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CONVERGENCE OF A CELL-CENTERED FINITE VOLUME
DISCRETIZATION FOR LINEAR ELASTICITY∗

JAN MARTIN NORDBOTTEN†

Abstract. We show convergence of a cell-centered finite volume discretization for linear elastic-
ity. The discretization, termed the MPSA method, was recently proposed in the context of geological
applications, where cell-centered variables are often preferred. Our analysis utilizes a hybrid varia-
tional formulation, which has previously been used to analyze finite volume discretizations for the
scalar diffusion equation. The current analysis deviates significantly from the previous in three re-
spects. First, additional stabilization leads to a more complex saddle-point problem. Second, a
discrete Korn’s inequality has to be established for the global discretization. Finally, robustness
with respect to the Poisson ratio is analyzed. The stability and convergence results presented herein
provide the first rigorous justification of the applicability of cell-centered finite volume methods to
problems in linear elasticity.
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1. Introduction. We consider the following problem of isotropic (but heteroge-
neous) linear elasticity [16]:

(1.1)

∇ · π + f = 0 in Ω,

π = 2μ∇u+ λ(tr∇u)I in Ω,

u = gD on ΓD,

π · n = gN on ΓN .

Here the domain Ω is a bounded connected polygonal subset of Rd, with boundary
∂Ω = ΓD ∪ ΓN . We have introduced the symmetric gradient operator with the no-
tion ∇u ≡ (∇u + ∇uT )/2. Furthermore, let the parameter functions f ∈ (L2)d

and the Lamé parameters 0 < μ ≤ μ(x) ≤ μ̄ and λ be bounded and positive,
defined almost everywhere. If ΓD has positive measure, equations (1.1) have a
unique weak solution in (H1(Ω))d. Otherwise, if ΓN = ∂Ω, equations (1.1) have
a unique weak solution in (H1(Ω))d/R(Ω), where R is the space of rigid body mo-
tions: R(Ω) = {a + ω ∧ x; a,ω ∈ R

d}. In the latter case
∫
Ω
f dx =

∫
∂Ω

gN dS is
a necessary compatibility condition on the data. Without loss of generality, we will
assume, by subtracting any smooth function satisfying the boundary conditions and
correspondingly modifying the right-hand side, that both gD = 0 and gN = 0. We
note in particular that we do not consider transformation which is available for the
(simpler) case of homogeneous Dirichlet boundary conditions, when equations (1.1)
can be recast in a locally coercive form [16].
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2606 JAN MARTIN NORDBOTTEN

In the continuation, it will be convenient to refer directly to the weak form of
equations (1.1). We will here and in the following use the convention H1(Ω) ≡
(H1(Ω))d and tacitly assume that the space is restricted to the homogeneous Dirichlet
boundary condition. The weak form of equations (1.1) then takes the following form
(see, e.g., [16]): Find u ∈ H1(Ω) such that

(1.2)

∫
Ω

2μ∇u : ∇v + λ(∇ · u)(∇ · v) dx =

∫
Ω

f · v dx for all v ∈ H1(Ω).

Recently, we proposed to extend cell-centered finite volume methods for the scalar
diffusion equation to analyze finite volume methods for elasticity. Cell-centered finite
volume methods may be advantageous for problems associated with poroelastic ma-
terials in geological applications. In particular, it is advantageous to (a) exploit a
similar grid and data structure between the fluid flow and mechanical discretizations
[19, 24]; (b) share the same restrictions on nonmatching grids and hanging nodes for
both the flow and mechanical discretizations; and (c) have explicit force balance and
traction at surfaces and grid faces (often associated with fractures and faults). We
are therefore in particular interested in the generalization of the so-called multipoint
flux approximation (MPFA) O-method for scalar equations [1]. This variant of finite
volume method has proved popular in applications and is also amenable to theoretical
analysis. Most notably, second-order convergence in potential and first-order conver-
gence in flux was established using a link to mixed finite element methods already
in [18, 27], while analysis of the method following the discrete functional framework
was presented in [4]. The generalization of the MPFA O-method to linear elastic-
ity was formulated for general anisotropic and heterogeneous problems in [23]. It
is there termed the multipoint stress approximation (MPSA) method and was sup-
ported by extensive numerical experiments indicating robust convergence results for
a wide range of grids and Poisson ratios. It is the objective of this paper to provide a
theoretical convergence analysis of this method by generalizing the discrete functional
framework for finite volume methods.

The discrete functional framework for finite volume methods is detailed in [12].
This approach was utilized by [13] to develop finite volume discretizations for the
scalar diffusion equation for which convergence could be proved under quite weak
assumptions on the grid and coefficients. Furthermore, the framework was adapted
to nonsymmetrical discretizations in [4] and [3] to generalize and prove convergence
of the MPFA methods.

The main obstacle in order to extend the analysis of discretizations for scalar
diffusion equations to discretizations of equations (1.1) is to ensure coercivity of the
discretization. In particular, the discrete functional spaces previously used for the
scalar problem are conceptually similar to the Crouzeix–Raviart finite element space.
This space does not satisfy Korn’s inequality and thus lacks stability. Our work there-
fore extends the spaces to allow for a natural stabilization analogous to discontinuous
Galerkin methods [14]. Furthermore, to account for the additional challenges associ-
ated with the lack of local coercivity for (1.1), we will additionally need to lean on
ideas from variational multiscale [15] and discontinuous Galerkin [7] methods in our
analysis. We will also address the issue of stability with respect to the Poisson ratio
(so-called numerical locking) by reverting to ideas from mixed methods [9, 19].

We note previous work on finite volume methods for elasticity. Most work where
node-centered [6] and cell-centered [26] finite volume methods are introduced for
elasticity contain only numerical validation. This includes also recent work on cell-
centered methods [23, 10]. When additional variables are introduced, convergence of
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CONVERGENCE OF FINITE VOLUMES FOR LINEAR ELASTICITY 2607

finite volume methods has been established [20]. Similarly, convergence has recently
been established for face-valued finite volume methods [19]. This latter citation is par-
ticularly important, as the method is furthermore shown to be locking free. To the
knowledge of this author, this contribution represents the first rigorous convergence
proof for cell-centered finite volume methods on general grids and heterogeneities.
Furthermore, we establish that the method is locking free for a large class of grids.

The article is structured as follows. In section 2, we establish notation and recall
the formulation and main results from the hybrid-variational framework. In section 3,
we define our discrete mixed variational problem and establish its connection to the
MPSA O-discretization. In section 4, we establish a local coercivity condition which
guarantees the global coercivity of the discretization. This represents the key techni-
cal obstacle in order to extend previous work and prove stability of the discretization.
In section 5, we largely exploit previous work on discrete functional discretizations
to obtain the main convergence result. Section 6 provides detailed comments on the
method, including application to homogeneous Dirichlet problems, reduced integra-
tion on simplex grids, and the corresponding scalar diffusion discretization. Section 7
details how the local coercivity condition simplifies to an explicit condition on the
mesh for homogeneous problems and addresses the issue of numerical locking. Sec-
tion 8 concludes the paper.

2. Discrete functional framework. In this section we give the definition of
our finite volume mesh and discrete variables.

2.1. Finite volume mesh. Following [3], we modify the construction of [12]
and denote a finite volume mesh by the triplet D = (T ,F ,V), representing the mesh
Tessellation, Faces, and Vertexes, such that the following hold:

• T is a nonoverlapping partition of the domain Ω. Furthermore, letmK denote
the d-dimensional measure of K ∈ T .

• F is a set of faces of the partitioning T . We consider only cases where
elements σ ∈ F are subsets of (d−1)-dimensional hyper-planes of Rd, and all
elements σ ∈ F we associate the (d− 1)-dimensional measure mσ. Naturally,
the faces must be compatible with the mesh, such that for all K ∈ T there
exists a subset FK ⊂ F such that ∂K =

⋃
σ∈FK

σ.
• V is a set of vertexes of the partitioning T . Thus for any d faces σi ∈ F ,
either their intersection is empty or

⋂
i σi = s ∈ V .

Note that in the above (and throughout the paper), we abuse notation by referring
to the object and the index by the same notation. For example, we will by K ∈ T
allow K to denote the index, as in FK , but also the actual subdomain of Ω, such that
the expression ∂K is meaningful.

Additionally, we state the following useful subsets of the mesh triplet, which
allows us to efficiently sum over neighboring cells, faces, or vertexes:

• For each cell K ∈ T , we denote the faces that comprise its boundary by FK

and the vertexes ofK by VK . We will associate with each corner s ∈ VK a sub-
cell ofK, identified by (K, s), with a volumems

K such that
∑

s∈VK
ms

K = mK .
• For each face σ ∈ F , we denote the neighboring cells Tσ and its corners for
Vσ. Note that for all internal faces, Tσ will contain exactly two elements,
while it contains a single element when σ ⊂ ∂Ω. We will associate with each
corner s ∈ Vσ a subface of σ, identified by (s, σ), with an area ms

σ such that∑
s∈Vσ

ms
σ = mσ.

• For each vertex s ∈ V , we denote the adjacent cells by Ts and the adjacent
faces by Fs.

c© 2015 Jan Martin Nordbotten. Published by SIAM under the terms of the Creative Commons 4.0
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2608 JAN MARTIN NORDBOTTEN

We associate for each element K ∈ T a unique point (cell center) xK ∈ K
such that K is star shaped with respect to xK , and we denote the diameter of K
by dK . Furthermore, we denote the distance between cell centers xK and xL as
dK,L = |xK − xL|. The grid diameter is denoted h = maxK∈T dK .

We associate with each face σ its outward normal vector with respect to the cell
K ∈ Tσ as nK,σ, and the Euclidean distance to the cell center dK,σ. For each subface
(s, σ) we denote the subface center as xs

σ and the smallest set of Gauss quadrature
points sufficient for exact integration of second-order polynomials on (s, σ) as Gs

σ. For
each quadrature point β ∈ Gs

σ we associate the position xβ and weight ωβ.
We associate for each vertex s ∈ V its coordinate xs ∈ Ω.
The above definition covers all two-dimensional (2D) grids of interest. However,

we place two restrictions on grids in three dimensions: First, the above definition of a
mesh requires all cell faces to be planar. The analysis that follows can be extended, at
the cost of extra notation, to the case of nonplanar faces as long as the faces allow for
a piecewise planar subdivision associated with the face corners Vσ. Second, we will
require that no more than three faces meet at a vertex. This permits quadrilaterals,
simplexes, and all so-called 2.5-D grids (e.g., 2D horizontal grids extended vertically,
as is common in the petroleum industry). However, as an example we do not per-
mit certain three-dimensional (3D) grids such as pyramids. The formulation of the
method readily generalizes to this case; however, the application of Korn’s inequality
(section 4.3) becomes more technical.

Regularity assumptions on the discretization D are detailed elsewhere (see, e.g.,
[12]); we will in the interest of simplicity of exposition henceforth assume that the clas-
sical grid regularity parameters (grid skewness, internal cell angles, and coordination
number of vertexes) do not deteriorate.

2.2. Discrete variables and norms. In contrast to MPFA methods for the
scalar diffusion equation [1], it is for the MPSA O-method not sufficient to use so-
called continuity points to provide sufficient constraints to yield a unique discretization
[23]. Thus, we need to extend the discrete function spaces utilized previously [3, 13]
to allow for multiple unknowns per subface. We detail the three discrete spaces used
in our analysis below.

The following discrete space is classical [12].
Definition 2.1. For the mesh T , let HT (Ω) ⊂ L2(Ω) be the set of piecewise

constant functions on the cells of the mesh T .
As with the dual interpretation of the elements K ∈ T , the space HT (Ω) is

isomorphic to the space of discrete variables associated with the cell-center points
xK . There should also be no cause for confusion in the following when we work with
the vector-valued spaces, still denoted HT .

For the space HT we introduce the inner product

[u, v]T =
∑
K∈T

∑
σ∈FK

mσ

dK,σ
(γσu− uK)(γσv − vK)

and its induced seminorm

|u|T = ([u, u]T )
1/2.

Here the operator γσu interpolates the piecewise constant values of HT onto the faces
of the mesh, weighted by the distances dK,σ:

γσu =

( ∑
K∈Tσ

uK

dK,σ

)/( ∑
K∈Tσ

d−1
K,σ

)
for all σ ∈ F ; σ /∈ ΓD.

c© 2015 Jan Martin Nordbotten. Published by SIAM under the terms of the Creative Commons 4.0
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CONVERGENCE OF FINITE VOLUMES FOR LINEAR ELASTICITY 2609

For Dirichlet boundary edges, σ ∈ ΓD, we take γσu = 0. Equivalently, the oper-
ator γσu can be defined as the value which minimizes the definition of the seminorm
|u|T . We note that this seminorm, and those that follow, are equivalent to full norms
when ΓD has positive measure. In the case where ΓN = ∂Ω, rigid body motions must
be excluded, as we will note later.

The following space is the discontinuous discrete space which we use to construct
the consistent gradient functions of our scheme. It is to our knowledge novel in the
context of analysis of finite volume methods; however, it is natural in the sense that
it is a discrete version of the first-order discontinuous Galerkin space (as we will
emphasize later).

Definition 2.2. For the mesh triplet D, let HD be the set of real scalars
(uK , uσ,β

K,s) for all K ∈ T , for all (s, σ) ∈ VK ×FK , and for all β ∈ Gs
σ.

The space HD thus contains one unknown per cell, in addition to multiple un-
knowns on each interior subface. This will be essential to control the space R(Ω). As

above, we will immediately take uσ,β
K,s = 0 for all σ ∈ ΓD.

We denote for all internal subfaces [[u]]σ,βs = uσ,β
R,s − uσ,β

L,s for u ∈ HD and
Tσ = {R,L} as the jump in the discrete function u across that edge. We will also
need a notion of an average face value, and we denote similarly for all internal sub-

faces 〈u〉σs = 1
mσ

s

∑
β∈Gσ

s
ωβ

uσ,β
R,s+uσ,β

L,s

2 . For boundary edges σ ∈ ∂Ω only one function

value is available, and we define [[u]]σ,βs = 0 and 〈u〉σs = 1
mσ

s

∑
β∈Gσ

s
ωβu

σ,β
R,s. We now

associate with the space HD the inner product (note that unless explicitly marked
with parentheses, summation lasts the full equation)

[u, v]D =
∑
K∈T

∑
s∈VK

∑
σ∈Fs

ms
K

d2K,σ

(uK −〈u〉σs )(vK −〈v〉σs )+
ms

K

d2K,σ

1

mσ
s

∑
β∈Gσ

s

ωβ [[u]]
σ,β
s [[v]]σ,βs

and the induced seminorm

|u|D = ([u, u]D)
1/2.

As with |u|T , it is straightforward to also define a proper norm for HD.
The above “discontinuous” discrete space generalizes the “continuous” discrete

space, which we recall as follows [3].
Definition 2.3. For the mesh triplet D, let HC be the set of real scalars (uK , uσ

s )
for all K ∈ T and for all (s, σ) ∈ VK ×FK.

By introducing the natural projection operator ΠD : HC → HD as (ΠDu)K = uK ;

(ΠDu)σ,βK,s = uσ
s for all K ∈ T and for all (s, σ) ∈ VK ×FK , we can immediately define

the inner product

[u, v]C = [ΠDu,ΠDv]D

and the induced seminorm

|u|C = ([u, u]C)
1/2.

In addition to the projection operator defined above, we shall need a few more
operators to move between function spaces.

• Let the operator ΠT : HD → HT be defined as (ΠT u)(x) = uK for all x ∈ K
and K ∈ T . Furthermore, as there should be no reason for confusion we also
define ΠT : HC → HT with as (ΠT u)(x) = (ΠT ΠDu)(x) = uK for all x ∈ K
and K ∈ T . Finally, we also write ΠT : C(Ω) → HT as (ΠT u)(x) = u(xK)
for all x ∈ K and K ∈ T .

c© 2015 Jan Martin Nordbotten. Published by SIAM under the terms of the Creative Commons 4.0
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2610 JAN MARTIN NORDBOTTEN

• Let the operator ΠC : HD → HC be defined as (ΠCu)K = uK ; (ΠCu)
σ
s = 〈u〉σs

for all K ∈ T and for all (s, σ) ∈ VK ×FK .
The spaces defined above satisfy the following inequalities.
• Discrete Sobolev inequality [12]: For all u ∈ HT and for all q ∈ [1, 2d/(d−2+ε))

‖u‖Lq ≤ q Csob |u|T .

• Relationship between HT and HC [3]: For all u ∈ HC

|ΠT u|T ≤
√
d |u|C .

• Relationship between HC and HD (trivial from definitions): For all u ∈ HD

|ΠCu|C ≤ |u|D.

Finally, we introduce local spaces HD,s ⊂ HD for each s ∈ V defined such that

u ∈ HD,s if uσ,β
K,t = 0 for all t ∈ V with t �= s and uK = 0 if s /∈ VK . Similarly,

HT ,s and HC,s are defined through the projection operators defined above. The local
spaces have the natural norms, which to be precise are given for all u ∈ HD as

|u|2D,s =
∑
K∈Ts

∑
σ∈Fs

ms
K

d2K,σ

(uK − 〈u〉σs )2 +
ms

K

d2K,σ

1

mσ
s

∑
β∈Gσ

s

ωβ([[u]]
σ,β
s )2

and for all u ∈ HT as

|u|2T ,s =
∑
K∈Ts

∑
σ∈Fs

⋂
FK

ms
σ

dK,σ
(γσu− uK)2

such that both

|u|2D =
∑
s∈V

|u|2D,s and |u|2T =
∑
s∈V

|u|2T ,s.

3. The MPSA finite volume discretization. In this section, we will utilize
the spaces defined in section 2 to establish a cell-centered finite volume method for
elasticity. The method presented herein is a slight generalization of the MPSA O-
method as defined in [23]. The construction is inspired by, but generalizes in necessary
aspects, the hybrid finite volume methods in [4, 3].

3.1. Discrete mixed variational problem. Since we are dealing with the
vector equation (1.1), we will seek solutions u in the discrete vector-valued spaces
Hχ = (Hχ)

d, where χ ∈ {C,D, T }. These spaces inherit all the definitions of their
scalar counterparts, with the understanding that all inner products are extended with
vector inner products in their definitions. The norms are in consequence the root of
the square of the componentwise norms.

Following [4], we will use two notions of discrete gradients. However, since we will
work with both spaces HC and HD, where the latter is multivalued on internal edges,
the precise construction of the gradients differs from those works. The first gradient
is the proper negative transpose of the divergence operator and is constructed to yield
a conservative finite volume formulation.

Definition 3.1. For each K ∈ T and each s ∈ VK we define the finite volume
gradient for all u ∈ HC:

(3.1) (∇̃u)sK =
1

ms
K

∑
σ∈FK∩Fs

ms
σ(〈u〉σs − uK)⊗ nK,σ.

c© 2015 Jan Martin Nordbotten. Published by SIAM under the terms of the Creative Commons 4.0
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CONVERGENCE OF FINITE VOLUMES FOR LINEAR ELASTICITY 2611

Here, we denote the vector outer product by ⊗, such that each row of the product
matrix contains the approximation to the gradient of the corresponding component
of u. We construct a second gradient with the property that it is exact for linear
variation in u with respect to the underlying physical space.

Definition 3.2. For each K ∈ T and each s ∈ VK we define the consistent
gradient for all u ∈ HD:

(3.2) (∇u)sK =
∑

σ∈FK∩Fs

(〈u〉σK,s − uK)⊗ gs
K,σ.

Here we extend the averaging notation in a natural way such that 〈u〉σK,s =
1

mσ
s

∑
β∈Gσ

s
ωβu

σ,β
K,s. In order to satisfy the desired consistency property, we require

that (∇u)sK be exact for linear displacements; therefore gs
K,σ are defined by the system

of equations

(3.3) I = (∇x)sK =
∑

σ∈FK∩Fs

(〈x〉σK,s − xK)⊗ gs
K,σ.

Here I is the d-dimensional second-order identity tensor.
For all 2D grids and for all 3D grids where no more than three faces meet at any

vertex, (3.3) uniquely determines gs
K,σ [1, 3]. This encompasses all grids considered

herein.
In the case of both gradients, the symmetric gradient is obtained in the same way

as in the continuous setting by taking the average of the gradient and its transpose.
Furthermore, the equivalent discrete divergence is the trace of the gradient, e.g.,

(∇̃u)sK = [(∇̃u)sK + (∇̃u)sK
T ]/2 and (∇̃ · u)sK = tr(∇̃u)sK ,

while also

(∇u)sK = [(∇u)sK + (∇u)sK
T
]/2 and (∇ · u)sK = tr(∇u)sK .

We now define our finite volume scheme for linear elasticity, equations (1.1),
through the specification of the following three bilinear forms. The first bilinear form
embodies a discrete form of Hooke’s law together with the finite volume structure of
the method and is analogous to the weak form stated in (1.2). Thus we define for
(u,v) ∈ HD ×HC

(3.4) bD(u,v) =
∑
K∈T

∑
s∈VK

ms
K

(
2μK(∇u)sK : (∇̃v)sK + λK(∇ · u)sK(∇̃ · v)sK

)
.

The discrete coefficients are given as subcell averages of their continuous counterparts,
e.g., μK = m−1

K

∫
K
μ dx. The second bilinear form controls jumps across subcell faces

and is defined for (u,w) ∈ HD ×HD

(3.5) aD(u,w) =
∑
s∈V

∑
σ∈Fs

ασ
s

mσ
s

∑
β∈Gs

σ

ωβ[[u]]
σ,β
s · [[w]]σ,βs .

The family of weights ασ
s are assumed to be uniformly bounded, 0 < α− ≤ ασ

s ≤ α+ <
∞. We retain the freedom to specify ασ

s to improve the stability of the scheme. Nu-
merically, experiments indicate that the weights ασ

s should be related to the harmonic
mean of the material coefficients μK and λK [23].
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2612 JAN MARTIN NORDBOTTEN

Finally, we introduce a bilinear form to constrain the discrete unknowns on sub-
faces uσ,β

K,s to the hyperplane given by uK and (∇u)sK ; thus for all (u,w) ∈ HD×HD
we define

(3.6) cD(u,w) =
∑
K∈T

∑
s∈VK

∑
σ∈Fs

∑
β∈Gs

σ

(
uσ,β
K,s − uK − (∇u)sK · (xβ − xK)

)
·
(
wσ,β

K,s −wK − (∇w)sK · (xβ − xK)
)
.

The above bilinear forms allow us to define the discrete mixed variational problem:
Find (uD,yC ,yD) ∈ HD ×HC ×HD such that

bD(uD,v) =

∫
Ω

f · PC,T v dx for all v ∈ HC ,(3.7)

cD(uD,w) = 0 for all w ∈ HD,(3.8)

and

(3.9) aD(uD,w) + bD(w,yC) + cD(w,yD) = 0 for all w ∈ HD.

The solution uD ∈ HD contains the solution satisfying the equations of elasticity
on finite volume form (3.7), constrained to be piecewise linear on subcells (3.8), while
the remaining degrees of freedom are selected to minimize jumps in the solution (3.9).
The component yC and yD are Lagrange multipliers for the constrained minimization
problem and will not be of further interest.

We note that (3.7) can be seen as a direct finite volume formulation of equa-
tions (1.1), wherein these equations hold in an integral sense for each cell K ∈
HT . Conversely, (3.7) can be identified as a Petrov–Galerkin discretization of equa-
tions (1.2), wherein the test functions are chosen as piecewise constants on the cells
K. In this interpretation, the shape functions are defined implicitly by (3.8) and (3.9).
We return to the consistency of (3.7)–(3.9) in section 5.

3.2. Finite volume formulation. In this section we identify that the discrete
mixed variational problem (3.7)–(3.9) is equivalent to a finite volume scheme. The
forces acting on a subface T σ

K,s are naturally defined from the bilinear form bD and
Hooke’s law (equation (1.1)2); thus we define for all u ∈ HD the tractions

(3.10) T σ
K,s(u) = ms

σ[2μK(∇u)sK + λK(∇ · u)sKI] · nK,σ.

We verify by comparison to (3.4) that for all (u,v) ∈ HD ×HC

(3.11) bD(u,v) =
∑
K∈T

∑
s∈VK

∑
σ∈FK∩Fs

T σ
K,s(u) · (vK − vσ

s ).

By considering v from the canonical basis ofHC , we can now identify that the discrete
variational mixed formulation (3.7)–(3.9) as equivalent to the hybrid finite volume
method: Find uD ∈ HD such that

∑
σ∈FK

T σ
K(uD) =

∫
K

f dx for all K ∈ T ;(3.12)

T σ
K(uD) =

∑
s∈Vσ

T σ
K,s(uD) for all (K,σ) ∈ T × FK ;(3.13)

c© 2015 Jan Martin Nordbotten. Published by SIAM under the terms of the Creative Commons 4.0
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CONVERGENCE OF FINITE VOLUMES FOR LINEAR ELASTICITY 2613

T σ
R,s(uD) = −T σ

L,s(uD) for all (σ, s) ∈ Fint × Vσ

with {R,L} = Tσ;(3.14)

uσ,β
K,s − uK − (∇u)sK · (xβ − xK) = 0 for all (K, s, σ) ∈ T × VK × (Fs ∩ FK)

and β ∈ Gs
σ;(3.15)

uD = argminu∈U1
aD(u,u) where U1 ⊂ HD is the set of

functions satisfying (3.12)–(3.15);(3.16)

To be precise, (3.12) follows from (3.7) by choosing test functions v ∈ HT .
Equation (3.13) follows from the definition of the space HC , which contains a single
degree of freedom on each edge, and that the right-hand side of (3.7) is zero for test
functions associated with faces of the grid. Similarly, (3.14) follows from the continuity
of the face variables in HC and the same property of (3.7). Finally, (3.15) and (3.16)
are direct counterparts of the constraint equation (3.8) and the interpretation of (3.9)
as the Euler–Lagrange equation for a constrained minimization problem.

We will see in section 4 that due to the particular structure of the discrete dif-
ferential operators, and the local definition of the forces in (3.10), the minimization
problem in (3.16) has a unique solution in terms of the variables uT ∈ HT ⊂ HD,
the set of variables associated with the cell centers.

Assume for the moment (we will return to this point in the next section) that for
each s ∈ V we can define the local interpolation operator ΠFV,s : HT ,s → HD,s as
the solution of

(3.17) ΠFV,suT ,s = argminu∈Us
aD(u,u),

where U s ⊂ HD,s are the spaces that satisfy the constraints of (3.13)–(3.15) with
uT ,s given. It follows that we can construct explicit, local expressions for the forces
T σ

K,s using the expression given in (3.10):

(3.18) T σ
K,s(uT ,s) = T σ

K,s(ΠFV,suT ,s) =
∑

K′∈Ts

tK,K′,s,σuK′ .

The local coefficient tensors tK,K′,s,σ are referred to as subface stress weight tensors
and generalize the notion of transmissibilities from the scalar diffusion equation [23].
We infer from (3.14) that tK,K′,s,σ = −tK′,K,s,σ. Furthermore, we have from (3.13)
that also the face stress weight tensors can be calculated, with

(3.19) T σ
K(uT ) =

∑
s∈Vσ

∑
K′∈Ts

tK,K′,s,σuK′ .

Combining (3.12) and (3.19), we arrive at the cell-centered finite volume scheme
expressed in terms of cell-centered variables only. This scheme is identical to the
scheme presented as the MPSA O-method (general) in [23].

4. Local problems, Korn’s inequality, and coercivity. Our goal is to show
that the discrete mixed variational problem (3.7)–(3.9) is well-posed. This requires
four steps. First, we formalize the discussion in section 3.2 using a variational multi-
scale framework to state variational problems only in terms of variables in the space
HT , exploiting local operators which are defined through local problems. Second, we
show the stability of these local problems. Thereafter, we arrive at a discrete Korn’s
inequality through a projection onto piecewise linear space on each subcell. Finally,
we establish that coercivity, and thus wellposedness, of the full problem can be verified
based on local coercivity criteria.

c© 2015 Jan Martin Nordbotten. Published by SIAM under the terms of the Creative Commons 4.0
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2614 JAN MARTIN NORDBOTTEN

4.1. A nonmixed discrete variational formulation. We use an approach
similar to the variational multiscale methods [15] as applied to mixed problems [5,
22], in that we split the mixed problem (3.7)–(3.9) into two coupled problems. We
introduceHF

D ⊂ HD denoting the variables associated with cell faces, such thatHD =
HT ×HF

D. Identifying now HT as the space of coarse variables and HF
D as the space

of fine variables, we thus consider the following problem: Find (uT ,uF ,yC ,yD) ∈
HT ×HF

D ×HC ×HD such that (coupled coarse problem)

(4.1) bD({uT ,uF},v) =
∫
Ω

f · ΠT {v,0F} dx for all v ∈ HT

and (coupled mixed fine problem)

bD({0T ,uF},v) = −bD({uT ,0F},v) for all v ∈ HF
C ,(4.2)

cD({0T ,uF},w) = −cD({uT ,0F},w) for all w ∈ HD,(4.3)

aD({0T ,uF},w) + bD(w,yC)

+ cD(w,yD) = −aD({uT ,0F},w) for all w ∈ HD.(4.4)

Note that there is no integral term on the right-hand sides of equations (4.2)–(4.4)
since ΠT {0P ,v} = 0. Furthermore only the fine-scale problem is in mixed form.

As observed in section 3, the aim is to resolve the mixed fine problem locally,
which in the present context is realized by interchanging sums in the definition of the
operators (3.4)–(3.6) to observe that for χ ∈ {a, c} and for (u,v,w) ∈ HD×HC×HD

(4.5) χD(u,w) =
∑
s∈V

χD,s(u,w) and bD(u,v) =
∑
s∈V

bD,s(u,v),

where the local bilinear forms are defined as

bD,s(u,v) =
∑
K∈Ts

ms
K

(
2μs

K(∇u)sK : (∇̃v)sK + λs
K(∇ · u)sK(∇̃ · v)sK

)
,(4.6)

cD,s(u,w) =
∑
K∈Ts

∑
σ∈Fs

∑
β∈Gs

σ

(
uσ,β
K,s − uK − (∇u)sK · (xβ − xK)

)
·
(
wσ,β

K,s −wK − (∇w)sK · (xβ − xK)
)
,

(4.7)

and

(4.8) aD,s(u,w) =
∑
σ∈Fs

ασ
s

mσ
s

∑
β∈Gs

σ

ωβ[[u]]
σ,β
s · [[w]]σ,βs .

This defines the local solution operators Π̂FV,s, which were introduced in section 3.2,

by the following (local mixed problem): For all uT ∈ HT ,s, find (Π̂FV,suT ,yC ,yD) ∈
HF

D,s ×HC,s ×HD,s, which satisfies

bD,s({0T , Π̂FV,suT },v) = −bD,s({uT ,0F},v) for all v ∈ HF
C,s,(4.9)

cD,s({0T ,uF},w) = −cD,s({uT ,0F},w) for all w ∈ HD,s,(4.10)

aD,s({0T , Π̂FV,suT },w)

+ bD,s(w,yC) + cD,s(w,yD) = −aD,s({uT ,0F},w) for all w ∈ HD,s.(4.11)

c© 2015 Jan Martin Nordbotten. Published by SIAM under the terms of the Creative Commons 4.0
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CONVERGENCE OF FINITE VOLUMES FOR LINEAR ELASTICITY 2615

Existence and uniqueness of solutions to (4.9)–(4.11) are treated in Lemma 4.1 below.
The solution operators are related to the finite volume interpolations by ΠFV,suT =

{uT , Π̂FV,suT }. We note that the local interpolations are linear, and we construct
the global finite volume interpolation ΠFV : HT → HD by

(4.12) ΠFV uT =
∑
s∈V

ΠFV,suT .

Using the finite volume projection, we establish the decoupled coarse problem: Given
ΠFV , find uT ∈ HT such that

(4.13) bD
(
ΠFV uT ,ΠC(ΠFV vT )

)
=

∫
Ω

f · ΠT {v,0F} dx for all v ∈ HT .

Equations (4.9)–(4.13) are algebraically equivalent to the original formulation given in
(3.7)–(3.8). However, the present formulation has the advantage that wellposedness
can be established in steps. In particular, the mixed problems (4.9)–(4.11) are all
local, so that we avoid considering a global inf-sup-type condition. Furthermore,
the global problem is similar in structure to a standard Galerkin approximation to
the original system (1.1), and for this problem we will establish (local) conditions to
ensure coercivity.

4.2. Well-posedness of local mixed problems. The local mixed problems
are given by (4.9)–(4.11) and define the finite volume interpolation.

Lemma 4.1. The solutions of the local mixed problems (4.9)–(4.11) exist and are
unique.

Proof. Since aD,s is a symmetric, positive semidefinite bilinear form, the system
is equivalent to a constrained minimization problem, to which existence of solutions
is guaranteed. In particular, for uT = 0, it is clear that ΠFV,suT = 0 satisfies the
constraints (4.9)–(4.10) and has the minimum energy aD,s(ΠFV,s0T ,ΠFV,s0T ) = 0.
Thus for uT = 0, the space of minimizers is isomorphic to the space of continuous
piecewise linear functions on Ts. However, all cellsK ∈ T are star shaped with respect
to xK ; thus (〈x〉σK,s−xK)·nσ,s > 0, from which it follows that the constraints (4.9) are
linearly independent to the null-space of aD,s({0T ,u}, {0T ,u}). Uniqueness follows
since it is straightforward to verify that the null-space of aD,s({0T ,u}, {0T ,u}) has at
most d2 degrees of freedom, while at least d2 constraints (4.9) are independent.

Since the local mixed problem (4.9)–(4.11) is finite-dimensional, the norm of the
interpolation operator is finite, and we define the following.

Definition 4.2. For every s ∈ V, the local mixed problem (4.9)–(4.11) has a
unique solution by Lemma 4.1, and we define the norm of the solution operator ΠFV,s

as θ1,s, such that

(4.14) |ΠFV,su|D,s ≤ θ1,s|u|T ,s for all u ∈ HT

The coefficient θ1,s will in general be dependent on the geometry of the mesh
D and parameter functions μ and λ, but independent of the mesh size h due to the
scaling invariance of the norm. We define the maximum over the local norms as
θ1 = maxs∈V θ1,s.

4.3. Korn’s inequality. We will need a discrete Korn’s inequality to show co-
ercivity of the method. Since the constraints (4.10) guarantee that the interpolations

c© 2015 Jan Martin Nordbotten. Published by SIAM under the terms of the Creative Commons 4.0
license

D
ow

nl
oa

de
d 

03
/2

2/
16

 to
 1

29
.1

77
.1

69
.2

28
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



2616 JAN MARTIN NORDBOTTEN

ΠFV,s are consistent with a piecewise linear approximation on the subcells, we are
inspired to consider Korn’s inequality in this setting.

Definition 4.3. Let the projection operator ΠL2 : HD → (L2(Ω))d be defined
such that for all (K, s) ∈ T × V and x ∈ K, we have ΠL2u(x) = uK + (∇u)sK ·
(x− xK).

We note that this projection is particularly appropriate for functions in u ∈
ΠFV,sHT , since (4.7) and (4.10) assure that in this space the face variables satisfy

uσ,β
K,s = ΠL2u(xσ,β

K,s) for all cells K ∈ T , faces σ ∈ FK , corners s ∈ VK ∩ Vσ, and
quadrature points β ∈ Gs

σ .
For the space of piecewise linear functions we may thus recall the appropriate

Korn’s inequality [7].
Lemma 4.4. For functions u ∈ ΠFV,sHT it holds that

∑
K∈T

∑
s∈VK

ms
K((∇u)sK)2

≤ cK

[
‖ΠL2u‖2L2+

∑
K∈T

∑
s∈VK

ms
K((∇u)sK)2+

∑
σ∈Fs

⋂
FK

ms
K

d2K,σ

1

mσ
s

∑
β∈Gσ

s

ωβ([[u]]
σ,β
s )2

]
.

Proof. The left-hand side is identical to the broken H1 seminorm of ΠL2u, while
the jump term bounds also the surface L2 norm of jumps internal to cells due to mesh
regularity and continuity at the points xK for all cells K ∈ T . Lemma 4.4 therefore
follows from (1.18) in [7].

4.4. Local coercivity conditions. We will derive local coercivity conditions
which guarantee the coercivity of the bilinear form on the reduced subspace as given
by (4.13). The reduced subspace is critical, as bD,s is not coercive on the full space
HD (even without the introduction of a full norm). As a consequence, coercivity will
depend on the local finite volume interpolations ΠFV,s, and we state the following
assumption on the solution of the local mixed problems.

Assumption 4.5. For every vertex s ∈ V, there exists a constant θ2,s ≥ θ2 >
0 such that the bilinear form bD,s and the interpolation ΠFV,s satisfy for all u ∈
ΠFV,sHT /R(Ω)

(4.15) bD,s(u,ΠCu) ≥ θ2,s

(
|u|2bD,s

+
∑
K∈Ts

∑
σ∈Fs

⋂
FK

ms
K

d2K,σ

1

mσ
s

∑
β∈Gσ

s

ωβ([[u]]
σ,β
s )2

)
,

where the local energy seminorm is associated with the symmetrized bilinear form

|u|2bD,s
=

∑
K∈Ts

ms
K

(
2μK((∇u)sK)2 + λK((∇ · u)sK)2

)
.

This assumption can be verified locally while assembling the discretization, and
moreover it can be verified a priori for certain classes of meshes; see section 7. We
recall two useful stability estimates.

Lemma 4.6. (a) There exists a constant cD, dependent only on the regularity of
D, such that for all u ∈ HD

|u|2D ≤ cD

(∑
K∈T

∑
s∈VK

ms
K((∇u)sK)2 +

∑
σ∈Fs

⋂
FK

ms
K

d2K,σ

1

mσ
s

∑
β∈Gσ

s

ωβ([[u]]
σ,β
s )2

)
.
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CONVERGENCE OF FINITE VOLUMES FOR LINEAR ELASTICITY 2617

(b) Furthermore, there exists a constant cL2 , dependent only on the regularity of
D, such that for all u ∈ ΠFV,sHT

‖ΠL2u‖2L2/R(Ω) ≤ cL2

(∑
K∈T

∑
s∈VK

ms
K((∇u)sK)2+

∑
σ∈Fs

⋂
FK

ms
K

d2K,σ

1

mσ
s

∑
β∈Gσ

s

ωβ([[u]]
σ,β
s )2

)
.

Proof. The first inequality follows readily from the definition of the seminorm
and the consistent gradient (∇u)sK . The second inequality is shown by contradiction.
Let the right-hand side be zero. Then (∇u)sK = 0, and due to (3.8) the function u
thus lies in the space of rigid body motions on each subcell (K, s). However, since the
second-order Gauss quadrature is exact for linear functions, u is in the space R(Ω).
But then also the left-hand side of the inequality is zero. The scaling of the norms
then guarantees that the constant cL2 is independent of h.

We are now prepared to state the global coercivity result for the method.
Theorem 4.7. For given parameter fields μ, λ and mesh D, let Assumption 4.5

hold. Then the coarse variational problem (4.13) is coercive in the sense that it sat-
isfies the following:

bD
(
ΠFV u,ΠC(ΠFV u)

)
≥ Θ|u|2T(4.16)

(a) for all u ∈ HT if ΓD is measurable, or (b) for all u ∈ HT /R if ΓN = ∂Ω, where
the constant Θ in (4.16) is dependent on the mesh triplet D but does not scale with h
and is bounded below by

Θ ≥ θ2
dcDcK(1 + cL2)

min

(
2μ,

1

1 + (cK(1 + cL2))−1

)
.

Proof. By the definition of the local bilinear forms, Assumption 4.5, and the lower
bounds on the coefficient functions μ and λ, we have for all u ∈ ΠFV,sHT

bD(u,u) ≥ θ2

(
2μ

∑
K∈T

∑
s∈VK

ms
K((∇u)sK)2 +

∑
σ∈Fs

⋂
FK

ms
K

d2K,σ

1

mσ
s

∑
β∈Gσ

s

ωβ([[u]]
σ,β
s )2

)
.

We denote cμ = min(2μ, 1 − ξ) for any 0 < ξ < 1, and now due to Lemma 4.4
and 4.6(a) we obtain

bD(u,u) ≥
θ2cμ

cK(1 + cL2)

∑
K∈T

∑
s∈VK

ms
K((∇u)sK)2+θ2ξ

∑
σ∈Fs

⋂
FK

ms
K

d2K,σ

1

mσ
s

∑
β∈Gσ

s

ωβ([[u]]
σ,β
s )2.

Utilizing Lemma 4.6(b) together with the basic norm inequalities stated in section 2.1
completes the proof when ξ is chosen to maximize Θ.

5. Convergence of the method. Convergence of the scheme as given in sec-
tion 3 is now established for all grid sequences satisfying a uniform coercivity bound.
In particular, weak convergence to some function ũ ∈ (H1)d of the discrete solution
ΠT uD and its gradient ∇DuD (defined below) follows immediately from previous
work [3]. The strong convergence of the gradient ∇DuD, and establishing that ũ is
a weak solution of equations (1.1), requires invoking the finite volume interpolation
ΠFV due to the discontinuous nature of the discrete space HD and the mixed for-
mulation of the saddle-point problems used in the current work. We structure this
section accordingly.

Definitions 5.1. We consider the following continuous extensions of the cell-
average finite volume gradients for discrete functions u ∈ HD:

(5.1) ∇Du(x) = (∇̃u)K for K ∈ T , where x ∈ K.
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2618 JAN MARTIN NORDBOTTEN

Furthermore, we consider the continuous extension of the consistent gradient

(5.2) ∇Du(x) = (∇u)sK for K ∈ T , s ∈ T , where x ∈ Ks.

Note that from its definition, the discrete gradient satisfies the stability estimate

‖∇Du‖L2 ≤ g0‖u‖D,

where g0 = maxK∈T ,σ∈FK ,s∈Vσ |gs
K,σ|/dK,σ, which depends on the regularity of the

grid but not on h.
We now recall the following result.
Lemma 5.2. Let Dn be a family of regular discretization triplets (in the sense that

mesh parameters remain bounded) such that hn → 0 as n → ∞. Furthermore, let θ1
and Θ be bounded independently of n. Then for all n, the solution un of (3.7)–(3.8)
exist and are unique, there exists ũ ∈ (H1(Ω))

d, and up to a subsequence (still denoted
by n) ΠT un → ũ converges in (Lq(Ω))d for q ∈ [1, 2d/(d−2+ ε)) as hn → 0. Finally,

the cell-average finite volume gradient ∇Dun converges weakly to ∇ũ in (L2(Ω))d
2

.
Proof. The proof follows immediately from the coercivity of the scheme (section 4)

and the compactness arguments detailed in [13] and [3].
We also state the strong convergence of the consistent gradient ∇Du(x). This

result was achieved for the scalar diffusion equation in [3], where the discrete solution
lies in HC . We can extend their calculation to the present case as summarized below.

Lemma 5.3. Consider the same case as in Lemma 5.2. Then the consistent
gradient ∇Dun converges strongly to ∇ũ in (L2(Ω))d

2

.
Proof. We need to show that

(5.3) lim
n→∞

∫
Ω

(∇Dun −∇ũ)2 dx = 0.

Introducing a function ϕ ∈ (C∞(Ω))d which approximates ũ, and using the identity

∇Dun −∇ũ = ∇D(un −ΠFV ΠT ϕ) +∇D(ΠFV ΠT ϕ−ΠCϕ) +∇D(ΠCϕ)−∇ũ,

we can bound the integral in (5.3) by

(5.4)

∫
Ω

(∇Dun −∇ũ)2 dx

≤ 3

∫
Ω

(
∇D(un −ΠFV ΠT ϕ)

)2
dx+ 3

∫
Ω

(
∇D(ΠFV ΠT ϕ−ΠCϕ)

)2
dx

+ 3

∫
Ω

(
∇D(ΠCϕ)−∇ũ

)2
dx.

The second term on the right-hand side converges since the interpolation op-
erators are exact for linear functions, while the last term vanishes for n → ∞ [3],
so it suffices to deal with the first right-hand side term in (5.4). However, since
un = {ΠT uD,n,ΠFV ΠT uD,n}, the first term is bounded by the bilinear form bD due
to coercivity. A straightforward calculation exploiting that ϕ approximates ũ then
verifies that all terms on the right-hand side of (5.4) converge to zero.

The preceding definitions and lemmas allow us to state the main convergence
result for the MPSA method.

Theorem 5.4. Consider the same case as in Lemma 5.2. Then the limit ũ ∈
(H1(Ω))d of the discrete mixed variational problem (3.7)–(3.9), and consequently the
MPSA O-method, is the unique weak solution of the problem (1.1).
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CONVERGENCE OF FINITE VOLUMES FOR LINEAR ELASTICITY 2619

Proof. Lemmas 5.2 and 5.3 establish that the limit ũ ∈ (H1(Ω))d exists and the
appropriate notion of convergence of the discrete gradients. It remains to show that
ũ is a weak solution of problem (1.1). Uniqueness then follows from the uniqueness
of weak solutions to (1.1). Recall again that un = ΠFV uT ,n. Then due to the
stability of the interpolations and the strong and weak convergence of ∇Dun and
∇Dun, respectively, it follows that for all u,v ∈ (C∞(Ω))d

(5.5) lim
n→∞

bD(ΠFV ΠT u,ΠCΠFV ΠT v) =

∫
Ω

2μ∇u : ∇v + λ(∇ · u)(∇ · v) dx

and

(5.6) lim
n→∞

∫
Ω

f ·ΠT {ΠT v,0F} dx =

∫
Ω

f · v dx.

However, since (5.5) and (5.6) are the terms weak form of (1.1), as stated in equa-
tions (1.2), and since C∞ is dense in H1, it follows that the limit ũ is the weak
solution to (1.1).

6. Comments on the method. In this section we present various comments
on the developments of sections 2–6. In particular, we comment on (1) the application
to pure Dirichlet problems with homogeneous coefficients, (2) reduced quadrature on
simplex grids, (3) the corresponding finite volume for the scalar diffusion equation,
and (4) a related finite difference method.

6.1. Homogeneous Dirichlet problems. For the special case where ΓD =
∂Ω, and the Lamé coefficients μ and λ are constant on Ω, it is well known that
equations (1.1) can be rewritten by integration-by-parts as [16]

(6.1)

∇ · π = f in Ω,

π = μ∇u+ (λ + μ)(∇ · u)I in Ω,

u = 0 on ∂Ω.

This form is locally coercive, since the symmetrized gradient does not appear.
We may proceed to discretize equation (6.1) as in the preceding sections, but with
the bilinear form defined in (3.4) replaced by

(6.2) bD(u,v) =
∑
K∈T

∑
s∈VK

ms
K

(
μ(∇u)sK : (∇̃u)sK + (λ+ μ)(∇ · u)sK(∇̃ · u)sK

)
.

The resulting numerical method is also locally coercive and Korn’s inequality
(section 4.3) is not needed to show coercivity of the method. While the local coercivity
Assumption 4.5 is still needed, this locally coercive formulation will, due to the absence
of Korn’s inequality, have a more favorable global coercivity constant.

6.2. Reduced integration on simplex grids. It is possible to consider using
lower-order quadrature by choosing a smaller set of Gauss points Gs

σ . In particular,
choosing a single Gauss quadrature point leads to the MPSA vector analogue of the
classical MPFA O(η)-methods for the scalar equation, where the η is a parameteri-
zation of the location of the Gauss point [1, 2]. In this setting the quadrature point
will act as a point of strong continuity over the faces σ ∈ F between the (linear)
solution in the two adjacent subcells Tσ. On general grids, this does not lead to a
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2620 JAN MARTIN NORDBOTTEN

well-posed discretization, since the local mixed system (4.7)–(4.8) is no longer well-
posed: There exists for this case a nontrivial element of the kernel of aD,s which
satisfies the constraints given by bD,s and cD,s.

However, for simplex grids with strictly acute corners, numerical experiments
indicate that the local mixed system remains well-posed [23]. In this case, it is par-
ticularly attractive to consider the MPSA O(1/3)-method. This parameterization
implies that for all (K, s) ∈ T , VK the Gauss quadrature points Gs

σ are chosen such
that the points xK , xβ (for all β = Gs

σ with σ ∈ FK ∩ Fs) and the location of the
vertex s form a parallelogram in two dimensions and a parallelepiped in three dimen-
sions. In this case, a straightforward calculation shows that the two discrete gradients
coincide, since

(6.3) gs
K,σ =

ms
σ

ms
K

× nK,σ.

Consequently, the bilinear form bD is symmetric [17, 11, 3].

6.3. Corresponding discretization for the scalar diffusion equation. The
discretization analyzed herein can be directly applied to the scalar diffusion equation
and represents a new method in that context.

For the scalar diffusion equation, the analysis presented herein simplifies some-
what. In particular, the use of Korn’s inequality can be omitted (as was also the
case in section 6.1), since the scalar bilinear form is locally coercive. Thus the local
coercivity conditions can be stated directly, and the global coercivity of the method
can be obtained by simple summation. The convergence of the method then follows
by identical arguments to those used in section 5.

6.4. A related finite difference method. The local coercivity Assumption 4.5
can be avoided by considering the related finite difference method. Indeed, consider
the symmetric bilinear form

(6.4) b∗D(u,v) =
∑
K∈T

∑
s∈VK

ms
K

(
2μK(∇u)sK : (∇v)sK + λK(∇ · u)sK(∇ · v)sK

)
.

Then we can formulate a finite difference method by considering the discrete mixed
variational problem: Find (uD,yC ,yD) ∈ HD ×HC ×HD such that

(6.5) b∗D(uD,v) =

∫
Ω

f · PC,T v dx for all v ∈ HC ,

together with (3.8) and (3.9), holds. This finite difference method clearly benefits
from all the results given in sections 4 and 5, but without the requirement of a local
coercivity condition. Furthermore, the method provides a symmetric discretization;
however, these benefits come at the cost of a loss of exact force balance on each grid
cell K ∈ T .

7. Local coercivity assumption for special grids. The key assumption in
the proof is that there exists a class of grids satisfying Assumption 4.5. In this section,
we will verify that such grids exist. To be precise, we give a sufficient condition on the
subcell geometry to guarantee coercivity. This will allow us to establish a priori coer-
civity on regular triangulations of hexagons, squares, and equilateral parallelograms.
Furthermore, we verify unconditional coercivity of the reduced integration proposed
for simplex grids in section 6.2. Finally, we discuss the role of the Poisson ratio and
locking in section 7.3.
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7.1. Vertex-symmetric meshes. We introduce the following notion, valid for
2D grids.

Definition 7.1. We refer to a subcell (s,K) ∈ V×Ts as vertex-symmetric if it is
symmetric with respect to the line through the points (xK ,xs). Similarly, we refer to
a mesh as vertex-symmetric if all subcells in the mesh triplet are vertex-symmetric.

Vertex-symmetric meshes include the regular triangulations of hexagons, squares,
and equilateral parallelograms.

We first state a preliminary lemma which resembles the coercivity assumption.
Lemma 7.2. For every vertex s ∈ V in a vertex-symmetric mesh, there ex-

ists a constant θ∗2,s ≥ θ∗2 > 0 such that the bilinear forms bD,s satisfy for all u ∈
ΠFV,sHT /R(Ω)

bD,s(u,ΠCu) ≥ θ2,s|u|2bD,s

Proof. Since, due to (4.10), the space ΠFV,sHT is locally linear on subcells,
and the consistent gradient is by Definition 3.2 exact on linear functions, Lemma 7.2
therefore reduces to showing that for all matrices P , such that ‖P ‖ = 1 and for all
(K, s) ∈ T ,VK , it holds that

(7.1) μK(P + P T ) : (∇̃(Px))sK + λK trP (∇̃ · (Px))sK

≥ θ2,s
(
μK(P + P T ) : (P + P T ) + λK(trP )2

)
.

We consider first the case λK = 0 and consider the contradiction

(7.2) (P + P T ) : (∇̃(Px))sK ≤ 0.

Using Definition 3.1 we obtain
(7.3)

(P +P T ) :
∑

σ∈FK∩Fs

ms
σ

[(
P (〈x〉σK,s −xK)

)
×nK,σ +nK,σ ×

(
P (〈x〉σK,s −xK)

)]
≤ 0.

Identifying the sum

(7.4) S =
∑

σ∈FK∩Fs

ms
σ

[
(〈x〉σK,s − xK)× nK,σ

]
,

we rewrite inequality (7.2) as

(7.5) (P + P T ) : [(S + ST )(P + P T )] ≤ 0.

But due to the assumption of vertex-symmetry, it is easy to compute that (S+ST )
has strictly positive eigenvalues, and thus (7.5) cannot hold, and the contradiction is
thus shown to be false. The opposite case with μK = 0 is analogous; however, here
the contradiction follows since for vertex-symmetric subcells

∑
σ∈FK∩Fs

ms
σ[(〈x〉σK,s−

xK)] ‖
∑

σ∈FK∩Fs
nK,σ.

Corollary 7.3. For vertex-symmetric meshes, the local coercivity assump-
tion 4.5 reduces to the inequality

|u|2bD,s
≥ θ′2,s

∑
σ∈Fs

ms
K

d2K,σ

1

mσ
s

∑
β∈Gσ

s

ωβ([[u]]
σ,β
s )2

for all u ∈ ΠFV,sHT /R(Ω) and some finite constants θ′2,s.
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2622 JAN MARTIN NORDBOTTEN

We remark that Corollary 7.3 states that the coercivity assumption is equivalent
to verifying that the jumps in the elements of ΠFV,sHT are bounded by the mechanical
energy. This is trivially verified for hexagons, since the discretization is exact for
deformations with constant gradients. A straightforward calculation also verifies the
property for squares and parallelograms. However, we note that this property does
not hold on equilateral triangles when the full set of quadrature points Gσ

s is used.

7.2. Simplex grids. As a consequence of section 7.1, we consider the reduced
integration proposed in section 6.2 for simplex grids.

Lemma 7.4. For simplex grids the local coercivity Assumption 4.5 with the reduced
integration of section 6.2 holds.

Proof. Due to (6.3) the discretization is symmetric, and the local coercivity
Assumption 4.5 simplifies to showing that the jump terms are bounded, e.g., for all
u ∈ ΠFV,sHT /R(Ω)

(7.6) bD,s(u,ΠCu) ≥
θ2,s

1− θ2,s

∑
σ∈Fs

ms
K

d2K,σ

1

mσ
s

∑
β∈Gσ

s

ωβ([[u]]
σ,β
s )2.

However, the reduced integration imposes strong continuity at the points xβ with
β = Gs

σ, and the right-hand side of (7.6) is zero for all u ∈ ΠFV,sHT .
The above shows that the local coercivity Assumption 4.5 always holds for reduced

integration on triangular grids. A similar situation was observed for the scalar MPFA
method in [3]. However, this does not imply that the discretization is unconditionally
convergent on triangular grids, since as pointed out in section 6.2 the local problems
(4.6)–(4.7) are not always well-posed.

7.3. Robustness with respect to the Poisson ratio. It is of interest to un-
derstand the approximation quality of the method with respect to the incompressible
limit. This is known to be a challenge for numerical methods, and is seen, e.g., for
lowest-order conforming finite element methods on simplexes [8].

The standard approach to understanding the issue locking is to recognize that in
the limit λ → ∞, the solution must satisfy equations (1.1) with the parameter choice
λ = 0, subject to the constraint that

(7.7) ∇ · u = 0.

This holds true both for the continuous and numerical solution. The phenomenon
of locking occurs when (7.7) introduces more constraints in the discrete system than
the available degrees of freedom [21].

For the methods discussed herein, we see that in the limit of λ → 0, each of
the local problems (4.9)–(4.11) are constrained to satisfy (7.7). Thus if the number of
vertexes in V exceeds or equals the number of degrees of freedom of the global system,
given by d times the number of elements in T , the finite volume discretization will
lock. That is, a locking phenomenon will arise if card(V) > card(T ). This is the case,
e.g., for hexagons, where numerical locking has also been observed numerically [23].

To prove that locking will not occur for simplex grids, we need to establish the
existence of a Fortin operator for the method [9]. In essence, we need to establish the
existence of an operator with the following property.

Definition 7.5. We refer to an operator ΠF : (H1)d → ΠFV,sHT as a Fortin
operator if the following properties hold: For all u ∈ (H1)

d such that ∇ · u = 0,
(a) ∇D · (ΠFu) = 0;

c© 2015 Jan Martin Nordbotten. Published by SIAM under the terms of the Creative Commons 4.0
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CONVERGENCE OF FINITE VOLUMES FOR LINEAR ELASTICITY 2623

(b) there exists cF which does not scale as h such that

|ΠT ΠFu|T ≤ cF |u|H1 .

The existence of a Fortin operator ensures the robustness of the method with
respect to locking, and we recall the following lemma.

Lemma 7.6. Let Πλ
FV,s explicitly represent the dependency of the finite volume

space on the parameter λ. Then if a Fortin operator exists, it holds that

inf
w∈Π∞

FV,sHT
|ΠT (w −ΠFu)|T ≤ cλ inf

w∈Π0
FV,sHT

|ΠT (w −ΠFu)|T .

Proof. The proof uses classical arguments found, e.g., in [9, 14, 19].
Lemma 7.6 guarantees that the approximation qualities of the space Πλ

FV,sHT
do not degenerate as λ → ∞. Our task remains to show the conditions under which a
Fortin operator exists. To this end we will use ideas from linear solvers, where static
condensation and multiscale finite volume methods provide the right partitioning of
the grid.

The finite volume methods of the type discussed herein share the property that the
discretization stencil is local, wherein “local” implies that the discrete conservation
law for a cell K ∈ T depends only on cells L ∈ Ts, where s ∈ VK . This allows for
a partitioning the tessellation T into a macromesh triplet D = {T,F,B} such that
each K ∈ T belongs to either a macrocell k ∈ T, a macroedge z ∈ F, or a macrovertex
s ∈ B. We refer, e.g., to [25] for the details of the macrotopology, but note the
important property that any two macrocells k, l ∈ T are completely separated from
the perspective of the discretization, such that static condensation can be performed
solely dependent on the unknowns in the macroedges and macrovertices. Furthermore,
for all vertex s ∈ V it holds that at least one K ∈ Ts lies in a macrocell k ∈ T.

Definition 7.7. A family Dn of mesh triplets is locally underconstrained if for
each n there exists a macromesh triplet Dn satisfying the following properties:

(a) The maximum number of cells in any k ∈ T is bounded independent of n.
(b) For each k ∈ T it holds that d card(Tk) > card(Vk).
Note that due to Definition 7.7(a) the macrocell diameter scales proportionally

to the mesh diameter h. Regular family of meshes such as triangulations satisfy
Definition 7.7.

Lemma 7.8. The discrete variational method (3.7)–(3.9), and consequently the
MPSA O-method, is robust with respect to λ → ∞ on families of locally undercon-
strained meshes.

Proof. Let the operator ΠF : (H1)d → ΠFV,sHT be any operator such that

(7.8) (ΠFu)K = u(xK) for all K ∈ {F,B}

and such that

(7.9) (∇ · u)sK = 0 for all K ∈ T , s ∈ VK .

Due to Definition 7.7(b) such operators exist, and due to Definition 7.7(a) and
scaling, any such operator defined consistently across the grid sequence also satis-
fies Definition 7.7(b). Thus ΠF is a Fortin operator, and the numerical method is
robust.

Regular Cartesian lattices with Cartesian macrocell provides a limiting case where
d card(Tk) = card(Vk) − 1 independent of the coarsening ratio, and as such never
satisfy Definition 7.7. Nevertheless, Cartesian grids appear to be locking-free based
on numerical investigation [23].
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2624 JAN MARTIN NORDBOTTEN

8. Concluding remarks. We have expanded the hybrid finite volume frame-
work and consider a mixed discretization in the context of linear elasticity. We use
ideas from the variational multiscale method to rewrite the discretization in a sub-
space of cell-centered variables. By exploiting a discrete Korn’s inequality borrowed
from the analysis of discontinuous Galerkin methods, we obtain global coercivity of
the method, dependent only on a locally computable coercivity condition. Conver-
gence is then obtained by compactness and consistency arguments. The discretization
is designed to be identical to the MPSA finite volume method recently proposed, and
convergence of that method is therefore established by the results herein.

The local coercivity conditions are simplified and verified a priori in the setting
of vertex-symmetric meshes in two dimensions and simplex meshes in two and three
dimensions. We furthermore establish necessary conditions for the robustness of the
scheme with respect to numerical locking using tools from mixed methods and static
condensation. Finally, we also identify a (new) finite difference method based on the
same framework, but for which no local coercivity assumption is needed.

The analysis presented herein is fully consistent with the numerical results pre-
sented in [23] on similar classes of grids and provides a rigorous understanding of the
method.

The current work has not considered the convergence rate of the method, and
such results would necessarily require additional assumptions on the regularity of the
physical parameters μ and λ and on the mesh sequence Dn.
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