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Abstract Lightning discharge is a complicated process with relevant physical scales spanning many
orders of magnitude. In an effort to understand the electrodynamics of lightning and connect physical
properties of the channel to observed behavior, we construct a simulation of charge and current flow
on a narrow conducting channel embedded in three-dimensional space with the time domain electric
field integral equation, the method of moments, and the thin-wire approximation. The method includes
approximate treatment of resistance evolution due to lightning channel heating and the corona sheath
of charge surrounding the lightning channel. Focusing our attention on preliminary breakdown in
natural lightning by simulating stepwise channel extension with a simplified geometry, our simulation
reproduces the broad features observed in data collected with the Huntsville Alabama Marx Meter Array.
Some deviations in pulse shape details are evident, suggesting future work focusing on the detailed
properties of the stepping mechanism.

1. Introduction

Despite centuries of study, many of the fundamentals of lightning physics are poorly understood. Much recent
study has been devoted to measurements such as return stroke peak currents [e.g., Schoene et al., 2010] or
impulsive charge moment changes [e.g., Cummer, 2004], and such descriptive results are extremely useful. A
comprehensive review including references to such descriptive results can be found in chapters 4, 5, and 9
of Rakov and Uman [2007]. However, such descriptions do not necessarily help understand the fundamental
physics of lightning. The difficulty lies in capturing the fundamental physics, for example, electron detach-
ment and attachment rates, within a framework capable of reproducing lightning behavior. Doing so involves
a cascade of physical scales ranging from submillimeter-scale electron avalanches governed by microphysical
processes with measurable cross sections to 100 km scale plasma channels governed by complex aggregate
physical properties such as conductivity and charge density. The general goal of this work is to describe and
apply a large-scale simulation technique to connect the observed properties of lightning to physical prop-
erties of the channel that can be directly compared to existing understanding of the microphysics. The work
here will not completely bridge the gap, but the techniques described herein can be broadly applied to many
problems of lightning research.

The specific process considered in this paper is the stepwise extension of the lightning channel. Though the
exact mechanism is not known, the lightning leader channel tends to grow in length by impulsive steps
whereby the channel lengthens suddenly, jumping forward into space ahead of the existing channel (see
chapter 4 of Rakov and Uman [2007] for an overview). Such steps range in length from tens to hundreds of
meters and occur on time scales of order 10 μs. One possible mechanism of such stepping is gradual heating
of the gas near the channel tip by corona and streamer discharges. This heating eventually reaches the point
of thermally ionizing the gas, drastically increasing the conductivity. An increase in conductivity results in an
increase in current which acts to further heat the gas, further increasing the conductivity in a positive feed-
back effect, rapidly forming a new segment of conducting channel. This development of the new segment of
channel may occur slightly displaced from the end of the existing channel to form a disconnected channel
dubbed the “space stem.” Recent observations include Hill et al. [2011], who describe high-speed video obser-
vations of this stepping process and report the presence of such space stems ahead of the leader channel,
while Winn et al. [2011] report balloon-borne electric field observations associated with lightning mapping
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data that are not completely consistent with such a connection process. As such, at present the details of
the stepping mechanism are not understood. Once charges flow onto the narrow newly heated channel, the
charge density results in an outward electric force that drives excess charge outward to fill a “corona sheath”
surrounding the channel. This outward motion allows continued current flow onto the new segment, so the
overall electrodynamics consist of a rapid increase in current as the new segment heats followed by a slower
decrease in current as the corona sheath fills with charge. These current and charge motions can be detected
by electric field change meters as short pulses.

The goal of this paper is to understand and reproduce such pulses from preliminary breakdown in natural
lightning as detected by the Huntsville Alabama Marx Meter Array (HAMMA) [Bitzer et al., 2013]. Preliminary
breakdown here refers to electromagnetic emissions from natural lightning prior to the first return stroke.
These emissions are produced by a lightning channel growing within the cloud before it reaches the ground.
We approach this goal by self-consistently simulating the electrodynamics of the extension of an evolving
channel with approximate treatment of channel plasma behavior. Our work thus differs from most lightning
modeling work, which most often either focuses on the return stroke where the channel is already highly
conducting or loses self-consistency by driving the channel with an assumed current source. A review of return
stroke literature can be found in Baba and Rakov [2007]. Existing stepped leader and preliminary breakdown
models take a variety of approaches. Karunarathne et al. [2014] approach preliminary breakdown pulses with
a variety of modified transmission line models of preexisting channels driven by fitting the parameters of
an assumed current source. Note 20 of Baum [1999] treats the leader step as a continuous extension at a
given velocity within the framework of a segmented nonlinear transmission line model. Gallimberti et al. [2002]
characterize each part of the system (leader, corona, space stem, etc.) and determine the time evolution of
the characteristics as corona starts and stops and as the leader extends. Kumar and Nagabhushana [2000]
describe the leader as a quasi-static system of charges and currents exhibiting RLC circuit behavior. Larigaldie
et al. [1992] consider the time domain electrodynamics and use a similar treatment as in our approach but
focus on strikes involving aircraft. Our approach also distinctly differs from the quasi-static models of Niemeyer
et al. [1984], Mansell [2005], Riousset et al. [2007], and Krehbiel et al. [2008], which disregard time evolution and
therefore cannot determine current pulse shapes, electromagnetic wave emissions, or the time structure of
channel development.

Our simulation, described in section 2, is based directly on Maxwell’s equations, explicitly includes time evo-
lution of electric charge and current, and retains the dynamics of channel heating and charge migration away
from the channel. We approximate the details of channel behavior to limit the model complexity and the
number of free parameters. The remaining parameters are all physical properties of lightning channel behav-
ior such as specific heat or the time scale for charge migration to the corona sheath. The dependence of these
results on the parameters of the simulation is described in section 2.2. We then use our simulation to predict
possible electromagnetic emissions from stepwise channel extension in preliminary breakdown as described
in section 3. The simulation results are compared with observations in section 4. The results of the compar-
ison are used to suggest processes not properly captured in the simulation. We then suggest future studies
and conclude in section 5.

2. Simulations

The simulation technique described in this paper, which we dub time domain fractal lightning (TDFL) mod-
eling, is an electrodynamic simulation of charge and current flow on a narrow branched conducting channel
embedded in three-dimensional space capable of reproducing fractal lightning geometry. (For an alternative
approach to TDFL modeling as used to describe return strokes, see Liang et al. [2014].) The simulation acts
on the assumption that the electric field is the dominant driver of the electrodynamic behavior of lightning.
This assumption is justified by the weakness of magnetic forces relative to electric forces, especially when
charge imbalances are present as is the case for lightning. The simulation is described in detail as follows but
overall proceeds as a series of time steps. In each step, the history of the channel is used to determine the
electric field. The electric field is then used to determine the current evolution during the time step. The cur-
rent then determines how charge distributions evolve during the time step. The charges and currents thus
determined are then recorded, and the process is repeated to determine the time evolution of the system.
This scheme is implemented as a method of moments solution to the electric field integral equation with the
thin-wire approximation and marching on in time, largely following and extending the method described in
Miller et al. [1973a].
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Figure 1. (a) Channel discretization and representation geometry. The lightning channel is divided into straight current
segments that connect charges, where charges are groups of straight segments and are surrounded by corona sheath
segments with the same basic geometry as the associated charge segments. (b) Simulation geometry. The simulations
in this paper largely consider a straight 1 km vertical channel placed 5 km above a perfectly conducting ground with
receivers (“Rec” in the figure) placed at ground level to record the vertical electric field.

More specifically, in general, electric fields can be calculated using the retarded time electric field integral
equation (EFIE) [Jackson, 1999, equation (6.55)]:

Et(x, t) = 1
4𝜋𝜖0 ∫ d3x′

{
R̂
R2

[
𝜌
(

x′, t′
)]

ret
+ R̂

cR

[
𝜕𝜌 (x′, t′)

𝜕t′

]
ret

− 1
c2R

[
𝜕J (x′, t′)

𝜕t′

]
ret

}
(1)

where Et is the total electric field, x is the observation point, t is the observation time, x′ is the source point,
d3x′ signifies integration over sources at points in (three-dimensional) space, R = x−x′ is a vector from source
to observation location, R = |R|, R̂ = R∕R is the corresponding unit vector, t′ = t − R∕c is the (retarded) time
at the source, 𝜖0 is the permittivity of free space, c is the speed of light, 𝜌 is charge density, J is current density,
and […]ret emphasizes the evaluation at retarded time t′. The EFIE is a Green’s function solution to the full set
of Maxwell’s equations, where the first term ∝ 1∕R2 is the familiar static electric field while the last two terms
derive from time derivatives of magnetic fields and contribute inductive and radiative effects. The use of a full
time domain solution to Maxwell’s equations allows us to treat current and charge on the lightning channel
as functions of time, in contrast to solution techniques based on Poisson’s equation.

The EFIE must be integrated over all space, but since we wish to focus our attention on lightning, we treat
charges not directly associated with the lightning channel as an external static applied electric field, Ea, which
adds to the lightning electric field El to give the total electric field Et. Ea is treated as an input to the simu-
lation that encompasses the static effects of thunderstorm charge centers, screening charge layers, and net
charges in the ground beneath the storm. Since in this work we consider channels and time scales that are
short compared to the scale of variability of cloud charge density, Ea is taken to be constant.

The electric field El associated with the lightning channel is where we must apply the EFIE, observing that the
lightning channel is effectively a long narrow structure. Partially integrating the EFIE over the cross-sectional
area of the channel converts the three-dimensional volume integral into a one-dimensional integral along
the channel:

El(x, t) = 1
4𝜋𝜖0 ∫ ds′

{
R̂
R2

[
𝜆
(

s′, t′
)]

ret
+ R̂

cR

[
𝜕𝜆 (s′, t′)

𝜕t′

]
ret

− 1
c2R

[
𝜕I (s′, t′)

𝜕t′

]
ret

}
(2)

where volume charge density 𝜌 has become linear charge density 𝜆, vector current density J has become
a vector total current I directed along the channel, and the 3 degrees of freedom of the vector x′ are now
represented as a scalar length coordinate s′ specifying position along the channel.

This one-dimensional integral version of the EFIE is unfortunately still not mathematically tractable, so we
treat the EFIE numerically with the method of moments [Rao, 1999] by dividing the channel into current and
charge segments. Each current segment flows into a charge and out of a charge. Charges are represented
as groups of straight segments partially overlapping the connected current segments as shown in Figure 1a.
Current and charge density are assumed to be uniform over the charge and current segments and thus

CARLSON ET AL. PRELIMINARY BREAKDOWN SIMULATIONS 5318



Journal of Geophysical Research: Atmospheres 10.1002/2014JD022765

piecewise uniform over the channel. This assumption means that the 1-D EFIE can be further simplified, sepa-
rating the integral into a sum of many relatively simple subintegrals, one over each charge or current segment.
For example, consider the electrostatic term in the EFIE:

1
4𝜋𝜖0 ∫ ds′

R̂
R2

[
𝜆
(

s′, t′
)]

ret
= 1

4𝜋𝜖0

∑
i
∫i

ds′
R̂
R2

[
𝜆i(t′)

]
ret

(3)

where i is an index for the set of charge segments, ∫i represents integration over segment i, and 𝜆i(t′) is the
charge density of segment i, which is uniform and thus only a function of s′ through the effect of s′ on the
retarded time t′. We further simplify this by assuming the segment is short compared to the speed of light time
scale of the processes to be captured by the simulation, so the effects of retarded time do not vary significantly
over a segment. This means the retarded time charge density can be factored out of the integral:

1
4𝜋𝜖0

∑
i

[
𝜆i(t′)

]
ret ∫i

ds′
R̂
R2

(4)

leaving the integral solely to treat geometric effects. Applying this process to the 𝜕𝜆∕𝜕t′ and 𝜕I∕𝜕t′ terms, the
EFIE in full is

El(x, t) = 1
4𝜋𝜖0

{∑
i

([
𝜆i(t′)

]
ret ∫i

ds′
R̂
R2

)
+
∑

i

([
𝜕𝜆i(t′)
𝜕t′

]
ret

∫i
ds′

R̂
cR

)
−
∑

i

([
𝜕Ii(t′)
𝜕t′

]
ret

Îi ∫i

ds′

c2R

)}
(5)

where Îi is a unit vector capturing the direction of current segment i. Note that a system with N current seg-
ments has N + 1 charges, so the first two sums over i run up to N + 1 while the last sum only runs up to N.
Assuming the lightning channel does not physically move significantly during a discharge, the geometric fac-
tors as calculated by the integrals above do not evolve with time. As such, they can be calculated once and
treated simply as constants in the simulation, leaving the resulting equation simply a sum of geometric factors
(constants) multiplied by charges and currents, a linear equation.

The time evolution of the system is also discretized: currents and charges are recorded at a set of times tj

separated by a time step 𝛿t at locations represented by the center point of the segment in question; see
Figure 2. The time evolution of the channel current is assumed to be piecewise linear (piecewise constant
current time derivative), leading to quadratic time variation in charge density. The interpolation scheme is
implemented as a set of basis functions (e.g., triangle functions for linear interpolation) whereby the desired
quantity at a desired time (one of the filled squares in Figure 2) is determined as a sum of the values in
the grid before and after the point in question (i.e., those points connected by a dotted line with the filled
square in question) multiplied by the appropriate interpolation basis function. Such interpolation basis func-
tions can capture the time derivative behavior as well, and the resulting scheme is purely linear, meaning the
contribution to the electric field of each point in the space/time grid is simply proportional to the value at
that grid point.

The assumption that the lightning channel does not move significantly during a discharge also means that
the interpolation basis function evaluations necessary to apply the EFIE can also be effectively represented as
a set of constants, fully reducing the EFIE to its form used here:

El(x, tn) =
1

4𝜋𝜖0

{∑
i

[(
n∑
j

𝜆
j
i𝛼

j
i Gi

r2

)
+

(
n∑
j

𝜆
j
i𝛽

j
i Gi

rc

)]
−
∑

i

[
n∑
j

I j
i 𝛾

j
i Gi

rc2

]}
(6)

where the first and second sums over i replace the integral over the charges and currents in the channel,
respectively, the sum over j carries out the sum over multiple grid times necessary to account for time interpo-
lation to the desired nongrid times needed in the retarded time integral, Gi

r2 , Gi
rc, and Gi

rc2 are the geometric
factors resulting from the spatial integral over segment i as seen by an observer at point x (the subscript rep-
resents the denominator of the corresponding term in equation (2)), while 𝛼

j
i , 𝛽 j

i , and 𝛾
j
i are the interpolation

basis function evaluations necessary to find the contribution from charge, charge time derivative, and cur-
rent time derivative respectively for segment i at time step j as seen by an observer at point x at time tn. Note
that due to the retarded time structure of the system, the 𝛼

j
i , 𝛽 j

i , and 𝛾
j

i factors are dependent on the position
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Figure 2. Time and space discretization, interpolation, and retarded time integration. The current and charge segment
geometry is shown at the top, aligned with the space/time grid points where charge and current values are recorded
as shown below (filled green and black circles represent known history of charge and current, respectively, and open
green and black circles represent unknown charge and current values, respectively, that are needed for time evolution).
An example EFIE retarded time integral to calculate the electric field at the center of current segment 2 is shown in grey
(labeled “light cone”), as are the points where interpolated charge and current values are used (open squares). Slices
through this space/time grid to demonstrate the interpolation scheme used are shown at the bottom.

of the observation point, so the above expression is specific to the value of x and also that most of the 𝛼
j

i , 𝛽 j
i ,

and 𝛾
j

i are zero, so in practice, the computational complexity of this expression is that of a single sum instead
of two nested sums.

The two additional ingredients needed to complete the simulation are Ohm’s law and a method to determine
the time evolution of channel current. Ohm’s law, J = 𝜎Et , relates current density and total electric field given
a conductivity 𝜎. Taken over the cross-sectional area of a narrow channel assuming current flows along the
channel only and the electric field is approximately constant across the cross section, Ohm’s law becomes
I = 𝜎AEt ⋅ ŝ giving the scalar current at the point in question in terms of the dot product of the total electric
field, the cross-sectional area A, and ŝ, a unit vector giving the direction of the channel at the point in question.
Note that the resistance per unit length Rl = 1∕(𝜎A).

This suggests a method to determine currents in a given segment, supposing the first n − 1 time steps of the
simulation are complete. Apply the EFIE to determine the component of the electric field along the channel at
the location of the given segment (segment k) for time step n and apply Ohm’s law to determine the current.
This overall gives a linear equation:

In
k Rl =

1
4𝜋𝜖0

{∑
i

[(
n∑
j

𝜆
j
i𝛼

j
ikGi

r2 k

)
+

(
n∑
j

𝜆
j
i𝛽

j
ikGi

rc k

)]
−
∑

i

[
n∑
j

I j
i 𝛾

j
ikGi

rc2 k

]}
(7)
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where the subscript k indexes the segment of interest and the G···
··· are now scalar contributions to the elec-

tric field component along segment k instead of vectors giving the full electric field. Note first that most of
the terms on the right-hand side are contributions from the charge and current in the past to the electric
field in the present. However, the sum over j representing the sum over history runs all the way up to and
includes time step n, i.e., including influences from the recent past, nearby segments, and the contribution
of a segment to itself. This implies that the unknown In

k appears on both the left- and right-hand sides of the
equation (as in Figure 2 the integration for E2 required In

2 for interpolation) and that the equation for In
k will

also involve nearby unknown currents (as seen in Figure 2 the integration for E2 explicitly required I1 and I3 for
interpolation). Note finally that the contributions required from interpolations involving unknown charges
can be expressed in terms of contributions from known past charges interpolated up to time step n by use of
the unknown currents, adding further contributions from various unknown In

i . These complications pose no
serious problems, and in a system with N current segments (N + 1 charge segments), repeating this process
for all current segments provides a system of N linear equations in N unknown currents that can easily be
rearranged into a form convenient for numerical solution.

One final subtlety is the influence of a segment on itself. Since the channel is effectively one dimensional,
the 1∕R and 1∕R2 terms in the geometric factors Gk

··· k described above will diverge. We solve this problem

by making the thin-wire approximation, R →
√

R2 + r2
0 in the denominators of terms of the EFIE, where r0 is

the effective radius of the channel [Miller et al., 1973a]. This approximation is valid if the typical value of R is
much greater than that of r0, which is even for such self-contributions if the segment length is much larger
than the channel radius. Since the typical radius of a lightning channel is a few millimeters [Rakov et al., 1998]
and segments used to represent a lightning channel are at least several meters long, this approximation is
clearly justified. We further improve the calculation of geometric factors Gi

··· k (i.e., those needed to calculate
the electric field at segment k due to segment i) by calculating the result of the integral over segment i as
observed by many points on segment k and computing an average. In our implementation, this averaging is
especially important for proper calculation of segment self-contributions (i.e., Gk

··· k) which are very important
for correct time evolution features such as current wave speed.

The system of linear equations that results can easily be solved on the computer by matrix techniques. The
solution gives the currents at the next time step. The charge values at the next time step can be determined by
applying charge conservation along the channel and integrating the current flow into and/or out of a given
segment over the given time step in question. The simulation keeps track of this by working internally with
charges Qi instead of charge densities 𝜆i (Qi = 𝜆iLi where Li is the total length of charge segment i) and by
defining a connectivity matrix Cil defined as

Cil =
⎧⎪⎨⎪⎩
+1 if Il flows into charge Qi

−1 if Il flows out of charge Qi

0 otherwise

(8)

Though such a matrix is unnecessarily complex for the simple unbranched geometry considered in this work
(here Ci i = −1 and Ci+1 i = +1 for i = 1…N), more complicated network connectivity can easily be cap-
tured. It is also quite computationally convenient, for example, giving the net charge flow into a segment as
a matrix-vector product:

dQi

dt
=
∑

l

Cil Il (9)

With this definition of the connectivity matrix, charge conservation and integration forward for over a time
step is straightforward. The piecewise linear time interpolation for current integrated over a time step simply
becomes an average, giving

Qn
i = Qn−1

i + 1
2

(∑
l

Cil I
n
l +

1
2

∑
l

Cil I
n−1
l

)
𝛿t (10)

where the first sum gives the net current flow into charge segment i at time tn and the second gives the same
quantity at time tn−1. This expression gives time evolution for a simple case that will become more complicated
when we add features to the model in the next section. Regardless, these new current and charge values

CARLSON ET AL. PRELIMINARY BREAKDOWN SIMULATIONS 5321



Journal of Geophysical Research: Atmospheres 10.1002/2014JD022765

complete a new state of the system to be added to the history. Repeating this procedure marches the system
forward in time.

One further advantage of this system is that the time step size is flexible. For periods during long-duration
simulations when no short-duration processes are happening, the time step can be extended, trading time
resolution for simulation speed. The system smoothly transitions from a full electrodynamic to a quasi-static
simulation. As time step size increases, more and more nearby unknowns appear in equation (7), and when
the time step is infinitely large, the system of linear equations that results is equivalent to solving the Poisson
equation over the lightning channel.

We have verified our simulation as described above against time domain results from Miller et al. [1973b] and
static results from Jackson [2000] with very good agreement. While such time domain method of moments
calculations often have high-frequency stability problems, we follow the time averaging scheme described in
Smith and Taylor [1990] to dampen out these high-frequency oscillations. Von Neumann stability analysis of
the method shows good stability characteristics provided the time step is not too short, and stability improves
for longer time steps though resolution is lost.

The simulation itself is written in C with sparse matrix operations from CXSparse [Davis, 2006] and is written
to run in parallel on multi-CPU computers with ScaLAPACK [Blackford et al., 1997] and MPI.

2.1. Additional Features for Leader Extension Simulation
The simulation system described above cannot immediately duplicate the features seen in natural lightning
step pulses. In particular, the corona sheath must be included in order to reproduce the quantity of charge
transfered by a channel. Capturing the details of the radial distribution of charge would vastly increase the
computational complexity of the model, so here we simply include the corona sheath as a secondary set of
charges, located on top of the main channel charges that enter the EFIE with the same formalism as described
above but with a larger effective radius rCS in the thin-wire approximation as used in computation of geometric
factors G···

···. It is important to note that this radius parameter is not the exact radius of a cylindrical sheath
of charge, especially since this radius may become comparable to the segment length and thus leaving the
thin-wire approximation unjustified, but the corona sheath radius parameter does capture the behavior of a
diffuse charge region surrounding the channel with effective size tunable by rCS.

A corona sheath charge segment is filled with charge from the channel charge segment it encloses; i.e., we
assume that charge flows only outward or inward from a given channel charge segment to its corona sheath,
not longitudinally along the corona sheath. Higher charge density on the main channel charge segment
would lead to more rapid transfer, so we further assume that the charge migrates outward at a rate propor-
tional to the charge stored on the channel. This effectively means that we treat the corona discharge processes
surrounding the channel as represented by a constant conductivity; this is not a good assumption but it is
convenient: the linearity of the charge transfer process means that it can be interpolated in time with the
same sort of interpolation basis functions described above. Ignoring charge flow along the channel, the over-
all result of this approach would be an exponential decrease in channel charge, so we parametrize this process
by the characteristic time scale 𝜏CS for charge transfer to the corona sheath. Thus, the time derivative of the
charge on corona sheath segment i(QiCS) is given by

dQiCS

dt
=

Qi

𝜏CS
(11)

where Qi is the charge on the corresponding channel segment. The charges in the equation above are func-
tions of time, so time evolution of the system becomes more complicated than described above. Instead of
simply integrating the current flow along the channel into or out of a channel charge segment to determine
the change in the charge, we must solve a differential equation for the evolution from one time step (tn−1) to
the next (tn) :

dQi

dt
= −

Qi

𝜏CS
+ n−1

i

[
1 −

t − tn−1

𝛿t

]
− n

i

[
t − tn−1

𝛿t

]
(12)

where − Qi

𝜏CS
gives the current flow outward to the corona sheath due to the charge on the segment in ques-

tion, n−1
i =

∑
l Cil I

n−1
l and n

i =
∑

l Cil I
n
l are the net current flow into the charge segment at times tn and tn−1,
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respectively, in terms of the connectivity matrix Cil as discussed previously, and the terms in square brack-
ets are the piecewise linear time interpolation basis functions discussed above appropriate for interpolation
between In−1

i and In
i for times between tn−1 and tn. The equation is a first-order nonhomogeneous ordinary

differential equation that is straightforward to solve by variation of parameters. The result, valid for times
between tn−1 and tn, is

Qi(t) =

(
Qn−1

i − n−1
i 𝜏CS +

n
i − n−1

i

𝛿t
𝜏2

CS

)
e
− t−tn−1

𝜏CS + n−1
i 𝜏CS +

n
i − n−1

i

𝛿t

(
(t − tn−1)𝜏CS − 𝜏2

CS

)
(13)

Evaluating this solution at tn = tn−1 + 𝛿t thus determines the evolution of the net charge carried on segment
i from time tn−1 to time tn. The evolution of charge on the corresponding corona sheath segment can then be
computed easily by considering charge conservation on the channel segment in question:

Qn
iCS = Qn−1

iCS +

(n−1
i + n

i

2
𝛿t −

(
Qn

i − Qn−1
i

))
(14)

where
n−1

i +n
i

2
𝛿t is the net charge flow along the channel onto the channel charge segment in question during

the time step in question and Qn
i −Qn−1

i is the net change in charge on the channel charge segment in question.
Any imbalance between these terms is due to charge flow onto the corona sheath.

Furthermore, in channel extension simulations, the channel itself must evolve with time. This evolution is
determined by heating and cooling processes that also must be included in the simulation in order to repro-
duce the features of step pulses. Fundamentally, the heating process is Joule heating, with a power per length
proportional to I2Rl , where Rl is the resistance of the channel per unit length. Cooling is determined by a com-
bination of radiative, conductive, and convective cooling. The fundamental physics of heating and cooling of
a nonequilibrium plasma channel is very complex, and we have not attempted to capture its nuances here.
For a more detailed consideration, see Liang et al. [2014]. Here we simply assume that the conductivity of the
channel can be determined by an effective temperature and that the effective temperature changes accord-
ing to an effective heat capacity per unit length Cl . On time scales shorter than 20μs as examined here, cooling
is not a major factor [Heckman, 1992, chap. 6], so we simply have CldT∕dt = I2Rl . In the segmented repre-
sentation of the channel, a temperature is assigned to each current segment and evolved according to the
heating at the end of each time step.

Given a temperature, it remains to calculate the resistance per unit length of the channel, Rl . This is another
complex topic that we can only qualitatively approximate. The conductivity calculation here is motivated
by the Saha equation of ionization equilibrium and results from plasma conductivity studies. The Saha
equation gives ratios of various ionization states in terms of their degeneracies and thermal energy effects,
but if the temperature dependence is the only effect of importance, it becomes simply a proportionality
n2

e ∝ T 3∕2e−𝜖∕kBT where ne is the electron number density, T is the temperature, kB is Boltzmann’s constant, and
𝜖 ≈ 14 eV is the approximate ionization energy relevant for atomic oxygen or nitrogen. The plasma conductiv-
ity adapted to nonideal plasma conditions as in Zollweg and Liebermann [1987] is typically given in terms of a
reduced conductivity,𝜎∗ as𝜎 ∝ T 3∕2𝜎∗. The reduced conductivity𝜎∗ is roughly proportional to the square root
of a nonideality parameter, 𝜎∗ ∝ 𝛾1∕2 [see Zollweg and Liebermann, 1987, Figure 1], where 𝛾 ∝ n1∕3

e ∕T . Com-
bining these proportionalities, we obtain 𝜎 ∝ T 9∕8e−𝜖∕12kBT and a corresponding resistance per unit length
Rl ∝ T−9∕8e𝜖∕12kBT . Comparison to arc conductivity measurements in Schreiber et al. [1973] adjusted to our
channel radius give Rl(104K) ≈ 2.5Ω/m sets the proportionality constant. This calculation gives the resistance
versus temperature shown in Figure 3. This is of course at best an approximate treatment, and changes in the
resistance as a function of temperature may make channels heat up more or less quickly which will have an
effect on the electromagnetic radiation produced. Regardless, since channel heating is a relatively slow pro-
cess compared to our time step size, in each time step, the current and charge are updated assuming constant
temperature and conductivity. The temperature and conductivity are then updated before the next time step.

Though approximate, these treatments of corona sheath behavior and temperature dependence of resistance
capture the dominant behavior of the lightning channel.

2.2. Parameters
Such a complex simulation naturally has parameters. These parameters break down into three main cate-
gories: physical constants, computational parameters, and initial conditions. The physical constants include
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Figure 3. The formulation of resistance per unit length of the channel
as a function of temperature of the channel used in the simulations.

not only true physical constants like the
speed of light or the permittivity of free
space but also the physical properties
of the channel that do not evolve with
the simulation: channel heat capacity and
effective radius, for example. The initial
conditions (e.g., the initial geometry of
the channel or the length of the step in
question) are discussed later in the con-
text of specific simulations. A full list of
the parameters and their values is given
in Table 1.

The channel radius is taken to be 3 mm,
consistent with Rakov et al. [1998], though
this parameter does not significantly
affect the results. The corona sheath
radius (i.e., rCS in the thin-wire approxi-

mation) is taken to be 4 m, consistent with estimates from Cooray [2004, p. 292] based on the distance from
the channel for electric fields to the decrease below breakdown for typical linear charge densities inferred
from stepped leader measurements. The corona sheath time scale depends on the time needed for charge
to leave the channel and is chosen to be 0.5 μs as a compromise between the rapid motion of charge away
from the channel out to 0.1 m distances on a time scale of 0.1 μs (i.e., a streamer speed of ∼1 mm/ns [Briels
et al., 2008]) and slower migration out to larger radii. The initial charge motion outward has a stronger effect
on electric fields than motion to larger radii, so the corona time scale is shorter rather than longer. The heat
capacity of the channel of 2 J/K/m with a channel radius of 3 mm corresponds to a heat capacity of ∼50 J/K/g
for air at or below atmospheric pressure, consistent with experimental estimates [D’Angola et al., 2007].

The parameters specific to the simulation, the time step size and channel segment length, are chosen based
on the desired resolution. We seek to resolve processes on shorter than 10 μs scales, requiring time steps
shorter than 0.1μs, so here we use 35 ns. The 35 ns time step interval, given our von Neumann stability analysis,
requires segments at most ∼10 m long, so here we use 5 m. We tested a variety of other spatial and temporal

Table 1. List of Simulation Parameters

Parameter Values

Physical Constants

Channel radius 3 mm

Corona sheath radius 4 m

Corona sheath time scale 0.5 μs

Channel heat capacity 2 J/K/m

Computational Parameters

Time step size 35 ns

Segment length 5 m

Initial Conditions

Applied electric field ∼100 kV/m

Channel length ∼1 km

Channel shape straight

Channel orientation vertical or angled

Channel position above origin

Step length ∼100 m

resolutions, and the values given above
ensure good convergence, retain resolution,
and are quite stable.

The simulation technique described above
is applicable to many problems in light-
ning physics. The geometry of the chan-
nel is unconstrained, so branched channels
with arbitrary shape and connectivity are
allowed. The time step is flexible, allow-
ing efficient simulations both of large-scale
channel development and short-duration
charge motions. Inclusion of stochastic chan-
nel extension motivated by fractal geometry
allows for simulations of the full lightning
discharge. The radiative terms in the EFIE
allow for the prediction of electromagnetic
emissions from lightning channels. Those
advanced features aside, however, we start
simple in this paper.

3. Simulation Results

As the focus of this paper is preliminary
breakdown pulses, consider simulations of
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single steps. The simplest configuration that captures this phenomenon is a single isolated straight channel,
with an uncharged nonconductive “step” portion at one end as shown in Figure 1b. This initial channel is
1 km long, unbranched, and straight, with its bottom end at 5 km altitude. Since the discharge is so far from
the ground, the effects of the charges induced in the ground by slowly varying thunderstorm charges can be
included as part of the applied field as described above.

For simulation of a step, since interstep intervals are relatively long, we assume that the charge distribution
along the channel has reached equilibrium prior to the step. We simulate this by initially allowing charge and
current to flow on the main conductive channel for a time much longer than that needed for equilibrium to
be reached without allowing the step to evolve in any way. Once the main channel has reached equilibrium,
its resistance is set to 48 Ω/m to represent an existing active channel and the resistance of the step portion
of the channel is set to an initial noninfinite but very large value (8 × 104 Ω/m, corresponding to an initial
temperature of 1400 K in our conductivity scheme). This artificial heating of the new step to the point where
it can further heat itself by current flow hides the details of the near-channel physics that somehow leads
to stepwise channel extension. The physics of this process is not well known, though it presumably includes
the effects of electric field-induced ionization, photoionization, corona, and streamer behavior ahead of the
existing channel. Regardless of the details, once our crude approximation of the initial temperature increase
has been applied, the entire system is allowed to evolve freely. The applied field and the field from charges
accumulated on the main channel then drive small currents on the step which gradually heat the step until
the positive feedback from rising temperatures and increasing conductivity results in a rapid current pulse
from the main channel onto the newly active step.

Given the large charge accumulation at and near the end of the main channel, the electric field is strongest at
points on the step closest to the main channel. Thus, for our geometry, the current and resulting heating are
strongest close to the main channel. If allowed to evolve without any additional requirements, the step heats
starting closest to the main channel in a process akin to a dart leader. This is logical but contrary to observa-
tions of stepped leaders that, as discussed above, seem to involve space stems and leap forward at velocities
faster than those of dart leaders (see speed and duration estimates in Rakov and Uman [2007], sections 4.4.6
and 4.7.2). Creating a space stem artificially entails careful tuning of the initial resistance over the newly evolv-
ing step. As there is no clear justification for why or how we should accomplish this, we instead take a more
blunt approach and enforce a uniform resistance per unit length of the step at each time step. This is done
by calculating the total heating and specific heat of the step channel and calculating the average effects on
resistance. Though artificial, this smoothed resistance structure means our results are not tied to any partic-
ular ideas about prestep channel structure. Though the resistance is enforced to be uniform, the current and
charge density evolve without any smoothing.

Sample simulation results are shown in Figure 4. The first feature of note is that there are no high-speed
propagating features since this process is dominated by resistance and heating that happen on a 10 μs
time scale, much longer than the speed of light propagation time over the region shown. The contours on
the current plot (Figure 4, bottom left) do suggest some propagating feature moving along the channel,
but this is basically a diffusion of charge, not a return stroke like current pulse. Second, since current and
charge evolve on the new step without any smoothing (only temperature and conductivity are smoothed),
the current flow on the step first becomes significant near the end of the channel and is highest there. This
also explains the kink in the “step start” charge density (Figure 4, top right): initially, this charge density
increases before the step effectively turns on, but at around 35 μs when the current is large, much of it car-
ries charge away from the beginning of the step, decreasing the magnitude of the local charge density before
charge flow from elsewhere on the channel catches up. Third, the charge density associated with the end
of the channel lingers for a relatively long time. This is expected, even given the relatively short 𝜏CS used in
the simulation, since 𝜏CS is the time scale for charge transfer to the corona sheath as driven by the focused
charges on a given channel segment channel, while charge transfer from the corona sheath is driven by
the charge on the sheath itself, which exerts its effect only on portions of the channel away from the seg-
ment in question and thus is a relatively slow indirect effect. As the extension comes to equilibrium, the
linear charge density is consistent with the ≲ 1 mC/m inferred from measurements near lightning leaders
[e.g., Winn et al., 2011].

For comparison with data, the resulting currents and charges are used to calculate the electromagnetic fields
observed by hypothetical receivers positioned on the ground at various positions near the channel as shown
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Figure 4. Sample results of a 100 m step simulation. (left column) Current and (right column) charge are shown versus
(top row) time at various points and (bottom row) as an image. The current flow shown at top left is through the channel
step junction. The charge shown at top right includes both channel and sheath charges and is plotted at three locations:
the end of the old channel, the start of the step (just past the end of the channel), and the end of the step (the end of
the new channel). The images in Figure 4 (bottom row) both show the evolution of the bottom 600 m of the channel,
i.e., the bottom half (500 m) of the old channel with the 100 m step at the bottom.

in Figure 1b. While the ground is sufficiently far below the channel to neglect the effects of charges induced
in the ground by lightning on the lightning itself, this is not true for observers on the ground. Here we simply
treat the ground as a perfect conductor and apply the method of images, a reasonable first approach since
ground conductivity for Earth of ∼10−3 S/m [International Telecommunications Union, 1992] gives a relaxation
time of∼10 ns, shorter than the processes we consider here. The electromagnetic wave radiated by the image
superposed with the electromagnetic wave radiated by the channel itself results in valid perfect conductor
boundary conditions at ground level, simply canceling out the horizontal electric fields at the location of the
receiver and doubling the vertical electric field. This can easily be shown by consideration of the geometry of
the image charges and currents and working out the vector geometry in the EFIE. Since our applied electric
field is only intended as a driver of processes on the channel itself, it does not capture screening charge layers
on the cloud or local to the receiver, so we only consider changes in electric field due to charge motions during
the step, not the overall field.

Samples of such electric field change records are show in Figure 5. Each panel shows the predicted observa-
tions at locations displaced by a variety of distances from the substep point in a given direction for a discharge
oriented at a given angle. The simulations shown use a 100 m step on the bottom of a 1 km channel in
a 100 kV/m applied electric field directed along the channel. The signals received depend strongly on the
direction of the channel and on the location of the observation point, but some trends are evident. In all pan-
els, observers far from the subdischarge point observe smaller static field changes, while the radiated pulse
(amplitude ∝ 1∕R) remains evident out to long distances. For observers displaced in the +x direction (the left
column of plots), the upright channels result in a net transport of negative charge toward the observer (and
thus producing an upward directed static electric field change), while steeply tilted channels move negative
charge on average away and positive charge toward the observer (and thus producing a downward directed
static electric field change). No such sign change is present in observation locations displaced along the −x
axis (right column), since regardless of angle, the step results in a net transport of negative charge closer to
the observer, though such observers see a sign change in the radiated signals as the channel tilts and thus
hits the observer with signals radiated in different directions relative to the channel orientation. The obser-
vations displaced along the +y axis (the middle column, observers for which the channel is neither angled
toward nor away from the observer) fall generally in between the corresponding observations for observers
displaced along the +x and −x axes. One exception to this general trend is for horizontal channels, where
observers along the +y axis are predicted to detect very small DC field changes due to a motion of negative
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Figure 5. Sample electric field change recordings at a variety of positions relative to the discharge for a variety of dis-
charge orientations. The geometry is as shown in Figure 1b but with the top of channel tilted away from the vertical z
axis toward the +x axis, pivoting about the junction between channel and step. Each row of plots in the figure corre-
sponds to a different orientation of channel, with the angle marked at the right in degrees deviation from vertical as the
channel tilts. Each column in the plot shows predicted observations at ground level at locations displaced from the sub-
step point in a given direction (+x, +y, or −x). Each curve in the plot shows the predicted field change for a receiver at
a distance indicated by the color of the curve. For example, the black curve in the top left plot shows the observations
predicted at a point 2 km in the +x direction from the substep point with a vertical channel.

charge on average toward the observer, together with a small transient nonradiated pulse contributed by the
𝜕𝜌∕𝜕t term in the EFIE.

Clearly, even a single stepwise channel extension event can produce a wide variety of static and radiated
electric field changes. We hope at the very least that these results will be useful in qualitative interpretation of
data, and with known geometry constraints or the plausible assumption of a vertical channel, such simulations
can illuminate quantitative connections with individual pulses.

3.1. Parameter Dependence
In order to complete our discussion of simulation results, we examine the dependence of the simulation
results on the step properties and physical parameters of the model. Throughout our discussion we have
given plausibility arguments and citations for parameter values, but these parameters are at least slightly tun-
able since the values are either not known precisely or appear only as “effective” values. Tunable parameters
remove some of the predictive power of such a model, but tuning the parameters to match observations
provides information about the allowable effective values of the parameters, making a connection between
observations and more fundamental processes.

As a way to study the parameter dependence, consider the signals detected by a hypothetical observer a
moderate distance from the substep point. Provided the channel is not too steeply angled, all observers more
than a few kilometers from the substep point agree on the shape of the radiated electric field pulse, so this is a
useful diagnostic that is somewhat less dependent on the details of the geometry. Sample simulated current
and radiated electric field waveforms are shown together with the effects of the most important parameters
in Figures 6 and 7. During the step, the step channel heats such that its resistance decreases to 30–70 Ω∕m,
consistent with Rl of the main channel and thus with growth of the main channel. Overall, the electromagnetic
signals produced (Figure 7) have three main identifiable features: amplitude, duration, and the relative height
of negative and positive excursions (“asymmetry”). For simulations of single lightning leader steps, extensive
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Figure 6. Parameter dependence of channel current at the base of the
step, showing the effects on the current if the major parameters are
increased or decreased as labeled (increase or decrease is by a factor of
2 except for applied field, which is increased and decreased by 25%).

numerical exploration shows that the
most important parameters are the spe-
cific heat of the channel, the time scale
over which charge migrates to the corona
sheath, the step length, and the applied
electric field strength which interacts
with the channel length. As the spe-
cific heat of the channel increases, the
duration of the pulse increases, its ampli-
tude decreases, and the pulse becomes
more asymmetric. As the corona time
scale increases, the pulse amplitude
decreases and the pulse becomes more
asymmetric, leaving the pulse duration
unaffected. Longer steps take longer to
heat over their entire length and thus
radiate longer-duration pulses with sim-
ilar amplitudes and increased symmetry.
Finally, increasing the applied electric
field strength is similar to decreasing
the channel heat capacity: pulse dura-
tion decreases, amplitude increases, and

asymmetry decreases. Unfortunately, applied electric field affects results similar to the length of the preexist-
ing channel: longer channels lead to greater intensification of the electric field in the region of the step, and
the equivalence between nonchannel applied electric field and channel electric field makes long channels
produce steps essentially identical to shorter channels in stronger applied electric fields.

Physically, these pulse features and their parameter dependence shed light on the physical origin of the pulse
features. First, note that the radiated electromagnetic wave comes largely from the 𝜕J∕𝜕t term of the EFIE.
Strong radiated electric fields thus correspond to rapidly changing currents. The initial negative excursion
comes from a rapid increase in upward current flowing onto the new step (the “turn-on” phase), while the
smaller positive excursion that immediately follows comes from the decrease in current as the step gradually
fills with change (the “turnoff” phase). The risetime of the pulse is directly connected to the risetime of the
current and thus to heating of the channel. The duration of the initial negative excursion is simply the time
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Figure 7. Parameter dependence of received electric field showing the
effects on the signal if the major parameters are increased or decreased
as labeled (increase or decrease is by a factor of 2 except for applied
field, which is increased and decreased by 25%).

required for the current to reach its max-
imum value as the channel heats, which
is determined both by the energy neces-
sary to heat the channel (heat capacity)
and the amount of energy available
(applied field). The maximum current is
determined by the length of the step and
also by the charge accumulation neces-
sary to counteract the applied field and
thus reflects the formation of the corona
sheath: rapid sheath formation draws
more charge away from the channel and
thus leads to higher currents since charge
on the corona sheath is less able to coun-
teract an applied field on the channel
than charge on the channel itself. Once
the current reaches its maximum value,
it decreases on a time scale determined
by the formation of the corona sheath.
With this physical framework in mind,
the simulation results can be compared
to observation.
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Figure 8. (left) A map of the discharge according to LMA and HAMMA time of arrival and (right) an overview of the
HAMMA data for the preliminary breakdown phase. In Figure 8 (left), LMA points during and after the preliminary break-
down period shown in the data overview are shown as black and grey circles, respectively, while HAMMA time of arrival
locations during and after the preliminary breakdown period are shown as black and grey open squares, respectively.
The median HAMMA time of arrival position for the preliminary breakdown period is shown as a large cross and has an
altitude of ∼5 km.

4. Comparison to Observation

These simulation results can easily be compared to data collected with the Huntsville Alabama Marx Meter
Array (HAMMA). HAMMA is a network of electric field change meters (Marx meters) located in the area sur-
rounding the University of Alabama in Huntsville. The electric field change meters have 100 ms time constant
and are sampled at 1 MHz with GPS time synchronization. These meters provide high-resolution, high dynamic
range measurements of electric field changes associated with both slow and fast processes in lightning
discharge. GPS time accuracy allows the location of fast processes to be determined by time of arrival fitting.
The Alabama Lightning Mapping Array (LMA) [Goodman et al., 2005], a VHF time of arrival lightning mapper,
covers the same area.

In this paper, we focus on fast pulses measured during the initial growth of a lightning discharge on 26 October
2010 at 19:04:59 UT. This lightning discharge lasted more than 100 ms and included multiple K changes and
return strokes, but here we focus on the preliminary breakdown pulses during the growth of the channel just
after initiation and prior to the first K change. A map of the discharge and the preliminary breakdown period
in question is shown in Figure 8. HAMMA detector 5 is 4.4 km from the submedian point and sees a positive
ΔEz due to negative charge motion toward the detector, while the other detectors are far enough away that
they see a net negative ΔEz that can be understood in the context of the curvature of electric field lines of
a dipole. For the rest of this paper, we will examine three representative detectors: detector 5 (4.4 km away,
very close to the discharge), detector 2 (8.4 km away, moderate distance), and detector 4 (30.8 km, relatively
large distance).

The preliminary breakdown pulses considered in this paper are too short to be resolved on the relatively
large time scale of Figure 8. Focusing on the first few milliseconds as shown in Figure 9, pulses with a vari-
ety of features can be seen. Most pulses in detectors 2 and 4 show the same features as those in the more
distant detectors in Figure 5: a relatively short intense downward excursion followed by a relatively weak
and long upward excursion. Many of the pulses in detector 5 also show this pattern but include a more clear
stepwise increase in upward electric field, a feature present in our simulation results in Figure 5 for relatively
nearby detectors.
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Figure 9. Zoomed views of the data from Figure 8, showing (left column) the first millisecond of data and (right column)
a further zoom into the second half of that first millisecond. Data from detectors 2, 4, and 5 are shown as representative.

Focusing on the group of three pulses at 740–810μs in detector 5, the first pulse shows a relatively small down-
ward excursion associated with a relatively large DC change, while the last shows a relatively large downward
excursion with very little DC change. Comparison to our simulation results suggests that the first pulse was
associated with channel extension directed somewhat but not directly toward detector 5 (see the −x, 22.5◦,
4 km curve in Figure 5), while the third pulse was associated with extension directed more perpendicular to
the line of sight from detector to channel (see the +x, 22.5◦, 4 km curve). Detector 4, on the opposite side
of the discharge as detector 5, is well placed to test this hypothesis. If the first pulse of the trio was toward
detector 5 (matching −x curves), it should have been away from detector 4 (matching +x curves), while if the
third pulse of the trio was away from detector 5 (matching +x curves), it should have been toward detector
4 (matching −x curves). Unfortunately, the only visible difference between the +x (away from, hypothetical
first pulse) and −x (toward, hypothetical third pulse) curves for detector 4 is amplitude, with the toward (−x)
curve having a slightly lower amplitude. The third pulse in detector 4 does indeed have a slightly lower ampli-
tude than the first, consistent with the predictions of the model, but the relative amplitude of the simulation
results comes from a single simulation, while in the data we are comparing two distinct pulses. Detector 2,
however, can address this uncertainty; located approximately perpendicular to the line connecting detector
5, the lightning channel, and detector 4, the symmetry of the situation suggests that whether channel exten-
sion is directed toward detector 5 or toward detector 4 should not affect the pulse observed by detector 2, so
detector 2 can be used to judge the relative amplitude of pulses as emitted by the channel. Detector 2 sees
approximately equal amplitudes, which indicates that the channel extension events responsible for the first
and third pulses are of approximately equal intensity. This lends support to the comparison between a single
simulation and two pulses seen in detector 4 as described above and suggests that the amplitude difference
between the first and third pulses seen in detectors 3 and 4 can be attributed to the different directions of
channel extension relative to detector location. Our interpretation of channel directions and pulse intensities
as seen by detectors 4 and 5 as motivated by the pulse shapes seen by detector 5 and supported by detector
2 is thus at least qualitatively self-consistent.

Quantitative consistency requires direct comparison and manual iterative adjustment of simulation initial
conditions. The results of such a process for the first and third pulses discussed above are shown in Figure 10.
The geometry of the simulations is exactly as in Figures 1b and 5, with the channel tip placed at 5 km altitude
and positioned relative to the detectors as suggested by the median HAMMA source as shown in Figure 8. We
slightly adjust the channel direction to attempt to fit the observations, changing the angle from 22.5◦ to 20◦

to better emphasize the initial downward excursion at detector 5. The quantitative agreement is much better
for the third pulse than for the first. This is unsurprising given the fine structure evident in the first pulse of
the three; the first pulse is likely due to a more complex process than a simple single-step extension, perhaps
a superposition of two overlapping extension events as suggested by the two negative excursions visible in
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Figure 10. Quantitative comparison between simulation results and observations for the pulses discussed geometrically
in the text (i.e., those at ∼800 μs in Figure 9), showing (left and right columns) the first and third pulses in the group of
three, respectively.

detector 2 data. The third pulse as seen in detector 2 is stronger than expected based on the simulation. This
suggests that the directionality of the channel extension is not as simple as described above. Adjusting the
directionality such that detector 2 receives more of the radiated electric field can improve the match, as does
moving the simulation channel closer to detector 2, but an automated fit would be required to improve the
results significantly, the time required to run such simulations makes this difficult, and the match between a
simple simulation and a complicated lightning channel is not expected to be perfect.

The comparison in Figure 10 does point out some detailed qualitative deviations between simulation results
and observations. First, the simulated DC field change that develops by around 25 μs after the pulse often
disagrees with the observations. This suggests either the amount of charge transferred on the simulated
step is wrong or there is some other charge transfer occurring elsewhere on the channel that confounds
the data. Second, the positive excursion peaks later in the data than in the simulation. For radiated pulses,
this indicates that the current begins decreasing more quickly in the simulation than in reality. The fact that
the positive excursion is often higher in the data than in the simulation indicates that the maximum rate
of decrease of current is higher in reality. Relative to simulation, therefore, in nature, the current that flows
onto a new portion of channel increases in roughly the same way but remains near its peak for longer before
turning off more quickly. Such deviations are perhaps unsurprising given our enforced ignorance of the geom-
etry of the heating of the step and our approximate treatment of the corona sheath, but broad qualitative
agreement is promising, especially given that the data do not come from a straight channel that comes to
equilibrium before extending in a single isolated step but from active development throughout a dynamic
branched channel.

5. Summary and Future Work

This paper describes a simulation technique that captures the details of charge and current flow on an evolv-
ing lightning channel. The simulation includes approximate treatments of channel resistance evolution due
to heating and the migration of charge outward from the channel to the corona sheath. Inclusion of these
processes leads to a model capable of reproducing the detailed features of preliminary breakdown pulses as
shown in Figure 10, lending support to the interpretation of such pulses as from stepwise extensions of an
existing channel.

Much work remains to be done, however, as seen both in the deviations between simulation and data and in
the fact that we only consider a small portion of the overall evolution of the channel. In this, the mismatch
between simulation and observation is encouraging; such mismatch means that the results of the simulation
are sensitive to the details of the processes at work in a preliminary breakdown pulse, so further study can shed
light on such details. For example, the framework described here can be extended to include more detailed
treatments of the plasma physics of the channel [see, for example, Liang et al., 2014], and the resistance of the
new step channel, here forced to be uniform, can be allowed to vary with better initial conditions, perhaps
approximating a space leader process. The channel extension process can be simulated further by including
more steps and variation of step properties with altitude. On longer time scales, the simulated channel can
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be allowed to extend and branch stochastically by implementing results from fractal lightning (e.g., Niemeyer
et al. [1984] and Riousset et al. [2007], justifying our name for the technique as time domain fractal lightning
modeling), and preliminary results show excellent qualitative agreement with longer time scales of channel
evolution (e.g., reproducing K changes), to be described in a subsequent paper. Finally, though the simulation
reproduces many features of lightning electric fields, there are still features that are difficult to explain, like the
unusually large and symmetric pulse in Figure 9 near 375μs. Such a feature must represent a current pulse that
turns on rapidly and turns off just as rapidly, suggesting that the effect of processes like the formation of the
corona sheath is not as important for such pulses. Such speculation can easily be tested, and the future work
described above is ongoing. It is our hope that such full electrodynamic simulations, motivated by physics,
can help bridge the gap between plasma physics and lightning observation, helping both to constrain our
understanding of the physics of the lightning channel and to interpret lightning observations.
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