst case time.

It is easy to see how to apply this problem to packing a grdph.et the graphS in the
above theorem bg copies of a grapl/. SinceS has treewidth at most#/|, we have

a 20| V/|IH1+1 algorithm for the problem. Unfortunately the running time obtained by
Alon et al. [AYZ95] hides a considerable constant in the exponent making this algorithm
infeasible in practical terms.

We discuss the parameterized complexity ofMhexiIMuM H-PACKING problem for the
case when belongs to the restricted family of graplis= Kj ,, a star withs leaves.
More formally:

K s-PACKING
INSTANCE: GraphG = (V| F), a positive integek
QUESTION: Are there at least vertex disjoint instances df; ; in G?

This problem has already been studied within the framework of classical complexity the-
ory [HK86]. In their paper, Hell and Kirkpatrick studied the complexity of packing com-
plete bipartite graphs into general graphs. We include a brief introduction to this topic in
Section 9.2. In Section 9.3 we show that the general problem is tractable if parameterized,
and that we can obtain a quadratic kernel. In Section 9.4 we show that the special case of
packingk »’s has a linear kernel, and in Section 9.5 we give a quick algorithm for both
the general and special case. In contrast [FHRSTO04] obtains ordf/at) algorithm for
packing a graph with three vertices, namély.

9.2 INTRODUCTION TOPARAMETERIZED ALGORITHMS 68

9.2 INTRODUCTIONTO PARAMETERIZED ALGORITHMS

A problem with main inputr and parametek is said to be fixed parameter tractable if
there is an algorithm with running tim@(f (k)|z|°™), wheref is an arbitrary function.

In [FO3] Mike Fellows presents a two-sided view of research on parameterized problems
which he dub ‘the two races’. First, that it is interesting to obtain better running time for
fixed parameter tractable problems, but also that is of interest to improve the size of the
kerneleven if this does not immediately lead to an improvement in running time.

Definition 9.2.1 A parameterized problethis kernelizable if there is a parametric trans-
formation ofL to itself that satisfies:

1. The running time of the transformation @f, k) into («/, k'), where|z| = n, is
bounded by a polynomialn, k),
2. k' <k,and

3. |2'| < h(E"), whereh is an arbitrary function.

Obviously the two views are not independent, as improvements in the latter could give
improvements in the first, but it is also important to note the following result by [DFS99],
which gives a stronger link between the two races:

Lemma 9.2.1 A parameterized problem is in FPT if and only if it is kernelizable.

The two races are worth playing as they may lead to substantial improvements on the qual-
ity of the algorithms we design and also to new strategies for practical implementations
of these algorithms.

9.2.1 PRELIMINARIES

We assume simple, undirected, connected gra&phs (V, E') where|V| = n. The set
of neighbors of a vertex is denotedV(v), and the neighbors of a sétC V, N(S) =
Uwes N(v)\ S. If Jis a collection of graphs, thein(.J) is the set of vertices in the graphs
inJ.

The induced subgraph ¢f C V' is denoted~[S].

We use the simplefi \ v to denoteG[V \ {v}] for a vertexv andG \ e to denoteG =
(V,E \ {e}) for an edgee. Likewise G \ V' denotesG[V \ V'] andG \ E’ denotes
G = (V,E\ E') whereV"’ is a set of vertices anf’ is a set of edges.

We say thatk, ; is ans-star or a star of size. P, denotes a path of+ 1 vertices and
edges.

9.3 RRAMETERIZED COMPLEXITY OF STAR PACKING 69

9.3 PARAMETERIZED COMPLEXITY OF STAR PACKING

In this section we prove a series of polynomial time preprocessing rules (reduction rules)
and eventually show that we can obtain a kerneD¢k?) vertices for the parameterized
version ofK; s-packing.

We use the following natural parameterization/of ;-PACKING:

k-K s-PACKING

INSTANCE: GraphG = (V, E)

PARAMETER: k

QUESTION: Are therek vertex disjoint instances dof; ; in G?

In order to remove vertices of high degree, and remove useless edges between vertices of
low degree, we introduce the following reduction rules.

Lemma 9.3.1 Let G be a graph with a vertex where deuv) > k(s + 1) — 1. ThenG
has ak-K ;-packing if and only il7 \ v has a(k — 1)-K ;-packing.

Proof. If G has ak-K; ,-packing, thenG’ obviously has gk — 1)-K; ,, asv cannot
participate in two different stars.

If G' has a(k — 1)-K s-packing, we can createkak; ,-packing by adding. Thek — 1
stars already packed cannot use more than 1)(k — 1) of v's neighbors, leaving
vertices forv to form a new star. O

Lemma 9.3.2 Let G be a graph with neighboring vertices and v where degu) <
deqv) < s. ThenG has ak-packing if and only ifG' = (V, E(G) \ uwv) contains a
k-packing.

Proof. If G has ak-K; s-packing, then’ has ak-K; s-packing, asw can never partic-
ipate in ak; ;. The other direction is trivial, i7" has ak-K, ;-packing, then has a
k-K; s-packing as well. O

In order to give a quadratic kernel for the fixed parameter version 8fAR PACKING

we will use a new technique first seen in [FM+00]. This technique borrows ideas from
extremal graph theory. We will show that any graph where Lemmas 9.3.1 and 9.3.2 do not
apply is either ‘small’ (having less thayik) vertices) or has &- K ;-PACKING. We do

this by studying a 'border’-line grap&: A graph with ak- K ;-packing, but ndk + 1)-

K, s-packing. This allows us to make claims about the structure and finally to prove

a bound onV(G)|.

9.3 RRAMETERIZED COMPLEXITY OF STAR PACKING 70

A graph isreducedwhen Lemmas 9.3.1 and 9.3.2 can not be applied. In this sense both
these lemmas will be commonly referred ta@guction rules As an additional reduction
rule, we delete vertices of degree 0, as they never participate in any star.

Lemma 9.3.3 (Boundary Lemma) If a graph instan@@, k) is reduced and has /i K ;-
packing, but nqk + 1)-K, ,-packing therV (G)| < k(s® + ks* + ks + 1).

Proof. Assume there exists a counterexam@lesuch that is reduced and containsta
K, s-packinglV, but no(k+1)- K ,-packing and has siZ& (G)| > k(s®+ks*+ks+1).
Let@ =V \ W. LetQ; be the vertices i) that have degregin the subgraph induced

by Q. We will now prove a series of claims that bound the number of verticéks in

ClamlVi>s Q=10

Claim 2 A K, ,-star S € W has at most? + k(s + 1) — 1 neighbors inQ.
The following claim follows from Claim 2:

Claim 3 W has at most:(s* + k(s + 1) — 1) neighbors inQ.

Let R =V \ (W UN(W)), i.e., the set of vertices @ which do not have
neighbors int’.

Claim4 Ris anindependent set .

Claim 4 ensures us that all vertices fhhave an edge to one or more vertexin By
Claim 1, we know that each of the verticesgh\ R have at most — 1 such neighbors
and thus by Claim 3, the total size &fis at most(s — 1) - |Q \ R|.

Intotal, G has sizeV (G)| = [W|+|Q| < k(s+1)+s-k-(s*+k(s+1)—1) = k(s3+ks*+
ks + 1), contradicting the assumption that the graph has morekh&nt- ks* + ks + 1)
vertices. This concludes the proof of the boundary lemma. O

From this boundary lemma follows that any reduced instance that is still ‘big’ ias a

K, s-packing. Since the boundary given by Lemma 9.3.3 does not depend on the main
input, but only on the parameter and the problem in question, we can say that the reduced
instance is a ‘problem-kernel’ and that the problem is in FPT.

Lemma 9.3.4 (Kernelization Lemma) If a grap&' is reduced and had/ (G)| > k(s3 +
ks* + ks + 1), then it contains &- K s-packing.

9.4 THE SPECIAL CASE OFP5: A LINEAR KERNEL 71

Proof. Assume in contradiction to the stated theorem that there exists a Grapksize
V(G| > k(s® + ks* + ks + 1), having nok- K ,-packing.

Let £ < k be the largest’ for which GG is a YES-instance. By the Boundary Lemma
9.3.3, we know thatV (G)| < K'(s® + k's®> + kK's + 1) < k(s® + ks®> + ks + 1). This
contradicts the assumption. O

Thus for anyk-K; ,-packing we can prove a quadratic kernel. However, for the special
cases = 2, we can improve on this. This is the topic of the next section.

9.4 THE SPECIAL CASE OF P,: A LINEAR KERNEL

A 2-star can also be seen as a path with three vertices, deRatdebr this special case
we can employ a different set of reduction rules to obtain a linear kernel for pagking
into a graph.

k-P5-PACKING

INSTANCE: GraphG = (V, E)

PARAMETER: k

QUESTION: Are therek vertex disjoint instances af, in G?

To improve on the quadratic kernel obtained in the previous section, we will make use of
a series of reduction rules based on the ideas of crown decompositions [CFJO03].

Definition 9.4.1 A crown decompositioi,C, R) in a graphG = (V, E) is a parti-
tioning of the vertices of the graph into three sétsC, and R that have the following
properties:

1. H (the head)s a separator inz such that there are no edgesGhbetween vertices
belonging toC' and vertices belonging t&.

2. C =C,UC,, (the crown)is an independent set @.

3. |C,| = |H|, and there is a perfect matching betwegn and H.

There are several recent papers that use crown decompositions of graphs to obtain good
results in parameterized complexity [CFJ03, FHRSTO04, FO3, ACFL0O4, PS04]. These
papers either apply the crown directly to the problem instance ([CFJ03, ACFLO04]) or
create an auxiliary graph where they apply crown reduction techniques.

In this paper we instead modify the crown decomposition to fit our particular problem.
The first variation iglouble crown decompositiamhere each vertex il has two vertices
from C matched to it (as opposed to only one). See Figure 9.1.

9.4 THE SPECIAL CASE OFP5: A LINEAR KERNEL 72

Definition 9.4.2 A double crown decompositiof¥{, C, R) in a graphG = (V. E) is a
partitioning of the vertices of the graph into three sgtsC', and R that have the following
properties:

1. H (head)is a separator inG such that there are no edges (" between vertices
belonging toC' and vertices belonging t&.

2. C=C,UC,, U, (the crown)is an independent set (@.

3. |Cn| = |H|, |Cn,| = |H| and there is a perfect matching betwegp and H, and
a perfect matching betweer,,, and H.

Figure 9.1: Example of ‘double crown’. The dashed lines indicate how each vertéx in
is matched to two vertices ifi.

Another variation of the crown is thfat crown decompositiowhere instead of indepen-
dent vertices irC’ we haveK,’s as shown in Figure 9.2.

Definition 9.4.3 A fat crown decompositio0H, C, R) in a graphG = (V, E) is a par-
titioning of the vertices of the graph into three séisC' and R that have the following
properties:

1. H (the head)s a separator inz such that there are no edgesGhbetween vertices
belonging toC' and vertices belonging t&.

2. G[C] is a forest where each component is isomorphi&to

3. |C| > |H|, and if we contract the edges in eaéh there is a perfect matching
betweerC and H.

Using the ‘crown’, ‘double crown’ and ‘fat crown’ we can create powerful reduction rules.

Lemma 9.4.1 AgraphG = (V, E) that admits a ‘double crown’-decompositioH, C, R)
has ak-P,-packing if and only ilG \ (H U C) has a(k — |H|)-P»-packing.

9.4 THE SPECIAL CASE OFP5: A LINEAR KERNEL 73

Figure 9.2: Example of ‘fat crown’. As in the case of the ‘double crown’, the dashed lines
indicate the matching betweéi andC,, and the dashed ellipses show to whigh the
vertex inH is matched.

Proof.

(<) If G\ (HUC) has a(k — |H|)-P>-packing then it is obvious that has ak-P;-
packing asH U C' has a H|-P,-packing ¢ € H andv’s matched vertices fror,,, and
Cp, form ap).

(=:) We want to prove that i€z has ak-P,-packing therZ \ (H U C') has a(k — |H|)-
P,-packing. Assume in contradiction that there exists a gr@phhat has a crown-
decomposition H', C’, R’) that contradicts the lemma. This implies that U C’ par-
ticipates inz > |H’| different P,’s. SinceH’ is a cutset, and’ is an independent set in
the graph, every?, in G that has vertices i/’ U C’ must contain at least one vertex of
H'. Thus we can have at madi’| different P,’s which is a contradiction. O

Lemma 9.4.2 A graphG = (V, E) that admits a ‘fat crown’-decompositiofH, C, R)
has ak-P»-packing if and only itz \ (H U C) has a(k — |H|)-P»-packing.

The proof of Lemma 9.4.2 is analog to that of Lemma 9.4.1, thus omitted.

To apply crown-decompositions we need to know when we can expect to find one. A
very useful result in this regard can be deducted from [CFJ03, page 7], and [FO3, page
8]. Fortunately, the results also apply to the variations of crown decomposition described
here.

Lemma 9.4.3 Any graphG with an independent sét where|/| > |N(I)|, has a crown
decompositioiH, C, R), whereH C N (I) that can be found ilO(|V |+ |E|) time given
1.

Corollary 9.4.1 Any graphG with a collection/ of independenk’s’s where| N (V' (J))| <
|.J|, has a fat crown decompositiait/, C, R), whereH C N(V(J)), that can be found
in linear time, given/.

9.4 THE SPECIAL CASE OFP5: A LINEAR KERNEL 74

Proof. This follows from the previous Lemma. If we replace e&Ghwith a single vertex,
then by Lemma 9.4.3 this graph admits a crown-decomposition. We can reintroduce the
K,'s to obtain a fat crown. O

Lemma 9.4.4 Any graphG with an independent séf where|I| > 2| N ()|, has a double
crown decompositiofH, C, R), whereH C N (I), that can be found in linear time given
I.

Proof. Let G be a graph with an independent set_ V(G) such tha|N(I)| < |1].
Create an identical grapfi’, but for every vertexr € N (/) add a copy/, such that
N(v) = N(v'). By Lemma 9.4.3G’ has a crown-decompositioif{, C, R) such that

H C N (I). We now claim that we can use this crown to construct a ‘double crown’
(H',C',R)inG.

First observe that € H if and only if v’ € H. Assume in contradiction thatc H but
v' ¢ H. The vertexo must be matched to some vertexn C. SinceN(v) = N(v'), we
have that’ cannot be inC' as it would contradict the fact that is an independent set.
Also v’ cannot be ik, as that would contradict thé&f is a cut-set. Thus’ must be inH,
contradicting the assumption.

With this observation, the result follows easily @sconsists of pairs of vertices; a vertex
and its copy. Each pairand’ in H is matched to two vertices, andu,. In G, letv be

in H' and let it be matched to both andu,. Do this for every pair ire. It is easy to see
that this forms a double crown @. O

We will now describe a polynomial time preprocessing algorithm that reduces the graph
to a kernel of size at modtk. The process below either reduces the graph or produces
a packing of the appropriate size, thus we can reach a kernel by repeating the following
three steps:

Step 1. Compute an arbitrary maximal P,-packing
W. Let Q=V\W.

Step 2. Let X be the collection of components
in G[Q] isomorphic to Ky, If |X]|>|N(X)|
in G then reduce by Lemma 9.4.2.

Step 3. Let [be the isolated vertices in G[Q].
If |/ > 2|N(I)] in @G, then reduce by
Lemma 9.4.1.

Lemma 9.4.51If |V(G)| > 15k then the preprocessing algorithm will either find:aP,-
packing or it will reduceG.

9.5 RUNNING TIME 75

Proof. Assume in contradiction to the stated lemma thé&tG)| > 15k, but that the
algorithm produces neitherkaP,-packing nor a reduction df.

By the assumption the maximal packifg is of size|lW| < 3k. Let@Q =V \ W. LetQ;
be the vertices i) that have degregin the graph induced b§.

Clam5 Vi >2,Q; =10

Proof of Claim 5.This is clear as otherwisé” could not be maxi-
mal. O

Claim 6 |Q:| < 6k

Proof of Claim 6. Assume in contradiction thaf),| > 6k. This
implies that the number df’,s X in @ is greater thaik, but then

| X| > |W]|. By Corollary 9.4.1G has a ‘fat crown’ and should
have been reduced in step 2 of the algorithm, contradicting that no
reduction took place. O

Claim 7 |Qo| < 6k

Proof of Claim 7. Assume in contradiction tha€),| > 6k, but
then|Q| is more thar2|1¥| and by Lemma 9.4.4 has a ‘double
crown’ and by Lemma 9.4.1 should have been reduced in step 3 of
the algorithm, contradicting that no reduction took place. O

Thus the total siz¢l/ (G)|] is |W |+ |Qo| + |Q1] + |Q2| + - - - < 3k + 6k + 6k + 0 = 15k.
This contradicts the assumption theYG)| > 15k. O

Corollary 9.4.2 Any instanc€G, k) of P,-packing can be reduced to a problem kernel
of sizeO (k).

Proof. This follows from the Lemma, as we can run the preprocessing algorithm until it
fails to reduces. By Lemma 9.4.5, the size is then at mosk. O

9.5 RUNNING TIME

For computing the kernel, we will run the preprocessing algorithm) times. Since

a maximalk-packing of P,’s can be computed i®(kn) time, the most time consum-
ing part is theO(|V| 4 | E|) time needed to compute a crown decomposition. Thus the
kernelization process can be completedif?) time.

9.6 CONCLUSIONS ANDFURTHER RESEARCH 76

We will apply a straightforward brute-force algorithm on the kernels to find the optimal
solution. In the case oP,-packing, we will select the center-vertices of tRgs in a
brute force manner. There a@’“) ways to do this. By Stirling’s formula this expression

is bounded by2°301* With k center vertices already selected, the problem reduces to a
problem on bipartite graphs, where the question is if the vertices on the left hand side
each can have two neighbors assigned to it. This can easily be transforiectmum
BIPARTITE MATCHING by making two copies of each vertex on the left hand sMex -

IMUM BIPARTITE MATCHING can be solved in timé&(/|V[| E|) [HK73]. We now have

15k + k vertices, and thu®(k?) edges. We can solve each of these in tithé?"), giv-

ing a running time of(25-3°1k£25) for the kernel. In total we can decide tlig-packing
problem in timeO 25301k 25 4 n3),

Applying the same technique for thestars we will achieveD(20*1gk) EO1)pO0))
which is asymptotically worse due to the quadratic kernel.

9.6 CONCLUSIONS AND FURTHER RESEARCH

Packing vertex-disjoint copies of a graphinto another grapls’ is NP-complete as long
as H has more than two vertices [HK78]. We have analyzed within the framework of pa-
rameterized complexity a specific instance of this problem, the packing of vertex-disjoint
stars withs leaves. We have proved that packifg.’s in a graphG, and equivalently
k-P,-PACKING, has a linear kernel.

Our algorithm fork-P,-PACKING runs in timeQ(2539%k25 4 n3). This running time
arises from reducing the problem to a kernel of sizé. We believe that this kernel

can be further improved and thus the running time substantially decreased. However, it is
already much better thax?(|/7Ikleg k+kH[log [H]) 'the running time of the general algorithm

in [FHRSTO4].

We have also proved thatStar Packing K, ,-Packing) is in general fixed-parameter
tractable with a quadratic kernel size. We also gave an algorithm for the general case with
running time©*(2°*1°sk)) ' put this is not an improvement over [FHRST04] or [AYZ95].

There are several related problems that could be considered in light of the techniques used
in Section 9.3. The most obvious one is the following:

k-K, s~-PACKING

INSTANCE GraphG = (V. E)

PARAMETER: k

QUESTION: Are therek edge-disjoint instances @f; ; in G?

This problem is fixed-parameter tractable wheis 2 or 3 using Robertson and Sey-
mour’s Graph Minor Theorem [RS99]: It can be easily proved thaiitsinstances are

9.6 CONCLUSIONS ANDFURTHER RESEARCH 77

closed under minors. The issue here is that this method is non-constructive and carries a
fast growing functionf (k). Possibly, applying similar arguments as those in Section 9.4
would lead to a much better running time.

Acknowledgements. We would like to thank Mike Fellows for all the inspiring
conversations leading to the completion of this paper.

[ACFLO4]

[AC99]

[AYZ95]

[BMO2]

[BKO1]

[CFJ03]

[DFS99]

[FO3]

BIBLIOGRAPHY

F. Abu-Khzam, R. Collins, M. Fellows and M. Langston. Kernelization Al-
gorithms for the Vertex Cover Problem: Theory and Experimd?risceed-
ings ALENEX 2004Springer-VerlaglLecture Notes in Computer Science
(2004), to appear.

G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela,
M. Protasi. Complexity and Approximatiddpringer Verlag1999).

N. Alon, R. Yuster, U. Zwick. Color-CodingJournal of the ACMVolume
42(4), pages 844-856 (1995).

R. Bar-Yehuda, M. Halldérsson, J. Naor, H. Shachnai, I. Shapira. Schedul-
ing Split Intervals Proceedings of the Thirteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithmpages 732-741 (2002).

R. Bejar, B. Krishnamachari, C. Gomes, and B. Selman. Distributed con-
straint satisfaction in a wireless sensor tracking sysiéarkshop on Dis-
tributed Constraint Reasoning, International Joint Conference on Atrtificial
Intelligence 2001

B. Chor, M. Fellows, D. Juedes. An Efficient FPT Algorithm for Saving
colors.Manuscript(2003).

R. Downey, M. Fellows, U. Stege. Parameterized Complexity: A Frame-
work for Systematically Confronting Computational Intractabili§yMS-
DIMACS Series in Discrete Mathematics and Theoretical Computer Sci-
ence Volume 49, pages 49-99 (1999).

M. Fellows. Blow-Ups, Win/Win’s, and Crown Rules: Some new Direc-
tions in FPT.Proceedings 29th Workshop on Graph Theoretic Concepts in
Computer Scienc&NCS 2880(2003), pages 1-12.

[FHRSTO04] M.Fellows, P.Heggernes, F.Rosamond, C. Sloper, J.A.Telle, Exact algo-

[FM+00]

rithms for finding k disjoint triangles in an arbitrary grapRroceedings
30th Workshop on Graph Theoretic Concepts in Computer Sci@zl)
LNCS 3353, pages 235-244

M.R. Fellows, C. McCartin, F. Rosamond, and U.Stege. Coordinatized Ker-
nels and Catalytic Reductions: An Improved FPT Algorithm for Max Leaf

BIBLIOGRAPHY 79

[HK73]

[HK78]

[HK86]

[HS89]

[K94]

[PS04]

[RS99]

Spanning Tree and Other Problenksundations of Software Technology
and Theoretical Computer SciendeNCS 1974 (2000), page 240.

J. Hopcroft and R. Karp. Am°/? Algorithm for Maximum Matchings in
Bipartite GraphsSIAM Journal on Computin@ pages 225-231 (1973).

P. Hell and D. Kirkpatrick. On the complexity of a generalized matching
problem.Proceedings of 10th ACM Symposium on theory of computing
pages 309-318 (1978).

P. Hell and D. Kirkpatrick. Packings by complete bipartite gragbie\M
Journal of Algebraic Discrete Methodsumber 7, pages 199-209 (1986).

C. Hurkens and A. Schrijver. On the size of systems of sets éwényhich
have an SDR, with application to worst case ratio of Heuristics for packing
problems.SIAM Journal of Discrete Mathematicsumber 2, pages 68—72
(1989).

V. Kann. Maximum bounded H-matching is MAX-SNP-compldtdorma-
tion Processing Lettersiumber 49, pages 309-318 (1994).

E.Prieto, C. Sloper. Creating Crown Structure — The case of Max Internal
Spanning TreeSubmitted

N. Robertson, PD. Seymousraph Minors XX. Wagner’s conjectyréo
appear.

10

PACKING TRIANGLES

Finding & disjoint triangles in an arbitrary graph *

Mike Fellows Pinar Heggernes Frances Rosamond
Christian Sloper Jan Arne Telle

Abstract

We consider theNP-complete problem of deciding whether an input graph
onn vertices hag: vertex-disjoint copies of a fixed graphh. For H = K3

(the triangle) we give a (22 lee k+1.86%,2) glgorithm, and for generdl an
O(2kIH logk-+2k|H|log | H| | H1) glgorithm. We introduce a preprocessing (ker-
nelization) technique based on crown decompositions of an auxiliary graph.
For H = K3 this leads to a preprocessing algorithm that reduces an arbitrary
input graph of the problem to a graph 6X{%?) vertices in polynomial time.

10.1 INTRODUCTION

For a fixed graph{ and an input graphy, the H-packing problem asks for the maximum
number of vertex-disjoint copies df in G. The K,-packing (edge packing) problem,
which is equivalent to maximum matching, played a central role in the history of classical
computational complexity. The first step towards the dichotomy of 'good’ (polynomial-
time) versus 'presumably-not-good’ (NP-hard) was made in a paper on maximum match-
ing from 1965 [E65], which gave a polynomial time algorithm for that problem. On the
other hand, thé(s-packing (triangle packing) problem, which is our main concern in this
paper, iNP-hard [HK78].

Recently, there has been a growing interest in the area of exact exponential-time algo-
rithms for NP-hard problems. When measuring time in the classical way, simply by the

1This paper appeared at the conference '30th International Workshop of Graph-Theoretic Concepts in
Computer Science’ and was published in the proceedings [FHRST04].

10.1 INTRODUCTION 81

size of the input instance, the area of exact algorithmd\figthard problems lacks the
classical dichotomy of goodH) versus presumably-not-gootiP-hard) [W03]. How-

ever, if in the area of exact algorithms fdP-hard problems we instead measure time in
the parameterized way, then we retain the classical dichotomy of ¢g#d0-(Fixed Pa-
rameter Tractable) versus presumably-not-gdéd1(-hard) [DF99]. It therefore seems
that the parameterized viewpoint gives a richer complexity framework. In fact, a formal
argument for this follows from the realization that the non-parameterized viewpoint, mea-
suring time by input size, is simply a special case of the parameterized viewpoint with the
parameter chosen to be the input size. Parameterized thus, any problem is trkially
and the race for the beBPT algorithm is precisely the same as the race for the best non-
parameterized exact algorithm. Note that for any optimization or decision problem, there
are many interesting possibilities for choice of parameter, that can be guided by both
practical and theoretical considerations, see for example [FO3] for a discussion of five
different parameterizations of a single problem. In our opinion, the relevant discussion
for the field of exact algorithms fdP-hard problems is therefore not “parameterized or
non-parameterized?” but rather “which parameter?”

In this paper our focus is on parameterized algorithms for deciding whether a@ragdh
k disjoint copies ofi(3;, with the integelk being our parameter. On inp(¥, k), whereG
is a graph om vertices, arFPT algorithm is an algorithm with runtim@(n“ f (k)), for a
constanty and an unrestricted functiof{ k). We want, of course, both and the growth
rate of f(k) to be as small as possible.

A practical spinoff from the field of parameterized algorithmsNd#*-hard problems has
been a theoretical focus on the algorithmic technique of preprocessing, well-known from
the heuristic algorithms community. In fact, the parameterized problems h&#iig
algorithms arepreciselythe parameterized problems where preprocessing can in polyno-
mial time reduce a problem instan@@, k) to a kernelj.e., a decision-equivalent problem
instancg G', k') where the size of’ is bounded by a function df (only), and where also

k' < k [DFS97]. One direction of this fact is trivial, since any subsequent brute-force
algorithm on(G’, k') would give an overalFPT algorithm. In the other direction, as-
sume we have aRPT algorithm with runtimeO(n® f(k)) and consider an inpu@G, k)

onn vertices. Ifn > f(k) then the runtime of th&PT algorithm on this instance is in

fact polynomial and can be seen as a reduction to the trivial case. On the other hand, if
n < f(k) then the instancé’, k) already satisfies the kernel requirements. Note that in
this case the kernel siz&k) is exponential irk, and a smaller kernel is usually achiev-
able. For this reason, in the field of parameterized algorithm&l®hard problems, it

can be argued that there are two distinct races [FO3]:

 Find the fastesEPT algorithm for the problem.

 Find the smallest polynomial-time computable kernelization for the problem.

In this paper, we enter the parameterizégpacking problem into both these races, giv-

10.2 FRELIMINARIES 82

ing on the one hand a(2%+leek+1.86%y,2) EPT algorithm, and on the other hand an
O(k?) kernelization. OuFPT algorithm is derived by an application of a fairly new tech-
nique known as greedy localization [JZC04], and our kernelization algorithm by a non-
standard application of the very recently introduced notion of Crown Reduction Rules
[CFJO03, CFJO04, F03]. We end the paper by asking how well these two resuk$-on
packing generalize té/-packing. It turns out that thEPT algorithm generalizes quite
easily, givingFPT algorithms for deciding whether an input gra@ghask disjoint copies

of an arbitrary connected. However, we presently do not see how to generalize the
kernelization algorithm.

Just in time for the final version of this paper we realized that Theorem 6.3 in [AYZ95]
can be used to give2’®) algorithm for graph packing using color coding. However, we
still believe our result to be of practical interest as the constants in color coding can be
impractical.

The next section gives some basic graph terminology. We then proceed in Sections 3, 4
and 5 with the kernelization results, before continuing withRRE algorithm in Section
6 for K3 and in Section 7 for generdl.

10.2 PRELIMINARIES

We assume simple, undirected, connected graphs (V, E), where|V| = n. The
neighbors of a vertex are denoted by (v). For a set of verticesl C V, N(A) = {v &
A | w € E andu € A}, and the subgraph a@F induced byA is denoted by=(A). For
ease of notation, we will use informal expressions lik& « to denoteG(V \ {u}, E),
G\ U todenote7(V \ U, E), andG \ e to denoteV, E'\ {e}), whereu is a vertex[is a
vertex set, and is an edge irG. A subsetS of V is aseparatorif G'\ S is disconnected.

An H-packinglV of GG is a collection of disjoint copies of the graphin G. We will use
V(W) to denote the vertices @F that appear iV, and E(1V) to denote the edges. A
matchingis a K»-packing.

We will in the following two sections describe a set of reduction rules. If any of these
rules can be applied tG, we say that is reducible otherwisarreducible

10.3 REDUCTION RULES FOR K3-PACKING

Let us start with a formal definition of the problem we are solving:

k-K3-PACKING (TRIANGLE PACKING)
INSTANCE: GraphG = (V, E)

PARAMETER: k

QUESTION: DoesG havek disjoint copies off(3?

10.4 REDUCING INDEPENDENT SETS CROWN REDUCTION 83

We say that a grap@i has ak- K3-packing if the answer to the above question is “yes.” In
this section, we identify vertices and edges of the input graph that can be removed without
affecting the solution of thé- K3-PACKING problem.

Definition 10.3.1 If verticesa, b, and c induce ak;, we say that vertex sponsoredge
be. Likewise, edgéc sponsoryertexa.

We start with two simple observations that also give preprocessing rules useful to delete
vertices and edges that cannot participate in any triangle.

Reduction Rule 4 If e € E has no sponsor the@ has ak-K;-packing <= G\ e has
a k- K3-packing.

Reduction Rule 5 If u € V' has no sponsor thef¥ has ak-K3-packing <= G \ u has
a k- K;-packing.

Both observations are trivially true, and let us remove vertices and edges from the graph
so that we are left with a graph containing only vertices and edges that could potentially
form a K.

Reduction Rule 6 If u € V sponsors at leasik — 2 disjoint edges thenr has ak-K3-
packings G\ u has a(k — 1)-K3-packing.

Proof. (=-:) This direction is clear as removing one vertex can decrease the number of
K3s by at most one.

(<) If G\u has ak—1)-K;-packingS, thenS can use vertices from at maxtkc — 1) =

3k — 3 of the disjoint edges sponsored byThis leaves at least one edge that can form a
K3 with u, thus raising the number @f;s tok. O

10.4 REDUCING INDEPENDENT SETS - CROWN REDUC-
TION

In this section we will first give a trivial reduction rule that removes a specific type of
independent sets. This reduction rule is then generalized and replaced by a more powerful
rule that allows us to reduce any large independent set in the graph.

Reduction Rule 7 If 3u,v € V such thatN(u) = N(v) = {a,b} andab € E, thenG
has ak-K;-packings G \ u has ak-K3-packing.

10.4 REDUCING INDEPENDENT SETS CROWN REDUCTION 84

Proof. This is trivial as it is impossible to use bothandv in any K3-packing. O

This reduction rule identifies a redundant vertex and removes it. The vertex is redundant
because it has a stand-in that can fornkain its place and there is no use for both
vertices. Generalizing, we try to find a set of vertices such that there is always a distinct
stand-in for each vertex in the set.

Definition 10.4.1 A crown decompositionH, C, R) in a graphG = (V, F) is a parti-
tioning of the vertices of the graph into three sétsC, and R that have the following
properties:

1. H (the head)s a separator inz such that there are no edgesGhbetween vertices
belonging toC and vertices belonging t&.

2. C =C,Uc,, (the crown)is an independent set @.
3. |Cy| = |H|, and there is a perfect matching betwegn and H.

Crown-decomposition is a recently introduced idea that supports nontrivial and powerful
preprocessing (reduction) rules for a wide variety of problems, and that performs very
well in practical implementations [CFJ03, FO3, ACFLO04]. It has recently been shown that
if a graph admits a crown decomposition, then a crown decomposition can be computed
in polynomial time [AS04]. The following theorem can be deduced from [CFJ03, page
7], and [FO3, page 8].

Theorem 10.4.1 Any graphG with an independent sét where|/| > n/2, has a crown
decompositioriH, C, R), whereH C N(I), that can be found in linear time, givdn

For most problems, including- K3-PACKING, it is not clear how a crown decomposition
can directly provide useful information. We introduce here the idea of creating an auxil-
iary graph model where a crown decomposition in the auxiliary graph is used to identify
preprocessing reductions for the original graph.

For k- K3-PACKING we will show that an auxiliary graph model can be created to reduce
large independent sets in the problem instance. Consider an independeint agjraph
G. Let E; be the set of edges that are sponsored by the vertickes of

The auxiliary model that we consider is a bipartite grdaphwhere we have one vertex
u; for every vertexy; in I and one vertex; for every edges; in £;. For simplicity, we
let both setge; | e; € E;} and{f; | e; € E;} be denoted by;. The edges of:; are
defined as follows: let; f; be an edge id; if and only if u; sponsorsf;.

We now prove the following generalization of Reduction Rule 7. This rule now replaces
rule 7.

10.4 REDUCING INDEPENDENT SETS CROWN REDUCTION 85

Reduction Rule 8 If G; has a crown decompositioft/, C,, U C,, R) where H C E;
thenG has ak-K3-packings G\ C, has ak-K3-packing.

Proof. Assume on the contrary th&t; has a crown decompositioif, C,,, U C,, R),
whereH C E; andG has ak-K3-packingiV* but G \ C, has nok-Kj3-packing. This
implies that some of the vertices 6f, were used in thé- K5-packingiV* of G.

Let H* be the set of vertices i/ whose corresponding edgesGhuse vertices from
C = C,, UC, toform K3s in thek-K3-packingiV* of G. Note that vertices i€, can
only form K3s with edges of that correspond to vertices f. Observe that each edge
corresponding to a vertex i uses exactly one vertex frofi. Further,|H*| < |H].

By these two observations it is clear that every edge whose corresponding vertéx‘is in
can be assigned a vertex fratf), to form aK;. ThusC, is superfluous, contradicting the
assumption. O

Observation 10.4.11f a bipartite graphG = (V UV’, E') has two crown decompositions
(H,C,R)and(H',C', R') whereH C V and H' C V, thenG has a crown decomposi-
tion(H" =HUH',C"=CUC',R"=RNR).

It is easy to check that all properties of a crown decomposition holdHdr C”, R").

Lemma 10.4.1If G has an independent sétsuch that /| > 2|E;| then we can in poly-
nomial time find a crown decompositio#, C,, U C,,, R) whereH C E;, andC, # 0.

Proof. Assume on the contrary that has an independent sesuch that/| > 2| E;| but
G has no crown decomposition with the properties stated in the lemma.

By Theorem 10.4.1 the bipartite mod&} as described above has a crown decomposition
(H,C =C,,UC,, R)whereH C N(I)and consequentlg' C . If |1\ C| > |E/| then
G\ C has a crown decompositid®’, C’, R'), whereH’ C N(I). By Observation 10.4.1
(H,C,R) and(H',C", R") could be combined to form a bigger crown. Le{", C" =

C U Cl R") be the largest crown decomposition that can be obtained by repeatedly
finding a new crown in7 \ C' and combining it with the existing crown decomposition to
form a new head and crown.

By our assumptiorC!’! = (). Since|C!| = |H"| < E; and it follows from Theorem
10.4.1 that|// \ C| < |E;| (otherwise a new crown could be formed), we have that
[I| = |CI|+|I\C | < |Er|+|Er| < 2|E;|, contradicting the assumption that > 2| F|.

O

10.5 COMPUTING A CUBIC KERNEL 86

10.5 COMPUTING A CUBIC KERNEL

We now introduce a polynomial time algorithm that either producés/g;-packing or
finds a valid reduction of any input gragh= (V, F) of at least a certain size. We show
that this algorithm gives a@(k?) kernel fork- K3-PACKING.

The algorithm has the following steps:

1. Reduce by Rule 1 and 2 until neither apply.
2. Greedily, find a maximak(;-packing W inG. If |V (W)| > 3k thenACCEPT.

3. Find a maximal matchin@ in G \ V(IW). If a vertexv € V(W) sponsors more
than3k — 3 matched edges, thencan be reduced by Reduction Rule 6.

4. If possible, reduce the independent 5et V' \ (V(W) U V(Q)) with Reduction
Rule 8.

We now give the following lemma to prove our result:

Lemma 10.5.1If |V| > 108k3 —72k* — 18k, then the preprocessing algorithm will either
find ak-K3-packing or it will reduceZ = (V. E).

Proof. Assume on the contrary to the stated lemma fat> 108k — 72k — 18k, but
that the algorithm produced neithekak’;-packing nor a reduction df.

By the assumption the maximal packifg is of size|V (V)| < 3k.

Let @ be the maximal matching obtained by step 2 of the algorithm.
Claim1 |V(Q)| < 18k* — 18k

Proof of Claim 1.Assume on the contrary thit (Q)| > 18k?—18k. Observe

that no edge irG \ V(W) can sponsor a vertex ii \ V(1V) as this would
contradict thatV is maximal, therefore all edges in the the maximal matching

@ are sponsored by at least one verteXifiV’). If |V (Q)| > 18k* — 18k,

@ contains more thafk? — 9% edges. Thus at least one vertexc V(W)
sponsors more thai®k? — 9k)/3k = 3k — 3 edges. Consequentlyshould

have been removed by Reduction Rule 6, contradicting the assumption that
no reduction ofGG took place. We have reached a contradiction, thus the
assumption that’ (Q)| > 18k* — 18k must be wrong. O

10.6 WAINNING THE FPTRUNTIME RACE 87

Let/ =V \ (V(W)UV(Q)). Note that/ is an independent set.
Claim 2 |I] < 108k3 — 90k

Proof of Claim 2.Assume on the contrary thgt| > 108%* — 90k*. Observe
that each edge that is sponsored by a verteéxiskither in the subgraph of
induced byl (W), or is an edge betwedn(1/) andV (). There are at most
|Er| = |V (Q)|-[VIW)|+|V(W)|?* < (18k*—18%)-3k+(3k)? < 54k3—45k>

such edges.
By Lemma 10.4.1 there are no more tHAf;| = 108k — 90k? vertices in
I, which contradicts the assumption that > 108k — 90k2. O

Thus the total sizeV| is |V (W)| + |V(Q)| + |I] < 3k + 18k* — 18k + 108k* — 90k* =
108%3 — 72k* — 18k. This contradicts the assumption thet > 108%% — 72k* — 18k.

g

Corollary 10.5.1 Any instanceG, k) of k- K3-PACKING can be reduced to a problem
kernel of size)(k?).

Proof. This follows from Lemma 10.5.1, as we can repeatedly run the algorithm until
it fails to reduce the graph further. By Lemma 10.5.1 the resulting graph is then of size
O(k?). 0

Note that aO(k?) kernel gives us a trividFPT-algorithm by testing aI(Q((’;Z)) subsets
in a brute force manner. This leads to @(2%!°¢* + poly(n, k)) algorithm. However,
we will show in the next section that anotHePT technique yields a faster algorithm.

10.6 WINNING THE FPT RUNTIME RACE

In this section we give a faster FPT-algorithm using the technique of Greedy Localization
and a bounded search tree.

We begin with the following crucial observation.

Observation 10.6.1Let W be a maximalK;-packing, and lei?V* be ak-K;-packing.
Then for eachi; T' of W*, we havel/ (T) N V(W) # (.

Proof. Assume on the contrary that there exists 7" in W* such that/ () NV (W) =
(. This implies that/(T") U V(W) is a K3-packing contradicting that’ is a maximal
packing. O

10.6 WAINNING THE FPTRUNTIME RACE 88

Theorem 10.6.11t is possible to determine whether a graph= (V, E) has ak-K;-
packing in timeD (22Flog 1869k, 2,

Proof. Let W be a maximalK;-packing. If |V(1V)| > 3k we have ak;-packing.
Otherwise, create a search trée At each node we will maintain a collectioff =
Si, 8%, ..., Sioof vertex subsets. These subsets represent thiangles of the solution,
and at the root node all subsets are empty.

From the root node, create a childor every possible subsét; of V(W) of sizek. Let
the collection at each nodecontaink singleton sets, each containing a verteXiof

We say that a collectio® = S, S, ..., S is apartial solutionof a k- K3-packingiv*
with % disjoint trianglesV, Wy, ..., Wy if St C V(W) for1 < j < k.

For a childi, consider its collectiory; = Si, S, ..., Si. Add vertices taS; such thatS:
induces aK3 in G, continue in a greedy fashion to add verticesS{oS; and so on. If
we can complete ak subsets we havefa K3 packing. Otherwise, Ie$*;i be the first set
which is not possible to complete, and 1ét be the vertices we have added%bso far.
We can now make the following claim.

Claim1 If S*= S}, S ..., Siisa partial solution then there exists a vertex V"’ such
thatS* = S},...,(S; U {v}),..., S} is a partial solution.

Proof of Claim 1. Assume on the contrary th&t' = Si Si,..., S is a
partial solution but that there exists no vertex 1’ such thats” = 51, (S} U
{v}),...,Siis apartial solution. This implies th&t(1V*) "V’ = §), but then
we could add/ (W7) \ S to S’ to form a newk’s, thus contradicting that it
was not possible to completg. a

We now create one child of nodei for every vertex inu € V. The collection at child
uis S* = S}, (S5 U{u}),...,S;. Thisis repeated at each nogaintil we are unable to
complete any set in nodé& collection, i.e.,V’ = (.

By Observation 10.6.1 we know that if therekis/3-packing then one of the branchings
from the root node will have a partial solution. Claim 1 guarantees that this solution is
propagated down the tree until finally completed at |evel

At each level the collection$§' at the nodes grow in size, thus we can have at mbst
levels in the search tree. Observe that at heigim the search treéV’| < 2k — h,
thus fan-out at height is limited to 2k — h. The total size of the tree is then at most
(*)2k- (2k—1)---- = (3) -2k! = X Using Stirling’s approximation and suppressing

10.7 ACKING ARBITRARY GRAPHS 89

some constant factors we ha¥! ~ 3.654" . k2 = 22+logk+186% At each node we need
O(n?) time to maximize the sets. Hence, the total running tim@ {82~ 108 k+1.869% 2y O

Note that it is, of course, possible to run the search tree algorithm from this section on the
kernel obtained in the previous section. The total running time is@h@p os #+1-869% 6 1.

p(n, k)). This could be useful if. is much larger thak as the additive exponential (rather
than multiplicative) factor becomes significant.

10.7 PACKING ARBITRARY GRAPHS

In their paper from 1978, Hell and Kirkpatrick [HK78] prove thatH -packing for any
connected grapl® of 3 or more vertices ilNP-complete. We will in this section show
that our search tree technique foti;-packing easily generalizes to arbitrary graghs
thus proving that packing any subgraph is in FPT.

k- H-PACKING

INSTANCE GraphG = (V, E)

PARAMETER: k

QUESTION: DoesG have at least disjoint copies ofH ?

Theorem 10.7.11t is possible to determine whether a graph= (V, E) has ak-H-
packing in timeO (2~ |log k+2k|H|log | H]p|HI),

Proof. The proof is analogous to the proof of Theorem 10.6.1. However, as we no longer
can depend upon perfect symmetrydn(since H is not necessarily complete), we must
maintain a collection of ordered sequences at each tree-node. Each sequence represents a
partial H-subgraph.

The possible size df” increases t&|H| — k. Then when we want to determine which

of V' to add to the sequence, we must try eveiy every position in//. Thus the fan-out
at each node increaseskf/ | — k|H|. The height of the tree likewise increases to at
mostk|H| — k. Thus the new tree size {§) (k| H|* — k|H|)*"=*, which is strictly
smaller thark* 4! |H|2k|H\ or 2k H|log k+2k|H|log |H| 0

10.8 SUMMARY AND OPEN PROBLEMS
Our main results in the twBPT races are:
(1) We have shown a@(%?) problem kernel for the problem of packiigriangles.

(2) We have shown that for any fixed graph the problem of packing Hs is inFPT

10.8 SUMMARY AND OPEN PROBLEMS 90

with a parameter function of the fori® (29 1°s*)) and more practical constants than
[AYZ95].

In addition to “upper bound” improvements to these initial results, which would be the
natural course for further research - now that the races are on - it would also be interesting
to investigate lower bounds, if possible.

It would be interesting to investigate the “optimality” of the form of dtRPT results in
the sense of [CJ03, DEFPRO03]. Can it be shown that there @(2¢*)) FPT algorithm
for k- H-PACKING unlessFPT= M[1]?

Many parameterized problems admit linear problem kernels. In fact, it appears that most
naturally parameterized problems APX are inFPT and have linear problem kernels.
However, it seems unlikely thatll FPT problems admit linear kernels. We feel that
K;-PACKING is a natural candidate for dfPT problem where it may not be possible

to improve onO (k') kernelization. Techniques for the investigation of lower bounds on
kernelization are currently lacking, but packing problems may be a good place to start
looking for them.

BIBLIOGRAPHY

[AS04] F. AbuKhzam and H. Suters, Computer Science Department, University of Ten-
nessee, Knoxville, private communications, Dec. 2003.

[AYZ95] N. Alon, R. Yuster, U. Zwick. Color-Coding. J. ACM, pp. 844-856, 1995

[ACFLO4] F. Abu-Khzam, R. Collins, M. Fellows and M. Langston. Kernelization Al-
gorithms for the Vertex Cover Problem: Theory and ExperimeRteceedings
ALENEX 2004 Springer-Verlaglecture Notes in Computer Scien@904), to ap-
pear.

[CFJO03] B. Chor, M. Fellows, and D. Juedes. Savingolors in TimeO(n°/?). Manu-
script, 2003.

[CFJ04] B. Chor, M. Fellows, and D. Juedes. Linear Kernels in Linear Time, or How to
Save k Colors inO(n?) steps. Proceedings of WG2004, Springer-Verlaggture
Notes in Computer Scien¢2004)

[CJO3] L. Cai and D. Juedes. On the existence of subexponential parameterized algo-
rithms.Journal of Computer and System Sciengé$2003).

[DEFPRO3] R. Downey, V. Estivill-Castro, M. Fellows, E. Prieto-Rodriguez and F. Rosa-
mond. Cutting Up is Hard to Do: the Parameterized Complexity-&fut and Re-
lated Problems. Electronic Notes in Theoretical Computer Science 78 (2003), 205—
218.

[DF99] R. Downey and M. FellowdXarameterized Complexi§pringer-Verlag (1999).

[DFS97] R. Downey, M. Fellows and U. Stege, Parameterized Complexity: A Frame-
work for Systematically Confronting Computational Intractability, @ontempo-
rary Trends in Discrete Mathematjo®k. Graham, J. Kratochvil, J. Nesetril and
F. Roberts, eds.), AMS-DIMACS Series in Discrete Mathematics and Theoretical
Computer Science 49, pages 49-99, 1999.

[E65] J.Edmonds. Paths, trees and flow@=an.J.Math, 17, 3, pages 449-467, 1965.

[FO3] M.Fellows. Blow-ups, Win/Wins and Crown Rules: Some New DirectiorizH.
Proceedings WG 2003&pringer Verlag LNCS 2880, pages 1-12, 2003.

BIBLIOGRAPHY 92

[HK78] P. Hell and D. Kirkpatrick. On the complexity of a generalized matching prob-
lem. Proceedings of 10th ACM Symposium on theory of compytiages 309-318,
1978.

[HS89] C. A. J. Hurkens, and A. Schrijver. On the size of systems of sets every t of which
have an SDR, with an application to the worst-case ratio of heuristics for packing
problemsSIAM J. Disc. Math. 2pages 68-72, 1989.

[JZCO04] W. Jia, C. Zhang and J. Chen. An efficient parameterized algorithm-feet
packing,Journal of Algorithms50(1):106-117, 2004.r.

[K91] V. Kann. Maximum bounded 3-dimensional matching is MAXBcompleteJn-
form. Process. Let87, pages 27-35, 1991.

[WO03] G. Woeginger. Exact algorithms fdfP-hard problems: A surveg;ombinatorial
Optimization - Eureka! You shrinkM. Juenger, G. Reinelt and G. Rinaldi (eds.).
LNCS 2570, Springer, pages 185-207, 2003.

11

FIXED PARAMETER SET SPLITTING

Fixed Parameter Set Splitting, Linear Kernel and Improved Running Time!
Daniel Lokshtanov Christian Sloper
Abstract

We study the problem ISET SPLITTING in fixed parameter complexity. We
show that the problem can be solved in tifi&(2.6494%), improving on the
best currently known running time @*(8*). This is done by showing that
a non-trivial instance must have a small minirgar COVER, and using this
to reduce the problem to a series of small instancéd X SAT.

We also give a linear kernel containigg elements andk sets. This is done

by reducing the problem to a bipartite graph problem where we use crown
decomposition to reduce the graph. We show that this result also gives a
good kernel foMax CuT.

11.1 INTRODUCTION

The problem we study in this short noteNsaAXiIMUM SET SPLITTING. The transforma-
tion fromMAXIMUM SET SPLITTING to MAX CUT preserves the parameter and thus our
kernel applies for this problem as well.

k-SET SPLITTING

INSTANCE: A tuple (X, F, k) whereF is a collection of subsets of a finite
setX, and a positive integer

PARAMETER: k

1This paper appeared at the conference 'Algorithms and Complexity in Durham’, 2005 and has later
been invited to a special issue of Journal of Discrete Algorithms [LS05].

11.2 FRELIMINARIES 94

QUESTION: Is there a subfamily¥’ C F, |F'| > k, and a partition ofX into
disjoint subsets{, and X; such that for every € F’, we haveS N X, # ()
andS N X; # 0?

SET SPLITTING, or HYPERGRAPHCOLORING as it is named in some sources, is a well
studied problem. A decision version of the problem appears in [GJ79] as problem [SP4].
It is APX-complete [Pe94] and there have been several approximation algorithms pub-
lished. The most notable are Anderson and Engebretsen [AE97] with a factai2a0,

and Zhang and Ling [ZL01] with a factor 6f7499.

In the area of parameterized algorithms there have been several results published. The
first by Dehne, Fellows, and Rosamond [DFR03] who giv@'d72*) FPT algorithm.
Dehne, Fellows, Rosamond, and Shaw [DFRS04] then improved on this result giving a
O*(8F) algorithm using a combination of the techniqugeedy localizatiorand crown
decomposition

To improve the running time we show that any non-trivial solutio®®f SPLITTING has
aSET COVER of size at most. We can then reduce the problentoinstances oMAx

SAT with k clauses each. By using Chen and Kanj’'s [CK04] exact algorithm with running
time O*(1.3247%) on each instance, we get a total running timeof2.6494%).

We will also show how we can use crown decomposition to obtain a linear kernel. We
do this by reducing the problem to a bipartite graph probl8mwARTITE COLORFUL
NEIGHBORHOOD We will use crown decomposition to reduce the graph; then show that
a simple greedy algorithm decides instances wlefe |F|/2. Together the two results
give a linear kernel with at mo&t elements and at mo3t: sets.

11.2 PRELIMINARIES

We assume that in 8ET SPLITTING instance every set contains at least two elements of
X. This is a natural assumption as sets of size one cannot be split in any case.

We employ theO* notation introduced in [WO03], which suppresses the polynomials in
the running time and focus on the exponentials. Thus for @*) algorithm, there exists
a constant such that the running time ©(2"n¢).

Throughout the text we will use lower case letters for elements, edges and vertices, capi-
tals for sets, and caligraphy for sets of sets, ieX, X, respectively.

In graphs, the set of neighbors of a verteis denotedV (v), and the neighbors of a set
S C Vis denotedV(S) = [J,cg N(v) — S.

11.3 USING SET COVER TO IMPROVE RUNNING TIME 95

11.3 UsING SET COVER TO IMPROVE RUNNING TIME

Let a set cover be a subsetC X such that for every sdt € F, we haveP N S # (). We

will prove that an instance either has a set cover of sipe it has ak-SET SPLITTING.

As we will show, obtaining a small set cover allows us to reduce the problem to a series
of MAX SAT problems.

Lemma 11.3.1 Any instance X, F, k) of Set Splitting that has einimal set covers,
has a partitioning ofX into disjoint subsetsY, and X; such that at leastS| sets are
split.

Proof. Let S = {sy,s9, s3,...,5s,} be a minimal set cover i(X, F, k). By minimality
of S, we have that for alk; € S there is a seP, € F such thatS N P, = {s;}. Since
every set is of size at least two we can obtain a split of each of thesg,dstpartitioning
Xo=SandX, =X - S. O

We will now show that we can solve the problem of set splitting by creating at post
small instances (at mostclauses) oMAX SAT.

MAX SAT

INSTANCE: A collectionC of clauses over a set of variabl&s

QUESTION: What is the truth assignment that satisfies the maximum number
of clauses?

A recent paper by Chen and Kanj [CK04] give®a(1.3247™) algorithm forMAX SAT
wherem is the number of clauses in the formula. We will use this algorithm to solve our
MAX SAT instances.

Theorem 11.3.1Set Splitting can be solved in tind# (2.6494%)

Proof. We obtain a minimal set covérf by greedily selecting vertices to cover all sets. By
Lemma 11.3.1 we know thét has size less thak otherwise we can immediatly answer
'Yes'. LetP = {P | P € F,P ¢ S}. ltis clear thatP| < k, otherwise the partition
(S, X\ S) splits at least: sets. The remaining sets are only affected by how we partition
S.

Observe that if5 was already partitioned into disjoint subsét§ X every set irP has
at least one member i or in X].

Assume we have a partitionir{d(/, X) of S. For each seR € P, whereR is not split
by X{, and.X{, create a claus€’. If R contains an element i, add literalsz; for each

11.4 REDUCING TO A GRAPH PROBLEM 96

elementz; € R — S to C. If R contains an element i, then add literalg;, for each
elementy; € R — S to Cp.

Adding an element: to X/, now corresponds to setting variablealse, and vice versa.
Observe that a sgt € P is split if and only if its clause’ is satisfied. We can now
employ Chen and Kanj's exact algorithm flskax SAT. There are2* different partitions
of the set covef, for each we construct an instanceMdAXx SAT with at mostk clauses.
Thus we get a total running time 6F (2% - 1.3247%) = 0*(2.6494%). O

11.4 REDUCING TO A GRAPH PROBLEM

The running time of the algorithm in the previous section is multiplicative, i.e., of the
form O(f(k) - n®). Itis often advantagous to have the exponential function as an additive
term of the formO(f (k) + n¢). We can achieve this by reducing, in polynomial time, the
problem to a kernel. Aernelis a smaller instance of the same problem where the size of
the instance is bounded by a functigfk). If g(k) is a linear function we call the kernel
alinear kernel Having a linear kernel is often advantagous when designing brute force
algorithms for a problem. In this section we show how a linear kernel can be achieved
usingcrown decompositan

Recently the fixed parameter kernels for many problems have been improved using crown
decompositions. Itis a common technique [FHRSTO04, PS04] to create an auxiliary graph
model from the problem instance and then show that a reduction (using crown decom-
position) in the graph model leads to reduction of the problem instance. This technique
would apply to this problem, but we will instead reduce our problem to a problem on
bipartite graphs.

We reformulate the problem as a problem on bipartite graphs.GI(&¥}-, Vy, E) be a
bipartite graph, wher&’z is a set of vertices with a vertex, for each set\/ € F, and
Vx is a set of vertices with a vertex, for each element € X and let(v,,vy) € F be
an edge ifr € M.

The problem is now reduced to color the $&t black and white such that at lealst
vertices ofl/z have acolorful neighborhoodli.e., at least one neighbor of each color. Itis
easy to see that this problem is equivalemt48ET SPLITTING.

k-BIPARTITE COLORFUL NEIGHBORHOOD(k-BCN)

INSTANCE: A bipartite graphG = (Vg, Vx, E), and a positive integer
PARAMETER: k

QUESTION: Is there a two-coloring oF’x such that there exists a setC Vx
of size at leask where each element 6f has a colorful neighborhood?

As mentioned we will use crown decomposition to reduce the problem. Crown decompo-

11.4 REDUCING TO A GRAPH PROBLEM 97

sition is particularly well suited for use in bipartite graphs, as Lemma 11.4.1 ensures us
the existence of a crown decomposition in any bipartite graph.

Definition 11.4.1 A crown decompositiofH, C, R) in a graphG = (V, E) is a par-
titioning of the vertices of the graph into three séfs C', and R where H and C' are
nonempty such that they have the following properties:

1. H (the head)s a vertex separator id-, such that there are no edges@hbetween
vertices belonging t¢' and vertices belonging t&.

2. C'=C,Uc,, (the crown)is an independent set @.

3. There is a bijective mapping: H — C,,, wheref(v) = u = (u,v) € E (i.e., a
perfect matching).

We can find the following lemma in [CFJ04].

Lemma 11.4.1If a graph G = (V. E) has an independent sét C V(G) such that
|N(I)| < |I] then a crown decompositiof, C, R) with C' C [for G can be found in
timeO(|V| + |E|).

Our main reduction rule is the following lemma that states that any crown decomposition
can be transformed to a crown decomposition where the head and crown can be removed
from the graph.

Lemma 11.4.2 Given a bipartite graplG = (Vx, Vx, E) where|Vz| < |Vx|, there exists
a nontrivial crown decompositio(H, C, R) such thatG is a "Yes'’-instance fok-BCN
— G' = (Vg \ H,Vx —C,E)is a’Yes'-instance fotk — |H|)-BCN

Proof. Since|Vz| < |Vx| there exists a componehty: C Vz, Vi C Vx where|Vy| <

|[Vx|'. By Lemma 11.4.1 we know that this component has a crown decomposition
(H',C'", R") whereH' C V. We now use this crown to identify another cro\, C, R)

with the desired properties.

We assume? # (), if this is not the case we can move a vertex fréfito R. If C,UR = ()
then|V%| = |V, contradicting V| < |V|.

We iteratively compute this new crown in the following manner. gt C H' be the
set of vertices of’ that have a neighbor iivy — C. The setH, is nonempty since
R # 0 and H' is a vertex separator. Lé&f, be the vertices o’ that are matched to

11.4 REDUCING TO A GRAPH PROBLEM 98

Hy. Let H;,y = N(C;) andC;4, be the vertices matched #,,,. Run iteratively until
H;.y = H;thenletH = H;,C = {v |v € Vx, N(v) C H} andR be the remainder.

From the construction ofH, C, R) it is clear that this is a crown decomposition. We
proceed to show that is a Yes-instance fot-BCN if and only if G’ = (Vi — H, Vx —
C, F) is a YES instance fofk — |H|)-BCN.

In one direction assume on the contrary thats a Yes- instance fok-BCN, but that
G' = (Vg — H,Vx — C,E) is a No instance fo(k — |H|)-BCN. Then the removed
elements” must have participated in a colorful neighborhood for more tl#&jnvertices
in Vz. This is clearly impossible a¥ (C') C H.

In the other direction we have th&t' = (Vx — H,Vx — C, E) is a Yes-instance for
(k — |H|)-BCN. We can assume that every verteX/in — C' has been colored. We can
now colorC' such that every vertex il has a colorful neighborhood. For every vertex
h € H, we can color the vertex matched kodifferent from’s neighbor inVx — C.
Observe that after coloring’;, all vertices inf;, — H; have a neighbor ir€';. Thus
we can obtain a colorful neighborhood for each veriex H;., — H; by coloring its
matched vertex appropriately. Thus every verteX/ihas a colorful neighborhood arg

Is a YES instance fok-BCN. O

We say that a bipartite graph iseducible if we cannot apply the reduction in Lemma
11.4.2. The following corollary follows directly.

Corollary 11.4.1 In an irreducible bipartite graplG = (|Vr|, |[Vx|, E), we always have
Vx| < [VE|.

We have obtained the inequalityx| < [Vz|. We now show that we can obtain a sim-
ilar relationship betweehl’=| and & by analyzing the effectiveness of a simple greedy
algorithm for the problem.

Greedy algorithms foSET SPLITTING seem to do quite well, and it is indeed possible to
prove that there is a polynomial time algorithm that splits at least half of the sets. For our
graph problem this is the equivalent of proving that it is always possible to two-gglor
such that at least half df+ has a colorful neighborhood.

Lemma 11.4.3 1t is always possible to find a partitionin@, V') of Vx such that at least
half of the vertices i/ have a colorful neighborhood.

Proof. For a subseVy, C Vx we defineM (V) = {va | var € Ve, N(vpr) C Vi }. We
proceed by induction on the size & .

11.5 AN APPLICATION TO MAX CUT 99

Base caself |Vi| = 1, thenM (V) = 0. Thus the statement is trivially true.

Inductive Hypothesis: We assume that for all seis, C Vy of sizen, we can find
a partitioningB’, W’ of V such that at least half of the verticesii(V) has a
colorful neighborhood.

Inductive Step: Assume any set’y C Vx where|V{| = no + 1. Letv, € V{ be an
arbitrary vertex inV’{, and letM’ = M (V{ — v,) . By the inductive hypothesis
we can find a partitionings’, W'’ such that half of the vertices i/’ have a color-
ful neighborhood. Since every vertex Wr has degree at least 2, every vertex in
M(VY) — M’ has at least one neighbor B U W’. We can assume without loss of
generality that half of the vertices éff (X"”) — M’ have a neighbor i3’. Hence
the partitioningB’, W’ U {v, } ensures that at least half of the verticesVir{V’y)
have a colorful neighborhood.

|

The following corollary follows directly from the above lemma. It is easy to design
a greedy algorithm that mimic the inductive procedure in the proof and produces the
necessary partitioning.

Corollary 11.4.2 All instances wheré < |Vx|/2 are trivially 'Yes'-instances.

Theorem 11.4.1k-BCN has a linear kernel whet®’x| < |Vz| < 2k.

Proof. By Corollary 11.4.2 we have that for a nontrivial instari¢g k), k > |Vx|/2. By
Corollary 11.4.1 we have th&vx| < |V| after reducing the graph. Thus the inequality
Vx| < |VF| < 2k holds for the kernel. 0

The following corollary then follows by a transformation of the kernel back+8eT
SPLITTING.

Corollary 11.4.3 k-SET SPLITTING has a linear kernel o2k sets and®k elements.

11.5 AN APPLICATIONTO MAX CuT

In this section we mention that our kernelization result also applies to the more known
MAXx CuT, which can be encoded usiiS8FT SPLITTING.

11.6 CONCLUSION 100

MAx CuTt

INSTANCE: A graphG = (V, E), and a positive integér

PARAMETER: k

QUESTION: Is there a partitioning of/ into two setsV’, V" such that the
number of edges betweéff andV’” is at least k?

Let the set of elementX’ = V and for every edgév,u) € E create a sefv,u}. A
splitting of a setvu now corresponds to placingandwv in different partitions inM AX
CuT. The results ofSET SPLITTING thus apply taViAx CuT.

Observation 11.5.1k-MAX CuT has a linear kernel o2k vertices andk edges.

Using the best known exact algorithm for this problem¢2iii2/#1/4) algorithm by Fedin
and Kulikov [FK02], we get a running time ad*(2*/2) which is equivalent to Prieto’s
algorithm in [PO4] where she used thkethod of Extremal Structuranother well known
FPT technique, to reach a kernel lofvertices and2k edges. Earlier Mahajan, Raman
[MR99] has used yet another technique to reach the same number of edges.

11.6 CONCLUSION

We have improved the current best algorithm$am SPLITTING of O*(8%) to O*(2.6494%)
using an observation about the size and structure of the minimal set covers in any set split-
ting instance.

We also obtained a linear kernel by using modelled crown decomposition. Our model
is different from the one seen in [DFRS04]. This shows how crown decompositions can
often be applied in many ways to a single problem, with varying results. This kernel also
applies to Max Cut equalling the best known kernels for this problem, but with a different
approach.

Having achieved a linear kernel for Set Splitting we believe that it is now possible to
improve the running time even further. Applying a variation of the transformation seen in
the proof of Theorem 11.3.1 it is possible to transform an instan@e0fSPLITTING to

an instance of Max Sat. Add two clauses for each set, with one literal for each variable.
In one clause all literals are positive and in the other all negative. The set is now split if
and only if both clauses are satisfied. WitB/aset instance we have at ledssets split

if and only if we have at least% clauses satisfied. With our kernel, this direct approach
would be better than the method described in this paper if the Max Sat running time could
be improved belovwD(2™/3), wherem is the number of clauses.

We would like to acknowledge Daniel Kral for insightful remarks.

BIBLIOGRAPHY

[AE9Q7] G. Andersson and L. Engebretsen, Better approximation algorithms for set split-
ting and Not-All-Equal-Satinformation Processing Letter65(1988) 305-311.

[CKO4] J. Chen, I. Kanj, Improved Exact Algorithms for Max-S&tiscrete Applied
Mathematicsl42(2004), 17-27.

[CFJ04] B. Chor, M. Fellows, and D. Juedes, Linear Kernels in Linear Time, or How to
Save k Colors ifO(n?) steps, inProceedings of WG2004, LNG3004).

[DFRO3] F. Dehne, M. Fellows, and F. Rosamond, An FPT Algorithm for Set Splitting, in
Proceedings WG2004 - 30th Workshop on Graph Theoretic Concepts in Computer
scienceLNCS 2004.

[DFRS04] F. Dehne, M. Fellows, F. Rosamond, and P. Shaw, Greedy Localization, It-
erative Compression and Modeled Crown Reductions: New FPT Techniques and
Improved Algorithms for Max Set Splitting and Vertex CovBrpoceedings of IW-
PECO4LNCS 31622004), 271-281.

[FKO2] S. Fedinand A. Kulikov, 2/7/4-time Algorithm for MAX-CUT. Zapiski nauch-
nyh seminarov POMR93(2002), 129-138. English translation to appear in Journal
of Mathematical Sciences.

[FHRSTO04] M.Fellows, P.Heggernes, F.Rosamond, C. Sloper, J.A.Telle, Fihdiin;
joint triangles in an arbitrary grapfp appear WG2004

[GJ79] M. Garey and D. Johnso@pmputers and Intractability: A Guide to the Theory
of NP-CompletenesfWV.H. Freeman, San Francisco, 1979).

[MR99] M. Mahajan, V. Raman, Parameterizing above guaranteed values: MaxSat and
MaxCut,Journal of Algorithms31(1999), 335-354.

[PO4] E. Prieto, The Method of Extremal Structure on thlaximum Cut Problem.
Manuscript, to appear

[PS04] E.Prieto and C. Sloper, Reducing to Independent Set Structure — the Case of
k-INTERNAL SPANNING TREE. To appear

[Pe94] E. Petrank, The hardness of approximation: Gap localomputational Com-
plexity, 4(1994), 133-157.

BIBLIOGRAPHY 102

[WO03] G. Woeginger, Exact Algorithms for NP-Hard Problems. A SurveyRioceed-
ings of 5th International Workshop on Combinatorial Optimization-Eureka, You
Shrink! Papers dictated to Jack Edmonds, M. Junger, G. Reinelt, and G. Rinaldi
(Festschrift Eds.) LNC2570(2003), pp. 184-207.

[ZLO1] H. Zhang and C.X.Ling, An improved learning algorithm for augmented naive
Bayes,Pacific-Asia Conference on Knowledge Discovery and Data MjAlNCS
20352001), pp.581-586.

