
Investigating Streamless Sets
Erik Parmann

University of Bergen
Norway
Erik.Parmann@ii.uib.no

Abstract
In this paper we look at streamless sets, recently investigated by Coquand and Spiwack [4]. A
set is streamless if every stream over that set contain a duplicate. It is an open question in
constructive mathematics whether the Cartesian product of two streamless sets is streamless.

We look at some settings in which the Cartesian product of two streamless sets is indeed
streamless; in particular, we show that this holds in Martin-Löf intentional type theory when at
least one of the sets have decidable equality. We go on to show that the addition of functional
extensionality give streamless sets decidable equality, and then investigate these results in a few
other constructive systems.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Type theory, Constructive Logic, Finite Sets

Digital Object Identifier 10.4230/LIPIcs.TYPES.2014.187

1 Introduction

One of the interesting aspects of working in constructive mathematics is that notions often
become more nuanced than they do in classical mathematics. This holds for the notion of
finiteness, for instance; there are a multitude of possible definitions of a set being finite which
would be equivalent classically, but are different constructively.

In this paper, we will look at a particular definition of finite sets in a constructive context,
given in terms of streamless sets. This is essentially a constructive version of the classical
statement that a set is finite if there are no injections from N into it. It is formulated
positively: a set A is streamless when

∀f : N→ A,∃i, j : N, i < j ∧ f(i) = f(j).

It is not known who first looked at finiteness in a constructive setting, but it was recently
investigated by Coquand and Spiwack [4], who look at four different definitions of a set being
finite. These four are, in decreasing order of strength:

Enumerated: there is a list containing all the elements in the set;
Bounded: there is an n : N such that every list with more than n elements has duplicates;
Noetherian: no matter how one adds elements from the set to a list, one eventually gets
duplication in the list; and
Streamless: every stream over the set contains duplicates.

They show that these notions form a strict hierarchy, except in the streamless and noetherian
cases (where strictness is left open): they show that any noetherian set is streamless, and
conjecture that the converse does not hold.

It is relatively easy to see that not all bounded sets are enumerated: with enumerated sets
we actually have all of its elements, while with bounded sets we only know a bound on the
size of the set. In fact, emptiness is in general undecidable for bounded sets, but decidable

© Erik Parmann;
licensed under Creative Commons License CC-BY

20th International Conference on Types for Proofs and Programs (TYPES 2014).
Editors: Hugo Herbelin, Pierre Letouzey, and Matthieu Sozeau; pp. 187–201

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TYPES.2014.187
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

188 Investigating Streamless Sets

for enumerated sets. Coquand and Spiwack [4] cite an example offered by F. Richman of a
way to generate subsets of natural numbers with the property that one cannot a priori know
the size of the subset, but if one gets any element in the set then one knows the size of the
set. These sets are noetherian but not bounded.

Marc Bezem and other authors have a model of Martin-Löf Type Theory [6] in which
there is a streamless set which is not provably noetherian, thus showing that the noetherian
property is strictly stronger than streamlessness (personal communication, September 2014).
This model is rather complicated and has yet to be published. The authors construct a set
parameterized by a undecidable predicate on N. Equality on this set is decidable, which is
important for the proof that it is streamless. They assume Markov’s principle, and use that
as the “engine” which finds duplicates in the streams. They are also able to show that this
set cannot be noetherian. In this way they show – since Markov’s principle is consistent with
Type Theory – that it is not possible to prove that streamlessness implies noetheriannes.

In addition to giving the hierarchy, Coquand and Spiwack [4] also prove several closure
properties of the different notions of finiteness. They show that all four are closed under sum;
that is, for any of the notions of finiteness, the sum of two finite sets is itself finite by the
same notion. The situation is more complicated for Cartesian products. The two strongest
notions, enumerated and bounded, are shown to be closed under products, and noetherian
sets are closed under products, as long as one of the sets has decidable equality. The use of
decidable equality in one of the sets in the proof in [4] was first pointed out in [2]. Whether
streamless sets are closed under Cartesian products was left as an open problem.

Our main result will be the following: in Martin-Löf intentional type theory (ITT) [5]
streamlessness is closed under Cartesian products, granted that one of the sets has decidable
equality or is bounded.

An important feature of ITT is strong Σ-elimination. Consequently, from a proof of
∀x∃y.φ(x, y) we are able to get, for any x, an actual y which can be used in the construction
of new functions/streams. This plays an important role in the proof of our main result. In
other systems, like HA which we will look at in Section 6, we need to assert a axiom of choice
to get the same.

In Coq we have the choice of formalizing statements either in Set, which enjoy strong
Σ-elimination, or Prop which does not. The proof we provide here will, on the face of it, only
hold when streamlessness is formalized in Set; but we will see that, as long as both sets have
decidable equality, the two formalizations actually correspond.

Decidable equality plays an important role in our proof, and we conjecture that stream-
lessness is not closed under products when both sets have undecidable equality. We show
that, in ITT with functional extensionality, streamless sets have decidable equality, meaning
that a potential counter-model must reject functional extensionality.

The main motivation behind this work is curiosity as to the strength of streamless sets,
but there is also potential for practical applications. One such example is outlined in Coquand
and Spiwack [4], namely automaton reachability testing. They give the regular depth-first
graph algorithm for finding reachable states, and then proceed to show that if one assumes
that the set of states in the automaton is finite in the sense of streamless, then this algorithm
terminates. It is not uncommon to take the Cartesian product of two automata to create
one which has as its language the intersection of the two original languages. Given that
streamlessness is closed under product, one can show that the reachability algorithm also
terminates on this new automaton.

In Section 2, we introduce streamless sets and some machinery which lets us find any
number of duplicate elements. In Section 3, we prove the main theorem: that streamless sets

E. Parmann 189

with decidable equality are closed under Cartesian products in ITT. In Section 4, we see that
adding functional extensionality gives streamless sets decidable equality. Section 5 relates
our findings to Coq and its Set vs Prop distinction; it also briefly touches upon Homotopy
Type Theory with Univalence. In Section 6, we relate our finding to Heyting arithmetic
in the systems (E-) HAω. Section 7 provides a brief overview of related works; Section 8
highlights some remaining questions; and we conclude in Section 9.

1.1 Notation
We work in Martin-Löf intensional type theory (ITT) [5], where both propositions and sets
are modeled as types.

We assume a inductive type N for the natural numbers, and we have the usual type
constructors: If A is a type and B is a type family over A then both Πx:AB(x) and
Σx:AB(x) are types, the dependent function type and the dependent pair type with the usual
computation rules. We use π1 : (Σx:AB(x)) → A and π2 : Πp:Σx:AB(x)B(π1(p)) as the two
projections of dependent pairs. In the special cases where B(x) does not depend on x, we
abbreviate Πx:AB(x) as A → B and Σx:AB(x) as A × B, the latter being the Cartesian
product of A and B. If A and B are types, then A + B is their disjoint union with the
constructors inl : A→ A+B and inr : B → A+B.

We will use the notation Dec =A to stand for the type Πx:AΠy:A(IA(x, y) + ¬IA(x, y)),
where IA(x, y) is the inductive identity type. We will use =A as an infix version of IA, or
just = if the type A is clear from context. With A having decidable equality we mean that
we have an inhabitant of Dec =A.

A stream over a set A is any function of type N→ A. Given a stream g : N→ A we also
have “cut” streams g|n : N→ A for every n : N defined by

g|n(x) := g(x+ n).

When we say that we have duplicates in a stream g : N → A, we mean that we have two
indices i < j such that g(i) =A g(j).

Given a stream g over A×B, we can project out two streams g1 : N→ A and g2 : N→ B

being gi = πi ◦ g. As usual, two elements in A×B are equal if both their first and second
projection are equal. We also say that two elements in A×B are A-equal (resp. B-equal) if
their first (resp. second) projections are equal.

2 Introduction to streamless sets

A set A is streamless if all streams over it contains duplicates; that is, for all streams
g : N → A, we have indices i < j with g(i) =A g(j). Formally, it means that we have a
inhabitant of the type

Streamless(A) := Πf :N→AΣp:N×N(π1(p) < π2(p)× f(π1(p)) =A f(π2(p))).

In what follows we will mostly be interested in the pair p : N×N, and not the proof that
it has the desired features. To avoid having to project out the number and clutter up the
construction more than needed, we will assume that if we have a streamless set A, we have a
witness

MA : (N→ A)→ N× N,

which, given a stream g over A, gives out two indices i < j such that g(i) = g(j).

TYPES’14

190 Investigating Streamless Sets

. . .

. . .

〈1, 3〉 〈6, 7〉 . . .

Figure 1 g2, the stream of duplicates in g.

First, we show that if we have a stream over a streamless set B, we can find not only
duplicates, but for any n we can find elements occurring at least n times. This is clear
classically; we just have to look at the first |B| × n elements in the stream. Constructively it
is less clear, as we do not know the actual size of the set – only that it is streamless. As
seen in the introduction, one cannot, in general, deduce the size of a set from the fact that
it is streamless. The first part of this construction, for n = 2, is also used to prove that
streamless is closed under sum in [4].

Given a stream g over streamless B, we make a new stream g2 over B × N × N, such
that for every 〈b, i, j〉 we have i < j and g(i) = g(j) = b, and for all g2(n) = 〈b, i1, j1〉 and
g2(n+ 1) = 〈c, i2, j2〉 we have j1 < i2. We get this by letting g2 begin with 〈g(j), i, j〉 where
〈i, j〉 = MB(g), and then continue likewise on the stream g|j+1.

Formally, g2 is defined as follows, where _ indicates a value which we do not use (and
thus prefer not to name).

I Definition 1 (g2 : N→ B × N× N).

g2(0) =〈g(j), i, j〉 where 〈i, j〉 = MB(g),
g2(n+ 1) =〈g(j + p), i+ p, j + p〉 where 〈_,_, p〉 = g2(n)

and 〈i, j〉 = MB(g|p+1)

Figure 1 contains a visual representation of g2, the top being g and the bottom g2. The two
blue boxes make up the first duplicate pair found by MB(g). The vertical red line indicates
that this is where we “cut” the stream, and by using MB again on this new stream we get a
new duplicate pair, the purple diamonds. This process continues, defining a new stream of
representatives of duplicates in g.

The first projection of g2 is itself a B-stream, and we can then use the same process on
this stream. This provides duplicate duplicates, giving us elements which occur four times
in g.

We can iterate this process and, for every n : N and stream g : N→ B, we get a stream
gn : N→ B × (List N) such that every element in the new stream gives a 〈b, l〉 such that b
occurs at least n times in g, at the n different indices given in l.

To formally define gn it is easiest to first define a slightly stronger function fn : N →
B × (List N) × N. The last natural number is used when defining fm+1(n + 1), it tells it

E. Parmann 191

. . .

〈1, 3〉 〈6, 7〉 〈9, 11〉 〈12, 15〉 〈16, 17〉 〈21, 23〉 〈25, 29〉 〈31, 32〉 〈35, 39〉 . . .

0 1 2 3 4 5 6 7 8 . . .

. . .

[1, 3, 9, 11] [16, 17, 25, 29] [31, 32, 35, 39] . . .

2 6 8 . . .

Figure 2 Calculating f3 from f2.

where in (fm)1 the nth duplicate was found, enabling us to cut (fm)1 at the right place.

f2(n) =〈b, [i1, i2], i2〉 where 〈b, i1, i2〉 = g2(n)
fm+1(0) =〈(fm)1(i), (fm)2(i) + +(fm)2(j), j〉 where 〈i, j〉 = MB((fm)1),

fm+1(n+ 1) =〈(fm)1(i), (fm)2(i) + +(fm)2(j), j〉 where 〈_,_, p〉 = fm+1(n)
and 〈i, j〉 = MB((fm)1|p)

This process is illustrated in Figure 2, where we show how to calculate f3 from f2.
Having fn we define gn by simply dropping the third number:

I Definition 2 (gn : N→ B × List N).

gn(x) =〈e, l〉 where 〈e, l,_〉 = fn(x)

The attentive reader notices that this does not actually produce linearly many indices, but
exponentially many. g3 is actually a stream of items occurring 4 times, and g4 is a stream of
objects occurring 8 times. We will not make use of this property, and we will, for the sake of
simplicity, assume that gn contains elements that occur n times.

Observe that we use strong ∃ elimination for this construction. Not only do we know that
there are indices, but we know what they are; we are also free to use them in the construction
of a new stream, to which we can apply MB once more. As mentioned above, [4] uses a
stream which is the first projection of g2 in the proof that streamless is closed under sum.
We do not know of a proof that streamlessness is closed under sum which does not assume
strong ∃ elimination.

3 Products of streamless sets

This section applies the machinery developed in the previous section to the product of
streamless sets.

TYPES’14

192 Investigating Streamless Sets

We will first see that the Cartesian product of a bounded set with a streamless set is
streamless. It is worth noting that this is independent of whether any of the sets has decidable
equality or not.

I Lemma 3. In ITT we have: If at least one of A and B is bounded and the other is
streamless then A×B is streamless.

Proof. We assume that A is bounded by n. (If it were B then the construction below would
be “mirrored”.) Given the stream g : N→ A×B we look at g2 : N→ B, its second projection.
By looking at (g2)n+1(0) we get a pair 〈b, [i0, . . . , in]〉 such that b occurs at all the indices
i0, . . . , in in g2. Note that g1(i0), . . . , g1(in) are n+ 1 elements of A, so since A is bounded by
n, there must be at least two indices ik < il such that g1(ik) = g1(il). As g2(ik) = b = g2(il),
we get g(ik) = g(il). J

We now show that Markov’s principle and decidable equality of one of the sets imply that
streamlessness is closed under product. This result is a warm up for the later, more general
result shown in Theorem 6. The proofs have interesting similarities, especially in how we can
use the streamlessness of a set to “emulate” Markov’s principle.

First a reminder of Markov’s principle.

I Definition 4 (Markov’s principle). For decidable predicates P on N we have ¬¬Σx:NP (x)→
Σx:NP (x) .

Markov’s principle has a quite computational flavour, which unsurprisingly makes it easier
to prove a set streamless. All we need to do to find the duplicate indices is to show that it
cannot be the case that they do not exist.

I Lemma 5. In ITT with MP we have: If at least one of A and B has decidable equality
and A and B are both streamless then A×B is streamless.

Proof. We assume a stream g : N→ A×B. We also assume, without loss of generality, that
A is the set with decidable equality. (If it were B then the construction below would be
“mirrored”.)

We define the following predicate on N:

P (n) := For 〈_, [i0, . . . , in−1]〉 = (g2)n(0) we have duplicates in [g1(i0), . . . , g1(in−1)].

Remember that g2 gets the B-stream, and (g2)n finds n indices with equal elements. Note
that if A has decidable equality, P (n) is decidable.

We now proceed to show that (1) ¬¬∃nP (n) and that (2) from ∃nP (n) we can get 〈i, j〉,
with i < j and g(i) = g(j).

Proof of (1). We assume ¬∃nP (n) and proceed to produce a contradiction. ¬∃nP (n)
implies ∀n¬P (n), which says that for any n we have that for 〈b, [i0, . . . , in−1]〉 = (g2)n(0)
the list [g1(i0), . . . , g1(in−1)] has no duplicates. Notice that the list [g1(i0), . . . , g1(in−1)] has
n elements, all from A.

We now make a duplicate-free stream f : N→ A; that is, for every n : N, we have for all
j < n that f(n) 6= f(j), contradicting that A is streamless. Defining f(n) we first find n+ 1
indices with the same b element, 〈_, [i0, . . . , in]〉 = (g2)n+1(0). We now let

f(n) = ([g1(i0), . . . , g1(in)] \ [f(0), . . . f(n− 1)])(0).

That is, f(n) is the first element in the list resulting from removing any element from
[g1(i0), . . . , g1(in)] that the stream already contains. As [g1(i0), . . . , g1(in)]) contains n+ 1

E. Parmann 193

different elements from A, we know that the resulting list is non-empty. Since this stream
only outputs elements which have not been output up until that point, it will never introduce
a duplicate pair. Thus we have contradicted that A is streamless, enabling us to conclude
¬¬∃nP (n). J

Proof of (2). From ∃nP (n) we have that there is an n such that for 〈b, [i0, . . . , in−1]〉 =
(g2)n(0) the list [g1(i0), . . . , g1(in−1)] has duplicates. Let those indices be ik < il. Since every
element in g(i0), . . . , g(in−1) has b as its second coordinate, we get that g(ik) = g(il). J

Having proved ¬¬∃nP (n), we apply Markov’s principle and get ∃nP (n). By (2) above, this
gives us the indices 〈i, j〉 with i < j and g(i) = g(j). J

We will now proceed to get rid of Markov’s principle. Several parts of the previous proof
will be recognisable, but we use the streamlessness of the two underlying sets to do the work
that Markov’s principle did in the previous proof.

I Theorem 6. In ITT we have: If at least one of A and B has decidable equality and A and
B are both streamless, then A×B is streamless.

Proof. We assume that A is the set with decidable equality, and we want to construct

MA×B : (N→ A×B)→ N× N,

which, given any A×B-stream g, finds a pair of indices i < j such that g(i) = g(j).
Given an A×B-stream g, we inductively define an A-stream f by letting f(n) first look

at f(m) for all m < n, and see if two equal elements are outputted. This can be done since
A has decidable equality. If there is a duplicate element, f(n) outputs it. If there are no
duplicates outputted so far, we let f(n) look at all the A-elements corresponding to the n
B-elements given by (g2)n(0). Remember, (g2)n(0) = 〈b, l〉 where l = [i0, . . . , in−1] is a list
of n indices. Looking up these indices in g1 gives us a list la : List A of n A-elements.

By using the decidability of A, we can check whether there are duplicate elements in
la. In the case of no duplicates, we know that there must be at least one of the n elements
which does not already occur in f so far (as we have only produced n− 1 elements so far).
We can check which one this is, as we have already defined f up to n− 1. We then let f(n)
be one of those elements which has not occurred in f so far. More precisely,

f(n) = ([g1(i0), . . . , g1(in−1)] \ [f(0), . . . f(n− 1)])(0).

If, on the other hand, there is some duplicate element in the list, we let f(m) be that
element for all m ≥ n. Notice that if this is the case, this is the first time a duplicate is
introduced in f . This completes the construction of f : N→ A, and we will now use f to
find duplicates in g : N→ A×B.

From the construction of f , we have the following property:

I Lemma 7. For the smallest i such that f(i) = f(i + 1) we have duplicates in the list
[g(l0) . . . , g(li−1)], where 〈b, [l0 . . . , li−1]〉 = (g2)i(0).

As A is streamless and f is a A-stream, we can use MA to find indices k < d of duplicates
in f . Since A had decidable equality, we can do a bounded search downward from k to
find the first index i such that f(i) = f(i + 1). By Lemma 7, we have duplicates in
[g(l0) . . . , g(li−1)] where 〈b, [l0 . . . , li−1]〉 = (g2)i(0). Thus, we have two indices lk < lm in
l such that g1(lk) = g1(lm). By construction all the indices in [l0 . . . , li−1] are B-equal, so
g2(lk) = g2(lm), giving g(lk) = g(lm). J

TYPES’14

194 Investigating Streamless Sets

Finally observe that if it were B and not A that had decidable equality, the construction
above would be “mirrored”; f would have to be a B-stream, and we would use (g1)n(0)
instead of (g2)n(0).

As an example of the construction, let us look at a particular calculation of f(4), where
no duplicates have been found so far. That means that so far f looks like

f = a0, a1, a2

with none of them being equal any other.
(g2)4(0) is 〈b, [n0, n1, n2, n3〉], giving four indices in g with the same b-element. This

means that g looks somewhat like

g = . . . , 〈b, a′0〉 . . . , 〈b, a′1〉, . . . , 〈b, a′2〉, . . . , 〈b, a′3〉, . . .

By the decidability of A, we can check whether there is a duplicate among [a′0, a′1, a′2, a′3]. If
not, then we know that there is some element in [a′0, a′1, a′2, a′3] \ [a0, a1, a2], and we let f(4)
be the first such element. If there are duplicates, e.g a′1 = a′3, we let f(n) = a′1 for all n ≥ 4.

Comparing this proof with the proof using Markov’s principle we see that we can use the
streamlessness of one of the underlying sets to search for the n which gives us A-duplicates.
The trick is to control exactly when duplicates are introduced in the f -stream, and then use
the streamlessness of A to recover this point.

We combine Lemma 3 and Theorem 6 to get the following corollary.

I Corollary 8. In ITT we have: If at least one of A and B has decidable equality or is
bounded, and A and B are both streamless, then A×B is streamless.

4 Streamlessness and decidable equality

It should be clear by now that decidable equality of the underlying set is quite important for
the ability to produce streamless sets; we will see another indication of this in this section.
We will show that in ITT, functional extensionality give streamless sets decidable equality. In
addition to showing the close relation between finiteness and decidable equality, it is relevant
to the search for a potential counter-model to the claim that streamlessness is closed under
Cartesian products even without decidable equality.

As a warm-up, we look at the situation where the set is not only streamless, but bounded.
Remember that this means that we have an n : N such that, for every A-list of more than n
elements, we can find a duplicate pair. Formally, this means that we have an inhabitant of
the type

Bounded(A) := Σn:N(Πl:listA(len(l) > n→ Σi,j:N(i < j × l[i] = l[j]))).

If we want to determine whether a1 is equal to a2 we make a list l of n+ 1 instances of
a1, and get a pair of indices i1 < j1 with duplicates in this list. We then proceed to swap
the element at l[i1] with a2, giving a new list. The original list is equal the new list if and
only if a1 = a2.

We then proceed to get two indices i2 < j2 of duplicate elements in this new list. If this
process is assumed to be a function, and thus provide equal outputs for equal inputs, we get
〈i1, j1〉 = 〈i2, j2〉 if and only if a1 = a2; and since equality on N is decidable, we are done.

Our proof turned on the facts that (1) the second projection of a witness of Bounded(A)
is a function, (2) this function can be assumed to respect equality on its input, and (3) two
lists are equal if and only if they are pointwise equal.

E. Parmann 195

We will now mirror this with streamless sets. One major difference between lists and
streams is the following: while lists are equal whenever their elements are equal, this only
holds for streams if we assume so. It is consistent to assume an inhabitant of the following
type in ITT, and if we do so for all types, we say that we have functional extensionality.

I Definition 9 (FunExt(A)).

FunExt(A) := Πf,g:N→A(Πn:N(f(n) =A g(n))→ f =N→A g) .

I Lemma 10. In ITT with functional extensionality we have: If A is streamless then it has
decidable equality.

Proof. We assume an inhabitant of FunExt(A) and two elements a, b : A, and we proceed
to determine their equality. Let the stream fa be the constant A-stream consisting of only
a, and let 〈i, j〉 be the indices returned by MA(fa). We now make the stream f ′a which is
constantly a, except at index i, where it is b:

f ′a(n) =
{
b if n =N i

a otherwise

Notice that if a =A b we have Πn:Nfa(n) =A f
′
a(n), so from functional extensionality we then

have fa = f ′a. So, by functionality of MA, we get a = b→MA(fa) = MA(f ′a), and thus

MA(fa) 6= MA(f ′a)→ a 6= b.

Concluding, if MA(f ′a) 6= 〈i, j〉 then a 6= b, and if MA(f ′a) = 〈i, j〉 then a = b (as f ′a(i) = b

and f ′a(j) = a), and since equality on N is decidable we are done. J

Lemma 10 is relevant for the search of a counter-model to the general claim that stream-
lessness is closed under product. From section 3, we know that such a counter-model must
have two streamless sets with undecidable equality. This section shows that the model
must also reject functionality extensionality for us to have a streamless set with undecidable
equality.

It also highlights some of the difficulty of defining finiteness for sets with undecidable
equality in a computational setting, and since the other notions of finiteness given in [4]
imply streamlessness, this result also covers them. All the definitions of finiteness have some
sort of equality/duplication check at their core. Given this it seems plausible that a proof
of finiteness can, in certain situations, lead to decidability. On the other hand, it is quite
unsatisfactory that, in certain settings, we are unable to define finite sets of elements with
undecidable equality.

In the next section we look at how to formalize both this and the previous results in Coq.

5 Formalization in Coq and HoTT

5.1 Coq: Prop and Set
In this section we will relate the above results to the proof assistant Coq [3], where we have
to deal with the distinction between Prop and Set. Functions, which is how we defined
streams, live in the universe Set, while there is a separate universe Prop for propositions. The
intention is, roughly, to separate between types where we care about the internal structure of
the inhabitants (Set) and where we care only about the existence of the inhabitant (Prop).

TYPES’14

196 Investigating Streamless Sets

Given a inhabitant of a type in Prop one is generally not allowed to eliminate on it
to construct elements in Set; thus we can not build the new stream g2 of duplicates using
indexes found from a witness of a type in Prop. This means that the constructions given in
this paper can not be implemented in Coq as they stand if streamless is written as follows:

Definition StreamlessEx(A:Set):= forall g:nat → A,
exists i j, i<j ∧ g(i) = g(j).

One way to remedy the situation is to define the notion of a set being streamless in the
following way, closer to the way it was encoded in ITT. The notation “{x : nat | P (x)}” is
Coq’s notation for Σx:NP (x).

Definition StreamlessSig (A:Set):= forall g:nat→ A,
{ij : nat∗nat | fst ij < snd ij ∧ g(fst ij)=g(snd ij)}.

StreamlessSig enables us to use the proof of a set being streamless in a computation;
in particular it enables us to construct the stream g2 needed to prove Corollary 8 in Coq.
The disadvantage is that it can make it harder to prove sets to be streamless in the first
place. There is reason to believe that there are fewer sets satisfying StreamlessSig than
StreamlessEx.

In general, whether one wants the statement in Prop or in Set reflects whether one wants
to work proof relevant or not; formalizing it as StreamlessSig enables us to use the proof (of
a set being streamless) in a computation.

StreamlessSig A implies StreamlessEx A, while the provability of the converse implication
is unknown. Interestingly, it is know for sets with decidable equality, since we are able to
prove the following lemma in Coq for A with decidable equiality, making the two notions of
streamless coincide in those cases.

Lemma streamlessExToStrSig(A:Set)(A_dec: DecidableEq A) :
StreamlessEx A → StreamlessSig A

Essential for the proof is the following lemma, holding for decidable predicates P on N,
and shown in the Coq library Coq.Logic.ConstructiveEpsilon1.

Lemma constructive_indefinite_ground_description_nat :
(exists x : nat, P x) → {x : nat | P x}.

With the indefinite ground description the proof is straightforward. We assume that we have
some pairing/decoding functions enabling us to encode pairs of natural numbers as single
natural numbers. We then define versions of both StreamlessEx and StreamlessSig using
single numbers, prove that the single and paired versions are equivalent, and then it is a
simple application of the indefinite ground description given above.

The conclusion is the following corollary:

I Corollary 11. In Coq we can prove that StreamlessEx (and StreamlessSig) of sets with
decidable equality is closed under Cartesian products.

A natural question is whether we can strengthen this to say that StreamlessEx is
closed under Cartesian products as long as at least one of the sets have decidable equality.
Unfortunately, this does not follow from the current construction. To see this, assume an
A × B-stream g. The construction in Proof 3 uses (g2)n to find n-indices with B-equal

1 http://coq.inria.fr/library/Coq.Logic.ConstructiveEpsilon.html

http://coq.inria.fr/library/Coq.Logic.ConstructiveEpsilon.html

E. Parmann 197

elements. But for this to be definable in Coq using the technique above, B needs decidable
equality. The proof then uses the decidability of A to eliminate on whether there are
duplicates among the resulting A-elements or not. It does not seem possible to manipulate
the construction such that it is enough for only one of the sets to have decidable equality.

We are also able to reproduce Lemma 10 in Coq for StreamlessSig, the proof is simply a
direct Coq formalization of the proof given in Section 4.

Lemma strSigAndFuncExtImpliesDecA (A:Set) (Ma:StreamlessSig A)
(fext: functional_extensionality nat A): forall a b :A, {a=b}+{not(a=b)}.

Again, we are not able to simply adapt the proof to StreamlessEx, since the proof crucially
uses the indexes returned from MA in the construction of new functions.

All the Lemmas in this section have been formalized and proved in Coq2.

5.2 HoTT
Closely related to the Prop/Set distinction is the truncated and non-truncated statements
one encounters in Homotopy Type Theory (HoTT). Truncation is a type former which
“truncates” a type – removing all information contained in the inhabitants of that type except
their existence – and it is written as ||A|| for a type A. (For more information we refer the
reader to the freely available book [10].) We will not go further into HoTT here; but what is
relevant for us is that we have a HoTT version of the indefinite ground description above.
For decidable predicates P we have

||Σn:NP (n)|| → Σn:NP (n)

as stated by exercise 3.19 in [10]. One should be able to reproduce a version of Corollary 11
in this setting, getting that for the non-truncated version of streamless it is enough for one of
the sets to have decidable equality for streamlessness to be closed under Cartesian products.

With our current knowledge we need both sets to have decidable equality for the truncated
version to be closed under Cartesian products without further assumptions, and we conjecture
that this is in fact a strict requirement. If we choose to assume the HoTT-version of the
axiom of choice,

(Πx:X ||Σa:A(x)P (x, a)||)→ ||Σg:Π(x:X)A(x)Πx:XP (x, g(x))||,

we can show that truncated-streamless sets are closed under products as long as one of the
sets has decidable equality.

In HoTT we can also assume the Univalence axiom, giving that isomorphic structures can
be identified. Importantly, the univalence axiom implies functional extensionality. Lemma 10
makes it clear that – unless we want every streamless set to have decidable equality – we
must use the truncated version of streamlessness in this setting.

6 HAω

It is natural to ask how closely coupled the above results are to the particular constructive
setting we are working in, and whether we can reproduce them in a different setting. We
will now look at how the results fit in the system HAω, an extension of Heyting Arithmetic
to the language of finite types, see [9] for more information on HAω.

2 The Coq-script can be found at https://github.com/epa095/streamless-in-coq.

TYPES’14

https://github.com/epa095/streamless-in-coq

198 Investigating Streamless Sets

HAω is proof-irrelevant and does not have strong Σ elimination; instead, we have to use
the axiom of choice to extract a function, giving the witnesses which we can then use as
terms in the logic.

The set of finite types T is built from the basic type 0 (N) and is closed under × and
→. HAω is “neutral” in the terminology of [9]; we do not assume decidability of =τ for any
other types than 0, nor do we assume that equality between functions is extensional.

Sets are not a primitive notion in HAω, so when talking about sets we mean functions of
the type A : τ → 0; such functions represent the set of elements on which it returns 1. This
means that all sets will have decidable membership and sets can only contain elements of
one and the same type. For a set A : τ → 0, we call τ the enclosing type of A. Following [9]
we will write a < b in place of < (a, b) = 1, where the latter is the characteristic function
of the less-than relation. With “a stream over A” we mean a function f0→τ where τ is the
enclosing type of A such that ∀n0(A(f(n)) = 1).

Streamlessness of Aτ in this setting is expressed as

Streamless(Aτ) := ∀g0→τ ((∀n0A(g(n)) = 1)→ ∃i0j0(i < j ∧ g(i) = g(j))).

In order to formalize our results in HAω, we first need to define some axioms. ACσ,τ is
the following axiom schema,

ACσ,τ := ∀xσ∃yτφ(x, y)→ ∃zσ→τ∀xσφ(x, zx),

and AC is the axiom schema consisting of ACσ,τ for all types σ, τ ∈ T . EXTσ,τ is the
following axiom schema,

EXTσ,τ := ∀yσ→τzσ→τ ((∀xσ, yx = zx)→ y = z),

and if we add EXTσ,τ for all types σ, τ ∈ T we get the system E-HAω.
To reproduce the proof of Lemma 5 in HAω, we need to construct the function g2 of

duplicates, and for this we need access to, for every stream, a pair of indexes with duplicate
elements in that stream. The following instance of AC for every type τ enclosing a streamless
set is enough to mirror Lemma 5 in HAω.

AC0→τ,0 := ∀x0→τ∃y0φ(x, y)→ ∃z(0→τ)→0)∀xσφ(x, zx)

Let the φ(x, y) stand for the predicate “(∀i0A(x(i)) = 1)→ y encodes a pair of indexes
i < j such that x(i) = x(j)”. Then the antecedent of AC0→τ,0 follows immediately from A

being streamless, and the result is the function MA, needed to reconstruct the machinery in
the proof of Lemma 5.

I Corollary 12. In HAω + AC we have that streamless sets are closed under products.

Encoding sets by their characteristic functions yields decidable membership, but in general
not decidable equality. The extensionality of E-HAω, giving that streams are equal when
they are pointwise equal, enables us to mirror Lemma 10:

I Corollary 13. In E- HAω + AC we have that streamless sets have decidable equality.

Note that E- HAω + AC does not prove the law of excluded middle, as it is conservative over
HA. For further details, see [1].

E. Parmann 199

7 Related work

One of the first investigations of streamlessness known to the author is by Richman and
Stolzenberg [8]. In their terms, a streamless set is called 2-good, where 2 is the set of
two-element subsets of the natural numbers. They show that the sum of two B-good sets, of
which 2-good is an instance, is B-good, but leave it open for products. This paper does not
resolve any of their open questions, as they work in a more general setting than equality.
They also give another notion, that of a set being bar-good, and they show that the Cartesian
product of a bar-good set with a B-good set is B-good. It is not clear what the relation
between streamlessness and bar-good is, and whether there are natural axioms one can
assume to make a streamless set bar-good.

Veldman and Bezem [11] investigate the constructive content of the Ramsey theorem [7],
giving a constructive proof of a reformulation of it. For this, they use what they call
almost-full binary relations; relations R on N where, for every increasing function f : N→ N,

∃m,n : N,m < n ∧R(f(m), f(n)).

They postulate the axiom of bar-induction, and with it they prove that almost-full relations
are closed under intersection. They name this the Intuitionistic Ramsey Theorem, and show
that it is classically equivalent to Ramsey’s Theorem.

Using equality as the relation R, one gets a notion which comes quite close to streamless-
ness, apart from Veldman and Bezem’s requirement that the functions are increasing, and
the fact that streamlessness is a concept applicable for any type (not only N), possibly with
undecidable equality.

In light of this, it is natural to ask whether the proofs in this paper can be generalized to
relations other than equality. We define what it means for a reflexive and transitive relation
R on A to be a well-quasi-ordering:

WqoA(R) := ∀g : N→ A,∃i, j : N, i < j ∧R(g(i), g(j)).

Note that a set A is streamless exactly when we have WqoA(=A). We can ask if the
intersection of two such relations is itself a Wqo and whether the proof of Lemma 6 suggest
how this could be shown. Unfortunately, we do not see how. We are still able to use the
construction gn to find n elements a1, . . . an such that a1Ra2 . . . Ran, but we do not have
the property that with n elements b1, . . . bn such that none of them are R-related, and n− 1
elements b′1, . . . b′n−1 such that none of them are R-related, there must be one of the b1, . . . bn
which is not R related to any of the b′1, . . . b′n−1. We have this property when the relation R
is equality, and this is used in the proof of Lemma 6.

If we did have that Wqo relations were closed under intersection we would immediately
get that streamless sets are closed under products: define the relation R1 on A × B as
(a1, b1)R1(a2, b2) if and only if a1 =A a2, and likewise for R2, looking at the second projections.
If A and B are streamless sets, then R1 and R2 are Wqo relations and their intersection is
equality on A×B.

Vytiniotis, Coquand and Wahlstedt [12] provide an inductive formulation of almost full
relations on arbitrary types. They show – if we instantiate their proofs with the relation
being equality – that it implies streamlessness, and show that almost-full relations are closed
under intersection.

Streamlessness works in a quite general setting, with few assumptions on the underlying
set. Bezem et al. [2] impose further restrictions, and the result is a interesting hierarchy of
finiteness notions. The restrictions imposed are that equality is decidable; that the subset is

TYPES’14

200 Investigating Streamless Sets

defined by some decidable predicate; and that the set is a subset of some set that can be
enumerated. This holds for decidable subsets of natural numbers in particular. The authors
find six different formalizations and put them into a hierarchy.

8 Remaining questions

There are several questions remaining. The main one is whether one can show that stream-
lessness is closed under Cartesian products in ITT without assuming decidable equality.
Secondly, to what degree can one show similar results in systems without strong Σ elimination
– for example, for StreamlessEx in Coq or the truncated statement in HoTT? And what is
the relationship between StreamlessEx and StreamlessSig for sets with undecidable equality?

We conjecture that there exists a model showing that, in ITT, the product of two
streamless sets with undecidable equality is not necessarily streamless. From Lemma 10 we
know that such a model must reject functional extensionality, and from Lemma 3, we know
that neither of the sets can be bounded.

At this point there are, to this author’s knowledge, only two sets which are known to
be streamless but not bounded. One is the set presented in [4], originally suggested by F.
Richman, showing that not all noetherian sets are bounded. As noetherian sets are streamless,
this is also a streamless set. But this set has the interesting property that, once one looks
at any of the elements in the set, one knows the size of the set! So it is not bounded a
priori, but if one is given a stream of elements from the set, one can deduce its size and then
continue as in the proof of Lemma 3.

The second set, presented in the still unpublished article by Bezem et al. showing that
not all streamless sets are noetherian, does not have this property. On the other hand, it has
decidable equality, rendering it useless as a counter-model. There does not seem to be an
easy way to tweak the model to get rid of this decidable equality; it is essential for the proof
that the set is streamless as the authors use Markov’s Principle to find the duplicate pair,
and Markov’s Principle is only applicable for decidable predicates.

To conclude, we currently have no good candidate for a streamless set with a non-
streamless Cartesian product. Constructing a suitable streamless set, non-bounded and with
undecidable equality, appears to be quite complicated. Neither of the ways used to prove
a set streamless – that is, by gathering information about the size of the set encoded in
the elements themselves, or using Markov’s principle – is likely to work. It seems the most
promising route to a counter-model involves finding novel ways to construct streamless sets.

Lastly, we would like to encourage other to look for new notions of finiteness, especially
trying to find notions that works nicely and robustly for sets with undecidable equality.

9 Conclusion

We showed that, in Martin-Löf intensional type theory, if at least one of the streamless sets A
and B has decidable equality or is bounded, then the Cartesian product A×B is streamless.
We also saw that adding functional extensionality to ITT gives streamless sets decidable
equality; and we mirrored these results in both (E-) HAω + AC and in Coq.

Acknowledgements. I want to thank Arnaud Spiwack and Thierry Coquand for their
valuable feedback and questions after my presentation on this topic at TYPES 2014, and
Marc Bezem for both introducing this problem to me and discussing it with me. I also wish

E. Parmann 201

to thank the anonymous reviewers for their challenging feedback which led to significant
changes to this paper, and Maja Jaakson which kindly proofread it.

References
1 Michael Beeson. Goodman’s theorem and beyond. Pacific Journal of Mathematics, 84(1):1–

16, 1979.
2 M. Bezem, K. Nakata, and T. Uustalu. On streams that are finitely red. Logical Methods

in Computer Science, 2011. http://www.cs.ioc.ee/~keiko/papers/finiteness.pdf.
3 The Coq Development Team. The Coq Reference Manual, version 8.4, August 2012. Avail-

able electronically at http://coq.inria.fr/doc.
4 Thierry Coquand and Arnaud Spiwack. Constructively finite? In Contribuciones científicas

en honor de Mirian Andrés Gómez, pages 217–230. Universidad de La Rioja, 2010.
5 Per Martin-Löf. An intuitionistic theory of types: predicative part. In H.E. Rose and J.C.

Shepherdson, editors, Proceedings of the Logic Colloquium 1973, volume 80 of Studies in
Logic and the Foundations of Mathematics, pages 73–118. North-Holland, 1975.

6 Per Martin-Löf and Giovanni Sambin. Intuitionistic type theory, volume 17. Bibliopolis
Naples, 1984.

7 F.P. Ramsey. On a problem of formal logic. Proceedings of the London Mathematical
Society, 2(1):264–286, 1930.

8 F. Richman and G. Stolzenberg. Well quasi-ordered sets. Advances in Mathematics,
97(2):145–153, 1993.

9 Anne Sjerp Troelstra and Dirk Van Dalen. Constructivism in mathematics, volume 2.
Elsevier, 1988.

10 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations
of Mathematics. http://homotopytypetheory.org/book, Institute for Advanced Study,
2013.

11 Wim Veldman and Marc Bezem. Ramsey’s theorem and the pigeonhole principle in intu-
itionistic mathematics. Journal of the London Mathematical Society, 2(2):193–211, 1993.

12 Dimitrios Vytiniotis, Thierry Coquand, and David Wahlstedt. Stop when you are almost-
full. In Interactive Theorem Proving, pages 250–265. Springer, 2012.

TYPES’14

http://www.cs.ioc.ee/~keiko/papers/finiteness.pdf
http://coq.inria.fr/doc
http://homotopytypetheory.org/book

	Introduction
	Notation

	Introduction to streamless sets
	Products of streamless sets
	Streamlessness and decidable equality
	Formalization in Coq and HoTT
	Coq: Prop and Set
	HoTT

	HA-omega
	Related work
	Remaining questions
	Conclusion

