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PACKING STARS

Looking at the Stars1

Elena Prieto Christian Sloper

Abstract

The problem of packingk vertex-disjoint copies of a graphH into another
graphG is NP-complete ifH has more than two vertices in some connected
component. In the framework of parameterized complexity we analyze a
particular family of instances of this problem, namely the packing of stars.
We give a quadratic kernel for packingk copies ofH = K1,s. When we
consider the special case ofs = 2, i.e., H being a star with two leaves, we
give a linear kernel and an algorithm running in timeO(25.301kk2.5 + n3).

9.1 INTRODUCTION

The problem ofMAXIMUM H -MATCHING, also calledMAXIMUM H -PACKING, is of
practical interest in the areas of scheduling [BM02], wireless sensor tracking [BK01],
wiring-board design and code optimization [HK78] and many others.

The problem is defined as follows: LetG = (V,E) be a graph andH = (VH , EH) be
a fixed graph with at least three vertices in some connected component. AnH-packing
for G is a collection of disjoint subgraphs ofG, each isomorphic toH. In an optimiza-
tion sense, the problem that we want to solve would be to find the maximum number of
vertex disjoint copies ofH in G. The problem is NP-complete [HK78] when the graph
H has at least three vertices in some connected component. Note that in the case where

1This paper first appeared at the conference ’First International Workshop on Parameterized And Exact
Computation’ in September 2004. It was later invited and accepted to a special use of the Journal of
Theoretical Computer Science where it is due to appear [PS04].
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H is the complete graph on two nodes,H-packing is the very well studied (and polyno-
mial time solvable) problemMAXIMUM MATCHING. MAXIMUM H -PACKING has been
thoroughly studied in terms of approximation. The problem has been proved to be MAX-
SNP-complete [K94] and approximable within|VH |/2 + ε for anyε > 0 [HS89]. Several
restrictions have also been considered (planar graphs, unit disc graphs etc.) in terms of the
complexity of their approximation algorithms. For a review of these we refer the reader
to [AC99].

A recent result by [FHRST04] gives a general algorithm for packing an arbitrary graphH
into G. Their result gives a2O(|H|k log k+k|H| log |H|) algorithm for the general case, where
k is the number of copies ofH. It should also be noted that it is possible to achieve a
single exponential running time for this problem by adapting a result by Alon, Yuster, and
Zwick in [AYZ95].

Theorem 9.1.1 (Alon, Yuster, Zwick) LetS be a directed or undirected graph onk ver-
tices with treewidtht. LetG = (V, E) be a (directed or undirected) graph. A subgraph
of G isomorphic toS, if one exists, can be found in2O(k)|V |t+1 expected time and in
2O(k)|V |t+1 log |V | worst case time.

It is easy to see how to apply this problem to packing a graphH. Let the graphS in the
above theorem bek copies of a graphH. SinceS has treewidth at most|H|, we have
a 2O(k)|V ||H|+1 algorithm for the problem. Unfortunately the running time obtained by
Alon et al. [AYZ95] hides a considerable constant in the exponent making this algorithm
infeasible in practical terms.

We discuss the parameterized complexity of theMAXIMUM H -PACKING problem for the
case whenH belongs to the restricted family of graphsF = K1,s, a star withs leaves.
More formally:

K1,s-PACKING

INSTANCE: GraphG = (V, E), a positive integerk
QUESTION: Are there at leastk vertex disjoint instances ofK1,s in G?

This problem has already been studied within the framework of classical complexity the-
ory [HK86]. In their paper, Hell and Kirkpatrick studied the complexity of packing com-
plete bipartite graphs into general graphs. We include a brief introduction to this topic in
Section 9.2. In Section 9.3 we show that the general problem is tractable if parameterized,
and that we can obtain a quadratic kernel. In Section 9.4 we show that the special case of
packingK1,2’s has a linear kernel, and in Section 9.5 we give a quick algorithm for both
the general and special case. In contrast [FHRST04] obtains only anO(k3) algorithm for
packing a graph with three vertices, namelyK3.
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9.2 INTRODUCTION TO PARAMETERIZED ALGORITHMS

A problem with main inputx and parameterk is said to be fixed parameter tractable if
there is an algorithm with running timeO(f(k)|x|O(1)), wheref is an arbitrary function.
In [F03] Mike Fellows presents a two-sided view of research on parameterized problems
which he dub ‘the two races’. First, that it is interesting to obtain better running time for
fixed parameter tractable problems, but also that is of interest to improve the size of the
kerneleven if this does not immediately lead to an improvement in running time.

Definition 9.2.1 A parameterized problemL is kernelizable if there is a parametric trans-
formation ofL to itself that satisfies:

1. The running time of the transformation of(x, k) into (x′, k′), where|x| = n, is
bounded by a polynomialq(n, k),

2. k′ ≤ k, and

3. |x′| ≤ h(k′), whereh is an arbitrary function.

Obviously the two views are not independent, as improvements in the latter could give
improvements in the first, but it is also important to note the following result by [DFS99],
which gives a stronger link between the two races:

Lemma 9.2.1 A parameterized problemL is in FPT if and only if it is kernelizable.

The two races are worth playing as they may lead to substantial improvements on the qual-
ity of the algorithms we design and also to new strategies for practical implementations
of these algorithms.

9.2.1 PRELIMINARIES

We assume simple, undirected, connected graphsG = (V,E) where|V | = n. The set
of neighbors of a vertexv is denotedN(v), and the neighbors of a setS ⊆ V , N(S) =⋃

v∈S N(v)\S. If J is a collection of graphs, thenV (J) is the set of vertices in the graphs
in J .

The induced subgraph ofS ⊆ V is denotedG[S].

We use the simplerG \ v to denoteG[V \ {v}] for a vertexv andG \ e to denoteG =
(V,E \ {e}) for an edgee. Likewise G \ V ′ denotesG[V \ V ′] andG \ E ′ denotes
G = (V,E \ E ′) whereV ′ is a set of vertices andE ′ is a set of edges.

We say thatK1,s is ans-star or a star of sizes. Pi denotes a path ofi + 1 vertices andi
edges.
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9.3 PARAMETERIZED COMPLEXITY OF STAR PACKING

In this section we prove a series of polynomial time preprocessing rules (reduction rules)
and eventually show that we can obtain a kernel ofO(k2) vertices for the parameterized
version ofK1,s-packing.

We use the following natural parameterization ofK1,s-PACKING:

k-K1,s-PACKING

INSTANCE: GraphG = (V, E)
PARAMETER: k
QUESTION: Are therek vertex disjoint instances ofK1,s in G?

In order to remove vertices of high degree, and remove useless edges between vertices of
low degree, we introduce the following reduction rules.

Lemma 9.3.1 Let G be a graph with a vertexv where deg(v) > k(s + 1) − 1. ThenG
has ak-K1,s-packing if and only ifG \ v has a(k − 1)-K1,s-packing.

Proof. If G has ak-K1,s-packing, thenG′ obviously has a(k − 1)-K1,s, asv cannot
participate in two different stars.

If G′ has a(k − 1)-K1,s-packing, we can create ak-K1,s-packing by addingv. Thek − 1
stars already packed cannot use more than(s + 1)(k − 1) of v’s neighbors, leavings
vertices forv to form a new star. 2

Lemma 9.3.2 Let G be a graph with neighboring verticesu and v where deg(u) ≤
deg(v) < s. ThenG has ak-packing if and only ifG′ = (V, E(G) \ uv) contains a
k-packing.

Proof. If G has ak-K1,s-packing, thenG′ has ak-K1,s-packing, asuv can never partic-
ipate in aK1,s. The other direction is trivial, ifG′ has ak-K1,s-packing, thenG has a
k-K1,s-packing as well. 2

In order to give a quadratic kernel for the fixed parameter version ofk-STAR PACKING

we will use a new technique first seen in [FM+00]. This technique borrows ideas from
extremal graph theory. We will show that any graph where Lemmas 9.3.1 and 9.3.2 do not
apply is either ‘small’ (having less thang(k) vertices) or has ak-K1,s-PACKING. We do
this by studying a ’border’-line graphG: A graph with ak-K1,s-packing, but no(k + 1)-
K1,s-packing. This allows us to make claims about the structure ofG and finally to prove
a bound on|V (G)|.
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A graph isreducedwhen Lemmas 9.3.1 and 9.3.2 can not be applied. In this sense both
these lemmas will be commonly referred to asreduction rules. As an additional reduction
rule, we delete vertices of degree 0, as they never participate in any star.

Lemma 9.3.3 (Boundary Lemma) If a graph instance(G, k) is reduced and has ak-K1,s-
packing, but no(k + 1)-K1,s-packing then|V (G)| ≤ k(s3 + ks2 + ks + 1).

Proof. Assume there exists a counterexampleG, such thatG is reduced and contains ak-
K1,s-packingW , but no(k+1)-K1,s-packing and has size|V (G)| > k(s3+ks2+ks+1).

Let Q = V \W . Let Qi be the vertices inQ that have degreei in the subgraph induced
by Q. We will now prove a series of claims that bound the number of vertices inQ.

Claim 1 ∀i ≥ s,Qi = ∅

Claim 2 A K1,s-starS ∈ W has at mosts2 + k(s + 1)− 1 neighbors inQ.

The following claim follows from Claim 2:

Claim 3 W has at mostk(s2 + k(s + 1)− 1) neighbors inQ.

Let R = V \ (W ∪ N(W )), i.e., the set of vertices ofQ which do not have
neighbors inW .

Claim 4 R is an independent set inG.

Claim 4 ensures us that all vertices inR have an edge to one or more vertex inQ. By
Claim 1, we know that each of the vertices inQ \ R have at mosts − 1 such neighbors
and thus by Claim 3, the total size ofR is at most(s− 1) · |Q \R|.
In total,G has size|V (G)| = |W |+|Q| ≤ k(s+1)+s·k·(s2+k(s+1)−1) = k(s3+ks2+
ks + 1), contradicting the assumption that the graph has more thank(s3 + ks2 + ks + 1)
vertices. This concludes the proof of the boundary lemma. 2

From this boundary lemma follows that any reduced instance that is still ‘big’ has ak-
K1,s-packing. Since the boundary given by Lemma 9.3.3 does not depend on the main
input, but only on the parameter and the problem in question, we can say that the reduced
instance is a ‘problem-kernel’ and that the problem is in FPT.

Lemma 9.3.4 (Kernelization Lemma) If a graphG is reduced and has|V (G)| > k(s3 +
ks2 + ks + 1), then it contains ak-K1,s-packing.
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Proof. Assume in contradiction to the stated theorem that there exists a graphG of size
|V (G)| > k(s3 + ks2 + ks + 1), having nok-K1,s-packing.

Let k′ < k be the largestk′ for which G is a YES-instance. By the Boundary Lemma
9.3.3, we know that|V (G)| ≤ k′(s3 + k′s2 + k′s + 1) < k(s3 + ks2 + ks + 1). This
contradicts the assumption. 2

Thus for anyk-K1,s-packing we can prove a quadratic kernel. However, for the special
cases = 2, we can improve on this. This is the topic of the next section.

9.4 THE SPECIAL CASE OF P2: A LINEAR KERNEL

A 2-star can also be seen as a path with three vertices, denotedP2. For this special case
we can employ a different set of reduction rules to obtain a linear kernel for packingP2’s
into a graph.

k-P2-PACKING

INSTANCE: GraphG = (V, E)
PARAMETER: k
QUESTION: Are therek vertex disjoint instances ofP2 in G?

To improve on the quadratic kernel obtained in the previous section, we will make use of
a series of reduction rules based on the ideas of crown decompositions [CFJ03].

Definition 9.4.1 A crown decomposition(H,C, R) in a graphG = (V, E) is a parti-
tioning of the vertices of the graph into three setsH, C, andR that have the following
properties:

1. H (the head)is a separator inG such that there are no edges inG between vertices
belonging toC and vertices belonging toR.

2. C = Cu ∪ Cm (the crown)is an independent set inG.

3. |Cm| = |H|, and there is a perfect matching betweenCm andH.

There are several recent papers that use crown decompositions of graphs to obtain good
results in parameterized complexity [CFJ03, FHRST04, F03, ACFL04, PS04]. These
papers either apply the crown directly to the problem instance ([CFJ03, ACFL04]) or
create an auxiliary graph where they apply crown reduction techniques.

In this paper we instead modify the crown decomposition to fit our particular problem.
The first variation isdouble crown decompositionwhere each vertex inH has two vertices
from C matched to it (as opposed to only one). See Figure 9.1.
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Definition 9.4.2 A double crown decomposition(H, C, R) in a graphG = (V, E) is a
partitioning of the vertices of the graph into three setsH, C, andR that have the following
properties:

1. H (head)is a separator inG such that there are no edges inG between vertices
belonging toC and vertices belonging toR.

2. C = Cu ∪ Cm ∪ Cm2 (the crown)is an independent set inG.

3. |Cm| = |H|, |Cm2| = |H| and there is a perfect matching betweenCm andH, and
a perfect matching betweenCm2 andH.

Figure 9.1: Example of ‘double crown’. The dashed lines indicate how each vertex inH
is matched to two vertices inC.

Another variation of the crown is thefat crown decompositionwhere instead of indepen-
dent vertices inC we haveK2’s as shown in Figure 9.2.

Definition 9.4.3 A fat crown decomposition(H, C, R) in a graphG = (V, E) is a par-
titioning of the vertices of the graph into three setsH, C andR that have the following
properties:

1. H (the head)is a separator inG such that there are no edges inG between vertices
belonging toC and vertices belonging toR.

2. G[C] is a forest where each component is isomorphic toK2.

3. |C| ≥ |H|, and if we contract the edges in eachK2 there is a perfect matching
betweenC andH.

Using the ‘crown’, ‘double crown’ and ‘fat crown’ we can create powerful reduction rules.

Lemma 9.4.1 A graphG = (V, E) that admits a ‘double crown’-decomposition(H, C, R)
has ak-P2-packing if and only ifG \ (H ∪ C) has a(k − |H|)-P2-packing.
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R

C

H

Figure 9.2: Example of ‘fat crown’. As in the case of the ‘double crown’, the dashed lines
indicate the matching betweenH andCm and the dashed ellipses show to whichK2 the
vertex inH is matched.

Proof.

(⇐:) If G \ (H ∪ C) has a(k − |H|)-P2-packing then it is obvious thatG has ak-P2-
packing asH ∪ C has a|H|-P2-packing (v ∈ H andv’s matched vertices fromCm and
Cm2 form aP2).

(⇒:) We want to prove that ifG has ak-P2-packing thenG \ (H ∪ C) has a(k − |H|)-
P2-packing. Assume in contradiction that there exists a graphG′ that has a crown-
decomposition(H ′, C ′, R′) that contradicts the lemma. This implies thatH ′ ∪ C ′ par-
ticipates inx > |H ′| differentP2’s. SinceH ′ is a cutset, andC is an independent set in
the graph, everyP2 in G that has vertices inH ′ ∪ C ′ must contain at least one vertex of
H ′. Thus we can have at most|H ′| differentP2’s which is a contradiction. 2

Lemma 9.4.2 A graphG = (V, E) that admits a ‘fat crown’-decomposition(H, C, R)
has ak-P2-packing if and only ifG \ (H ∪ C) has a(k − |H|)-P2-packing.

The proof of Lemma 9.4.2 is analog to that of Lemma 9.4.1, thus omitted.

To apply crown-decompositions we need to know when we can expect to find one. A
very useful result in this regard can be deducted from [CFJ03, page 7], and [F03, page
8]. Fortunately, the results also apply to the variations of crown decomposition described
here.

Lemma 9.4.3 Any graphG with an independent setI, where|I| ≥ |N(I)|, has a crown
decomposition(H, C, R), whereH ⊆ N(I) that can be found inO(|V |+ |E|) time given
I.

Corollary 9.4.1 Any graphG with a collectionJ of independentK2’s where|N(V (J))| ≤
|J |, has a fat crown decomposition(H, C,R), whereH ⊆ N(V (J)), that can be found
in linear time, givenJ .
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Proof. This follows from the previous Lemma. If we replace eachK2 with a single vertex,
then by Lemma 9.4.3 this graph admits a crown-decomposition. We can reintroduce the
K2’s to obtain a fat crown. 2

Lemma 9.4.4 Any graphG with an independent setI, where|I| ≥ 2|N(I)|, has a double
crown decomposition(H, C, R), whereH ⊆ N(I), that can be found in linear time given
I.

Proof. Let G be a graph with an independent setI ⊆ V (G) such that2|N(I)| ≤ |I|.
Create an identical graphG′, but for every vertexv ∈ N(I) add a copyv′, such that
N(v) = N(v′). By Lemma 9.4.3,G′ has a crown-decomposition(H, C, R) such that
H ⊆ NG′(I). We now claim that we can use this crown to construct a ‘double crown’
(H ′, C ′, R′) in G.

First observe thatv ∈ H if and only if v′ ∈ H. Assume in contradiction thatv ∈ H but
v′ /∈ H. The vertexv must be matched to some vertexu in C. SinceN(v) = N(v′), we
have thatv′ cannot be inC as it would contradict the fact thatC is an independent set.
Also v′ cannot be inR, as that would contradict thatH is a cut-set. Thusv′ must be inH,
contradicting the assumption.

With this observation, the result follows easily asH consists of pairs of vertices; a vertex
and its copy. Each pairv andv′ in H is matched to two verticesu1 andu2. In G, let v be
in H ′ and let it be matched to bothu1 andu2. Do this for every pair inH. It is easy to see
that this forms a double crown inG. 2

We will now describe a polynomial time preprocessing algorithm that reduces the graph
to a kernel of size at most15k. The process below either reduces the graph or produces
a packing of the appropriate size, thus we can reach a kernel by repeating the following
three steps:

Step 1. Compute an arbitrary maximal P2-packing
W . Let Q = V \W .

Step 2. Let X be the collection of components
in G[Q] isomorphic to K2. If |X| ≥ |N(X)|
in G then reduce by Lemma 9.4.2.

Step 3. Let I be the isolated vertices in G[Q].
If |I| ≥ 2|N(I)| in G, then reduce by
Lemma 9.4.1.

Lemma 9.4.5 If |V (G)| > 15k then the preprocessing algorithm will either find ak-P2-
packing or it will reduceG.
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Proof. Assume in contradiction to the stated lemma that|V (G)| > 15k, but that the
algorithm produces neither ak-P2-packing nor a reduction ofG.

By the assumption the maximal packingW is of size|W | < 3k. Let Q = V \W . Let Qi

be the vertices inQ that have degreei in the graph induced byQ.

Claim 5 ∀i ≥ 2, Qi = ∅

Proof of Claim 5.This is clear as otherwiseW could not be maxi-
mal. 2

Claim 6 |Q1| ≤ 6k

Proof of Claim 6.Assume in contradiction that|Q1| > 6k. This
implies that the number ofK2sX in Q is greater than3k, but then
|X| > |W |. By Corollary 9.4.1G has a ‘fat crown’ and should
have been reduced in step 2 of the algorithm, contradicting that no
reduction took place. 2

Claim 7 |Q0| ≤ 6k

Proof of Claim 7. Assume in contradiction that|Q0| > 6k, but
then|Q0| is more than2|W | and by Lemma 9.4.4G has a ‘double
crown’ and by Lemma 9.4.1 should have been reduced in step 3 of
the algorithm, contradicting that no reduction took place. 2

Thus the total size|V (G)| is |W |+ |Q0|+ |Q1|+ |Q2|+ · · · ≤ 3k + 6k + 6k + 0 = 15k.
This contradicts the assumption that|V (G)| > 15k. 2

Corollary 9.4.2 Any instance(G, k) of P2-packing can be reduced to a problem kernel
of sizeO(k).

Proof. This follows from the Lemma, as we can run the preprocessing algorithm until it
fails to reduceG. By Lemma 9.4.5, the size is then at most15k. 2

9.5 RUNNING T IME

For computing the kernel, we will run the preprocessing algorithmO(n) times. Since
a maximalk-packing ofP2’s can be computed inO(kn) time, the most time consum-
ing part is theO(|V | + |E|) time needed to compute a crown decomposition. Thus the
kernelization process can be completed inO(n3) time.
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We will apply a straightforward brute-force algorithm on the kernels to find the optimal
solution. In the case ofP2-packing, we will select the center-vertices of theP2’s in a
brute force manner. There are

(
15k
k

)
ways to do this. By Stirling’s formula this expression

is bounded by25.301k. With k center vertices already selected, the problem reduces to a
problem on bipartite graphs, where the question is if the vertices on the left hand side
each can have two neighbors assigned to it. This can easily be transformed toMAXIMUM

BIPARTITE MATCHING by making two copies of each vertex on the left hand side.MAX -
IMUM BIPARTITE MATCHING can be solved in timeO(

√
|V ||E|) [HK73]. We now have

15k + k vertices, and thusO(k2) edges. We can solve each of these in timeO(k2.5), giv-
ing a running time ofO(25.301kk2.5) for the kernel. In total we can decide theP2-packing
problem in timeO(25.301kk2.5 + n3).

Applying the same technique for thes-stars we will achieveO(2O(k log k)kO(1)nO(1)),
which is asymptotically worse due to the quadratic kernel.

9.6 CONCLUSIONS AND FURTHER RESEARCH

Packing vertex-disjoint copies of a graphH into another graphG is NP-complete as long
asH has more than two vertices [HK78]. We have analyzed within the framework of pa-
rameterized complexity a specific instance of this problem, the packing of vertex-disjoint
stars withs leaves. We have proved that packingK1,2’s in a graphG, and equivalently
k-P2-PACKING, has a linear kernel.

Our algorithm fork-P2-PACKING runs in timeO(25.301kk2.5 + n3). This running time
arises from reducing the problem to a kernel of size15k. We believe that this kernel
can be further improved and thus the running time substantially decreased. However, it is
already much better than2O(|H|k log k+k|H| log |H|), the running time of the general algorithm
in [FHRST04].

We have also proved thats-Star Packing (K1,s-Packing) is in general fixed-parameter
tractable with a quadratic kernel size. We also gave an algorithm for the general case with
running timeO∗(2O(k log k)), but this is not an improvement over [FHRST04] or [AYZ95].

There are several related problems that could be considered in light of the techniques used
in Section 9.3. The most obvious one is the following:

k-K1,s-PACKING

INSTANCE: GraphG = (V, E)
PARAMETER: k
QUESTION: Are therek edge-disjoint instances ofK1,s in G?

This problem is fixed-parameter tractable whens is 2 or 3 using Robertson and Sey-
mour’s Graph Minor Theorem [RS99]: It can be easily proved that itsNO-instances are
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closed under minors. The issue here is that this method is non-constructive and carries a
fast growing functionf(k). Possibly, applying similar arguments as those in Section 9.4
would lead to a much better running time.
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