
A Type System for the Safe Instantiation of

Components 1

Marc Bezem 2 and Hoang Truong 3

Institute for Informatics
University of Bergen

PB.7800, 5020 Bergen, Norway

Abstract

Component composition can lead to multiple instances of the same component. Some components
can have only one instance loaded at a time, for example, when a unique external resource is used.
We give an abstract component language and a type system ensuring the safe instantiation of
components. Language features are instantiation, composition and a simple scope mechanism for
discharging instances.

Keywords: Type theory, component software, program correctness.

1 Introduction

Imagine a computer program composed from several components. These com-
ponents, possibly purchased from different vendors, may use other compo-
nents, which on their turn use other components, and so on. In order to
analyze this process, the phrase ‘to use a component’ is somewhat too loose
and we prefer to speak of ‘to create an instance of a component’, usually
denoted by the primitive new c , where c denotes the component in question.
The semantics of new c is, roughly, the allocation of the resources to run an
instance of c. This does not only mean allocating memory space for c’s data

1 This research is supported by the Research Council of Norway (NFR).
2 Email: bezem@ii.uib.no
3 Email: hoang@ii.uib.no

Electronic Notes in Theoretical Computer Science 97 (2004) 197–217

1571-0661 © 2004 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.04.037
Open access under CC BY-NC-ND license.

mailto:bezem@ii.uib.no
mailto:hoang@ii.uib.no
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

structures and the like, but this also means creating instances of the compo-
nents used by c. (The exact moment on which instances of subcomponents
are created depends on the binding regime, see [15].)

In the situation sketched above it can easily happen that, unforseen by
the composer, different instances of the same component are created. For
many components this is no problem at all. However, there exist components
which do not allow multiple instances running side-by-side [4,10], for example,
in case the component uses a unique external resource like a printer or serial
output device or in case the component is a centralized function such as issuing
serialized ID numbers [7]. In [10], Meijer points out that the only option for
all but the first request to multiple versions of a component that cannot exist
side-by-side, is to fail. The single instance property of component can be
controlled by the component implementation itself using the singleton pattern
[7]. However, in component software, the context in which a component will
be used should not be anticipated completely, therefore there are cases we
need to control the number of instances of a particular component on a higher
level[5]. The aim of this paper is to develop a type system which allows one to
detect statically, at development/composition time, whether or not multiple
instances of certain components are running side-by-side.

For this purpose we have designed a rudimentary component language
where we have abstracted away many aspects of components. The main fea-
tures we have retained are instantiation, (sequential) composition and scope.
On this abstraction level there is little difference between components and
classes on one hand, and instances and objects on the other. Please keep in
mind that we report on ongoing research here: more sophisticated language
features will be included in the near future.

The simple binding mechanism for components used here bears similarity
to let binding in functional languages such as ML [11], and hence to lambda
abstraction and application. However, the types used here are completely
different. To some extent it turned out to be possible to develop our type
theory along the lines of so-called Pure Type Systems (PTSs), see [3]. This
increased our confidence in the abstractions chosen and can be viewed as a
tribute to the generality of PTSs.

There are several works on type systems for components, see e.g. [14,16].
However, they do not address the issue of single instantiation of components.

The intuition behind our types bears some similarity to so-called linear
types [2,6]. Linear types usually express that a value will be used exactly

once within its scope, as opposed to at most once in our case. This difference
is reflected in our Weakening and Start rules (see below). Nevertheless, the
possible connection with linear types must still be explored.

M. Bezem, H. Truong / Electronic Notes in Theoretical Computer Science 97 (2004) 197–217198

This paper is organized as follows. In the next section we develop the
component language with its terms and operational semantics. We define
types and typing relation in Section 3. Then we prove some properties of
the type system in Section 4. We outline a polynomial time type inference
algorithm in Section 5 before ending with some conclusions and indications of
future research. Technical proofs are delegated to the appendix.

2 A component language

2.1 Terms

Since we are mainly interested in instantiation, composition and scope, we
have abstracted in our component language from all other aspects of com-
ponents. At this level of abstraction we do not detail how components are
connected as in many architecture description languages like Wright [1], Dar-
win [9], SADL [12], and ACME [8].

A component may or may not allow multiple instances running side-by-
side. We distinguish between these two kinds of components by using two
disjoint sets S and E for such ‘side-by-side’ and ‘exclusive’ components, re-
spectively. So, a component in S can have arbitrarily many instances, while
a component in E can have at most one instance at a time.

We use extended Backus-Naur Form with the following meta-symbols: ε
for the empty expression, infix | for choice, postfix ∗ for Kleene closure (zero
or more iterations) and round brackets for grouping. The curly brackets { and
} are part of the component language and are used as scope-delimiters.

Definition 2.1 [Component programs] The component programs are given
by the following abstract syntax, with x ranging over S ∪E.

Prog ::= Decl; Exp

Decl ::= (x−≺Exp)∗

Exp ::= ε | newxExp | {Exp}Exp

The above grammar for expressions Exp generates the same expressions
as Exp ::= ε | newx | Exp Exp | {Exp} but has the technical advantage of
non-ambiguity.

Thus a program consists of a list of so-called component declarations fol-
lowed by an expression Exp which sparks off the execution. For a precise
definition of the operational semantics the reader is referred to the next sec-
tion. In particular the example there will help to elucidate the typing rules

M. Bezem, H. Truong / Electronic Notes in Theoretical Computer Science 97 (2004) 197–217 199

that are to follow.

A component declaration x−≺Exp states that the component x is composed
from the component expression Exp. In particular, x−≺ ε states that x is a
primitive component. A list of declarations with distinct variables is called a
basis, as in PTSs [3]. We use Γ, ∆,. . . to range over bases.

According to the above syntax, component expressions can have several
forms. The simplest, the empty expression ε is used for declaring primitive
components. Otherwise, expressions can be a sequence of newx ’s with or
without matching, possibly nested, scope-delimiters. The purpose of putting
components in a scope is that, during their lifetime, these components need
to collaborate with each other and can be deallocated afterwards. We use
A, . . . , E, Exp to range over expressions.

A program is deterministic if there is at most one declaration of every
component. In this paper we only work with deterministic programs.

As an example, let S = {c, d} and E = {a, b}. A well-formed program
Prog in our syntax could be as follows:

d−≺ε

a−≺new d

b−≺new a

c−≺new d {new b new d }new a ;

new c

We will return to this example in the following sections.

2.2 Operational semantics

In this section we give the operational semantics for our language. We use
so-called post-expressions, which are obtained by deleting zero or more con-
secutive opening {’s in the prefix of an expression.

Definition 2.2 [Post-expressions] The post-expressions are given by the ab-
stract syntax P ::= (Exp})∗Exp, with Exp as in Definition 2.1:

We also give a formal definition of concatenation of two expressions.

Definition 2.3 [Expression concatenation] The concatenated expression of

M. Bezem, H. Truong / Electronic Notes in Theoretical Computer Science 97 (2004) 197–217200

two expressions A and B, written A@B, is defined recursively as follows:

ε@B = B

(newxA1)@B = newx (A1@B)

({A1}A2)@B = {A1}(A2@B)

Concatenation of an expression with a post-expression is defined in the
same way as concatenation of two expressions, and results in again a post-
expression.

The operational semantics is modelled as a transition system where a state
is a stack S of multisets followed by a post-expression P . Stacks and post-
expressions are separated by ’ ∝ ’. Elements of the stack are separated by ‘:’.
Stacks are pushed and popped at the right end. The empty stack is denoted
by ∅. When the depth of stack is at least one, we use the multiset M to denote
the top of the stack and S to denote the rest of the stack. When the depth of
a stack is one, we write just the multiset M , as in the second transition rule
below. Multisets are denoted by [. . .], where sets are denoted, as usual, by
{. . .}. M(x) is the multiplicity of element x in multiset M . The operation �
is additive union of multisets.

Definition 2.4 [Transition rules] The transition rules are given as follows:

∅ ∝ P terminate→ failure

M ∝ ε terminate→ success

S : M : M ′ ∝ ε terminate→ failure

S : M ∝ newxP x−≺E ∈Prg→ S : (M � [x]) ∝ E@P

S : M ∝ {P push→ S : M : [] ∝ P

S : M ∝ }P pop→ S ∝ P

The transition rules can be explained as follows. When the stack is empty
the transition process terminates to failure. When the input is ε, the transition
process also terminates. In this case, if the depth of the stack is one, the
program succeeds, else it fails. When the input is newx , x is added to the
multiset at the top of the stack and new x is replaced by the declaration of x.
The last two rules are for scope. When entering a new scope, that is, when
the first element of the input is ‘{’, we push a new empty multiset [] to the
stack. When leaving a scope, that is, when the first element of the input is ‘}’,

M. Bezem, H. Truong / Electronic Notes in Theoretical Computer Science 97 (2004) 197–217 201

the multiset at the top of the stack is popped. This means that all instances
created in this scope have been discarded.

The example in Section 2.1 is again used to illustrate our operational se-
mantics. The transition steps are showed as follows:

[] ∝ new c c−≺new d {new b new d }new a→

[c] ∝ new d {new b new d }new a d−≺ε→

[c, d] ∝ {new b new d }new a push→

[c, d] : [] ∝ new b new d }new a b−≺new a→

[c, d] : [b] ∝ new a new d }new a a−≺new d→

[c, d] : [a, b] ∝ new d new d }new a d−≺ε→

[c, d] : [a, b, d] ∝ new d }new a d−≺ε→

[c, d] : [a, b, d, d] ∝ }new a pop→

[c, d] ∝ new a a−≺new d→

[a, c, d] ∝ new d d−≺ε→

[a, c, d, d] ∝ ε terminate→ success

In this example, exclusive component a is instantiated two times. However,
for reason of scope, there is at most one instance of a at each moment.

If d had been exclusive, the execution of program would fail at [c, d] :
[a, b], new d new d }new a . Continuing loading would duplicate exclusive com-
ponent d.

3 Type system

3.1 Types

A component expression E may use several components. Among the latter
there are instances that exist for the whole lifetime of E, whereas other in-
stances live only for a while and are then discharged. Therefore we use two
sets to represent the type of a component expression. The first set X i col-
lects all components instantiated during the lifetime of the expression and the
second set Xo consists of those components that have instances surviving the
execution of the expression.

Definition 3.1 [Types] The set of types for component expressions consists

M. Bezem, H. Truong / Electronic Notes in Theoretical Computer Science 97 (2004) 197–217202

of pairs of sets
X i|Xo

where Xo, X i ⊆ S∪E. Types are denoted by super- and subscripted capitals
U, . . . , Z.

3.2 Typing relation

Before defining the typing relation we give a formal definition of domain, the
set of variables in a basis.

Definition 3.2 [Basis variables] The set of declared variables in basis Γ, writ-
ten Dom(Γ), is defined inductively as follows:

Dom() = ∅

Dom(x−≺A, Γ) = {x} ∪ Dom(Γ)

For example suppose

Γ = d−≺ε, a−≺new d , b−≺new a , c−≺new d {new b new d }new a

then we have
Dom(Γ) = {a, b, c, d}

A typing triple Γ � A : X i|Xo, also called typing for short, expresses
that, given basis Γ, the component expression A has type X i|Xo. The typing

relation is an inductively defined set of typing triples. It is defined in the usual
way by giving typing rules to construct derivation trees for valid typings.

Definition 3.3 [Typing rules]

Axiom
� ε : ∅|∅

Start
Γ � A : X i|Xo

Γ, x−≺A � newx : X i ∪ {x}|Xo ∪ {x}
x /∈ Dom(Γ)

Weakening
Γ � A : X i|Xo Γ � A1 : Y i|Y o

Γ, x−≺A1 � A : X i|Xo
x /∈ Dom(Γ)

Sequencing
Γ � new x : X i|Xo Γ � A : Y i|Y o

Γ � new xA : X i ∪ Y i|Xo ∪ Y o
Xo ∩E ∩ Y i = ∅, A �= ε

Scope
Γ � A1 : X i|Xo Γ � A2 : Y i|Y o

Γ � {A1}A2 : X i ∪ Y i|Y o

M. Bezem, H. Truong / Electronic Notes in Theoretical Computer Science 97 (2004) 197–217 203

Let us briefly explain the above five typing rules. Rule Axiom requires no
premise and is used to take-off. Rule Start allows us to type a new instance
of a component. The combination of Axiom and Start allows us to type in-
stances of primitive components x−≺ ε. Weakening is used to expand bases
so that we can combine typings in rule Sequencing and Scope, which allow us
to type component compositions with a prefix new x and a scoped expression,
respectively. The side condition x /∈ Dom(Γ) prevents ambiguity and circu-
larity. The side condition Xo ∩ E ∩ Y i = ∅ prevents exclusive components
from being instantiated more than once in the same scope.

Continuing the example in Section 2.1, we show the type derivation tree

for {new b new d }new a . First, a typing for new b can be derived as follows:
(The names of the typing rules are shortened to their first three letters.)

Sta

Sta

Sta

Axi
� ε : ∅|∅

d−≺ε � new d : {d}|{d}

d−≺ε, a−≺new d � new a : {a, d}|{a, d}

d−≺ε, a−≺new d , b−≺new a � new b : {a, b, d}|{a, b, d}

The typing for new d can be weakened as follows:

Wea

Sta

Axi
� ε : ∅|∅

d−≺ε � new d : {d}|{d}
Sta

Axi
� ε : ∅|∅

d−≺ε � new d : {d}|{d}

d−≺ε, a−≺new d � new d : {d}|{d}

Using this result we can derive yet another typing for new d by weakening:

Wea

...

d−≺ε, a−≺newd � newd : {d}|{d}

...

d−≺ε, a−≺newd � new a : {a, d}|{a, d}

d−≺ε, a−≺newd , b−≺newa � new d : {d}|{d}

Similarly, we can weaken the typing for new a :

d−≺ε, a−≺new d , b−≺new a � new a : {a, d}|{a, d}

Now, let Γ = d−≺ ε, a−≺ new d , b−≺ new a . Based on the previous typings we
can derive a type for {new b new d }new a as follows:

Sco

Seq

...

Γ � new b : {a, b, d}|{a, b, d}

...

Γ � new d : {d}|{d}

Γ � new b newd : {a, b, d}|{a, b, d}

...

Γ � new a : {a, d}|{a, d}

Γ � {new b newd }newa : {a, b, d}|{a, d}

Note that the side condition Xo ∩E∩ Y i of rule Sequencing is satisfied since
d /∈ E.

M. Bezem, H. Truong / Electronic Notes in Theoretical Computer Science 97 (2004) 197–217204

Having defined types, terms and typing rules, we can now define the notion
of a well-typed program.

Definition 3.4 [Well-typed program] A well-formed program P = Decl; Exp
is well-typed if Exp can be typed in a basis built from Decl. Here it is
understood that the declarations may have to be reordered to form a legal
basis.

4 Properties of the type system

In this section we will state some properties of our type system. The invariant
theorem and its correctness corollary at the end of the section relate the type
system to the operational semantics. In order to prove the invariant property
some definitions and lemmas are needed. Some technical proofs of lemmas are
delegated to Appendix A, to improve the readability of this section.

Definition 4.1 [Bases] Let Γ = x1−≺A1, . . . , xn−≺An be a basis and let A be
an expression.

• Γ is called legal if Γ � A : X i|Xo for some A, X i, and Xo.

• A declaration x−≺A is in Γ, notation x−≺A ∈ Γ, if x ≡ xi and A ≡ Ai for
some i.

• ∆ is part of Γ, notation ∆ ⊆ Γ, if ∆ = xi1−≺ Ai1 , . . . , xik−≺ Aik with
1 ≤ i1 < . . . < ik ≤ n. Note that the order is preserved.

• ∆ is an initial segment of Γ, notation ∆ � Γ, if ∆ = x1−≺A1, . . . , xj−≺Aj

for some 1 ≤ j ≤ n.

Definition 4.2 [Expression variables] The set of variables occurring in an
expression A, written V ar(A), is defined inductively as follows:

V ar(ε) = ∅

V ar(newxA) = {x} ∪ V ar(A)

V ar({A1}A2) = V ar(A1) ∪ V ar(A2)

For example, the set of expression variables of new d {new b new d }new a is:

V ar(new d {new b new d }new a) = {a, b, d}

For convenience we shall abbreviate from now on X ∪ {x} by X+x and
X \ {x} by X−x. The latter abbreviation will only be used in cases where
actually x ∈ X.

M. Bezem, H. Truong / Electronic Notes in Theoretical Computer Science 97 (2004) 197–217 205

The following lemma collects a number of easy properties of a typing.
These will be frequently be used in the sequel. It states that if an expression
A has type X i|Xo in a basis Γ then the set of the variables of expression A is
subset of the domain of Γ. Moreover, any legal basis always has its declarations
distinct.

Lemma 4.3 (Legal basis properties) If Γ � A : X i|Xo, then V ar(A) ∪
Xo ⊆ X i ⊆ Dom(Γ), Γ � ε : ∅|∅, and every variable in Dom(Γ) is declared

only once in Γ.

Proof (Sketch) By induction on derivation (full proof in Appendix A). �

The next lemma allows us to find the last typing rule applied to derive
the type of an expression and hence it allows us to recursively calculate the
types of well-typed expressions. We will return to this issue in Section 5, Type
Inference. This lemma is sometimes called the inversion lemma of the typing

relation [13].

Lemma 4.4 (Generation)

(i) If Γ � newx : X i|Xo, then x ∈ Xo and there exists ∆, ∆′, A such that

Γ = ∆, x−≺A, ∆′, and ∆ � A : X i−x|Xo−x.

(ii) If Γ � newxA : Z i|Zo with A �= ε, then there exists X i, Xo, Y i, Y o such

that Γ � new x : X i|Xo, Γ � A : Y i|Y o, Z i = X i ∪ Y i, Zo = Xo ∪ Y o,

and Xo ∩ E ∩ Y i = ∅.

(iii) If Γ � {B}C : Zi|Zo, then there exists X i, Xo, Y i, Y o such that Γ � B :
X i|Xo, Γ � C : Y i|Y o, Z i = X i ∪ Y i, Zo = Y o.

Proof (Sketch) All three items are proved by induction on derivation (full
proof in Appendix A). �

In our type system the order of declarations in a legal basis is significant.
The initial segment ∆ of a legal basis Γ is a legal basis for the expression of
the consecutive declaration after ∆. Besides, because of the weakening rule,
there can be many legal bases under which a well-typed expression can be
derived. These properties are stated in the following lemma.

Lemma 4.5 (Legal monotonicity)

(i) If Γ = ∆, x−≺A, ∆′ is legal, then ∆ � A : X i|Xo for some X i and Xo.

(ii) If Γ � A : X i|Xo, Γ ⊆ Γ′ and Γ′ is legal, then Γ′ � A : X i|Xo.

Proof (Sketch)

(i) The only way to extend ∆ to ∆, x−≺ A in a derivation is by applying
the rule Start or Weakening. Each of the rules has ∆ � A : X i|Xo as a

M. Bezem, H. Truong / Electronic Notes in Theoretical Computer Science 97 (2004) 197–217206

premise.

(ii) By induction on the derivation of Γ � A : X i|Xo (see Appendix A).

�

The following lemma can be viewed as the inverse of the previous legal
monotonicity lemma. Under certain conditions we can contract the legal basis
so that the expression is still well-typed in the new basis.

Lemma 4.6 (Strengthening) If Γ, x−≺ A � B : Y i|Y o and x /∈ V ar(B),
then Γ � B : Y i|Y o and x /∈ Y i.

Proof (Sketch) By induction on derivation (full proof in Appendix A). �

In our simple type system, every term has a unique type if it has a type
at all. This property is stated and proved in the following proposition.

Proposition 4.7 (Uniqueness of types) If Γ � A : X i|Xo and Γ � A :
Y i|Y o, then X i = Y i and Xo = Y o.

Proof. By induction on the derivation of Γ � A : X i|Xo.

Base step: In the case of Axiom we have A = ε and Γ is empty, so that
only Axiom is applicable. Hence, X i = Y i = ∅ and Xo = Y o = ∅.

Induction step:

• Case Start: Let Γ = Γ′, x−≺B such that:

Start
Γ′ � B : X i−x|Xo−x

Γ′, x−≺B � new x : X i|Xo
x /∈ Dom(Γ′)

with x ∈ X i and x ∈ Xo. Assume Proposition 4.7 holds for the premise
and let Γ � new x : Y i|Y o. By Generation Lemma we have x ∈ Y o and
Γ = ∆1, x−≺C, ∆2 and ∆1 � C : Y i−x|Y o−x for some ∆1, ∆2, C.

By Lemma 4.3, there is only one declaration of x in Γ. This means
∆1 = Γ′, C = B and ∆2 is empty, so Γ′ � B : Y i−x|Y o−x. By IH we have
X i−x = Y i−x, Xo−x = Y o−x. So X i = Y i, Xo = Y o as by Lemma 4.3
also x ∈ Y o.

• Case Weakening: Let Γ = Γ′, x−≺B such that:

Weakening
Γ′ � A : X i|Xo Γ′ � B : Z i|Zo

Γ′, x−≺B � A : X i|Xo
x /∈ Dom(Γ′), B �= ε

Assume Proposition 4.7 holds for the two premises and let Γ = Γ′, x−≺B �
A : Y i|Y o. Since Γ′ � A : X i|Xo we have x /∈ V ar(A). By Lemma 4.6
applied to Γ′, x−≺B � A : Y i|Y o we get Γ′ � A : Y i|Y o. By IH we have the
conclusion X i = Y i and Xo = Y o.

M. Bezem, H. Truong / Electronic Notes in Theoretical Computer Science 97 (2004) 197–217 207

• Case Sequencing: Let Γ � new xB : X i|Xo with B �= ε be inferred by:

Sequencing
Γ � new x : V i|V o Γ � B : W i|W o

Γ � new xB : V i ∪ W i|V o ∪ W o
V o ∩E ∩ W i = ∅, B �= ε

By Generation Lemma 4.4 applied to Γ � newxB : Y i|Y o we have Γ �
new x : V i

1
|V o

1
, Γ � B : W i

1
|W o

1
, Y i = V i

1
∪ W i

1
, and Y o = V o

1
∪ W o

1
for some

V i
1
, V o

1
, W i

1
, W o

1
. By the IH, we have V i = V i

1
, V o = V o

1
, W i = W i

1
, and

W o = W o
1
. Hence, X i = Y i = V i ∪ W i and Xo = Y o = V o ∪ W o follow.

• Case Scope: analogous to case Sequencing.

�

The following lemma plays a role in the invariant of the operational se-
mantics. If we replace a component new x in a well-typed expression by the
declaration of x in the typing basis, then the new expression is again well-typed
in the same basis.

Lemma 4.8 (Substitution) Suppose Γ � new xB : Z i|Zo, then

(i) x−≺A ∈ Γ and Γ � A : X i|Xo for some A, X i, and Xo.

(ii) Γ � B : Y i|Y o for some Y i and Y o.

(iii) Γ � A@B : X i ∪ Y i|Xo ∪ Y o.

Proof. In Appendix A. �

Now, we give some definitions before stating the invariant theorem and
correctness corollary for our type system. In the rest of this section, we assume
that we are working with some well-typed program Prog and two disjoint sets
S and E of side-by-side and exclusive components, respectively.

Definition 4.9 [Single multiset, projection]

• A multiset M is single if the multiplicity of every element of M is 1. Thus,
a single multiset is a set and set operations apply.

• The projection of a multiset M by a set E, notation M |E, is the multiset
obtained by removing from M all elements that are not in E:

(M |E)(x) =

M(x) if x ∈ E

0 otherwise

Definition 4.10 [Stack union projection] Suppose we have a stack of multi-
sets S = S1 : . . . : Sn. The multiset of exclusive elements in stack S, written

M. Bezem, H. Truong / Electronic Notes in Theoretical Computer Science 97 (2004) 197–217208

S|E, is defined as follows:

S|E = (S1 � · · · � Sn)|E

Theorem 4.11 (Invariant) Let Γ be a basis. Assume stack S = S1 : . . . : Sn

with S|E single, and expressions Aj with Γ � Aj : X i
j|X

o
j for all 1 ≤ j ≤ n,

such that

(S1 : .. : Sk)|E ∩ X i
k = ∅ for all 1 ≤ k ≤ n (1)

Then, either we have termination or there exists a unique stack S
′ = S ′

1
: . . . :

S ′
m with S

′|E single, and unique expressions Bj with Γ � Bj : Y i
j |Y

o
j for all

1 ≤ j ≤ m , such that

S ∝ An}An−1 . . .}A1 → S
′ ∝ Bm}Bm−1 . . .}B1

and

(S ′
1

: . . . : S ′
k)|E ∩ Y i

k = ∅ for all 1 ≤ k ≤ m (2)

Proof. By examining all possible transitions.

• If An = ε and n = 1, then the transition terminates.

• If An = ε and n > 1, then the transition step is:

S1 : . . . : Sn ∝ }An−1 . . .}A1
pop→ S1 : . . . : Sn−1 ∝ An−1} . . .}A1

All the conclusions follow immediately since m = n − 1.

• If An = newx , by Generation Lemma, we have x−≺ A′ ∈ Γ. Then, the
transition step is:

S1 : . . . : Sn ∝ new x }An−1 . . .}A1
x−≺A′∈Γ→

S1 : . . . : (Sn � [x]) ∝ A′}An−1 . . .}A1

We have m = n, Bm = A′, and Bj = Aj for 1 ≤ j ≤ n − 1. Thus,
Γ � Bj : X i

j|X
o
j follows immediately for 1 ≤ j ≤ m − 1. Γ � Bm : Y i

m|Y
o
m

also follows from Lemma 4.4 applied to Γ � new x : X i
m|X

o
m by taking

Y i
m = X i

m−x and Y o
m = Xo

m−x.
Equation (2) holds for k ≤ m−1 by assumption and we only have to prove

Equation (2) for k = m. If x /∈ E, the proof is trivial since (S ′
1

: . . . : S ′
n)|E =

(S ′
1

: . . . : S ′
m)|E and Y i

m ⊆ X i
m. Otherwise, since Y i

m = X i
m−x, so x /∈ Y i

m.
By Equation (1) with k = n and x ∈ X i

n we have x /∈ (S1 : . . . : Sn). Hence,
(S ′

1
: . . . : S ′

m)|E∩Y i
m = ∅ holds as the new exclusive variable x only occurs in

the left of intersection operation. The conclusion S
′|E single also follows as

there is only one new x ∈ S ′
m and x /∈ (S1 : .. : Sn−1)|E = (S ′

1
: .. : S ′

m−1
)|E.

M. Bezem, H. Truong / Electronic Notes in Theoretical Computer Science 97 (2004) 197–217 209

• If An = newxC with C �= ε, then the transition step is:

S1 : . . . : Sn ∝ newxC}An−1 . . .}A1
x−≺A′∈Γ→

S1 : . . . : (Sn � [x]) ∝ A′@C}An−1 . . .}A1

We have m = n, Bn = A′@C, and Bj = Aj for 1 ≤ j ≤ n − 1. Thus, Γ �
Bj : Y i

j |Y
o
j follows immediately for 1 ≤ j ≤ n − 1. Γ � A′@C : Y i

n|Y
o
n also

follows from Lemma 4.8 applied to Γ � newxC : X i
m|X

o
m. The remaining

proof is analogous to the previous case.

• If An = {C}D, then the transition step is:

S1 : . . . : Sn ∝ {C}D}An−1 . . .}A1
push→

S1 : . . . : Sn : [] ∝ C}D}An−1} . . .}A1

We have m = n + 1, Bm = C, Bn = D and Bj = Aj with 1 ≤ j ≤
n − 1. Thus, Γ � Bj : Y i

j |Y
o
j follows immediately for 1 ≤ j ≤ n − 1.

Γ � Bm : Y i
m|Y

o
m and Γ � Bn : Y i

n|Y
o
n also follow from Lemma 4.4 applied to

Γ � {C}D : X i
m|X

o
m. The remaining conclusions follow trivially.

�

Corollary 4.12 (Correctness) Starting with the stack [], containing only

the empty multiset, and a well-typed expression, S|E is single in every consec-

utive state, that is, of every exclusive component there is at most one instance

at a time.

Proof. Follows from iterating the previous theorem starting with n = 1. �

5 Type inference

In this section we sketch a polynomial time type inference algorithm. The
type inference problem, or more precisely, an instance of this problem, is
to determine, given basis Γ and expression A, a type X i|Xo such that Γ �
A : X i|Xo. By Proposition 4.7 we know that such a type is unique if it
exists. Inferring such types automatically relieves the programmer from the
task to give the types explicitly and have them checked. The types inferred
can be expected to guide the design of the component program. Moreover,
by the correctness result Corollary 4.12, a well-typed expression can be safely
executed. The latter could also be tested by running the operational semantics
according to the rules in Definition 2.4. However, running these rules could
be exponential (by iterated duplication, for example), so that a polynomial
time type inference algorithm is to be preferred.

M. Bezem, H. Truong / Electronic Notes in Theoretical Computer Science 97 (2004) 197–217210

Let Prog be a component program. A necessary (but not sufficient) con-
dition for type inference is that the declarations in Prog can be reordered into
a basis Γ such that, for any declaration x−≺A in Γ, the variables occurring in
A are already declared previously in Γ. In other words:

if Γ = ∆, x−≺A, ∆′ then V ar(A) ⊆ Dom(∆) (3)

The existence of such a reordering can be detected in polynomial time by
an analysis of the dependency graph associated with the declarations in Prog.
From now on we assume that Γ is a basis consisting of all declarations in
Prog and satisfying (3). The considerations below are independent of which
particular ordering is used as long as it satisfies (3).

The basic idea behind the type inference algorithm is to exploit the fact
that the typing rules are syntax-directed, or, in other words, to use the Gen-
eration Lemma 4.4 reversely. By applying clause 2 and 3 of this lemma to
expression of the forms new xA with A �= ε and {B}C, respectively, we can
break down any instance of the type inference problem to instances where the
expression is simply of the form newx . We can then look up the declaration
of x in the basis Γ. If no declaration of x can be found then no type can
be inferred. Otherwise Γ = ∆, x−≺ A, ∆′ for some ∆, ∆′ and A and clause
1 of the Generation Lemma allows us to reduce the problem to inferring the
type of A in ∆, together with the additional task of checking if ∆′ legally ex-
tends ∆, x−≺A. Here some care has to be taken in order to stay polynomial. A
naive recursive algorithm could behave exponentially by generating recursively
duplicate instances of the same type inference problem. Duplication can, how-
ever, be avoided by storing solved instances. Observe that all instances are of
the form: infer the type of A in ∆, where ∆ is an initial segment of the basis
of the original type inference problem and A is a sub-expression of one of its
constituents. There are polynomially many of such instances and hence type
inference can be done in polynomial time. This finishes the sketch. We hope
finally to be able to infer types in cubic or even quadratic time.

6 Conclusions and future research

We have designed a component language and a type system which allows one
to detect statically whether or not multiple instances of certain components
are running side-by-side. The language features instantiation, (sequential)
composition and scope. For the future we plan to include more sophisticated
language features such as explicit dispose operators, connectivity, concurrency
features and versioning.

M. Bezem, H. Truong / Electronic Notes in Theoretical Computer Science 97 (2004) 197–217 211

References

[1] R. Allen and G. Garlan. Formalizing Architectural Connection. In Proceedings of the Sixteenth
International Conference on Software Engineering, Sorrento, Italy, May 1994.

[2] H. Baker. ’Use-Once’ Variables and Linear Objects – Storage Management, Reflection and
Multi-Threading. ACM SIGPLAN Notices 30, January 1995.

[3] H. Barendregt. Lambda Calculi with Types. In: Abramsky, Gabbay, Maibaum (Eds.), Handbook
of Logic in Computer Science, Vol. II. Oxford University Press. 1992.

[4] D. Box and C. Sells. Essential .NET, Volume I: The Common Language Runtime, Addison-
Wesley, ISBN 0201734117, November 2002.

[5] J. Cheesman and J. Daniels, UML Components: A Simple Process for Specifying Component-
Based Software, Addison-Wesley, ISBN 0201708515, 2000.

[6] M. Fähndrich and R. DeLine. Adoption and Focus: Practical Linear Types for Imperative
Programming, Proceedings of the SIGPLAN’02 Conference on Programming Language Design
and Implementation, Jun 2002.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns - Elements of Reusable
ObjectOriented Software, Addison-Wesley, Reading, Mass., ISBN 0201633612, 1994.

[8] D. Garlan, R. Monroe, and D. Wile. ACME: An Architecture Description Interchange
Language. In Proceedings of CASCON’97, November 1997.

[9] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying Distributed Software
Architectures. In Proceedings of the Fifth European Software Engineering Conference
(ESEC95), Barcelona, September 1995.

[10] E. Meijer and C. Szyperski. Overcoming Independent Extensibility Challenges,
Communications of the ACM, Vol. 45, No. 10, pp. 41–44, October 2002.

[11] R. Milner et alii. The Definition of Standard ML (Revised), MIT Press, ISBN 0262631814,
1997.

[12] M. Moriconi, X. Qian, and R. A. Riemenschneider. Correct Architecture Refinement. IEEE
Transactions on Software Engineering, April 1995.

[13] B. Pierce. Types and Programming Languages. MIT Press, ISBN 0262162091, February 2002.

[14] J. C. Seco and L. Caires, A Basic Model of Typed Components, Lecture Notes in Computer
Science, Vol. 1850, 2000.

[15] C. Szyperski. Component Software: Beyond Object-Oriented Programming, 2nd edition,
Addison-Wesley, ISBN 0201745720, 2002.

[16] M. Zenger, Type-Safe Prototype-Based Component Evolution, Proceedings of the European
Conference on Object-Oriented Programming, Malaga, Spain, June 2002.

A Appendix

Lemma 4.3 (Legal basis properties)

If Γ � A : X i|Xo, then V ar(A) ∪ Xo ⊆ X i ⊆ Dom(Γ), Γ � ε : ∅|∅, and every
variable in Dom(Γ) is declared only once in Γ.

Proof. By induction on derivation.

Base case Axiom: � ε : ∅|∅ is trivial as V ar(ε) = Xo = X i = Dom() = ∅.

Induction step: We have to consider four cases corresponding to the four
typing rules.

M. Bezem, H. Truong / Electronic Notes in Theoretical Computer Science 97 (2004) 197–217212

• Case Start:

Start
Γ � A : X i|Xo

Γ, x−≺A � newx : X i+x|Xo+x
x /∈ Dom(Γ)

Assume the lemma is correct for the premise of this rule, so V ar(A)∪Xo ⊆
X i ⊆ Dom(Γ), Γ � ε : ∅|∅ and every variable is declared at most once in Γ.
Then, V ar(new x) = {x} ⊆ Xo+x ⊆ X i+x ⊆ Dom(Γ)+x = Dom(Γ, x−≺
A). Moreover, Γ, x−≺A � ε : ∅|∅ follows by applying Weakening:

Weakening
Γ � ε : ∅|∅ Γ � A : X i|Xo

Γ, x−≺A � ε : ∅|∅
x /∈ Dom(Γ)

The last conclusion: every variable in Γ, x−≺ A is declared at most once,
follows by the side condition x /∈ Dom(Γ).

• Case Weakening:

Weakening
Γ � A : X i|Xo Γ � B : Y i|Y o

Γ, x−≺B � A : X i|Xo
x /∈ Dom(Γ)

Assume the lemma is correct for the two premises of this rule, so V ar(A)∪
Xo ⊆ X i ⊆ Dom(Γ), V ar(B) ∪ Y o ⊆ Y i ⊆ Dom(Γ), Γ � ε : ∅|∅ and every
variable is declared at most once in Γ. We have V ar(A) ∪ Xo ⊆ X i ⊆
Dom(Γ) ⊆ Dom(Γ, x−≺ B). The last two conclusions are proved in the
same way as in the case Start.

• Case Sequencing:

Sequencing
Γ � new x : X i|Xo Γ � A : Y i|Y o

Γ � newxA : X i ∪ Y i|Xo ∪ Y o
Xo ∩ E ∩ Y i = ∅, A �= ε

Assume the lemma holds for the two premises of this rule, so V ar(newx)∪
Xo ⊆ X i ⊆ Dom(Γ), V ar(A) ∪ Y o ⊆ Y i ⊆ Dom(Γ), Γ � ε : ∅|∅ and
every variable is declared at most once in Γ. Note that V ar(newxA) =
{x}∪V ar(A). We have V ar(new xA)∪Xo∪Y o ⊆ X i∪Y i ⊆ Dom(Γ). The
remaining conclusions are the IHs themselves.

• Case Scope:

Scope
Γ � A1 : X i|Xo Γ � A2 : Y i|Y o

Γ � {A1}A2 : X i ∪ Y i|Y o

Assume the lemma holds for the two premises of this rule, so V ar(A1) ∪
Xo ⊆ X i ⊆ Dom(Γ), V ar(A2) ∪ Y o ⊆ Y i ⊆ Dom(Γ), Γ � ε : ∅|∅ and
every variable is declared at most once in Γ. Note that V ar({A1}A2) =

M. Bezem, H. Truong / Electronic Notes in Theoretical Computer Science 97 (2004) 197–217 213

V ar(A1) ∪ V ar(A2). We have V ar({A1}A2) ∪ Y o ⊆ X i ∪ Y i ⊆ Dom(Γ).
The remaining conclusions are the IHs themselves.

�

Lemma 4.4 (Generation)

(i) If Γ � newx : X i|Xo, then x ∈ Xo and there exists ∆, ∆′, A such that
Γ = ∆, x−≺A, ∆′, and ∆ � A : X i−x|Xo−x.

(ii) If Γ � newxA : Z i|Zo with A �= ε, then there exists X i, Xo, Y i, Y o such
that Γ � new x : X i|Xo, Γ � A : Y i|Y o, Z i = X i ∪ Y i, Zo = Xo ∪ Y o,
and Xo ∩ E ∩ Y i = ∅.

(iii) If Γ � {B}C : Zi|Zo, then there exists X i, Xo, Y i, Y o such that Γ � B :
X i|Xo, Γ � C : Y i|Y o, Z i = X i ∪ Y i, Zo = Y o.

Proof. All three items are proved by induction on derivation.

(i) Γ � newx : X i|Xo can only be derived by rule Start or rule Weakening.
If it is derived by rule Start, then there is only one possibility:

Start
∆ � A : X i−x|Xo−x

Γ � newx : X i|Xo
x /∈ Dom(∆)

with x ∈ Xo and Γ = ∆, x−≺A, so that ∆′ is empty.
If Γ � newx : X i|Xo is derived by rule Weakening:

Weakening
Γ′ � newx : X i|Xo Γ′ � B : Y i|Y o

Γ′, y−≺B � new x : X i|Xo
y /∈ Dom(Γ′)

then Γ′ � new x : X i|Xo and by the IH applied to Γ′ � newx : X i|Xo

we have x ∈ Xo, Γ′ = ∆1, x−≺A′, ∆2 and ∆1 � new x : X i−x|Xo−x for
some ∆1, ∆2, and A′. Now take ∆ = ∆1, ∆′ = ∆2, y−≺B, A = A′ and
we have all the conclusions.

(ii) Similarly, Γ � newxA : Z i|Zo with A �= ε can only be derived by rule Se-
quencing or rule Weakening. The proof for case Sequencing is immediate.
If Γ � new xA : Z i|Zo is derived by rule Weakening:

Weakening
Γ′ � newxA : Z i|Zo Γ′ � B : V i|V o

Γ′, y−≺B � newxA : Z i|Zo
y /∈ Dom(Γ′)

then Γ = Γ′, y−≺B and by the IH applied to Γ′ � new xA : Z i|Zo we have
Γ′ � new x : X i|Xo, Γ′ � A : Y i|Y o, Z i = X i ∪ Y i, Zo = Xo ∪ Y o, and
Xo ∩E ∩ Y i = ∅. Now weakening Γ′ � new x : X i|Xo and Γ′ � A : Y i|Y o

to Γ = Γ′, y−≺B we have all the conclusions.

M. Bezem, H. Truong / Electronic Notes in Theoretical Computer Science 97 (2004) 197–217214

(iii) Similarly, Γ � {B}C : Z i|Zo can only be derived by rule Scope or rule
Weakening. The proof is analogous to that of the previous case.

�

Lemma 4.5 (Legal monotonicity)

(i) If Γ = ∆, x−≺A, ∆′ is legal, then ∆ � A : X i|Xo for some X i and Xo.

(ii) If Γ � A : X i|Xo, Γ ⊆ Γ′ and Γ′ is legal, then Γ′ � A : X i|Xo.

Proof.

(i) The only way to extend ∆ to ∆, x−≺A in a derivation is by applying the
rule Start or Weakening.

Weakening
∆ � ε : ∅|∅ ∆ � A : X i|Xo

∆, x−≺A � ε : ∅|∅
x /∈ Dom(∆)

Start
∆ � A : X i|Xo

∆, x−≺A � new x : X i+x|Xo+x
x /∈ Dom(∆)

Each of the rules has ∆ � A : X i|Xo as a premise.

(ii) By induction on derivation of Γ � A : X i|Xo. We prove that for all Γ′

legal such that Γ ⊆ Γ′ we have Γ′ � A : X i|Xo.
Base case Axiom A = ε: then Γ′ � ε : ∅|∅ since Γ′ is legal.
Case Start A = new x :

Start
∆ � B : Y i|Y o

Γ = ∆, x−≺B � newx : Y i+x|Y o+x
x /∈ Dom(∆)

Let Γ ⊆ Γ′ with Γ′ legal. Then there exists ∆1, ∆2, ∆3 such that
∆1, ∆, ∆2, x−≺ B, ∆3 = Γ′, with all initial segments of Γ′ are legal.
By IH we have ∆1, ∆, ∆2 � B : Y i|Y o. As x occurs only once in
Γ′ we have x /∈ Dom(∆1, ∆, ∆2) and we can apply rule Start to get
∆1, ∆, ∆2, x−≺B � newx : Y i+x|Y o+x. Since Γ′ is legal we can iterate
weakening to get Γ′ � newx : Y i+x|Y o+x.

Case Weakening:

Weakening
∆ � A : X i|Xo ∆ � B : Y i|Y o

Γ = ∆, y−≺B � A : X i|Xo
x /∈ Dom(∆)

Let Γ ⊆ Γ′ with Γ′ legal, so also ∆ ⊆ Γ′. By IH we get immediately
Γ′ � A : X i|Xo.

Case Sequencing A = newxB with B �= ε: by Generation Lemma
we have Γ � new x : V i|V o and Γ � B : Y i|Y o with X i = V i ∪ Y i,

M. Bezem, H. Truong / Electronic Notes in Theoretical Computer Science 97 (2004) 197–217 215

Xo = V o ∪ Y o, and V o ∩E ∩ Y i = ∅. By IHs we have Γ′ � new x : V i|V o

and Γ′ � B : Y i|Y o. Apply rule Sequencing and we get the conclusion.
Case A = {A1}A2: analogous to the case Sequencing.

�

Lemma 4.6 (Strengthening)

If Γ, x−≺A � B : Y i|Y o and x /∈ V ar(B), then Γ � B : Y i|Y o and x /∈ Y i.

Proof. By induction on derivation.

• Case Axiom: does not apply since the basis is not empty.

• Case Start: does not apply since V ar(B) = V ar(newx) = {x}.

• Case Weakening:

Weakening
Γ � B : Y i|Y o Γ � A : X i|Xo

Γ, x−≺A � B : Y i|Y o
x /∈ Dom(Γ)

Then we get Γ � B : Y i|Y o in the premise. Moreover, x /∈ Y i since Y i ⊆
Dom(Γ) and x is declared only once in Γ, x−≺A, both by Lemma 4.3.

• Case Sequencing:

Sequencing
Γ, x−≺A � new y : V i|V o Γ, x−≺A � C : Zi|Zo

Γ, x−≺A � new y C : Y i|Y o
V o ∩E ∩ Zi = ∅, C �= ε

for V i, V o, Z i, Zo such that Y i = V i ∪ Zi and Y o = V o ∪ Zo. Since
x /∈ V ar(new y C) = {y} ∪ V ar(C) we have x �= y and x /∈ V ar(C). By IHs
we get Γ � new y : V i|V o and x /∈ V i, Γ � C : Z i|Zo and x /∈ Z i. So by
applying rule Sequencing we get the conclusion: Γ � new y C : Y i|Y o.

• Case A = {A1}A2: analogous to the case Sequencing.

�

Lemma 4.8 (Substitution)

Suppose Γ � new xB : Z i|Zo, then

(i) x−≺A ∈ Γ and Γ � A : X i|Xo for some A, X i, and Xo.

(ii) Γ � B : Y i|Y o for some Y i and Y o.

(iii) Γ � A@B : X i ∪ Y i|Xo ∪ Y o.

Proof. If B = ε then the lemma trivially holds. So we assume B �= ε.

(i) If Γ � new xB : Z i|Zo with B �= ε, then by Generation Lemma 4.4,
there exists V i, V o, Y i, Y o such that Γ � new x : V i|V o, Γ � B : Y i|Y o,

M. Bezem, H. Truong / Electronic Notes in Theoretical Computer Science 97 (2004) 197–217216

Z i = V i ∪ Y i, Zo = V o ∪ Y o, and V o ∩ E ∩ Y i = ∅. Apply the same
lemma to Γ � new x : V i|V o and we have x ∈ V o, Γ = ∆, x−≺A, ∆′ and
∆ � A : V i−x|V o−x. So x−≺A ∈ Γ is proved.

Applying Lemma 4.5 to ∆ ⊆ Γ and ∆ � A : V i−x|V o−x, we have
Γ � A : X i|Xo with X i = V i−x and Xo = V o−x.

(ii) Immediate from Generation Lemma.

(iii) By induction on structure of A.
• Base step: Case A = ε: Then X i = Xo = ∅ by rule Axiom � ε : ∅|∅,

Lemma 4.5, and Proposition 4.7.
• Case A = new y : Since new y @B = new y B, applying rule Sequencing

to Γ � new y : X i|Xo and Γ � B : Y i|Y o received in the proofs of the
previous clauses we have:

Sequencing
Γ � new y : Xi|Xo Γ � B : Y i|Y o

Γ � new y B : Xi ∪ Y i|Xo ∪ Y o
Xo ∩ E ∩ Y i = ∅, B �= ε

The side condition holds since Xo = V o−x and V o ∩ E ∩ Y i = ∅ also
in the proof of the first clause.

• Case A = new y C with C �= ε: By clause 1 we have Γ � new y C : X i|Xo.
By Generation Lemma, we have Γ � new y : X i

1
|Xo

1
, Γ � C : X i

2
|Xo

2

for some X i
1
, Xo

1
, X i

2
, Xo

2
such that X i = X i

1
∪ X i

2
, Xo = Xo

1
∪ Xo

2

and Xo
1
∩ E ∩ X i

2
= ∅. By IH for clause 3 we have Γ � C@B :

X i
2
∪ Y i|Xo

2
∪ Y o. By rule Sequencing we infer Γ � new y (C@B) :

X i
1
∪ X i

2
∪ Y i|Xo

1
∪ Xo

2
∪ Y o. The side condition for this rule Xo

1
∩

E ∩ (X i
2
∪ Y i) = ∅ holds since Xo

1
∩ E ∩ X i

2
= ∅ holds above and

Xo
1
∩ E ∩ Y i = ∅ holds from Xo ∩ E ∩ Y i = ∅ and Xo

1
⊆ X i. Finally,

observe that X i
1
∪ X i

2
∪ Y i = X i ∪ Y i, Xo

1
∪ Xo

2
∪ Y o = Xo ∪ Y o, and

A@B = new y (C@B).
• Case A = {C}D: By clause 1 we have Γ � {C}D : X i|Xo. By Gen-

eration Lemma, we have Γ � C : X i
1
|Xo

1
, Γ � D : X i

2
|Xo

2
for some

X i
1
, Xo

1
, X i

2
, Xo

2
such that X i = X i

1
∪ X i

2
and Xo = Xo

2
. By IH

for clause 3 we have Γ � D@B : X i
2
∪ Y i|Xo

2
∪ Y o. By rule Scope

we infer Γ � {C}(D@B) : X i
1
∪ X i

2
∪ Y i|Xo

2
∪ Y o. Finally, observe that

X i
1
∪X i

2
∪Y i = X i∪Y i, Xo

2
∪Y o = Xo∪Y o, and A@B = ({C}D)@B =

{C}(D@B).

�

M. Bezem, H. Truong / Electronic Notes in Theoretical Computer Science 97 (2004) 197–217 217

	Introduction
	A component language
	Terms
	Operational semantics

	Type system
	Types
	Typing relation

	Properties of the type system
	Type inference
	Conclusions and future research
	References
	Appendix

