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Monoamines critically modulate neurophysiological functions

affected in several neuropsychiatric disorders. We therefore

examined genes encoding key enzymes of catecholamine

and serotonin biosynthesis (tyrosine and tryptophan

hydroxylases—TH and TPH1/2) as well as their regulatory

14-3-3 proteins (encoded by YWHA-genes). Previous studies

have focused mainly on the individual genes, but no analysis

spanning this regulatory network has been reported. We

explored interactions between these genes in Norwegian

patients with adult attention deficit hyperactivity disorder

(aADHD), followed by gene-complex association tests in

four major neuropsychiatric conditions; childhood ADHD

(cADHD), bipolar disorder, schizophrenia, and major depres-

sive disorder. For interaction analyses, we evaluated 55 SNPs

across these genes in a sample of 583 aADHD patients and 637

controls. For the gene-complex tests, we utilized the data from

large-scale studies of The Psychiatric Genomics Consortium

(PGC). The four major neuropsychiatric disorders were exam-

ined for association with each of the genes individually as well

as in three complexes as follows: (1) TPH1 and YWHA-genes;

(2) TH, TPH2 and YWHA-genes; and (3) all genes together.

The results show suggestive epistasis between YWHAE and two

other 14-3-3-genes - YWHAZ, YWHAQ - in aADHD (nominal

P-value of 0.0005 and 0.0008, respectively). In PGC data,

association between YWHAE and schizophrenia was noted

(P¼ 1.00E-05), whereas the combination of TPH1 and

YWHA-genes revealed signs of association in cADHD, schizo-

phrenia, and bipolar disorder. In conclusion, polymorphisms

in the YWHA-genes and their targets may exert a cumulative

effect in ADHD and related neuropsychiatric conditions, war-

ranting the need for further investigation of these gene-com-

plexes. � 2015 The Authors. American Journal of Medical Genetics Part B:

Neuropsychiatric Genetics Published by Wiley Periodicals, Inc.
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INTRODUCTION

Psychiatric disorders are a major cause of loss of quality of life,

residing among the top twenty origins of disability world wide [Vos

et al., 2012]. Clinical, epidemiological, and genetic studies have
ropsychiatric Genetics Published by Wiley Periodicals, Inc. 423
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demonstrated high levels of co-occurrence of psychiatric symp-

toms and disorders, and indicated some shared environmental and

genetic risk factors across multiple conditions [Cross-Disorder

Group of the Psychiatric Genomics Consortium, 2013; Lee et al.,

2013]. Such observations have spurred an increased interest in

studying genetic risk factors across formal diagnostic boundaries.

Attention-deficit/hyperactivity disorder (ADHD) is the most

common childhood onset neurodevelopmental disorder, often

persisting into adulthood [Franke et al., 2011]. The disorder is

characterized by high levels of inattention, hyperactivity, and

impulsivity that cause functional impairments [Banaschewski

et al., 2010]. Individuals with ADHD less often complete their

university education, are more likely to be unemployed, and have

an increased risk of developing anxiety, depression, or substance

abuse [Halmøy et al., 2009]. Adult ADHD (aADHD) has a preva-

lence of 2.5–4.9%, making it a common condition also among

adults [Franke et al., 2011]. Combined, cADHD, and aADHD have

a high socioeconomic impact, though the number and size of

genetic studies on ADHD are small compared to other neuropsy-

chiatric disorders such as schizophrenia (SCZ) and bipolar disor-

der (BPD). Despite high heritability (56–84%), the underlying

genetic architecture of ADHD is poorly understood [Franke et al.,

2011; Larsson et al., 2013].

Pharmacological treatment of psychiatric disorders is mainly

based on modulation of catecholamine and serotonin signalling.

This is also the case for ADHD, where the discovery of amphet-

amine and its derivatives as effective therapeutic substances early

implicated altered catecholamine signalling [Robertson et al.,

2009]. Studies linking these neurotransmitters to brain functions

where ADHD patients show impairment, such as sustained atten-

tion and response inhibition, further support this theory [Barnes

et al., 2011]. Although genetic variants, particularly in dopamine

receptors and transporter, have been scrutinized in many ADHD

samples, their association with the disorder is still being debated,

and other genes and mechanisms need to be studied [Franke et al.,

2011, 2009b].

Tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH)

are the rate-limiting enzymes of the catecholamine and serotonin

synthesis, respectively [Lenartowski andGoc, 2011] (Fig. 1A). TPH

has two forms encoded by separate genes - TPH1 and TPH2- that

possess different regulatory properties and are expressed in pe-

ripheral endocrine systems, including the pineal gland (TPH1) as

well as in the central nervous system (CNS) (TPH2) [Walther et al.,

2003;McKinney et al., 2005]. TH is encoded by one gene (TH), and

is expressed both in the periphery neuroendocrine system and in

the CNS [Haavik et al., 2008].

The activity, subcellular localization and turnover of TH, TPH1,

and TPH2 enzymes are regulated by themembers of 14-3-3 protein

family through direct phosphorylation-mediated protein–protein

interactions (Fig. 1A) [Banik et al., 1997; Itagaki et al., 1999; Toska

et al., 2002; Winge et al., 2008; Kleppe et al., 2014]. There are seven

different 14-3-3 protein forms (b, g, e, z, h, u/t, and s), all known
by their gene names YWHAB/G/E/Z/H/Q/S, respectively, though

YWHAS is also recognized as SFN (stratifin). For convenience, we

will use the term “YWHA-genes” to denominate all 14-3-3-protein

coding genes. Different 14-3-3 monomers can combine into

various dimer types of 14-3-3 proteins, the main functional
form of 14-3-3s (Fig. 1B). We have recently reported differences

between the 14-3-3 forms in their interaction with TPH2 [Winge

et al., 2008]. We have also found distinctions between 14-3-3

proteins in their potency to activate phosphorylated bovine TH

(Fig. 1C, Ghorbani et al. unpublished). The 14-3-3 proteins could,

therefore, differentially regulate monoamine levels in the nervous

system, making them promising candidate genes for ADHD and

related neuropsychiatric conditions.

Following the observation of physical interaction between 14-

3-3 proteins with tyrosine and tryptophan hydroxylases (Fig. 1,

(Toska et al., 2002; McKinney et al., 2005; Yang et al., 2006; Wang

et al., 2009; Ramshaw et al., 2013; Kleppe et al., 2014)), we

postulated that such interaction might also manifest itself as

epistasis between regulatory YWHA-genes and the genes of their

target enzymes, TH, TPH1 and TPH2.

While there have been numerous small studies on polymor-

phisms within the YWHA-genes, TH and TPH1/2, findings are

inconsistent and no single SNP has provided strong, replicable

association signal with neuropsychiatric disorders such as ADHD,

BPD, SCZ, depression, and autism spectrum disorders. One study

investigated gene–gene interaction in several ADHD candidate

genes including TH, TPH1, and TPH2, but none of these three

genes showed significant interactions [Segurado et al., 2011].

Furthermore, the gene network including the regulatory

YWHA-genes has not been analyzed together.

Given that no SNP in YWHAs nor TH, TPH1/2 genes achieved

significance below threshold corrected for multiple testing in

genome-wide meta-analysis of either SCZ, BPD, major depressive

disorder (MDD), or ADHD, it is unlikely that any single, common

variant in these genes would have a strong impact on the develop-

ment of major neuropsychiatric disorders [Lasky-Su et al., 2008;

Neale et al., 2010; Cichon et al., 2011; Major Depressive Disorder

Working Group of the Psychiatric GWAS Consortium et al., 2013;

Ripke et al., 2013]. However, small effects of singular SNPs may

result in a stronger, cumulative signal.

In this study, we performed genetic exploration of the genes

involved in the synthesis of monoamines with respect to ADHD

and related major neuropsychiatric disorders, such as SCZ, BPD,

andMDD. The analyses were structured to examine the complexity

of possible contribution of the aforementioned genes to the risk of

these disorders in the followingmanner: (1) single SNP interaction

tests (epistasis); (2) gene-wide association tests; and (3) regulatory

gene-complex evaluation.

MATERIALS AND METHODS

Subjects in the Norwegian Sample
Single SNP-based interaction analyses were performed in our

Norwegian sample. DNA samples of all participants were obtained

from the Norwegian adult ADHD biobank. Patients were recruited

through the national ADHD registry and outpatient clinics. Par-

ticipants were diagnosed with ADHD in accordance with either

ICD-10 or DSM-IV criteria as previously described [Johansson

et al., 2008]. Controls were recruited through the Medical Birth

Registry of Norway [Johansson et al., 2008; Halmøy et al., 2009;

Jacobsen et al., 2013). In total, 583 patients and 637 controls were

included in the analyses. All participants gave written, informed



FIG. 1. 14-3-3 proteins in the regulation of monoamine biosynthesis. (A) shows a literature based illustration of the presynaptic biosynthesis

of dopamine (DA) and noradrenaline (NA) from tyrosine (Tyr) via dihydroxyphenylalanine (L-Dopa), involving the enzymes tyrosine

hydroxylase (TH), aromatic amino acid decarboxylase (AADC/DDC), dopamine b-hydroxylase (DBH), and the vesicular monoamine transporter

(VMAT2/SLC18A2). Black arrows illustrate chemical transformations or transport processes, whereas red double arrows illustrate protein–

protein interactions. Biosynthesis of serotonin (SE) from tryptophan (Trp) via 5-hydroxytryptophan (5HTrp) by tryptophan hydroxylase 1 or 2

(TPH1 or TPH2) and AADC with subsequent transport into storage vesicles is also shown. Reuptake of released DA, NA, or SE by dopamine

transporter (DAT1/SLC6A3), noradrenaline transporter (NET/SLC6A2), or serotonin transporter (SERT/SLC6A4) is also shown. Phosphorylated

TH, TPH1, and TPH2 may interact with members of the mammalian 14-3-3 protein family (YWHA proteins), which may modulate the enzymatic

activities, stability, or cellular localization [McKinney et al., 2005; Kleppe et al., 2014]. A reported interaction between SLC6A3 and YWHAZ is

also depicted [Ramshaw et al., 2013]. (B) illustrates the formation of possible dimers within the mammalian 14-3-3 protein family. The

reported interactions are shown between different monomers by formation of heterodimers (14-3-3e/YWHAE with 14-3-3b/YWHAB, 14-3-3g/
YWHAG, 14-3-3h/YWHAH, 14-3-3z/YWHAZ, and 14-3-3t/YWHAQ) and by formation of homodimers [Yang et al., 2006]. 14-3-3s/YWHAS is found

to preferentially form homodimers, whereas YWHAE is found as heterodimers in cells. Panel (C) shows the activation of bovine TH,

phosphorylated on Ser19 by p38-regulated/activated protein kinase, in the presence of different 14-3-3 isoforms reported in midbrain [Wang

et al., 2009]. The experiments were performed essentially as described [Toska et al., 2002, Ghorbani et al. in preparation). Different

activation potency between the YWHAs suggests a variable risk for association with monoamine related disorders between the YWHA-genes.
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consent and were above 18 years of age at the time of recruitment,

with no known intellectual disability. The study was approved by

the Norwegian Regional Medical Research Ethics CommitteeWest

(IRB #3 FWA00009490, IRB00001872).

Selection of SNPs and Genotyping in the
Norwegian Sample
The markers in TPH1 and TPH2 were chosen from previous

candidate gene studies performed by our group as well as others

[Johansson et al., 2010; Gao et al., 2012]. All YWHA-genes and TH

were tagged using the aggressive tagging algorithm with default

settings of Haploview, based on CEU data from the HapMap

release 28 [International HapMap Consortium, 2003; Barrett
et al., 2005]. Each gene was tagged with approximately 5,000

basepair flanking sequence included.

Genotyping was done in two batches using MassArray iPlex

system (Sequenom, San Diego, CA) at CIGENE center for geno-

typing (University of Life Sciences, Ås, Norway). The genotyping of

all selected SNPs was attempted in the first batch. Genes containing

failed or low quality SNPs in the first batch were re-tagged using the

“force exclude” and “force include” functions ofHaploview and the

new tagging SNPs were genotyped in the second batch. There was

no SNP-overlap between the two batches. To assess the genotyping

concordance within each of the two batches, two internal controls

were used with a total number of 83 duplicates of the two samples.

Genotyping quality control (QC) was done in PLINK for each

batch separately, and then again after combining the two batches



426 AMERICAN JOURNAL OF MEDICAL GENETICS PART B
[Purcell et al., 2007]. The inclusion criteria was defined as individ-

ual and SNP genotyping rate above 95%, minor allele frequency

(MAF) above 5% in controls and a Hardy–Weinberg disequilibri-

um threshold of P> 0.01 in controls.
Data From the Psychiatric Genomics
Consortium
For gene-based and gene-complex analyses we utilized the data

from the large-scale association meta-analysis of childhood

ADHD (cADHD) performed by The Psychiatric Genetics Con-

sortium (PGC, http://www.med.unc.edu/pgc/downloads) as it

would have a larger power and provide more accurate estimates

than our own discovery sample. Since there is a phenotypic

overlap between ADHD and several other neuropsychiatric dis-

orders, we also examined possible contribution of our proposed

regulatory gene-complexes to SCZ, BPD and MDD using large-

scale genome-wide association data reported by the PGC [Neale

et al., 2010; Psychiatric GWAS Consortium Bipolar Disorder

Working Group et al., 2011; The Schizophrenia Psychiatric

Genome-Wide Association Study (GWAS) Consortium et al.,

2011; Foote and Zhou, 2012; Gao et al., 2012; Mandelli et al.,

2012; Watanabe et al., 2012; Yang et al., 2012; Major Depressive

Disorder Working Group of the Psychiatric GWAS Consortium

et al., 2013; Fromer et al., 2014; Schizophrenia Working Group of

the Psychiatric Genomics Consortium, 2014]. To ensure high

quality data in SCZ, BPD, and MDD PGC datasets, we utilized

only those SNPs whose imputation INFO measure was reported

to be above or equal to 0.6. This measure was not available for the

cADHD dataset.
Statistical Analyses
Epistasis in the Norwegian sample. Single SNP-based inter-

action analyses were performed in the form of likelihood ratio tests

implemented in SNPassoc package [Gonz�alez et al., 2007]. SNPas-
soc was carried out in R-software, using gender as a covariate,

testing for association with aADHD status (www.r-project.org).

Only interaction between genes was evaluated, meaning that each

SNPwas tested for interaction with all SNPs in other genes, but not

with SNPs in the same gene. Thus, in total, 495 interaction SNP

pairs were tested in this study.

In order to further explore the strongest epistasis observed, we

performed logistic regressions with the two-way interaction term

between the pair of SNPs revealing the signal. The regressions were

performed in R software.

Bonferroni correction for 495 SNP interaction tests was used to

adjust for multiple testing, resulting in the corrected significance

threshold of 1.01E-04.

To evaluate the power of our study to detect a true association,

basic power calculations was performed using the Genetic Power

Calculator, applying the sample size of our data to a single SNPwith

minor allele frequency of 0.1 and 0.2 and a genotype relative risk

(GRR) of 1.5, given ADHD disease prevalence of 3% [Purcell et al.,

2003].

Gene-wide association in four PGC datasets. Gene-wide eval-

uation of TH, TPH1/2, and the seven YWHAs was done using JAG
software [Lips et al., 2012; Hammerschlag et al., 2014]. For each

gene, the test statistic was defined as the sum of the –log10
association P-values of individual SNPs annotated to each of the

10 genes of our interest (TH, TPH1, TPH2, and the seven YWHA-

genes). Gene annotation of the variants from PGC data included

5,000 basepair region around each gene.

To define the significance threshold, 100,000 permutations were

carried out. The statistics of each gene were computed for each

permutation and the final gene-based P-value was calculated as the

proportion of test statistics in the permuted data that was higher

than the original test statistic.

For permutations and to account for LD effects between exam-

ined SNPs, we utilized the genotype data of the European ancestry

samples from the 1000 Genomes project [1000 Genomes Project

Consortium et al., 2012]. Thus, only SNPs that were available in

both the PGC data and the 1000 Genomes genotype data were used

to calculate the test statistics.

Regulatory gene-complex analyses in four PGC datasets.

Similarly to gene-based tests, regulatory gene-complexes were

evaluated using JAG software. The genes were tested as gene-

complex combinations based on their possible regulatory role in

the synthesis of monoamines. We defined the following gene-

complexes to test: (1) seven YWHA-genes and TPH1 gene to

test the effect of genes involved in peripheralmonoamine synthesis;

(2) seven YWHA-genes, TPH2, and TH to test the effect of genes

involved in monoamine synthesis inclusive of central nervous

system; and (3) all 10 genes to test their overall effect.

The analyses were performed in two steps: first self-contained

association was tested for each gene-complex, followed by a

competitive test. A self-contained assessment examines whether

a gene-complex is associated with a trait, while the competitive test

reveals whether the observed self-contained association is stronger

than expected by chance for a random gene-complex with the same

number of SNPs.

The self-contained tests were performed in the same manner as

the gene-based analyses, where instead of a gene we tested a gene-

complex. For the competitive tests, we generated random size-

matching gene-complexes and performed self-contained tests for

each of these random gene-complexes. The competitive tests’

P-value was calculated as the proportion of random gene-com-

plexes with self-contained P-values lower than the self-contained

P-value for the gene-complex itself. A significant competitive test

would indicate that the evaluated gene-complex is more strongly

associated with a trait than any other size-matched set of randomly

drawn genic SNPs.

Correction for multiple testing in PGC data was achieved by

Bonferronimethod,with corrected significance threshold of 0.0031

(to correct for 10 gene-based, three self-contained, and three

competitive gene-complex tests).

RESULTS

Subjects in the Norwegian Sample
After QC, a total of 583 adult ADHD cases and 637 controls were

available for analyses. The percentage ofmaleswas 48% in cases and

40% in controls. Average age at recruitment was 34 years in cases

and 29.4 years in controls.

www.med.unc.edu/pgc/downloads
r-project.org
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Selection of SNPs and Genotyping in the
Norwegian Sample
In total, 71 SNPs were selected: 10 in TPH1 and TPH2 from

previous studies, one SNP in YWHAE from Ikeda et al., and

one SNP in YWHAG from an exome sequencing database in

our genetics laboratory [Ikeda et al., 2008]. In order to tag TH,

two tagging SNPs were included and for YWHAs 57 tagging SNPs

were submitted formultiplexes. Sixteen SNPs were removed due to

incompatible multiplex design or low genotyping quality, 11 of

these in the first round of genotyping. These SNPs were re-tagged

and genotyped in the second batch. Overall, 55 SNPs across 10

genes were available for the analyses (Supplementary Table S1).

Concordance rate in duplicate samples was >99% within each of

the two batches. Supplementary Figure S1 shows an overview of the

LD structure for each gene, with tested markers indicated.
Data From the Psychiatric Genomics
Consortium
After selecting SNPs with imputation INFO measure above or

equal to 0.6 and annotating the variants to the genes of our interest,

the PGC’s SCZ, BPD, and MDD datasets, contained, 825 SNPs in

SCZ, 354 SNPs in BPD, and 204 SNPs in MDD available for the

analyses (Table II). The PGC’s cADHDdataset comprised a total of

210 SNPs in aforementioned genes. The SNPs were distributed

among all 10 genes, though the BPD dataset did not contain any

SNPs in TH.
Epistasis in the Norwegian Sample
A total of 495 SNP pairs were tested for interaction using the

likelihood ratio test in SNPassoc. The strongest signals were

observed between YWHAE and two other 14-3-3 genes - YWHAZ,

YWHAQ - in adult ADHD, with P-values of 0.0005 and 0.0008

respectively (Table I, Fig. 2). None of these passed the strict
TABLE I. Details of the Strongest Signals of Epistasis in Ou
Details of All Int

(A) P-values of log likelihood te

Interaction pair Gene

1 YWHAQ

YWHAE

2 YWHAE

YWHAZ

OR

YWHAE� YWHAZ interaction

rs28365859 1.1

rs17365305 1.8

rs28365859� rs17365305 0.3

YWHAE� YWHAQ interaction

rs17625475 1.0

rs4145375 0.7

rs17625475� rs4145375 3.7
Bonferroni-corrected significance threshold (P< 0.0001). Supple-

mentary Table S2 details the results of all interaction pairs.

The nature of epistasis between the two pairs of SNPs with the

strongest signal was further explored in logistic regression. In the

YWHAE/YWHAZ interaction pair, having the rare alleles of both

SNPs appeared to decrease the risk of aADHD, while the combi-

nation of rare alleles of interacting SNPs in YWHAE and YWHAQ

revealed the opposite effect. (Table I, Supplementary Table S3).

Power calculations revealed 89% power for detecting a single

SNP associationwithminor allele frequency of 20% and a genotype

relative risk of 1.5 in our sample, and 80% for a SNP with 10%

minor allele frequency.
Gene-Wide Association in Four PGC Datasets
Weperformed gene-based association tests for 10 genes:TH,TPH1/

2, and the seven YWHAs. The most significant signal, surviving

correction for multiple testing (P< 0.0031), was observed for

YWHAE in SCZ (P¼ 1.00E-05). In cADHD, nominal associations

werenoted forYWHAQ andTPH1. The summaryof these analyses is

presented in Table II, while LocusZoom plots of the nominally

significant genes is presented in Supplementary Figure S2.
Regulatory Gene-Complex Analyses in Four PGC
Datasets
We used the PGC data on SCZ, cADHD, BPD, and MDD to

investigate the association between the four disorders and three sets

of gene-complexes containing TH, TPHs, and YWHAs. For self-

contained tests, examining the association between a gene-complex

and a phenotype, the gene-complex including TPH1 and the seven

regulatory YWHA-genes revealed the most consistent signal across

the examined four disorders, with sings of association for cADHD,

SCZ, and BPD. However, competitive tests, indicating the proba-

bility of observed association being due to the function of the

examined gene-set and not a random chance, resulted in significant
r Norwegian Sample. Supplementary Table S2 Shows the
eraction Pairs

sts Bonferroni-corrected significance threshold P = 1.01E-04.

SNP P-value

rs4145375 0.0008

rs17625475

rs28365859 0.0005

rs17365305

(B) Results of exploring logistic regressions

95% confidence interval

1 0.92–1.34

7 1.13–3.11

3 0.18–0.61

3 0.80–1.34

5 0.51–1.10

2 1.60–8.67



FIG. 2. Likelihood ratio tests of all interactions examined in this study. Each small square represents the P-value of a single test. As indicated

by the gradient color of green, the darker shades represent smaller, more significant P-values. SNPs are grouped along the axes by genes,

listed alphabetically and separated by grid lines. Along the diagonal, as indicated by a line, are the P-values of the single SNP tests. The lower

right triangle represents additive tests, which were not the focus of this study. The upper left triangle represents interaction tests between a

pair of SNPs. Two dark green squares correspond to the SNP interactions represented in Table I. The numerical values of each test are

presented in Supplementary Table S2.
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outcome for SCZ only.WhileTPH1 andYWHAs complex as well as

all gene altogether revealed SCZ association signals passing the

correction for multiple testing, none of the competitive test results

passed the Bonferroni adjusted significance threshold. Table III

shows the details of these analyses.
DISCUSSION

This is the first systematic investigation of genetic variants span-

ning the whole YWHA gene-family and their regulatory targets in

monoamine synthesis in association with ADHD and related

neuropsychiatric disorders (SCZ, MDD, and BPD). Given results

from previous studies, we hypothesized that these genes might

influence neuropsychiatric traits through their cumulative effects.

As several of the 14-3-3 proteins are known to physically interact

with each other as well as with TH/TPH to regulate their functions
(Fig. 1), genetic interaction analyses could reveal coupled risk

variants. We explored epistasis between these genes utilizing our

adult ADHD sample of 1,220 individuals. Two nominally signifi-

cant SNP interactions between the YWHA-family members were

observed. Interestingly, the strongest evidence for epistasis was

detected for theYWHAE gene, whose product, 14-3-3e, is known to
mainly form heterodimers with many other 14-3-3 proteins.

YWHAE revealed possible interaction with YWHAZ and YWHAQ

in association with adult ADHD (Table I). Detailed exploration of

these SNP pairs indicate that the epistasis between YWHAE and

YWHAZ may be of protective nature as opposed to that between

YWHAE and YWHAQ, where accumulation of rare alleles of both

SNPs was observed in cases compared to controls (Supplementary

Table S3). Given that each SNP pair contains transcription factor

binding sites—rs28365859 in the 50UTR region of YWHAE inter-

acting with YWHAZ and rs4145375 in the vicinity of YWHAQ



TABLE II. Gene-Based Association Results Using PGC Data. The Reported P-Values are Unadjusted for Multiple Testing and are Based on
10,000 Permutations. Bonferroni Corrected Significance Threshold P-value is 0.0031. P-Values Below 0.1 are Highlighted in Italics. P-Values

Surviving Bonferroni Correction are Highlighted in Bold and Italics

Gene-based association P-value (number of SNPs tested)

Gene symbol cADHD SCZ MDD BPD

TH 0.176 (8) 0.683 (51) 0.967 (5) no data

TPH1 0.081 (15) 5.40E-03 (54) 0.516 (15) 0.219 (25)

TPH2 0.164 (78) 0.247 (285) 0.757 (77) 0.784 (152)

SFN 0.737 (1) 0.052 (4) 0.664 (1) 0.223 (1)

YWHAQ 0.024 (18) 0.294 (82) 0.023 (17) 0.993 (39)

YWHAG 0.412 (14) 0.189 (58) 0.235 (13) 0.031 (24)
YWHAZ 0.344 (20) 0.028 (66) 0.364 (20) 0.337 (25)

YWHAE 0.174 (25) 1.00E-05 (132) 0.467 (25) 0.034 (48)
YWHAB 0.504 (14) 3.96E-03 (52) 0.069 (14) 0.786 (17)

YWHAH 0.424 (17) 0.125 (41) 0.949 (17) 0.212 (23)
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interacting with YWHAE—multiple scenarios for dynamic heter-

odimer composition can be postulated. Consequently, various

heterodimer typesmighthavedifferent targetswithopposingeffects.

Similarly, in PGC cADHD data, nominal significance was observed

forYWHAQ, the gene that is nominally associatedwith adultADHD

through epistasis with YWHAE in our independent Norwegian

sample. Although none of these interactions reached the Bonferroni

corrected significance level, they represent interesting findings that

should be taken forward for further analysis.

Curiously, apart from the interaction effect in adult ADHD

examined in our Norwegian sample, YWHAE also showed the

strongest signal in gene-based association tests in PGC datasets

(Table II). Specifically, YWHAE association with SCZ passed the

Bonferroni-corrected significance threshold and showed nominal

association with BPD. For PGC’s cADHD sample, nominal signif-

icance was observed forYWHAQ andTPH1. The latter also showed

nominal association with SCZ in PGC data (Table II).

14-3-3e, the protein encoded by YWHAE, is crucial for neuronal

development [Toyo-oka et al., 2003; Bradshaw and Porteous,

2012]. Mice deficient in 14-3-3e have severe defects in neuronal

migration, resulting in growth restriction, craniofacial dysmor-

phisms, structural abnormalities of brain, and cognitive im-

pairment [Toyo-oka et al., 2003; Nagamani et al., 2009]. The

latter often co-occurs with ADHD [Armstrong et al., 2001]. In

addition, dysregulation of brain development has been shown to

play an important role in the etiology of ADHD [Lesch et al., 2008;

Franke et al., 2009a; Poelmans et al., 2011; Yang et al., 2013).

Furthermore, YWHAE has been implicated in ADHD and autism

through CNVs or de novo mutations [Neale et al., 2012; Ramos-

Quiroga et al., 2014]. Several previous studies have also found

associations of YWHAE with intellectual disability, SCZ, and BPD,

albeit some studies have also been negative [Ikeda et al., 2008; Liu

et al., 2010, 2012; Takahashi and Nakamura, 2014; Schubert et al.,

2015]. Thus, taken together with previous reports, our findings

lend further support to the central role of YWHAE in schizophrenia

and several other neuropsychiatric conditions.

The regulatory gene-complex analysis performed in this study

showed nominal evidence of cumulative effect of TPH1 and the
seven YWHAs in SCZ as well cADHD (PGC data, Table III). TPH1

catalyzes the rate-limiting step of serotonin production in non-

neuronal cells, such as enterochromaffin cells of the gut, mast cells,

and the pineal gland [Suidan et al., 2013]. So far, the role of

peripheral serotonin in nervous system function is poorly under-

stood. However, serotonin has been shown to be of developmental

importance, modulating the construction and plasticity of brain

circuits [Gaspar et al., 2003; Neckameyer et al., 2007]. Immuno-

histochemical analyses revealed that in the first 2 hr of Drosophila

embryonic stage there is ubiquitous presence of TPH1-equivalent

enzyme, which is the result of maternal deposition rather than

zygotic expression of the protein [Neckameyer et al., 2007]. In line

with this observation, it has been reported that maternal Tph1

genotype has large impact on embryonic development and Tph1

knockout mice display altered gait dynamics, suggesting that Tph1

may have an impact on the development of nervous system [Côt�e
et al., 2007]. Furthermore, neonatal exposure to serotonin re-

uptake inhibitors has lasting effects on behavior [Moses-Kolko

et al., 2005; Maciag et al., 2006]. Similarly, our group has shown

that TPH1 mutations giving impaired maternal serotonin produc-

tion may have long-term consequences for brain development and

increase the risk of ADHD-related symptoms in offspring [Halmøy

et al., 2010].

While our results are intriguing, this study should be viewed in

the light of its limitations. The comparatively small size of our

aADHDsample limits our power to detect variantswith small effect

sizes, especially when performing more complex analyses than

singlemarker association. Another possible bias is the LD-structure

of the genes, especially for TPH1/2, which were not tagged. Thus,

we only performed epistasis evaluation in our sample of adult

ADHD, while for gene-wide and gene-complex based analyses we

utilized the published large-scale genome-wide analyses of the

PGC. Given that we did not have access to raw genotypes of all

PGC datasets, we were unable to explore epistasis in that data. We

found the most compelling evidence for association in SCZ, which

is by far the best powered sample in PGC, and it is possible that the

signal for cADHD is weaker due to the lack of power. Furthermore,

the PGC’s SCZ dataset provides information on over 8 million
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SNPs as opposed to 1.2 million in cADHD. This discrepancy is

echoed in the number of available variants in the examined genes in

various PGC datasets (Table II), suggesting that some signals may

have been detected in SCZ only. Lastly, phenotypic heterogeneity is

a major challenge for neuropsychiatric studies, creating a potential

loss of power.

In our gene-based and gene-complex evaluation, we have ex-

amined childhood ADHD only. However, slightly different genetic

risk factors may be associated with the persistent and remitting

forms of this disorder [Franke et al., 2011]. Similarly, epistasis has

been tested in our Norwegian sample of adult ADHD only and its

further exploration in childhood ADHD (as well as other neuro-

psychiatric disorders) is warranted.

In conclusion, this study is the first to thoroughly investigate

YWHA-gene involvement in the etiology of ADHD. It strengthens

the role of these genes in neuropsychiatric disorders, especially

schizophrenia. Our results provide new targets for further explo-

ration in genetics of ADHD and highlights the role of regulatory

genes in neuropsychiatric disorders.
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