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Abstract
We give an analysis of the non-constructivity of the following basic result: if X and Y are
simplicial sets and Y has the Kan extension property, then Y X also has the Kan extension
property. By means of Kripke countermodels we show that even simple consequences of this
basic result, such as edge reversal and edge composition, are not constructively provable. We
also show that our unprovability argument will have to be refined if one strengthens the usual
formulation of the Kan extension property to one with explicit horn-filler operations.
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1 Introduction

Brouwer’s Programme is the constructive reformulation of (as much as possible of) classical
mathematics. In [2] it has been shown that the following theorem, though classically true (cf.
[10, Corollary 7.11]), cannot be proved constructively.

I Theorem 1 (classical). The fibers of 0 and 1 of a Kan fibration p : E → ∆1 are homotopy
equivalent.

In this paper we show that the following basic theorems cannot be proved constructively.

I Theorem 2 (classical). If X and Y are Kan simplicial sets, then any edge in Y X can be
reversed.

I Theorem 3 (classical). If X and Y are Kan simplicial sets, then compatible edges in Y X
can be composed.

The above two theorems follow immediately and constructively from the following.

I Theorem 4 (classical). If X and Y are Kan simplicial sets, then also Y X is so.

Hence we obtain that also Theorem 4, though classically true even without requiring that
X is Kan (cf. [10, Theorem 6.9]), cannot be proved constructively.

The importance of these results is twofold. First, it is of evident importance for Brouwer’s
Programme to understand which results of classical mathematics already are constructive and
which results are not. Second, Theorem 4 plays a crucial role in the construction of models
of type theory with the Univalence Axiom, see [7]. The use of classical logic in proving this
crucial property implies in particular that the model construction cannot be used to give a
computational interpretation of univalence. Actually, Theorem 4 is a necessary step in the
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semantics of the simply typed λ-calculus based on Kan simplicial sets. In what follows we
expand on these points; for more motivation we refer to [2].

We would like to use the occasion to say a few not-too-technical words on the role of the
Kan extension property of simplicial sets in relation to univalence. Let MLTT be Martin-Löf
type theory with universe U and inductive equality =U on U . Assume we have two distinct
copies of the natural numbers, inductively defined by constructors 0 : N (0′ : N ′) and
S : N → N (S′ : N ′ → N ′). MLTT proves N =U N and N ′ =U N ′, but not N =U N ′.
The Univalence Axiom (UA) implies that (homotopy) equivalent types are equal, and in
particular N =U N ′. By the Leibniz property of inductive equality, this implies that N
and N ′ have the same properties and that all structure on N can be transported to N ′
and vice versa. This holds even uniformly, for example, ΠP : U → U. (PN → PN ′) is
inhabited under UA. On the other hand, without UA, ΠP : U → U. (PN → PN ′) is not
inhabited in MLTT. (One reason is that MLTT has models in which N 6= N ′, so one can
take P ≡ λX : U. (N =U X) and get PN but not PN ′).

The above observation concerns not only the rather artificial type N ′ but also any other
type that is equivalent to N , such as the type of lists over a unit type with one object. In
fact the observation concerns all equivalent types. A less artificial example is perhaps the
equivalence of the unit type to Σx : A. (a =A x) for given a : A : U . The upshot is that
validating UA requires an interpretation of =U that carries much more information than
in MLTT without UA, since the elimination rule for =U (roughly, the Leibniz property, or
substitutivity of equals for equals) has to be much stronger. In our simple example, the
interpretation of =U must be leveraged to give an inhabitant of ΠP : U → U. (PN → PN ′).

Simplicial sets can be used to build a presheaf-style [6] model of MLTT. In this model
the interpretation of =U does not validate UA. It turns out that if one builds a model of
MLTT based on Kan simplicial sets, then it is possible to validate UA. The crucial notion
here is that of a Kan fibration. A Kan fibration p : E → B is a map of simplicial sets with a
specific lifting property. This lifting property lifts a path from b0 to b1 in B to a transport
function from the fiber p−1(b0) to the fiber p−1(b1). In the model based on Kan simplicial
sets, an inhabitant of N =U N ′ is interpreted as a path from N to N ′ in U . (Here and below
we omit the correct but tedious phrase the interpretation of N,N ′, U, . . .). Any P : U → U

is interpreted as a Kan fibration with fibers PT for any T : U . (NB the fibration, being a
projection on the base type, has a direction opposite to the arrow in P : U → U). Then the
transport function obtained from the lifting property is the desired function PN → PN ′. In
short, one can say that the transport functions interpret substitutivity of equals by equals.

Finally, to come back to the topic of this paper: if all types are to have Kan structure,
one has to prove this inductively following the rules of type formation. One of the induction
steps is Theorem 4. The unprovablility of Theorem 4 shows that, from the constructive point
of view, there is a problem with using the exponent Y X in the category of Kan simplicial
sets to interpret function types X → Y .

The type theoretic (synthetic) formulation of homotopy equivalence and the Univalence
Axiom, as well as the model of MLTT plus UA using Kan simplicial sets are all due to
Voevodsky [14, 7]. This model confirms the homotopical interpretation proposed by Awodey
and Warren [1].

Theorem 4 (without requiring that X is Kan) has an interesting history. The first
appearance seems to be [12, Appendix A, p. 1A-8, Theorem 3]. Moore credits A. Heller
for the definition of the function space Y X on page 1A-4. Moore’s proof is combinatorial,
using the excluded middle in distinguishing the cases a non/degenerate on page 1A-9, l. 17ff.
(Typo: on page 1A-7, l. 12 and 15, the map F is missing on the rhs; evidently F(µ,ν) was
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94 Non-Constructivity in Kan Simplicial Sets

intended to depend on F .) The proof in [10, Theorem 6.9] is much the same as the one
by Moore (with the F ’s in place). Several variations of this argument can be found in the
literature.

An essentially more abstract proof using anodyne extensions is given by Gabriel and
Zisman in [4, Chapter Four, 3.1.2] (take B = ∆0). Here the classical reasoning shows up
when in 2.1.2 amalgamated sums over sets of non-degenerate simplices are taken.

The results of Moore and Heller imply that Kan simplicial sets form a cartesian closed
category, which can be seen as a germ of the fact that they model dependent type theory.

The rest of the paper is structured as follows. In Section 2 we give an introduction to
simplicial sets, and in Section 3 we provide several examples of simplicial sets which will
be in use in the rest of the article. In Section 4 we take a closer look at Theorem 2, and
provide a Kripke model showing that a constructive consequence, Lemma 14 cannot be
proven constructively. Section 5 deals with edge compostion, much in the same way as
Section 4 deals with edge reversal. A summary and evaluation of the results obtained so far
is given in Section 6. In Section 7 we strengthen the Kan condition and prove constructively
a weak version of Lemma 14. This shows that our unprovability argument will have to be
refined for the stronger Kan condition. We sum up our findings and discuss further research
in Section 8.

2 Preliminaries

I Definition 5 (Simplicial set). A simplicial set A is a collection of sets A[i] for i ∈ N such
that for every 0 < n and j ≤ n we have a function (face map) dnj : A[n]→ A[n− 1], and for
every 0 ≤ n and j ≤ n we have a function (degeneracy map) snj : A[n]→ A[n+ 1], satisfying
the following simplicial identities for all suitable superscripts, which we happily omit:

didj = dj−1di if i < j (1)
disj = sj−1di if i < j (2)
disj = id for i = j, j + 1 (3)
disj = sjdi−1 if i > j + 1 (4)
sisj = sjsi−1 if i > j (5)

An element of A[i] is called an i-simplex, or just simplex when we don’t wish to stipulate the
dimension. A degenerate element is any element a ∈ A[i+ 1] in the image of a degeneracy
map.

Note that a simplicial identity like, e.g., dni dn+1
j = dnj−1d

n+1
i actually means

∀x ∈ A[n+ 1]. dni (dn+1
j (x)) = dnj−1(dn+1

i (x)).

With a countably infinite signature, the above definition can be expressed completely in
many-sorted first-order logic. That means that we can see first-order models which satisfy
the above requirement as simplicial sets, and instead of simplicial sets we could talk about
first-order models satisfying the above requirements.

Simplicial sets form a category. For two simplicial sets A and B, HomS(A,B) is the
set of all natural transformations from A to B. A natural transformation is a collection
of maps g[n] : A[n] → B[n] commuting with the face and degeneracy maps of A and B:
g[n]si = sig[n − 1] for all 0 ≤ i < n and g[n + 1]di = dig[n] for all 0 ≤ i ≤ n + 1. We
freely omit the dimension [n] when it can be inferred from the other arguments. For more
information on simplicial sets we refer to, for example, [10, 5, 3].
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I Definition 6 (Kan simplicial set). A simplicial set Y satisfies the Kan condition if for any
collection of simplices y0, . . . , yk−1, yk+1, . . . , yn in Y [n− 1] such that diyj = dj−1yi for any
i < j with i 6= k and j 6= k, there is an n-simplex y in Y such that diy = yi for all i 6= k.
The Kan condition is also called the Kan extension property, and a simplicial set is called a
Kan simplicial set if it satisfies the Kan condition.

I Definition 7 (Kan graph). A reflexive multigraph consists of C1, C0, d0, d1, s where C0 is
a set of points, C1 a set of edges, di : C1 → C0, d1 the source and d0 the target function,
and s : C0 → C1 the function mapping each c ∈ C0 to a selfloop of c. We write e : a → b

if e is in C1 such that d1(e) = a and d0(e) = b (note the direction!). In particular we have
di(s(c)) = c for all c ∈ C0. A Kan graph is a reflexive multigraph having the property that
for all a, b, c in C0, if e : a→ b and f : a→ c, then there exists an edge g : b→ c in C1.

Kan graphs can be viewed as truncated Kan simplicial sets, modelling a truncated proof-
relevant equality relation. Note that we don’t require the Kan graph to have explicit functions
giving the required edges like in [2], we merely require that the edges exists. We discuss this
distinction further in Section 7. The special requirement of the edges for the Kan graph
is in the literature often called Euclidean. Euclidean combined with reflexivity gives both
transitivity and symmetry.

3 Examples of simplicial sets

We give some examples of simplicial sets that are used in the sequel.

3.1 Standard simplicial k-simplex ∆k

∆k is the simplicial set with ∆k[j] consisting of all non-decreasing sequences of numbers
0, . . . , k of length j + 1. Equivalently, ∆k[j] is the set of order-preserving functions [j]→ [k],
where [i] denotes 0, . . . , i with the natural ordering. Examples are ∆1[0] = {0, 1}, ∆1[1] =
{00, 01, 11}, ∆2[1] = {00, 01, 02, 11, 12, 22} and

∆2[2] = {000, 001, 002, 011, 012, 022, 111, 112, 122, 222}.

The degeneracy map sjk : ∆i[j] → ∆i[j + 1] duplicates the k-th element in its input. So,
sjk(x0 . . . xk . . . xj+1) = x0 . . . xkxk . . . xj+1. The face map djk : ∆i[j]→ ∆i[j − 1] deletes the
k-th element. So, djk(x0 . . . xj) = x0 . . . xk−1xk+1 . . . xj .

3.2 The k-horns Λk
j

Λkj is the j’th horn of the standard k-simplex ∆k, and defined by Λkj [n] = {f ∈ ∆k[n] |
[k]−{j} 6⊆ Im(f)}. Alternatively, it is ∆k[n] except every element must avoid some element
not equal to j. For example, Λ2

0[1] = {00, 01, 02, 11,��12 , 22} = ∆2[1]− {12} (excluding 12,
since 12 does not avoid any element not equal to 0). We also have:

Λ2
0[2] = {000, 001, 002, 011,��012 , 022, 111,��112 ,��122 , 222}.

The Kan extension condition for a simplicial set Y can also be formulated as: every map
F : Λkj → Y can be extended to a map F ′ : ∆k → Y . This is equivalent to Definition 6.
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3.3 Cartesian products
For two simplicial sets A and B, A×B is the simplicial set given by (A×B)[i] = A[i]×B[i],
and the structural maps d and s use dA and dB component-wise (and likewise for sA and
sB). So if a ∈ A[i] and b ∈ B[i] then (a, b) ∈ (A × B)[i], and di((a, b)) = (dAi (a), dBi (b)).
In particular, the degenerate simplices of A × B are pairs (sAj (a), sBj (b)) ∈ (A × B)[i + 1].
(Caveat: this is stronger than both components being degenerate.)

3.4 Function spaces
We give the standard definition [12, p. 1A-4]: Y X is the simplicial set given by Y X [i] =
HomS(∆i ×X,Y ), where HomS denotes morphisms (natural transformations) of simplicial
sets, and structural maps as follows. The face maps dk[i] : Y X [i]→ Y X [i− 1] need to map
elements of HomS(∆i ×X,Y ) to HomS(∆i−1 ×X,Y ) and the degeneracy maps vice versa.
For their definition it is convenient to view a k-simplex in ∆i as an order-preserving function
a : [k]→ [i]. Let d∗k be the strictly increasing function on natural numbers such that d∗k(n) = n

if n < k and d∗k(n) = n + 1 otherwise (d∗k ‘jumps’ over k). Given F ∈ HomS(∆i ×X,Y ),
define (dkF )[i](a, x) = F [i](d∗ka, x). For the degeneracy maps, let s∗k be the weakly increasing
function on natural numbers such that s∗k(n) = n if n ≤ k and s∗k(n) = n− 1 otherwise (s∗k
‘duplicates’ k). Then define (skF )[i](a, x) = F [i](s∗ka, x).

3.5 The simplicial set defined by a reflexive multigraph
The following definition from [2] gives the general construction of a simplicial set from a
reflexive multigraph. It is important to note that, even if the reflexive multigraph is transitive,
its simplicial set is not the same as the nerve [5, Example 1.4] of the category defined by the
multigraph. The difference is subtle: if we have edges f : x → y, g : y → z, h, h′ : x → z,
where the composition gf = h, then the nerve does not contain the 2-simplex with f, g, h′,
in contrast to below.

I Definition 8. Given a reflexive multigraph C we define the simplicial set S(C) as follows.
S(C)[0] = C0, S(C)[1] = C1 and S(C)[n], for n ≥ 2, consisting of all tuples of the form
(u0, . . . , un; . . . , eij , . . . ) such that

eij : ui → uj in C1 for all 0 ≤ i < j ≤ n.

The maps dk in S(C) are defined by removing from (u0, . . . , un; . . . , eij , . . . ) the point uk
and all edges eik and ekj . The maps sk in S(C) are defined by duplicating the point
uk in (u0, . . . , un; . . . , eij , . . . ), adding an edge ek(k+1) = s(uk), and duplicating edges and
incrementing indices of edges as appropriate. This completes the construction of the simplicial
set S(C).

We now see why Kan graphs are named as they are: the S construction above turns them
into Kan simplicial sets.

I Lemma 9. S(Y ) is a Kan simplicial set whenever Y is a Kan graph.

Proof. Consider Λnk for some n ≥ 1 and 0 ≤ k ≤ n and let f : Λnk → S(Y ). We have to
define a lifting h : ∆n → S(Y ). ∆n consists of elements in every dimension, but we only need
to specify h for every element in ∆n[n]. This since both the higher and lower dimensional
objects are the (possibly repeated) si or dj images of objects in ∆n[n], and h must commute
with both si and dj , which determines h.
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If n = 1, note that that Λ1
k only consists of one point, and degenerations of that point in

the higher dimensions. E.g., if k = 0 then Λ1
0[0] = {0}, Λ1

0[1] = {00} etc. In that case we
extend f to h : ∆1 → S(Y ) by mapping h(1) = h(0) = f(0), which determines h in higher
dimensions.

If n = 2 we use the fact that Y is a Kan graph, so for any two edges f : a → b and
g : a→ c there is an edge from b to c. The 2-horn gives two edges in the graph with at least
one common point, and the fact that the graph is both reflexive, symmetric and transitive
(because of the Kan property) enables us to find a third edge with compatible endpoints.
The procedure depends on the value of k. We will here give the procedure for k = 2; k = 0, 1
are just simple adaptations.

Given f : Λ2
2 → S(Y ) we have edges f(02) : f(0)→ f(2) and edges f(12) : f(1)→ f(2),

and we need to find a value for h(01) : f(0) → f(1) such that d1h(01) = d1f(02) and
d0h(01) = d1f(12). In other words, we need to find that the dotted edge in the diagram
actually exists (self-loops are not displayed).

f(2)

f(0) f(1)
f(02)

f(12)

e3

e1
e2

Recall that S(Y )[1] = Y [1], so both f(01) and f(12) are actual edges in Y . By applying
the Kan property on s(f(0)) and f(02) we get an edge e1 : f(2)→ f(0). Similarly we get
an edge e2 : f(2) → f(1). Now, by using the Kan property on e1 and e2 we get an edge
e3 : f(0)→ f(1), and we put h(01) = e3.

Finally, if n ≥ 3 we observe that the horn Λnk contains all points and edges of ∆n, and we
define the lifting by

h(q) = (f[0](q(0)), . . . , f[0](q(m)); . . . , f[1](eij), . . .).

Here q : [m] → [n] is order-preserving and eij is the edge from q(i) to q(j) in ∆n[1] =
Λnk [1]. J

4 Edge reversal

In this section we give the classical proof of Theorem 2 and show that there is no constructive
proof.

4.1 Edge reversal, definition and classical proof
I Definition 10 (Edge reversal). A simplicial set Y is said to have edge reversal when for
every edge e ∈ Y [1] there exists an edge f ∈ Y [1] with d1(f) = d0(e) and d0(f) = d1(e).

I Lemma 11. Kan simplicial sets have edge reversal.

Proof. Given an arbitrary Kan simplicial set Y and an edge e ∈ Y [1] we can make a map
G : Λ2

0 → Y by letting G(0) = G(2) = d1(e), G(1) = d0(e), G(01) = e and G(02) = s(d1(e)).
Since Y is Kan we can extend G to G : ∆2 → Y , giving us a value for G(12) ∈ Y [1], which
must be an edge between G(1) and G(2) = G(0), giving the reverse edge. J
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98 Non-Constructivity in Kan Simplicial Sets

We introduce some convenient ad-hoc terminology for later use.

I Definition 12 (Y X -good). Let X and Y are reflexive multigraphs and F01 : X[1]→ Y [1].
Define F0 = d1F01s : X[0] → Y [0] and F1 = d0F01s : X[0] → Y [0]. We say that F01 is
Y X-good when the following two requirements hold for i = 0, 1:

For all e, e′ ∈ X[1], if di(e) = di(e′) then diF01(e) = diF01(e′);
For all e ∈ X[1], Fid0(e) = Fid1(e).

The first requirement expresses that F01, F0, F1 respect endpoints, that is, if e : a → b in
X[1], then F01(e) : F0(a)→ F1(b) in Y [1]. The second requirement ensures that F0 and F1
are constant on each weakly connected component of X. (Notice that F01s(y) for y ∈ Y [0]
does not need to map to a degenerate edge, so F0 and F1 are not necessarily identical.)

I Lemma 13. If X and Y are reflexive multigraphs and F01 : X[1]→ Y [1] is Y X-good, then
we can extend F01 to a 1-simplex in S(Y )S(X).

Proof. To be a map in S(Y )S(X) we need to extend F01 : X[1]→ Y [1] to a family of maps
F ′01[n] : (∆1 × S(X))[n] → S(Y )[n] which commute with di and sj . Recall the definitions
F0 = d1F01s and F1 = d0F01s. We define F ′01[n] depending on n. If n = 0 then the input
will have the form (i, x) where 0 ≤ i ≤ 1 and x ∈ X[0], and we put F ′01[0](i, x) = Fi(x). If
n = 1 the input will have the form (ij, e) where 0 ≤ i ≤ j ≤ 1 and e ∈ X[1]. If i = j we put
F ′01(ij, e) = sFi(d0(e)). Note that since F01 is Y X -good, we know that Fi(d0(e)) = Fi(d1(e)),
justifying our choice of the degenerate edge as the output. If i < j we let F ′01(01, e) = F01(e).
If n > 1 any input to F ′01[n] will have the form (0a1b, (x0, . . . , xn; . . . eij , . . . )) such that
a+ b = n+ 1. We let F ′01[n] map this element to the tuple

(F0(x0), . . . , F0(xa−1), F1(xa) . . . , F1(xa+b−1); . . . e′ij , . . . ),

where e′ij = s(F0(xa)) if i < j < a, e′ij = F01(eij) if i < a ≤ j, and e′ij = s(F1(xa)) if
a ≤ i < j. That is, the F ′01[n] images are sequences of a number of F0 images followed by b
number of F1 images, with all edges being degenerate, except the bridges between the two
nodes. Since each of the derived Fi functions are constant on each connected component,
and the input consists exactly of sequences of nodes in the same connected component,
all of the elements F0(x0), . . . , F0(xa−1) are the same element in Y [0], and likewise for
F1(xa) . . . , F1(xa+b−1). This justifies our choice of e′ij as the degenerate edges.

It should be clear that this map does indeed commute with di and sj , completing the
proof. J

I Lemma 14 (classical). For all Kan graphs Y and X, if F01 : X[1] → Y [1] is Y X-good,
then there is an F10 : X[1]→ Y [1] such that d0F01 = d1F10 and d1F01 = d0F10.

Proof. Let X and Y be Kan graphs. The S(Y ) and S(X) are Kan simplicial sets by Lemma 9.
By applying the classical Theorem 2 we get that S(Y )S(X) has edge reversal. Since F01 is
Y X -good we extend F01 to an edge F ′01 ∈ S(Y )S(X)[1] as defined in the proof of Lemma 13.
By edge reversal in S(Y )S(X) we get an F ′10 ∈ S(Y )S(X)[1] satisfying d1(F ′10) = d0(F ′01) and
d0(F ′10) = d1(F ′01). We put F10(x) = F ′10(01, x). By expanding the definition of dk from Sec-
tion 3.4, we get the following properties: F ′10(00, e) = F ′01(11, e) and F ′10(11, e) = F ′01(00, e),
giving F ′10(0, di(e)) = F ′01(1, di(e)) and F ′10(1, di(e)) = F ′01(0, di(e)). We calculate d0F01(e) =
d0F

′
01(01, e) = F ′01(1, d0(e)) = F1d0(e). Since F01 is Y X -good (2nd requirement) we have

F1d0(e) = F1d1(e). We continue the calculation: F1d1(e) = F ′01(1, d1(e)) = F ′10(0, d1(e))
where the last step is justified above. We continue: F ′10(0, d1(e)) = d1F

′
10(01, e) = d1F10(e).

In total we have proved d0F01(e) = d1F10(e) for all e ∈ X[1]. Hence d0F01 = d1F10. The
other equation is proved symmetrically. J
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Table 1 Kripke (counter)model for edge reversal.

Day 1
X0 {x, x′}
X1 {s(x), s(x′)}
Y0 {y0, y1, y′

0, y′
1}

Y1 {s(y0), s(y1), s(y′
0), s(y′

1), y0y1 : y0→y1, y′
0y′

1 : y′
0→y′

1, a : y1→y0, b : y′
1→y′

0}

Day 2
X0 {x=x′}
X1 {s(x)=s(x′)}
Y0 {y0 = y′

0, y1 = y′
1}

Y1 {s(y0) = s(y′
0), s(y1) = s(y′

1), y0y1 = y′
0y′

1, a, b}

Input Output
F0 x y0

F0 x′ y′
0

F1 x y1

F1 x′ y′
1

F01 s(x) y0y1

F01 s(x′) y′
0y′

1

Kripke [8] showed that constructive logic is sound for Kripke models, so the existence of
a Kripke countermodel of a statement gives the non-existence of a constructive proof of that
statement. We will now, by the means of a Kripke model, see that Lemma 14 does not hold
constructively.

4.2 Edge reversal, the Kripke countermodel
We describe a Kripke model containing a Y X -good F01 such that there cannot be a function
F10 : X[1]→ Y [1] with d0F01 = d1F10 and d1F01 = d0F10, even though X and Y are Kan
graphs.

For clarity, the functions F0 = d1F01s and F1 = d0F01s as defined in Definition 12 are
also made explicit in this model. Face maps are part of the model, but not made explicit.

The model consists of two days, with an X and a Y part each. On day 1 both X and Y
consist of two separate components, which get merged on day 2. We give the model both in
Table 1 and, graphically, in Figure 1 and 2.

It is easy to see that both X and Y are Kan graphs by simply observing that each of their
two components are strongly connected. It is also clear that we cannot define a consistent F10.
In day 1 we would have to set F10(s(x)) = a and F10(s(x′)) = b to satisfy the requirement
that d0F01 = d1F10 and d1F01 = d0F10. The problem occurs in day 2, where we have that
s(x) = s(x′), but a 6= b, making it impossible for F10 to respect equality. Note that all other
functions, F0, F1, F01, s, d0, and d1 remain consistent after collapsing, that is, they still map
equal elements to equal elements.

5 Edge composition

In this section we give the classical proof of Theorem 3 and show that there is no constructive
proof.

I Definition 15 (Edge composition). A simplicial set Y is said to have edge composition
when for every edge e1, e2 ∈ Y [1], if d0(e1) = d1(e2) then there exists an edge f ∈ Y [1] with
d1(f) = d1(e1) and d0(f) = d0(e2).

I Lemma 16. Kan simplicial sets have edge composition.
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x y0 = F0(x) y1 = F1(x)

x′ y′0 = F0(x′) y′1 = F1(x′)

s(x)

s(x′)

s(y0)

y0y1 = F01(s(x))

a

s(y1)

y′0y
′
1 = F01(s(x′))

s(y′0)

b

s(y′1)

Figure 1 Kripke (counter)model for edge reversal, day 1.

x = x′ y0 = y′0 y1 = y′1

s(x) = s(x′)

F01(s(x)) = F01(s(x′))

s(y0) = s(y′0)

a

b

s(y1) = s(y′1)

Figure 2 Kripke (counter)model for edge reversal, day 2.

Proof. Given an arbitrary Kan simplicial set Y and edges e1, e2 ∈ Y [1] with d0(e1) = d1(e2),
we can make a map G : Λ2

1 → Y by putting G(0) = d1(e1), G(1) = d0(e1), G(2) = d0(e2)
G(01) = e1 and G(12) = e2. Since Y is Kan we can extend G to G : ∆2 → Y , giving us a
simplex G(02) : G(0)→ G(2) in Y [1], the composition of e1 and e2. J

By a proof essentially identical to the proof of Lemma 14 we get the following lemma.

I Lemma 17 (classical). For all Kan graphs Y and X, if F01 : X[1]→ Y [1] and F12 : X[1]→
Y [1] are Y X-good maps satisfying d0F01 = d1F12, then there is an F02 : X[1]→ Y [1] such
that d0F01 = d0F02 and d1F12 = d1F02.

In Figure 3 and 4 we see that Lemma 17 is not constructively provable. We have two
Y X -good functions F01 and F12, satisfying the requirement, and both X and Y are Kan
graphs. If S(Y )S(X) had edge composition we would get a function F02 that d1F01 = d1F02
and d0F12 = d0F02. However, such a function is not definable in the Kripke model. The
reason is analogous to the case of edge-reversal: from day 1 to day 2 we have equated objects
in the domain of F02 while keeping the images distinct. Specifically, on day 1 we are forced
to set F02(s(x)) = a and F02(s(x′)) = b, but on day 2 we have s(x) = s(x′), but a 6= b.
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x y0 = F0(x) y1 = F1(x) y2 = F2(x)

x′ y′0 = F0(x′) y′1 = F1(x) y′2 = F2(x′)

s(x)

s(x′)

F01(s(x))

a

F12(s(x))

c d

e

s(y0) s(y1) s(y2)

F01(s(x′))

b

F12(s(x′))

c′ d′

e′

s(y′0) s(y′1) s(y′2)

Figure 3 Kripke (counter)model for edge composition, day 1.

x = x′ y0 = y′0 y1 = y′1 y2 = y′2

s(x) = s(x′)

F01(s(x))

a

F12(s(x))

c = c′ d = d′

e = e′

b

s(y0) = s(y′0) s(y1) = s(y′1) s(y2) = s(y′2)

Figure 4 Kripke (counter)model for edge composition, day 2.

6 Evaluation of the results

The results up to now are summarized in Figure 5.
Having concrete, finite Kripke countermodels against Lemma 14 and 17 allows for a

further simplification: everything remains valid under the condition that X has at most two
points. Likewise, explicit bounds read off from the Kripke models can be imposed on the
number of points of Y and on the number of edges in X and in Y . The simplified results are
denoted by postfixing the number of the result by a ‘b’ for bounded, so Lemma 14b is the
bounded version of Lemma 14.
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Theorem 4
Theorem 2

Theorem 3

Lemma 14, not valid in Kripke model Fig. 1–2

Lemma 17, not valid in Kripke model Fig. 3–4

Figure 5 Summary of results, all implications constructive.

With explicit bounds on the size of the domain, functions are completely determined
by a finite number of function values. For example, if we have ∀z ∈ X. (z = x ∨ z = x′)
for x, x′ ∈ X, then the binary predicate fun(y, y′) ≡ (x = x′ → y = y′) on Y completely
describes all functions X → Y , in evidence x 7→ y, x′ 7→ y′. With this in mind it is not
difficult to express Lemma 14b as a first-order classical tautology Φ that is not true in all
Kripke models.

Now fix a constructive framework that is sufficiently expressive for the results in Figure 5.
For example, IZF (Zermelo-Fraenkel set theory in IPL, intuitionistic predicate logic) will
do. Let [|Φ|] be the Tarski interpretation of Φ expressed in IZF. The following fundamental
property of IZF could be called the semantic conservativity of IZF over IPL:

If [|Φ|] is provable in IZF, then Φ is true in all Kripke models.

Lubarsky [9] and McCarty [11] independently provided constructive proofs of the above
conservativity property of IZF. We gratefully acknowledge their prompt answers to our
question.1

Empowered by the proofs of Lubarsky and McCarty we can now conclude that Lemma 14b
cannot be proved in IZF. The same is true for Lemma 17b, and for all other results in Figure 5,
as well as for their bounded versions.

7 Kan graphs with explicit filler functions

Let us first give an intuitive explanation of our countermodels. They actually exploit the
undecidability of equality: on day 1 we don’t know what will be equal on day 2. (This is
different from the decidability of degeneracy, but the two are related: for example, an edge e
is degenerate iff e = s0(d1(e)).) In Figure 1 and 2, the point is that y0 6= y′0 on day 1, so one
cannot put F10(s(x)) = F10(s(x′)) = a since this conflicts with d0F10 = d1F01. One is thus
forced to a choice that turns out to be wrong on day 2.

One attempt to deal with this lack of information is to give Kan simplicial sets more
structure. One could for example change Definition 6 of a Kan simplicial set into one where
we not only know that the required n-simplex exists, but actually have functions producing
them. In the formulation using horns as in Section 3.2 this would amount to a dependent
function fill(k, j, F ) such that fill(k, j, F ) : ∆k → Y extends F : Λkj → Y , for any k, j, F .
This form of Kan simplicial set has been introduced by Nikolaus in [13] under the name
of algebraic Kan complex. The definition with explicit fill-functions has certain advantages,
both classically and constructively, as we will see below. However, one should be careful in
defining Y X : morphisms in the category of algebraic Kan complexes are required to map
chosen fillers in X to chosen fillers in Y . As a consequence, there are less maps from X to Y

1 Strengthening the semantic conservativity to syntactic conservativity, that is, concluding that Φ is
provable in intuitionistic predicate logic, by using the completeness of the Kripke semantics implicates
some classical logic. Although not needed for this paper, we think there is some general interest in a
constructive proof that IPL ` Ψ whenever IZF ` [|Ψ|], for any first-order sentence Ψ.
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as algebraic Kan complexes than as just simplicial sets. What we propose could be called
a functional Kan simplicial set, with explicit fill-functions but with maps as for ordinary
simplicial sets. As a consequence the exponential Y X of simplicial sets can be used.

To be able to prove an analogue of Lemma 9 we have to strengthen the notion of Kan
graph to also include such filler functions, cf. [2].

I Definition 18 (Kan fill-graph). A Kan fill-graph is a reflexive multigraph with a partial
function fill : Y [1]× Y [1]→ Y [1] such that for all e1, e2 ∈ Y [1], if e1 : a→ b and e2 : a→ c,
then fill(e1, e2) : b→ c.

As noted earlier, the Kan property together with reflexivity implies symmetry and
transitivity. We can now define the corresponding functions.

I Definition 19 (Edge reversal). For all e ∈ Y [1] where Y is a Kan fill-graph let

e−1 = fill(e, sd1(e)).

If e : a→ b, then sd1(e) : a→ a, and fill(e, sd1(e)) : b→ a.

Note that we in general don’t have (e−1)−1 = e, but we do have that di((e−1)−1) = di(e).

I Definition 20 (Edge composition). Using the inverse for edges in Y we define the composi-
tion of two edges e1 : a→ b and e2 : b→ c as

trans(e1, e2) = fill(e−1
1 , e2).

Again we are in no way guaranteed that trans(e1, s(b)) = e1 or trans(s(x), s(x)) = s(x).

We immediately see that the addition of explicit functions adds power, as we can now
prove constructively and trivially an analogue of Lemma 14.

I Lemma 21. For all Kan fill-graphs Y,X and for every F : X[1] → Y [1], the function
F−1 : X[1]→ Y [1] defined by F−1(e) = F (e)−1 satisfies d0F = d1F

−1 and d1F = d0F
−1.

Note how using explicit functions rules out the Kripke counter-example we gave of
Lemma 14. If s(x) = s(x′) on day 2, then we immediately get a = F−1

01 (s(x)) = F−1
01 (s(x′)) =

b since equality has to be preserved.
We can even use the above fact to show that:

I Lemma 22. For any reflexive multigraph X and Kan fill-graph Y , S(Y )S(X) has edge
reversal.

Proof. Assume an edge F ∈ S(Y )S(X)[1], we proceed to define F−1 such that d0(F ) =
d1(F−1) and d1(F ) = d0(F−1). As F ∈ S(Y )S(X)[1] we have F [n] : ∆1[n] ×X[n] → Y [n].
We start with n = 0, defining F−1[0] : (∆1×X)[0]→ Y [0] by letting F−1[0](0, x) = F [0](1, x)
and F−1[0](1, x) = F [0](0, x). Likewise for n = 1 we define F−1(00, e) = F (11, e) and
F−1(11, e) = F (00, e), these are directly enforced by d0(F ) = d1(F−1) and d1(F ) = d0(F−1).
For the case of F−1(01, e) we need to find an edge F−1(01, e) : F−1(0, d1e)→ F−1(1, d0e),
which from the way we defined F−1[0] is the same as an edge

F−1(01, e) : F (1, d1e)→ F (0, d0e).

The diagram in Figure 6 shows e ∈ S(X)[1] with its endpoints on the left, and the nodes
and edges we have directly reachable in S(Y ) using only F on the right.
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d0(e)

d1(e)

F (1, d0(e))

F (0, d1(e))

F (1, d1(e))

F (0, d0(e))

e F (01, e)

F (00, e)

F (11, e)

F−1(01, e)

Figure 6 Reversing F .

Reading off the figure we can define F−1(01, e) as follows:

F−1(01, e) = trans(F (11, e)),fill(F (01, e), F (00, e)))

Note that F−1 is well-defined since the functions involved in the definition are. Moreover,
F−1 commutes with s0, d0, d1 by construction.

Having defined F−1 for dimension 0 and 1, F−1 is also determined in higher dimensions,
because of the truncation in S(X), S(Y ). In the case of n > 1 any input to F−1[n] will have
the form

F−1(0a1b, (x0, . . . , xn; . . . eij , . . . ))
where a+ b = n+ 1. We let F−1[n] map this element to the tuple

(F−1(0, x0), . . . , F−1(0, xa−1), F−1(1, xa) . . . , F−1(1, xa+b−1); . . . e′ij , . . . ),

where e′ij = F−1(00, eij) if i < j < a, e′ij = F−1(01, eij) if i < a ≤ j, and e′ij = F−1(11, eij)
if a ≤ i < j. This commutes with face and degeneracy maps. J

Using the same techniques we can constructively prove the following variant of Lemma 17.

I Lemma 23. For any Kan graph X and Kan fill-graph Y , if F01 : X[1] → Y [1] and
F12 : X[1] → Y [1] satisfy d0F01 = d1F12, then there is a F02 : X[1] → Y [1] such that
d1F01 = d1F02 and d0F12 = d0F02.

I Lemma 24. For any reflexive multigraph X and Kan fill-graph Y , S(Y )S(X) has edge
composition.

Proof. Assume edges F01 ∈ S(Y )S(X), F12 ∈ S(Y )S(X) such that d0(F01) = d1(F12), and we
proceed to define F02 ∈ S(Y )S(X) such that d1(F02) = d1(F01) and d0(F02) = d0(F12).

As was the case in the proof of Lemma 22, we are forced on F02(0, x) = F01(0, x),
F02(1, x) = F12(1, x), F02(00, e) = F01(00, e), and F02(11, e) = F12(11, e).

For the case of F02(01, e) we need to find an edge F02(01, e) : F02(0, d1e)→ F02(1, d0e),
which from the way we defined F02[0] is the same as an edge

F02(01, e) : F01(0, d1e)→ F12(1, d0e).

We note that d0(F01) = d1(F12) enforces F01(11, e) = F12(00, e), which again enforces
F01(1, di(e)) = F12(0, di(e)). This gives the diagram in Figure 7, enabling us to read off:

F02(01, e) = fill(trans(F01(11, e), F01(01, e)−1), F12(01, e)). J
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d0(e)

d1(e) F01(0, d1(e))

F01(1, d0(e)) F12(0, d1(e))

F01(1, d1(e)) =

F12(0, d0(e))

e F01(01, e)

F01(11, e)

F12(01, e)

F02(01, e)

Figure 7 Filling the horn Λ2
1.

8 Conclusions and Future Research

We have given a thorough analysis of the non-constructivity of the basic result that the Kan
extension property is preserved under the usual operation of exponentiation of simplicial
sets. An important step in this analysis, also employed in [2], is the truncation of simplicial
sets to dimension 1. This allows us to study the basic result in the simplified situation of
Kan graphs. Once one has shown the constructive unprovability of the basic result in the
situation of Kan graphs, one obtains a fortiori its unprovability for Kan simplicial sets.

The much simpler notion of Kan graph (as compared to Kan simplicial set) invites to
further thought experiments. One of those is the study of simple, constructive consequences
of the Kan extension property, such as edge reversal and edge composition. It turns out that
already these consequences cannot be proven constructively.

Another experiment is to strengthen the Kan extension property from existence of an
n-simplex as in Definition 6 to having a function, called a filler, yielding these n-simplices.
This makes quite a difference. None of the Kripke models we have introduced is able to deal
with such fillers, since equating objects in X and Y implies that filler-values such as a and b
in Figure 1 also have to be equal. The question arises whether this is necessary so, or just
coincidental in the particular Kripke model. This question is answered in Section 7, where
we prove constructively that, if X is a graph and Y a Kan-fill graph, then S(Y )S(X) has edge
reversal and edge composition. This result may be of independent interest. It suggests that
showing the (expected) constructive unprovability of Theorem 4 for algebraic Kan complexes
as in [13] will require more complicated structures than graphs. The above expectation is
based on an analysis of filling a 2-horn in Y X , which requires defining F (001, t). As F has
to commute with s0, one must know whether the 2-simplex t is an s0-image or not. This can
in general only be decided by an appeal to classical logic. We have to leave this to future
research.
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