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PACKING STARS

Looking at the Stars'
Elena Prieto Christian Sloper
Abstract

The problem of packing vertex-disjoint copies of a grapH into another
graphG is NP-complete ifH has more than two vertices in some connected
component. In the framework of parameterized complexity we analyze a
particular family of instances of this problem, namely the packing of stars.
We give a quadratic kernel for packirigcopies of H = K; ;. When we
consider the special case o= 2, i.e., H being a star with two leaves, we
give a linear kernel and an algorithm running in tié25-30tk k25 4 p3),

9.1 INTRODUCTION

The problem ofMAXIMUM H-MATCHING, also calledMAXIMUM H-PACKING, is of
practical interest in the areas of scheduling [BM02], wireless sensor tracking [BKO1],
wiring-board design and code optimization [HK78] and many others.

The problem is defined as follows: Lét = (V, E) be a graph and! = (Vy, Ey) be

a fixed graph with at least three vertices in some connected componerfi.-gacking

for GG is a collection of disjoint subgraphs 6f, each isomorphic td7. In an optimiza-

tion sense, the problem that we want to solve would be to find the maximum number of
vertex disjoint copies off in G. The problem is NP-complete [HK78] when the graph

H has at least three vertices in some connected component. Note that in the case where

1This paper first appeared at the conference 'First International Workshop on Parameterized And Exact
Computation’ in September 2004. It was later invited and accepted to a special use of the Journal of
Theoretical Computer Science where it is due to appear [PS04].
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H is the complete graph on two node$;packing is the very well studied (and polyno-

mial time solvable) problenMAXIMUM MATCHING. MAXIMUM H-PACKING has been
thoroughly studied in terms of approximation. The problem has been proved to be MAX-
SNP-complete [K94] and approximable withi; | /2 + ¢ for anye > 0 [HS89]. Several
restrictions have also been considered (planar graphs, unit disc graphs etc.) in terms of the
complexity of their approximation algorithms. For a review of these we refer the reader
to [AC99].

A recent result by [FHRSTO04] gives a general algorithm for packing an arbitrary gfaph
into G. Their result gives @°(Iklogk+klH|log |H) glgorithm for the general case, where

k is the number of copies aoff. It should also be noted that it is possible to achieve a
single exponential running time for this problem by adapting a result by Alon, Yuster, and
Zwick in [AYZ95].

Theorem 9.1.1 (Alon, Yuster, Zwick) Le$ be a directed or undirected graph dnver-
tices with treewidtht. LetG = (V, E) be a (directed or undirected) graph. A subgraph
of G isomorphic toS, if one exists, can be found 2Y® |V |**+! expected time and in
20|/ |+ 1 1og |V | worst case time.

It is easy to see how to apply this problem to packing a grdph.et the graphS in the
above theorem bg copies of a grapl/. SinceS has treewidth at most#/|, we have

a 20| V/|IH1+1 algorithm for the problem. Unfortunately the running time obtained by
Alon et al. [AYZ95] hides a considerable constant in the exponent making this algorithm
infeasible in practical terms.

We discuss the parameterized complexity ofMhexiIMuM H-PACKING problem for the
case when belongs to the restricted family of graplis= Kj ,, a star withs leaves.
More formally:

K s-PACKING
INSTANCE: GraphG = (V| F), a positive integek
QUESTION: Are there at least vertex disjoint instances df; ; in G?

This problem has already been studied within the framework of classical complexity the-
ory [HK86]. In their paper, Hell and Kirkpatrick studied the complexity of packing com-
plete bipartite graphs into general graphs. We include a brief introduction to this topic in
Section 9.2. In Section 9.3 we show that the general problem is tractable if parameterized,
and that we can obtain a quadratic kernel. In Section 9.4 we show that the special case of
packingk »’s has a linear kernel, and in Section 9.5 we give a quick algorithm for both
the general and special case. In contrast [FHRSTO04] obtains ordf/at) algorithm for
packing a graph with three vertices, namély.
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9.2 INTRODUCTIONTO PARAMETERIZED ALGORITHMS

A problem with main inputr and parametek is said to be fixed parameter tractable if
there is an algorithm with running tim@(f (k)|z|°™), wheref is an arbitrary function.

In [FO3] Mike Fellows presents a two-sided view of research on parameterized problems
which he dub ‘the two races’. First, that it is interesting to obtain better running time for
fixed parameter tractable problems, but also that is of interest to improve the size of the
kerneleven if this does not immediately lead to an improvement in running time.

Definition 9.2.1 A parameterized problethis kernelizable if there is a parametric trans-
formation ofL to itself that satisfies:

1. The running time of the transformation @f, k) into («/, k'), where|z| = n, is
bounded by a polynomialn, k),
2. k' <k,and

3. |2'| < h(E"), whereh is an arbitrary function.

Obviously the two views are not independent, as improvements in the latter could give
improvements in the first, but it is also important to note the following result by [DFS99],
which gives a stronger link between the two races:

Lemma 9.2.1 A parameterized problem is in FPT if and only if it is kernelizable.

The two races are worth playing as they may lead to substantial improvements on the qual-
ity of the algorithms we design and also to new strategies for practical implementations
of these algorithms.

9.2.1 PRELIMINARIES

We assume simple, undirected, connected gra&phs (V, E') where|V| = n. The set
of neighbors of a vertex is denotedV(v), and the neighbors of a sétC V, N(S) =
Uwes N(v)\ S. If Jis a collection of graphs, thein(.J) is the set of vertices in the graphs
inJ.

The induced subgraph ¢f C V' is denoted~[S].

We use the simplefi \ v to denoteG[V \ {v}] for a vertexv andG \ e to denoteG =
(V,E \ {e}) for an edgee. Likewise G \ V' denotesG[V \ V'] andG \ E’ denotes
G = (V,E\ E') whereV"’ is a set of vertices anf’ is a set of edges.

We say thatk, ; is ans-star or a star of size. P, denotes a path of+ 1 vertices and
edges.
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9.3 PARAMETERIZED COMPLEXITY OF STAR PACKING

In this section we prove a series of polynomial time preprocessing rules (reduction rules)
and eventually show that we can obtain a kerneD¢k?) vertices for the parameterized
version ofK; s-packing.

We use the following natural parameterization/of ;-PACKING:

k-K s-PACKING

INSTANCE: GraphG = (V, E)

PARAMETER: k

QUESTION: Are therek vertex disjoint instances dof; ; in G?

In order to remove vertices of high degree, and remove useless edges between vertices of
low degree, we introduce the following reduction rules.

Lemma 9.3.1 Let G be a graph with a vertex where deuv) > k(s + 1) — 1. ThenG
has ak-K ;-packing if and only il7 \ v has a(k — 1)-K ;-packing.

Proof. If G has ak-K; ,-packing, thenG’ obviously has gk — 1)-K; ,, asv cannot
participate in two different stars.

If G' has a(k — 1)-K s-packing, we can createkak; ,-packing by adding. Thek — 1
stars already packed cannot use more than 1)(k — 1) of v's neighbors, leaving
vertices forv to form a new star. O

Lemma 9.3.2 Let G be a graph with neighboring vertices and v where degu) <
deqv) < s. ThenG has ak-packing if and only ifG' = (V, E(G) \ uwv) contains a
k-packing.

Proof. If G has ak-K; s-packing, then’ has ak-K; s-packing, asw can never partic-
ipate in ak; ;. The other direction is trivial, i7" has ak-K, ;-packing, then has a
k-K; s-packing as well. O

In order to give a quadratic kernel for the fixed parameter version 8fAR PACKING

we will use a new technique first seen in [FM+00]. This technique borrows ideas from
extremal graph theory. We will show that any graph where Lemmas 9.3.1 and 9.3.2 do not
apply is either ‘small’ (having less thayik) vertices) or has &- K ;-PACKING. We do

this by studying a 'border’-line grap&: A graph with ak- K ;-packing, but ndk + 1)-

K, s-packing. This allows us to make claims about the structure and finally to prove

a bound onV(G)|.
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A graph isreducedwhen Lemmas 9.3.1 and 9.3.2 can not be applied. In this sense both
these lemmas will be commonly referred ta@guction rules As an additional reduction
rule, we delete vertices of degree 0, as they never participate in any star.

Lemma 9.3.3 (Boundary Lemma) If a graph instan@@, k) is reduced and has /i K ;-
packing, but nqk + 1)-K, ,-packing therV (G)| < k(s® + ks* + ks + 1).

Proof. Assume there exists a counterexam@lesuch that is reduced and containsta
K, s-packinglV, but no(k+1)- K ,-packing and has siZ& (G)| > k(s®+ks*+ks+1).
Let@ =V \ W. LetQ; be the vertices i) that have degregin the subgraph induced

by Q. We will now prove a series of claims that bound the number of verticéks in

ClamlVi>s Q=10

Claim 2 A K, ,-star S € W has at most? + k(s + 1) — 1 neighbors inQ.
The following claim follows from Claim 2:

Claim 3 W has at most:(s* + k(s + 1) — 1) neighbors inQ.

Let R =V \ (W UN(W)), i.e., the set of vertices @ which do not have
neighbors int’.

Claim4 Ris anindependent set .

Claim 4 ensures us that all vertices fhhave an edge to one or more vertexin By
Claim 1, we know that each of the verticesgh\ R have at most — 1 such neighbors
and thus by Claim 3, the total size &fis at most(s — 1) - |Q \ R|.

Intotal, G has sizeV (G)| = [W|+|Q| < k(s+1)+s-k-(s*+k(s+1)—1) = k(s3+ks*+
ks + 1), contradicting the assumption that the graph has morekh&nt- ks* + ks + 1)
vertices. This concludes the proof of the boundary lemma. O

From this boundary lemma follows that any reduced instance that is still ‘big’ ias a

K, s-packing. Since the boundary given by Lemma 9.3.3 does not depend on the main
input, but only on the parameter and the problem in question, we can say that the reduced
instance is a ‘problem-kernel’ and that the problem is in FPT.

Lemma 9.3.4 (Kernelization Lemma) If a grap&' is reduced and had/ (G)| > k(s3 +
ks* + ks + 1), then it contains &- K s-packing.
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Proof. Assume in contradiction to the stated theorem that there exists a Grapksize
V(G| > k(s® + ks* + ks + 1), having nok- K ,-packing.

Let £ < k be the largest’ for which GG is a YES-instance. By the Boundary Lemma
9.3.3, we know thatV (G)| < K'(s® + k's®> + kK's + 1) < k(s® + ks®> + ks + 1). This
contradicts the assumption. O

Thus for anyk-K; ,-packing we can prove a quadratic kernel. However, for the special
cases = 2, we can improve on this. This is the topic of the next section.

9.4 THE SPECIAL CASE OF P,: A LINEAR KERNEL

A 2-star can also be seen as a path with three vertices, deRatdebr this special case
we can employ a different set of reduction rules to obtain a linear kernel for pagking
into a graph.

k-P5-PACKING

INSTANCE: GraphG = (V, E)

PARAMETER: k

QUESTION: Are therek vertex disjoint instances af, in G?

To improve on the quadratic kernel obtained in the previous section, we will make use of
a series of reduction rules based on the ideas of crown decompositions [CFJO03].

Definition 9.4.1 A crown decompositioi,C, R) in a graphG = (V, E) is a parti-
tioning of the vertices of the graph into three sétsC, and R that have the following
properties:

1. H (the head)s a separator inz such that there are no edgesGhbetween vertices
belonging toC' and vertices belonging t&.

2. C =C,UC,, (the crown)is an independent set @.

3. |C,| = |H|, and there is a perfect matching betwegn and H.

There are several recent papers that use crown decompositions of graphs to obtain good
results in parameterized complexity [CFJ03, FHRSTO04, FO3, ACFL0O4, PS04]. These
papers either apply the crown directly to the problem instance ([CFJ03, ACFLO04]) or
create an auxiliary graph where they apply crown reduction techniques.

In this paper we instead modify the crown decomposition to fit our particular problem.
The first variation iglouble crown decompositiamhere each vertex il has two vertices
from C matched to it (as opposed to only one). See Figure 9.1.
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Definition 9.4.2 A double crown decompositiof¥{, C, R) in a graphG = (V. E) is a
partitioning of the vertices of the graph into three sgtsC', and R that have the following
properties:

1. H (head)is a separator inG such that there are no edges (" between vertices
belonging toC' and vertices belonging t&.

2. C=C,UC,, U, (the crown)is an independent set (@.

3. |Cn| = |H|, |Cn,| = |H| and there is a perfect matching betwegp and H, and
a perfect matching betweer,,, and H.

Figure 9.1: Example of ‘double crown’. The dashed lines indicate how each vertéx in
is matched to two vertices ifi.

Another variation of the crown is thfat crown decompositiowhere instead of indepen-
dent vertices irC’ we haveK,’s as shown in Figure 9.2.

Definition 9.4.3 A fat crown decompositio0H, C, R) in a graphG = (V, E) is a par-
titioning of the vertices of the graph into three séisC' and R that have the following
properties:

1. H (the head)s a separator inz such that there are no edgesGhbetween vertices
belonging toC' and vertices belonging t&.

2. G[C] is a forest where each component is isomorphi&to

3. |C| > |H|, and if we contract the edges in eaéh there is a perfect matching
betweerC and H.

Using the ‘crown’, ‘double crown’ and ‘fat crown’ we can create powerful reduction rules.

Lemma 9.4.1 AgraphG = (V, E) that admits a ‘double crown’-decompositioH, C, R)
has ak-P,-packing if and only ilG \ (H U C) has a(k — |H|)-P»-packing.
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Figure 9.2: Example of ‘fat crown’. As in the case of the ‘double crown’, the dashed lines
indicate the matching betweéi andC,, and the dashed ellipses show to whigh the
vertex inH is matched.

Proof.

(<) If G\ (HUC) has a(k — |H|)-P>-packing then it is obvious that has ak-P;-
packing asH U C' has a H|-P,-packing ¢ € H andv’s matched vertices fror,,, and
Cp, form ap).

(=:) We want to prove that i€z has ak-P,-packing therZ \ (H U C') has a(k — |H|)-
P,-packing. Assume in contradiction that there exists a gr@phhat has a crown-
decomposition H', C’, R’) that contradicts the lemma. This implies that U C’ par-
ticipates inz > |H’| different P,’s. SinceH’ is a cutset, and’ is an independent set in
the graph, every?, in G that has vertices i/’ U C’ must contain at least one vertex of
H'. Thus we can have at madi’| different P,’s which is a contradiction. O

Lemma 9.4.2 A graphG = (V, E) that admits a ‘fat crown’-decompositiofH, C, R)
has ak-P»-packing if and only itz \ (H U C) has a(k — |H|)-P»-packing.

The proof of Lemma 9.4.2 is analog to that of Lemma 9.4.1, thus omitted.

To apply crown-decompositions we need to know when we can expect to find one. A
very useful result in this regard can be deducted from [CFJ03, page 7], and [FO3, page
8]. Fortunately, the results also apply to the variations of crown decomposition described
here.

Lemma 9.4.3 Any graphG with an independent sét where|/| > |N(I)|, has a crown
decompositioiH, C, R), whereH C N (I) that can be found ilO(|V |+ |E|) time given
1.

Corollary 9.4.1 Any graphG with a collection/ of independenk’s’s where| N (V' (J))| <
|.J|, has a fat crown decompositiait/, C, R), whereH C N(V(J)), that can be found
in linear time, given/.
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Proof. This follows from the previous Lemma. If we replace e&Ghwith a single vertex,
then by Lemma 9.4.3 this graph admits a crown-decomposition. We can reintroduce the
K,'s to obtain a fat crown. O

Lemma 9.4.4 Any graphG with an independent séf where|I| > 2| N ()|, has a double
crown decompositiofH, C, R), whereH C N (I), that can be found in linear time given
I.

Proof. Let G be a graph with an independent set_ V(G) such tha|N(I)| < |1].
Create an identical grapfi’, but for every vertexr € N (/) add a copy/, such that
N(v) = N(v'). By Lemma 9.4.3G’ has a crown-decompositioif{, C, R) such that

H C N (I). We now claim that we can use this crown to construct a ‘double crown’
(H',C',R)inG.

First observe that € H if and only if v’ € H. Assume in contradiction thatc H but
v' ¢ H. The vertexo must be matched to some vertexn C. SinceN(v) = N(v'), we
have that’ cannot be inC' as it would contradict the fact that is an independent set.
Also v’ cannot be ik, as that would contradict thé&f is a cut-set. Thus’ must be inH,
contradicting the assumption.

With this observation, the result follows easily @sconsists of pairs of vertices; a vertex
and its copy. Each pairand’ in H is matched to two vertices, andu,. In G, letv be

in H' and let it be matched to both andu,. Do this for every pair ire. It is easy to see
that this forms a double crown @. O

We will now describe a polynomial time preprocessing algorithm that reduces the graph
to a kernel of size at modtk. The process below either reduces the graph or produces
a packing of the appropriate size, thus we can reach a kernel by repeating the following
three steps:

Step 1. Compute an arbitrary maximal P,-packing
W. Let Q=V\W.

Step 2. Let X be the collection of components
in  G[Q] isomorphic to Ky, If |X]|>|N(X)|
in G then reduce by Lemma 9.4.2.

Step 3. Let [ be the isolated vertices in G[Q].
If |/ > 2|N(I)] in @G, then reduce by
Lemma 9.4.1.

Lemma 9.4.51If |V(G)| > 15k then the preprocessing algorithm will either find:aP,-
packing or it will reduceG.
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Proof. Assume in contradiction to the stated lemma thé&tG)| > 15k, but that the
algorithm produces neitherkaP,-packing nor a reduction df.

By the assumption the maximal packifg is of size|lW| < 3k. Let@Q =V \ W. LetQ;
be the vertices i) that have degregin the graph induced b§.

Clam5 Vi >2,Q; =10

Proof of Claim 5.This is clear as otherwisé” could not be maxi-
mal. O

Claim 6 |Q:| < 6k

Proof of Claim 6. Assume in contradiction thaf),| > 6k. This
implies that the number df’,s X in @ is greater thaik, but then

| X| > |W]|. By Corollary 9.4.1G has a ‘fat crown’ and should
have been reduced in step 2 of the algorithm, contradicting that no
reduction took place. O

Claim 7 |Qo| < 6k

Proof of Claim 7. Assume in contradiction tha€),| > 6k, but
then|Q| is more thar2|1¥| and by Lemma 9.4.4 has a ‘double
crown’ and by Lemma 9.4.1 should have been reduced in step 3 of
the algorithm, contradicting that no reduction took place. O

Thus the total siz¢l/ (G)|] is |W |+ |Qo| + |Q1] + |Q2| + - - - < 3k + 6k + 6k + 0 = 15k.
This contradicts the assumption theYG)| > 15k. O

Corollary 9.4.2 Any instanc€G, k) of P,-packing can be reduced to a problem kernel
of sizeO (k).

Proof. This follows from the Lemma, as we can run the preprocessing algorithm until it
fails to reduces. By Lemma 9.4.5, the size is then at mosk. O

9.5 RUNNING TIME

For computing the kernel, we will run the preprocessing algorithm) times. Since

a maximalk-packing of P,’s can be computed i®(kn) time, the most time consum-
ing part is theO(|V| 4 | E|) time needed to compute a crown decomposition. Thus the
kernelization process can be completedif?) time.
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We will apply a straightforward brute-force algorithm on the kernels to find the optimal
solution. In the case oP,-packing, we will select the center-vertices of tRgs in a
brute force manner. There a@’“) ways to do this. By Stirling’s formula this expression

is bounded by2°301* With k center vertices already selected, the problem reduces to a
problem on bipartite graphs, where the question is if the vertices on the left hand side
each can have two neighbors assigned to it. This can easily be transforiectmum
BIPARTITE MATCHING by making two copies of each vertex on the left hand sMex -

IMUM BIPARTITE MATCHING can be solved in timé&(/|V[| E|) [HK73]. We now have

15k + k vertices, and thu®(k?) edges. We can solve each of these in tithé?"), giv-

ing a running time of(25-3°1k£25) for the kernel. In total we can decide tlig-packing
problem in timeO 25301k 25 4 n3),

Applying the same technique for thestars we will achieveD(20*1gk) EO1)pO0))
which is asymptotically worse due to the quadratic kernel.

9.6 CONCLUSIONS AND FURTHER RESEARCH

Packing vertex-disjoint copies of a graphinto another grapls’ is NP-complete as long
as H has more than two vertices [HK78]. We have analyzed within the framework of pa-
rameterized complexity a specific instance of this problem, the packing of vertex-disjoint
stars withs leaves. We have proved that packifg.’s in a graphG, and equivalently
k-P,-PACKING, has a linear kernel.

Our algorithm fork-P,-PACKING runs in timeQ(2539%k25 4 n3). This running time
arises from reducing the problem to a kernel of sizé. We believe that this kernel

can be further improved and thus the running time substantially decreased. However, it is
already much better thax?(|/7Ikleg k+kH[log [H]) 'the running time of the general algorithm

in [FHRSTO4].

We have also proved thatStar Packing K, ,-Packing) is in general fixed-parameter
tractable with a quadratic kernel size. We also gave an algorithm for the general case with
running time©*(2°*1°sk)) ' put this is not an improvement over [FHRST04] or [AYZ95].

There are several related problems that could be considered in light of the techniques used
in Section 9.3. The most obvious one is the following:

k-K, s~-PACKING

INSTANCE GraphG = (V. E)

PARAMETER: k

QUESTION: Are therek edge-disjoint instances @f; ; in G?

This problem is fixed-parameter tractable wheis 2 or 3 using Robertson and Sey-
mour’s Graph Minor Theorem [RS99]: It can be easily proved thaiitsinstances are



9.6 CONCLUSIONS ANDFURTHER RESEARCH 77

closed under minors. The issue here is that this method is non-constructive and carries a
fast growing functionf (k). Possibly, applying similar arguments as those in Section 9.4
would lead to a much better running time.
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