
Paper III

Lex M versus MCS-M

Yngve Villanger∗

Abstract

We study the problem of minimal triangulation of graphs. One of the
first algorithms to solve this problem was Lex M, which was presented in
1976. A new algorithm, and a simplification of Lex M called MCS-M, was
presented in 2002. In this paper we compare these two algorithms and
show that they produce the same set of triangulations, answering an open
question mentioned by the authors of MCS-M.

1 Introduction

Graph theory has several important problems that involve creating a chordal
supergraph from a given graph by adding a set of edges. The set of added edges
is called fill, and the chordal supergraph is called a triangulation of the given
graph. Different goals may be desired; one is to introduce as few new edges as
possible (called minimum fill), and another is to create a triangulation such that
the largest clique is as small as possible, which corresponds to the treewidth of
the graph. Both of these problems are NP-hard [1, 13].

Minimal fill, also called minimal triangulation, is the problem of adding an
inclusion minimal set of fill edges. There exist several practical algorithms that
solve this problem [2, 4, 5, 6, 7, 9, 11, 12]. Since minimum fill is hard to com-
pute, minimal fill may be used as an alternative, even though the difference in
the number of fill edges may be quite large. One of the algorithms that solve the
minimal triangulation problem is Lex M (Rose, Tarjan, and Lueker [12]), which
is a classical algorithm based on a special breadth first search and lexicographic
labeling of the vertices. Recently (Berry, Blair, Heggernes, and Peyton [3]) intro-
duced a new algorithm called MCS-M. This is a simplification of Lex M so that
cardinality weights are used instead of lexicographic labels.

A triangulation of a graph can also be obtained by using the elimination game

[10] algorithm. This algorithm takes a graph and an ordering of the vertices as
input. The ordering of the vertices given to the elimination game is also called

∗Department of Informatics, University of Bergen, N-5020 Bergen, Norway.
yngvev@ii.uib.no

2 Lex M versus MCS-M

an elimination ordering. This ordering uniquely defines the set of fill edges for a
given graph, but there may be many different elimination orderings that introduce
the same set of fill edges. If an ordering produces a minimal triangulation, then
the ordering is called a minimal elimination ordering (meo).

Both Lex M and MCS-M produce an meo. The user of Lex M and MCS-M
can select the last vertex in the ordering, and may have some choices during the
execution of the algorithm. Because of these choices, both algorithms produce a
set of minimal orderings for a given graph. Some of the orderings may only occur
in one of the sets, and it follows that the number of orderings in each of these
sets can be quite different. However, in this paper we show that for every Lex
M ordering, there exists an MCS-M ordering that creates exactly the same fill
edges, and for every MCS-M ordering there exists a Lex M ordering that creates
exactly the same fill edges. It follows that Lex M and MCS-M create exactly the
same set of triangulations.

2 Elimination orderings, Lex M, and MCS-M

We consider finite, simple, undirected and connected graphs. Given a graph
G = (V, E), we denote the number of vertices as n = |V | and the number of
edges as m = |E|. The neighborhood of a vertex u ∈ V is denoted by NG(u) = {v
for (u, v) ∈ E}, and NG[u] = NG(u) ∪ {u}. In the same way we define the
neighborhood of a set A ⊆ V of vertices by NG(A) = ∪u∈ANG(u)\A. A sequence
v1 − v2 − ... − vk of distinct vertices describes a path if (vi, vi+1) is an edge for
1 ≤ i < k. The length of a path is the number of edges in the path. A cycle is
defined as a path except that it starts and ends with the same vertex. If there is
an edge between every pair of vertices in a set A ⊆ V , then the set A is called a
clique.

Chordal graphs are the family of graphs where every cycle of length greater
than three has a chord. A chord is an edge between two non-consecutive vertices of
a cycle. Chordal graphs can be computed from non-chordal graphs by introducing
new edges, called fill edges. This process is called triangulation of a graph. An
ordering of V is a function α : {1, 2, ..., n} ↔ V , and we use α = [v1, v2, ..., vn] to
denote that α(i) = vi for 1 ≤ i ≤ n. Given a graph G and an ordering α of the
vertices in G, the elimination game [10] can be used to obtain a triangulation G+

α

of the given graph G. The triangulation is obtained by picking the first vertex
from the ordering, making its neighborhood into a clique, and then removing the
vertex from the graph. This is repeated until no vertex remains. The ordering α
is called an elimination ordering. The vertex at position i is given by α(i), and
α−1(u) gives us the position of the vertex u in the ordering. Theorem 2.1 gives a
precise description of what edges exist in the resulting graph.

Lex M versus MCS-M 3

Theorem 2.1 (Rose, Tarjan, and Lueker [12]) Given a graph G = (V, E) and

an elimination ordering α of G, (y, z) is an edge in G+
α if and only if (y, z) ∈ E or

there exists a path y, x1, x2, ..., xk, z in G where α−1(xi) < min{α−1(y), α−1(z)},
for 1 ≤ i ≤ k.

The set of vertices monotonely adjacent to a vertex is the set of higher
numbered neighbors, and is defined as follows. Given a graph G = (V, E)
and an ordering α of the vertices, then madjG+

α
(z) = {w for which (z, w) ∈

E(G+
α), α−1(z) < α−1(w)}. Our first result, before we continue with minimal

triangulations, concerns changes that can be done to an elimination ordering
without altering the resulting triangulation. Our approach is to consider two
consecutive vertices in the ordering, and decide if they can switch places in the
ordering without altering the triangulation.

Lemma 2.2 Given a graph G = (V, E), and an ordering α = [x1, x2, ..., xk, u,
v, xk+3, ..., xn] of V (G), let β = [x1, x2, ..., xk, v, u, xk+3, ..., xn] (u and v are swap-

ped). If (u, v) 6∈ E(G+
α) then G+

α = G+

β .

Proof. We want to show that madjG+
α
(z) = madjG+

β
(z) for each z ∈ V , since

it then follows that G+
α = G+

β . Let z be any vertex in V \ {u, v}. The set of
vertices appearing prior to z in α and in β is exactly the same. It follows from
Theorem 2.1 that madjG+

α
(z) = madjG+

β
(z) for any z ∈ V \ {u, v}. Let us now

consider the vertices u and v. The edge (u, v) 6∈ E(G+
α), and due to Theorem

2.1, there exists no path from u to v in G that passes through only vertices from
among x1, x2, ..., xk. We show that madjG+

α
(u) = madjG+

β
(u). In order to do

this we will show that both madjG+
α
(u) \madjG+

β
(u) and madjG+

β
(u) \madjG+

α
(u)

are empty sets. Let us first on the contrary assume that there exists a vertex
z ∈ madjG+

β
(u) \madjG+

α
(u). Then there must exist a path from u to z in G that

passes through only vertices from x1, x2, ..., xk, v, and this path must contain v,
since there does not exist any path in G between u and z that uses only vertices
from x1, x2, ..., xk, because z 6∈ madjG+

α
(u). This gives a contradiction since there

exists no path in G from u to v that only uses vertices from among x1, x2, ..., xk,
and thus no such path between u and z through v can exist. Now let us on the
contrary assume that there exists a vertex z ∈ madjG+

α
(u) \madjG+

β
(u). This is a

contradiction since there must exist a path from u to z in G that passes through
only vertices from x1, x2, ..., xk, but no such path that passes through only vertices
from x1, x2, ..., xk, v. It follows that madjG+

α
(u) = madjG+

β
(u). It remains to show

that madjG+
α
(v) = madjG+

β
(v). The proof is the same as the one for u. Let us first

on the contrary assume that there exists a vertex z ∈ madjG+
α
(v) \ madjG+

β
(v).

Then there must exist a path from v to z in G that passes through only vertices
from x1, x2, ..., xk, u. This path must contain u because there does not exist

4 Lex M versus MCS-M

any path in G that passes through only vertices from x1, x2, ..., xk, since z ∈
madjG+

α
(v) \madjG+

β
(v). This is a contradiction since there does not exist a path

from u to v in G, that passes through only vertices from x1, x2, ..., xk. Let us on the
contrary assume that there exists a vertex z ∈ madjG+

β
(v) \madjG+

α
(v). This is a

contradiction because there must exist a path from v to z in G that passes through
only vertices from x1, x2, ..., xk, but there must not exist any path in G passes
through only vertices from x1, x2, ..., xk, u, since z ∈ madjG+

β
(v) \madjG+

α
(v). It

follows that madjG+
α
(v) = madjG+

β
(v).

Lex M computes a minimal elimination ordering given a graph. The elimi-
nation order is produced in reverse order, and in some implementations of Lex
M, the highest-numbered vertex in the ordering can be selected arbitrarily by
the user. Each vertex in Lex M is assigned a label. This label is a sequence
of numbers ordered in decreasing order. Let L(u) be the label of vertex u, and
let Lk(u) be the number at position k in the sequence L(u). The labels can be
compared in the following way: L(u) = L(v) if |L(u)| = |L(v)| and Li(u) = Li(v)
for 1 ≤ i ≤ |L(u)|. Furthermore L(u) < L(v) if Lk(u) < Lk(v), where k is the
smallest number such that Lk(u) 6= Lk(v), or Li(u) = Li(v) for 1 ≤ i ≤ |L(u)|
and |L(u)| < |L(v)|.

Algorithm Lex M (Rose, Tarjan, and Lueker [12])
Input: G = (V, E).
Output: A minimal elimination ordering α and G+

α .

G+
α = G;

for all vertices u in G
L(u) = ∅;

for i = n to 1
let v be one of the unnumbered vertices with largest label;
α−1(v) = i;
for each unnumbered vertex u such that there exists a path
u = x0, x1, ..., xk = v in G, where xj is unnumbered and
L(xj) < L(u) for 0 < j < k

add i to L(u);
add fill edge (v, u) to G+

α ;

Just as Lex M does, MCS-M produces an elimination ordering in reverse order,
and like Lex M the highest-numbered vertex in the ordering can be selected arbi-
trarily by the user in some implementations of MCS-M. MCS-M differs from Lex
M by using cardinality weights instead of lexicographic labels. MCS-M basically
uses the same approach as Lex M to search the graph.

Lex M versus MCS-M 5

Algorithm MCS-M (Berry, Blair, Heggernes, and Peyton [3])
Input: G = (V, E).
Output: A minimal elimination ordering α and G+

α .

G+
α = G;

for all vertices u in G
w(u) = 0;

for i = n to 1
let v be one of the unnumbered vertices with largest weight;
α−1(v) = i;
for each unnumbered vertex u such that there exists a path
u = x0, x1, ..., xk = v in G, where xj is unnumbered and
w(xj) < w(u) for 0 < j < k

w(u) = w(u) + 1;
add fill edge (v, u) to G+

α ;

Both Lex M and MCS-M may provide the user with choices from the set of
unnumbered vertices with largest label or weight, respectively. These choices are
not necessarily the same for the two algorithms. In Figure 1, there is an example
where Lex M and MCS-M do not have the same choices.

1 2 3 4

Figure 1: Let 2 be the starting vertex in the given graph. In this situa-
tion Lex M is capable of creating the following set of elimination orderings
[{4, 3, 1, 2}, {4, 1, 3, 2}], while MCS-M is capable of creating the following set of
orderings [{4, 3, 1, 2}, {4, 1, 3, 2}, {1, 4, 3, 2}]. Observe that every one of these or-
derings is a perfect elimination ordering (peo) [8] for the given graph.

To make it easier to discuss Lex M and MCS-M we give an exact description of
the label and weight for each vertex at each step of the algorithm. Let Lz−(x) be
the label of vertex x in Lex M right before z has been assigned the number α−1(z),
and let Lz+(x) be the label of x right after z has been assigned the number α−1(z)
and Lex M has added this number to the labels described by Lex M. Lemma 2.3
describes how the relationship between labels changes as the algorithm proceeds.

Lemma 2.3 (Rose, Tarjan, and Lueker [12]) Let G = (V, E) be a graph, and let

u, v be vertices of G. If Lα(i)−(v) < Lα(i)−(u), then Lα(j)−(v) < Lα(j)−(u) for all

1 ≤ j ≤ i.

For MCS-M we do the same, let wz−(x) be the weight of vertex x in MCS-M
right before z has been assigned the number α−1(z), and let wz+(x) be the weight

6 Lex M versus MCS-M

of x right after z has been assigned the number α−1(z) and MCS-M has used z to
increase the weight of other vertices as described by MCS-M. Given a set A ⊆ V
of vertices, then hWz−(A) is the set of vertices in A with the highest weight
assigned by MCS-M right before z has been assigned a number, and hLz−(A) is
the set of vertices in A with the largest labels assigned by Lex M right before z
has been assigned a number.

3 Labeling in Lex M

Lex M and MCS-M do a quite similar search along paths of unnumbered vertices,
and use this to find the set of vertices of which they change the labels (resp.
weight). An easy observation is that the length of a label in Lex M increases by
exactly one every time Lex M changes it. We will now study the relation between
the length and value of a pair of labels in Lex M, when there is an unnumbered
path between the vertices containing the labels.

Lemma 3.1 Assume that there is an unnumbered path x0, x1, ..., xk in G right

before step α−1(z) of Lex M, where k ≥ 1, u = x0, and v = xk, and let Lz−(xi) ≤
Lz−(u) where 0 < i < k. Then |Lz−(u)| > |Lz−(v)| if and only if Lz−(u) >
Lz−(v).

Proof. (⇒) Let us first on the contrary assume that |Lz−(u)| > |Lz−(v)| and
Lz−(u) ≤ Lz−(v). Let u′ be a vertex such that α−1(u′) is a number in Lz−(u) \
Lz−(v), which does exist since |Lz−(u)| > |Lz−(v)|. It follows that α−1(u′) >
α−1(z) since α−1(u′) ∈ Lz−(u). Let p be the largest number such that 0 ≤ p < k
and α−1(u′) ∈ Lu′+(xp). We will show by contradiction that Lu′−(xp) ≥ Lu′−(xi)
for p < i ≤ k. Let q be the smallest number such that p < q ≤ k and Lu′−(xq) >
Lu′−(xp). Now we have a path xp, xp+1, ..., xp+l = xq, where Lu′−(xq) > Lu′−(xj)
for p ≤ j < p + l, and since α−1(u′) ∈ Lu′+(xp) there exists a path from xp to u′

where the labels of all intermediate vertices in the path are smaller than both the
labels of xp and u′. Thus we have a path from xq to u′, where every intermediate
vertex has a smaller label than xq and u′. This is a contradiction since α−1(u′) 6∈
Lu′+(xq). Now we return to our main proof. Since Lu′−(xp) ≥ Lu′−(xi) and
α−1(u′) 6∈ Lu′+(xi) for p < i ≤ k, while α−1(u′) ∈ Lu′+(xp), we have Lu′+(xp) >
Lu′+(xi) for p < i ≤ k. It follows from Lemma 2.3 that Lz−(xp) > Lz−(v), where
0 ≤ p < k, since Lu′+(xp) > Lu′+(v = xk). Now we have a contradiction since we
assumed that Lz−(xi) ≤ Lz−(u) where 0 < i < k and that Lz−(v) ≥ Lz−(u).
(⇐) Let us next on the contrary assume that |Lz−(u)| ≤ |Lz−(v)| and Lz−(u) >
Lz−(v). Let v′ be a vertex such that α−1(v′) is a number in Lz−(v)\Lz−(u); such
a vertex does exist since |Lz−(v)| ≥ |Lz−(u)| and Lz−(v) < Lz−(u). It follows
that α−1(v′) > α−1(z) since α−1(v′) ∈ Lz−(v). Let q be the smallest number
such that 0 < q ≤ k and α−1(v′) ∈ Lv′+(xq). We will show by contradiction

Lex M versus MCS-M 7

that Lv′−(xq) ≥ Lv′−(xi) for 0 ≤ i < q. Let p be the largest number such that
0 ≤ p < q and Lv′−(xp) > Lv′−(xq). Now we have a path xp, xp+1, ..., xp+l = xq,
where Lv′−(xp) > Lv′−(xj) for p < j ≤ p + l, and since α−1(v′) ∈ Lv′+(xq) there
exists a path from xq to v′ where the labels of all intermediate vertices in the
path are smaller than both the labels of xq and v′. Thus we have a path from xp

to v′, where every intermediate vertex has a smaller label than xp and v′. This
is a contradiction since α−1(v′) 6∈ Lv′+(xp). Now we return to our main proof.
Since Lv′−(xq) ≥ Lv′−(xi) and α−1(v′) 6∈ Lv′+(xi) for 0 ≤ i < q, while α−1(v′) ∈
Lv′+(xq), we have Lv′+(xq) > Lv′+(xi) for 0 ≤ i < q. It follows from Lemma 2.3
that Lz−(xq) > Lz−(u), where 0 < q ≤ k, since Lv′+(xq) > Lv′+(u = x0). Now we
have a contradiction since we assumed that Lz−(xi) ≤ Lz−(u) where 0 < i < k
and that Lz−(u) > Lz−(v).

Lemma 3.2 Assume that there is an unnumbered path x0, x1, ..., xk in G right

before step α−1(z) of Lex M, where k ≥ 1, u = x0, and v = xk, and let Lz−(xi) ≤
Lz−(u) where 0 < i < k. Then |Lz−(u)| < |Lz−(v)| if and only if Lz−(u) <
Lz−(v).

Proof. (⇐) Let us assume that Lz−(u) < Lz−(v) and then prove that |Lz−(u)| <
|Lz−(v)|. It follows that Lz−(xi) < Lz−(v) for 0 < i < k since Lz−(u) < Lz−(v).
Lemma 3.1 can now be used on the path xk, xk−1, ..., x0 for k ≥ 1 where u =
xk, v = x0; thus |Lz−(u)| < |Lz−(v)|.
(⇒) Let us on the contrary assume that |Lz−(u)| < |Lz−(v)| and Lz−(u) ≥
Lz−(v). Let v′ be a vertex such that α−1(v′) is a number in Lz−(v)\Lz−(u); such
a vertex does exist since |Lz−(v)| > |Lz−(u)|. It follows that α−1(v′) > α−1(z)
since α−1(v′) ∈ Lz−(v). Let q be the smallest number such that 0 < q ≤ k and
α−1(v′) ∈ Lv′+(xq). We will show by contradiction that Lv′−(xq) ≥ Lv′−(xi) for
0 ≤ i < q. Let p be the largest number such that 0 ≤ p < q and Lv′−(xp) >
Lv′−(xq). Now we have a path xp, xp+1, ..., xp+l = xq, where Lv′−(xp) > Lv′−(xj)
for p < j ≤ p + l, and since α−1(v′) ∈ Lv′+(xq) there exists a path from xq to v′

where the labels of all intermediate vertices in the path are smaller than both the
labels of xq and v′. Thus we have a path from xp to v′, where every intermediate
vertex has a smaller label than xp and v′. This is a contradiction since α−1(v′) 6∈
Lv′+(xp). Now we return to our main proof. Since Lv′−(xq) ≥ Lv′−(xi) and
α−1(v′) 6∈ Lv′+(xi) for 0 ≤ i < q, while α−1(v′) ∈ Lv′+(xq), we have Lv′+(xq) >
Lv′+(xi) for 0 ≤ i < q. It follows from Lemma 2.3 that Lz−(xq) > Lz−(u), where
0 < q ≤ k, since Lv′+(xq) > Lv′+(u = x0). Now we have a contradiction since we
assumed that Lz−(xi) ≤ Lz−(u) where 0 < i < k and that Lz−(u) ≥ Lz−(v).

The last case, where |Lz−(u)| = |Lz−(v)| if and only if Lz−(u) = Lz−(v) is
now easy to prove. We can sum up the two previous lemmas as follows.

8 Lex M versus MCS-M

Lemma 3.3 Assume that there is an unnumbered path x0, x1, ..., xk in G right

before step α−1(z) of Lex M, where k ≥ 1, u = x0, and v = xk, and let Lz−(xi) ≤
Lz−(u) where 0 < i < k. Then we have

1. |Lz−(u)| > |Lz−(v)| if and only if Lz−(u) > Lz−(v),
2. |Lz−(u)| < |Lz−(v)| if and only if Lz−(u) < Lz−(v),
3. |Lz−(u)| = |Lz−(v)| if and only if Lz−(u) = Lz−(v).

Proof. The first case is Lemma 3.1, while the second case is Lemma 3.2. The
third case follows, since no alternatives are left.

4 Lex M versus MCS-M

Lex M and MCS-M are not that different when it comes to altering labels and
weights. If a vertex z is selected as the next vertex to be numbered for both
algorithms, both Lex M and MCS-M do a search among unnumbered vertices
that can be reached from z. In order to better compare the algorithms, these
unnumbered vertices are partitioned into components.

Definition 4.1 Let S be the set of numbered vertices, at some step of Lex M or

MCS-M on G = (V, E). Then an unum component is a connected component of

G(V \ S).

Definition 4.2 For any vertex u of G, CCu− (resp. CCu+) denotes the set of

unum components of G right before (resp. after) numbering vertex u.

In the proof that Lex M and MCS-M create exactly the same set of tri-
angulations, we need some basic results regarding Lex M, MCS-M, and unum
components. First we show that when Lex M or MCS-M processes a vertex in
an unum component C they will only change the labels or weights of vertices
contained in C. We then prove that if the length of the label in Lex M and the
weight in MCS-M are the same for every vertex in an unum component C, then
Lex M can choose a vertex z in C as the first vertex to be numbered in C if and
only if MCS-M can choose z as the first vertex to be numbered in C. Then we
prove that, under the same conditions, the length and the weight are still equal
when a vertex in C is processed and the weight for MCS-M and labels for Lex M
are updated.

Lemma 4.3 In any execution of Lex M or MCS-M on a graph G, processing a

vertex z of G only affects the unum component of CCz− containing z (i.e. any

other unum component of CCz− is still an unum component of CCz+ with the

same labels or weights).

Lex M versus MCS-M 9

Proof. Let C be an unum component of CCz− not containing z. It is evident
that after removal of z, C is still an unum component of CCz+. No labels or
weights are changed in C, since for any vertex v whose label or weight is modified
when processing z, there is a path of unnumbered vertices between z and v, so
that v is in the same unum component of CCz− as z.

Lemma 4.4 We consider two executions of Lex M and MCS-M respectively on a

graph G. Let u and u′ be vertices of G, and let C be a set of vertices of G such that

C is an unum component of G right before processing u (resp. u′) in the execution

of Lex M (resp. MCS-M) and for every vertex v of C, |Lu−(v)| = wu′−(v). Then

hLu−(C) = hWu′−(C).

Proof. We want to show that hWu′−(C) ⊆ hLu−(C) and hLu−(C) ⊆ hWu′−(C)
and thus hWu′−(C) = hLu−(C). The first step is to prove that hWu′−(C) ⊆
hLu−(C). Let us on the contrary assume that there exists a vertex m ∈ hWu′−(C)\
hLu−(C), and let l be any vertex in hLu−(C). The unum component C is con-
nected, and every vertex in C is unnumbered. Thus there exists an unnumbered
path x0, x1, ..., xk for 0 < k ≤ |C| − 1, where l = x0, m = xk, and xi ∈ C
for 0 ≤ i ≤ k. Then Lu−(xi) ≤ Lu−(l) for 0 < i ≤ k since l ∈ hLu−(C).
We have Lu−(l) > Lu−(m) since l ∈ hLu−(C) and m 6∈ hLu−(C). We have
wu′−(l) ≤ wu′−(m) since m ∈ hWu′−(C). From the premises of the lemma, we
then have that |Lu−(l)| = wu′−(l) ≤ wu′−(m) = |Lu−(m)|. It follows that the
path x0, x1, ..., xk is a contradiction to Lemma 3.3.

Next we want to prove that hLu−(C) ⊆ hWu′−(C), and thus hLu−(C) =
hWu′−(C). Let us on the contrary assume that there exists a vertex l ∈ hLu−(C)\
hWu′−(C), and let m be any vertex in hWu′−(C). Then there exists a path
x0, x1, ..., xk for 0 < k ≤ |C| − 1, where l = x0, m = xk, and xi ∈ C for 0 ≤ i ≤ k.
We have Lu−(xi) ≤ Lu−(l) for 0 < i ≤ k since l ∈ hLu−(C). We have wu′−(l) <
wu′−(m) since l 6∈ hWu′−(C) and m ∈ hWu′−(C). Therefore the path x0, x1, ..., xk

is a contradiction to Lemma 3.3.

Lemma 4.5 We consider two executions of Lex M and MCS-M respectively on

a graph G. Let z be a vertex of G, and let C be a set of vertices of G such that

C is an unum component of G right before processing z in both executions and

for every vertex u of C, |Lz−(u)| = wz−(u). Then |Lz+(u)| = wz+(u) for every

vertex u of C \ {z}.

Proof. Let us on the contrary assume that |Lz+(u)| 6= wz+(u) for some u ∈
C \ {z}. From Lemma 4.3 we know that z ∈ C if |Lz+(u)| 6= wz+(u). Two
cases are possible. The first case is |Lz+(u)| = wz+(u) + 1. There exists at
least one path x0, x1, ..., xk for k ≥ 1, where u = x0, z = xk, xi ∈ C, and
Lz−(xi) < Lz−(u) for 0 < i < k, since |Lz+(u)| = |Lz−(u)|+ 1 and C is an unum

10 Lex M versus MCS-M

component of G containing u right before processing z. Then for every such path
there exists a vertex xj where 0 < j < k such that wz−(xj) ≥ wz−(u), since
wz+(u) = wz−(u). The path x0, x1, ..., xj is a contradiction to Lemma 3.3 because
(1) Lz−(xi) < Lz−(u = x0) for 0 < i ≤ j, and specifically Lz−(u) > Lz−(xj), and
(2) wz−(u) ≤ wz−(xj) and hence, due to our assumption, |Lz−(u)| ≤ |Lz−(xj)|.
The second case is when |Lz+(u)|+1 = wz+(u) for some vertex u ∈ C \{z}. Then
there has to exist at least one path x0, x1, ..., xk for some k ≥ 1, where u = x0,
z = xk, xi ∈ C for 0 ≤ i ≤ k, and wz−(xi) < wz−(u) ≤ wz−(z) for 0 < i < k,
since wz+(u) = wz−(u) + 1. Then for every such path there exists a vertex xj

for 0 < j < k such that Lz−(xj) ≥ Lz−(u), since |Lz+(u)| = |Lz−(u)|. Let j
be the smallest number such that Lz−(xj) ≥ Lz−(u). The path x0, x1, ..., xj is a
contradiction to Lemma 3.3 because (1) Lz−(xi) < Lz−(u = x0) for 0 < i < j
and moreover Lz−(u) ≤ Lz−(xj), and (2) wz−(u) > wz−(xj) and hence, due to
our assumption, |Lz−(u)| > |Lz−(xj)|.

The three previous lemmas are local observations, and require that Lex-M
and MCS-M have an unum component consisting of the same vertices, where the
weight in MCS-M is equal to the length of the label in Lex M for every vertex
in the unum component. The following definition will be useful to formalize the
fact that both algorithms break ties in the same way in unum components.

Definition 4.6 Let G = (V, E) and φ be a mapping from the set of all subsets

of V to V , such that if φ(S) = u then u ∈ S, for each S ⊆ V . An execution of

Lex M (resp. MCS-M) on G is said to be compatible with φ if for any vertex u
of G, u = φ(hLu−(C)) (resp. φ(hWu−(C))), where C is the unum component of

CCu− containing u.

The idea behind φ is the following. If S is a set of vertices in Lex M with the
highest label belonging to an unum component, or a set of vertices in MCS-M
with the highest weight belonging to an unum component, then φ(S) is the vertex
that is chosen next among vertices of this unum component.

Note that two different executions of Lex M (resp. MCS-M) on G can be
compatible with the same mapping φ, since φ tells which vertex to choose next
to be numbered in a given unum component, but does not tell in which unum
component to choose the next vertex to be numbered in case some vertices with
largest label or weight lie in different unum components.

Lemma 4.7 We consider two executions of Lex M and MCS-M respectively on

a graph G = (V, E). If these executions are compatible with the same mapping

φ from the set of all subsets of V to V , then they produce the same minimal

triangulation of G.

Proof. We define the following property P (k).
P (k): for any vertices u and u′ of G and any set C of k vertices of G, if C is

Lex M versus MCS-M 11

an unum component of G right before processing u (resp. u′) in the execution
of Lex M (resp. MCS-M) and for every vertex v of C, |Lu−(v)| = wu′−(v) then,
the fill edges produced when processing the vertices of C are the same in both
executions.
It is sufficient to prove that P (k) holds for k = n, since in that case C = V ,
which is an unum component at the beginning of both executions with empty
labels and null weights, hence the sets of fill edges produced are the same in both
executions.
Let us prove that P (k) holds for k from 1 to n by induction on k.
P (1) is true since the unique vertex of C can produce no fill edge by Lemma 4.3.
We assume that P (k) holds. Let us show that P (k + 1) holds. Let u and u′ be
vertices of G, and let C be a set of k + 1 vertices of G such that C is an unum
component of G right before processing u (resp. u′) in the execution of Lex M
(resp. MCS-M) and for every vertex v of C, |Lu−(v)| = wu′−(v). By Lemma 4.3,
these conditions are maintained until a vertex z (resp. z′) of C is numbered for
the first time, from the moment when u (resp. u′) is about to be numbered in the
execution of Lex M (resp. MCS-M) (possibly z = u or z′ = u′, if u or u′ belongs to
C). By Lemma 4.4, hLz−(C) = hWz′−(C), and as both executions are compatible
with φ, z = φ(hLz−(C)) = φ(hWz′−(C)) = z′. By Lemma 4.5, |Lz+(v)| = wz+(v)
for every vertex v of C \{z}. So the processing of z modifies the labels or weights
of the same vertices of C in both executions, and since by Lemma 4.3 the labels
or weights of the vertices of G \ C are unchanged, the processing of z produces
the same fill edges in both executions. Moreover, the new unum components
obtained from C by removing z are the same in both executions. So, by the
induction hypothesis on these new unum components which contain at most k
vertices and for which the condition on labels and weights holds after processing
z, we have the fill edges produced when processing the vertices of C \ {z} are the
same in both executions, which completes the proof.

In order to complete the proof that Lex M and MCS-M produce the same set
of chordal graphs, two more arguments are required. The first is to show that
for any execution of Lex M (resp. MCS-M) there exists a mapping φ compatible
with this execution. The second is to show that for any mapping φ from the set
of all subsets of V to V such that for any subset S of V , φ(S) belongs to S, there
is an execution of MCS-M (resp. Lex M) compatible with φ. Then the rest will
follow from Lemma 4.7.

Theorem 4.8 Lex M and MCS-M produce the same minimal triangulations of a

given graph G = (V, E).

Proof. Observe that for any execution of Lex M on G producing the triangulated
graph H there exists a compatible mapping φ. This mapping φ can simply be
constructed as follows: For every vertex z ∈ V set φ(hLz−(C)) to z, where C is

12 Lex M versus MCS-M

the unum component in CCz− containing z. Any mapping φ which fulfills this
requirement will be compatible with the execution of Lex M producing H. Note
that during Lex M, hLz−(C) 6= hLz′−(C ′) for all vertices z 6= z′ with z ∈ C and
z′ ∈ C ′ where C ∈ CCz− and C ′ ∈ CCz′−, since the highest numbered of z and
z′ does not belong to both sets. Thus we never consult φ(S) for the same set S
of vertices more than once.

We now consider an execution of MCS-M on G compatible with φ. Such an
execution exists. At each step it is sufficient to choose an unum component C
containing a vertex with largest weight and to choose φ(hW (C)) as next vertex
to be numbered. By Lemma 4.7, this execution of MCS-M produces the graph
H.

The proof in the other direction is completely symmetric.

5 Conclusion

Even though MCS-M and Lex M can create different orderings, we prove that they
create the same set of triangulations, and thereby answer an open question given
in [3]. We show this by defining unum components, which are the connected
subgraphs when the numbered vertices are removed from the graph. Then we
show that two executions of Lex M and MCS-M breaking ties in the same way in
unum components compute the same minimal triangulation of the input graph,
so that Lex M and MCS-M compute the same set of minimal triangulations of
any graph.

We also observe that each of the unum components can be computed individ-
ually since they do not affect each other. This property could possibly be used
to improve the practical running time for both algorithms.

Acknowledgment:

The author wishes to thank Pinar Heggernes for her useful comments and sug-
gestions, and the two anonymous referees who assisted in the presentation of this
paper.

References

[1] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding
embeddings in a k-tree. SIAM J. Alg. Disc. Meth., 8:277–284, 1987.

[2] A. Berry. A wide-range efficient algorithm for minimal triangulation. In
Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algo-

rithms (SODA’99), pages S860–S861, 1999.

Lex M versus MCS-M 13

[3] A. Berry, J. R. S. Blair, P. Heggernes, and B. W. Peyton. Maximum cardi-
nality search for computing minimal triangulations of graphs. Algorithmica,
39:287–298, 2004.

[4] A. Berry, J.P. Bordat, P. Heggernes, G. Simonet, and Y. Villanger. A wide-
range algorithm for minimal triangulation from an arbitrary ordering. Jour-

nal of Algorithms, 58(1):33–66, 2006.

[5] A. Berry, P. Heggernes, and Y. Villanger. A vertex incremental approach for
dynamically maintaining chordal graphs. In Proceedings 14th International

Symposium on Algorithms and Computation - ISAAC 2003, pages 47 – 57.
Springer Verlag, 2003. LNCS 2906.

[6] J. R. S. Blair, P. Heggernes, and J. A. Telle. A practical algorithm for making
filled graphs minimal. Theor. Comput. Sci., 250:125–141, 2001.

[7] E. Dahlhaus. Minimal elimination ordering inside a given chordal graph. In
R. H. Möhring, editor, Graph Theoretical Concepts in Computer Science -

WG ’97, pages 132–143. Springer Verlag, 1997. Lecture Notes in Computer
Science 1335.

[8] D.R. Fulkerson and O.A. Gross. Incidence matrices and interval graphs.
Pacific Journal of Math., 15:835–855, 1965.

[9] T. Ohtsuki. A fast algorithm for finding an optimal ordering in the vertex
elimination on a graph. SICOMP, 5:133–145, 1976.

[10] S. Parter. The use of linear graphs in Gauss elimination. SIAM Review,
3:119–130, 1961.

[11] B. W. Peyton. Minimal orderings revisited. SIAM J. Matrix Anal. Appl.,
23(1):271–294, 2001.

[12] D. Rose, R.E. Tarjan, and G. Lueker. Algorithmic aspects of vertex elimi-
nation on graphs. SIAM J. Comput., 5:146–160, 1976.

[13] M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J.

Alg. Disc. Meth., 2:77–79, 1981.

