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UPSCALING OF NONISOTHERMAL REACTIVE POROUS MEDIA
FLOW UNDER DOMINANT PÉCLET NUMBER: THE EFFECT OF

CHANGING POROSITY∗

C. BRINGEDAL† , I. BERRE‡ , I. S. POP§ , AND F. A. RADU†

Abstract. Motivated by rock-fluid interactions occurring in a geothermal reservoir, we present
a two-dimensional pore scale model of a thin strip consisting of void space and grains, with fluid flow
through the void space. Ions in the fluid are allowed to precipitate onto the grains, while minerals
in the grains are allowed to dissolve into the fluid, taking into account the possible change in the
aperture of the strip that these two processes cause. Temperature variations and possible effects of
the temperature in both fluid density and viscosity and in the mineral precipitation and dissolution
reactions are included. For the pore scale model equations, we investigate the limit as the width of the
strip approaches zero, deriving one-dimensional effective equations. We assume that the convection
is dominating over diffusion in the system, resulting in Taylor dispersion in the upscaled equations
and a Forchheimer-type term in Darcy’s law. Some numerical results where we compare the upscaled
model with three simpler versions are presented: two still honoring the changing aperture of the strip
but not including Taylor dispersion, and one where the aperture of the strip is fixed but contains
dispersive terms.

Key words. upscaling, homogenization, free boundary, reactive transport, high Péclet, geother-
mal energy
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1. Introduction. In a geothermal reservoir, cold water is injected and the
warmer in-situ brine is produced. As the injected water and the in situ brine have dif-
ferent temperatures and chemical composition, reservoir rock properties can develop
dynamically with time as the fluids flow through the reservoir. Minerals dissolving
and precipitating onto the reservoir matrix can change the porosity and hence the per-
meability of the system. Mineral solubility is affected by the cooling of the rock and by
the different ion content in the saturating fluids, hence large changes in permeability
can occur. This interaction among altering temperature, solute transport with min-
eral dissolution and precipitation, and fluid flow is highly coupled and challenging to
model appropriately as the relevant physical processes jointly affect each other [9]. As
parameters affecting fluid flow can change through the production period, operating
conditions for the geothermal plant are altered.

The ion content of the injected cold water is normally different than the original
groundwater, affecting the equilibrium state of the chemical system. Field studies
and simulations report porosity and permeability changes due to precipitation and
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dissolution of minerals such as silica, quartz, anhydrite, gypsum, and calcite [16, 22,
23, 28, 37, 38]. Through modeling of the mineral precipitation and dissolution, we
can better understand the processes and try to estimate to what extent the chemical
reactions can affect the permeability in the porous medium.

The pore scale is highly relevant when modeling porosity changes as the reactions
depend on the reactive surface area and the permeability depends on pore geometry.
To invoke the pore scale effects, we start with a model on the pore scale and derive
equations valid on the Darcy scale by homogenization. Pore scale models incorporat-
ing mineral precipitation and dissolution have been studied earlier; e.g., in [32, 36]
and the corresponding Darcy scale models have been investigated further in [14, 31].
These papers assume that the pore geometry is not changed by the chemical reac-
tions, which is a valid assumption when the deposited or dissolved mineral layer is
thin. Investigations honoring the porosity changes may be found in [7, 8, 15, 33, 34],
where mineral precipitation and dissolution have been considered in a periodic porous
medium or in a thin strip. In these papers, the position of the interface between grain
and void space is tracked, giving a problem with a free boundary. Similar models can
also be obtained for biofilm growth [35], for drug release from collagen matrices [27],
and on an evolving microstructure [25].

In the present work we consider mineral precipitation and dissolution in a thin
strip, which can represent a single pore channel in a geothermal reservoir. The strip
can also be interpreted as a thin fracture surrounded by an impermeable medium. In
the model, the effect of temperature on the chemical reactions and on the fluid flow is
taken into account, giving a more coupled system of equations compared to previous
works by van Noorden [34] and Kumar, van Noorden, and Pop [15]. Temperature
changes can initiate or accelerate the rate of chemical reactions due to changes in
solubility of the minerals. Also, the fluid flow is affected by the temperature changes
due to changes in the fluid density and viscosity. The model presented here builds
on [7], but is extended to include a dominating convection, meaning that transport
through fluid flow is happening on a shorter time scale than diffusive transport. This
situation corresponds to the typical case for geothermal systems with water injection
where water is injected at a high rate. The dominating convection is due to the large
Péclet number appearing in the nondimensional model. Such problems are considered
in [3, 4, 5, 6, 10, 21, 19, 20], but in the case of fixed geometries, and in [15] in the
variable geometry/free boundary context, but at isothermal conditions and hence for
simpler flow models.

Using the pore scale model we can give an accurate description of the relevant
processes, while upscaling the model to the Darcy scale shows which pore scale ef-
fects are important at a larger scale, and how these processes are coupled. Extending
the previously considered pore scale model in [7] to include a large Péclet number
means that other pore scale processes gain importance at the Darcy scale. Kumar,
van Noorden, and Pop [15] did a similar extension of the thin strip in [34] and could
therefore observe Taylor dispersion [30]. Compared to fixed geometry models includ-
ing Taylor dispersion, such as [20], Kumar, van Noorden, and Pop [15] also found
how the transport was affected by the reactions. Taylor dispersion and coupling be-
tween transport and reactions at the Darcy scale are also important processes in the
present work, but further effects will appear due to the couplings with temperature
dependence.

The structure of this paper is as follows: In section 2 we present the pore scale
model, while in section 3 we perform formal homogenization on the model equations,
obtaining one-dimensional upscaled equations. Some numerical examples are shown
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Fig. 1. Model of thin strip.

in section 4. The paper ends with some concluding remarks on the resulting upscaled
equations in section 5.

2. Pore scale model. The thin strip is shown in Figure 1. The length of
the strip is L while the width is l, where l is much smaller than L. Symmetry
around the horizontal axis is assumed. The width of the mineral part is d(x, t), where
0 ≤ d(x, t) < l/2, hence clogging is not allowed.

The total domain Υ is the rectangle seen in the figure given by

Υ = {(x, y) ∈ R2| 0 ≤ x ≤ L,−l/2 ≤ y ≤ l/2}.

The void space Ω(t) where fluid can flow is defined by

Ω(t) = {(x, y) ∈ R2| 0 ≤ x ≤ L,−(l/2− d(x, t)) ≤ y ≤ (l/2− d(x, t))},

while the grain space G(t) consisting of minerals is

G(t) = {(x, y) ∈ R2| 0 ≤ x ≤ L,−l/2 ≤y ≤ −(l/2− d(x, t)) ∨
(l/2− d(x, t)) ≤y ≤ l/2}.

The interface Γg(t) where mineral precipitation and dissolution can occur, is given by

Γg(t) = {(x, y) ∈ R2| 0 < x < L, y = ±(l/2− d(x, t))}.

The outward unit normal n of the interface is (for the lower part) given by

n = (∂xd,−1)T /
√

1 + (∂xd)2.

As the mineral width d(x, t) changes with time, a point located at the interface Γg(t)
has a certain velocity. A point at the interfaces is seen to have coordinates s(t) =
(x(t),−(l/2 − d(x, t))) and velocity s′(t) = (x′(t), ∂xdx

′(t) + ∂td) by the chain rule.
Hence, the normal velocity of the lower boundary is

(2.1) vn = n · s′(t) = −∂td/
√

1 + (∂xd)2.
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The Rankine–Hugoniot condition guarantees conservation of quantities across a mov-
ing boundary [13]:

(2.2) n · [j] = vn[u],

where u is the preserved quantity (e.g., mass or energy) and j is the flux of this
quantity. The use of square brackets means the jump of the quantities, and is the
difference between the quantities at each side of the interface; [u] = u+ − u−, where
the positive and negative sides are chosen according to the orientation of the normal
vector n [13].

We assume conservation of ions, mass, momentum, and energy to form a com-
plete set of equations and refer readers to, e.g., [24] for justification of the conservation
equations. Boundary conditions at the internal boundary and otherwise at the exter-
nal boundaries are prescribed when necessary for the upscaling process. For computer
simulations, more external boundary conditions and initial conditions are required.
As these are not necessary for the upscaling process, they will not be specified in this
section.

2.1. Conservation of ions. There are two active ions in the fluid, with molar
concentrations u1 and u2. They satisfy the convection-diffusion equation in the void
space:

(2.3) ∂tu
i = ∇ · (D∇ui − qui) for (x, y) ∈ Ω(t).

In the above equation, D is the diffusion coefficient, which we assume to be constant,
and q is the fluid velocity. The Rankine–Hugoniot condition (2.2) for conserving ions
across the moving interface is

(2.4) n · (D∇ui − qui) = vn(ρC − ui) on Γg(t),

where ρC is the molar density of the formed solid. The difference on the right-hand
side is the jump of ion concentration: the ions are either dissolved in the fluid space
with molar concentration ui or as part of the mineral molecules with molar density
ρC . The two ions are assumed to have initially the same concentration. As the same
number of ions disappear or are produced through the reaction, the two ions will
always have the same concentration. Hence, u1 = u2 = u.

2.2. Conservation of mass. The fluid consists of water and the two dissolved
components. As the fluid consists mainly of water, the fluid molar density ρf is
assumed not to be affected by the chemical reactions, but depends on temperature.
The same holds also for the fluid viscosity, µ. These dependencies are made specific
in (2.32) below. Hence, the mass conservation equation of the fluid is

(2.5) ∂tρf +∇ · (ρfq) = 0 for (x, y) ∈ Ω(t).

At the boundary, ions can leave the fluid and become part of the grain space instead.
The Rankine–Hugoniot boundary condition applied to mass is

(2.6) n · (−ρfq) = vn(2ρC − ρf ) on Γg(t).

The factor (2ρC −ρf ) describes the jump of the mass. As a mineral molecule consists
of two ions that can be released into or retrieved from the fluid, the factor 2 appears
in front of ρC . Note that if ρf ≡ 2ρC , the normal component of the velocity is zero
at the interface, meaning that the chemical reactions do not cause volume change.
This simplifying assumption is made in, e.g., [15], but would be inconsistent with our
assumptions of varying fluid density and constant grain density.
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2.3. Conservation of momentum. Conservation of momentum can be ex-
pressed as

∂t(ρfq) +∇ · (ρfqq) =−∇p+∇ ·
(
µ(∇q + (∇q)T )

)
− 2

3
∇(µ∇ · q) for (x, y) ∈ Ω(t),(2.7)

where we have assumed that the fluid is Newtonian and isotropic and that the stress
tensor is a linear function of the strain rates. We apply no-slip conditions at the
interface in the sense that the velocity q is assumed to have zero tangential component
at the interface. As the interface can move in the normal direction, we allow the fluid
to have a normal component. Combining with (2.6), the new boundary condition
becomes

(2.8) q =
ρf − 2ρC

ρf
vnn on Γg(t).

2.4. Conservation of energy. We differentiate between two temperatures: the
temperature in the fluid Tf and temperature in the grain Tg. The separation is made
to emphasize the different heat transfer processes occurring in the two domains. Fluid
temperature is only defined in the void space Ω(t) and grain temperature is defined
in the grain space G(t). We assume no viscous dissipation, hence energy transfer in
the fluid can happen through diffusion and convection, which gives the temperature
equation

(2.9) ∂t(ρfcfTf ) = ∇ · (kf∇Tf − ρfcfqTf ) in Ω(t).

In the grain space flow is not possible, hence

(2.10) ∂t(ρCcgTg) = ∇ · (kg∇Tg) in G(t).

In the above equations, cf and cg are specific heats, and kf and kg are heat con-
ductivities of fluid and mineral, respectively, and are all assumed constant. The
Rankine–Hugoniot condition for conservation of energy across the moving interface is

(2.11) n · (kf∇Tf − ρfcfqTf − kg∇Tg) = vn(ρCcgTg − ρfcfTf ) on Γg(t),

and we also assume temperature continuity at the interface, that is,

(2.12) Tg = Tf on Γg(t).

For the lower and upper part of G(t), homogeneous Neumann boundary conditions
are assumed; hence,

(2.13) ∂yTg = 0 for 0 ≤ x ≤ L, y = ±l/2.

2.5. How reactions affect the grain width. At the interface Γg(t), minerals
can precipitate and dissolve. The position of the boundary changes continuously
throughout this process. This change is quantified through changes in the grain width
d(x, t) and the normal velocity vn. The normal velocity is proportional to the local
difference between dissolution and precipitation rates,

(2.14) ρCvn = −(fp − fd) on Γg(t),
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where fp and fd are the precipitation and dissolution rates for the reaction. The
precipitation rate is assumed to increase with ion concentration and with temperature.
This is described through a kinetic rate depending on ion concentration with an
Arrhenius factor [11, 34],

(2.15) fp(Tf , u) = k0e
−E/RTf u2

Km(Tf )
,

where k0 is a positive rate constant, E is the activation energy, R is the gas constant,
Tf is fluid temperature, and Km(Tf ) is the equilibrium constant for the mineral. The
equilibrium constant is allowed to vary with fluid temperature, but is constant in the
sense that it is independent of ion and mineral concentration. Dissolution can take
place as long as there are precipitated minerals present; that is, as long as d(x, t) > 0.
We assume that the dissolution happens faster at higher temperatures, hence

(2.16) fd(Tf , u, d) = k0e
−E/RTfw(d(x, t), Tf , u),

where w(d, Tf , u) is given by

w(d, Tf , u) =


0 if d < 0,

min( u2

Km(Tf ) , 1) if d = 0,

1 if d > 0.

Collecting (2.14), (2.15), and (2.16) and combining with (2.1), yields
(2.17)

ρC∂td(x, t) = k0e
−E/RTf

( u2

Km(Tf )
− w(d(x, t), Tf , u)

)√
1 + (∂xd(x, t))2 on Γg(t).

This equation describes how the reaction rates affect the aperture through the deriva-
tives of the mineral width d(x, t).

2.6. Nondimensional equations. To achieve nondimensional quantities, we
introduce tref , xref = L, yref = l, uref , qref , pref = L4uref/t

2
ref l

2, Tref , µref =

l2pref/Lqref , and let ε = l/L. Nondimensional quantities are denoted with a hat and
are defined as

t̂ = t/tref , x̂ = x/xref , ŷ = y/yref , ûε = u/uref ,

q̂ε = q/qref , p̂ε = p/pref , ρ̂f = ρf/uref , ρ̂ = ρC/uref ,

d̂ε = d/yref , µ̂ = µ/µref , T̂f
ε

= Tf/Tref . T̂g
ε

= Tg/Tref .

Dependence on the small variable ε is emphasized by denoting our main variables with
ε as a superscript. Observe that the dimensionless viscosity scales with ε2, which is a
natural assumption when upscaling porous media flows (see, e.g., [2] or [17]) and is also
the context used in [29] for proving rigorously the convergence of the homogenization
process. This assumption leads to nontrivial upscaled flows when ε approaches zero.
In this case, the friction of the fluid at the pore walls, where no-slip conditions are
assumed, is balanced by either a lower viscosity, or a high pressure exerted to set the
fluid in motion, or a low fluid velocity.

The reference time for fluid flow is tF = L/qref and will also act as reference time
for observations, tref . Further, the reference time for solute diffusion is tD = L2/D,
heat conduction (for the fluid phase) is tC = L2urefcf/kf , and the reference time for
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chemical reactions is tR = uref l/k0. Using these reference times we define two Péclet
numbers and the Damköhler number:

PeD =
tD
tF

= O(ε−β1), P eC =
tC
tF

= O(ε−β2), Da =
tF
tR

= O(εβ3).

As the model is convection dominated, β1 and β2 will be positive, giving large Péclet
numbers. Using representative values for a geothermal system, it is reasonable to
assume β1 = β2 = 1 and β3 = 0. This way the nondimensional solute diffusion
parameter, heat conduction parameters, and reactive parameter are

D̂ = ε−1 D

Lqref
, κ̂f = ε−1 kf

Lurefqrefcf
, κ̂g = ε−1 kg

Lurefqrefcf
, k̂ = ε0

k0L

qrefuref l
.

Observe that choosing the dimensionless fluid density ρ̂f as the ratio of the fluid molar
density ρf and the reference species molar density uref implicitly means that uref is
the reference value for the fluid molar density. Together with the chosen reference
time tref and pressure pref , one immediately obtains µref = Lurefqref .

Since from now on we will only use nondimensional variables, we skip the hat in
the notations and all quantities and variables below should be understood as nondi-
mensional.

Using nondimensional variables, the total domain is defined by

Υε = {(x, y) ∈ R2 | 0 ≤ x ≤ 1,−1/2 ≤ y ≤ 1/2}.

The void space is now given by

Ωε(t) = {(x, y) ∈ R2 | 0 ≤ x ≤ 1,−(1/2− dε(x, t)) ≤ y ≤ (1/2− dε(x, t))},

while the grain space is defined as

Gε(t) = {(x, y) ∈ R2 | 0 ≤ x ≤ 1,−1/2 ≤ y ≤ −(1/2− dε) ∨ (1/2− dε) ≤ y ≤ 1/2}.

The interface between the void and grain space is now

Γε(t) = {(x, y) ∈ R2 | 0 ≤ x ≤ 1, y = ±(1/2− dε(x, t))},

while the outward unit normal for the lower part of the interface is given by

(2.18) nε = (ε∂xd
ε,−1)T /

√
1 + (ε∂xdε)2.

Inserting the dimensionless variables into the model equations gives the following
set of equations and boundary conditions. The normal velocity vn is inserted from
(2.1) when necessary. Note that due to different scaling in the two spatial directions,
the ∇-operator is defined as ∇ = ∂

∂x i + 1
ε
∂
∂y j.

The convection-diffusion equation (2.3) describing the ion concentration becomes

(2.19) ∂tu
ε +∇ · (qεuε) = εD∇2uε in Ωε(t),

with the boundary condition (2.4) now written as

(2.20) nε · (εD∇uε − qεuε) = −ε∂tdε(ρ− uε)/
√

1 + (ε∂xdε)2 on Γε(t).

Note that an underlying assumption is that the nondimensional diffusion coefficient
D is of order 1, and the difference in representative time scales appears as the factor
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ε in front of D. This assumption on D is to ensure we are still in the regime of the
Péclet number being O(ε−1).

The mass conservation equation (2.5) transforms into

(2.21) ∂tρf +∇ · (ρfqε) = 0 in Ωε(t).

The nondimensional Rankine–Hugoniot boundary equation (2.6) is

(2.22) qε · nε = −ερf − 2ρ

ρf
∂td

ε/
√

1 + (ε∂xdε)2 on Γε(t).

The momentum balance equation (2.7) becomes

ε2
(
∂t(ρfq

ε) +∇ · (ρfqεqε)
)

= −∇pε

+ ε2
(
∇ ·
(
µ(∇qε + (∇qε)T )

)
− 2

3
∇(µ∇ · qε)

)
in Ωε(t).(2.23)

The factor ε2 in the above appears due to the chosen scaling of the (reference) viscosity,
pressure, and time. While having a viscosity of order ε2 leads to nontrivial upscaled
models, the scaling of the time derivative and inertia terms is important as well and
can lead to different variants of the (Darcy-like) models. Such aspects are discussed
in [1, 2, 18]. The boundary condition (2.8) is

(2.24) qε = −ερf − 2ρ

ρf
∂td

εnε/
√

1 + (ε∂xdε)2 on Γε(t).

The nondimensional forms of the energy conservation equations (2.9) and (2.10)
are

(2.25) ∂t(ρfT
ε
f ) +∇ · (ρfqεT εf ) = εκf∇2T εf in Ωε(t)

and

(2.26) ∂t(ςρT
ε
g ) = εκg∇2T εg in Gε(t),

where ς = cg/cf , κf , and κg are assumed to be of order 1. The assumption on ς is to
ensure the heat exchange rate in the fluid and solid to not deviate too much, and is a
typical choice for most relevant solids. Further, the assumptions on κf and κg follow
from the assumption on the Péclet number being O(ε−1). The boundary condition
(2.11) is written

nε · (εκf∇T εf − ρfqεT εf − εκg∇T εg )

= −ε(ςρT εg − ρfT εf )∂td
ε/
√

1 + (ε∂xdε)2 on Γε(t),(2.27)

and the continuity condition (2.12) is

(2.28) T εg = T εf on Γε(t).

The boundary condition (2.13) for Tg is now

(2.29) ∂yT
ε
g = 0 for 0 ≤ x ≤ 1, y = ±1/2.
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The nondimensional version of (2.17) is

(2.30) ρ∂td
ε = (fp(T

ε
f , u

ε)− fd(T εf , uε, dε))
√

1 + (ε∂xdε)2 on Γε(t).

The reaction rates are nondimensional and are given by

fp(T
ε
f , u

ε) = ke−α/T
ε
f

(uε)2

Km(T εf )

and

(2.31) fd(T
ε
f , u

ε, dε) = ke−α/T
ε
fw(dε(x, t), T εf , u

ε),

where α = E/RTref is nondimensional. Also note thatKm(T εf ) is nondimensionalized.
The nondimensional reactive constant k is of order 1 due to the previous assumption
on the Damköhler number.

The fluid density and viscosity are assumed to depend linearly on the fluid tem-
perature T εf , hence

ρf (T εf ) = ρ0 − βρfT εf and µ(T εf ) = µ0 − βµT εf(2.32)

for some positive constants βρf and βµ and reference density and viscosity ρ0 and
µ0. The assumption of linear dependence is a common simplification, but using other
differentiable dependencies between density/viscosity and temperature is straightfor-
ward through Taylor expanding the relationships. Using linear relationships simplifies
the presentation of the upscaling steps, but the resulting model is not explicitly de-
pendent on using these linear models for density and viscosity. The considered tem-
perature range is such that the fluid density is decreasing with temperature; hence,
the dimensional temperature should correspond to above 4◦C, and otherwise below
temperatures that would result in boiling. Note that the two constants βρf and βµ
are relatively small, but are assumed to be independent of ε to avoid oversimplyfing
the potential dependence.

3. Asymptotic expansion. We perform a formal asymptotic expansion for the
variables depending on ε, namely, uε, dε, qε, pε, T εf , and T εg . For all except dε we
assume

uε(x, y, t) = u0(x, y, t) + εu1(x, y, t) +O(ε2),

where u0(x, y, t) is the function describing the first order behavior of the variable uε.
The following term εu1(x, y, t) is less important as ε is small. Since the velocity qε is
a vector function, we apply the above expansion for both the horizontal component
qε(1) and the vertical component qε(2). The width dε does not depend on y and has
the expansion

dε(x, t) = d0(x, t) + εd1(x, t) +O(ε2).

Below we follow the ideas in [7] and [15]. The goal is to derive an upscaled effective
model describing the thin strip with vanishing width, obtaining a one-dimensional
model still honoring the changes in aperture. Collecting the lowest order terms as
in [7] would result in a hyperbolic model due to the dominating convection. The
hyperbolic model could be a poor approximation to the original equations [15], hence
we include the second lowest order variables u1, d1, etc., as well, in the upscaling
process.
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3.1. Conservation of mass: Part I. The required asymptotic expansions are
inserted into the mass conservation equation (2.21). Although we have not shown
it yet, we will take advantage of Tf0 being independent of y. We make use of the
notation ρf0 = ρ0 − βρfTf0. The lowest order term is

∂y(ρf0q
(2)
0 ) = 0,

and, since ρf0 is independent of y, this means that ∂yq
(2)
0 = 0. The second lowest

order terms are

(3.1) ∂tρf0 + ∂x(ρf0q
(1)
0 ) + ∂y(ρf0q

(2)
1 ) = 0.

Sorted into order and components, the boundary condition (2.24) arising from the
momentum balance equation expresses that

(3.2) q
(1)
0 = 0, q

(2)
0 = 0, q

(1)
1 = 0, q

(2)
1 = −2ρ− ρf0

ρf0
∂td0 for y = ±

(
1

2
− d0

)
.

As ∂yq
(2)
0 = 0 in the void space, we conclude that

q
(2)
0 ≡ 0.

To proceed, the mass conservation equation (2.21) is integrated across a thin
section in the void space whose width is δx; the integration area is given by Y =
{(x, y) ∈ R2 | x1 ≤ x ≤ x1 + δx,−(1/2− dε) ≤ y ≤ 1/2− dε}. Hence, we obtain

0 =

∫
Y

∂tρfdV +

∫
Y

∇ · (ρfqε)dV.

Gauss’ theorem is applied to the second integral and the whole equation is divided by
δx at the same time. We insert the limits in our two integrals accordingly, apply the
asymptotic expansions, and keep terms up to O(ε2), hence obtaining

O(ε2) =
1

δx

∫ x1+δx

x1

∫ 1/2−de

−(1/2−de)
∂t(ρf0 − εβρfTf1)dydx

+
1

δx

∫ 1/2−de

−(1/2−de)

(
(ρf0q

(1)
0 + ερf0q

(1)
1 − εβρfTf1q

(1)
0 )|x=x1+δx

− (ρf0q
(1)
0 + ερf0q

(1)
1 − εβρfTf1q

(1)
0 )|x=x1

)
dy

+
2

δx

∫ x1+δx

x1

(2ρ−(ρf0 − εβρfTf1))|y=−(1/2−de)∂tdedx,

where we have applied (2.22) in the last term. The notation de = d0 + εd1 is the effec-
tive grain width. The three integrals on the right-hand side are rewritten in different
ways. In the first integral, the order of integration and differentiation is interchanged
for the innermost integral. The second integral is rewritten using the effective trans-

missivity q̄e =
∫ 1/2−de
−(1/2−de) qedy =

∫ 1/2−de
−(1/2−de)(q

(1)
0 + εq

(1)
1 )dy and the effective density

ρfe = ρf0 − εβρf T̄f1, where T̄f1 = 1
1−2de

∫ 1/2−de
−(1/2−de) Tf1dy. The third integrand is

rewritten by adding and subtracting a T̄f1-term in order to obtain an expression with
ρfe. We then let δx approach zero, using the fundamental theorem in calculus and
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the definition of the derivative where applicable. Some terms cancel each other, hence
we obtain

∂t((1− 2de)ρfe + 2de2ρ) + ∂x(ρfeq̄e)

− εβρf∂x

(∫ 1/2−de

−(1/2−de)
Tf1q

(1)
0 dy − T̄f1q̄0

)
= O(ε2).(3.3)

This equation will later serve as the upscaled mass conservation equation when the
last term has been rewritten. From this equation we can also obtain the lowest order
mass conservation equation by considering terms of O(1) only. Then,

(3.4) ∂t

(
(1− 2d0)ρf0 + 2d02ρ

)
+ ∂x(ρf0q̄0) = 0,

where q̄0 =
∫ 1/2−d0
−(1/2−d0)

q
(1)
0 dy. This is the same equation as found in [7].

3.2. Conservation of momentum: Part I. We continue with the momentum
equation and insert the required asymptotic expansion into (2.23). Recall that q

(2)
0 is

equal to zero, hence

O(ε2) = −1

ε
∂yp0j− ∂xp0i− ∂yp1j− ε∂xp1i− ε∂yp2j

+ µf0∂
2
yq

(1)
0 i + εµf0∂

2
yq

(1)
1 i + εµf0∂

2
yq

(2)
1 j− εβµ∂y(Tf1∂yq

(1)
0 )i + εµf0∂

2
yq

(2)
1 j

+ ε∂x(µf0∂yq
(1)
0 )j− ε2

3
µf0∂y∂xq

(1)
0 j− ε2

3
µf0∂

2
yq

(2)
1 j,

where µf0 = µ0−βµTf0 is independent of y. The lowest order term is ∂yp0 = 0, which
implies that p0 = p0(x, t). The horizontal and vertical component of the second lowest
order terms are

∂xp0 = µf0∂
2
yq

(1)
0 ,(3.5)

∂yp1 = 0.

From the second equation we conclude p1 = p1(x, t). By making use of the horizontal
component of the third lowest order terms, we obtain

(3.6) ∂xp1 = µf0∂
2
yq

(1)
1 − βµ∂y(Tf1∂yq

(1)
0 ) = 0,

and then consider the sum of (3.5) and (3.6). Hence,

∂xp0 + ε∂xp1 = µf0∂
2
yq

(1)
0 + εµf0∂

2
yq

(1)
1 − εβµ∂y(Tf1∂yq

(1)
0 ) = 0.

We introduce effective pressure pe = p0 + εp1, effective viscosity µfe = µf0 − εβµT̄f1,

and effective horizontal velocity qe = q
(1)
0 + εq

(1)
1 . Note that the first two are indepen-

dent of y. Our equation hence reads

(3.7) ∂xpe = µfe∂
2
yqe − εβµ∂y

(
(Tf1 − T̄f1)∂yq

(1)
0

)
+O(ε2).

To proceed, an explicit expression for q
(1)
0 must be found. The boundary condition

for q
(1)
0 can be found from (3.2), hence q

(1)
0 = 0 at y = ±(1/2 − d0). We integrate

(3.5) twice with respect to y, applying this boundary condition. Hence,

(3.8) q
(1)
0 = −1

2

∂xp0

µf0

(
1

2
− d0)2 − y2

)
,
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and we define the transmissivity q̄0(x, t) =
∫ 1/2−d0
−(1/2−d0)

q
(1)
0 (x, y, t)dy, which is

(3.9) q̄0 = −2

3

∂xp0

µf0

(
1

2
− d0

)3

.

The boundary condition for qe can also be found from (3.2), hence qe = 0 at y =
±(1/2 − de). We insert (3.8) into (3.7), then integrate twice with respect to y and
apply this boundary condition. This will result in

1

2
∂xpe

(
y2 − (

1

2
− de)2

)
= µfeqe

− ε βµ
µf0

∂xp0

∫ y

−(1/2−de)

(
Tf1(x, z, t)− T̄f1(x, t)

)
zdz +O(ε2).(3.10)

As with the mass conservation equation, the term involving Tf1 needs to be rewritten.
The effective transmissivity q̄e can be found by integrating the above equation and
will later serve as the upscaled Darcy’s law with an additional Forchheimer-type term.

3.3. Conservation of ions. The effective ion concentration ue is defined as

ue = u0 + εū1 = u0 +
ε

1− 2de

∫ 1/2−de

−(1/2−de)
u1dy.

Later, we show that u0 is independent of y, hence ue will also be independent of y.
The ion conservation equation (2.19) is integrated in y from −(1/2− dε) to 1/2− dε,
resulting in∫ 1/2−dε

−(1/2−dε)
∂tu

εdy +

∫ 1/2−dε

−(1/2−dε)
∂x(uεqε(1))dy +

1

ε

∫ 1/2−dε

−(1/2−dε)
∂y(uεqε(2))dy

= εD

∫ 1/2−dε

−(1/2−dε)
∂x(∂xu

ε)dy +
1

ε
D

∫ 1/2−dε

−(1/2−dε)
∂y(∂yu

ε)dy.

For the integrals of derivatives with respect to y, the integrals can be evaluated. For
the remaining integrals, the order of integration and differentiation is interchanged,
taking into account that the integration limits depend on x and t through dε. This
will result in some terms being evaluated at the boundary, to which we apply (2.20).
Inserting asymptotic expansions and keeping terms up to O(ε2) yield

∂t

(∫ 1/2−de

−(1/2−de)
(u0 + εu1)dy

)
+ 2ρ∂tde

+ ∂x

(∫ 1/2−de

−(1/2−de)
(u0 + εu1)(q

(1)
0 + εq

(1)
1 )dy

)
= εD∂x

(∫ 1/2−de

−(1/2−de)
∂xu0dy

)
+O(ε2).

By evaluating the integrals and rewriting,

∂t ((1− 2de)ue + 2deρ) + ∂x(ueq̄e) + ε∂x

(∫ 1/2−de

−(1/2−de)
u1q

(1)
0 dy − ū1q̄0

)
= εD∂x

(
(1− 2de)∂xue

)
+O(ε2)(3.11)

is obtained.
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It is necessary to express all terms using the effective variables, hence the last term
on the first line in the above equation needs some extra care. We seek an explicit
expression for u1 and go back to the original conservation equation (2.19) and insert
asymptotic expansions; hence,

∂tu0 + ∂x(u0q
(1)
0 ) + ∂y(u0q

(2)
1 ) =

1

ε
D∂2

yu0 +D∂2
yu1 +O(ε).

The boundary condition (2.20) is

−D∂yu0 − εD∂yu1 − ε∂xd0u0q
(1)
0 + εu0q

(2)
1 = −ε(ρ− u0)∂td0 +O(ε2).

The lowest order term is ∂2
yu0 = 0, and the lowest order boundary condition is ∂yu0 =

0 at y = ±(1/2− d0). The only possibility is that u0 = u0(x, t). Further, the second
lowest order terms of the equation are

∂tu0 + ∂x(u0q
(1)
0 ) + ∂y(u0q

(2)
1 ) = D∂2

yu1.

Rewriting using (3.1) enables us to write

(3.12) ∂tu0 + q
(1)
0

(
∂xu0 −

u0

ρf0
∂xρf0

)
− u0

ρf0
∂tρf0 = D∂2

yu1.

The second lowest order boundary condition is

(3.13) D∂yu1 = − u0

ρf0
(2ρ− ρf0)∂td0 + (ρ− u0)∂td0 at y = −(1/2− d0),

where the boundary conditions for the velocity known from (3.2) are inserted.
We integrate (3.12) in y from −(1/2 − de) to 1/2 − de. We make some abuse of

notation by writing q̄0 when applicable, which should only be used when the integral
is from −(1/2−d0) to 1/2−d0. This abuse of notation introduces an error of O(ε) in
(3.12), which in the final expression based on (3.11) will appear as an error of O(ε2),
which is tolerated. Hence,

(1−2de)∂tu0+q̄0

(
∂xu0 −

u0

ρf0∂xρf0

)
−(1−2de)

u0

ρf0
∂tρf0+2D∂yu1|y=−(1/2−de)+O(ε).

Multiplying (3.12) by (1−2de) and subtracting from the above equation, and applying
the boundary condition (3.13) at the same time, yield

(1− 2de)D∂
2
yu1 +

(
∂xu0 −

u0

ρf0
∂xρf0

)(
q̄0 − (1− 2de)q

(1)
0

)
−2

u0

ρf0
(2ρ− ρf0)∂tde + 2(ρ− u0)∂tde = O(ε).

The expressions for q
(1)
0 and q̄0 known from (3.8) and (3.9) are inserted, and we

introduce the shorthand notations A(x, t) = (∂xu0 − u0

ρf0
∂xρf0)∂xp0µf0

and B(x, t) =

−2 u0

ρf0
(2ρ− ρf0)∂tde + 2(ρ− u0)∂tde. By integrating in y from −(1/2− de) to y, and

making use of the boundary condition (3.13), we obtain

2

(
1

2
− de

)
D∂yu1 +

1

3
A

(
1

2
− de

)((
1

2
− de

)2

y − y3

)
+By = O(ε).
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Integrating once more from −(1/2− de) to y, results in

2

(
1

2
− de

)
Du1 − 2

(
1

2
− de

)
Du1|y=−(1/2−de)

− 1

12
A

(
1

2
− de

)(
y4 − 2(

1

2
− de)2y2 + (

1

2
− de)4

)
+

1

2
B

(
y2 −

(
1

2
− de

)2
)

= O(ε).

Solving this equation for u1 yields

u1 = u1|y=−(1/2−de) +
1

24

A

D

(
y4 − 2

(
1

2
− de

)2

y2 +

(
1

2
− de

)4
)

− 1

4

1

1/2− de
B

D

(
y2 −

(
1

2
− de

)2
)

+O(ε),(3.14)

giving us an explicit expression for u1 in terms of lower order functions. The expression
is indeterminate due to the appearance of u1|y=−(1/2−de) which we have no information
about. However, this will not cause any difficulty as this term will cancel out in the
resulting model equation.

In (3.11), we need to calculate
∫ 1/2−de
−(1/2−de) u1q

(1)
0 dy − ū1q̄0. The first term is∫ 1/2−de

−(1/2−de)
u1q

(1)
0 dy = −u1|y=−(1/2−de)

2

3

∂xp0

µ0

(
1

2
− de

)3

− 2

105

A

D

∂xp0

µ0

(
1

2
− de

)7

− 2

15

B

D

∂xp0

µ0

(
1

2
− de

)4

+O(ε).

For the second term, the average ū1 is found to be

ū1 =
1

1− 2de

∫ 1/2−de

−(1/2−de)
u1dy

= u1|y=−(1/2−de) +
1

45

A

D

(
1

2
− de

)4

+
1

6

B

D

(
1

2
− de

)
+O(ε).(3.15)

This means that the expression needed for (3.11) is∫ 1/2−de

−(1/2−de)
u1q

(1)
0 dy − ū1q̄0 = − 1

105

1

D

(
1

2
− de

)
q̄2
0

(
∂xu0 −

u0

ρf0
∂xρf0

)
+

1

15

1

D

(
1

2
− de

)
q̄0

(
(ρ− u0)∂tde −

u0

ρf0
(2ρ− ρf0)∂tde

)
+O(ε).

The resulting equation for the effective concentration ue is then

∂t ((1− 2de)ue + 2deρ) + ∂x(ueq̄e)

= εD∂x

(
(1− 2de)∂xue

(
1 +

q̄2
e

210D2

)
− (1− 2de)

q̄2
e

210D2

ue
ρfe

∂xρfe

+(1− 2de)
q̄e

60D2
∂t(2de)

(
ue
ρfe

(2ρ− ρfe)− (ρ− ue)
))

+O(ε2).

3.4. Conservation of energy. We define effective fluid temperature and effec-
tive grain temperature:
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Tfe = Tf0 + εT̄f1 = Tf0 +
ε

1− 2de

∫ 1/2−de

−(1/2−de)
Tf1dy,

Tge = Tg0 + εT̄g1 = Tg0 +
ε

de

∫ −(1/2−de)

−1/2

Tg1dy.

Soon, we show that Tf0 and Tg0 are independent of y and in fact equal due to the
continuity condition (2.28). In general, T̄f1 and T̄g1 will not be equal. The conserva-
tion equations (2.25) and (2.26) are integrated over their respective domains in y and
summed, resulting in∫ 1/2−dε

−(1/2−dε)
∂t(ρfT

ε
f )dy + 2

∫ −(1/2−dε)

−1/2

∂t(ςρT
ε
g )dy

+

∫ 1/2−dε

−(1/2−dε)
∂x(ρfT

ε
fq
ε(1))dy +

1

ε

∫ 1/2−dε

−(1/2−dε)
∂y(ρfT

ε
fq
ε(2))dy

= ε

∫ 1/2−dε

−(1/2−dε)
∂x(κf∂xT

ε
f )dy +

1

ε

∫ 1/2−dε

−(1/2−dε)
∂y(κf∂yT

ε
f )dy

+ 2ε

∫ −(1/2−dε)

−1/2

∂x(κg∂xT
ε
g )dy +

2

ε

∫ −(1/2−dε)

−1/2

∂y(κg∂yT
ε
g )dy.

The integrals of derivatives of y are evaluated, while in the remaining integrals we
interchange the order of integration and differentiation. Applying the boundary con-
dition (2.27) causes the terms evaluated at y = −(1/2− dε) to cancel out. We insert
the necessary asymptotic expansions, hence

∂t

(∫ 1/2−de

−(1/2−de)
(ρf0 − εβρfTf1)(Tf0 + εTf1)dy

)
+ 2∂t

(∫ −(1/2−de)

−1/2

ςρ(Tg0 + εTg1)dy

)

+ ∂x

(∫ 1/2−de

−(1/2−de)
(ρf0 − εβρfTf1)(Tf0 + εTf1)(q

(1)
0 + εq

(1)
1 )dy

)

= ε∂x

(∫ 1/2−de

−(1/2−de)
κf∂xTf0dy

)
+ 2ε∂x

(∫ −(1/2−de)

−1/2

κg∂xTg0dy

)
+O(ε2).

Using that ρf0, Tf0, and Tg0 are independent of y, this can be written as

∂t ((1− 2de)ρfeTfe + 2deςρTge) + ∂x(ρfeTfeq̄e)

+ ε∂x

(
(ρf0 − βρfTf0)

{∫ 1/2−de

−(1/2−de)
Tf1q

(1)
0 dy − T̄f1q̄0

})
= ε∂x

(
(1− 2de)κf∂xTfe + 2deκg∂xTge

)
+O(ε2).(3.16)

The Tf1 part needs to be rewritten. Also, since there is one equation and two un-
knowns Tfe and Tge, one more equation in needed to have a consistent formulation.
Both of these difficulties are solved by finding explicit expressions for Tf1 and Tg1,
using a similar technique as performed for u1.

The necessary asymptotic expansions are inserted into (2.25), (2.26), (2.27),
(2.28), and (2.29), keeping the lowest order terms. The energy equations are then
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∂t(ρf0Tf0) + ∂x(ρf0Tf0q
(1)
0 ) + ∂y(ρf0Tf0q

(2)
1 ) =

1

ε
∂y (κf∂y(Tf0 + εTf1)) +O(ε),

∂t(ςρTg0) =
1

ε
∂y

(
κg∂y(Tg0 + εTg1)

)
+O(ε).

while the boundary conditions for the lower part of the moving boundary are

−κf∂yTf0 − εκf∂yTf1 + ερf0q
(2)
1 Tf0 + κg∂yTg0 + εκg∂yTg1

= −ε(ςρTg0 − ρf0Tf0)∂td0 +O(ε2),

Tf0 + εTf1 = Tg0 + εTg1 +O(ε2).

and the boundary condition at the top and bottom of the strip is

∂yTg0 + ε∂yTg1 = O(ε2).

Collecting the lowest order terms from the five above equations, results in the system

∂2
yTf0 = 0 for − (1/2− d0) ≤ y ≤ 1/2− d0,

∂2
yTg0 = 0 for 1/2− d0 ≤ |y| ≤ 1/2,

κf∂yTf0 = κg∂yTg0 at y = ±(1/2− d0),

Tf0 = Tg0 at y = ±(1/2− d0),

∂yTg0 = 0 at y = ±1/2.

The only possible solution is that Tf0 and Tg0 are equal and independent of y, hence
T0(x, t) = Tf0(x, t) = Tg0(x, t) can be defined. The next step is to consider the O(1)
parts of the energy equations independently.

The O(1) part of the void space energy equation is

∂t(ρf0Tf0) + ∂x(ρf0Tf0q
(1)
0 ) + ∂y(ρf0Tf0q

(2)
1 ) = κf∂

2
yTf1.

Using (3.1) to eliminate q
(2)
1 , this can be written

(3.17) ρf0∂tTf0 + ρf0q
(1)
0 ∂xTf0 = κf∂

2
yTf1.

Integrating in y from −(1/2− de) to (1/2− de) gives us

(3.18) (1− 2de)ρf0∂tTf0 + ρf0∂xTf0q̄0 = −2κf∂yTf1|y=−(1/2−de) +O(ε),

which can also serve as a boundary condition for ∂yTf1 at y = −(1/2−de). Multiplying
(3.17) with (1− 2de) and subtracting from (3.18) results in

(1− 2de)κf∂
2
yTf1 = ρf0∂xTf0

(
(1− 2de)q

(1)
0 − q̄0

)
− 2κf∂yTf1|y=−(1/2−de) +O(ε).

To ease the notation, we do not insert the boundary condition for ∂yTf1 at y =
−(1/2− de) at this moment. We do however insert the expressions for the velocities
known from (3.8) and (3.9), hence

2

(
1

2
− de

)
κf∂

2
yTf1 = C(x, t)

(
1

2
− de

)(
y2 − 1

3

(
1

2
− de

)2
)

− 2κf∂yTf1|y=−(1/2−de) +O(ε),
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where C(x, t) = ρf0∂xTf0
∂xp0
µf0

. Integrating twice in y from −(1/2−de) to y, results in

2

(
1

2
− de

)
κfTf1 = 2

(
1

2
− de

)
κfTf1|y=−(1/2−de)

+
1

12
C(x, t)

(
1

2
− de

)(
y4 − 2

(
1

2
− de

)2

y2 +

(
1

2
− de

)4
)

− κf∂yTf1|y=−(1/2−de)

(
y2 −

(
1

2
− de

)2
)

+O(ε),

which means that

Tf1 = Tf1|y=−(1/2−de) +
1

24

C

κf

(
y4 − 2

(
1

2
− de

)2

y2 +

(
1

2
− de

)4
)

− 1

2

1

1/2− de
∂yTf1|y=−(1/2−de)

(
y2 −

(
1

2
− de

)2
)

+O(ε).(3.19)

The average T̄f1 is then

T̄f1 = Tf1|y=−(1/2−de) +
1

45

C

κf

(
1

2
− de

)4

+
1

3
∂yTf1|y=−(1/2−de)

(
1

2
− de

)
+O(ε).

(3.20)

We turn our attention to the O(1) terms from the grain space energy equation:

∂t(ςρTg0) = κg∂
2
yTg1.

Integrating in y from −1/2 to −(1/2− de) gives us

(3.21) de∂t(ςρTg0) = κg∂yTg1|y=−(1/2−de),

which later can be used as a boundary condition for ∂yTg1 at y = −(1/2 − de). The
next step is to multiply the O(1) terms with de and subtract from the above equation,
resulting in

deκg∂
2
yTg1 = κg∂yTg1|y=−(1/2−de).

This equation is integrated first from −1/2 to y, then from y to −(1/2 − de), giving
us

Tg1 = Tg1|y=−(1/2−de)

+
1

2de
∂yTg1|y=−(1/2−de)

(
y2 + y +

(
1

2
− de

)
−
(

1

2
− de

)2
)

+O(ε).

The average is

T̄g1 = Tg1|y=−(1/2−de) −
1

3
de∂yTg1|y=−(1/2−de) +O(ε).

The expressions for Tf1 and Tg1 and their averages involve the function evaluation
of Tf1 and Tg1 at y = −(1/2 − de). Due to the boundary condition (2.28) these are
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known to be equal, even though we do not know the value. As Tfe = T0 + εT̄f1 and
Tge = T0 + εT̄g1, we can calculate the difference

Tfe − Tge = ε

{
2de
12

(
1− 2de
κf

+
2de
κg

)
∂t(ςρTge)

+
1

12

1

κf
(1− 2de) ((ςρTge − ρfeTfe)− Tfe(2ρ− fρfe)) ∂t(2de)

− 1

60

1

κf
(1− 2de)ρfe∂xTfeq̄e

}
+O(ε2),

where we have rewritten using (3.3) and (3.16) and inserted the boundary conditions
for ∂yTf1 and ∂yTg1 at y = −(1/2− de). This equation will be a part of the final set
of equations and acts as the second relation between the variables Tfe and Tge.

To find the required Tf1 expression in (3.16), we calculate∫ 1/2−de

−(1/2−de)
Tf1q

(1)
0 dy − T̄f1q̄0 =

1

60

1

κf
(1− 2de)q̄e

(
2de∂t(ςρTge)

+ (ςρTge − ρfeTfe)∂t(2de)− Tfe(2ρ− ρfe)∂t(2de)
)

− 1

210

1

κf
(1− 2de)ρfe∂xTfeq̄

2
e +O(ε).(3.22)

Inserting this into (3.16) results in

∂t

(
(1− 2de)ρfeTfe + 2deςρTge

)
+ ∂x(ρfeTfeq̄e)

=εκf∂x

{
(1− 2de)∂xTfe

(
1 +

q̄2
e

210κ2
f

ρfe(ρfe − βρfTfe)
)

− q̄e
60κ2

f

(1− 2de)(ρfe − βρfTfe)
(

2de∂t(ςρTge) + (ςρTge

− ρfeTfe)∂t(2de)− Tfe(2ρ− ρfe)∂t(2de)
)}

+ εκg∂x(2de∂xTge) +O(ε2).

3.5. Conservation of mass: Part II. We turn back to (3.3), where inserting
(3.22) results in

∂t

(
(1− 2de)ρfe + 2de2ρ

)
+ ∂x(ρfeq̄e) = ε

β

κf
∂x

{
− q̄2

e

210
(1− 2de)ρfe∂xTfe

+
q̄e
60

(1− 2de)
(

2de∂t(ςρTge) + (ςρTge − ρfeTfe)∂t(2de)

− Tfe(2ρ− ρfe)∂t(2de)
)}

+O(ε2).

3.6. Conservation of momentum: Part II. Inserting (3.19) and (3.20) into
(3.10) and evaluating the integral yield

1

2
∂xpe

(
y2 −

(
1

2
− de

)2
)

= µfeqe

− ε βµ
µf0

∂xp0

(
1

24

C

κf

(
1

6
y6 − 1

2

(
1

2
− de

)2

y4 +
7

30

(
1

2
− de

)4

y2 +
1

10

(
1

2
− de

)6
)

+
1

2

1
1
2 − de

∂yTf1|y=−(1/2−de)

(
−1

4
y4 +

1

6

(
1

2
− de

)2

y2 +
1

12

(
1

2
− de

)4
))

+O(ε2).
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Integrating this equation in y to obtain an expression involving q̄e, yields

− 2

3
∂xpe

(
1

2
− de

)3

= µfeq̄e

− ε βµρf0

µf0κf
∂xp0

(
4

105
∂xTf0

∂xp0

µf0

(
1

2
− de

)7

− 4

45
∂tTf0

(
1

2
− de

)5
)

+O(ε2).

This equation can be rewritten in two different ways. We can either solve the above
equation for q̄e, or we can use (3.8) to rewrite the factors involving ∂xp0 to get an
expression showing the relation to the Forchheimer form of Darcy’s law. Hence, the
above equation can be written either as

q̄e = − (1− 2de)
3

12µfe
∂xpe

(
1− ε βµρfe

µfeκf
(1− 2de)

2

(
− 1

30
∂tTfe

+
1

280
∂xTfe

∂xpe
µfe

(1− 2de)
2

))
+O(ε2),

or as

∂xpe =− q̄e
12µfe

(1− 2de)3

(
1− ε βµρfe

µfeκf

1

30
∂tTfe(1− 2de)

2

)
[3.5pt]

+ εq̄2
e

12ρfe
(1− 2de)3

βµ
κf

3

70
∂xTfe(1− 2de) +O(ε2).

As an error of O(ε2) is made in both cases, the two forms are equivalent. Further,
this also justifies replacing µf0 by µfe. Note that the nonlinear term in Forchheimer’s
law is a negative term, while we have a term that could be either positive or negative
depending on the sign of ∂xTfe. Forchheimer’s law is due to inertial effects under
different assumptions than considered here, but is similar to ours in the sense of in-
troducing a nonlinearity in the flow equation when considering a large Péclet number.
Our nonlinear term is a secondary effect due to the varying viscosity and dominating
convection. As a fluid with varying viscosity is transported through the pore, non-
linear inertial effects appear, which is indicated by the nonlinear term containing the
factors βµ and ∂xTfe. Since the viscosity can either increase or decrease, the sign of
the nonlinear term varies with the sign of the temperature change. We note that for
most fluids and temperature ranges the viscosity changes will not be large, hence the
value of βµ, and accordingly the nonlinearity, will be small.

3.7. How reactions affect the varying aperture. To upscale (2.30), we first
need to regularize the dissolution rate (2.31) to obtain a Lipschitz continuous function.
We define fδ(T

ε
f , d

ε) = k0e
−α/T εfwδ(d

ε), where

(3.23) wδ(d
ε) =


0 if dε < 0,

dε/δ if 0 ≤ dε < δ,

1 if dε ≥ δ

for some small δ > 0. Inserting asymptotic expansions into (2.30) yields

∂t(ρde) =
(
fp(Tf0 + εTf1 +O(ε2), u0 + εu1 +O(ε2))

−fδ(Tf0 + εTf1 +O(ε2), de +O(ε2))
)

+O(ε2),
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where the functions depending on y should be evaluated at y = −(1/2 − de). We
Taylor expand the precipitation rate around (Tfe, ue), and the dissolution rate around
(Tfe, de). Hence,

∂t(ρde) =
(
fp(Tfe, ue) + ε∂1fp(Tf1|y=−(1/2−de) − T̄f1) + ε∂2fp(u1|y=−(1/2−de) − ū1)

)
−
(
fδ(Tfe, de) + ε∂1fδ(Tf1|y=−(1/2−de) − T̄f1)

)
+O(ε2).

Letting δ approach zero, gives the original w(de, Tfe, ue). Since ū1 and T̄f1 are known
from (3.15) and (3.20), we obtain

∂t(ρde) =fp(Tfe, ue)− fd(Tfe, uede) + ε
{

(∂1fp − ∂1fd)
( 1

60

1

κf
(1− 2de)ρfe∂xTfeq̄e

− 1

12

1

κf
(1− 2de)

(
2de∂t(ςρTge) + (ςρTge − ρfeTfe)∂t(2de)

− Tfe(2ρ− ρfe)∂t(2de)
))

+ ∂2fp

( 1

60

1

D
(1− 2de)(∂xue −

ue
ρfe

∂xρfe)q̄e

− 1

12

1

D
(1− 2de)

(
(ρ− ue)−

ue
ρfe

(2ρ− ρfe)
)
∂t(2de)

)}
+O(ε2).

3.8. Upscaled equations. We now summarize the upscaled equations. There
are six unknowns: ue(x, t), q̄e(x, t), de(x, t), pe(x, t), Tfe(x, t), and Tge(x, t), and six
equations to describe them. Note that all the variables depend only on x and t, hence
our thin strip model has reduced to a one-dimensional problem. The governing system
of equations is defined for 0 ≤ x ≤ 1 and for t > 0, and is given by

q̄e = − (1− 2de)
3

12µfe
∂xpe

{
1− ε βµρfe

µfeκf
(1− 2de)

2

(
− 1

30
∂tTfe

+
1

280
∂xTfe

∂xpe
µfe

(1− 2de)
2

)}
,(3.24)

∂t

(
(1− 2de)ρfe + 2de2ρ

)
+ ∂x(ρfeq̄e) = ε

β

κf
∂x

{
− q̄2

e

210
(1− 2de)ρfe∂xTfe

+
q̄e
60

(1− 2de)
(

2de∂t(ςρTge) + (ςρTge − ρfeTfe)∂t(2de)

− Tfe(2ρ− ρfe)∂t(2de)
)}
,(3.25)

∂t(ρde) =fp(Tfe, ue)− fd(Tfe, de) + ε
{

(∂1fp − ∂1fd)
( 1

60

1

κf
(1− 2de)ρfe∂xTfeq̄e

− 1

12

1

κf
(1− 2de)

(
2de∂t(ςρTge) + (ςρTge − ρfeTfe)∂t(2de)

− Tfe(2ρ− ρfe)∂t(2de)
))

+ ∂2fp

( 1

60

1

D
(1− 2de)(∂xue −

ue
ρfe

∂xρfe)q̄e

− 1

12

1

D
(1− 2de)

(
(ρ− ue)−

ue
ρfe

(2ρ− ρfe)
)
∂t(2de)

)}
,(3.26)

D
ow

nl
oa

de
d 

03
/2

9/
16

 to
 1

29
.1

77
.1

69
.2

28
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

522 C. BRINGEDAL, I. BERRE, I. S. POP, AND F. A. RADU

∂t ((1− 2de)ue + 2deρ) + ∂x(ueq̄e)

= εD∂x

(
(1− 2de)∂xue

(
1 +

q̄2
e

210D2

)
− (1− 2de)

q̄2
e

210D2

ue
ρfe

∂xρfe

− (1− 2de)
q̄e

60D2
∂t(2de)

(
(ρ− ue)−

ue
ρfe

(2ρ− ρfe)
))

,(3.27)

∂t

(
(1− 2de)ρfeTfe + 2deςρTge

)
+ ∂x(ρfeTfeq̄e)

=εκf∂x

{
(1− 2de)∂xTfe

(
1 +

q̄2
e

210κ2
f

ρfe(ρfe − βρfTfe)
)

− q̄e
60κ2

f

(1− 2de)(ρfe − βρfTfe)(
2de∂t(ςρTge) + (ςρTge − ρfeTfe)∂t(2de)

− Tfe(2ρ− ρfe)∂t(2de)
)}

+ εκg∂x(2de∂xTge),(3.28)

Tfe − Tge = ε
{2de

12
(
1− 2de
κf

+
2de
κg

)∂t(ςρTge)−
1

60

1

κf
(1− 2de)ρfe∂xTfeq̄e

+
1

12

1

κf
(1− 2de)

(
(ςρTge − ρfeTfe)− Tfe(2ρ− fρfe)

)
∂t(2de)

}
,(3.29)

where terms of O(ε2) have been neglected. The fluid density and viscosity are given by

(3.30) ρfe = ρfe(Tfe) = ρ0 − βρfTfe and µfe = µfe(Tfe) = µ0 − βµTfe.

Dispersive terms are found in several of the model equations. The model equations
also contain correction terms of O(ε) that are due to the changing geometry, e.g.,
(ςρTge − ρfeTfe)∂t(2de) in (3.28). The difference is the jump in the effective energy
across the moving boundary.

Compared to the dispersive model studied by Kumar, van Noorden, and Pop
in [15], our system of equations is more coupled due to the reaction rates and the
fluid density depending on temperature. Also, the model in [15] does not take into
account volume change due to chemical reactions, which in our model can be found
in terms including a (2ρ − ρfe)-factor. As Kumar, van Noorden, and Pop assume
constant fluid density and that 2ρ = ρf , their model lacks terms with derivatives of
ρfe and the (2ρ− ρfe)-factor which can be found in the present work. Since we also
take into account varying viscosity, an extra nonlinear term in Darcy’s law appears.
This term can be interpreted as a Forchheimer-type term, which appears when inertial
effects on the flow are important; see, e.g., [12] for derivation of the Forchheimer law
in the isothermal case. Note that the Forchheimer’s law is derived under different
assumptions than considered here, but the present flow equation shows similarities
due to the nonisothermal effects arising from the viscosity.

Compared to our previous work in [7], one large difference is the need of an extra
equation to describe the temperature. In [7] it was only necessary to use the lowest
order temperature T0, while in the present work we have to include the average of the
first order correction terms, which are not necessarily equal. The last equation in the
above system is expressing how the two effective temperatures Tfe and Tge deviate
from each other. Note that the deviations are of O(ε).

4. Numerical results. We consider two types of comparisons: first, we compare
the upscaled model with two simpler versions still honoring the varying geometry; a
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model obtained by simple upscaling where diffusion is included, and a hyperbolic
model obtained by removing all terms of order ε. Second, we compare the upscaled
model with one obtained using a fixed geometry. The goal of these comparisons is to
emphasize similarities and differences between the various models and provide some
guidelines for when it is necessary to use a complicated model, and when it can be
replaced by a simpler version.

4.1. Comparison with two simpler models. In the following, the upscaled
model (3.24)–(3.29) will be called the dispersive model.

A simple upscaling where diffusive terms, but no other O(ε)-terms, are included,
results in a model similar to the one in [7]. This model will include five unknowns ue,
q̄e, de, pe, and Te and five equations to describe them and will be called the simple
upscaled model throughout the comparison. The variables are denoted with subscript
e for consistency with the notation in the dispersive model. All equations are defined
for 0 ≤ x ≤ 1, t > 0, and are given by

q̄e = − (1− 2de)
3

12µfe
∂xpe,(4.1)

∂t ((1− 2de)ρfe + 2de2ρ) + ∂x(ρfeq̄e) = 0,(4.2)

∂t(ρde) = fp(Te, ue)− fd(Te, de),(4.3)

∂t ((1− 2de)ue + 2deρ) + ∂x(ueq̄e) = εD∂x ((1− 2de)∂xue) ,(4.4)

∂t ((1− 2de)ρfeTe + 2deςρTe) + ∂x(ρfeTeq̄e) =εκf∂x

(
(1− 2de)∂xTe

)
+ εκg∂x (2de∂xTe) ,(4.5)

together with (3.30) for fluid density and viscosity.
By doing a straightforward upscaling of the model equations, only keeping leading

order terms, a hyperbolic model is obtained. This model will include five unknowns
ue, q̄e, de, pe, and Te and five equations to describe them. All equations are defined
for 0 ≤ x ≤ 1, t > 0, and are given by

q̄e = − (1− 2de)
3

12µfe
∂xpe,(4.6)

∂t ((1− 2de)ρfe + 2de2ρ) + ∂x(ρfeq̄e) = 0,(4.7)

∂t(ρde) = fp(Te, ue)− fd(Te, de),(4.8)

∂t ((1− 2de)ue + 2deρ) + ∂x(ueq̄e) = 0,(4.9)

∂t ((1− 2de)ρfeTe + 2deςρTe) + ∂x(ρfeTeq̄e) = 0,(4.10)

together with (3.30) for fluid density and viscosity.
The simple upscaled model (4.1)–(4.5) and the hyperbolic model (4.6)–(4.10) still

honor the varying grain width and include the same couplings with respect to non-
isothermal effects and assumptions on large Péclet number as in the dispersive model
(3.24)–(3.29). However, these two simpler versions differ from the dispersive model
with respect to how the upscaling is performed and concerning the accuracy with re-
spect to ε. In the hyperbolic model, only lowest order terms have been kept, resulting
in the diffusion and second order effects to disappear. A similar procedure has been
made for the simple upscaled model, but where diffusion terms have been kept. The
simple upscaled model represents the typical modeling choice for geothermal applica-
tions, while the hyperbolic model results from a straightforward homogenization with
a large Péclet number.
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All three models are implemented fully coupled using forward Euler in time
and finite differences in space, using ∆x = 1/128 for the spatial discretization, and
∆t = 10−4 for the time steps. The second energy equation in the dispersive model,
(3.29), is for stability reasons discretized using backward Euler. Spatial derivatives are
handled with central differences for second order derivatives, and upstream approxi-
mation for first order derivatives. Due to the nonlinearities in the time derivatives and
the velocity couplings, the resulting discretized systems are nonlinear and Newton’s
method is applied at each time step to solve the nonlinear systems of equations. The
initial state is a system in equilibrium where no flow, dissolution, or precipitation is
occurring. The temperatures are shifted such that they attain values between 0 and 1.
With our choice of solubility product, we have

Tfe = Tge = 1, ue = 0.5, q̄e = 0, de = 0.25,

where the initial pressure is such that no flow is achieved. In the simulations, we
consider a case mimicking flow through a pore in a geothermal reservoir where colder
fluid is flowing in at x = 0, and where the in situ fluid flows out at x = 1. Hence, our
boundary conditions are

Tfe = 0, ∂xTge = 0, ue = 0.5, q̄e = 1, ∂xde = 0 at x = 0,

and

∂xTfe = 0, ∂xTge = 0, ∂xue = 0, ∂xq̄e = 0, ∂xde = 0 at x = 1,

and where the boundary conditions for pressure are such that the flow conditions
are fulfilled. Simulations with fixed pressure at both ends of the strip were also per-
formed, but the comparisons in the figures below are qualitatively the same. For the
simple upscaled and the hyperbolic models, the initial and boundary conditions for
Te correspond to the conditions for Tfe given here. Note that the injected ion con-
centration is the same as the initial one. We use the solubility product for CaCO3

obtained from [26], which shows that CaCO3 is a mineral whose solubility increases
with decreasing temperatures. Hence, dissolution is expected as we inject a lower
fluid temperature. In all simulations, unless otherwise stated, we have used

D = 1, κf = 1, κg = 1.2, ς = 1, ρ = 1,

ρ0 = 2, βρf = 0.01, βµ = 0.01, k = 1.

Figures 2, 3, and 4 show the temperatures and grain widths for the three models with
ε = 0.05, ε = 0.01, and ε = 0.001, respectively. All plots are snapshots at t = 0.7.

In Figure 2 we see some discrepancies between the models. All models predict
dissolution due to the cooling, but there are some difference in the extent of disso-
lution, which causes differences in the flow conditions, which again affects the heat
convection. The simple upscaled model produces temperatures quite similar to the
upscaled dispersive model, but differs more in grain width. We differentiate between
fluid and grain temperature in the dispersive model, but even for this large value of
ε the two temperatures are virtually the same. Decreasing the value of ε in Figure 3,
we see that the models produce more similar results. This is as expected as both the
dispersive model and the simple upscaled behave more like a hyperbolic model for
lower values of ε. For ε = 0.01, the largest difference between the models is found in
the temperature profiles. The temperature profile in the hyperbolic model deviates
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quite a lot from the other two models, indicating the heat conduction still being rele-
vant, despite the model being convection dominated. Applying ε = 0.001 shows that
the three models produce virtually the same results, as seen in Figure 4. Letting ε
approach zero in the model equations in the dispersive model and the simple upscaled
model, results in the hyperbolic model.

4.2. Fixed geometry versus variable geometry. To investigate the effect
of the varying geometry on the upscaling process, we compare the dispersive model
(3.24)–(3.29) with a model where the changes in geometry due to the chemical reac-
tions are neglected. The dominating convection is included and we keep dispersion
terms in the upscaling process. To avoid confusion, we will denote the two models
for the fixed geometry model and the variable geometry model in this section. When
fixing the geometry the mineral surface concentration ve is used as a variable instead
of the mineral width de. The upscaled system of equations consists of five unknowns
ue, q̄e, ve, pe, and Te and five equations to describe them. All equations are defined
for 0 ≤ x ≤ 1, t > 0, and are given by

q̄e = − 1
12
∂xpe
µfe

(
1− ε 1

1260
ρfeβµ
κfµfe

∂xTe
∂xpe
µfe

)
,

∂tρfe + ∂x(ρfeq̄e) = −εβρfκf ∂x
(
q̄2e
210ρfe∂xTe

)
,

∂tve = fp(Te, ue)− fd(Te, ue, ve)
+ε
(

(∂1fp − ∂1fd)
q̄e

60κf
ρfe∂xTe

+∂2fp

(
q̄e

60D

(
∂xue − ue

ρfe
∂xρfe

)
− 1

6D∂tve

))
,

∂t(ue + 2ve) + ∂x(ueq̄e)

= εD∂x

(
∂xue

(
1 +

q̄2e
210D2

)
− q̄2e

210D2
ue
ρfe

∂xρfe − q̄e
30D2 ∂tve

)
,

∂t(ρfeTe) + ∂x(ρfeTeq̄e) = εκf∂x

(
∂xTe

(
1 +

q̄2e
210κ2

f
(ρfe − βρfTe)ρfe

))
,

together with (3.30) for fluid density and viscosity. The derivation of the equations
can be found in Appendix A. When the mineral density increases, the changes in the
deposited mineral layer will be smaller. To understand when changes in geometry
should be accounted for and when they can be neglected, we show the temperature
profiles for two choices of ρ in the variable geometry model and fixed geometry model.
The boundary and initial conditions for flow, ions, and temperature are the same as
earlier, where the conditions for fluid temperature are applied for Te. For initial
conditions we assume de = 0.25/ρ in the variable geometry case and ve = 0.25 in
the fixed geometry model, which correspond to the same amount of minerals in both
cases. The boundary conditions for ve is ∂xve = 0 at x = 0 and x = 1. As earlier,
both models are implemented using finite differences with ∆x = 1/128 in space and
forward Euler with ∆t = 10−4 in time, and where Newton’s method is applied at each
time step to solve the resulting nonlinear systems of equations.

Figure 5 compares the temperature profiles and the surface concentration ve with
ρde for ρ = 1 and ρ = 10. There is a large difference in temperature profiles for
ρ = 1, which is due to that the flow velocity through the channel has varied between
the models. The different velocity profiles also affect how the minerals dissolve due
to different ion transport. For ρ = 10, both temperature profile and mineral content
are very similar. Hence, when ρ = 1, the effect of changing geometry is so large,
especially on the temperature profile, that the varying geometry cannot be neglected.
Increasing ρ indicates smaller differences between the models.
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Fig. 2. Plots of temperature and grain width, respectively, when ε = 0.05. The black solid line
refers to the upscaled dispersive model, the dashed blue is the simple upscaled, while the dotted red
is the hyperbolic model. The temperature figure also includes a black dotted line, which is the grain
temperature in the upscaled dispersive model.
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Fig. 3. Plots of temperature and grain width, respectively, when ε = 0.01. The black solid line
refers to the upscaled dispersive model, the dashed blue is the simple upscaled, while the dotted red
is the hyperbolic model. The temperature figure also includes a black dotted line, which is the grain
temperature in the upscaled dispersive model.

x
0 0.2 0.4 0.6 0.8 1

T

0

0.2

0.4

0.6

0.8

1

Temperature, epsilon = 0.001

Simple
Hyperbolic
Dispersive, fluid
Dispersive, grain

x
0 0.2 0.4 0.6 0.8 1

d

0

0.2

0.4

0.6

0.8

1

Grain width, epsilon = 0.001

Simple
Hyperbolic
Dispersive

Fig. 4. Plots of temperature and grain width, respectively, when ε = 0.001. The black solid line
refers to the upscaled dispersive model, the dashed blue is the simple upscaled, while the dotted red
is the hyperbolic model. The temperature figure also includes a black dotted line, which is the grain
temperature in the upscaled dispersive model.
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Fig. 5. Comparison of the temperature profiles and mineral content for ρ = 1 and ρ = 10,
respectively. The solid lines refer to temperature, where black is for the varying geometry and red
for the fixed geometry. The dotted lines refer to the mineral content, where black is for ρde for the
varying geometry and red is ve for the fixed geometry.

5. Summary and discussion. Through homogenization, we have derived an
upscaled model for reactive flow with heat transfer in a thin strip where convection is
dominating, and taken into account changes in aperture caused by the reactions. The
effective model includes dispersive terms in both the energy conservation equations
and the ion concentration equation, and the model equations include several second
order effects arising from the free boundary and the dominating convection. Especially,
we find the flow equation to be non-Darcy due to nonisothermal effects arising from
the viscosity.

The upscaled model is derived using a simple geometry, but the resulting model
provides qualitative information concerning how the various physical processes are
coupled under the assumption of varying geometry and large Péclet number. Moti-
vated by the similarities between the upscaled models in [7] and [8], which considers
moderate Péclet numbers in a thin strip and in a periodic porous medium, respectively,
we expect an extension of the present model to a periodic case to give qualitatively
the same couplings of the model as found here. The approach for upscaling a periodic
porous medium follows the same ideas as in the thin strip case, although some con-
siderations regarding the geometry are required, especially due to the need of a level
set formulation for the free boundary. The present work shows how the various phys-
ical processes are coupled and provides information about second order effects due to
temperature dependencies, varying geometry, and the large Péclet number. This in-
formation could be incorporated into a simulator code such as TOUGHREACT [39],
which mainly uses simplified expressions for permeability and diffusion although a
varying porosity is allowed. TOUGHREACT does not include Taylor dispersion nor
any non-Darcy effects on the fluid flow.

By comparing the upscaled model with two simpler versions, one including simple
diffusion and a hyperbolic model, we have investigated numerically the differences
between them. For moderately small values of ε (that is, around 0.05), the models
produce significantly different results, while the differences become smaller when ε
decreases. For the temperature profile, which is very important in a geothermal
setting, we found larger differences between the models. When ε decreases, the three
models produce very similar results as the model problem is then highly hyperbolic.
This investigation shows when and by how much the Taylor dispersion influences the
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outcome of the simulations and gives information about when Taylor dispersion in a
convection dominated model should be included and when it can be disregarded.

The upscaled dispersive model is also compared with model equations derived
from a fixed geometry pore scale model. By varying the mineral density ρ we in-
vestigated the differences between the two models. This comparison shows that for
moderate values of the mineral density, the chemical reactions cause changes in the
aperture that should not be neglected. Especially for the temperature profile there is a
large difference between the models due to the flow velocity through the pore channel
not being satisfactory depicted by the fixed geometry model in this case. However,
when ρ is large, the changes in aperture become smaller and less important, and the
fixed geometry model produces acceptable results.

Appendix A. Upscaled equations for the fixed geometry case. We give
a short derivation of the upscaled equations when the width of the strip does not
change. The surface concentration vε is the variable tracking how much mineral is
dissolved or precipitated. The fixed two-dimensional domain

Ωε = {(x, y) ∈ R2 | 0 ≤ x ≤ 1,−1/2 ≤ y ≤ 1/2}

with horizontal boundary

Γε = {(x, y) ∈ R2 | 0 ≤ x ≤ 1, y = ±1/2}

is considered. The following nondimensional system of equations describes the reactive
flow and heat transport with dominating convection in the domain:

∂tu
ε = ∇ · (εD∇uε − uεqε) in Ωε,(A.1)

∂tρf = −∇ · (ρfqε) in Ωε,(A.2)

ε2
(
∂t(ρfq

ε) +∇ · (ρfqεqε)
)

= −∇pε

+ε2
(
∇ ·
(
µ(∇qε + (∇qε)T )

)
− 2

3
∇(µ∇ · qε)

)
in Ωε,(A.3)

∂t(ρfT
ε) = ∇ · (εκf∇T ε − ρfT εqε) in Ωε,(A.4)

∂tv
ε = fp(T

ε, uε)− fd(T ε, uε, vε) on Γε,(A.5)

−εnε · (D∇uε) = ∂tv
ε on Γε,(A.6)

qε = 0 on Γε,(A.7)

−εnε · (κf∇T ε) = 0 on Γε,(A.8)

where the reaction rates are the same as earlier, but using the surface concentration
vε instead of the grain width dε to indicate if there are any minerals left in the
dissolution rate expression. As earlier, we assume linear dependence between fluid
density and viscosity with the fluid temperature. Note that our model does not include
an explicit grain part and hence no grain temperature. Alternatively, the presence
of a nonreactive solid could have been included by defining a domain with grain
temperature. In that case, the boundary conditions stated above would be at the
(nonmoving) interface between void space and solid, and the last boundary condition
would be a heat-flux continuity condition between fluid and grain temperature. The
unit normal for the lower part is nε = −1j.

We use the same asymptotic expansions as before, but note that vε is a function of
x and t only as it is only defined on the horizontal boundaries. Inserting the asymptotic
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expansions into (A.2) and (A.7), and collecting the lowest order terms, result, as
earlier, in

q
(2)
0 ≡ 0.

Integrating (A.2) over the thin section

Y = {(x, y) ∈ R2 | x1 ≤ x ≤ x1 + δx,−1/2 ≤ y ≤ 1/2}

and performing the same steps as in section 3.1, result in

(A.9) ∂tρfe + ∂x(ρfeq̄e) = εβρf∂x

(∫ 1/2

−1/2

T1q
(1)
0 dy − T̄1q̄0

)
.

Inserting the asymptotic expansions into (A.3) and using (A.7), show as before
that p0 and p1 are functions of x and t only, and that

∂xp0 = µf0∂
2
yq

(1)
0 ,(A.10)

∂xpe = µfe∂
2
yqe − εβµ∂y

(
(T1 − T̄1)∂yq

(1)
0

)
+O(ε2).(A.11)

Integrating (A.10) twice and applying the lowest order of (A.7) show that

q
(1)
0 = −1

2

∂xp0

µf0

(
1

4
− y2

)
,(A.12)

q̄0 = − 1

12

∂xp0

µf0
.(A.13)

Inserting (A.12) into (A.11) and integrating twice yield

(A.14)
1

2
∂xpe

(
y2 − 1

4

)
= µfeqe−εβµ

∂xp0

µf0

∫ y

−1/2

(
T1(x, z, t)− T̄1(x, t)

)
zdz+O(ε2).

Using the lowest order terms from (A.1) and (A.6), we can show that u0 is a
function of x and t only. By integrating (A.1) over y, interchanging the order of
integration and differentiation as before, and applying the boundary condition (A.6),
we find that

(A.15) ∂t(ue + 2ve) + ∂x(ueq̄e) = εD∂2
xue − ε∂x

(∫ 1/2

−1/2

u1q
(1)
0 dy − ū1q̄0

)
+O(ε2),

where ve = v0 + εv1 is the effective surface concentration of the mineral and is by
definition a function of x and t only. To proceed, an explicit expression for u1 is
needed. We use similar steps to section 3.3: using the second lowest order terms from
(A.1) and rewriting using (A.2) yield

∂tu0 −
u0

ρf0
∂tρf0 + q

(1)
0

(
∂xu0 −

u0

ρf0
∂tρf0

)
= D∂2

yu1

with boundary conditions

D∂yu1 = ∂tv0 at y = −1

2
, −D∂yu1 = ∂tv0 at y =

1

2
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coming from (A.6). We calculate the average over y of the above equation and subtract
it, resulting in

D∂2
yu1 =

A

2

(
y2 − 1

12

)
− 2∂tv0,

where A(x, t) = (∂xu0 − u0

ρf0
∂xρf0)∂xp0µf0

. Integrating twice with respect to y yields

u1(x, y, t) = u1|y=−1/2 +
1

24

A

D

(
y4 − 1

2
y2 +

1

16

)
− ∂tv0

(
y2 − 1

4

)
,

which has the average value

ū1(x, t) = u1|y=−1/2 +
1

720

A

D
+

1

6
∂tv0.

Inserting these two expressions together with (A.12) and (A.13) into (A.15) and eval-
uating the integral, result in

∂t(ue + 2ve) + ∂x(ueq̄e)

= εD∂x

(
∂xue

(
1 +

q̄2
e

210D2

)
− q̄2

e

210D2

ue
ρfe

∂tρfe −
q̄e

30D2
∂tve

)
+O(ε2).

Performing the same steps on (A.4) and (A.8), we can show that T0, and hence
ρf0 and µf0, are independent of y. By integrating (A.4) over y, interchanging differ-
entiation and integration, applying (A.8), and inserting expansions, we obtain

∂t(ρfeTe) + ∂x(ρfeTeq̄e) = εκf∂
2
xTe

− ε∂x

(
(ρf0 − βTf0)

(∫ 1/2

−1/2

T1q
(1)
0 dy − T̄1q̄0

))
+O(ε2).(A.16)

To find an explicit expression for T1, we use the second lowest order terms from (A.4),
which is rewritten using (A.2), hence,

ρf0∂tT0 + ρf0q
(1)
0 ∂xT0 = κf∂

2
xT1.

This equation is manipulated in the same manner as we did with the u1 equation,
resulting in

(A.17) T1(x, y, t) = T1|y=−1/2 +
1

24

C

κf

(
y4 − 1

2
y2 +

1

16

)
with average

(A.18) T̄1(x, t) = T1|y=−1/2 +
1

720

C

κf
,

where C(x, t) = ρf0∂xT0
∂xp0
µf0

. Inserting (A.17) and (A.18) together with (A.12) and

(A.13) into (A.16) and evaluating the integral, result in

∂t(ρfeTe) + ∂x(ρfeTeq̄e) = εκf∂x

(
∂xTe

(
1 +

q̄2
e

210κ2
f

(ρfe − βρfTe)ρfe

))
+O(ε2).
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Inserting (A.17) and (A.18) into (A.9) gives the upscaled mass conservation equa-
tion

∂tρfe + ∂x(ρfeq̄e) = −ε
βρf
κf

∂x

(
q̄2
e

210
ρfe∂xTe

)
+O(ε2),

while the momentum equation (A.14) is

q̄e = − 1

12

∂xpe
µfe

(
1− ε 1

1260

ρfeβµ
κfµfe

∂xTe
∂xpe
µfe

)
+O(ε2).

Finally, we upscale (A.5) by first regularizing the dissolution rate by defining
fδ(T

ε, vε) = k0e
−α/T εwδ(v

ε), where wδ is defined as in (3.23) and δ is a small, positive
number. We Taylor expand the reaction rates around (Te, ue, ve) and obtain

∂tve = fp(Te, ue)− fd(Te, ue, ve) + ε

(
(∂1fp − ∂1fd)

q̄e
60κf

ρfe∂xTe

+∂2fp

(
q̄e

60D

(
∂xue −

ue
ρfe

∂xρfe

)
− 1

6D
∂tve

))
+O(ε2)

after letting δ approach zero.
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