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Summary and Conclusions

The goal of this study is to compare vibration signals of subsea pumps from two different

time periods. These signals are gathered for predictive maintenance reasons.

Vibration analysis is one of the most efficient tools for machine diagnostics. Vibration

analysis has been an active area of research in the past few decades. In this thesis an attempt

has been made to cover all the common vibration analysis methods to find more reliable

results.

Since a pump includes many rotating components, presence of a kind of periodicity is

expected in the vibration signal. Local defects in each cycle of rotation cause an impulse in

the vibration signal. Therefore high impulsivity in the vibration signal is an indicator of fault.

This Impulsivity is not clearly observed in the vibration signal. The impulse response

function of the transmission path deforms an impulse in the source into a spread segment in

the vibration signal. Furthermore the impulses are more hidden when the period of impulses

is shorter than the width of the impulse response function. Detection of impluses is more

subtle due to the presence of background noise.

Our methods mainly focus on these two obstacles to achieve impulsivity of source signal.

These Impulses also appear as amplitude modulation on the high resonant frequency of the

pump. In general, there is low signal-to-noise ratio in low frequencies. Therefore we look

into demodulation in high frequencies to find impulses.

Several methods were applied on the signals object to 1) Separation of deterministic and

non-deterministic parts of signal. 2) Separation of source signal and transmission path func-

tion. 3) Determine the optimal resonant frequency band and envelope analysis. In addition

a new method to estimate the shaft speed from the vibration signal is proposed.

Two segments were chosen from the old and new vibration signals for analysis. We used

Minimum Entropy Deconvolution (MED) and Cepstrum Analysis to remove the transmis-

sion path effect from the vibration signal. We also used Time Synchronous Averaging (TSA),

Autoregressive Filter (AR), Discrete/Randome Separation (DRS) and Cepstrum Analysis to

separate deterministic components from non-deterministic components in the vibration

signal. The latter resolves the first problem and former resolves the second one. Band-Pass

Filtering, Wavelet Packet Transform (WPT), Hilbert-Huang Transform (HHT) and Spectral

Kurtosis (SK) were used to detect excited resonant frequency for Demodulation and Enve-
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lope Analysis. High kurtosis is a measure of high impulsivity in a signal. Therefore all of our

methods rely on kurtosis.

The results demonstrate that the Minimum Entropy Deconvolution is a very effective

method to remove the transmission path effect such that the defect impulses of the source

can be clearly observed. A combination of wavelet and HHT as an Improved-HHT is a highly

reliable method to detect the excited resonant frequencies. Spectral Kurtosis is an efficient

and direct detector of the excited resonant frequencies. Cepstrum Editing or Liftering is a

multi-purpose method for each stage. A new kind of cepstrum editing with a satisfactory

output has been performed.

Order Tracking is performed before Time Synchronous Averaging and Discrete/Random

Separation and in this study there is no tachometer signals to order tracking. Therefore these

methods were not effective.

After examination on the old signal only the 5th and 27th harmonics of the shaft speed

had a high amplitude. These frequencies are indeed the natural frequencies of the pump

and do not indicate a fault.

On the other hand, the new signal led to many peaks. The strongest of these peaks were

the shaft speed harmonics and 1
2 harmonics. Lack of information on the pump specifica-

tions disables us to relate these peaks to specific faults. But these harmonics are generally

presented in mechanical looseness.



1. Pump and Maintenance

1.1 Pump

A pump is a device that moves fluids (liquids or gases), or sometimes slurries, by mechanical

action. A pump is a machine that moves a liquid or gas, or can propel a liquid or gas to a

higher level or pressure. Pumps are the second most common machines in the world and

are used in almost all industries including food and beverage, wastewater, pulp and paper,

textiles, agriculture, electronics, steel, chemical, metals, and oil and gas.

1.1.1 Types of Pumps

The categories by which water-lifting equipment may be classified vary substantially both in

terminology and type. One or a combination of the following general principles may be used

to convey water:

• Gravity systems: Water flows downward under the influence of gravity but cannot be

raised to a point higher than the source. The system can only be used to transfer water

to a lower point.

• Direct lift systems: Fixed volume of water is physically raised in a single or a number

of containers.

• Displacement systems: Water cannot be compressed (unlike air) and when it moves

through a pump it draws further water behind it. The volume of water that is pumped

is equal to the displacement of the piston when it is moved. This is effected immedi-

ately in a direct lift pump where the piston is generally in water, but in a suction pump

where the piston is above the level of water, air must be evacuated before the system is

able to be effective.

• Velocity systems: When water is propelled with sufficient momentum in the absence

of air further water is drawn through the pump.

1
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Pumps can be classified by their method of displacement in the following techniques:

• Positive displacement pumps

• Impulse pumps

• Velocity pumps

• Gravity pumps

• Steam pumps

• Valveless pumps

Mechanical pumps, in accordance the fluid they are pumping, may be Submerged or Placed

external.

1.1.2 Subsea Pumps

Subsea water injection pumps are installed on the seabed without taking up space and weight

capacity on the platforms topsides. The pumps use seawater from the surrounding ocean to

inject into the reservoirs.

Different type of pumps in oil market:

• Helico-Axial: A rotodynamic pump with one single shaft that requires two mechanical

seals, this pump uses an open-type axial impeller. It’s often called a Poseidon pump,

and can be described as a cross between an axial compressor and a centrifugal pump.

• ESP (Electrical Submersible Pump):

Submersible pumps involve a submersible motor with a close coupled to single stage

pump that allows the entire assembly to be operated submerged.

• Centrifugal: Effective in mature fields or in those with low reservoir drive energy

and/or pressure. Single phase pumps facilitate water flooding to increase recovery and

stimulate production and have the highest differential pressure capability among the

pump types.

• Twin-Screw: Both twin screw and three screw pumps are successfully operating in

multiphase, heavy crude oil and crude oil/water emulsion applications. The pump

has two rotors, one drive and one driven, and relies on the pumped fluid to fill the

clearances between the rotors and liner. The rotors are supported on both ends by

bearings, and torque is transmitted from drive to driven rotor via timing gears.
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• Hybrid Pump: Hybrid pump is a combination of helico-axial and centrifugal tech-

nologies, ideal to use downstream from a separator where the gas volume fraction is

kept constantly low. High efficiency is a key characteristic of this pump.

1.2 Maintenance

All actions appropriate for retaining an item, part or equipment in a given condition or

restoring it to a desired condition is called maintenance.

1.2.1 Why Maintenance?

At a closer look maintenance is important to gain some serious objects:

• Maximize availability

• Increase reliability

• Extend lifetime

• Minimize unplanned stops

• Keep the high safety standard

• Protect the environment

• Save the investment

1.2.2 Types of Maintenance

In General, there are three types of maintenance in use. After equipment break down, during

using equipment and before equipment break down. The first one is often the most expen-

sive one because worn equipment can damage other parts and cause multiple damages [22].

• Reactive maintenance

– Failure or abnormal operation

• Preventive time based maintenance

– Time based maintenance

– Based on manufacturers experience

• Predictive / condition based maintenance

– Maintenance based on actual measurements
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The last one is more effective than the others.

1.2.3 Condition Based Maintenance

It has obvious advantages compared with either run-to-break or preventive maintenance,

but requires to have an access to reliable condition monitoring techniques. Condition mon-

itoring is based on being able to monitor the current condition and predicts the future con-

dition of machines while it is in operation. Thus it means that information must be obtained

externally about internal effects while the machines are in operation.

Vibration Analysis is one of the best techniques for obtaining information about internal

conditions. A machine in standard condition has a certain vibration signature. Any damage

to the machine changes that signature in a way that can be related to the fault. This has

known as Signature Analysis.



2. Pump Vibration

2.1 Vibration Signals

Vibration signals belong to the general categories of different signals shown in Figure 2.1. In

a basic view, signals are disparted to stationary and non-stationary.

Statistical properties in stationary signals does not vary with the time and in terms of

signal processing, frequency content of stationary signals do not change in the time. The

Fourier transform of a stationary signal can be used perfectly to describe the signal behavior.

For deterministic signals this basically means that they consist of discrete frequency si-

nusoids and thus their frequency spectrum consist of discrete lines at the frequencies of

those sinusoids. Once the frequency, amplitude and initial phase of these components are

known, the value of the signal can be predicted at any time in the future or past; hence it is

called deterministic signal.

Random signals are somewhat more complex, as their value at any time cannot be pre-

dicted and for stationary random signals their statistical properties do not change by time.

Non-stationary means anything which does not meet the conditions for stationarity and

once again it can be divided into two main classes, continuously varying and transient. There

is no hard and fast rule to distinguish between these two types, but in general it can be said

that transient signals only exist for a finite length of time and are typically analyzed as an

entity. Once again, this requires a clarification, since a decaying exponential function, for

example, theoretically decays to infinity, but in practical terms it only has a measurable value

for a finite time. The terms energy and power are used to distinguish between transient and

continuous signals.

A stationary random signal by definition has a constant power and therefore infinite en-

ergy.

Cyclostationary signals by definition have power (always positive) which varies periodi-

5
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Signals

Stationary non-Stationary

Random Deterministic Continuous Transient

Periodic quasi-Periodic Cyclostationary Continuously Varying

Figure 2.1: Signal types [22]

cally by time, also their total energy is infinite. Cyclostationary is an amplitude modulated

white noise.

Continusely varying signal is a non-stationary signal with no regularity in time domain

and frequency domain.

2.2 Pump Faults and Vibration

Most machine components produce specific vibration signals that characterize them and al-

low them to be separated from others, as well as distinguishing faulty from healthy condition.

The distinguishing vibration features may be because of different repetition frequencies, for

example a gearmesh frequency, which characterizes a particular pair of gears, and differ-

ent sideband spacing which characterize the modulating effects of the two meshing gears

on their common mesh frequency. Gear-generated signals are usually at harmonics (integer

multiples) of the associated shaft rotation speeds, whereas the characteristic frequencies of

rolling element bearings are generally not at harmonics of the associated shaft speeds. Some

signals, typically associated with fluid flow, such as turbulence or cavitation, have a random

nature, but may have a characteristic distribution with frequency. These signals are often

stationary, but other random signals, characterized as cyclostationary, are often generated

by machines and have statistical properties which vary periodically. The purpose of vibra-

tion analysis is mainly to categorize the various signals generated by machine components

in healthy and faulty condition [19, 22].

Many rotating machines, may be considered as consisting of three major parts: the ro-

tor, the bearings and the foundations. These rotating machines have a high capital cost and

hence, the development of condition monitoring techniques is very important. Vibration
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based identification of faults, such as rotor unbalance, rotor bends, cracks, rubs, misalign-

ment, fluid induced instability are well developed based on the qualitative understanding of

measured data and are widely used in practice. However the quantitative part, the estima-

tion of the extent of faults and their locations, has been an active area of research for many

years. Over the past three to four decades, theoretical models have played an increasing role

in the rapid resolution of problems in rotating machinery.

In case of condition monitoring, changes in vibration signals are ascribed to changes in

condition, so it is important that other factors which cause changes in vibration signals are

considerably reduced or eliminated. Vibrations tend to change with the speed and load of a

machine, so rotating machine will primarily be considered to be operated at constant speed

and load, and the signals will typically be stationary and/or cyclostationary [28].

All pump faults that can be recognized by vibration analysis are as the following:

• Rotor unbalance (Imbalancing of mass distribution on rotor)

• Shaft bow or thermal bow

• Misalignment (Misalignment between driver and driven shaft)

• Shaft cracks

• Rubs

• Mechanical looseness of components

• Faults in gears

• Rolling element bearing faults

Unbalance, bent shaft and misalignment faults produce the low orders and low harmon-

ics of shaft speed in vibration signals. Misalignment tends to even harmonics of shaft speed,

in particular the second. Shortly saying, cracked shaft increases vibration at the first and

second harmonics of shaft speed also gives an increase at the third harmonic, which gives

a better chance of distinguishing it from unbalance and misalignment. Rubs are produced

when the rotating shaft comes into contact with the stationary components of the machine.

Rubs are said to be accompanied by a great deal of high-frequency spectral activities and it

is generally transitory phenomenon.

Mechanical looseness can create a variety of patterns in a vibration signature. In some

cases the fundamental frequency (1X ) is excited. In others a frequency component at one-

half multiples of shaft speed e.g. 0.5,1.5,2.5, ... is present. In almost all cases there are multi-

ple harmonics, both full and half.
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Gears typically generate a complex, broad vibration spectrum beginning with frequen-

cies well below the shaft rotational speeds and extending to several multiples of gear mesh

frequency. The product of the number of teeth on gear and the shaft rotational frequency is

the characteristic frequency of a particular gear and is called the gear mesh frequency. Gear

mesh frequency will be evident in the spectrum relating to any gearbox, in good condition or

fault. When one gear becomes damaged the gear mesh frequency component of vibration

may increase substantially as compared to the base line vibration measurements. Harmon-

ics of gear mesh frequency may also become more apparent. Another frequency, which is

often excited by gear defects, is the resonant frequency of geared shaft itself. This frequency

can usually be measured by impulse testing. Both the natural frequency of the geared shaft

and the gear mesh frequency may have accompanying side bands; sometimes side bands

themselves can be the main indicator of a defective gearbox.

The frequencies that rolling element bearings generate are called fundamental fault fre-

quencies. They are when rollers pass over an anomaly of roller surface or raceway surface.

These frequencies are a function of the bearing geometry and the relative speed between the

two raceways. When bearing geometry is known, the fundamental fault frequencies can be

calculated using following equations.

Table 2.1: frequencies associated with defects in different bearing components

Ballpass frequency, outer race BPFO n fr
2

(
1− d

D cosφ
)

Ballpass frequency, inner race BPFI n fr
2

(
1+ d

D cosφ
)

Fundamental train frequency (cage speed) FTF fr
2

(
1− d

D cosφ
)

Ball (roller) spin frequency BSF(RSF) D
2d

(
1− ( d

D cosφ)2
)

where d is ball diameter, D is pitch diameter, fr is the shaft speed, n is the number of rolling

elements and φ is the angle of the load from the radial plane. This guidelines can be used as

a quick reference: BPFO = 0.4n fr , BPFI = 0.6n fr , FTF = 0.4 fr and BSF = 1.6 fr .

Signals produced by bearings with extended spalls are cyclostationary if the discrete car-

riers (such as gear-mesh harmonics) are modulated at a fixed cyclic frequency (shaft speed

for an inner race fault). The roughness of the spall surface introduces randomness in the

modulation and allows separation from deterministic gear faults [22, 28].



3. Vibration Analysis Techniques

3.1 Order Tracking

Frequencies that match to the machine’s RPM or multiples of it are called orders. In ana-

lyzing rotating machine vibrations, it is often desired to have a frequency x-axis based on

harmonics (orders) of shaft speed. Order tracking is a family of signal processing tools ob-

ject to transform a vibration signal from time domain to angular (or order) domain. Order

spectra in contrast of frequency spectra is often preferred for vibration or acoustic signals

analysis of rotating machines. An order spectrum presents the amplitude and/or the phase

of the signal as a function of order of the rotation frequency. The x-axis is based on har-

monics or orders of the shaft speed; this means that a harmonic or subharmonic analysis

remains in the same independent of the shaft speed. This technique is called tracking, as

the rotation frequency is being tracked and used for analysis. Dynamic forces in a machine

are almost related to the frequency of rotation so those can be interpreted simply by use of

order tracking. The smearing of the frequency components caused by speed alteration in

machine is solved by using order analysis. In cases where the frequency components from

a normal frequency analysis are smeared together, proper diagnosis will be made easy via

order analysis. In particular, order analysis is helpful for the analysis of the vibrations during

a startup or a shutdown of a machine when the structural resonances are excited by the ro-

tational frequencies or its harmonics. It is very important to distinguish the critical speeds

for excitation of normal modes for the machines especially for large machines such as tur-

bines and generators. In the normal mode all the parts of the system have free oscillation

in the same frequency synchronously. The key words in the digital tracking technique are:

Oversampling, Interpolation and Resampling [22, 27].

Three main families of computed order tracking techniques have been developed in the

past [7]:

9
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• Computed order tracking: It obtains by inserting many extra zeros between samples

and then using a low-pass filter and resampling again, or by interpolating and then

resampling. It can be also found by Spectrum zero padding, by padding the FFT spec-

trum with zeros in the center.

• Vold-Kalman filter: Vold-Kalman filter is a particular formulation of Kalman filter,

able to estimate both instantaneous speed and amplitude of a series of harmonics of

the shaft rotational velocity [11].

• Order tracking transforms: That is a combination of Order tracking and Fourier

transform in a single step. The additional resampling does not need in this method.

The Velocity Synchronous Discrete Fourier Transform is one of the formula for the or-

der tracking transform.

Resampling by a factor of four is illustrated in Figure 3.1.

Figure 3.1: Digital resampling with four times higher sampling frequency: (a) signal sampled
at fs1 and its spectrum; (b) addition of zeros which changes sampling frequency to fs1; (c)
low-pass filtration and rescaling [22]

.

3.2 Time Synchronous Averaging (TSA)

The most common and easiest method of discovering frequency information is to apply

spectrum averaging. Averaging is performed in the frequency domain and is applied for any

type of signal. But if the signal is periodic and we already know about that the averaging can

be performed in the time domain. The averaging must be run synchronously. The random

components are damped with TSA. Signal enhancement or time synchronous averaging is

a classic way of separating periodic signals from background noise and each component

which is not a subharmonic of the particular fundamental frequency. In practice, to perform
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the time synchronous averaging the signal is splitted to a series of synchronous segments

and then an averaging is done on.

ya(t ) = 1

N

N−1∑
n=0

y(t +nT ) (3.1)

Before the averaging regardless in the time domain or in the frequency domain the signal

must be order tracked. Spectrum averaging smooths the spectrum of the random noise in a

spectrum and makes the discrete frequency components easier to see, but it does not actu-

ally reduce the noise level unlike the time domain averaging.

This can be modelled as the convolution of y(t ) with a train of N delta functions dis-

placed by integer multiples of the time period T . This system is a filter similar to comb in the

frequency domain [22]:

C ( f ) = 1

N

si n(NπT f )

si n(πT f )
(3.2)

3.3 Autoregressive Filter (AR)

Autoregressive filter is the most famous filter to capture the deterministic information from

the noise corrupted signals. Autoregressive model (AR) is an all-pole linear IIR filter. When

an AR filter is excited with white noise it produces a signal with the same statistics as the

primary signal that we are trying to model with the AR. AR is numerically as the same as a

linear prediction filter as shown in Figure 3.2 that predicts the deterministic or predictable

part of the next value of signal by a certain number of samples in the immediate past. The

residual part or the unpredictable part of the signal is then calculated by the subtraction

from the actual signal value. In the case of ideal AR model the residual signal will be white

noise [22, 26, 27].

x̂(n) =
p∑

i=1
ai x(n − i ) (3.3)

Choosing p as called the model order is the most challenging part of the AR modelling.

When the application is to separate discrete frequency components from stationary white

noise, a standard approach is to use the Akaike Information Criterion (AIC). Residual e(n)

is said to be prewhitened as it includes stationary white noise and impulses. E(Z ) is the

z-domain counterpart of e(n) and is named forcing function [22, 26].
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e(n) = x(n)− x̂(n) (3.4)

x(n)+
p∑

i=1
a(i )x(n − i ) = e(n) (3.5)

X (Z )A(z) = E(Z ) or X (Z ) = (1/A(Z ))E(Z ) (3.6)

The large kurtosis of AR residual signal e(n) is a signature of local gear faults [22, 26].

Figure 3.2: Autoregressive (AR) model used for Linear Prediction

The {a[k]} are obtained using the matrix form Yule-Walker equations that is often solved

using the so-called Levinson-Durban recursion (LDR) algorithm [22].



rxx[0] rxx[−1] . . . rxx[−p +1]

rxx[1] rxx[0] . . . rxx[−p +2]
...

...
. . .

...

rxx[p −1] rxx[p −2] . . . rxx[0]





a[1]

a[2]
...

a[p]

=



rxx[1]

rxx[2]
...

rxx[p]

 (3.7)

In this equation the square matrix is a Toeplitz matrix and rxx[n] is simply autocorrela-

tion function of time series x[n].

rxx[n] = 1

N

N−1∑
k=0

x[k][k −n], 0 ≤ n ≤ p −1 (3.8)

3.4 Self-Adaptive Noise Cancellation (SANC)

Separation of periodic vibrations from non-deterministic ones is very helpful in the vibration

analysis. A typical application is for separation of gear and bearing signals [22].

Vibration signals measured on machines can be generally very complex when the nu-

merous sub-systems are involved, especially for machines with a gearbox that several com-

ponents are rotating in different speed and make effect in the vibration signal [27]. In many

situations, for such a complex system, can be very difficult to use vibration analysis in a
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simple condition monitoring scheme. However, when operating at constant speed, many of

the contributions in the signals can be decomposed by Fourier transformation and thus be

individually analyzed [22, 27].

This applies for all sub-systems that are mechanically phase-locked to the operating

speed and then can be expected to match with specific spectral lines in the frequency do-

main. Gears obviously belong to this class of sub-systems as their vibrations cause to hap-

pen families of discrete and equi-spaced peaks in the frequency domain. However, there

are other mechanical devices and processes same as bearing which do not produce discrete

spectra because they are generally not exactly phase-locked to the machine speed. These

can actually experience some degree of randomness in their operation, thus cause to happen

smeared continuous spectra in the frequency domain. The rolling is unavoidably accompa-

nied by some slipping with an intensity depending on the ratio between the axial and radial

loads. This behavior has been shown to be typical of rolling element bearings [22, 27].

As a consequence, it will only be possible to return two sources, one containing all the

periodic components and the other one all the broadband components. In other word, the

issue is to decompose a frequency spectrum into a discrete and a continuous part.

3.4.1 Prediction Theory

The issue of decomposing a spectrum into discrete and continuous components is a recur-

rent one in signal processing. Regardless of the physical reasons, it is also an advantage from

a statistical point of view since the two types of signals have different properties and should

therefore be analyzed with different statistical tools. Before thinking of how to achieve that,

it should first be questioned if such a decomposition is always feasible. Simply, any station-

ary process can be decomposed into a deterministic (or singular) and a non-deterministic

(or regular or stochastic) part. There is a fundamental theorem, Wold’s theorem, that says

any stationary process X (n) has the representation [18, 22]:

X (n) = p(n)+ r (n) (3.9)

p(n) and r (n) are respectively a deterministic process and zero mean stationary process that

are uncorrelated with each other. The zero mean stationary process as a non-deterministic
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process can be modeled by moving average

r (n) =
∞∑

i=0
aiε(n − i ) (3.10)

Here ε(n) is a white noise as random error that is called innovation term. The deterministic

component can be modeled by determining its N previous samples without any innovation

term. This presentation of stationary signal is ARMA (Autoregressive Moving Average) model

presentation [1, 29].

Prediction theory also gives an elegant solution for the separation of the two signals. It

was pointed out that the deterministic signal could be predicted from its past values with

zero prediction error. In fact, since the correlation time of a periodic signal is infinite, the

prediction can theoretically be made from any values arbitrarily far back in the past, still with

zero prediction error. On the other hand, the autocorrelation of a non-deterministic signal

decays towards zero with increasing time-lags; thus prediction from past values becomes less

and less accurate as data become old. Ultimately, when the data used for prediction become

older than the memory (effective correlation time) of the non-deterministic signal, the best

predicted value is zero and the prediction error equals the signal itself. This forms the basis

of the separation scheme, where the periodic signal is predicted from the far past values of

the vibration signal, and the non-deterministic signal is estimated from the prediction error

[1, 2].

Let us define x̂(n) as the predictor of x(n) from a N finite number of past values from

x(n −d) to x(n −d −N +1) or

x̂(n) =
N−1∑
i=0

hi x(n −d − i ) (3.11)

And suppose d be selected such that autocorrelation of prediction error for more far from d

is zero

Rr r (k) = E(r (n)r (n −k)) = 0, k > d (3.12)

Rr r is autocorrelation function of error prediction r . Then the best answer for x̂(n) that mini-

mizes the mean squared error of e2 = E {(x(n)−x̂(n))2} is given by the conditional expectation

[3, 29].

x̂(n) = E(x(n)|x(n −d), x(n −d −1), ..., x(n −d −N +1)) (3.13)
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This is a projection of x(n) to basis of order N with basis vectors x(n−d), x(n−d−1), ..., x(n−
d−N +1). If we select an appropriate N , then by minimizing e2, the best result for determin-

istic component of x(n), p(n) will be x̂(n) and the non-deterministic component of x(n) is

r (n) = x(n)−p(n).

A close-form solution for calculating {hi } is in the form of Weiner-Hopf equations [1]:

N−1∑
i=0

hi Rxx(n −d − i ) = Rxx(n), n ∈ Z (3.14)

In this method, Rxx is autocorrelation function of x. The number of weights {hi } can be very

large so the directly solving is not a good idea. Instead, there are some methods to optimally

solve the equations:

• Wiener filtering

• Autoregressive estimation

• Kalman filtering

• Recursive least squares estimation

Autoregressive estimation is in fact the time average form of Wiener filtering and the recur-

sive least squares estimation is the time average form of Kalman filter. For further refer to

[4].

Adaptive Noise Cancellation algorithm (ANC) is an efficient recursive way to solve Weiner-

Hopf equations [2].

3.4.2 Time-Domain SANC

Adaptive noise cancellation (ANC) is a class of general adaptive filters [18] and is a proce-

dure where a primary signal containing two uncorrelated components can be separated into

those components by reference differencing. When one of the components is deterministic

and the other is random, the reference signal can be a delayed version of primary signal, so

the method is called Self-Adaptive Noise Cancellation (SANC) or so called Adaptive Linear

Enhancer (ALE) [22].
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Figure 3.3: Self-Adaptive Noise Cancellation (SANC) [22]

The key idea used is the difference in correlation times or in other words memories of two

types of contributions. For a sufficiently long time-lag, they become uncorrelated and can

be separated on this basis. The idea has been known in the statistical and signal processing

in terms of prediction theory as expressed in previous section.

Therefore, as long as we are concerned with stationary signals, the SANC algorithm is

nothing other than a convenient tool for solving the Wiener-Hopf large system of equations.

The adaptive filter adjusts its parameters to minimize the variance of the error signal ε.

Because the two components are uncorrelated, the variance of the total signal will be the

sum of the variances of the two constituents, and thus the separation will be achieved when

the variance of the difference signal is minimized, meaning that it then contains no part of

the reference signal.

The time delay or prediction depth should be chosen large enough so as to exceed the

memory of the noise in the input signal for uncorrelation. This time delay is achievable

because of broadband spectrum (continues spectrum) of noise. In the theoretical aspect

correlation time of periodic signal is infinite, but since the deterministic component may

not be exactly periodic but rather pseudo-periodic then the correlation time is not infinite

and so delay can not be too large. In other word, correlation length will be of the inverse

order of the narrowest bandwidth of noise.

The filter length N must be sufficient to extract all important periodic factors from the

original signal. In theory, when there is no noise, an order of 2k is required to extract k si-

nusoidal components. When noise is present, higher orders are required for its rejection. In

general, the choice of N faces a compromise between sufficient selectivity of the frequency

response on the one hand, and convergence and small estimation bias on the other hand.

The recursive algorithm so-called Least Mean Squares (LMS) algorithm is used to com-

pute filter coefficients. It uses the gradient of the mean squared error to change the filter
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coefficients in a recursive algorithm. If a component of the gradient is positive then the cor-

responding coefficient will be decreased for the next round and for a negative component

the coefficient will be grown up [22, 30]. The formula 3.15 and 3.16 show the idea.

Wk+1 =Wk −µ∆k (3.15)

∆k = ∂E [ε2
k ]

∂Wk
(3.16)

where µ is a convergence factor, which should be chosen carefully to avoid divergence on

the one hand, but not give rise to excessive adaptation time on the other. Figure 3.4 shows

LMS process.

Figure 3.4: Least Mean Squares Adaptive Filter (LMS)

3.5 Discrete/Random Separation (DRS)

This method is virtually the same as SANC but more efficient, because it is based in the fre-

quency domain and takes advantage of speedup of FFT. In contrast to SANC, it does not re-

quire adaptation phase, because the filter to remove discrete frequency components is first

determined, possibly from the whole length of data. For this reason, it requires the discrete

frequency components to be very stable, and so order tracking is recommended as a pre-

processing step.
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Figure 3.5: Discrete/Random Separation (DRS)

Weiner-Hopf equations (expressed in SANC section) describe a convolution of autocor-

relation of the signal with a finite-length filter. In frequency domain, it can be simplified by

product. For more simplification the autocorrelation signal is then estimated as an average

of products of short-time Fourier transforms taken over the signal. To make this approach

to be efficient, the short-time Fourier transforms should be run on the shortest sequences

that at least cover the filter length. Of course, this derives unavoidable distortions due to

windowing effects.

The basic principle is to obtain the transfer function between the signal and a delayed

version. The cross-spectrum from input to output is divided by the auto-spectrum of the

input. Let Xk (n) be a windowed sequence of length N taken at time kN ; i.e. Xk (n) = X (n +
kN )WN (n), n = 0,1, ..., N −1 with WN (n) a weighting window of length N. In the same way,

define X d
k (n) = X (n + kN −d)WN (n) as a delayed signal. The objective is to find the filter

which best predicts Xk (n) from X d
k (n). By choosing appropriate d and N , the deterministic

components in the signal remain deterministic and the broadband noise will be rejected

from the primary signal X d
k (n) [22].

Figure 3.6: Short-time sequences used in the frequency-domain algorithm

Let us bring the formulation for this filter:
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X ( f ) = R( f )+P ( f ), X d ( f ) = Rd ( f )+P d ( f ) (3.17)

Input of the filter is xd (n), delayed of x(n), and output is only deterministic part of x(n)

P ( f ) = H( f ).X d ( f ) (3.18)

Multiplying both side by X d∗( f ):

P ( f ).X d∗( f ) = H( f ).X d ( f ).X d∗( f ) ⇒ Spxd ( f ) = H( f ).Sxd xd ( f ) (3.19)

Sab( f ) is called cross-power spectrum and is equal to spectrum of cross-correlation. For

the stationary signals that the input noise and the output noise are not correlated the cross-

spectral densities are:

Sxd xd ( f ) = F (γxd xd ) = F (γpd pd +γr d r d +γr d pd +γpd r d ) = Spd pd ( f )+Sr d r d ( f ) (3.20)

Spxd ( f ) = Sxxd ( f ) = F (γxxd ) = F (γppd +γr r d +γr pd +γpr d ) = Sppd ( f ) (3.21)

H( f ) ≈ Sxxd ( f )

Sxd xd ( f )
(3.22)

When the Signal-to-Noise Ratio (SNR) is higher the method is more accurate. Ideally, where

the signals are correlated, this formula provides a value of unity. This happens in the com-

ponents with a discrete frequency. In contrast, the output will be zero at the frequencies that

are noise. But in practice with a complex and noisy signal we expect the different values de-

pend on the signal to noise ratio. This equation is called H1 filter in system analysis. Several

Frequency Response Function (FRF) estimation techniques have been proposed in literature

in order to minimize the error effects; H1( f ) = Sy x( f )/Sxx( f ) and H2( f ) = Sy y ( f )/Sx y ( f ) are

the estimates obtained with least square techniques. The coherence defines as a ratio of H1

and H2:

Gx y = H1( f )

H2( f )
= |Sx y ( f )|2

Sxx( f )Sy y ( f )
(3.23)

and varies between zero and one. The coherence is a measure that shows the signal is noisy

or noise-less. The value one for the coherence shows the signal is noise-less or high-quality.

Usually the spectral densities are averaged over a number of sampling intervals to reduce
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the effect of noise [22]:

H( f ) ≈
∑

Sxxd ( f )∑
Sxd xd ( f )

(3.24)

Compared with the SANC algorithm, the frequency-domain (FD) algorithm has a much

lower complexity. However, this introduces unavoidable distortions (leakage error) due to

windowing effects, which must be care in choosing the proper window.

3.6 Cepstrum Analysis

The cepstrum analysis is used to highlight periodicities in the frequency domain, in the same

way that the spectrum is used to highlight periodicities in the time domain. Harmonics and

sidebands in the spectrum are summed into one peak in the cepstrum. With the cepstrum

we can identify the modulation frequencies associated with a specific fault.

The complex cepstrum is defined as the inverse FFT of the logarithm of the FFT of a signal

[22, 23].

C ( f ) = F−1{log (F {x(t )})
}

(3.25)

X(f) as FFT of x(t ) is complex with an even amplitude of A( f ) and an odd phase of φ( f ). So,

the complex cepstrum will be a real valued.

X ( f ) = A( f )e jφ( f ) (3.26)

log (X ( f )) = l og (A( f ))+ jφ( f ) (3.27)

The power cepstrum or real spectrum is the inverse FFT of the logarithm of the power spec-

trum of a signal.

C ( f ) = F−1{log
∣∣F {x(t )}

∣∣} (3.28)

Source and transmission path effects are additive in cepstrum:

y(t ) = x(t )∗h(t )

Y ( f ) = X ( f ).H( f )

l og Y = log X + l og H

F−1{log Y } = F−1{log X }+F−1{log H }
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Note that before calculating the complex cepstrum, the phase function φ( f ) must be

unwrapped to a continuous function of frequency, and this is often difficult, so it is better to

make solutions with the real cepstrum.

The real cepstrum was originally proposed as a better alternative than the autocorrela-

tion function for detecting echo delay times, specifically for seismic signals.

The auto-correlation function is the inverse Fourier transform of the power spectrum

Rxx(τ) = F−1{|F {x(t )}|2} (3.29)

It is also equally a spectrum of a spectrum, but the critical difference with cepstrum is the

logarithmic conversion of the power spectrum, which converts source and transfer function

effects to additions in the cepstrum, whereas they are related by a product and a convolu-

tion, respectively, in the spectrum and autocorrelation function. Inverse spectrum in the

cepstrum formula is only useful where the signal in the time domain is comparable with the

cepstrum.

Using of words such as cepstrum, quefrency, rahmonics and lifter formed by reversing

the first syllable of the corresponding originals, spectrum, frequency, harmonics and filter

were proposed in the papers because of the cepstrum is a spectrum too, but of a spectrum.

There are three main areas of application of cepstrum analysis:

• As the cepstrum determines the periodicities in the frequency domain, it summarizes

the all families of uniformly spaced harmonics and sidebands.

• As the cepstrum is a logarithm function or in other word converts the products to ad-

ditions, it separates forcing functions (at the tooth-mesh) from transfer functions as

some discrete points.

• Echoes as a convolution with some delta functions will be observed by the cepstrum

as some delayed impulses as shown in Figure 3.7.
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Figure 3.7: Showing that an echo gives a periodic component in the signal spectrum

3.6.1 Cepstrum Application in Machine Diagnostics

As mentioned above, cepstrum analysis detects periodic structure in the frequency domain

and separates the source and channel effects. So, cepstrum can be applied for machine di-

agnostics as follows [6, 22]:

• Detection of periodic structure in spectrum

– Harmonics (Faults in gears, bearings, blades)

– Sidebands (Faults in gears, bearings, blades)

– Echoes, reflections

• Separation of source and transmission path effects (for SIMO, single input multiple

output systems)

Cepstrum is very good solution for gear fault diagnosis but it can only be used for bearing

fault diagnosis when the fault generates discrete harmonics in the spectrum.

Local faults in gears produce some impulsive modulation of the gearmesh signals placed

in a period correspond to gear speed. There are a large number of sidebands of both ampli-

tude modulation and frequency modulation. The sidebands are weak and more visible in a

log amplitude spectrum similar to cepstrum. Furthermore, cepstrum is effective represen-

tation because of summing all sidebands in the spread spectrum in one sideband. For slow-

speed machines the excited resonance frequencies are usually high harmonics and they are
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typically smeared together, so this technique is more useful for high-speed machine with

resonances excited relatively low harmonic.

The noise level in the spectrum affects the detection of a series of harmonic components.

It is obvious that if the harmonics are completely immersed in the noise, they will not be de-

tected at all in the cepstrum. The techniques for noise reduction such as time synchronous

averaging can be used to cause discrete frequency components to be more highlighted from

background noise.

The cepstral coefficients are a very compact representation of the envelope. It also turns

out that cepstral coefficients are uncorrelated. This is very useful for statistical modeling,

because we do not need to store their covariances, which reduces exponentially required

memory and process.

3.6.2 Cepstrum Editing

As the same filtering the signal in spectrum domain we can lifter the signal in cepstrum do-

main. For cepstrum editing, it previously was necessary to use complex cepstrum but it

needs unwrapping the phase and it is not possible for response signals so, real cepstrum

is used for liftering. Cepstrum editing is used to reveal system resonant frequencies or to

remove selected harmonics and sideband families. In the new method, the amplitude of

force or response signals are edited in real cepstrum and then the edited cepstrum com-

bined with the original phase is applied together to produce the original signals. Figure 3.8

shows schematic of real cepstrum editing [22, 23].

Figure 3.8: Real cepstrum editing
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3.7 Empirical Mode Decomposition (EMD)

Empirical Mode Decomposition (EMD) is a time adaptive decomposition operation that it-

eratively separates high frequency components from the original data. The decomposed

components are called Intrinsic Mode Function (IMF) which ideally are mono-component

signals and follow IMF conditions [12].

Specifically, the core of EMD is the sifting process, which first defines envelopes of upper

and lower extremes, and iteratively subtracts the mean of both envelopes from the previous

data or residual, until it satisfies the necessary condition of IMF. The IMF satisfy the following

two conditions [12]:

• The number of local extremes and the number of mode zero-crossings are equal or

differ at most by one.

• The local average of upper and lower envelopes is zero.

Any oscillatory signal, regardless of stationarity or non-stationarity, can be decomposed into

separate constituent functions that satisfy the above conditions.

The process of EMD is as follow [21, 24]:

• Given a data set, find all the local maxima, and connect those points to develop an

upper envelope, using a cubic spline. Likewise, find the lower envelope from local

minima.

• If the mean value of the upper and lower envelopes is denoted as m10, the first compo-

nent h10 is:

h10
∆= x(t )−m10 (3.30)

New maxima and minima shall again be identified, and if steps 1 and 2 are repeated k times

to satisfy IMF conditions:

h1k
∆= h1(k−1) −m1k (3.31)

This repeated process is known as sifting. h1k will be the first IMF c1:

c1
∆= h1k (3.32)
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We can separate c1 from the original x(t ), to extract the second IMF:

r1
∆= x(t )− c1 (3.33)

Then, we assume r1 to be the original signal, and repeat the previous steps to find the second

IMF c2. After the n-th iteration, the original signal x(t ) can be decomposed into n number of

IMFs, as below:

r2
∆= r1 − c2 (3.34)

. . .

rn
∆= rn−1 − cn (3.35)

x(t ) =
n∑

i=1
ci + rn (3.36)

Decomposition process ends when rn (n empirical modes) becomes a monotonic func-

tion (contains no more than two extrema), so that no more IMF can be deduced. rn is resid-

ual component and the mean trend of x(t ). The individual IMFs c1,c2, ...,cn covers a broad

range of the frequency band, from the highest to the lowest.
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Figure 3.9: Empirical Mode Decomposition (EMD) algorithm

Genetic Algorithm seeks for the vectors of weight for each IMF that maximizes the kurto-

sis. After completing the GA, we will find a significant contrast of kurtosis between healthy

and damaged bearings. A schematic block diagram for the process of sensitivity enhance-

ment of a bearing defect through EMD-GA is following:

Figure 3.10: Using Genetic Algorithm applied to IMFs for choosing a appropriate weight vec-
tor subjected to high kortusis
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3.8 Hilbert-Huang Transform (HHT)

3.8.1 Analytic Signal and Hilbert Transform

The Fourier transform of a real function is Hermitian:

s(t ) = s(t )∗ ⇒ S(− f ) = S( f )∗ (3.37)

Define Sa( f ) contained only non-negative frequencies of S(f):

Sa( f ) =


2S( f ) f > 0

S( f ) f = 0

0 f < 0

Or:

Sa( f ) = 2u( f )S( f ) = (1+ sg n( f ))S( f ) (3.38)

Inversely, and according to S( f ) is Hermitian symmetric:

S( f ) =


1/2Sa( f ) f > 0

Sa( f ) f = 0

1/2Sa(− f )∗ f < 0

Or:

S( f ) = 1/2[Sa( f )+Sa(− f )∗] (3.39)

Then sa(t ), the analytic signal of s(t ), is defined as:

sa(t ) = F -1(Sa( f )) = F -1[(1+ sg n( f ))S( f )] = s(t )+ s(t )∗ j /πt (3.40)

sa(t ) = s(t )+ j ŝ(t ) (3.41)

Hilbert transform of s(t ) is:

ŝ(t ) = s(t )∗1/πt (3.42)
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Then instantaneous amplitude or envelope, instantaneous phase and instantaneous fre-

quency are defined as:

sm(t ) = |ŝ(t )| (3.43)

φ(t ) = ar g [ŝ(t )] (3.44)

ω(t ) = 1/2πdφ(t )/d t (3.45)

Also the Hilbert transform can be said to be the relationship between the real and imag-

inary parts of the Fourier transform of a one-sided function. Any natural impulse response

function is causal and thus one sided in the time domain, and this means that the real

and imaginary parts of the corresponding frequency function are related by a Hilbert trans-

form. This becomes evident when it is considered that a causal function is made up of

even and odd components which are identical for positive time, and canceled for negative

time. Suppose x(t ) = (x(t )+ (x − t ))/2+ (x(t )− (x − t ))/2 = xe (t )+ xo(t ) and because x(t )

is one-sided function the even and odd parts are related by xe (t ) = xo(t ).sg n(t ) or Xe ( f ) =
Xo(t )∗F (sg n(t )) where sg n(t ) is the sign function with Fourier transform of an imaginary

hyperbolic function 1/ jπt . Since the real part and imaginary part of X ( f ) are respectively

the Fourier transform of the even part and odd part of x(t ), e.g. XR ( f ) = Xe ( f ) and X I ( f ) =
Xo( f )/ j we can write the Hilbert relationship between real and imaginary part as:

XR ( f ) = 1

π

+∞∑
−∞

X I (φ)
1

f −φdφ (3.46)

The equivalent equation for the Hilbert transformation of a time function x(t) is

x̂(t ) = 1

π

+∞∑
−∞

x(τ)
1

f −τdτ (3.47)

And in the frequency domain

X̂ ( f ) = X ( f )(− j sg n( f )) (3.48)

Which shows the Hilbert transform can be achieved more simply in the frequency domain

just with a shifting the phase by −π/2 for positive frequency components and π/2 for nega-

tive frequency components.
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3.8.2 Hilbert-Huang Transform (HHT)

HHT can decompose the data on the base of time characteristics auto-adaptively, which is

called data driving [13]. It seems that HHT can be competent for the underwater acoustic

signal detection and analyzing.

The signal has to be decomposed into some mono-component signals (IMF) by empirical

mode decomposition (EMD).

x(t ) =
N∑

i=0
ci (t )+ rn(t ) (3.49)

ci is IMF component and rn is Gaussian noise as residual.

Hilbert transform for each IMF will be:

Hi l ber t [ci (t )] = ci (t )+ j di (t ) (3.50)

Then the instantaneous amplitude, phase and frequency for each IMF are:

ai (t ) =
√

c2
i (t )+d 2

i (t ) (3.51)

φi (t ) = ar ct an
(di (t )

ci (t )

)
(3.52)

ωi (t ) = 2π fi (t ) = dφi (t )

d t
(3.53)

ci (t ) is denoted the i th IMF, which has time-varying amplitude and time-varying fre-

quency.

ci (t ) = Real
[
ai (t )e j

∫
ωi (t )d t ] (3.54)

And with eliminating residual term, x(t ) can be written as:

x(t ) = Real
[ n∑

i=1
ai (t )e j

∫
ωi (t )d t ] (3.55)

It is similar to Fourier representation of x(t ) =∑n
i=1 ai e j

∫
ωi d t with ai and ωi constant.

So IMF represents a generalized of Fourier expansion. The variable amplitude and the

instantaneous frequency have not only greatly improved the efficiency of the expansion, but

also enabled the expansion to accommodate nonlinear and nonstationary data. With the
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IMF expansion, the amplitude and the frequency modulations are also clearly separated.

Thus, the restriction of the constant amplitude and frequency of the Fourier expansion has

been overcome, with a variable amplitude and frequency representation. This frequency-

time distribution of the amplitude is designated as the Hilbert Spectrum H(ω, t ).

There are some suggestions to improve HHT. One of them considers each IMF as a time

series:

ci (n) = A(n)si n[2π f (n)n +φ]+ei (n) (3.56)

It can be written as a time-varying autoregressive moving average model (TV-ARMA) model

that is also called Adaptive ARMA or AARMA.

ci (n)+
2∑

j=1
ai j (n)ci (n − j ) =

2∑
j=1

bi k (n)ei (n −k)+ei (n) (3.57)

There are several methods to calculate the time-varying parameters A(n) and B(n) such as

LMS, RLS, Kalman filtering and recursive AR algorithm. The model is AARMA(2,2) since at

the moment n, with the theory of harmonic retrieval, the instantaneous frequency of IMF is

unique.

The characteristic polynomial of the part AR(2), 1+ ai 1(n)z−1 + ai 2(n)z−2 = 0, has two

conjugate roots [zi (n), z∗
i (n)]; Then the instantaneous frequency is:

ωi (n) = 2π fi (n) = ar ct an[
Im(zi (n))

Re(zi (n))
] (3.58)

Another approach to improve HHT is by eliminating the uncorrelated IMFs with original

signal. A threshold of correlation will be help to select useful IMFs.

The Table 3.1 summarizes a comparative view between Fourier, wavelet and Hilbert-

Huang transforms. HHT is as an adaptive method which is useful for non-stationary and

non-linear signals and that is very efficient.
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Tansform Fourier Wavelet Hilbert

Basis a priori a priori adaptive

Frequency convolution: global,

uncertainty

convolution: regional,

uncertainty

differentiation:

local, certainty

Presentation energy-frequency energy-time-

frequency

energy-time-

frequency

Nonlinear no no yes

Non-stationary no yes yes

Feature Extraction no discrete: no, continu-

ous: yes

yes

Theoretical Base theory complete theory complete empirical

Table 3.1: HHT vs Fourier and Wavelet

3.9 Minimum Entropy Deconvolution (MED)

Many vibration signals are considerably distorted by the transmission paths from the source

to the transducer. This is particularly the case for impulsive type signals. The Minimum En-

tropy Deconvolution (MED) method is designed to reduce the spread of Impulse Response

Functions (IRF), to obtain signals closer to the original. In fact, the MED technique decon-

volves the effect of the transmission path [17, 22].

That is particularly useful to identify a train of response pulses arising from sharp im-

pacts for example from local spalls in gears and bearing. In the next step we determine the

frequency of repetition of impulses and that is only possible when if the IRFs are shorter than

the spacing between them, and this is not always the case for high-speed machines. So, the

MED is useful to enhance impulses arising from faults in gears and detect the bearing faults.

[14].

Figure 3.11: Inverse filtering process for MED
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y[n] =
L∑

l=1
f [n]v[n − l ] (3.59)

f [i ] is a filter with L coefficients that has to invert the system IRF h[i ]

f [i ]∗h[i ] = δ(i − lm) (3.60)

Filter f is a causal system so the delay lm will not be zero. It will displace the signal by lm but

will not change pulse spacing in the signal.

This is an Objective Function Method (OFM) where the objective function to be maxi-

mized is impulsivity or kurtosis of the output signal y[n].

K ur tosi s[y] = k( f ) =
N∑

i=1
y4[i ]

/[ N∑
i=1

y2[i ]
]2

(3.61)

the maximum of k is found by values of f [l ] as independent variable for which the derivative

of k is zero

∂(k( f [l ]))
/
∂( f [l ]) = 0 (3.62)

the filter coefficients of f [l ] is achieved iteratively [9, 17].

In other word, the goal is simply recovering or deconvolving the source signal from noise-

corrupted measurements, without a priori knowledge of IRF. That is similar to Blind Source

Separation, but the constraint towards the coefficient of the deconvolution filter is different.

This algorithm finds a solution to minimize the entropy of the signal. The entropy represents

the amount of data content in the sequence of a given signal. Thus, a higher level of entropy

is associated with the enforcement of randomness or uncertainty. In contrast, minimizing

the entropy leads to a simple structured signal, such as sparse spikes.

Figure 3.12 illustrates the conceptual flowchart of MED.

The MED process for a non-stationary signal can be combined with AR linear prediction

filtering or any other techniques related to separating deterministic and non-deterministic

parts. The total process of AR and MED shown in Figure 3.13 is called AR-MED [22, 27]. An

example of applying AR-MED filtering is shown in Figure 3.14.
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Calculate the weighted toeplitz auto correlation matrix

Assume initial filter as a delayed impulse

Iteratively adjust the filter to minimize the entropy calculation

Compute the output signal

Calculate the kurtosis

Calculate the column vector whose coefficients depend upon the filter

Filter coefficients calculated

Normalize the filter result

Update the final result

Figure 3.12: Minimum Entropy Deconvolution (MED) [17]

Figure 3.13: Autoregressive (AR) model used for Linear Prediction
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Figure 3.14: Example of applying both AR and MED filtering to bearing signals with an inner
race fault in a high-speed bearing: (a) original time signal; (b) after application of AR filtering;
(c) after additional MED filtering.

3.10 Teager-Kaiser Energy Operator (TKEO)

TKEO algorithm belongs to the category of nonlinear high-pass filters, which reduces the

variation of low frequency background signals, while boosting transient components of a

signal in the high frequency region. Eventually, transients and background signals can be

easily separated through TKEO. The first-order discrete time model of TKEO is expressed as

equation [14, 17, 22]:

ψ(x[n]) = x[n]2 −x[n −1]x[n +1] (3.63)

ψ(x[n]) is known as Teager Energy of the signal. TKEO detects a sudden change of the energy

because it is based on differentiating technique and is useful for condition monitoring of a

non-stationary signal. It can be applied to amplify impulse component caused by defects,

and suppress the background noise, to increase the kurtosis sensitivity [16, 22].
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3.11 The Short Time Fourier Transform

A simple approach is to move a short time window along the record and obtain the Fourier

spectrum as a function of time shift. This is called the Short-Time Fourier Transform (STFT).

However, the uncertainty principle means that the frequency resolution is the reciprocal

of the effective time window length. STFT is sometimes useful for tracking changes in fre-

quency with time, even with the restriction of resolution. It is described by the formula:

Y ( f , t ) =
∫ ∞

−∞
x(τ)w(τ− t )e− j 2π f t d t (3.64)

where w(t ) is a window which is moved along the signal. Normally, the amplitude squared

|Y ( f , t )|2 is displayed on a timefrequency diagram known as a spectrogram. The window

could be of finite length such as a Hanning window, or theoretically infinite such as a Gaus-

sian window, but in practice of course it must be truncated.

3.12 Wavelet Analysis

An approach to time-frequency analysis is to decompose the signal in terms of a family of

wavelets which have a fixed shape, but can be shifted and dilated in time. The formula for

the wavelet transform is [5, 15, 20, 22]:

W (a,b) = 1p
a

∫ ∞

−∞
x(t )ψ∗( t −b

a

)
d t (3.65)

where ψ(t ) is the mother wavelet, translated by b and dilated by factor a. Since this is a

convolution, the wavelets can be considered as a set of impulse responses of filters, which

because of the dilation factor have constant percentage bandwidth properties. In principle,

they are not very different from 1/nth octave filters, but with zero phase shift because the

mother wavelet is normally centered on zero time. Wavelets give a better time localization

at high frequencies, and for that reason can be useful for detecting local events in a signal.

Wavelets can be orthogonal or non-orthogonal and continuous or discrete. Examples of or-

thogonal wavelets are the Daubechies dilation wavelets, which are compact in the time do-

main, but in principle infinite in the frequency domain. They tend to have irregular shapes

in the time domain. There are also complex harmonic wavelets, which are compact in the
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frequency domain, but infinite in the time domain. They have the appearance of windowed

sinusoids and are typically of one-octave bandwidth. The advantage of complex wavelets is

that the imaginary part of the wavelet is orthogonal to the real part and thus the overall result

is not sensitive to the position of the event being transformed. The local sum of squares of

the real and imaginary parts is a smooth function [21].

Wavelets have an important application in signal denoising. After wavelet decomposi-

tion, the high frequency sub-bands contain most of the noise information and little signal in-

formation. Most wavelet denoising is based on two types of thresholding to remove noise. In

hard thresholding any components with amplitude less than a certain threshold is removed

but in soft thresholding, the threshold is set to higher values for high frequency sub-bands

and lower values for low frequency sub-bands [17, 22].

Wavelet is useful to localize the frequency band of faults in the vibration signal specially

in connection with Envelope Analysis [8, 10, 15, 26, 27].

3.13 Envelope Analysis

The signals produced by faults in rolling element bearings are a series of high-frequency

bursts as resonance frequencies are excited by near periodic impacts. The diagnostic infor-

mation is contained in the repetition frequency, not in the resonance frequencies excited,

but spectra obtained by direct Fourier analysis are dominated by the resonance frequencies,

and the important information is disguised by smearing of the high-order harmonics. Such

signals can be modelled as an amplitude modulation of a carrier signal at the resonance

frequency by a near periodic series of exponential pulses. In so-called envelope analysis,

envelope of the signal is extracted by amplitude demodulation to reveal the repetition fre-

quencies. Vibration signal is bandpass filtered in a high-frequency band in which the fault

impulses are amplified by structural resonances and then with a method as Hilbert trans-

form, the envelope or instantaneous amplitude is derived. The spectrum of envelope signal

contains the desired diagnostic information.

3.14 Spectral Kurtosis and Kurtogram

In a blind analysis, selecting a frequency band that is contained the diagnostic information is

surprisingly possible. Simply, the frequency with maximum impulsivity is the best candidate
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for bearing fault. This result is very important since without having the historical data from a

healthy case the fault bearing information can be detect. Spectral kurtosis (SK) can be used

as a method to calculate impulsivity in frequency domain. The kurtosis for each frequency f

is defined by taking the fourth power of H(t , f ) as STFT at each time and averaging its value

along the record, then normalizing it by the square of the mean square value. It can be shown

that if two is subtracted from this ratio the result will be zero for a Gaussian signal.

K ( f ) = < H 4(t , f ) >
< H 2(t , f ) >2

−2 (3.66)

< . > is mean or expected value. To obtain a maximum value of kurtosis, the window must

be shorter than the spacing between the pulses but longer than the individual pulses.

Since SK is large in frequency bands where the impulsive bearing fault signal is dominant,

and effectively zero where the spectrum is dominated by stationary components, it makes

sense to use it as a filter function to filter out that part of the signal with the highest level

of impulsiveness. However, the optimum result in a given case may vary with both the cen-

tre frequency and bandwidth of the filter. A display showing the optimum combination was

called the kurtogram. Kurtogram is a 3 dimension graph of SK, center frequency and band-

width. Computation of the full kurtogram covering all combinations of centre frequency and

bandwidth is very costly and so a number of more efficient alternatives have been proposed.

Fast kurtogram is based on a series of digital filters rather than STFT. The gains in compu-

tational speed are based on a dyadic decomposition similar to the discrete wavelet packet

transform (DWPT) [22, 25, 26, 27, 31].



4. Experiments

4.1 Data-Set

The signals under study are the vibration signals from two subsea pumps A and B which

gathered in two different years. All the collected signals are from a hydrophone array that is

made up of four hydrophones placed in known locations close to the pumps. The sampling

rate is 12500 Hz. We have some information about the pumps status and operations, spe-

cially the pumps shaft speed are recorded every two minutes. Usually at any moment only

one of the two pumps is on. The signals have been collected in the files with the ogg format

every 419 seconds. The control and status data are saved in the MySQL database.

At the first, we read the data (pump A speed, pump B speed, date and time) from MySQL

table into two MATLAB memory files, one of them is for old data and the other is for new

data. At a glance the signals seemed to have high level of noise, more specifically the old

signal had a strong spread spectrum at the frequency domain.

4.2 Shaft Speed and Frequency Domain

The relation between pump speed and signal in the frequency domain shows the energy of

signal which is almost directly proportional to pump speed. Reasons of the vibration of any

kind, are repeated one or more time at one rotation of pump and is obviously occurred more

at higher speeds. So, the energy of signal is increased as it is shown in Figure 4.1. The spiky

data at the plot shows the resonant frequencies. Although this drastic change in energy can

not be caused by just increasing the vibration; flow and turbulence increasing is the main

reason of this energy.

Figure 4.2 shows at the higher speeds the energy of signal is shifted toward the high fre-

quencies; and at the lower speeds is shifted toward the low frequencies. Furthermore, it can

38
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be seen that two plots have negative high correlation and positive high correlation together

for low speeds and high speeds respectively.

Figure 4.1: Energy of vibration signal related to pump speed

Figure 4.2: Central frequency of energy related to pump speed

4.3 Shaft Speed Estimation

It is interested to find a method to determine the shaft speed from the vibration signal as if

the speed is unknown. We combined some empirical methods to calculate speed:

1. Using the 80 first strongest coefficients from FFT.

2. Using the 10 first strongest coefficients from FFT of |FFT|.

3. Replacing the frequencies in the neighborhood of±5 step by zero except of the strongest

one and the same way for FFT of |FFT|.

4. Calculating distance matrix for non-zero components for both collections as candi-

dates for speed.

5. A statistical quasi-mode is used to final choosing.

FFT of |FFT| as a simple initiative way gives the periodicity at frequency domain and it

is a collector of the all harmonics at just one line. A few month later, we were faced with
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cepstrum analysis which is similar to my empirical method.

Statistical Quasi-Mode is a simple initiative way to find out a number as most frequent

number and the mean simultaneously from a data set. It is like a combination of two statis-

tical functions Mode and Mean . In this method we used distance matrix, then the column

with minimum sum is the final selection as speed.

56 78 79 85

56 0 22 23 29

78 22 0 1 7

79 23 1 0 6

85 29 7 6 0

sum 74 30 30 42

Table 4.1: Calculating the statistical quasi-mode with the distance matrix. 30 is the minimum
sum, so 78 and 79 are final candidate for speed. choosing 78.5 is reasonable.

Figure 4.3: Using statistical Quasi-Mode as final selection among 77,78,79,6 is 77, exactly the
same as the actual speed

4.4 Signal Selection

To minimize the effect of speed fluctuation and to eliminate order tracking process we used

two segments with relatively stable speed from both old and new data. The order tracking
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was not really an option with conventional methods because we did not have tachometer

pulses to resampling data as angular sampling. We selected the frames with relatively long

length 214 with some overlapping and Blackman-Harris windowing to compensate the over-

all leakage effects. For overlapping, we chose the progression of one second or 12500 sam-

ples (equal to the sampling rate) between frames. We have four channels from a hydrophone

array with high cross-correlation at low frequencies and very low cross-correlation at high

frequencies. Since these correlations depend on acoustic velocity and the hydrophones dis-

tance we used the average of them as a kind of TSA for low frequency analysis. The frequency

correspond to the shaft speed is shown by 1X and the ith harmonics are shown by i X for

some integer i > 1.

4.5 Time Synchronous Averaging

Time Synchronous Averaging is used to eliminate signal components that are not synchronous

with the shaft rate of rotation. Eliminated components include electrical noise, bearing vi-

brations, and vibrations related to other shafts. We expected a damping effect at least to

random parts after time synchronous averaging or in the other word, converting the signal

more deterministic and a measure for that is the impulsivity increasing of signal in frequency

domain. The increase of kurtosis in frequency domain is a good sign to show the damping

effect. If the kurtosis remains almost unchanged this is a sign that shows there is no other

vibration except of shaft speed. This is a well-known technique for gear and shaft fault diag-

nosis.

After averaging some frames of length correspond to 10 cycle rotations of pump and then

perform FFT, the kurtosis was calculated on every FFT as a frame. Figure 4.29 shows the

kurtosis of FFT for some frames before and after Time Synchronous Averaging.
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Figure 4.4: Kurtisis of FFT before and after TSA

On the contrary, the residual signal is possible to obtain using synchronous signals minus

the TSA signals. The TSA residual is a step to bearing fault diagnostic.

4.6 Separating Deterministic and Random Parts, AR and DRS

Auto-regressive filter is used to separate random and deterministic components from the

signal. Choosing order of the AR filter is the important consideration. In our application the

impulsivity or in other word, the kurtosis in the random part is a criterion of having faults,

so we choose the order of filter so that to maximize the kurtosis. In both old and new raw

signals the kurtosis of the frames is very close to three as the same as Gaussian white noise.

By using Yule-Walker method to estimate auto-regressive all-pole model, the kurtosis after

applying AR filter is changed but not so much and still is about three and always less than

3.3.

Discrete Random Separation (DRS) is an alternative method for Self Adaptive Noise Can-

cellation (SANC) and is more efficient because of using FFT. In both methods, the basic prin-

ciple is to obtain the transfer function between the signal and a delayed version. The high

correlation between the deterministic components of the data and the delayed version and

on the other hand, zero-correlation between random components of those is the key of this

technique. The zero-correlation is yielded when the memory of the system is shorter than
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the selected time as delay. But in practice we do not have the possibility to select a wide

range of delay time because of fluctuation of the speed. As already mentioned there is no a

tachometer signal to run for order tracking; then there is no big segment of data with a fixed

speed in hand. Due to this issue we do not count on DRS in this study.

4.7 Removing Channel Effects, MED

Minimum Entropy Deconvolution filter is used to compensate the transmission path effect

as the impulses in the source will be observable in the recorded vibration signal. By trial

and error we used a proper length for filter MED to maximize the kurtosis. The MED as

mentioned in the previous chapter is a complement to AR and DRS, so in this study the MED

method applied after AR and DRS. The AR-MED significantly increases the kurtosis of both

old and new data up to 14.

Specially with connection to envelope analysis we found that the MED has a very im-

portant rule to recognize the sidebands. Because the MED filter makes the smeared defect

impulses at the raw signal very similar to the defect impulses at the source with a narrow

body, we can even easily observe the narrow sidebands before applying amplitude demodu-

lator. Furthermore, amplitude demodulator will be more efficient.

Figures 4.5,4.6 and 4.7,4.8 show the dissimilarity of the old and new data. With AR-MED

filtering the kurtosis in the time domain is significantly increased. Particularly, in the new

data some 1X periodic impulses are observed in the time domain that can be related to

some defects. In contrast, for the old data there is no observable high-frequency repeti-

tive impulses. In the frequency domain, it is more clear that the new data includes almost

all the harmonics of the shaft speed. In both of the signals, there are some peaks along the

sidebands that after envelope analysis are specified what those are about.

Although not as common as harmonics, it is critically important to learn how to recog-

nize sidebands because amplitude modulation is always a sign of abnormality. Except of

electrical malfunction, sidebands are generated by gear or bearing related problems. Since

the sidebands can be at very low amplitude it is better to be analyze them on a logarithmic

scale to be more observable.
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Figure 4.5: AR-MED filtering and Kurtosis for the old data: raw signal; after applying AR filter;
after applying AR-MED filter

Figure 4.6: AR-MED filtering and Kurtosis for the new data: raw signal; after applying AR
filter; after applying AR-MED filter
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Figure 4.7: AR-MED filtering and Kurtosis for the old data: FFT of raw signal; FFT after ap-
plying AR filter; FFT after applying AR-MED filter

Figure 4.8: AR-MED filtering and Kurtosis for the new data: FFT of raw signal; FFT after
applying AR filter; FFT after applying AR-MED filter
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TSA is the first step to vibration analysis so the AR-MED filtering is also applied on the

residual signal of TSA. The results have a larger kurtosis as expected. Figures 4.9,4.10 and

4.11,4.12 show the AR-MED filtering on the TSA residual signal that represents a more ran-

dom signal respect to the raw signal.

Figure 4.9: AR-MED filtering and kutosis for TSA residual of the old data: TSA residual; after
applying AR filter on TSA; after applying AR-MED filter on TSA
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Figure 4.10: AR-MED filtering and kutosis for TSA residual of the new data: TSA residual;
after applying AR filter on TSA residual; after applying AR-MED filter on TSA residual

Figure 4.11: FFT of TSA residual for the old data: FFT of TSA residual; FFT after applying AR
filter on TSA residual; FFT after applying AR-MED filter on TSA residual
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Figure 4.12: FFT of TSA residual for the new data: FFT of TSA residual; FFT after applying AR
filter on TSA residual; FFT after applying AR-MED filter on TSA residual

4.8 Cepstrum

Cepstrum editing can be used as an alternative of TSA by setting zero the rahmonic corre-

spond to shaft speed in the cepstra. In fact, the strongest terms in the cepstrum domain

(qufrencies) represent the most spread harmonics in the frequency domain. By removing

such a strong qufrencies we will actually eliminate the discrete frequencies from the spec-

trum. By applying this technique and removing a different number of strong terms, the re-

sult spectrum is more impulsive and non-deterministic. The residual signal shows many

dominant integer and half harmonics of shaft speed. It should be mentioned that the word

liftering as a dual of filtering refers to cepstrum editing.

The logarithm term helps the spectrum to be flat in the cepstrum formula and it makes

all the harmonics to be almost with an equivalent effect and to be more collected just on one

line. However in practice, a comb lifter rather than one line lifter is used for eliminating the

shaft speed harmonics or other harmonics from the cepstrum. In the old data, there is no

spread harmonics of shaft speed and in the new data, the sidebands and other components

around the shaft speed make a triangle shape and almost hide the central frequency. So, by
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using this method we do not see a significant change in the spectrum.

An exponential short-pass lifter makes the harmonics more removed. By applying this

method after eliminating the strong qufrencies, the signal becomes more impulsive and

non-stationary.

Also, a rectangular short-pass lifter (a dual term for low-pass filter in spectrum) is a choice

to make signal more deterministic and in contrast a proper long-pass lifter makes the signal

more random. In practice, this method does not separate random and discrete components

from our data.

By checking all the techniques mentioned above, the best results show that the new data

has strong multiple harmonics of the shaft speed, also it includes low power half harmonics

of shaft speed. FFT of the strongest terms of cepstrum have almost full harmonics of shaft

speed with a low amplitude sideband around the all. In contrast to the residual signal, this

FFT seems similar to spectral envelope of FFT of the raw signal.

The old data just includes two vibration at about 6X and 28X .

We do not know any information about the structure of the machine, ball bearing or

gearbox under test, so we can not specify what the frequencies are about; but we know the

complex of 1X ,1.5X ,2X ,2.5X , ... can be in connection with mechanical looseness.

Figures 4.13,4.14 and 4.15,4.16 show cepstrum and FFT of the old and new data after

cepstrum editing. After keeping the strongest terms of cepstrum and removing the other

terms the signal will have more repetitive form in the frequency domain. The spectrum of the

residual will be more random in frequency domain. We observe much difference between

the old and new data after keeping just the strongest terms of cepstrum.
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Figure 4.13: Cepstrum of the old data: raw signal; the strongest terms of cepstrum; the rersid-
ual

Figure 4.14: Cepstrum of the new data: raw signal; the strongest terms of cepstrum; the
rersidual
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Figure 4.15: FFT of the Cepstrum of the old data: raw signal; FFT of the strongest terms of
cepstrum; FFT of the rersidual

Figure 4.16: FFT of the Cepstrum of the new data: raw signal; FFT of the strongest terms of
cepstrum; FFT of the rersidual

The results from AR-MED filtering are confirmed by cepstrum analysis. In both of the
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methods we tried to separate the deterministic and non-deterministic components of the

signal in order to detect the impulses produced by the faults as amplitude modulated in the

resonance frequencies.

MED filter is an effective way which tries to minimize the width of path response func-

tion as much as an impulse function. On the other hand, in cepstrum analysis we know the

cepstrum of the path transmission function is added to source cepstrum and cepstrum edit-

ing is an easy way to separate them from each other. So, MED and some type of liftering can

have a similar effect. However, by applying cepstrum editing on the MED signal is achieved

more randomness in the residual signal and more clarity at the deterministic part as can be

seen in Figures 4.17,4.18.

Figure 4.17: FFT of the MED signal for the old data: FFT of the strongest terms of the cep-
strum of the MED signal; FFT of the residual after the cepstrum editing of the MED signal
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Figure 4.18: FFT of the MED signal for the new data: FFT of the strongest terms of the cep-
strum of the MED signal; FFT of the residual after the cepstrum editing of the MED signal

4.9 Time-Frequency Band Selection and Envelope Analysis

Envelope analysis and high frequency resonance technique is a fundamental and effective

method for fault detection. However, first step is to find the high frequency band that con-

tains strong impulse signals as sidebands produced by faults. The conventional methods

use a series of band-pass filters with equal bandwidth or octave-bands which are arranged

next together. For non-stationary signals the Short Time Fourier Transform (STFT), Wavelet

Packet Transform (WPT) and Empirical Mode Decomposition (EMD) can be more appro-

priate than just band-pass filtering. Finding some strong peaks in the frequency domain

is desired as a target. Kurtosis Spectrum (SK) and Kurtogram are the methods that lead us

directly into a short time-frequency segment with maximum kurtosis.

It is mentioned there are two main research directions during 21th century in bringing

bearing fault frequencies. The first one is to enhance the impulse signals produced by faults

that is achieved by using the MED technique and the second one is achieved by using the

Spectral Kurtosis (SK).
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4.9.1 Band-Pass Filtering

In this study after some trial and error, the bandwidth 300H z is used for the band-pass filters.

It is observed that the new data includes some shaft speed harmonics modulated in higher

frequencies and in the old data there is no such evident modulation sidebands. The results

are shown in Figure 4.19.
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Figure 4.19: Bandpass filtering and envelope analysis. In the new data there is some electrical
sidebands on the carriers of 600, 1600, 1850, ...
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4.9.2 Wavelet

Although wavelet transform is capable of analysing nonlinear and non-stationary signals

and considered suitable for vibration-based fault diagnosis, there are many deficiencies in

the use of wavelet transform including the interference terms, border distortion and energy

leakage. These deficiencies may generate a lot of undesired small spikes all over the fre-

quency scales and make the results confusing and difficult to be interpreted. A large differ-

ence between the new and old data can be seen with respect to scalogram of them shown in

Figures 4.20 and 4.21. In the new data, energy has been concentrated in two frequency bands

that certainly have been generated by defects. While on the contrary, there is no focusing of

energy in the old data.

Figure 4.20: Scalogram of the old data
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Figure 4.21: Scalogram of the new data

4.9.3 HHT

As the same as wavelet, HHT may become a successful method to extract the properties of

non-stationary signal, but HHT also suffers from a number of shortcomings. First, the EMD

will generate undesirable IMFs at the low-frequency region that may cause misinterpreta-

tion to the result. Second, the (first) obtained IMF may cover a very wide frequency range

that the property of monocomponent cannot be achieved. Third, the EMD operation can-

not separate signals that contain low-energy components. Figure 4.22 shows the IMFs for a

frame of old data.
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Figure 4.22: Empirical mode decomposition and 13 IMFs of the raw signal from old data set

4.9.4 Improved-HHT

As an improved HHT method, the wavelet packet transform (WPT) is used as preprocess-

ing to decompose the signal into a set of narrow band signals prior to the application of

EMD. With the help of WPT, each IMF derived from the EMD can truly become monocompo-

nent. Then, a screening process is conducted to remove unrelated IMFs from the result. The

screening can be achieved by calculating the correlation of the IMFs with the inspected raw

signal. Unrelated IMFs that may cause distortion to the results, particularly in low-frequency

range as mentioned in the first shortcoming, can be minimized.

In this study, firstly, the raw signal is decomposed to eight components by running a

3-levels db6 wavelet packet transform. Then empirical mode decomposition is performed

for each components and then Hilbert spectrum is calculated for each one that is shown in

Figures 4.23,4.24 and 4.25,4.26 . Totally it is obtained more than 100 IMFs for the old and the

new data (more than 12 IMFs for each wavelet component), but by considering only the IMFs
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with a correlation bigger than one tenth of the maximum, the total acceptable IMFs for the

old data and the new data will be typically 17 and 22 respectively. Instantaneous amplitude,

instantaneous frequency and Hilbert transform of each IMF are combined to make Hilbert

spectrum in the number of 100 frequency bands for each wavelet components. The beautiful

discrete lines in all figures show exactly the present frequencies in the time slot. Specially,

the components with a red line are considered to perform other signal analysis for a detailed

inspection. The meaning of the lines is almost quite dependent to the machine structure.

The fluctuation of lines can come from the error in the phase and angle calculating method,

inaccuracy computation, and presence of frequency modulation in the data. Discrete lines

show that the corresponding IMF is fine mono-component. In contrast, the dots are related

to the multi-component IMFs.

Figure 4.23: Improved HHT on the old data: applying 3-levels WPT on the raw signal and
then performing HHT on the componenets 1-4
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Figure 4.24: Improved HHT on the old data: applying 3-levels WPT on the raw signal and
then performing HHT on the componenets 5-8

Figure 4.25: Improved HHT on the new data: applying 3-levels WPT on the raw signal and
then performing HHT on the componenets 1-4
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Figure 4.26: Improved HHT on the new data: applying 3-levels WPT on the raw signal and
then performing HHT on the componenets 5-8

In the following figures very much impulses are visible, but clearly the impulses in the

new data is much more. In the old data we still observe 6X and 28X impulses but a wide

range of impulses can be seen in the new data.
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Figure 4.27: Some selected IMFs in improved HHT for the old data

Figure 4.28: Some selected IMFs in improved HHT for the new data
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4.9.5 Spectral Kurtosis

Spectral kurtosis was used as a method to find the best candidate for band-pass filtering

and envelope analysis. Figure 4.29 shows spectral kurtosis of a MED filtered signal and the

frequency band with maximum kurtosis that is achieved by band-pass filtering. The third

subplot shows the spectrum of envelope signal. At the last plot the band-pass filtered signal

along the envelope is shown. By applying the method for ten largest kurtosises we found out

several carrier frequencies along the discrete line as sideband.

Figure 4.29: Spectral kurtosis and envelope analysis for a MED filtered signal from the new
data
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