Guaranteeing Resource Bounds for Component
Software

Hoang Truong

Department of Informatics, University of Bergen,
PB.7800, N-5020 Bergen, Norway
hoang@ii.uib.no

Abstract. Component software is software that has been assembled
from various pieces of standardized, reusable computer programs, so-
called components. Executing component software creates instances of
these components. For several reasons, for example, limited resources
and/or application requirements, it can be important to have control
over the number of such instances.

In the previous work [3], we have given an abstract component language
and a type system which ensures that the number of simultaneously ac-
tive instances of any component never exceeds a sharp bound expressed
in the type. The language featured instantiation and reuse of compo-
nents, as well as sequential composition, choice and scope.

This work extends the previous one to include a parallel composition.
Moreover, we improve on the operational semantics by using a small-step
reduction relation. As a result, we can prove the soundness property of
our static type system using the technique of Wright and Felleisen.

1 Introduction

Component software is built from various components, possibly developed by
third-parties [15, 20, 17, 8]. These components may in turn use other components.
Upon execution instances of these components are created. For example, when we
launch a web browser application it may create an instance of a dial-up network
connection, an instance of a menubar and several instances of a toolbar, among
others. Each toolbar may in turn create its own control instances such as buttons,
addressbars, bookmarks, and so on.

The process of creating an instance of a component x does not only mean
the allocation of memory space for z’s code and data structures, the creation
of instances of x’s subcomponents (and so on), but possibly also the binding
of other system and hardware resources. Usually, these resources are limited
and components are required to have only a certain number of simultaneously
active instances. In the above example, there should be only one instance of a
menubar and one instance of a modem for network connection. Other examples
come from the singleton pattern and its extensions (multitons), which have been
widely discussed in literature [10,9]. These patterns limit the number of objects
of a certain class dynamically, at runtime.

When building large component software it can easily happen that different
instances of the same component are created. Creating more active instances
than allowed can lead to errors or even a system crash, when there are not
enough resources for them. An example is resource-exhaustion DoS (Denial of
Service) attacks which cause a temporary loss of services. There are several
ways to meet this challenge, ranging from testing, runtime checking [9], to static
analysis.

Type systems are a branch of static analysis. Type systems have traditionally
been used for compile-time error-checking, cf. [4]. Recently, there are several
works on using type systems for certifying important security properties, such
as performance safety, memory safety, control-flow safety [14, 6, 5]. In component
software, typing has been studied in relation to integrating components such as
type-safe composition [19] or type-safe evolution [13]. In this paper we explore
the possibility of a type system which allows one to detect statically whether or
not the number of simultaneously active instances of specific components exceeds
the allowed number. Note that here we only control resources by the number of
instances. However, we can extend to more specific resources, such as memory,
by adding annotations to components using such resources.

For this purpose we have designed a component language where we have ab-
stracted away many aspects of components and have kept only those that are
relevant to instantiation and composition. In the previous work [3], the main
features are instantiation and reuse, sequential composition, choice and scope.
In this work we add a parallel composition, which allows two expressions run-
ning independently at the same time. At the first look, the parallel composition
seems adding only a small difficulty to the type system. However, we have found
that we have to make substantial changes to the type system to obtain sharp
upper bounds as in [3]. As before, reusing a component means to use an existing
instance of the component if there is already one, and to create a new instance
only if there exists none. Though abstract, the strength of the primitives for
composition is considerable. Choice allows us to model both conditionals and
non-determinism (due to, e.g., user input). It can also be used when a compo-
nent have several compatible versions and the system can choose one of them at
runtime. Scope is a mechanism to deallocate instances but it can also be used
to model method calls. Sequential composition is associative.

The operational semantics in this work has also been improved as compared
to the previous one. Instead of using a big-step operational semantics, here we
use a small-step reduction relation and as a result, we can prove the soundness
of our type system using the technique of Wright and Felleisen [18].

The type inference algorithm for this system is almost the same as in [3]. We
still have a polynomial time type inference algorithm but we leave it out here
for the sake of brevity.

The paper is organized as follows. Section 2 introduces the component lan-
guage and a small-step operational semantics. In Section 3 we define types and
the typing relation. Properties of the type system and the operational semantics
are presented in Section 4. Last, we outline some future directions.

2 A Component Language

2.1 Terms

Component programs, declarations and expressions are defined in Table 1. In the
definition we use extended Backus-Naur Form with the following meta-symbols:
infix | for choice and overlining for Kleene closure (zero or more iterations).

Prog ::= Decls; F Program
Decls :=2x—<FE Declarations
A . F = Expressions
€ Empty expression
| newz New instantiation
| reuxz Reuse instantiation
| EE Sequential composition
| (E+E) Choice composition
| (E|E) Parallel composition
| {E} Scope

Table 1. Syntax

We use a, b, .., z for component names and A, .., E for expressions. We collect
all component names in a set C.

We have two primitives (new and reu) for creating and (if possible) reusing
an instance of a component, and four primitives for composition (sequential
composition denoted by juxtaposition, + for choice, || for parallel, and {...} for
scope). Together with the empty expression e these generate so-called compo-
nent expressions. A declaration x— E states how the component = depends on
subcomponents as expressed in the component expression F. If x has no sub-
components then F is € and we call x a primitive component. Upon instantiation
or reuse of x the expression E is executed. A component program consists of
declarations and ends with a main expression which sparks off the execution,
see Section 2.2.

The following example is a well-formed component program:

d—<e¢ e—<e a—=(newd| {reud}reue)

b—(reud{newa} + newenewa)reud; reub

In this example, d and e are primitive components. Component a is the parallel
composition of newd and {reud}reue. Component b has a choice expression
before reuse of an instance of d. The first subexpression of the choice expression
is reud{newa}.

We can view {newa} in this expression as a function call f() (in traditional
programming languages). Function f then has body newa, which means f()
needs a new instance of a to carry out its task. We abstract from the details

of this job, the only relevant aspect here is that it involves a new instance of a
which will be deallocated upon exiting f.

The example is simple, but as we will see in the next section, there are many
possible runs of the program, resulting in difference numbers of instances for
each component during and after each run.

2.2 Operational Semantics

The operational semantics is based on a reduction relation and a structural
congruence. The reduction relation is a set of small-step reduction rules between
configurations. The structural congruence, essentially commutativity of + and
|I, allows us to rearrange the structure of a configuration so that reduction rules
may be applied. In the sequel we assume that we are working with a program
Prog = Decls; E and t—< A € Decls denotes that x— A is a declaration in Decls.

Before going into the details of congruence and reduction rules, we define
our notion of configuration and its relevant components. A configuration is a
binary tree T of threads. A thread is a stack ST of pairs of a local store and
an expression (M, E), where M is a multiset over component names C, and FE
is an expression as defined in Table 1. A thread is active if it is a leaf thread.
Reduction always occurs at one of the leaf/active threads. A configuration is
terminal if it has only one thread of the form (M, €). Stacks and configurations
are defined as follows:

ST = (My,F1)o..o(M,,E,) Stack

T, S = Configurations
Lf(ST) Leaf
| Nd(ST,T) Node with one branch
| Nd(ST,T,T) Node with two branches
Multisets are denoted by [...], where sets are denoted, as usual, by {...}.

M (z) is the multiplicity of element z in multiset M and M(z) =0 if = ¢ M.
The operation U is union of multisets: (M U N)(z) = max(M (z), N(z)). The
operation W is additive union of multisets: (MW N)(z) = M (x)+ N(x). We write
M + z for M W [z] and when © € M we write M — x for M — [z].

We assign to each node in our tree a location. Let «a, 8 range over locations.
A location is a sequence over {l,r}. The root is assigned the empty sequence.
The locations of two direct nodes from the root are [and r. The locations of the
two direct child nodes of [are ([and [r, and so on. In general, al and ar are the
locations of the direct children of a. We write o € T when « is a valid location
in tree T. Whenever a new node is created, a location is assigned to it and this
location will not be changed by rule conBranch.

Since the location of a parent node is a subsequence of the location of its
children (direct and indirect), we define the following binary prefix ordering
relation < over locations. For location o = sgs1..8, where s; € {l,7}, &’ < «
if o = 5051..8m, 0 < m < n. The set of all locations in a tree and this binary

relation form a partially ordered set [7]. A maximal element of this partially
ordered set is the location of a leaf. We denote by leaves(T) the set of locations
of all the leaves of T.

We denote by T(«) the stack at location « in T. We write ST = (M, E1)o..0
(M,,, E,) for a stack of n elements where (M7, F1) is the bottom and (M, E,)
is the top of the stack. 'o’ is the stack separator. We call a.k the position of the
kth element (from the bottom) of the stack T(«). Again the set of all positions
a.k in the tree T is a partially ordered set with the following binary relation.
ar.k1 < ag.ky if either vy = ag and ky < ko, or a1 < as. We denote by
hi(ST) the height of the stack and ST is the stack of from bottom to the
kth element: ST, = (M1, E1) o ..o (Mg, E)). By [ST|] we denote the multiset
of active instances in ST, so [ST|x] = My W .. W M. We simply write [ST)
when k = hi(ST). We denote by [T] the multiset of all active instances in T:

[T) = Waer[T(a)]

(osNew) x—<A € Decls
T[Lf(ST o (M, newzE))]oa — T[LF(ST o (M + z, AE))]a

(osReul) z—<A € Decls z ¢ reuLfr(a.hi(T(a)))

T[LF(ST o (M, reuzE))]a — T[LF(ST o (M + z, AE))]a

(osReu2) x—<A € Decls z € reuLfr(a.hi(T(w)))

T[LF(ST o (M, reuzE))]a — T[LF(ST o (M, AE))]a

(osChoice)

T[LF(ST o (M, (A + B)E))]a — TILF(ST o (M, AE))]a

(osPush)

TILF(ST o (M, {A}YE))]a — T[LF(ST o (M, E) o ([J, A))]a

(osPop)

T[Lf(gT o (M, E) o (M',¢))la — T[LF(ST o (M, E))]a

(osParlntr)

TILF(ST o (M, (A || B)E))]la — TINd(ST o (M, E), LF(([], A)), LF(([}, B)))]a
(osParElim1)

T[Nd(ST o (M, E),S, LE(M", €)))]a — TINd(ST o (M & M, E),S)]a
(osParElim2)

T[Nd(ST o (M, E), LE(M’, €)))]la — T[LF(ST o (M & M', E))]a

(osCong) S=¢
T[S]la — T[S]a

Table 2. Reduction rules
The next notion is that of reusable instances because the primitive reu

depends on the state of the configuration. In our model, the instantiation always
occurs at the top of a leaf stack, for the moment we only need the concept

(conChoice)

Lf(ST o (M,(A+ B)E)) = Lf(ST o (M,(B+ A))E)
(conBranch)

Nd(ST,Lf(ST),T) = Nd(ST,T,Lf(ST))

Table 3. Structural congruence: basic axioms

of reusable instances for an expression at a leaf node. Later, we will extend
the notion of reusable instances to non-leaf nodes. The multiset of reuseable
instances at level k of the leaf stack « is the collection of all existing instances in
all the predecessor nodes # < « and all the existing instances from the bottom
of stack T(«) up to k (inclusive).

reuLfr(a.k) = H‘J [T(B)] ¥ [T()]k]
B<a

The reduction relation is defined in terms of a rewriting system [16]. By T[]
we denote a tree with a hole at the leaf location «. Filling this hole with a
(sub)tree T’ will be denoted by T[T'],.

Table 2 defines the reduction rules. Each reduction rule has two lines. The
first line contains a rule name followed by a list of conditions. The second line has
the form T — T’, which states that if the configuration has the form T and the
condition in the first line holds, then we can move to configuration T’. As usual,
—* is the reflexive and transitive closure of — . One step reduction is defined
first by choosing an arbitrary active thread. Then depending on the pattern of the
expression at the top of the chosen thread and the state of the configuration, the
appropriate rewrite rule is selected. If necessary the configuration is rearranged
using the congruence rules. By the rules osNew, osReul, osReu2, and osChoice
we only rewrite the element at the top of the stack. The rule osPush adds an
element to the top of the leaf stack. The rule osPop only removes the element at
the top of the stack when the stack has at least two elements. This means that no
stack in any configuration is empty. By the rule osParIntr, a leaf is replaced by a
branch of a node and two leaves. In contrast, by the rules osParElim1, osParElim2,
a leaf is removed from the tree and its parent node may be promoted to be a
leaf if it is the case (osParElim2). The rule osCong allows the configuration to be
rearranged so that reduction rule can be applied.

The structural congruence relation = is defined in Table 3. By the congruence
rules, we can replace the left hand side of = by the right hand side in the
reduction rule osCong.

The example at the end of Section 2.1 is used to illustrate the operational
semantics. There are many possible runs of the program due to the choice com-
position and when a configuration has more than one leaf thread, the number of
possible runs can be exponential as active threads have the same priority. Here
we only show one of the possible runs. To make it easier to follow, we repre-
sent the trees graphically instead of using the formal syntax; “~ and ’{’ denote

branches with one and two child nodes, respectively. At the starting point, the
configuration has one leaf Lf([], reub). After the first step, there are two pos-
sibilities because we can apply the congruence rule conChoice before the rule
osChoice.

(Start) ([], reub)
(osReu) — ([b], (reud{newa} + newenewa)reud)

(osChoice) — ([b], reud{newa}reud)
(or ([b], newenewareud))

Now we continue with the first possibility. When there are two or more leaves,
we draw a box around the leaf which is to be executed in the next step.

([b], reud{ newa} reud)
(osReul) — ([b,d],{newa} reud)
(osPush) — ([b,d], reud) o ([], newa)
(osNew) — ([b,d], reud) o ([a], (newd || { reud} reue))
([, newd)
([, {reud} reue) ‘

(osParlntr) — ([b,d], reud) o ([a],€) <’

([], newd)
Push) — ([b,d], reud) o ([a], €
(OS S) ([}) ([]) <([]7 reue)o([]’ reud)
(], ¢)

(osNew) — ([b, d], reud) o ([a], €) <’ ([], reue) o ([], reud) ‘

ul) — reua)o (|al, € (ldl.©)
(osReul) — (b dl, reud)o (al.e) (o

(osParElim1) — ([b,d], reud) o ([a,d],e)—([], reue) o ([],¢€)
(osPop) — ([b,d], reud) o ([a,d],e)—([], reue)
(osReu) — ([b,d], reud) o ([a,d],€) —([e],€)

(osParElim2) — ([b,d], reud) o ([a,d, €], e
(osPop) — ([b,d], reud)

(osReu2) — ([b,d],€) (terminal)

Last, we should note that we could model our operational semantics slightly
simpler by using only complete binary trees. A complete binary tree is a binary
tree with the additional property that every node must have exactly two children
if an internal node, and zero children if a leaf node. Then we have only one rule

for truncating the tree:
(osParElim)
TINd(ST o (M, E),Lf((M’,€)), LE(M",€)))]a — T[LF(ST o (MW M' & M", E))]a

However, doing in this way reduces the reuse capability because two sibling

threads cannot reuse instances of each other, after one has terminated before
the other. In our model this is possible as a leaf can return its instances to its
parent and the other sibling branch can reuse the instances from its parent.

3 Type System

We start this section by describing the types informally and giving some intuitive
examples. Then we will define and explain the typing rules in more details.

Definition 1 (Types). Types of component expressions are tuples
X = (X' x° X7 xP X!

where X, X° X7, XP and X' are finite multisets over C. We let U,V,...,Z
range over types.

Let us first explain informally why multisets, which multisets and why five.
The aim is to have an upper bound of the number of simultaneously active
instances of any component during the execution of the expression (this will be
X%). Multisets are the right data structure to collect and count such instances.

In addition, we want compositionality of typing, that is, we want the types
to be computable from types of subexpressions. Since subexpressions may be
scoped, it is necessary to have an upper bound of the number of instances that
are still active after the execution of an expression (this will be X°). Pairs
(X' X°) sufficed for the purpose of the paper [2]. Here we consider also reusing
instances of components and this depends on whether there is already such an
instance or not. More concretely, in a sequential composition of A and B, the
behaviour of reu’s in B depends on the instances that are active after the
execution of A, which would violate the compositionality. In order to save the
compositionality, we have to add three more multisets to the types, denoted
by X7, X? and X'. The first two multisets X7, X? express the same bounds
as X’, X°, but with respect to executing the expression in a state where every
component has already one active instance.

Without the parallel composition, these four multisets (X¢, X°, X7, XP) suf-
ficed for the purpose of [3] since the difference between X*(z) and X7 (x) as well
as between X°(x) and XP(x) is at most one for every xz. With the new primitive
of parallel composition, these differences may be greater than one. For example,
(reuz || reuz) generates no x’s if there is already an active z, and two a’s
otherwise. Moreover, due to the non-determinism of the choice composition, the
surviving instances after executing A are also non-deterministic. For example,
newx + newy may or may not leave an active a. In order to obtain a sharp
bound for z, we need to know whether B can always reuse x after executing A
or not. Because if it is the case, the maximum number of additional instances of
x generated by B is only Y7 (x), where Y is the type of B. Therefore, we need
the last component X! in the type expression. X' is the set of instances which
are guaranteed to be active after executing A. Although X' could be a set, we

let X! be a multiset so that the same multiset operations in the later sections
can be applied without any conversion.

Based on the above intuitions, the following typings are easy:
new d:([d], [d], [d], [d], [d]), {newd}:([d],], [d], [}, []), reud:([d],d],]],],[d]),
reud{newd}:([d,d],[d],[d],]],[d]), reud{newa}:(|a,d,d],[d],[a,d],][],[d]),
(reud || newe):{([d, €], [d,€],[e], [e],[d,e€]), (reud+ newe):([d, €], [d, €],][], [e],])s
where d—< € and a— newd like in the example program in Section 2.1.

The intuitions from the above paragraphs will be indispensable for under-
standing the typing rules later in this section, in particular the sequencing rule.
We will explain more when describing each typing rule, but before that we have
to prepare with some preliminary definitions.

Let R be the requirement that some components in C can have at most a
certain number of simultaneous instances. R can be viewed as a total function
from C to NU{oo}. Then R(z) € N is the maximum allowed number of simulta-
neously active instances of x; R(z) = oo expresses that x can have any number
of instances. By convention n < oo for all n € N. Since R(z) = 0 means that
2 must not be used by the program and this property can be easily checked by
scanning through the program, we assume that R(x) > 0. For any multiset M,
we denote M C R when M (z) < R(z) for all z € M.

A basis or an environment is a list of declarations: r1—< Aq,...,x,—< A,
with distinct variables x; # x; for all i # j, as in [1]. Let I', A range over bases.
The domain of basis I' = 1< Ay, ..., z,—~< A, denoted by Dom(I), is the set
{z1,...,2,}. A typing judgment is a tuple of the form

IrFrp A:X

and it asserts that expression A has type X in the environment I', with respect
to requirement R. We leave out subscript R when R is clear from context.

Definition 2 (Typing rules). Type judgments I' = A: X are derived by ap-
plying the typing rules in Table 4 in the usual inductive way.

In rule Seq in Table 4, expression M!y, where M, N are multisets, is defined
as follows:

0, ifxreN
M(z), otherwise

We let this operator have higher order of priority than other multiset operations.

Besides the intuition given in the beginning of this section, some further
explanation of these typing rules is in order. The rule Axiom requires no premise
and is used to take off. The rules New and Reu allow us to type expressions new x
and reuz, respectively. The rule Weaken is used to expand bases so that we can
combine typings in the other rules. The side condition x ¢ Dom(I") in the rules
Weaken, New and Reu keeps the expanded basis well-formed. The rules Choice
and Scope are easy to understand recalling the semantics of the corresponding
reduction rules osChoice, osPush and osPop. In the rule Parallel, since we have
no specific schedule for two parallel threads, both can generate their maximum

10

(Axiom) (Weaken)

I'tA:X I'tB:Y x¢ Dom(I')
Fe(l, 0,00, Iz<BF A:X
(New)

I'A:X z¢ Dom(I)
INNz—AF newx: (X' + 2, X+, X7 +2,XP 4+ 2, X' +1x)
(Reu)

I'-A:X z¢ Dom(I)
I'e—AbF reuz: (X' + 2, X+, X7, XP, X! +x)
(Seq)

I'A:X THFB:Y X°wYICR AB#e
I' AB:(X* U (X°WY) UYily, (XewYP)UYely, X7 U (XPWYJ), XPryYPr XIUYY)
(Choice)

I'-A:X I'+B:Y
I'-(A+B):(X*UY! X°eUYe, XiUYJI, XPUYP XINY?)
(Parallel)

I'A:X T'FB:Y X'WY'CR
T'FA|B):(XwY! XoewYe XiwYi XpwYr XLUY!)
(Scope)

I'FA:X
M {A} (X1, X9,0,0)

Table 4. Typing rules

numbers of instances for any component. To be on the safe side, we have to
prepare for the worst case and therefore the type of two parallel expressions is
additive union of their types but the last multiset. Recall that the semantics of
the last multiset is just a set, it is enough to take union for the last multiset.
The side condition follows naturally.

The most critical rule is Seq because sequencing two expressions can lead
to increase in instances of the composed expression. Let us start with the first
multiset of the type expression of AB. After expression A is executed, there
are at most X°(x) instances of component z. If z is not in the system state
after the execution of A, then at most V() instances of 2 can be created when
executing B. Otherwise, at most Y/ (x) additional instances of 2 can be created.
If we take the maximum of (X°wY7)(z) and Y?(z) to be the maximum number
of which can be created after the execution of A and during the execution of
B, then we do not obtain the sharp upper bound. For example, let A = reuz
and B = (reuz || reuz). Executing B alone can create two instances of z.
However, executing AB creates only one instance of x.

To remedy the situation we need to know whether an instance of x is always
in the system state after the execution of A or not. If it is, then we know that
at most Y7 (x) additional instances can be created; otherwise, Y*(z) additional
instances can be created when executing B. Therefore the maximum number
of x after execution of A and during execution of B is either (X° & Y7)(z), or

11

(X'wY9)(x) if XY (z) > 1, or Yi(x) if X!(x) = 0. Since X° D X!, the number
becomes ((X°WY7)UYix)(z).

In addition, because executing A can create at most X*(x) instances, the first
component of type of AB is the maximum of X*(x) and ((X°WY7)UY " x)(z).
Last, since X* and Y satisfy the requirement R, we only require an additional
side condition X°WY7 C R which means X°(z)+Y7(z) < R(z) for each z € C.

Analogously, after executing AB, the maximum number of surviving in-
stances of z is either X°(z) + YP(x), or Y°(x) if there is a run of A which
ends with no surviving instance of x. Hence the surviving instances of AB are
(X°wWwYP)UYOlx:.

By a similar reasoning, when we start with a stack containing at least one
instance of every component, we can calculate the second and the last compo-
nents in the type expression for AB and the whole type expression of AB is
(XTU(XwY)UY g, (XeWYP)UYOly, XI U (XPwY?), XPwYP, X UYY.

Using the example in Section 2.1 with assumption that R = {b — 1,e —
2,a,d +— 4}, we derive type for reub. Note that we omitted some side conditions
as they can be checked easily and we shortened the rule names to the first two
characters. The rule Axiom is also simplified.

. e 0,0, 0. I
o d=et reud:([d [d], [}, [l.[d]) \y, e 00,0,
We_d=et {reud}:([d], []. I [, [) CHEFG ({0, 0,0,0. 1 (1)
d=<e e<ebt {reud}:([d],[],[],[].)
we L0 L0 e 0,001
o e d=cr ILL 10,0}
Se d—<e,e<et reue:([e],[e], [],], [e]) 2)
d—e,e<ek {reud}reue:([d,el, e,],], e])
Ne e ([, 0,0, 0.

We

]
. d=<c o=t newd: ([, [, [, [, [}
d—e,e<el (newd || {reud}reue):{[d,d, €], [d, €], [d], [d], [d,e])
d—e,e<e,a—(newd || {reud}reue) F newa:([a,d,d, €], [a,d, €], a,d],[a,d],[a,d, e])

)
d—et+ newd:{([d],[d], [[L[] [d])
[

Ne

Similarly, we can derive I' - reub:([b,a,d,d, €], [b,a,d, €], |a,d, €], [a,d, €], [a,b,d, €])
where I' = d<¢,e<¢,a<(newd || {reud} reud),b—< (reud{ newa}+newenewa)reud.

In this example expression reub is typable. If R(d) = 1, the expression would
not be typable as the side condition when paralleling newd and {reud}reue
would not be satisfied. Also, note that the above type derivation is not the only
one but, as we will see later, the type for any expression is unique.

As mentioned in the Section 1, we can infer specific resource consumption
from our types by adding annotations to the source programs. For example, if
component a and d each creates a database connection, then from the type of b,
we know that the program, in particular the main expression reub, may need
three database connections (since the first component in the type of b has one a
and two d’s). From another point of view, we view d as a database connection
component, then we know that the program needs two database connections.

12

We end this section with the definition of well-typed program.

Definition 3 (Well-typed programs). Let R be a requirement. Program Prog =
Decls; E is well-typed w.r.t. R if there exists a reordering I of declarations in

Decls such that I' -r E: X.

4 Formal Properties

4.1 Type Soundness

A fundamental property of static type systems is type soundness or safety [4].
It states that well-typed programs cannot cause type errors. In our case, type
errors occur when the program tries to instantiate a component x but there is no
declaration of x or when a configuration violates requirement R, that is, there
exists a component x whose the number of active instances is greater than the
allowed number, R(x) .

Our proof of the type soundness is based on the approach of Wright and
Felleisen [18]. We will prove two main lemmas: Preservation and Progress. The
first lemma states that well-typedness is preserved under reduction. The latter
guarantees that well-typed programs cannot get stuck, that is, move to a non-
terminal state, from which it cannot move to another state. In order to use
this technique, we need to define the notion of well-typed configuration. Before
giving the formal definition of well-typed configuration we need some auxiliary
definitions.

Next we formalize the notion of subtree. Given a tree T. The set of positions
L={ajki € T|1<i<m}isvalidif a;.k; £ oj.k; for all i # j. The tree
T’ obtained from T by removing all elements at positions a.k > «;.k; for all
1 < i < m is a subtree of T, notation T' T, T or T = T|.. Consequently, T’
has the same root as T. When £ is empty, we get T/ = T.

The next one is the notion of the reusable instances for the expression E at
an arbitrary position a.k. Recall that we have defined the reusable instances for
an expression in a leaf node in Section 2.2. Now we extend this notion to an
arbitrary position a.k. Due to the nondeterminism of our operational semantics,
the collection of reusable instances for an expression in a non-leaf node is also
non-deterministic, but we can calculate its sharp upper bound and a lower bound.
Note that due to the semantics of reu, it is enough for the latter being a
collection of instances which E can always reuse. We define the latter first and
denote this collection by reul(a.k).

The elements of reulr(a.k) are not only those in reuLfr(a.k) but also ones
returned from its child nodes, retly(a.k) (see the rules osParElim1, osParElim2 in
Table 2.)

reulp(a.k) = reulfr(a.k) U retlp(a.k)

The set of instances returned to a.k is empty if a.k is not at the top of a.
Otherwise, it contains instances which will be generated at the bottom of its

13

child nodes. Since the child nodes may have more children, we need to make
recursive calls to them.

[, ifk <hi(T(a)) or .k ¢ T

retlp(a.k) = {Uﬁe{alm}([qr(m)] UX'Uretlr(.1)), otherwise

where X is the type of the expression at position 8.1 and T(8.1) is the multiset
at position 3.1.

Analogously, for the sharp upper bound, the maximal number of instances
returned to a position a.k (retopy(a.k)) is zero if k is not at the top of the stack
at «. Otherwise, it contains the instances in the multisets at the bottom of its
child nodes and the maximal number of instances, opy(a.k), which survive the
expressions here. opp(a.k) is calculated as in the sequencing typing rule Seq.

opr(a.k) = XP U X ety (ank)

Here X is the type of the expression at position a.k.

Last, the child nodes of a.k may received instances from its child nodes and
so on, so we need to call the function recursively. To simplify the definition of
the function retl and retop with recursion, we let the function return an empty
multiset for invalid positions a.k ¢ T.

[, if & <hi(T(a)) or ak ¢ T

retopr(a.k) = {ng{al,w}([mﬂ'm W opy(B.1) W retopr(5.1)), otherwise

We are going to define the central notion of well-typed configuration. Its
main statement is that the total number of active instances in the configura-
tion respects the requirement R. Since the leaves of the configuration tree may
generate more instances, we need to include these instances in the total num-
ber. Furthermore, because the tree can shrink and when it shrinks, some nodes
eventually become leaves we need to account for these future states also. The
function ijp(a.k) below returns a multiset which is the maximal number of in-
stances which can be generated by the expression at the position «.k. As in the
sequencing typing rule Seq, this number is bounded by the maximal number
returned from its child nodes (retopp(a.k)) and the additional instances (X7)
for components that indeed are reused, where X is the type of the expression
at position a.k. For runs after which = may not be in the set of reusable in-
stances, an additional bound X*(x) should be taken into account. This explains
the definition of the function ij.

ijr(a.k) = [T(a.k)] W ((retopp(a.k) W X7) U X veur(a.k))

Now we are ready to define the notion of a well-typed configuration. The
first clause requires that all expressions in the configuration are well-typed. The
second one contains the safety behaviour of the configuration. It requires that
the total number of existing instances in the configuration and the ones which
may be generated by expressions in the future still respect the requirement R.

14

Definition 4 (Well-typed configuration). Let I" be a legal basis. Configura-
tion T is well-typed with respect to requirement R if

1. for every E occurring in T there exists X such that I' - E: X, and
2. for all valid set L of positions in T:

W [Tak)]e [irlak) CR
ak<L’ a.keL’

where L' is the set of all positions at the top of leaves of subtree T|., i.e.
L' = {a.hi(T|z(a)) | @ € leaves(T|z)}.

Having the definition of well-typed configuration, the two main lemmas men-
tioned at the beginning of the section are stated as follows.

Lemma 1 (Preservation). If T is a well-typed configuration and T — T,
then T’ is well-typed.

Lemma 2 (Progress). If T is a well-typed configuration, then either

1. there exists configuration T’ such that T — T’ or
2. T is terminal.

The one step reduction has the following additional invariants. On one hand,
these invariants give us a better understanding about the behaviour of the op-
erational semantics. On the other hand, they simplify the proof of Lemma 1.

Lemma 3 (Well-typedness of expressions under reduction). If T is a
well-typed configuration with respect to a given basis I' and T — T', then every
E occurring in T is well-typed.

Lemma 4 (Invariant of reul). If T is a well-typed configuration with respect
to a given basis I' and T — T’, then for all positions occurring in both T and
T

z € reulp(a.k) = z € reulp (k)

Lemma 5 (Invariant of retop). If T is a well-typed configuration with respect

to a given basis I' and T — T, then for all positions occurring in both T and
T:

[T(c.k)] W opy(a.k) Wretopy(a.k) 2 [T (k)] W opy (av.k) W retopy (av.k)

Finally, the type soundness property allows us to safely execute well-typed
component programs. That is, during the execution of the programs the number
of active instances of any component never exceeds the allowed number.

Theorem 1 (Soundness). Let R be a requirement, I' a basis, E an expression
and suppose I' b E: X for some X. Let T = Lf([], E). Then for every sequence
of reductions T —* T’ we have [T'] C R.

15

4.2 Other Properties

This section lists some fundamental properties of our type system. These prop-

erties are needed to prove the lemmas and theorem in the previous section.

Most of these properties are analogous to those in [3]. We start by giving some

definitions. In the sequel we use X* for any of X*, X° X7, X? and X'
Following [1] we fix some terminology on bases or environments.

Definition 5 (Bases). Let I' = x1—<Ay,...,2,—< A, be a basis.

— I' is called legal if I' - A: X for some expression A and type X.

A declaration x— A is in I', notation x—<A € I', if x = x; and A = A; for
some 1.

A s part of I', notation A C I', if A = z;, —< A, ..., 2, — A, with
1<i1 <...<ir <n. Note that the order is preserved.

— A is gninitial segment of I', if A = 1< Aq,...,x;<A; for somel < j < n.

For any expression F, let var(FE) denote the set of variables occurring in F:

var(newz) = var(reux) = {x}, var({4}) =var(4),
var(AB) = var((A + B)) = var((A | B)) = var(A4) Uvar(B)

The following lemma collects a number of simple properties of a typing judg-
ment. It also shows some relations among multisets of A and any legal basis
always has distinct declarations.

Lemma 6 (Legal typing). If I' - A: X, then

1. elements of var(A), X* are in Dom(I"),

2. e[, 1,0, 0),

3. every variable in Dom(I") is declared only once in I',
4. X°CX'CRand XP C X7 CR,

5. XJ C X', XPC X°, and X! C X°.

The following lemma shows the associativity of the sequential composition.

Lemma 7 (Associativity). If I' - A;: X, for i € {1,2,3}, then the types of
(A1A2)As and A1(A3xA3) are the same.

The following lemma is important in that it allows us to find a syntax-directed
derivation of the type of an expression and hence it allows us to calculate the
types of sub-expressions and is used in type inference. This lemma is sometimes
called the inversion lemma of the typing relation [12].

Lemma 8 (Generation).

1. If '+ newxz: X, then v € XP and there exists bases A, A’ and ezpression
A such that I' = A,z—< A, A, and A A: (X' — 2, X° — 2, X — 2, XP —
z, X! —).

2. If 't reux: X, then x € X° and there exist bases A, A’ and expression A
such that I' = A,x—<A, A, and A+ A: (X' — 2, X° —x, X7, XP, X! —).

16

8. If ' AB: Z with A, B # €, then there exist X, Y such that ' - A: X,
I'B:Y and Z = (X' U (X°WY)UY !, (X°WYP)UYOlx, XU (XPW
Y, XPwYP XL UYY.

4. If 't (A+ B):Z, then there exist X, Y such that 'F A: X, ' B:Y and
Z=(X'UY,X°UY°, XIUYI, XPUY?, X nYY).

5. If ' (A || B): Z, then there exist X, Y such that ' - A: X, I'+ B:Y,
and Z = (X'WY X WY’ XTI WY XPyYP X UY).

6. If ' = {A}y: (X' [], X7,[],[]), then there exist multisets X°, XP, and X' such
that ' A: X.

The next lemma stresses the significance of the order of declarations in a
legal basis in our type system. Besides, because of the weakening rule, there can
be many legal bases under which a well-typed expression can be derived. Thus,
its 'inversion’ is stated in the lemma following.

Lemma 9 (Legal monotonicity).

1. If I'= A x=<FE, A is legal, then A+ E:X for some X.
2. IfTFE:X, ' CI" and I is legal, then I'" - E: X.

Lemma 10 (Strengthening). If e—< A+ B :Y and © ¢ var(B), then
I'B:Y andz ¢ Y*.

Last, in our type system, when an expression has a type this type is unique.
This property is stated in the following proposition.

Proposition 1 (Uniqueness of types). If ' F A: X and I' - A:Y, then
X' =Y, X0=Y° XI =YI, XP =Y?, and X' = Y'.

5 Research Directions

In a slightly more liberal approach one leaves out the side condition from the
typing rule Seq and takes the types as counting the maximum number of si-
multaneously active instances of each component. These maxima can then be
compared to the available resources.

We are well aware of the level of abstraction of the component language and
plan to incorporate more language features. These include recursion in com-
ponent declarations, explicit deallocation primitive, and communication among
threads. For example, suppose d, e are primitive components, then a—< ({ newd} reua+
newe) is bounded by {a, e, d}, despite that it has one infinite execution trace.

References

1. H. Barendregt. Lambda Calculi with Types. In: Abramsky, Gabbay, Maibaum
(Eds.), Handbook of Logic in Computer Science, Vol. 11, Oxford University Press.
1992.

2. M. Bezem and H. Truong. A Type System for the Safe Instantiation of Components.
In Electronic Notes in Theoretical Computer Science Vol. 97, July 2004.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

17

M. Bezem and H. Truong. Counting Instances of Software Components, In Pro-
ceedings of LRPP’0/, July 2004.

L. Cardelli. Type systems. In A. B. Tucker, editor, The Computer Science and
Engineering Handbook, chapter 103, pages 2208-2236. CRC Press, 1997.

K. Crary, D. Walker, and G. Morrisett. Typed Memory Management in a Calculus
of Capabilities. In Twenty-Sizth ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pages 262-275, San Antonio, TX, USA, January
1999.

K. Crary and S. Weirich. Resource Bound Certification. In the Twenty-Seventh
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 184-198, Boston, MA, USA, January 2000.

B. Dushnik and E. W. Miller. Partially Ordered Sets, American Journal of Math-
ematics, Vol. 63, 1941.

R. Englander. Developing Java Beans. 1st Edition, ISBN 1-56592-289-1, June 1997.
E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns - Elements
of Reusable Object-Oriented Software, Addison-Wesley, Reading, Mass., ISBN
0201633612, 1994.

E. Meijer and C. Szyperski. Overcoming Independent Extensibility Challenges,
Communications of the ACM, Vol. 45, No. 10, pp. 41-44, October 2002.

R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML
(Revised). MIT Press, 1997.

B. Pierce. Types and Programming Languages. MIT Press, ISBN 0262162091,
February 2002.

J. C. Seco. Adding Type Safety to Component Programming. In Proc. of The
PhD Student’s Workshop in FMOODS’02, University of Twente, the Netherlands,
March 2002.

F. Smith, D. Walker and G. Morrisett. Alias Types. In European Symposium on
Programming, Berlin, Germany, March 2000.

C. Szyperski. Component Software: Beyond Object-Oriented Programming, 2nd edi-
tion, Addison-Wesley, ISBN 0201745720, 2002.

Terese. Term Rewriting Systems, Cambridge Tracts in Theoretical Computer Sci-
ence, Vol. 55, Cambridge University Press, 2003

T. L. Thai, Hoang Lam. .NET Framework Essentials. 3nd Edition, ISBN 0-596-
00302-1, August 2003.

A. K. Wright and M. Felleisen, A Syntactic Approach to Type Soundness. In
Information and Computation, Vol. 115, No. 1, pp. 38-94, 1994.

M. Zenger, Type-Safe Prototype-Based Component Evolution. In Proceedings of
the Furopean Conference on Object-Oriented Programming, Malaga, Spain, June
2002.

M. Zenger, Programming Language Abstractions for Extensible Software Compo-
nents, PhD Thesis, No. 2930, EPFL, Switzerland, March 2004.

