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A phase field theory with model parameters evaluated from atomistic simulations/experiments is applied 
to predict the nucleation and growth rates of solid CO2 hydrate in aqueous solutions under conditions 
typical to underwater natural gas hydrate reservoirs. It is shown that under practical conditions homoge-
neous nucleation of the hydrate phase can be ruled out. The growth rate of CO2 hydrate dendrites has 
been determined from phase field simulations as a function of composition, while using a physical inter-
face thickness (0.85 ± 0.07 nm) evaluated from molecular dynamics simulations. The growth rate ex-
trapolated to realistic supersaturations is about three orders of magnitude larger than the respective ex-
perimental observation. Possible origin of the discrepancy is discussed. It is suggested that a kinetic bar-
rier reflecting the difficulties in building the complex crystal structure is the most probable source of the 
deviations.    
 
 

I. INTRODUCTION 
 
Natural gas hydrates are available in abundance in un-

derwater reservoirs: The amount of carbon bound in natural 
gas hydrates is conservatively estimated to be twice the 
amount of carbon to be found in fossil fuels on Earth.1 Un-
der conditions typical for the underwater hydrate reservoirs 
(temperatures ranging from −1 C to a few C, and pressures 
in the range of 5 − 20 MPa), the natural gas hydrates can be 
converted to the significantly more stable CO2 hydrate in the 
presence of liquid CO2 or aqueous CO2 solution, while natu-
ral gas is released. This process is considered as a potential 
candidate for depositing the ever-increasing quantities of in-
dustrial CO2, as it may become economic owing to the asso-
ciated natural gas production. Besides offering a way to re-
duce the quantity of one of the most important greenhouse 
gases, this process might also ease/solve the energy prob-
lems expected when exhausting the oil reserves. One of the 
main obstacles of developing appropriate technologies for 
the exploitation of the natural gas hydrate reserves is the 
lack of information on the kinetics of the relevant chemical 
reactions. The kinetics of CO2 hydrate formation in aqueous 
solutions is one of the processes of interest. While laboratory 
experiments indicate that CO2 hydrate dendrites grow at a 
rate of v  = 55 µm/s at a 9 K undercooling in supersaturated 
aqueous solution,2 there is a general lack of information on 
the nucleation and growth rates under other conditions.3  In a 
recent paper, we applied the phase field theory to predict the 
formation of CO2 hydrate.4,5 The phase field theory is one of 
the most potent continuum methods that are used to describe 
solidification phenomena6-8 including the homogeneous and 
heterogeneous nucleation6(d),7 and growth of complex crys-
tallization morphologies.6,8 Multi-scale approaches based on 
continuum models that use model parameters obtained from 
atomistic simulations proved successful in quantitatively 

predicting nucleation rates 6(d),7(a)-(d),(f) and growth rates of 
dendritic crystals.6(c)           

In this paper, such a multi-scale approach is used to ad-
dress the formation of CO2 hydrate in supersaturated aque-
ous solutions: We perform molecular dynamics simulations 
with realistic interaction potentials to determine the thick-
ness of the CO2 hydrate-aqueous solution interface. This in-
terface thickness together with the experimental interfacial 
free energy is used to fix the model parameters of the phase 
field theory. Phase field calculations are then performed to 
determine the rate of homogeneous nucleation, and the ve-
locity of growth of CO2 hydrate in dendritic form.  

The paper is structured as follows. In Section II, we de-
scribe the phase field models used in studying hydrate nu-
cleation and growth, and the molecular dynamics simula-
tions used to investigate the interface properties. In Section 
III the bulk physical properties of the CO2 hydrate-aqueous 
solution system are compiled. In Section IV we present our 
results: First, the equilibrium properties of the aqueous solu-
tion – CO2 hydrate interface are investigated using molecular 
dynamics simulations. This is followed by presenting the re-
sults of phase field calculations for the formation CO2 hy-
drate in aqueous solutions. A summary of the results is given 
in Section V. 

 
II. MULTI-SCALE APPROACH TO GAS HYDRATE  
    FORMATION 

 
Following previous work6(c),7(c),(d),(f) we apply the phase 

field approach with model parameters deduced from atom-
istic simulations and/or experiment. Within the framework 
of the phase field theory, we are going to address various 
phenomena including nucleation and dendritic growth. For-
mulation of the theory is described in Sections II.A, while 
the details of the atomistic simulations for the hydrate – 
aqueous solution interface are presented in Section II.B.   



 2

A. Phase field theory 
 

The local state of the matter is characterized by two 
fields: The non-conserved phase field, φ, which monitors the 
transition between the liquid and crystalline phases, related 
to the structural order parameter as m = 1− φ, and a con-
served field,9 the coarse-grained CO2 concentration, c.  

The structural order parameter m can be viewed as the 
Fourier amplitude of the dominant density wave of the time 
averaged singlet density in the solid. As pointed out by Shen 
and Oxtoby,10 if the density peaks in the solid can be well 
approximated by Gaussians placed to the atomic sites, all 
Fourier amplitudes can be expressed uniquely in terms of the 
amplitude of the dominant wave, thus a single structural or-
der parameter suffices in expanding the free energy. For his-
toric reasons,11 we take φ = 0 in the solid and φ = 1 in the 
liquid. Furthermore, we neglect the density difference be-
tween the solid and liquid phases, which – together with 
mass conservation – implies that the integral of the concen-
tration field over the volume of the system is a constant. 
(Work is underway to incorporate the change of molar vol-
ume upon hydrate formation, an extension of theory that re-
quires a hydrodynamic approach.) 

In the present work, the free energy of the inhomogene-
ous system is assumed to be a simple local functional of the 
phase and concentration fields: 
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This form of the free energy functional is fully consistent 
with the entropy-functional-based theory by Warren and 
Boettinger.11 Here ε is a constant, T is the temperature, and 
f(φ, c) is the local free energy density. The gradient term for 
the phase field leads to a diffuse crystal-liquid interface, a fea-
ture observed both in experiment12 and computer simula-
tions.13 The local free energy density is assumed to have the 
form f(φ, c) = wT g(φ) + [1 − p(φ)] fS(c, T) + p(φ) fL(c, T), 
where the “double well” and “interpolation” functions have 
the forms g(φ) = 1/4 φ2(1 − φ)2 and p(φ) = φ3(10 − 15φ + 6φ2), 
respectively, that emerge from the thermodynamically con-
sistent formulation of the PFT.11,14 The respective free energy 
surface has two minima, whose relative depth, the driving 
force for crystallization, is a function of both temperature and 
composition as specified by the free energy densities in the 
bulk solid and liquid, fS,L(c, T), respectively. The free energy 
scale w determines the height of the free energy barrier be-
tween the bulk solid and liquid states.  

The dependence of the surface energy on the orientation of 
the liquid solid interface is introduced through the function 
s(ϑ, θ) = 1 + s0 cos[k(ϑ − 2πθ/k)], which multiplies the pen-
alty for gradients in φ.15 Here s0 is the ‘anisotropy’ parameter, 
and k is the symmetry index (e.g., k = 4 stands for four-fold 
symmetry of the interfacial free energy), ϑ = atan[(∇φ)y 
/(∇φ)x] is the inclination of the solid-liquid interface in the 
laboratory frame, and θ ∈ [0,1] is the normalized inclination 
angle determining the crystal orientation in the laboratory 
frame. 

Provided that the bulk thermodynamic properties fL(c, T) 
and fS(c, T) are known, the only model parameters remaining 

undetermined are ε and w, which we assume independent of 
composition, for the sake of simplicity. These model pa-
rameters can be related to measurable quantities characteriz-
ing the equilibrium planar interface (see Section II.A.1) 
emerging between the coexisting solid and liquid phases (of 
compositions determined by the common tangent construc-
tion). 

Once the free energy functional is specified, the height of 
the nucleation barrier and the equations of motion that de-
scribe the time evolution of the system can be obtained follow-
ing the practice of classical field theory. 
 
1. Equilibrium interface 

 
The CO2 hydrate and the aqueous solution of CO2 of ap-

propriate compositions (cS
e and cL

e, respectively) coexist un-
der conditions typical to medium depths. The phase and con-
centration field profiles that are realized under such condi-
tions minimize the free energy of the planar interface. This 
extremum of the free energy functional is subject to the sol-
ute conservation constraint discussed above. To impose this 
constraint one adds the volume integral over the conserved 
field times a Lagrange multiplier, λ, to the free energy: λ 
∫d3r c(r). The field distributions, that extremize the free en-
ergy, obey the appropriate Euler-Lagrange (EL) equations. 
Since in planar geometry the total free energy density I does 
not depend explicitly on the coordinate z (measured perpen-
dicular to the interface), the EL equation for the phase field 
takes the form:16 
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while the EL equation for the composition field reads as 
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where I = ½ε2T(∇φ)2 + ∆f, and ∆f = f − λc − K0 is the total 
free energy density inclusive the term with Lagrange multi-
plier and a constant K0. The EL equations have to be solved 
under the boundary conditions that bulk hydrate and liquid 
solution phases of the equilibrium compositions exist at z → 
± ∞, respectively. Under such conditions, the Lagrange mul-
tiplier can be identified as λ = − (∂I/∂c)z→±∞ = − (∂fS/∂c)(cS

e) 
= − (∂fL/∂c)(cL

e), while K0 =  − cL
e (∂fL/∂c)(cL

e) − fL(cL
e).As a 

consequence, ∆f = f − f0, where f0 = fL(cL
e) + (∂fL/∂c)(cL

e)[c − 
cL

e] = fS(cS
e) + (∂fS/∂c)(cS

e)[c − cS
e] is the equation of the 

common tangent. 
Considering these and an isotropic interface (s0 = 0), the 

EL equations can be rewritten as:16 
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Since the right hand side of Eq. (3b) is a function of the 
fields c and φ, it provides the implicit relationship c = c(φ) 
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[which can be determined by inverting Eq. (3b) numeri-
cally]. The phase field profile is then obtained by expressing 
dz/dφ from Eq. (3a) and integrating it with respect to φ after 
inserting c = c(φ): 
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Then, the 10% − 90% thickness of the interface reads as 
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After trivial manipulations of Eq. (3a),16 the free energy of 
the solid-liquid interface can be expressed as  
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Two-dimensional Newton-Raphson iteration based on 
Eqs. (5) and (6) has been used to find those values of the 
model parameters ε and w by which the known values of d 
and γ∞ are recovered.  
 
2. Calculation of the nucleation barrier 
 

Crystallization of non-equilibrium liquids starts with nu-
cleation, a process in which crystallike fluctuations appear, 
whose formation is governed by the free energy gain when 
transferring molecules from liquid to the crystal and the ex-
tra free energy γ needed to create the crystal–liquid inter-
face.17-19 The fluctuations larger than a critical size have a 
good chance to reach macroscopic dimensions, while the 
smaller ones dissolve with a high probability. Being in un-
stable equilibrium, the critical fluctuation (the nucleus) can 
be found as an extremum (saddle point) of this free energy 
functional,7,18,19 subject again to solute conservation dis-
cussed above. The field distributions, that extremize the free 
energy, obey again the respective EL equations 
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where δF/δφ and δF/δc stands for the first functional deriva-
tive of the free energy with respect to the fields φ and c, re-
spectively while I is total free energy density inclusive the 
term with Lagrange multiplier.18 These EL equations are to 
be solved assuming that unperturbed liquid (φ = 0, c = c∞) 
exists in the far field, while, for symmetry reasons zero field 
gradients appear at the center of the fluctuations. Under such 
conditions, the Lagrange multiplier can be identified as λ = 
− (∂I/∂c)r→∞ = −  (∂fL/∂c)(c∞). 

Assuming spherical symmetry (s0 = 0), which is reason-
able considering the low anisotropy of the crystal-liquid in-
terface of simple liquids at small undercoolings, the EL 
equations can be rewritten as: 
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Here ′ stands for differentiation with respect to the argument 
of the function. Again, the EL equation for the concentration 
field defines the implicit relationship c = c(φ) [that has been 
obtained by inverting Eq. (8b) numerically]. Accordingly, 
Eq. (8a) is an ordinary differential equation for φ(r). This 
equation has been solved here numerically using a fourth or-
der Runge-Kutta method. Since φ and dφ/dr are fixed at dif-
ferent locations, the central value of φ that satisfies φ → φ∞ = 
1 for r → ∞, has been determined iteratively. Having deter-
mined the solutions φ(r) and c(r), the work of formation of 
the nucleus W* has been obtained by inserting these solu-
tions into the free energy functional. Provided that the model 
parameters w and ε has been evaluated from the thickness 
and free energy of the equilibrium planar interface, the work 
of formation of the critical fluctuation W* in the supersatu-
rated state can be calculated without adjustable parameters. 

The steady state nucleation rate (the net number of criti-
cal fluctuations formed in unit volume and time), JSS, can be 
computed as  
 

{ }kTWJJ SS /exp *
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using the classical nucleation prefactor,20 J0, verified ex-
perimentally on oxide glasses.21   

   
3. Phase field simulation of single crystal growth 

 
Time evolution is assumed to follow relaxational dynam-

ics6  
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The time scales for the two fields are determined by the 
appropriate mobilities appearing in the equations of motion, 
and Mφ, and Mc are the mobilities associated with coarse-
grained equation of motion, which in turn are related to their 
microscopic counterparts. The mobility Mc, is directly pro-
portional to the classic interdiffusion coefficient for a binary 
mixture, while the mobility Mφ dictates the rate of crystalliza-
tion. Recent experiment has shown that the rate of crystalli-
zation in highly supercooled liquids is proportional to the 
translational diffusion coefficient (Dtr),22 which is, in turn, 
related to the viscosity (η) as Dtr ∝ η− 0.74. In our model, the 
growth velocity scales linearly with Mφ, so consistency re-
quires Mφ ∝ Dtr.  

Equations of motion – Phase field: Using the length and 
time scales ξ and ξ 2/Dl, respectively, where Dl is the chemi-
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cal diffusion coefficient in the liquid, the dimensionless 
phase field mobility mφ = Mφα0

2T/Dl, the following dimen-
sionless form emerges  
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(Henceforth, quantities with tilde are dimensionless.) 
Equations of motion – Concentration field: Following 

previous works,11,23 we choose the mobility of the concentra-
tion field as Mc = (vm/RT) D c (1 − c), where vm is the aver-
age molar volume, and D = Ds + (Dl – Ds) p(φ) is the diffu-
sion coefficient. This choice ensures a diffusive equation of 
motion. Introducing the reduced diffusion coefficient λ = 
D/Dl, the dimensionless equation of motion for the concen-
tration field reads as 
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The time evolution of the system is studied by solving 
Eqs. (11) and (12) numerically in 2D. Details of the numeri-
cal solution are reviewed in Section II.A.4. 

It is appropriate to call attention to the limitations of the 
phase field approach. The main difficulty quantitative phase 
field modeling has to face is that a sub-nanometer spatial 
resolution is needed in the interfacial region that extends to a 
couple of nanometers according to experiment12 and com-
puter simulations.13 This diffuseness of the interface is re-
covered in the phase field models as a result of the square-
gradient terms in the free energy, which penalize sharp 
changes of the fields. The interface thickness is, usually, or-
ders of magnitude smaller than the objects of interest, thus 
numerical solution of the equations, at the resolution re-
quired to describe the nanometer thick diffuse interfaces 
properly, is, in general, limited to small systems (in two and 
higher dimensions). To overcome this difficulty, different 
methods have been worked out.  

(i) To ensure the proper interface dynamics, the model 
parameters are adjusted and interface currents (i.e., new term 
in the phase field equations) are introduced to compensate 
for the unphysical effects of the broad interface.24 These 
methods make a quantitative phase field modeling of den-
dritic solidification feasible for thermal dendrites and den-
drites in dilute solutions.24(b),25 While quantitative simula-
tions of such dendrites with model parameters fixed by at-
omistic simulations is perhaps the most spectacular suc-
cesses of theory, a generally applicable approach (that could 
be used for hydrate formation) has yet to be developed.  

(ii) Application of an adaptive grid that is fine at the in-
terfaces can reduce the numerical problems tremendously.26 
However, noise needs to be introduced into the governing 

equations to obtain realistic morphologies,11 and this is ex-
pected to lead to non-trivial problems in the case of models 
of unequal cell sizes that needs to be clarified first.    

Thus, techniques (i) and (ii) cannot be easily adapted to 
hydrate formation, as the aqueous solution-CO2 hydrate sys-
tem is far from being a dilute solution, and as we wish to 
take into account the effect of noise in obtaining the growth 
morphology. Therefore, in the present paper, we perform 
quantitative simulations with the physical interface thickness 
relying on efficient algorithms (a spectral method) and paral-
lel computing. This evidently limits the size and time avail-
able for the simulations. We, therefore, investigate the sensi-
tivity of the results to broadening of the interfaces, to see 
whether it is possible to make simulations that are less costly 
but still reasonably accurate.  

A further difficulty associated with quantitative phase 
field calculations is that the detailed information on the sys-
tem needed for such computations, such as the magnitude 
and anisotropy of the phase field mobility and the interfacial 
free energy, are generally inaccessible. Linking the phase 
field theory with atomistic simulations via evaluating the 
model parameters (mobility, anisotropies, interfacial free en-
ergy) from molecular dynamics simulation is a possible reso-
lution to this problem.6(c),27 
 
4. Numerical implementation  
 

The governing equations have been solved numerically 
using a semi-implicit spectral scheme. To generate suffi-
ciently smooth initial conditions, the first time-steps were 
done by explicit finite difference (FD) discretization. The 
computational cost of a single implicit step is about 5 times 
larger than that of an explicit FD step, however, the length 
of the implicit time-step can be about 150-300 times longer 
than the explicit step. We have prescribed periodic boundary 
conditions. In a few cases, the same problem has been 
solved by both explicit and implicit schemes. A parallel C 
code has been developed including fast Fourier transform 
(FFT) that relies on the Message Passing Interface (MPI) 
protocol. To optimize the performance, we have developed a 
parallel FFT code based on the fftw library.28 Our computa-
tions were performed on a PC cluster built up exclusively for 
phase field calculations at the Research Institute for Solid 
State Physics and Optics, Budapest. This cluster consists of 
100 nodes and a server machine (all equipped with AMD 64 
bit processors and 1 Gbit communication). Exploratory cal-
culations have also been performed on another computer 
cluster at the University of Bergen. The present paper is 
based on computations exceeding 20 CPU-years on a 2 GHz 
processor.   
 
B. Molecular dynamics  
 

Molecular dynamics (MD) simulations were performed 
to study the microscopic properties of the hydrate-aqueous 
fluid interface. The hydrate part of our system comprised a 
block of structure I carbon dioxide hydrate29,30 made of 
2×2×11 unit hydrate cells (2024 SPC/E water31 and 264 
three-site CO2 molecules.32 The hydrate structure was gener-
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ated as a perfect equilibrated periodic hydrate crystal arbi-
trary broken in two and brought into contact with a pre-
equilibrated 40 Å long slab of 795 SPC/E water molecules. 
The resulting interfacial system ranged about 170 Å in 
length. Periodic boundary conditions were applied in all 
three directions.  

Our MD routine used the MDynaMix package of Lyu-
bartsev and Laaksonen33 with explicit reversible integrator 
for NPT-dynamics of Martyna et al.,34 modified to imple-
ment implicit quaternion treatment of rigid molecules with 
Nosé-Hoover thermostat for temperature and pressure.35-37 
The time step was set to 1 fs, with the simulation run totaling 
upward of 5 million steps. Electrostatic interactions were 
handled by means of the Ewald summation technique with a 
variable number of reciprocal vectors. Linux-based Message 
Passing Interface (MPI) was used to implement parallel 
computation on a cluster of dual-processor machines.  

The system was kept at a constant temperature of 240 K 
and pressure of 20 MPa by means of Nosé-Hoover thermo- 
and barostat, where only the tangential components of pres-
sure tensor were used to evaluate and control the pressure. 
Bryk and Haymet38 have shown that the stable ice-water in-
terface of SPC/E water is located around 225 ± 10 K. Thus 
the chosen value of 240 K ensured the liquidity of model 
water and, at the same time, roughly corresponds to the tem-
perature range used in the phase-field simulations 
 
III. PHYSICAL PROPERTIES 
 

The molar Gibbs free energy of the aqueous CO2 solu-
tion has been calculated as FL = (1 − c) FL,W + c FL,CO2, 
where c is the mole fraction of CO2. The partial molar free 
energy of water in solution has been obtained as FL,W = FL,W

0 
+ RT ln[(1 − c) γL,W(c)], where the free energy of pure water 
has been calculated as  
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with coefficients ki taken from Ref. 39. Here R is the gas 
constant and γL,W is the activity coefficient of water in solu-
tion. The partial molar free energy of CO2 in solution is 
FL,CO2 = FL,CO2

∞ + RT ln[c γL,CO2(c)], where the molar free 
energy of CO2 at infinite dilution FL,CO2

∞ has been fitted to a 
simple function in temperature from solubility data extracted 
from the empirical model by Diamond and Akinfiev,40 at 
low pressures, where the solubility is very low. The value 
decreases slightly with temperature and at 274.3K FL,CO2

∞ = 
−21.50 J/mol. The activity coefficient of CO2 in aqueous so-
lution γL,CO2(c) has been fitted to solubility data at higher 
pressures and mole fractions. 

 

2

2
L,CO 1 2ln a c a cγ = + ,         (14) 

 

with a1= −2.522×103 and a2=1.020×106. The activity coeffi-
cient of water, γL,W in aqueous solution has been obtained 
from Eq. (14) via the Gibbs-Duhem relationship.  

The free energy of the hydrate is given by FS = (1 − c) 
FS,W + cFS,CO2. Owing to the lack of experimental informa-
tion, the partial molar quantities have been calculated using 

the model described in Ref. 39. For water and CO2 we use 
the relationships FS,W = FS,W

0 + RT (3/23) ln(1 − θ), and 
FS,CO2 = FS,CO

inc + RT ln[θ/(1 − θ)], respectively, where the 
hole occupancy is θ = [c/(1 − c)]/(3/23). Here, the partial 
molar free energies of the empty clathrate, FS,W

0, and that of 
guest inclusion, FS,CO

inc, are given by Eq. (13), with the ap-
propriate ki taken from Ref. 39. The respective phase dia-
gram and bulk free energies and the free energy surface are 
shown in Fig. 1. For further detail see Ref. 41.  

            (a)  
 

 

 

 
FIG. 1 (a) Calculated isobaric phase diagram of the water-CO2 system at p 
= 6.2 MPa (for details see Ref. 41).  Here Lw, H, V and VCO2 stand for the 
aqueous solution, the solid hydrate and for the vapor phases. (b) The bulk 
free energy density as a function of CO2 concentration at T = 274.3 K and 
p = 6.2 MPa for the CO2

 hydrate (solid line) and the aqueous solution 
(dashed line), as specified by Eqs. (13) and (14). (c) The free energy sur-
face f(φ, c) for the CO2

 hydrate – aqueous solution system calculated with 
w = 5.46 J/(K.cm3) under the same temperature and pressure as panel (b). 
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Unless stated otherwise, the computations are performed 
under conditions typical for the seabed reservoirs, i.e. T = 
274.3 K, p = 6.2 MPa (~ 620 m depth), furthermore, we as-
sume that water has been saturated by CO2 (c = 0.033, ob-

tained by extrapolating the relevant data by Teng and Yama-
saki42). These experimental data are for synthetic average 
seawater. The salinity of groundwater in reservoirs may vary 
from close to zero up to seawater salinity in regions where 
the penetration of seawater dominates the salinity.  

The saturation composition of the aqueous solution as a 
function of temperature and pressure has been calculated by 
the computer code of Diamond and Akinfiev.40 

The average molar volume is assumed to be vm = 18.02 
cm3/mol. 

The interfacial properties needed to fix ε and w (interfa-
cial free energy and interface thickness) are taken from ex-
periment and atomistic simulations. The experimental value 
of the free energy of the CO2 hydrate – aqueous solution in-
terface is γ∞ = 30 ± 3 mJ/m2, evaluated from hydrate disso-
ciation data in mesoporous silica.43 This magnitude of γ falls 
close to that of the ice – water interface (γ∞ = 29.1 ± 0.8 
mJ/m2)44 as expected.3,45 Unfortunately, the error of the ex-
perimental value is quite substantial (~10%), preventing an 
accurate calculation of the nucleation rate.    

We are unaware of experimental data for the anisotropies 
of the interfacial free energy. On the basis of the experimen-
tal images,2 we assume a four-fold symmetry (k = 4) of the 
interfacial free energy. It appears that under specific condi-
tions the CO2 dendrites have a faceted morphology that indi-
cates a substantial anisotropy.46 Considering these, unless 
stated otherwise the calculations were performed with an 
anisotropy s0 = 0.065 slightly below the critical one s0 = 
1/15, above which excluded direction appear in the equilib-
rium shape.47 

Owing to a lack of experimental information on the mi-
croscopic properties of the CO2 hydrate/aqueous solution in-
terface, we used molecular dynamics simulations to evaluate 
the interfacial density profiles. The envelope of the interfa-
cial density peaks, which may by loosely identified as the 
spatial variation of the amplitude of the dominant density 
wave, is fitted with the function  

 

X(z) = A + ½ B{1 + tanh[(z − z0) / (23/2δ)]},                (15)
    

where the interface thickness δ  is related to the 10% − 90% 
interface thickness d (the distance on which the phase field 
changes between 0.1 and 0.9) as d = 25/2atanh(0.8) δ. Note 
that this interface profile is strictly valid if the phase field 
decouples from the concentration field (i.e., chemical effects 
at the interface are negligible). In practice Eq. (15) seems to 
approximate the interfacial profiles reasonably well. As de-
tailed in Section IV.A, d shows some scattering when evalu-
ated from the density or charge density profiles for the two 
constituents (CO2 or H2O). The average value is d = 0.85 ± 
0.07 nm. Unless stated otherwise this value has been used to 
calculate the model parameters of the phase field theory.   

The respective magnitudes of the free energy parameters 
are ε2 = 1.25×10−15 J/(K.cm) and w = 5.46 J/(K.cm3). The 
corresponding free energy surface is displayed in Fig. 1(c). 

In the calculations with the physical interface thickness, 
the characteristic length scale was chosen as ξ  = 10−8 cm. 
Unless stated otherwise, for the explicit calculations, the 
time and spatial steps were ∆t = 0.04τ and ∆x = ξ, respec-

 

 

 

 
 

FIG. 2 Interfacial density and charge density profiles and the curves ob-
tained by fitting Eq. (20) to the upper and lower density envelopes. (a) 
H2O density; (b) CO2 density; (c) H2O charge density; (d) CO2 charge den-
sity. 
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tively, whereτ  = ξ2/ Dl  = 5×10−13 s. In the case of implicit 
calculations, the time step was 150 to 300 times larger.  

Finally, we need to set the values for the mobilities that 
fix the time scale for the evolution of the phase and concen-
tration fields.  

The diffusion coefficient of CO2 in liquid is Dl = 2×10−4 
cm2/s,48 while the diffusion coefficient in the solid has been 
assumed to be Ds = 10−3 Dl. 

The dimensionless phase field mobility is related to the 
kinetic coefficient β as mφ = βγ∞Tvm/(Dl∆Hf), where ∆Hf is 
the molar heat of fusion.11,23 Utilizing that (a) in the Wilson-
Frenkel model, applicable to most molecular liquids, β = 
Dl∆G/(l0RT), where l0 ≈ ρ1/3 is the molecular jump distance, 
and ∆G > 0 is the molar Gibbs free energy difference be-
tween the liquid and the solid, (b) according to Turnbull's 
linear approximation ∆G ≈ ∆Hf (Tf − T)/Tf,49 and that (c) the 
interfacial free energy can be related to the melting proper-
ties as γ∞ = α ∆Hf /(N0

1/3vm
2/3), one finds that mφ ≈ α (∆Sf /R), 

where ∆Sf  is the entropy of fusion and α is Turnbull's coef-
ficient that is ~ 0.45 for closed structures and ~ 0.33 for 
open structures.49 Approximating the relevant properties 
with those of the ice-water system, one finds mφ ≈ 0.77.   
 
IV. RESULTS AND DISCUSSION 
 
A. The planar hydrate – solution interface 
 

1. Molecular dynamics 
 

The interfacial density and charge density distributions 
emerging from our molecular dynamics simulations after 19 
ps time are shown in Fig. 2. The respective 10%−90% inter-
face widths d evaluated by fitting Eq. (20) to the upper and 
lower envelopes of the peaks and wells of the layer-wise av-
eraged density are presented in Table I. Despite the scatter-
ing of the data, the mass and charge density profiles show 
comparable interface widths, and their average is dphys  = 
0.85 ± 0.07 nm. (Note that the interface thickness, in which 
the properties change perceptibly, is about twice of this 
width, i.e., dfull ≈ 1.7 nm, which is still somewhat narrower 
than reported for other hydrate-liquid interfaces.50)   
 
2. Phase field theory 
 

The phase field and concentration profiles calculated us-
ing Eqs. (4) and (3b), respectively, are shown in Fig. 3. The 

phase field profile is very close to the form for the analytical 
solution for the one-component phase field theory relying on 
a quartic free energy. A remarkable feature is the rather 
sharp concentration profile. This requires a spatial step size 
as low as ∆x = 0.1 nm or less in the 2D simulations to re-
solve the concentration profile with a reasonable accuracy.  
 
B. Nucleation of CO2 hydrate 
 

Properties of the critical fluctuations are shown as a 
function of fluid composition in Fig. 4. As shown by the 
structural order parameter profiles [m(r) = 1 − φ(r)], in the 
vicinity of the saturation composition for T = 274.3 K at 6.2 
MPa, the critical fluctuation is far larger than the interface 
thickness [see Fig. 4(a)]. This suggests that the classical 
droplet model of the CNT should be a good approximation 
[Fig. 4(b)], as indeed reflected by the nucleation barrier 
heights and the steady state nucleation rates [Fig. 4(c)]. In 
this range, the nucleation rate is so small that the appearance 
of homogeneous nucleation can safely be excluded. This 
situation does not change much if the considerable uncer-
tainty of the interfacial free energy is taken into account 
[Figs. 4(b) and 4(c)], or the temperature/pressure are 
changed in the ranges 5.0 to 50.0 MPa corresponding to 
depths of ~ 500 to 5000 m, or between −1 C and 9 C, respec-
tively [see Figs. 5 and 6].   

The present analysis indicates that since the nuclei are 
quite large, the CNT predictions are fairly close to those by 
the PFT. We arrived to a different conclusion in recent stud-
ies4,5 as a result of the higher driving force used there. Our 
present analysis indicates that the nucleation rate in the prac-
tically interesting domain is far too low to observe homoge-
neous nucleation in this system. This result agrees with the 
experimental observation that volume nucleation of CO2 hy-
drate is indeed rarely observed in aqueous solutions, and 
suggests that, when it is seen, it is probably of heterogeneous 
origin.  

Our calculations also indicate that for an accurate predic-
tion of the nucleation rate, the solid-liquid interface free en-
ergy has to be determined with a far higher accuracy. Such 
accuracy can only be expected from molecular dynamics 

TABLE I. 10%−90% interface widths from MD simulations  
 

 d (nm) σd (nm) 
H2O  D↑ 0.93 0.50 
H2O  D↓ 0.86 0.25 
CO2  D↑ 0.79 0.25 
H2O  CD↑ 0.61 0.30 
H2O  CD↓ 0.69 0.24 
CO2  CD↑ 1.21 0.19 
CO2  CD↓ 0.88 0.14 
Average 0.85 0.07 
H2O  DGF 1.21 0.18 
CO2  DGF 1.07 0.13 

Notation: D − mass density, CD − charge density, ↑ − envelope of peaks, ↓ 
− envelope of wells, GF − Gaussian filtered. 

 
 

FIG. 3 Interfacial structural order parameter (1 − φ) (heavy solid line) and 
concentration profiles (dashed line). For comparison the (1/2){1 − tanh[z 
/(23/2δ)]} curve is also shown (white dashed line). Note that the structural 
order parameter profile is very close to the latter form. 
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simulations.27 Work is underway to evaluate this quantity 
from the interfacial fluctuations.27(b),27(e),27(f)-(g)  
 
C. Growth of CO2 hydrate dendrites in aqueous  
     solution 
 

Since with the present numerical approach the computa-
tions with the physical interface thickness are prohibitively 
time consuming under the conditions of the experiments of 

Tohidi et al.,2 we performed the simulations of dendritic so-
lidification at increased supersaturations, well over the satu-
ration concentration c = 0.033, and extrapolate them to the 
saturation limit. We performed the calculations for the CO2 
mole fractions of c = 0.05, 0.06, 0.07, and 0.08. The corre-
sponding growth forms are shown in Fig. 7. Our computa-
tions have been performed on a rectangular grid of 4096 × 
4096 size, with a spatial step of 0.1 nm. The steady state 
growth rate can be observed in only simulations of suffi-
ciently large size, that provide enough space for the transi-
tion from the initially circular seed crystal into the fully 
grown dendrite before self-interaction via the periodic 
boundary condition takes place. It appears that the size, we 
have chosen, is just enough to reach steady dendritic growth. 
The infinite time limit of the growth rate has been deter-
mined by linearly extrapolating the v vs. 1/t plot as shown in 
Fig. 8. The corresponding data are presented in Table II.    

In order to explore the possibility of extending the com-
putations to larger domains and later times, we have investi-
gated the dependence of growth rate and morphology on the 
interface thickness. Although doubling of the interface thick-
ness influences the growth rate and morphology only mar-
ginally (see Figs. 8 and 9), further increase of the interface 
thickness significantly increases the growth rate. We find 

 

 

 
 

FIG. 4 Properties of critical fluctuations as predicted by the phase field 
theory. (a) Radial structural order parameter (1 − φ) (heavy solid line) and 
concentration profiles (dashed line) profiles calculated at T = 274.3 K and 
p = 6.2 MPa, while the mole fraction of CO2 in the initial fluid phase from 
left to right was c = 0.08, 0.07, 0.06, 0.05, 0.04, 0.03 and 0.02. (b) The 
height of the nucleation barrier as a function of composition of the aqueous 
solution. (c) Steady state nucleation rate. In panels (b) and (c) the results 
from the phase field theory (heavy solid lines) and those from the classical 
nucleation theory (dashed lines) are compared. The uncertainty of the PFT 
prediction due to the experimental error of the interface free energy is also 
shown (thin solid lines). The CNT prediction has a comparable uncer-
tainty.   

 
 

FIG. 5 Height of the nucleation barrier vs. temperature as predicted for 
saturated aqueous solution at p = 6.2 MPa by the phase field theory (PFT) 
and by the droplet approximation of the classical nucleation theory (CNT). 
Note that due to the large size of the critical fluctuations the classical and 
non-classical predictions fall quite close. 

 
 
FIG. 6 Height of the nucleation barrier vs. pressure as predicted for satu-
rated aqueous solution at T = 274.3 K by the phase field theory (PFT) and 
by the droplet approximation of the classical nucleation theory (CNT).  



 9

that the composition of the hydrate phase changes only neg-
ligibly with the interface thickness. It is thus possible to ac-
celerate the numerical studies by doubling the interface 
thickness and the spatial step. This enables us to model later 
stage growth morphologies forming after the critical time t* 
= 9Dl/v2, corresponding to the transition to steady state 
growth.26(a) Such simulations are shown in Fig. 10. 

 Plotting lg v vs. lg cL, we find a nearly linear relation-
ship (Fig. 11), lg (v.s/cm) = A + B lg cL, (where A = 7.866 ± 
0.176 and B = 4.610 ± 0.146) that can be extrapolated to cL 
= 0.033 reasonably well (see Fig. 11). The corresponding 
growth rate is ~ 10.9 cm/s. A comparable result can be ob-
tained from a classical treatment of dendritic solidification, 
based on Ivantsov's solution for the concentration field 
around the dendrite tip and the marginal stability criterion. A 
detailed comparison between the two models will be pre-
sented elsewhere.51 

However, this value is more than three orders of magni-

tude higher than the experimental value (55 µm/s).2 The 
computed growth rate and morphology might be influenced 
by several factors including the sensitivity to the input data: 

(i) The growth rate increases with the anisotropy of the 
interfacial free energy as the dendrite tip becomes more and 
more pointed. In the isotropic limit (diffusion controlled cir-
cular growth), for short times a continuously decreasing 
growth velocity v ∝ t −1/2 prevails, until the Mullins-Sekerka 

                         (a)                                   (b)                                   (c)                                  (d) 

   
 

FIG. 9 Comparison of contour lines of dendrites at equal times grown with the physical interface thickness (thin line) and its double (heavy line) for 
CO2 concentration of (a) c = 0.05, (b) 0.06, (c) 0.07, and (d) 0.08.  

    (a)                                          (b) 

  
     (c)                                         (d) 

  
 

FIG. 7 CO2 hydrate dendrites predicted on a 4096 × 4096 grid (0.409 µ m 
× 0.409 µ m) using the physical interface thickness in aqueous solutions of 
CO2 concentration of (a) c = 0.05, (b) 0.06, (c) 0.07, and (d) 0.08. Snap-
shots of the concentration field show states reached after 333 ns, 198 ns, 
107 ns and 63 ns physical time, respectively. Note the dependence of the 
growth morphology and the growth velocity on the driving force, and the 
variation of the diffusion field around the dendrites.  

 
 

FIG. 8 Long-time extrapolation of the growth rate at different composi-
tions, interface thicknesses, and spatial steps at T = 274.3 K and p = 6.2 
MPa. Circles, squares, triangles, and diamonds denote the mole fraction of 
CO2 c = 0.08, 0.07, 0.06, and 0.05, respectively. [Black symbols stand for 
calculations with the physical interface thickness and the usual spatial step, 
∆x; empty symbols denote computations performed with doubled interface 
thickness and ∆x; while gray-filled symbols indicate calculations with 
doubled interface thickness and doubled spatial steps (2∆x).] Note the re-
duced growth rate at long times, where the self-interaction due to the peri-
odic boundary condition becomes significant.    

TABLE II. Infinite time extrapolation of growth velocity v. 
 

cCO2 Spatial step d/dphys v (cm/s) 
0.08     ∆x 1 634 ± 2 
            2∆x 1 757 ± 2 
0.07     ∆x 1 317 ± 2 
            ∆x 2 357 ± 3 
            2∆x 2 336 ± 4 
0.06     ∆x 1 156 ± 2 
            ∆x 2 166 ± 3 
            2∆x 2 159 ± 3 
0.05     ∆x 1 75.2 ± 3 
            ∆x 2 80.8 ± 4 
 2∆x 2 76.2 ± 4 

Notation: dphys − physical interface thickness; d − interface thickness used 
in simulation. 
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instability52 intervenes, yielding a seaweed type growth mor-
phology occurring also at low anisotropies.53 However, the 
experiments show a faceted dendritic morphology for the 
CO2 and other gas hydrate dendrites,46 indicating a substan-
tial (supercritical) anisotropy of either the interfacial free en-
ergy or the kinetic coefficient. This rules out the possibility 
that growth rate has been overestimated in this works due to 
the overestimated anisotropy (see Table III).      

(ii) Unlike in the case of nucleation, the experimental un-
certainty of the interfacial free energy influences the growth 
rate only marginally (see Table III).  

(iii) Fluctuations, represented by noise added to the equa-
tions of motion, are known to influence growth.11,54 We con-
sider the sub-molecular-size noise (of wavelength λ < λ0, 

where the limiting wavelength λ0 = 0.5 nm is about twice of 
the average molecular diameter) emerging from the usual 
treatment54  unphysical. We introduce, therefore, a high fre-
quency cutoff. The noise, we add to the equation of motion 
of the phase field, is obtained from a Gaussian white noise 
of amplitude Ξ chosen so that after removing the Fourier 
components of wavelength λ < λ0, the final amplitude of the 
noise satisfies the fluctuation-dissipation relationship for 
white noise on spatial scale of λ0, Ξ ' = [2MφkT/(λ0

3∆t)]1/2.54 
In agreement with Ref. 11, side-branching is enhanced by 
the noise (Fig. 12), while the growth rate does not change 
significantly (see Table III). 

(iv) Another (technical) possibility, that cannot be ruled 
out entirely, is that in the experiment the CO2 content of the 
aqueous solution or the local temperature may deviate from 
the nominal values. The heterogeneous nature of the solidifi-
cation structure supports this possibility. While, the dilution 

    (a)                                          (b) 

  
     (c)                                         (d) 

  
 

FIG. 10 CO2 hydrate dendrites predicted on a 4096 × 4096 grid with dou-
bled spatial step (0.818 µ m × 0.818 µ m) using twice of the physical inter-
face thickness in aqueous solutions of CO2 concentration of (a) c = 0.05, 
(b) 0.06, (c) 0.07, and (d) 0.08. Snapshots of the concentration field show 
states reached after 1030.5 ns, 535.5 ns, 270 ns and 135 ns physical time, 
respectively. Note that these simulation times are larger than the critical 
time t* = 9Dl/v2, after which steady growth is expected.26(a)  

 
 

FIG. 11 Extrapolation of the composition dependent dendritic growth rate 
to cL = 0.033 (empty circle). The filled squares stand for velocities ob-
tained from extrapolation to infinite time from Table II. 

TABLE III. Sensitivity of growth velocity v to input parameters. 
 

 Spatial step d/dphys v (cm/s) 
Reference 1    ∆x 1 634 ± 3 
  s0 = 0.125    ∆x 1 774 ± 8 
         0.05  ∆x 1 634 ± 4 
         0.0375   ∆x 1 523 ± 2 
         0.025    ∆x 1 449 ± 2 
Reference 3 ∆x 1 317 ± 
     1.1 × γ     ∆x 1  
     0.9 × γ        ∆x 2  
Reference 2       2∆x 2 336 ± 8 
  With noise     2∆x 2  

Reference 1: c = 0.08, s0 = 0.065, and γ  = 30 mJ/m2. References 2 and 3: c 
= 0.07, otherwise the same as Reference 1. Notation: dphys − physical inter-
face thickness; d − interface thickness used in simulation.

   
 

FIG. 12 CO2 hydrate dendrites predicted with noise added to the phase 
field equation on a 4096 × 4096 grid with doubled spatial step (0.818 µ m 
× 0.818 µ m) using twice of the physical interface thickness in aqueous so-
lution of CO2 concentration of 0.07. The snapshot of the concentration 
field shows the state reached after 153 ns physical time. Note the enhanced 
side undulations relative to Figs. 7(c) and 10(c) on the sides of the primary 
branches that may lead to the formation of secondary arms at later stages 
of growth.   

TABLE III. Sensitivity of growth velocity v to input parameters. 
 

 Spatial step d/dphys v (cm/s) 
Reference 1    ∆x 1 634 ± 2 
  s0 = 0.125    ∆x 1 774 ± 8 
         0.05  ∆x 1 584 ± 4 
         0.0375   ∆x 1 523 ± 2 
         0.025    ∆x 1 449 ± 2 
Reference 2 ∆x 1 317 ± 2 
     1.1 × γ     ∆x 1 296 ± 2  
     0.9 × γ        ∆x 2 342 ± 2  
Reference 3       2∆x 2 336 ± 4 
  With noise     2∆x 2 318 ± 6 

Reference 1: c = 0.08, s0 = 0.065, and γ  = 30 mJ/m2. References 2 and 3: c 
= 0.07, otherwise the same as Reference 1. Notation: dphys − physical inter-
face thickness; d − interface thickness used in simulation.
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of the solution certainly would reduce the driving force, and 
thus the growth rate, the respective inhomogeneity should be 
quite substantial to explain the observed three orders of mag-
nitude difference in growth rate, which we think has a rather 
low probability. We may also consider that if the equilibra-
tion of aqueous solution happened at room temperature (20 
C) in the experiment, the mole fraction of CO2 has to be 
somewhat lower, c ≈ 0.026, yielding a lower velocity v ≈ 3.6 
cm/s, another effect far too small to account for the observed 
deviations.   

(v) The CO2 hydrate has a remarkably complex crystal 
structure, thus its formation from the aqueous solution re-
quires complicated molecular motion at the interface and 
may represent a kinetic barrier against growth. It is, there-
fore, possible that the kinetic coefficient (and the phase field 
mobility) is smaller than the one for purely translational dif-
fusion controlled growth assumed here. Further MD studies 
are needed to see whether this explanation indeed applies.  

Since possibilities (i) - (iii) cannot account for the ob-
served discrepancy between experiment and theory, and a 
significant effect from (iv) is rather improbable, it appears 
that (v) is responsible for the deviations. This is supported 
by the fact that we experienced difficulties when trying to 
grow hydrate phases from aqueous solution in MD simula-
tions, a finding that suggests that a substantial kinetic barrier 
might indeed be present, hindering the growth of the hydrate 
phase. We note finally, that computations of hydrate den-
drites with orders of magnitude smaller phase field mobili-
ties, are beyond the abilities of the numerical model used in 
this paper. This problem may be addressed (without noise) 
using the adaptive grid technique of Provatas et al.26(a) The 
treatment of Vetsigian and Goldenfeld55 to kinetics con-
trolled growth might be another suitable approach. Work is 
underway to investigate these possibilities. 
 
V. SUMMARY 
 

We have applied a multi-scale approach, based on phase 
field modeling with parameters deduced from experiment 
and molecular dynamics simulation, to calculate the nuclea-
tion and growth rates of CO2 hydrate in aqueous solutions 
under conditions typical to seabed reservoirs. We find that, 
on the human time scales, homogeneous nucleation can be 
ruled out as a possible mechanism for initiating hydrate for-
mation. Furthermore, the growth rates predicted by theory 
are about three orders of magnitude too high. While several 
possibilities have been investigated, a kinetic barrier against 
hydrate growth due to the complex molecular motions re-
quired for crystal growth appears to be the most probable 
source of discrepancy. 
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