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Abstract	
This thesis presents the results of detailed petrographic and diagenetic analyses of the Aptian 

Serdj Fm. at the Jebel Fadeloun and Jebel Garci localities in northern Tunisia. The Serdj Fm. 

was deposited in a distally-steepened, open and temperate water carbonate ramp. The ramp 

was divided into eleven microfacies and eight sedimentary units, and vertical 

lithostratigraphic logging and petrographic studies were performed in order to establish the 

microfacies distribution. The ramp consists of four shallowing upward sequences deposited 

during an overall long-term regressive trend, and is dominated by packstones and grainstones. 

The sequences are separated by minor flooding events which are characterized by abrupt 

changes in grain size and sedimentary texture. 

The Jebel Fadeloun locality is dominated by mid- to inner ramp facies, with early Aptian 

deposits represented by massive, locally karstified, orbitolinid- and miliolid-rich beds. Mid-

Aptian deposits are characterized by intensively bioturbated bivalve-, echinoderm- and 

peloidal-rich beds with variable input of terrigenous quartz. Late Aptian is dominated by 

echinoderm-dominated deposits, and is capped by an unconformity representing the Aptian-

Albian boundary. The Jebel Garci locality represents a more distal Aptian depositional setting 

with a condensed section of mid- to outer ramp deposits, capped by a highly bioturbated 

hardground. 

Detailed thin-section studies and geochemical analyses indicate that the first stages of 

diagenetic alteration took place shortly after deposition, by microbial micritization and 

precipitation of fibrous to granular marine cements. Non-ferroan equant calcite cement 

precipitated at relatively shallow burial depths and/or during meteoric diagenesis. Pendant 

cement precipitated within the fresh-water vadose zone, during periods of subaerial exposure. 

Mouldic porosity formed by meteoric and/or burial diagenesis. Stylolites formed in response 

to increased pressure and associated pressure-dissolution during burial. Ferroan equant calcite 

cement is related to late diagenesis and postdates, at least to some extent, oil migration. Some 

of this cement was later dissolved.  

Image analyses and plug measurements show that the porosity is mostly <6% in Jebel 

Fadeloun, and <1% in Jebel Garci. TinyPerm and plug measurements generally show 

permeabilities <0.1mD. A few beds show permeabilities of up to 1 Darcy, and are probably 

related to open fractures and/or measurement inaccuracies. Highest porosities and 
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permeabilities are observed within terrigenous-rich beds and inner ramp deposits, and reflect 

less cementation, increased fracturing, and increased dissolution of both grains and cements. 

The observed reservoir quality may be significantly better in a reservoir situation due to the 

inhibiting effect of oil on late ferroan calcite cementation. STOOIP calculations based on 

minus-cement porosity (porosity plus ferroan calcite cement) show potential reserves that may 

be of economic significance. 
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1. Introduction	

1.1 Aim	

 

The aim for this master thesis in carbonate sedimentology and petroleum geology, is to study 

the reservoir quality of an Aptian temperate carbonate ramp outcropping in the anticline of 

Jebel Fadeloun (Jebel meaning mountain in Arabic), and as a condensed section in Jebel 

Garci (Figure 1.1). The study is based on field observation, petrographic studies, porosity 

estimations, permeability measurements and estimations, fluid inclusions and δ18O, δ13C, and 
87Sr/86Sr analyses. This study is a part of DNO ASA and L'Entreprise Tunisienne d'Activités 

Pétrolières (ETAP) exploration of the Fkirine permit (Figure 1.1), and was carried out in 

parallel with Fredrik Kjelkenes´s (fellow student) structural study of the same area. The 

results presented here, may provide useful data for DNO ASA and ETAP in deciding the 

location of drilling exploration wells, and to put potential cost against revenue. Data collected, 

interpreted and presented in this thesis, may also serve as a good analogue for petroleum 

reservoirs in similar depositional environments and to predict the subsurface facies 

distribution of the Fkirine permit. 

 

Figure 1.1: Map overview showing terrain and outlining the Fkirine permit (Modified from Google Earth). 
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1.2 Study	area	

 

The studied area is located in the eastern part of Tunisia in the Pelagian province (Figure 1.1 

and Figure 2.2). Jebel Fadeloun (J.Fadeloun) is located on the border between the Sousse 

province and the Kairouan province. This location is approximately 30km west of the Gulf of 

Hammamet, and 20km west-southwest of the city Enfidha. J.Fadeloun comprises a major 

northeast – southwest trending anticline, dissected by complex faults, fractures, and joints. 

The anticline has sparse vegetation with large areas covered by debris. In combination with 

the high abundance of faults, this made a continuous logging a challenge. J.Fadeloun is 

approximately 3km long (north-south) and 4km wide (east-west). J.Fadeloun is on average 

250m high (above sea level) (according to elevation profile made by Google Earth). The 

outcrops in J.Fadeloun consist predominantly of Aptian to Maastrichtian limestones, with 

minor coverage of Quaternary surficial deposits. The studied Aptian sequence belongs to the 

Serdj formation, and outcrops in several locations at J.Fadeloun (Figure 1.2).  

 

 

Figure 1.2: Geological map over J.Fadeloun. Red lines indicate logged section. JF = Southern J.Fadeloun section, NFS 
= Northern J.Fadeloun section (Modified from map published by Directin du Service Géologique, 2003).  
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In Jebel Garci (J.Garci), a 5m condensed section of Aptian sediments outcrops on the 

southern part of the mountain (Moez et al., 2012; Fadhel et al., 2014). The outcrop is 

proximal to a major fault zone (offset not visible and therefore not possible to measure), 

where Aptian (Serdj Fm.) sedimentary rocks are juxtaposed against Albian (equivalent to 

lower Fadhene Fm.) sedimentary rocks (Figure 1.3). 

 

 

Figure 1.3: Geological map of J.Garci. The studied section is marked with a red line. Dark green = Barremian - 
Aptian, White/Green lines= Albian, Lighter green = Campanian - Maastrichtian, and Lightest green = Maastrichtian 
– Paleocene (Modified from map published by Directin du Service Géologique, 2003). 
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1.3 Previous	studies	

 

The Aptian-Albian outcrops at Jebel Fadeloun and Jebel Garci have only been little studied; 

there are no known publications of petrophysical studies in the Jebel Fadeloun area, and only 

a few internal reports made for DNO International ASA by Dr. Luigi Spalluto in 2012 were 

available. These reports focus on microfacies analysis of the Jurassic and Cretaceous 

carbonate units within the Fkirine permit, predominantly of Jebel Zaress, Jebel Fkirine, Jebel 

Fadhloun and Bent Saidane.  Previous studies published on Jebel Garci include 

biostratigraphy on radiolarian and planktonic foraminifera. Fadhel et al. (2014); Moez et al. 

(2012) are a some of the known published studies done on Jebel Garci. However, little study 

from these localities has been carried out, and only a few publications have been made. 

 

1.4 Outline	

 

The geological framework is presented in Chapter 2, and primarily focuses on the 

stratigraphic and tectonic evolution of Tunisia. In Chapter 3 the methodology is described, 

while the results derived from these methods are presented in Chapter 4. Chapter 4 is 

subdivided into sections which include results from outcrop observation and subsequent 

petrographic and analytical work. The sections present data on microfacies, depositional units, 

sedimentary surfaces, diagenetic features and reservoir parameters. The results are discussed 

in Chapter 5 with emphasis on probable depositional environments, diagenetic history and 

evolution in a sequence stratigraphic framework, the reservoir potential, as well as 

suggestions for further studies of the area. A conclusion is presented in Chapter 6, whilst the 

Appendix contains complete records of the data obtained and stratigraphic logs. 
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2. Geological	framework	

 

Tunisia is located in the northern part of Africa, and boarders Algeria to the west and Libya to 

the southeast. In the literature, Tunisia is often subdivided into several provinces constrained 

on the basis of topography, structure, history, lithology, location and so on. For the simplicity, 

in this thesis the nomenclature of Tawadros (2011) is applied. Tawadros (2011) sub-divides 

Tunisia into five tectono-stratigraphic provinces: Southern Tunisia (Sahara Platform), Eastern 

Tunisia (consists mostly of the Pelagian platform), Northern Tunisia (Atlas and Tell domain), 

Western Tunisia and Central Tunisia (see Figure 2.1) 

 

 

Figure 2.1: Map of Tunisia with main tectonic elements and subdivision of tectono-stratigraphic provinces. (modified 
after Tawadros (2011) and based on Burollet (1991), Ahlbrandt (2001) and Mattoussi Kort et al. (2009)) 
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The studied area belongs to the Pelagian Province, which is located mainly in the eastern 

Tunisia, and the northwestern Libya (Figure 2.2). In northern Tunisia, the N-S axis (NOSA) 

separates the Atlas and Tell domain from the Pelagian province. The province extends all the 

way to the Talemzane Arch and Jifarah Fault, in the southern part of Tunisia. A portion of the 

Pelagian province extends far into Malta and offshore Italy, as observed in the USGS-defined 

map of the province (Figure 2.2)  

 

 

Figure 2.2: Map of northern Africa and the central Mediterranean Sea, showing the USGS-defined Pelagian province 
with major geologic structures. A map showing the localities for J.Fadeloun (yellow star with F) and J.Garci (yellow 
star with G) is inset in the upper right corner. The red star marks the location for the inset and the Enfidah area 
(modified from  Finetti (1982), Jongsma et al. (1985) Bishop (1988), Burollet (1991), Klett (2001) and Google Earth). 

 

The Lower Cretaceous of the Enfidah area (marked with a red star in Figure 2.2) can be 

observed in the Fadeloun-Garci-Mdeker structure that is part of the studied area. Both the 

Jebel Fadeloun (J.Fadeloun) and the Jebel Garci (J.Garci) belong to the Fadeloun-Garci-

Mdeker structure, which is composed of three anticlines (Moez et al., 2012). The anticlines 
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have a North-South trend and are considered as the prolongation of the N-S axis (Saadi, 1990; 

Moez et al., 2012). The J.Fadeloun and J.Garci anticlines are part of the Fkirine permit 

(Figure 1.1) and constitute the study area. 

 

2.1 Tectonic	history	

 

The tectonic history of the Tunisian Precambrian is poorly known (Mejri et al., 2006), and is 

not described in this chapter. The tectonic evolution of Tunisia can best divided into main 

sections described in the following chronological steps: 

 

 Caledonian	and	Hercynian	collision	event	–	Ordovician	to	Carboniferous	2.1.1
 

In Tunisia there is no exposed evidence of the Pangea forming collision between 

Gondwanaland and Laurasia. The occurrence of a major collision can be assumed, only based 

on geophysical and subsurface data gathered from wells in the southern Tunisia. Thickness 

and facies variations in Ordovician to Devonian series of the southern Tunisia, suggest 

discrete movements (Mejri et al., 2006). Older Paleozoic units have been folded, uplifted and 

eroded (Burollet et al., 1978; Boote et al., 1998; Klett, 2001), resulting in a major 

unconformity where Carboniferous to Triassic horizons directly overlie older Paleozoic units 

of Cambrian to Carboniferous ages (Mejri et al., 2006). 

 

 Tethys	rifting	event	–	Late	Carboniferous	to	Early	Cretaceous	2.1.2
 

In the Late Carboniferous several rift basins and grabens started to form along the northern 

margin of the African plate, as a result of extension. The initial breakup of Gondwanaland and 

the opening of the Tethys Ocean, led to extensive crustal thinning and rifting predominantly 

oriented W-E and NW-SE (Klett, 2001). The rifting process peaked in the Late Cretaceous, 

and ceased in the early Tertiary (Guiraud, 1998).  

In the Early Cretaceous, dextral shearing caused rifting along the African – European Rift 

Zone (often referred to as AERZ), resulting in subsidence of the Saharan Atlas (Klett, 2001). 
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Faults related to the rifting process controlled, and has continued to control the sedimentation 

in northern Tunisia, to the present day (Morgan et al., 1998).  

Intense subsidence in the Mesozoic is reflected by thick accumulations of Triassic evaporites, 

superimposed by thick Jurassic-Cretaceous siliciclastic and carbonate units. In some areas of 

Tunisia, the overburden of Jurassic-Cretaceous sediments was sufficient to initiate flowage of 

Triassic evaporites, that continued into the late Cretaceous (Klett, 2001). The migration of 

evaporites caused surface penetrating diapirs and salt walls to form, and caused great lateral 

sediment thickness variations. Along the N-S axis (NOSA), the sediment thickness is very 

irregular due to local NS distension, and curvature of Triassic salts causing small scale tilting 

of small blocks (Mejri et al., 2006).  

The NOSA separated the more stable eastern side from the more tectonic active western side, 

and worked as buffer for folding and faulting. The eastern area of the NOSA generally 

represented shallower water and the western area deeper water during the late Carboniferous 

to early Cretaceous. In general faults and depocenters along the NOSA, commonly trended 

roughly N-S and E-W during the Early Mesozoic, and played a major role in the depositional 

and structural pattern along NOSA (Klett, 2001; Mejri et al., 2006). 

 

 Austrian	event	–	Cretaceous	2.1.3
 

North of the Talemzane Gefara arch (Figure 2.2) the depocenters of Late Paleozoic started to 

migrate northward simultaneously with the development of the Gafsa-Gefara extensional 

system (Figure 2.2). As a result, the area was extensively uplifted and eroded during the 

Aptian. Denudation were particularly high along the NOSA, and resulted in the Austrian 

unconformity (Figure 2.7) (Burollet, 1991; Klett, 2001) 

In the early Late Cretaceous there was a major change in drift of the African plate relative to 

the European plate. The African plate started to migrate northward towards the European 

plate as a result of sea-floor spreading both in the North and South Atlantic, a movement that 

has continued up to the present (Morgan et al., 1998). The migration resulted in dextral 

shearing and development of complex horst and graben structures as rifting occurred along 

the African and European plate boundaries (Morgan et al., 1998; Klett, 2001). The 

sedimentation during this period was strongly controlled by associated fault displacements 
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and the uplift of horst blocks (Morgan et al., 1998; Klett, 2001). The opening of the North 

Atlantic in the mid to late Cretaceous led to the initial drift of Iberia to the southeast. In the 

literature the exact timing of the initial drift is widely discussed, suggesting an initial 

migration as early as Albian (Coward and Dietrich, 1989) to as late as the Campanian-

Turonian boundary (Dewey et al., 1989). However, this resulted in a reversal in the relative 

movement of the African plate and the European plate (shown in Figure 2.3). The reversal of 

migration led to dextral transpression in the African-European Rift Zone (AERZ)(Morgan et 

al., 1998). 
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Figure 2.3: A) Mid Jurassic to Early Cretaceous plate tectonic model. B) Late Cretaceous to Early Eocene plate 
tectonic model of the Mediterranean area. Relative plate movements are shown with black arrows. The approximate 
location of the northeastern Tunisia is marked with a red circle. (Modified from Morgan et al, 1998). 
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 Atlassic	alpine	event	–	Late	Cretaceous	to	Pliocene	2.1.4
 

The initial convergence between the African and the European plates started in the Late 

Cretaceous (see above), and continued throughout the Cenozoic. During this period, a 

complex sedimentary and structural pattern emerged as a result of a poly-phase tectonic 

history. 

In northern Tunisia, Late Cretaceous NW-SE oriented compression resulted in development 

of NE-SW trending folds. Proximal to the NOSA the axis acted as a barrier, forcing the folds 

and depocenters to a roughly N-S trend along the western margin. Several anticlinal and 

synclinal axes are scattered along the western side of the NOSA, and resulted in significant 

variation in thickness and facies. In the Pelagian province (east of NOSA), the ongoing 

extension that started during the Early Cretaceous times continued, and several NW-SE 

trending grabens started to form. Volcanism was active during part of this period (Mejri et al., 

2006). 

Reactivation of W-S and WNW-ESE transfer faults controlled the sedimentation during the 

Early Eocene (Klett, 2001). In the mid- to late Eocene, and simultaneous with the Pyrenean 

orogeny in Europe (often referred to as the Pyrenean event, as in Figure 2.7), the 

compressional phase acting on the NOSA was reversed. The stress state on the NOSA was 

rotated to approximately N-S, and the eastern region which was a high and stable region prior 

to the rotation now experienced strong subsidence. This led to the formation of the lowlands 

and flooded offshore regions that can be observed at present. 

In the Oligocene the Kabylie microplate collided with the African margin and is marked by an 

angular unconformity at the base of the Oligocene section (Jongsma et al., 1985; Morgan et 

al., 1998; Klett, 2001). The collision resulted in development of a fractured mobile terrain 

along the northern margin of the Pelagian province, while leaving the southern area as a fixed 

passive platform (Klett, 2001). In the literature there are some controversies about the 

depositional history during the Oligocene-Miocene. Klett (2001) suggests that Late Oligocene 

to Miocene tectonic activity resulted in non-deposition or erosion of large areas in Tunisia. 

Klett (2000) also suggests that in some areas the entire Paleogene section is removed and 

whereas an angular unconformity is present in certain areas, a disconformity between 

Miocene and underlying older beds are present in eastern Tunisia. Bouaziz et al. (2002) on the 

other hand, suggest a deposition of thick clastic continental to shallow marine Miocene 
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sediments in the north-central Tunisia by erosion of reliefs relating to the compressional 

structures developed in the Late Eocene. In central Tunisia these conglomerates, sandstones 

and clays are widespread in the broad synclines, and commonly display normal fault 

populations and syn-faulting growth basins, commonly with a NW-SE trend (Bouaziz et al., 

2002). The Miocene extensional phase led to subsiding basins all over Tunisia and during the 

Late Miocene to Early Pliocene several of the faults related to subsidence, were folded and 

reworked as right lateral strike-slip faults (Bouaziz et al., 2002). 

The ongoing convergence between the African plate and the Sardinia block was intensified in 

the Late Miocene. Tortonian N-W movement of the African plate caused crustal shortening 

(Klett, 2001) and strike-slip movement along the main basement lineament occurred, resulting 

in folding throughout the Atlassic Tunisia (Klett, 2001; Mejri et al., 2006). In the end of 

Tortonian the structural and sedimentary processes was inverted. The tension related to the 

compressional phase decreased and led to a short period with relaxation and distension, 

associated with a marine transgression and deposition of evaporites (Mejri et al., 2006). 

Miocene ended with an intensified compression, which continued into the Pliocene, resulting 

in local erosions and angular unconformities in the base of Pliocene (Mejri et al., 2006).  

In the Early Pleistocene a new important orogenic phase evolved, folding and in many places 

overturning nappes. Sinistral transpression occurring along the NOSA during the Late 

Miocene resulted in positive flower structures with overthrusting wedges that are subaerially 

exposed. This orogenic phase have a played a major role in shaping Tunisian to its recent 

topography and relief (Mejri et al., 2006). The major tectonic features developed through time 

can be observed in Figure 2.4. 
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Figure 2.4: Tectonic sketch of Tunisia. Only major tectonic features are marked on the sketch. Red star indicates the 
approximate location of the study area (J.Fadeloun and J.Garci). Modified from Rykkje (2015) after (Esso, 1988; 
Burollet, 1991; Mejri et al., 2006; Bjorlykke, 2010).   
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2.2 Stratigraphic	framework	

 

The stratigraphic nomenclature applied in the following chapter, is derived from Mejri et al. 

(2006). A short overview of Precambrian – Cretaceous rocks is given below, with emphasis 

on the Mesozoic succession: 

 

 Precambrian	2.2.1
 

Precambrian rocks do not outcrop in Tunisia (Ben Ferjani et al., 1990; Burollet, 1991; Mejri 

et al., 2006; Tawadros, 2011), and only a few wells in the Saharan part of southern Tunisia 

have been drilled into the granitic or metamorphic Precambrian basement. In the northern and 

eastern Tunisia there is no information about the age, nature or depth of the basement. The 

base of the continental crust is indicated by a seismic geo-traverse to be  37-40 km deep 

below central Tunisia, with a shallowing towards the sea in the north and east (Mejri et al., 

2006). Outcropping N-S, SW-NE and NW-SE oriented lineaments could be ascribed to 

basement features (Mejri et al., 2006). 

 

 Paleozoic	2.2.2
 

Paleozoic sedimentary rocks of Permian age only crop out as small exposures near Medenine 

in the Jebel Tebaga area of SE Tunisia (Figure 2.5) (Mejri et al., 2006). However, several 

wells have encountered the Paleozoic sedimentary rocks in the subsurface, and especially in 

the Saharan part of southern Tunisia since exploration for oil and gas has been primarly 

focused in this part of the country. The stratigraphic nomenclature of the Paleozoic is mostly 

derived from units located in this area (Bishop, 1975; Ben Ferjani et al., 1990). Several 

lithostratigraphic names also stem from neighboring countries, as Paleozoic outcrops are also 

present here (Mejri et al., 2006).  
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Figure 2.5: Sketch of Tunisia. Approximate location of localities described in Chapter 2. Red star indicate locality for 
studied area. 

 

 Mesozoic	2.2.3
	

Triassic 

Triassic sedimentary rocks are found in several places in Tunisia, and are usually slightly 

metamorphic. The Triassic succession can be divided into a lower predominantly siliciclastic 

interval and an upper evaporitic interval (Bishop, 1975; Klett, 2001). The lower siliciclastic 

interval includes sandstones and mudstones ascribed to the Bir Mastoura, Ouled Chebbi and 
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the Kirchaou Fms. (and its equivalents) (Klett, 2001). The most prominent and well known 

outcrops of Triassic metamorphic sedimentary rocks are those of the two large anticlinal 

domes in northern Tunisia; J.Hairech and J.Ichkeul (Figure 2.5) There are only few outcrops 

of autochtonous Triassic sedimentary rocks known from southern Tunisia and they are all 

found in the Jeffara plain (Figure 2.5), between Medenine and the Libyan border. In all other 

locations, the Triassic series is outcropping as diapiric extrusions of mixed gypsum, silt, clay 

and dolomite. The mixture is quite chaotic and it is difficult to establish any stratigraphic 

succession (Mejri et al., 2006). The Triassic series thickens towards the north, in particular the 

evaporitic succession which has high abundance of halite. Hence, northwestern Tunisia has 

experienced a high frequency of strong salt driven tectonics.  The migration of these Triassic 

salts has led to the present day evaporitic extrusions and underground domes in the Atlas and 

Tell domain (Northern Tunisia)(Mejri et al., 2006). In other areas of Tunisia the evaporitic 

layers are very thin and in some places completely absent, which is the case for the Pelagian 

province. The absence of evaporites in this province results in no décollements between the 

bedrock and the sedimentary cover. The Triassic sedimentary deposit of the Pelagian province 

were continental in the south to shallow marine in the north. However, northernmost 

subsurface extent of these siliciclastic rocks is not known (Bishop, 1975; Klett, 2001; Mejri et 

al., 2006).  

 

Jurassic 

Jurassic outcrops are observed in northern Tunisia, along the N-S axis from Hammamlif to 

Sidi Bou Zid (Figure 2.5) and are also found near Jeffara-Dahar. Jurassic sedimentary rocks 

have been encountered by numerous wells both onshore- and offshore Tunisia (Mejri et al., 

2006). The Jurassic section is mostly comprised of carbonate rocks, that range from shallow 

marine in the south to increasingly deeper and more pelagic in the northwestward direction 

(Burollet et al., 1978; Klett, 2001; Mejri et al., 2006). Terrigenous deltaic and lagoonal facies 

were present in the south and southwest in the Late Triassic, and prograted towards the 

northeast by the Early Cretaceous (Aptian) (Bishop, 1975; Burollet et al., 1978; M'rabet, 

1984; Klett, 2001; Mejri et al., 2006). Figure 2.6 shows the migration of facies through time 

during the Late Jurassic and Early Cretaceous.  
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Figure 2.6: Paleogeographic reconstructions and depositional environments of the Northern- and Eastern Tunisia. A: 
During Tithonian (U.Jurassic), B: During the Berriasian (L. Cretaceous) and C: During the L.Hauterivian-Barremian 
(L.Cretaceous). The yellow star marks approximately the location for the studied area (modified from M'rabet (1984) 

 

The Upper Jurassic Nara Fm. and the Upper Jurassic to Lower Cretaceous Sidi Khalif and 

M´Cherga Fms. are predominantly found offshore and composed of marine deposits including 

limestone, dolostone and marls (Salaj, 1978; Klett, 2001). Landwards, deposits include 

sandstones of the M´Rabtine and the Meloussi Fms., as shown in Figure 2.7. 
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Figure 2.7: Overview of the stratigraphic nomenclature, major tectotic events and hydrocarbon occurence of Tunisia and offshore Libya. Lithostratigraphy for Tunisia 
represent all tectono-stratigraphic provinces of Tunisia, including the Pelagian Province. Dashed lines show approximate position of formation boundaries. (Modified from 
Klett (2001), Hammuda et al. (1992) and Entreprise Tunisienne d´Activités Pétroliéres (1997)) 
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Cretaceous 

Cretaceous outcrops are numerous, but are largely observed in northern Tunisia (Atlassic) and 

southern Tunisia (Saharan).  A major unconformity close to the base of the Upper Albian 

beds, divides the Cretaceous system in Tunisia into two distinct parts. The Albian stage in 

Tunisia is therefore included in the Upper Cretaceous series (Mejri et al., 2006). The 

Cretaceous-Jurassic boundary is not easy to recognize in the field (Mejri et al., 2006). 

 

Figure 2.8: Lithostratigraphy of Cretaceous in Tunisia. Rocks of the studied interval pertain to the Aptian stage (red 
rectangle). Modified from Mejri et al. (2006). 
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In late Jurassic to early Cretaceous time, condensed sections 

(e.g. J.Garci), shoals and local reefs, developed along the N-S 

axis (Figure 2.1 and Figure 2.5) (Klett, 2001). The Cretaceous 

succession of the Saharan Platform (Figure 2.1), is 

characterized by a general gradation from neritic, lagoonal 

and continental facies in the south, to open marine and deeper 

marine facies (commonly referred to as the “Sillon Tunisien” 

in the literature) towards the north (Mejri et al., 2006). 

Irregular subsidence and migration of salt and block tilting 

throughout the Cretaceous have caused complex thickness and 

facies variations. Accumulation of pelagic sediments in a 

subsiding depositional trough can be observed in what is now 

known as the present day Gulf of Gabes (Burollet et al., 1978; 

Salaj, 1978; Klett, 2001). According to Klett (2001), a 

maximum flooding event occurred during the Barremian 

(shown in Figure 2.9). Barremian rocks include the limestone, 

marl and interbedded sandstone and shales from the 

M´Cherga and Bouhemds formations, as well as the Sidi Aïch 

sandstone (Bishop, 1975; Salaj, 1978; Entreprise Tunisienne 

d´Activités Pétroliéres, 1997; Klett, 2001).   Aptian rocks 

consist of limestone, dolostone, sandstone, mudstone, marl 

and evaporites of the Orbata, Serdj and Lower Fahdene Fms 

(Figure 2.7 and Figure 2.8).  

The Orbata Fm. consists of limestone and dolostone, and 

while its base is quite synchronous, the top is diachronous and 

controlled by sedimentation, subsequent erosion and onlap of 

the overlying members (Mejri et al., 2006). The Serdj Fm. 

(more thoroughly described in chapter 2.2.3.1) consists of 

reefal limestone and is the lateral equivalent to the Orbata Fm. 

It is overlain by siliciclastic sediments, from either the Lower Fahdene Fm. or the deeper 

marine Hameima Fm., as can be observed in Figure 2.7 (Klett, 2001; Mejri et al., 2006).  

The Late Aptian regression is observed as a clear low stand in sea level at the beginning of the 

Albian (shown in Figure 2.9), and caused a decrease (and in some areas a lack) in 

Figure 2.9: Eustatic sea-level curve 
during Cretaceous. Studied 
formations are of Aptian age and 
marked with pale yellow. Modified 
from Mejri et al. (2006). 
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sedimentation. Sedimentation rates were particularly slow in central and southern Tunisia 

(Mejri et al., 2006). Early Albian deposits are rare in Tunisia, and sedimentation after the 

Aptian only continued in the most subsiding zones in the northern and northeastern parts of 

Tunisia. In the Pelagian province Albian deposits are present as accumulations of dark-grey 

mudstone of the Lower Fahdene Fm. (Figure 2.7) (Klett, 2001). 

The late Cretaceous is represented by the Sidi Mansour Group. Where sedimentation was 

continuous, the group is composed of three formations: Fahdene Fm. (Albian to 

Cenomanian), Kef Fm. (Turonian to Lower Campanian) and the Abiod Fm. (Campanian to 

the end of Maastrichtian) (Figure 2.7). The sedimentation was only continuous in the basinal 

areas of Tunisia, as in e.g. The Pelagian Province.  

The Kef Fm. is mostly a dark gray shale with high abundance of planktonic microfauna and 

interbedded with argillaceous limestone, rich in shell remains of the bivalve Inoceramus 

(Mejri et al., 2006). The Abiod Fm. is well represented in Tunisia and is made up of: a) A 

lower carbonate member of a chalky mudstone rich in benthic foraminifera, b) A middle marl 

and clay member, and c) An upper carbonate member of chalky limestone with marl horizons 

(Klett, 2001; Mejri et al., 2006). 

 

2.2.3.1 Serdj	Fm.	

 

The type locality of the Serdj Fm. is composed of thick series of bioclastic limestones 

consisting of oysters, algae, rudistids, corals and foraminifera, with interbedded argillaceous 

limestone, marls and silty beds. Serdj Fm. overlies Sidi Aich Fm. sandstones in the south and 

the Hammada Fm. limestones and marls in the north of Tunisia, forming a transition between 

the lower Orbata Fm. and the marine shales of the M´Cherga Fm. respectively. The Hammada 

Fm. is dated to be early Bedoulian and comprises dark marls interbedded with coquina of 

oysters or orbitolinids (Mejri et al., 2006). At Jebel Hamra, Epstein et al. (1953) defined four 

sequences within the Serdj Fm. bounded  by erosional discontinuities or karstic dissolution 

surfaces (Mejri et al., 2006). Approaching the NOSA from the west to the east, the 

irregularity in facies and sediment thickness increases progressively (Epstein et al., 1953; 

Mejri et al., 2006). 
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 Cenozoic	2.2.4
 

Mejri et al. (2006) sub-divide the Cenozoic era of Tunisia into three parts: 

I. Paleocene and Eocene; consisting of two shale units (El Haria and Souar) that are 

separated by the Metlaoui carbonate Fm. (Metlaoui). 

 

II. Oligocene and Early Miocene; consisting of various facies such as sandstone 

(Fortuna), flysch (Numidian), shale (Salammbô) and carbonates (Ketatna). 

 

III. Middle Miocene to Pleistocene; Synorogenic facies with molasses. 

The paleogeography of the Paleocene and Eocene (part I) have more or less the same 

paleogeography  as the Late Cretaceous, while the Oligocene and Early Miocene (part II) 

show facies distributions controlled the recent topography  (Mejri et al., 2006).  The present 

topography is related to uplift and emersion of western and southern Tunisia and an active 

subsidence east of the N-S axis, in the Pelagian Province. 
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3. Methodology	

 

3.1 Fieldwork	

 

Four weeks of fieldwork, spread over two field seasons, were carried out in collaboration with 

fellow student Fredrik Kjelkenes, supervisors Gunnar Sælen, Ståle Monstad (first fieldtrip) 

and Atle Rotevatn (second fieldtrip). The fieldwork took place 03rd – 15th of March 2014 and 

6th - 21th September 2014 and focused on three localities within the Fkirine permit (Figure 1.1, 

1.2 and 1.3). All three locations were extensively studied by detailed vertical 

sedimentological logging. The logs were used in combination with the study of thin-sections 

in subsequent classification of microfacies and facies associations. In addition permeability 

was measured vertically through the stratigraphy and laterally within selected beds by means 

of a portable TinyPerm instrument (see below).  

 

3.2 Thin	section	studies	

 

A total of 148 thin sections (87 unstained and 62 stained), were prepared from samples 

collected during the two field seasons. However, due to some issues with the services applied 

to preparation of the thin sections, the study had to be focused primarily on the stained thin 

sections. 49 of the stained thin sections (marked JF-##S, where ## indicates sample number 

and S indicates staining) are taken from the southern part of the Jebel Fadeloun limb. 

Duplicate numbers with annotation N or S in front of sample number (e.g. JF-N##S) indicate 

lateral sampling within the same bed, where N indicates north, and S indicates south of initial 

sample. Six of the thin sections (marked NFS-#, NFS = northern Jebel Fadeloun section) are 

sampled from the northern part of Jebel Fadeloun´s eastern limb. The remaining six thin 

sections (marked GS-#) are sampled from Jebel Garci. Stained thin sections were prepared by 

Independent Petrographic Service Ltd (IPS) in Aberdeen and the non-stained thin sections 

were made by ETAP (Enterprise Tunisienne d´Activités Petroliéres – Direction des Services 

Pétroliers Laboratorie de Sédimentologie & Pétrophysique). Circular holes in the thin sections 

indicate sampling locations for stable isotope (18O and 13C) and Sr-isotope analyses (see 

below). 
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 Ordinary	light	microscopy	3.2.1

 

Two different standard optical polarization microscopes were used for studying the 

petrographic properties. The light microscope Leica Z16 APO equipped with a Leica DFC-

295 camera, has primarily been used to determine texture, detrital grains, allochems, 

structure, porosity, cement stratigraphy and for taking micrographs. 

The second microscope, an Olympus BX51 with a connected Olympus DP72 camera, was 

used for fluid inclusion- and fluorescence studies. 

Reflected light was used to differentiate between pyrite and organic material. 

 

 Staining	3.2.2
 

Staining of the thin section involved impregnation with blue dye for epoxy and staining with 

Alizarin red-S and K-ferricyanide. Blue dye epoxy was applied to enhance the visibility of 

porosity. The epoxy is applied in vacuum to ensure staining of both macro- and 

microporosity. Alizarin red-S and K-ferricyanide were applied to half the surface area of each 

thin section. Alizarin red-S stains calcite, aragonite, witherite and cerussite, whereas dolomite, 

siderite, magnesite and rhodochrosite remain unstained. Potassium ferricyanide (K-

ferricyanide) distinguishes the distribution of ferrous iron by staining, making it possible to 

reconstruct the paragenesis of zoned ferroan cements (Dickson, 1966). Fe-rich calcite and 

dolomite are stained blue, whereas Fe-poor calcite is stained pink to pale pink, malachite are 

stained yellow and rhodochrosite are stained faint brown. 

 

 Cathodoluminescence	microscopy	(CL)	3.2.3
 

Cathodoluminescence microscopy was used to study the cement stratigraphy of the studied 

samples, by observing luminescence zonation, intensities and colour change. A Technosyn 

8200 MKII cold cathode instrument (Department of Earth Science; University of Bergen) was 

used and operating conditions were approximately 16kV accelerating voltage and 150µA gun 

current. 
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 Fluid	inclusions	3.2.4
 

All non-stained halves of the thin sections were screened for fluid inclusions. A fluid 

inclusion preserves a record of the temperature, composition and pressure of the mineralizing 

environment. Interpretation of fluid inclusions data is based on the assumption that the 

inclusion will have the same chemical composition and volume, as at the time of formation in 

a closed system (Goldstein and Reynolds, 1994; Flügel, 2004; Sharp, 2007). Alterations may 

be caused due to changes in geometry and volume, or by temporarily or permanent opening of 

inclusions. Inclusions should not be subjected to overheating beyond the temperature of 

entrapment, and calcite crystals should display distinct growth zones (Flügel, 2004). 

Significant fluid inclusion results require a cluster of minimum 5-7 inclusions and inclusions 

of sufficient diameter (pers. comm. J.Rykkje, 2015). Inclusion diameter limitations commonly 

relates to accessible optics, and not the inclusion itself.   

The inclusion commonly consists of two phases, liquid and gas. By heating or freezing the 

inclusion, it is possible to determine the likely temperature (heating) and salinity (freezing) of 

the original fluid. E.g. In a two-phase inclusion with a liquid phase along with a vapor bubble, 

simple heating to the point of resorption of the vapor bubble, gives a likely temperature for 

the original fluid during inclusion.  

 

 Fluorescence	microscopy	3.2.5
 

An Olympus BX51 microscope connected to a fluorescence light emitter (model U-

LH100HG), were used to study thin sections for hydrocarbons. By illuminating the thin 

sections with light of a specific wavelength that can be absorbed by fluorophores, it causes the 

organic material to emit light of a longer wavelength. The reflected light is observed as 

different colours than those of absorbed light, and the colour of the reflected light can be used 

to determine differences in petroleum fluid composition. However, the geochemical 

significance of these colour differences is difficult to ascertain, and in the literature several 

authors have related the colour differences to relative differences in density and API gravity 

(Burruss, 1991).  
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 Photography	3.2.6
  

A Leica DFC 295 camera was used to take thin section micrographs in both plane polarized 

light and crossed polarized light of texture, detrital grains, allochems, structure, porosity and 

cements. The Leica DFC 295 was corrected for white balance between every use, and the 

following exposure settings were used: 

Brightness: 65% 

Saturation: 1.50 

Gamma: 0.70 

The Olympus DP72 camera has primarily been used to take high magnification micrographs 

of fluid inclusions and fluorescence. This camera was also corrected for white balance 

between each use. 

 

3.3 Porosity	and	permeability	

 

Porosity and permeability measurements were performed on four plugs and on 37 of the 49 

hand samples (only permeability) collected at southern Jebel Fadeloun, while porosity and 

permeability estimates from Image-J analysis of thin-sections and poro-perm transforms were 

carried out for all samples both in Jebel Fadeloun, and in Jebel Garci. Permeability 

measurements were not performed on the sedimentary rocks in southern Fadeloun, where 

rocks were too tight or vegetation didn’t allow for good measurements. In northern Fadeloun 

section and in the Garci section, measuring permeability was not possible because of 

instrument failure in the intense heat. 

 

 TinyPerm	II	3.3.1
 

Permeability measurements were performed on 37 sample locations using a TinyPerm II 

instrument (Appendix WellCAD logs). At each location a total of six measurements where 

collected (Figure 3.1). A total of 222 measurements were collected.  
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TinyPerm II (TP) is a handheld air permeameter from New England Research Inc. that can be 

used either directly on flat clean outcrop surfaces, well cores, sample plugs or on hand 

specimens. The front of the TP probe consists of a rubber tip that makes a tight seal between 

the probe and the sample, and prevents leakage. Probe nozzle is pressed firmly against 

preferred surface and air is forced into sample. The microcontroller attached to the instrument 

monitors the volume of air that leaves the instrument, and computes a characteristic value 

according to the measured parameters (Filomena et al., 2014). A measured value (T) is 

presented on the microcontroller, and relates to the air permeability (K) expressed through 

Equation 3-1 (according to the TinyPerm II operational brochure): 

 

Equation 3-1: Calibration equation converting measured TinyPerm (TP) values into millidarcies. T represents 
measured value, and K represents permeability in mD. 

 10
.
.  

 
 

The TinyPerm II is constructed for field measurements, and is referred to in several articles 

(e.g. Filomena et al., 2014; Huysmans et al., 2008). All measurements were taken parallel to 

bedding plane and the reported horizontal air permeabilities (in Darcy), are Klinkenberg 

corrected. 

 

 

Figure 3.1: Illustration of permeability measurement procedures. The annotation XX indicates sample number. 
Lateral distance between measurements is 5 meters. Vertical distance between beds varies and is not shown in this 
illustration. 
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 Plug	measurements	3.3.2
 

Helium porosity, Nitrogen permeability and grain density for 4 plugs (2 vertical and 2 

horizontal) from hand samples collected by Atef Ben Kahla, were analyzed by ETAP 

(Enterprise Tunisienne d´Activités Petroliéres – Direction des Services Pétroliers Laboratorie 

de Sédimentologie & Pétrophysique). The reported permeabilities are Klinkenberg corrected.  

 

 Image	analysis	3.3.3
 

ImageJ is an image processing software, that can be used to calculate 2D porosity from epoxy 

impregnated thin sections. There is some uncertainty associated calculating porosity by means 

of the software, due to difficulties in assigning the boundary between pore space and grain 

perimeter. As each thin section has some variation in light penetration, the software settings 

must be corrected for difference in light intensity and heterogeneity of epoxy colour.  ImageJ 

is not suitable for estimating micro porosity with a light microscope, due to difficulties in 

differentiating microporosity in the fine-grained matrix. Backscatter-electron microscopy 

(BSE) of thin sections solve this problem since microporosity is recognizable by this method 

(McCutchan et al., 2003), and microporosity can subsequently be added to the estimated 

meso- and macroporosity from light microscopy. Typically, the microporosity of a number of 

randomly selected areas on the thin-section investigated by means of BSE microscopy would 

be calculated and presented as a mean value and corresponding standard deviation. 

In the present study porosity estimation was only based on ImageJ calculations from colour 

micrographs taken of thin-sections under the ordinary light microscope, and hence only meso- 

and macro porosity were accounted for. Microporosity is observed as a green matrix (from the 

penetration of green-dyed araldite), although individual pores cannot be differentiated. The 

images used, were taken with similar magnification to get the most consistent porosity 

estimation. Large fractures have been omitted during the image analyses. 
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 Lønøy´s	method	for	permeability	estimation	3.3.4

 

Lønøy´s porosity-permeability transforms for dominant pore types were used in estimating 

permeability from ImageJ-derived porosity (Lønøy, 2006). This pore-type classification 

system is primarily based on pore geometries, pore sizes and porosity distribution, and is 

composed of 20 pore types (Table 4-5). The dominant pore type is determined from 

examining the thin sections. 

 

3.4 Isotope	analysis	

 

Isotope analysis was performed for 87Sr/86Sr, δ18O and δ13C and the methods are briefly 

reviewed in this chapter. 

 

 Strontium	3.4.1
 
87Sr/86Sr analysis was performed on a total of 14 bulk rock samples containing grains, matrix 

and carbonate cement by means of a Finnigan MAT 262 mass spectrometer at the mass 

spectrometer laboratory, University of Bergen (Table 4-3). All results are normalized to 

NIST-SRM 987 with a certified isotopic ratio of 0.710240, and repeated long-term 

measurements (n = 57 in 2012) of this standard gave an average measurement = 0.710233 and 

an analytical precision of ±20 x 10-6 (2 s.d.). Eight samples were sampled from the southern 

Fadeloun section (JF), three samples from the northern Fadeloun section (NFS) and three 

samples from the Garci section (GS). 

 

 Carbon	and	Oxygen	3.4.2
 

Stable isotope analysis of δ18O and δ13C was performed on a total of 22 bulk rock samples 

containing grains, matrix and carbonate cement, using conventional methods. Samples were 

reacted individually with a Kiel IV carbonate device and analysed for their 18O and 13C 

compositions on a Finnigan MAT253 mass spectrometer at the Bjerknes Centre for Climate 

Research and Department of Earth Science (University of Bergen). Results (Table 4-1) are 
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reported as per mil (‰) deviation from the Vienna Pee-Dee Belemnite (vPDB) calibrated 

using NBS-19. NBS-18 was also used as cross check. Long-term external precision of 

replicate standards is 0.06‰ and 0.04‰ for 18O and 13C, respectively. 

Sixteen samples were sampled from the southern J.Fadeloun section (JF), three samples from 

the northern J.Fadeloun section (NFS) and three samples from the J.Garci section (GS). 
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4. Results	

 

4.1 Introduction	

 

The results of this study are mainly based on fieldwork, light-, fluorescence- and 

cathodoluminescence (CL) microscopy, Sr-isotope and stable isotope analyses, fluid inclusion 

investigation, porosity and permeability measurements. First, the microfacies are classified 

based on detailed light microscopy of the sampled sections. The sedimentary surfaces and 

depositional units are then described and distribution of the various microfacies within each 

depositional unit is then investigated. Furthermore the diagenetic features based on thin-

section analysis and outcrop-scale information are described, and finally the porosities and 

permeabilities of the studied successions will be presented. The locality of the samples is 

marked in the stratigraphic log in Appendix WellCAD logs, and in various overview pictures 

Figure 4.36 to Figure 4.38. 

 

4.2 Microfacies	

 

Early definitions of microfacies only considered the study of petrographic and paleontological 

features observed in thin section, whereas today the total of all sedimentological and 

paleontological data that can be derived from thin sections, rock slabs, peels and rock 

samples, are used to classify microfacies (Flügel, 2004). Sedimentary microfacies are defined 

to assist in organizing observation, to interpret depositional environments and to predict 

geometric patterns, trends and relationships. In many instances, reservoir properties are 

closely related to or influenced by depositional facies. In other cases the diagenetic evolution 

is the predominant factor controlling the reservoir properties (Tucker and Wright, 2009).  

The study of sedimentary microfacies has both descriptive-objective elements (texture, grain 

size, allochem composition, sedimentary structures, and more) and interpretative-subjective 

elements (depositional environments, paleo-depth, water chemistry, paleotemperature, 

sequence stratigraphy, diagenetic environments and so on).  

Detailed microfacies classification becomes un-practical because it requires a multiplicity of 

types and sub-types. In a practically applied stratigraphic procedure the goal is to define the 
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“minimum” of microfacies that are adequate for the study. Obviously this is a relativistic 

approach, and different geologists will most likely come up with different microfacies 

classification schemes for the same region. The important thing is to understand the procedure 

and to establish microfacies classification and to consider any classification as “end member” 

of an infinite number of variations.   

The simplest and probably the most recognized and widely used method for classifying 

carbonate rocks, is the Dunham classification scheme (1962), which was later modified by 

Embry and Klovan (1971)  (Figure 4.1), and is the one applied in the present study. Based on 

depositional texture, Dunham (1962) noticed that there are several textural features that are 

practical for classifying carbonate rocks, and he subdivided carbonates into nine classes on 

basis of:  

 The presence or absence of matrix 

 The abundance of carbonate grains 

 Supporting mechanism (grain supported vs matrix supported) 

 Evidence of organic binding of sediments during deposition. 

Carbonate rocks containing matrix were separated into three classes on basis of the amount of 

grains present and the supporting mechanism. Mudstone contains less than 10% grains and is 

matrix supported. Wackestone contain more than 10% grains and is matrix-supported, 

whereas packstone is grain-supported. It is important to notice that the origin of the matrix is 

not specified as clastic, and thus may include both mechanically deposited and chemically 

precipitated micrite. 

Grainstones lack mud and is grain-supported (Dunham, 1962). Most grainstones have traces 

of micrite, and many sedimentologists defines grainstones as having less than 5% mud (pers. 

comm. A.Lønøy, 2015; Esso, 1988). 

Embry and Klovan (1971) introduced the terms floatstone and rudstone for wackestones and 

packstones/grainstones with grain-diameter >2mm, respectively. 

Carbonate rocks with a total lack of recognizable depositional texture are classified as 

crystalline, whereas carbonate rocks showing signs of being bound during deposition are 

classified as boundstones  (Dunham, 1962). Crystalline rocks are related to extensive 

dolomitization or recrystallization of limestones, whereby the primary texture is obliterated 

(Flügel, 2004). Wright (1992) reviewed previous classifications in order to integrate the major 
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textural types (depositional, biological and diagenetic) into one single system. Limestones 

(not dolostones) with no initial depositional fabric preserved as result of obliterative 

recrystallization or replacement, are dived into sparstones and microsparstones based on 

crystal size. Sparstones are limestones dominated by sparry calcite crystals (inequant, blocky 

mosaics), with a crystal size >10µm in diameter, whereas microsparstones are dominated by 

crystal sizes in the range 4-10µm in diameter (Wright, 1992). 

Dunham´s classification scheme was later expanded by Embry and Klovan (1971) by 

subdividing boundstone into:  

 Framestone: Organisms building rigid frameworks. 

 Bindstone: Sessile organisms encrusting and binding loose sediment together.  

 Bafflestone: The organisms trap the sediment without building rigid frameworks 

themselves. 

In the literature, it is common to combine the classification name with the dominating grain 

type to give a more detailed description of the carbonate rock. In the present study I have used 

the Dunham (1962) textural classification and additionally specified up to three of the most 

important allochems. The most common grain type is placed closest to the texture description; 

e.g. Echinoderm-Peloidal Packstone indicates that echinoderms and peloids are the most 

common grains, with peloids being the most dominant. It is important to note that abundancy 

in this study is a subjective scale which takes both grain area and frequency into 

consideration. By only considering grain frequency, fauna or flora consisting of large grains 

would be underestimated, and if only grain area is taken into consideration, smaller e.g. 

pelagic grains would be underestimated. The lithological successions studied at J.Fadeloun 

and J.Garci, are subdivided into eleven microfacies, and in the following description of 

microfacies, the sample location is marked in Appendix WellCAD logs. 
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Figure 4.1: Dunham´s classification scheme (1962) for carbonate rocks, as modified by Embry and Klovan (1971). 
Floatstone and Rudstone have at least 10% grains with diameter >2mm. Sketch from 
http://www.beg.utexas.edu/lmod/_IOL-CM01/cm01-step03.htm#.  

 

 

 Microfacies	1	‐	MF1:	Pelagic	Mudstone/Wackestone	4.2.1
(Samples: JF-87S & JF-80S) 

 

Observations: 

Microfacies 1 is situated within the southern J.Fadeloun section, and overlies a relatively 

coarse grained (average grain diameter of 450µm) echinoderm- and peloidal-rich grainstone 

(MF7 and MF5). The microfacies is well sorted, fine grained (average diameter of 25µm), and 

matrix supported. The dominating grain types are pelagic in origin, and comprise evenly 

distributed planktonic globigerinid foraminifera and small spar-filled calcispheres (Figure 

4.2). Organic material, as defined from reflected light microscopy, is a major constituent and 
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can be observed as dispersed dark brown to black circular spots with high relief. It is 

important to notice that according to the geological map published by Directin du Service 

Géologique in 2003, sample JF-87S is of Albian age. In outcrop there is an apparent fault just 

above sample JF-80S (fault not marked on the geological map) and, since the texture and 

biotic components of sample JF-80S is similar to sample JF-87S and Albian deposits recorded 

in the area by previous authors (Klett, 2001; Mejri et al., 2006), it is inferred to be of Albian 

age too. Hence, the succession above the fault is probably of Aptian – Albian age (Figure 4.3 

and Figure 4.4). 

 

 

Figure 4.2: Pelagic mudstone from microfacies 1. Matrix supported limestone with planktonic foraminifera (PF), 
calcispheres (C) and organic material (Org) evenly dispersed in lime mud. Thin section in plain polarized light (PPL). 
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Figure 4.3: Overview of the repetitive sequence and associated sample distribution. Note that beds are not possible to 
trace laterally. The apparent offset alone is not a clear evidence for a repetition, but combined with the associated 
microfacies and isotope analysis (see below), they indicate a repetition of the top Aptian/base Albian (Figure 4.4). 

 

 

Figure 4.4: Stratigraphy across the presumed fault between samples JF-80S and JF-87S. Only the uppermost part of 
Unit D is shown. The Albian age of sample JF-80S is indicated by its texture and biotic components as well as by the 
stable-isotope signature (Figure 4.51). 
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Interpretation: 

The matrix-supported texture and relatively low grain content, show that this is a 

mudstone/wackestone according to Dunham (1962). Mud-supported textures are typical for 

low-energy environment below wave base, and the strong dominance of planktonic fauna and 

the high organic content suggest deposition in a relatively deep marine, basinal environment.  

During the late Early Cretaceous, the association of planktonic foraminifera and calcispheres 

as observed in this microfacies, typically represent basinal deposition in open oceans (Flügel, 

2004). Most planktonic foraminifera are restricted to marine salinities of 30-40‰ and 

commonly live in the photic zone of the water column, and are virtually absent below 200 

meters depth (Flügel, 2004). The thin-walled spherical globigerinids commonly prefer the 

uppermost part of the water column, and are characterized by their planispiral or trochospiral 

test with typical globular chambers. Planktonic foraminifera commonly avoid terrigenous 

input, and thus accumulations of planktonic foraminiferal shells are often found in the bathyal 

zone of open-marine basins (Flügel, 2004).  

Small-sized, hollow, spherical to egg-shaped microfossils with calcitic walls, are commonly 

classified as calcispheres. Calcispheres are thought to be remnants of algae and algal spores, 

and are predominantly found in pelagic limestones. Mesozoic and Cenozoic calcispheres are 

often ascribed to calcified dinoflagellate algae. Calcispheres from these eras are distributed 

across a wide climatic range in temperate regions, and are predominantly found in sediments 

of the deeper shelf to slope and basinal settings (Flügel, 2004). The associated mud-rich 

texture and fossil assemblage thus indicate a deep marine depositional setting possible in the 

bathyal zone. 

The assumption that sample JF-80S is Albian in age, is supported by the texture and biotic 

components (Klett, 2001; Mejri et al., 2006) stable-isotope signature (Chapter 4.6.1 and 

Figure 4.51).  

  



   

- 38 - 
  

 Microfacies	2	–	MF2:		Bivalve‐Echinoderm‐Peloidal	Pack‐/Grainstone	4.2.2
(Samples: JF-85S, JF-83S, JF-71S, JF-70S, JF-69S, JF-51S, JF-50S, JF-49S, JF-48S, JF-45S, 

JF-43S, JF-40S, JF-37S, JF-33S, NFS-5S, NFS-9S and NFS-4S) 

 

Observations: 

Microfacies 2 is present throughout the southern and northern J.Fadeloun sections. The 

microfacies is moderately to well-sorted in some sections, and moderately to poorly sorted in 

others. Average grain diameter ranges from 75-250µm, and grains are predominantly 

composed of peloids, echinoderm plates and spines and bivalve fragments (Figure 4.5). Other 

observed biogenic grains are red algae, benthic foraminifera (miliolids and other 

undifferentiated planispiral, biserial and uniserial foraminifera), ostracods and sponge 

spicules. Most shell fragments are very small, disintegrated, and difficult to classify. Bivalve 

fragments occur with primary internal structures preserved, or as cement-infilled moulds. 

Some intraclasts may be present, but their existence is difficult to determine due to the small 

grain size and close packing. Several grains have isopachous dark (almost black) micritic rims 

along their grain margins.  

Patchily-distributed clay and local sparry calcite cementation is observed in some of the 

samples. Evenly distributed organic material is observed as small brown circular spots within 

the matrix and grains. Virtually all of the primary and secondary pore spaces are cemented, 

with only some open interparticle micro porosity (the stained epoxy that fill the micro 

porosity gives the matrix a green appearance) and minor fracture porosity preserved.  

Fractures and some moulds tend to be filled with ferroan-rich equant calcite cement (stained 

blue by Alizarin Red-S and K-ferricyanide). Overall, the microfacies is grain supported and 

classified as packstones to grainstones, according to Dunham (1962). 

Sample JF-37S shows a distinct pedant cement below the grains (Figure 4.7), while NFS-5 

has long irregular voids that are filled with equant calcite cement (Figure 4.6). 
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Figure 4.5: Representative micrograph of a bivalve-peloidal-echinoderm packstone from Unit E. High abundance of 
echinoderm plates and spines (Ec) in optical continuity with syntaxial cement overgrowths (red arrow). Peloids (P) 
and few fragments of red algae (RA) are evenly distributed. Minor open porosity (artificially stained green), but 
virtually all porosity is cemented by syntaxial calcite overgrowths around echinoderm fragments. Thin section in PPL. 

 

Figure 4.6: Fenestral structures (red arrows) represented by long irregular voids cemented with equant calcite 
cement. Thin section in PPL. 
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Figure 4.7: Bivalve-peloidal-echinoderm packstone with pendant (microstatactitic) cement (P.Cem). The cement only 
occurs on one side (presumed underside) of the grains, and apparently consists of at least two cement generations. 1st 
cement generation is composed of apparently denser calcite crystals, whereas the 2nd cement generation consists of a 
more porous crystal arrangement with crystals having a high length/width ratio. Pendant cement typically forms in 
the fresh-water vadose zone, but may also form in the marine vadose zone (sea water splash zone). Note the organic 
material (as defined from relected light microscopy) partly infilling fractures (a). The picture is presented “right way 
up” as indicated by the pendant cement. Thin section in PPL. 

              

Interpretation: 

Small sub-rounded or rounded and spherical micritic grains, commonly without internal 

structure, are called peloids, and whereas peloids comprise micritized grains in general, the 

term pellets is restricted to peloids of fecal origin (Tucker and Wright, 1990). Peloids are 

formed by complete micritization of grains related to micro-boring activity of organisms, and 

usually start off as a micritic envelope along exposed grain surfaces (Chapter 4.5.1). Peloids 

are common in shallow-marine tidal and subtidal shelf carbonates, but can also occur in deep-

marine settings. In tropical and sub-tropical shallow-marine environments (platforms, ramps, 

reefs etc.), peloids are commonly abundant, but are rare or absent in non-tropical cool-water 

carbonates (Flügel, 2004). If micritization was caused by endolithic algae, micritization must 

have taken place in the photic zone in a water depth shallow enough for zooxanthellate corals 
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to thrive. However, micritization caused by fungi can occur at significantly deeper waters 

(Zeff & Perkins, 1979). The absence of zooxanthellate corals thus indicates that the 

temperature and/or nutrient conditions were not favourable for their existence.  

A distinct thickening of cement crusts, forming a gravitational beard-like pattern beneath 

grains and within fractures, is the result of cement precipitation from water in the vadose 

environment. This cement, which is typically composed of calcite, is called pendant cement. 

The cement precipitates below the zone of capillarity and above the water table within the 

meteoric-vadose zone, or sporadically in the marine-vadose diagenetic environment (Flügel, 

2004). The marine-vadose zone includes beaches and tidal flats where pore space is filled 

with air and marine waters, whereas the pore space in meteoric-vadose zone is filled with air 

and meteoric waters (Flügel, 2004). 

The long irregular voids cemented with equant calcite cement are interpreted to be fenestral 

structures. Tebbutt et al. (1965) suggested the name fenestra for primary or 

penecontemporaneous  gaps in the rock framework larger than grain-supported interstices 

(Flügel, 2004). Fenestral pores are commonly millimeters to centimeters in size, have an 

irregular geometry and are elongated and planar in the direction parallel to bedding. The pores 

can be open, partially or completely filled by cements, surface derived-material or diagenetic 

internal sediment (Tebbutt et al., 1965; Flügel, 2004; Ahr, 2008). Fenestral pores form by 

desiccation or by expulsion of gas during decay of organic matter, and do not have any 

apparent support in the framework of primary grains composing the sediment (Lucia, 1999; 

Flügel, 2004; Ahr, 2008). The pores differ from growth-framework pores or solution voids, 

which have some support in the framework of the primary grains. Fenestral pores are 

common in peritidal carbonates in tidal-flat and lagoon environments, where sediments are 

alternately wet and dry (Tebbutt et al., 1965; Flügel, 2004; Ahr, 2008; Tucker and Wright, 

2009).  

The combination of grain-supported texture, biogenic composition and fenestral structures 

suggest an intertidal inner-ramp setting, whereas the presence of pendant cement in sample 

JF-37S indicates intermittent exposure to the marine- or meteoric vadose zone.    
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 Microfacies	3	–	MF3:	Miliolid‐Orbitolina‐Peloidal	Pack‐/Grainstone		4.2.3
(Samples: JF-66S, JF-64S, JF-26S, JF-24, JF-23S, JF-22S, JF-21S, JF-17S, JF-16S and 

JF14S) 

 

Observations: 

Microfacies 3 is only present in southern J.Fadeloun. The microfacies is moderately to poorly 

sorted and is composed of closely packed relatively large grains, with an average grain 

diameter ranging from 250-900µm. Grains are very large compared to those of the other 

microfacies and are predominantly composed of relatively large benthic foraminifera 

(Orbitolinids, miliolids and other undifferentiated ones), peloids and echinoderm- (plate and 

spines) and bivalve fragments. Orbitolinids and miliolids are clearly the most prominent 

grains and are observed in large numbers. The undifferentiated benthic foraminifera comprise 

planispiral, uniserial and biserial species, but are not as prominent as the aforementioned 

foraminifera. Quite a few of the observed bivalve fragments have their primary internal 

structure intact, and some have thin isopachous rims of dark brown to black micritic rims 

along their grain margins. Other allochems observed in microfacies 3 are a few fragments of 

red algae, bryozoans, gastropods, intraclasts and coral fragments. Some quartz grains are 

observed in MF3 samples close to the base of Unit A.  

In the upper part of MF3 in Unit A, there is an increase in cemented irregular voids, with at 

least two generations of calcite cement. The voids are predominantly filled with iron-poor 

equant calcite cement (stained red by Alizarin Red-S and K-ferricyanide), with some iron-rich 

equant calcite (stained blue by Alizarin Red-S and K-ferricyanide) towards the center. 

Fractures with small aperture are seemingly cemented with larger fractions of the iron-rich 

equant calcite. Sub-planar non-serrate dissolution seams are observed as dark brown irregular 

laminae between grain boundaries (Figure 4.8). 

Pore space is dominated by interparticle, mouldic and intraparticle pores cemented with 

blocky/equant and drusy sparry calcite. Most of the open primary and secondary pores are 

filled with cement that seems to have its origin as syntaxial overgrowths on echinoderm 

fragments, but some pore space is still preserved as interparticle and mouldic micro porosity. 
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Figure 4.8: Miliolid-Orbitolina-Peloid rich packstone. Miliolid (M) and Orbitolina sp. (Orb) are evenly dispersed and 
closely packed. Some bivalve (B) fragments are present. Note the relative large grain diameters and the red arrows 
pointing to early stage dissolution seams (incipient stylolites). All visible porosity is cemented with equant calcite 
cement. Right-hand side of section is stained with Alizarin Red-S and K-ferricyanide (method described in Chapter 
3.2.2). 

 

Interpretation: 

Microfacies 3 is grain supported with various amounts of micritic matrix and/or sparry calcite, 

and thus is classified as a pack- to grainstone. The relatively low abundance of mud and the 

grain-supported texture, indicate a high-energy depositional environment. Unlike sandstones, 

grain size in carbonates does not necessarily reflect depositional energy and transport 

processes, as carbonate grain size is at least partially faunal and flora dependent. Several 

factors such as sorting, grain shape, bulk density, angularity and so on, must be taken into 

consideration when carbonate grain size is taken as a guide to depositional energy levels.  

The relatively large grains and the low abundance of mud suggest that MF3 is deposited in a 

shallow marine setting. Orbitolinids and miliolids are commonly indicative of shallow 
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relatively warm seawater with normal salinity in an inner platform setting (Kalantari, 1986; 

Flügel, 2004).  

 

 Microfacies	4	–	MF4:	Silty‐Peloidal	Pack‐/Grainstone	4.2.4
(Samples: JF-57S, JF-56S, JF-54S, JF-52S, JF-47S, JF-42S, JF-41S and JF-10S) 

 

Observations: 

Microfacies 4 are only present in southern J.Fadeloun. This microfacies is moderately to well 

sorted, and comprise relatively small and tightly packed grains. The average grain diameter is 

ranging from 100-125µm. MF4 is not only composed of grains of a recognizable biogenic 

origin, but also has a high abundance of peloids and quartz (Figure 4.9). Minor constituents 

are grains of echinoderm fragments (plates and spines), red algae, benthic and planktonic 

foraminifera, ostracods, calcispheres and bivalve fragments. The benthic foraminifera 

observed, comprise undifferentiated planispiral, uniserial and biserial species. Biogenic grains 

are often small and disintergrated fragments with dark brown to black micritic rims. Sample 

JF-42S shows apparent circum-granular cracking, whereas JF-54S may exhibit incipient 

circum-granular cracking. Organic material is observed partly infilling fractures, as 

intraparticle infill and/or dispersed in the mud, as dark brown coloured spots (often with 

higher relief). Open fractures are crosscutting cemented fractures.  
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Figure 4.9: Silty-Peloidal Packstone. Quartz (Q) grains of silt size, peloids (P), echinoderm fragments (Ec) and 
undifferentiated benthic foraminifera (Fb) evenly distributed and tightly packed. Purple arrow = micritic envelope 
along grain margins. Red arrow = fracture partly filled with organic material. Thin section in PPL. 

 

Interpretation: 

Microfacies 4 is grain supported with various amounts of micritic matrix or sparry calcite, and 

thus is classified as a pack- to grainstone. The faunal assemblage of MF4 is light- 

“independent”, commonly termed heterozoan (James, 1997; Flügel, 2004). Heterozoan faunal 

assemblages are often characteristic for the cool-water and temperate realm (generally colder 

than 20ºC) of high-energy settings such as ramps and open shelves, where reefal buildups and 

protective barriers are generally uncommon (Brandano et al., 2009). Invertebrates with 

photosymbionts such as corals thrive in subtropical to tropical waters, whereas heterozoan 

associations prevail in temperate-cool water and/or in high nutrient-level environments (Lees 

and Buller, 1972; James, 1997; Lucia, 2007).  

Textural maturity and the relative low abundance of mud indicate agitated waters in a high-

energy depositional environment (Flügel, 2004). The presence of peloids and grains 
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exhibiting micritic envelopes (described in chapter 4.5.1) within MF4, are commonly 

indicative of shallow marine environments (Flügel, 2004), but could also occur in deeper 

waters by micritization caused by fungi (Zeff and Perkins, 1979). The occurrence of 

terrigenous quartz could indicate a riverine and an eolian origin of the quartz (see below) 

(Flügel, 2004). Circum-granular cracking and the presence of organic material suggest 

episodic events of subaerial exposure (see below).  Most factors thus indicate deposition in a 

shallow marine mid- to inner ramp setting, with episodic subaerial exposure. 

 

 Microfacies	5	–	MF5:	Intraclastic‐Echinoderm‐Peloidal	Grainstone	4.2.5
(Sample: JF-78S) 

 

Observations: 

Microfacies 5 is only present in southern J.Fadeloun, within Unit D. This microfacies is 

poorly sorted, and is composed of relatively large and sparsely packed grains. The average 

grain diameter is 400µm. Dominating grain types in MF5 are intraclasts, echinoderm 

fragments and peloids. Minor constituents are fragments of red algae, bivalves, belemnites 

and bryozoans. Many grains, especially bivalve fragments, have relatively thick micritic 

envelopes, and micritization also occurs in grains within intraclasts. Several bioclasts and 

intraclasts have microcrystalline isopachously-distributed calcite cement. This cement even 

occurs on grains within the intraclasts (Figure 4.10). 

Equant calcite cement fills most interparticle and mouldic pore space and postdates micritic 

envelopes. The cement is mainly stained red with Alizarin Red-S and K-ferricyanide, but 

scattered blue-stained crystals also occur (Figure 4.11). Syntaxial calcite cement overgrowths 

occur on echinoderm fragments and grow in optical continuity with the single-crystal 

bioclasts. 

Fractures are more or less completely cemented by red- and blue-stained (in thin section) 

equant calcite cement. 
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Figure 4.10: Intraclastic-echinoderm-peloidal Grainstone. Peloids (P) and echinoderm fragments (Ec), with early 
marine cementation (red arrow) along grain boundaries (Chapter 5.2). Grains are evenly distributed in sparry calcite. 
Thin section in PPL. 
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Figure 4.11: Grainstone from MF5 with red and blue stained calcite cement. Open interparticle porosity (stained 
bluish-green, black arrow in upper right corner) is probably related to secondary dissolution of cement.  Note the 
micritic envelope (green arrow) along the echinoderm grain boundary, and the open fracture (yellow arrow). Note the 
colour difference between porosity and ferroan calcite cement, and the presence of cleavage within the ferroan calcite. 
Abbreviation: Ec = Echinoderm and P = Peloids. Thin section is stained by Alizarin Red-S and K-ferricyanide, and is 
shown in PPL. 

 

Interpretation: 

Microfacies 5 is grain-supported and lacks mud, and is therefore classified as a grainstone. 

This texture indicates a relatively high energy depositional environment. In combination with 

coralline algae (red algae) and peloids (as described in MF2), this texture and faunal 

composition is commonly indicative of an mid- to inner-ramp setting (Burchette and Wright, 

1992; Flügel, 2004).  

The red-stained (Fe-poor) isopachously-distributed calcite cement (Figure 4.10) is a typical 

early marine cement (Munnecke et al., 1997). The presence of this cement both within and on 

intraclasts indicates at least two episodes of early marine cementation; before and after 

lithification of the clasts. The ferroan calcite cement (stained blue) fills the central part of the 

pores, and thus postdates the Fe-poor calcite cement (stained red) which occur near the grain 
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margins. Ferroan equant calcite cement also postdates early marine cement. Different 

generations of calcite cement suggest a change in chemical composition of pore-waters 

through time. 

The combination of low mud content, high abundance of intraclasts and interparticle sparry 

calcite, and presence of early marine cement, suggest deposition in a high-energy inner-ramp 

setting (Flügel, 2004). 

 

 Microfacies	6	–	MF6:	Benthic	Foraminifera‐Peloidal	Pack‐/Grainstone	4.2.6
(Samples: JF-76S, JF-35S and JF-27S) 

 

Observations: 

Microfacies 6 samples are only present in southern J.Fadeloun, within Unit D, B and A. This 

microfacies is moderately to well sorted, and is composed of relatively small grains. The 

average grain diameter is 100µm. The dominating grain type in MF6 is peloids, 

undifferentiated benthic foraminifera (planispiral, uniserial and biserial) and echinoderm 

fragments (Figure 4.12). Minor constituents are fragments of red algae, bivalves, ostracods, 

calcispheres and sponge spicules. Sample JF-76S is mud-supported and show several 

generations of laminated fibrous to bladed calcite cement (possibly infilling part of a large 

void), whereas JF-35S is predominantly supported by evenly distributed equant to blocky 

sparry calcite, with only small patches being supported by micritic matrix. JF-27S is mud-

supported and have prominent circum-granular cracks. All the MF6 thin sections have grains 

with isopachous micritic rims. Virtually all primary and secondary porosity is either cemented 

with equant calcite cement or filled with micrite, and is dominated by intraparticle and 

mouldic pores. JF-35S stands out by its high abundance of interparticle pores cemented by 

equant to blocky calcite cement (stained both blue and red by means of Alizarin Red-S and K-

ferricyanide). The only open porosity observed, relates to open fractures and circum-granular 

cracks.  
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Figure 4.12: Benthic Foraminifera-Peloidal Packstone/Grainstone of MF6. Evenly distributed undifferentiated 
planispiral, uniserial and biserial benthic foraminifera (Fb) and peloids (P). Bivalve fragments were originally 
composed of low-Mg calcite (B1), aragonite (B2) or a mixture. The coarser crystalline nature (B2) indicates former 
aragonite, whereas the laminar part (B1) may indicate preservation of the original shell (composed of LMC). Bivalve 
shells have typically shells composed of both aragonite and LMC layers.  Micritic envelopes can be observed as 
isopachous dark brown to black coloured rims along grain boundaries. Thin section in PPL. 
 
 
 
 

 

Interpretation: 

Microfacies 6 constitutes samples with both mud- and cement-supported texture, and is thus 

classified as a packstone/grainstone. MF6 have a heterozoan faunal assemblage (described in 

Chapter 4.2.4), with little to no quartz grains. As discussed in MF4, low textural maturity, 

presence of micritized grains (i.e. peloids), circum-granular cracks and the faunal association, 

suggest a shallow marine inner-ramp depositional setting. 
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 Microfacies	7	–	MF7:	Red	algal‐Peloidal‐Echinodermal	Grainstone	4.2.7
(Sample: JF-86S) 

 

Observations: 

Microfacies 7 is only present in southern J.Fadeloun, at the top of Unit D. This microfacies is 

moderately to poorly sorted, and is composed of relatively large and sparsely packed grains. 

The average grain diameter is 450µm. Dominating grain types in MF7 are red algae, peloids 

and echinoderm fragments (plates and spine). Minor constituents are fragments of bivalves, 

belemnites, and intraclasts. Several grains have relatively thick and dark brown coloured 

isopachous micritic rims (Figure 4.13). Grains tend to have remnants of microcrystalline 

granular and bladed cement surrounding grain margins. The calcite cement supporting the 

grains is blocky to equant, whereas there is syntaxial cement around echinoderm fragments. 

The pore space is predominantly filled with red and blue stained equant calcite cement, with 

only minor open interparticle (primary and secondary) and mouldic (secondary) porosity 

(Figure 4.14 and Figure 4.15). Secondary interparticle pores are related to partial dissolution 

of interparticle ferroan and non-ferroan calcite cements. 
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Figure 4.13: Red algae-Peloidal-Echinoderm Grainstone. Red algae (Ar) and Peloid (P) observed in sparry calcite. 
Most grains have incipient micritic rims (red arrows) related to micro-boring organisms (Flügel, 2004). Thin section 
in PPL. 

 

Figure 4.14: Grainstone with some mouldic porosity (yellow arrow), shown as bright light blue spots, as opposed to 
ferroan calcite which has a dull blue/purple colour. The red arrow indicates close up area shown in Figure 4.15. 
Right-hand side of section is stained with Alizarin Red-S and K-ferricyanide. Thin section in PPL. 
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Figure 4.15: Grainstone (close up of Figure 4.14, red arrow) with partial dissolution of interparticle calcite cement 
(black arrows). It is sometimes difficult to differentiate between secondary interparticle (formed by dissolution of 
interparticle cement) and mouldic porosity, and some, but not all, of the calcite dissolution could actually relate to 
complete grain dissolution. Blue stained epoxy fills microporosity and gives the matrix a green-bluish hue (yellow 
arrow). Ar = Red algae. Thin section is stained with Alizarin Red-S and K-ferricyanide, and is shown in PPL. 

 

Interpretation: 

Microfacies 7 has a striking resemblance to MF5, both in texture, grain composition and 

average grain diameter. The major difference between MF7 and MF5 is the considerably 

higher abundance of red algae, and the lower abundance of intraclasts, in MF7. Thus MF7 is 

also indicative of an inner-ramp setting (Flügel, 2004). Rims of microcrystalline granular to 

bladed calcite cement are not as prominent as in MF5, but indicate early marine cementation 

(as described in 4.2.5). The high abundance of equant bluish calcite cement suggests late 

diagenetic cementation of primary or secondary (related to fabric selective dissolution of 

matrix, cements and grains) porosity during burial (Choquette and James, 1987). Red algae 

prefer very shallow (<25m) sub tidal environments with high light penetration, but may be 

found down to 250m water depth. They can withstand fairly agitated waters, but are less 

tolerant to salinity variations (Flügel, 2004). The texture (low mud content and high 

abundance of sparry calcite) and faunal composition thus suggest shallow-water sub-tidal 

deposition of an inner-ramp setting. 
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 Microfacies	8a	–	MF8a:	Spiculitic‐Peloidal	Wacke‐/Packstone	4.2.8
(Sample: JF-11S) 

 

Observations: 

Microfacies 8a is present within southern J.Fadeloun. The microfacies is very fine grained, 

with an average grain diameter of 50µm, and well sorted. Grains are evenly dispersed in the 

matrix and dominantly matrix supported, with only some local areas that are grain supported. 

MF8a is mostly composed of calcitic sponge spicules, calcispheres and peloids, with minor 

abundance of planktonic globigerinid foraminifera- and bivalve fragments (Figure 4.16 and 

Figure 4.17). Interparticle pores are mostly filled by micrite giving a wackestone/packstone 

texture. Microfacies 8b has some organic material, observed as dark brown to black spots and 

brown laminations in thin section. 

The sponge spicules and bivalve fragments have been partly dissolved, resulting in formation 

of secondary moldic pores that are subsequently filled with equant calcite cement. Additional 

pores include common primary intraparticle and minor primary interparticle. Mouldic pores 

are mostly cemented with red-stained equant calcite cement, except for some bivalve 

fragments that contain blue-stained calcite crystals. A relatively high fracture density with 

variable fracture apertures is observed. Fractures are completely cemented and have cross-

cutting relationships. Fractures contain red- and blue-stained equant calcite cement, and 

although the paragenetic sequence is poorly defined, ferroan calcite seems to postdate non-

ferroan calcite cement (Figure 4.18). 

Microfacies 8a shows both mud- and grain-supported sedimentary textures, and always 

contains >10% grains. 
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Figure 4.16: Spiculitic-Peloidal Packstone containing evenly distributed sponge spicules (SP), calcispheres (C) and 
very small peloids (P). Dashed black line outlines a dissolution seam. The lower part of the thin section is stained with 
Alizarin Red-S and K-ferricyanide. Thin section in PPL. 

 

Figure 4.17: Close up of thin section JF-11S highlighting the high abundance of sponge spicules (black arrow). Thin 
section in PPL. 
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Figure 4.18: Fracture filled with ferroan (blue stained, arrows) and “non”-ferroan equant calcite cement. The 
paragenetic sequence is poorly defined, but ferroan calcite seems to postdate non-ferroan. Thin section is stained with 
Alizarin Red-S and K-ferricyanide, and is presented in PPL. 

 

Interpretation: 

The muddy sedimentary textures combined with a relatively high grain content classify 

microfacies 8a as a wacke-/packstone (Dunham, 1962). The association of sponge spicules, 

calcispheres and mollusc fragments, suggests temperate waters (Lees and Buller, 1972). 

Sponges are sessile metozoan and occur in all depositional settings from intertidal to deep 

marine, in predominantly quiet water conditions (Flügel, 2004). 

Micritic grains have irregular geometries and variable sizes suggesting that these are peloids 

rather than true fecal pellets. The abundance of peloids, which require the presence of micro-

boring organisms for their formation, could indicate that the sediment was deposited within 

the photic zone (Flügel, 2004). The mixed planktonic-benthonic faunal assemblage may 

suggest deposition in a slope environment, but could also represent a mid-ramp environment 

(Flügel, 2004). 
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 Microfacies	8b	–	MF8b:	Spiculitic‐Peloidal	Packstone	4.2.9
(Samples: NFS-3S, NFS-2S, NFS-1S, JF-36S and JF-30S) 

 

Observations:  

Microfacies 8b occurs throughout the southern J.Fadeloun, and at the base of the succession at 

northern J.Fadeloun. The microfacies is fine grained, with an average grain diameter of 50µm, 

and is well to very well sorted. The grains form a grain-supported texture and are mostly 

composed of sponge spicules and micritic grains, with minor abundance of calcispheres, 

planktonic globigerinid foraminifera- and bivalve fragments (Figure 4.19). The micritic grains 

have irregular sizes and geometries, and occasionally have preserved internal structures. 

Interparticle pores are mostly filled with micrite (i.e. packstone texture). Microfacies 8b has 

trace to minor abundance of organic material, as defined from reflected light microscopy. The 

sediment is rich in mud and has a grain-supported sedimentary texture. 

All samples have experienced some dissolution of bivalve fragments and spicules, resulting in 

the formation of secondary mouldic pores. Additional pores include primary intraparticle and 

minor primary interparticle. Virtually all pores, both primary and secondary pores, are filled 

with calcite cement. Mouldic pores are mostly cemented with red-stained equant calcite, and 

locally with minor blue-stained equant calcite. 
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Figure 4.19: Spiculitic-peloidal packstone from Unit 2, containing evenly distributed calcareous sponge spicules (SP), 
calcispheres (CS), planktonic globigerinid foraminifera (PF), burrow, a biserial undifferentiated foraminifera, and 
abundant peloids. The small size of the peloids makes it difficult to differentiate them from the matrix. Organic 
material, observed as small dark brown to black spots, was defined from reflected light microscopy. Thin section in 
PPL. 

 

Interpretation: 

The mud-rich and grain-supported sedimentary texture classify microfacies 8B as a packstone 

(Dunham, 1962). The association of sponge spicules, foraminifera (both planktonic and 

benthic) and mollusc fragments, suggest temperate waters (Lees and Buller, 1972). Temperate 

water conditions are also supported by δ18O analyses of bulk sediment which indicate ambient 

water temperatures of 16-18 ºC (Appendix E and Figure 4.55). 

Sponges are sessile metozoans and occur in all depositional settings from intertidal to deep 

marine, in predominantly quiet water conditions (Flügel, 2004). Rounded, micritic grains of 

uncertain origin are defined as peloids (Esso, 1988; Lønøy, 2005) and usually indicate 

deposition within the photic zone. The close association between microfacies 8b and 

overlying microfacies representing mid-inner ramp deposition, the mud-rich sedimentary 

texture, and the occurrence of planktonic fauna, suggest deposition in a mid-ramp setting.  
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 Microfacies	9	–	MF9:	Peloidal	Wacke‐/Packstone	4.2.10
(Samples: GS-6S, GS-5S, GS-3S and GS-1S) 

 

Observations: 

Microfacies 9 is only present within the J.Garci section. This microfacies is well sorted, and is 

composed of relatively small and tightly packed grains. The average grain diameter is 

approximately 60µm, and grains are predominantly peloids with minor abundance of bivalve- 

and echinoderm fragments (plates), benthic and planktonic foraminifera, ostracods, 

calcispheres and sponge spicules (Figure 4.20). The peloids are very small making it difficult 

to separate them from the surrounding lime mud. 

Organic material, as defined from fluorescence microscopy, occurs within fracture-filling 

ferroan calcite cement and within chambered grains. It also occurs within micritic mud, as 

observed in reflected and plane polarized light microscopy. The fractures have two different 

orientations perpendicular to one another, and are infilled with calcite cement that is stained 

bluish by means of Alizarin Red-S and K-ferricyanide. Fracture aperture varies, and range 

from approximately 4-300µm. Horizontal and oblique burrows are observed in outcrop, but 

are not clearly visible in thin section. 
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Figure 4.20: Peloidal packstone (MF9). High abundance of peloids (P) with few scattered fragments of benthic 
foraminifera (Fb), planktonic globigerinid foraminifera (Fp) and calcispheres (C). Patches of dark brown organic 
material are observed throughout the thin section, and within cemented fractures of MF9. Fractures are completely 
infilled with cement, comprising predominantly Fe-rich equant calcite cement. Non-stained thin section in PPL. 

 

 

Interpretation: 

The high abundance of mud and horizontal burrows suggest calm waters, possibly in the 

distal parts of a ramp (mid-outer ramp). Burrowing organisms tend to burrow in soft 

sediments, and the depth and angle of burrow is dependent on the nature of the seafloor 

sediment, oxygen content and nutrient flux (Flügel, 2004). In agitated sea water, the 

burrowing organism will commonly develop vertical burrows to get shelter from the ambient 

waves and currents, whereas in calm waters the organisms tend to develop horizontal burrows 

in the search for food (Seilacher et al., 2005; Seilacher, 2007). Horizontal burrows, high 

abundance of mud in association with grains and planktonic microfossils indicate that MF9 

was deposited in an outer ramp setting. 

The ferroan calcite cement (stained blue) in fractures indicates precipitation during a later-

stage diagenesis (as discussed in chapter 4.5.2). According to Kjelkenes (2015) a cross-

cutting fracture relationship indicates at least two tectonic events. However, the lack of offset 
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between the fractures may also be indicative of one single fracture generation. The organic 

material within fracture-filling ferroan calcite cement in MF9 is revealed by its light-bluish 

fluorescence when exposed to ultraviolet light (Figure 4.21 and Figure 4.22). The intra-

cement distribution of the organic material suggests that the organic material is oil, and that 

oil migration is synchronous with or predates ferroan calcite cementation. The importance of 

this in reservoir evaluation is discussed in Chapter 5.4. 

 

 

Figure 4.21: GS-6S, fracture apparently completely filled with ferroan calcite cement. Stained thin section in PPL. 
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Figure 4.22: GS-6S, fracture depicted in Figure 4.21 under ultra violet light. The fluorescence indicates that 
hydrocarbons were trapped during precipitation of the ferroan calcite cement (George et al., 2001). 

 

 

 Microfacies	10	–	MF10:	Foraminifera‐echinoderm‐Peloidal	Packstone	4.2.11
(Samples: GS-4S and GS-2S) 

 

Observations: 

Microfacies 10 is only present within the J.Garci section. This microfacies is moderately to 

poorly-sorted and has an approximately average grain diameter of 100µm. MF10 is 

predominantly composed of peloids, echinoderm fragments (plates), and benthic foraminifera 

(Figure 4.23). Other minor constituents are bivalve fragments, planktonic foraminifera, 

ostracods and sponge spicules. Most shell fragments are very small and disintegrated, and 

thus difficult to classify. Throughout the microfacies, clay and organic material is patchily 

distributed. Organic material is observed as small brown circular spots within the matrix, 

grains and along walls of open fractures. Virtual all primary and secondary pore spaces are 

cemented, with only some open interparticle micro porosity (commonly along fracture zones) 

and minor fracture porosity. Most fractures are infilled with bluish-stained calcite cement and 
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open fractures show a cross-cutting relationship. The microfacies components mostly consist 

of reddish-stained calcite, and bluish-stained calcite cements occur in fractures and some 

moulds. 

 

 

Figure 4.23: Packstone of Unit H within the J.Garci section, comprising high abundance of peloids. Note the organic 
material (as defined from reflected light microscopy), following and lining the walls of the open fracture (red arrows). 
Abbreviation: C = Calcisphere, Fb = Benthic foraminifera and Ec? = Possible echinoderm fragment. Thin section in 
PPL.  

 

Interpretation: 

Microfacies 10 has more or less the same faunal assemblage as MF9, but with a higher 

frequency of benthic foraminifera and coarser average grain size. The skeletal grains are 

commonly disintegrated, and isopachous micritized rims are not as common in MF10 as in 

other microfacies, indicating a slightly deeper depositional environment (see below). The 

combination of matrix-supported texture and minor micritization of grains suggest deposition 

in a mid- to outer-ramp setting (Flügel, 2004). Crosscutting fractures indicate at least two 
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fracture orientations. The lack of offset between cross-cutting fractures indicates that different 

fracture orientations possibly represent the same fracture generation. 

 

 Grain	size	distribution	4.2.12
 

The grain size distribution varies widely in studied sections. Between the microfacies the 

average grain diameter ranges from 22m to 450m, as shown in Figure 4.24. The larger 

grain sizes are most abundant in the microfacies representing high energetic inner ramp 

deposits, whereas the smaller grain sizes typically represent calm waters in a mid- to outer 

ramp setting. Large grain sizes are also most common in the upper part of the shallowing 

upward cycles.  

 

Figure 4.24: Grain size (average, P10 and P90) for each microfacies. Vertical lines represent the P10 (top) to P90 
(bottom) range, with average grain size given as green triangles. P10 (P90) is a probability measure and means that 
10% (90%) of the grain sizes exceed the P10 (P90) estimate. 

 

MF1 MF2 MF3 MF4 MF5 MF6 MF7 MF8a MF8b MF9 MF10

P10 24.5 200.0 630.0 107.5 400.0 120.0 450.0 50.0 90.0 60.0 118.0

P90 20.5 70.0 430.0 100.0 400.0 100.0 450.0 50.0 34.0 46.0 102.0

Average 22.5 144.2 530.0 103.1 400.0 108.3 450.0 50.0 57.0 55.0 110.0
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4.3 Sedimentary	surfaces	

 

Three different sedimentary surfaces have been observed in outcrop and thin section studies. 

Sedimentary surfaces observed in the outcrops comprise discontinuity surfaces relating to 

subaerial exposure of the sediment surface. These surfaces are mainly recognized on the basis 

of geometry, depositional features and bedding contacts. Exposure related horizons thus 

contain vital information for interpreting the depositional, diagenetic and sequence-

stratigraphic history (Flügel, 2004). 

 

 Paleosol/caliche	4.3.1
 

Observations: 

Thin sections JF-27S, JF-36S, JF-37S and JF-42S in Unit B and C, are characterized by open 

circum-granular cracking of very fine grained (average grain diameter 100µm) packstones 

with finely crystalline matrix (Figure 4.25). Thin section JF-36S only shows incipient circum-

granular cracking. The packstones mostly comprise fine-grained skeletal fragments, often 

with micritic envelopes, organic material and peloids, with selective dissolution of the matrix.  
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Figure 4.25: Circum-granular cracking in sample JF-37S. Cracks following grain boundaries observed throughout 
the thin section. Thin section in plane polarized light, and right side artificially stained red 

 

Interpretation: 

Paleosols are often described as “a buried soil horizon of geological past”, but in a broader 

sense it describes a subaerial exposed horizon (Flügel, 2004). Sand and silt sized polygenetic 

peloidal grains are commonly ubiquitous in caliche (Wright, 1994). They can develop as a 

result of fragmentation of the host micrite by wetting and desiccation, forming circum-

granular cracks (Wright, 1994; Suchý, 2002). This process is termed “granification” and can 

produce large quantities of peloids with grains being rounded due to abrasion (Wright, 1994).  

Some of the most characteristic fabrics of subaerial horizons are laminations, micritic peloids, 

multiple fracture generations, root voids, and variations of carbonate cement morphologies 

(Harrison and Steinen, 1978; Wright, 1989). Peloidal-rich limestones with circum-granular 

cracking are commonly diagnostic microscopic criteria of caliche facies developed through 

repeated wetting and drying processes, commonly landward of the intertidal area (Esteban 

and Klappa, 1983; Calner, 2002; Suchý, 2002). The abundance of organic material and the 
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presence of circum-granular cracks indicate that these beds have been subjected to subaerial 

exposure, either due to progradational depositional processes, sea-level oscillations or a 

combination of these. It is reasonable to interpret these beds (JF-27S, JF-36S, JF-37S and JF-

42S) as paleosols, and the horizons could be useful as bounding surfaces in development of 

the sequence stratigraphic history.  

 

 Hardground	4.3.2
 

Observations: 

A massive bed of light gray to brown and orange-coloured bioclastic wacke- to packstone (see 

Figure 4.26 and Figure 4.27),  is observed at the top of the Aptian sequence in the J.Garci 

section, The bed is extensively bored by endolithic organisms, and have high abundance of 

ferruginous echinoderms, belemnites and some bivalve fragments. At J.Garci this horizon is 

approximately 10-20cm thick and represents an unconformity between the Aptian and the 

overlying Albian. 

 

Figure 4.26: Top Aptian hardground at J.Garci. A) Hardground with accumulations of echinoid fragments. Red circle 
is shown as a close-up in Figure 4.27. B) Rubbly and nodular ferroan rich, red/brown-stained hardground. Geological 
hammer for scale. Photo by: Atef Bel Kahla. 
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Figure 4.27: Close-up of a cluster of echinoid plates and spines observed on the hardground. Photo by: Atef Bel Kahla 

 

Interpretation: 

A smooth and discontinuous centimeter-thick surface with limestone clasts and heavily 

bioturbated carbonates (Figure 4.28), are commonly related to synsedimentary submarine 

lithification, and is termed a hardground (Figure 4.26) (Shinn, 1969; Flügel, 2004). They are 

commonly related to non-deposition (Flügel, 2004) or low sedimentation rates, low sediment 

stability and initial high internal permeability, in waters with normal salinity and temperature, 

and are commonly formed at depths down to 30 meters (Shinn, 1969; Flügel, 2004). The 

ferruginous-rich crusts observed at the top of the Aptian at the Garci section were probably 

formed by microbial mediated processes under low-energy hydrodynamic conditions (Flügel, 

2004) 
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Figure 4.28: Principle sketch of features related to the formation of hardgrounds. After Flügel (2004) and James and 
Choquette (1983) 

 

 

 Paleokarst	and	ancient	speleothems	4.3.3
 

The following features are observed: 

 

Paleokarst surface 

An irregular discontinuous surface with both cemented and open voids is observed in Unit A 

(Chapter 4.4) at southern J.Fadeloun (Figure 4.29). 
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Paleokarst surfaces (Figure 4.29) are difficult to recognize in the stratigraphy and are often 

represented only by an irregular bedding contact (James and Choquette, 1984). The smooth 

irregular bedding contact observed in Unit A at the southern J.Fadeloun section may thus 

represent a paleokarst surface developed by subaerial exposure. 

 

 

 
Figure 4.29: Paleokarst surface at southern J.Fadeloun within a bioclastic grainstone of Unit A. The exposure surface 
is represented by an irregular bedding contact, outlined in the photo by a red dashed line. Geological hammer for 
scale. 

 

Paleokarst caves 

Large voids and caves with large lateral extent, proximal to the locality of thin section sample 

NFS-9S, occur in Unit G (Chapter 4.4). The voids and caves follow the bedding of the 

bioclastic grainstone laterally (Figure 4.30), varying in size from small vugs on a centimeter 

scale, up to large open caves with diameters up to several meters. The vugs and caves increase 

in size towards the west.  

Voids and large open caves in shallow-marine limestones represent dissolution of the 

limestone, typically by fresh water charged with CO2 penetrating and percolating downward 

through fissures, fractures and voids (Figure 4.30). Karst is the general term for features 

related to the meteoric dissolution of limestone, and karstification is often associated with 
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solution collapse and with formation of sinkholes, dolinas, caves and underground rivers 

(James and Choquette, 1984; Flügel, 2004). Paleokarst is ancient karst commonly buried by 

younger sediments, and is typically formed during relative sea-level low stands in humid 

climates (Flügel, 2004). 

 

 

 

Figure 4.30: Large epigenic karst caves and vugs in a bioclastic grainstone at the northern J.Fadeloun section. Note 
that the karst caves get progressively larger towards the west and that the beds dip gently towards the west. Persons 
for scale. Photo by: Atef Bel Kahla 

 

Speleothems 

Thin sections JF-21S and JF-76S from the southern J.Fadeloun section show several 

generations of laminated fibrous to bladed calcite cements (Figure 4.31) The cements occur 

within the margins of the thin sections, and all sides of the cemented pore space are thus not 

observable. The cement distribution within the pore space is therefore uncertain. 

Laminations or bands of fibrous calcite cements, is often indicative of precipitation of 

speleothems developed during precipitation from freshwater supersaturated with respect to 

calcium carbonate in karst caves (Flügel, 2004). The freshwater percolating down through the 
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surface and into the carbonate rock (Figure 4.32) contains CO2 at a higher partial pressure 

than at the surface. The weight of the overlying water column and the lower ambient 

temperature causes the partial to increase. Increased partial pressure of CO2 will promote 

increased dissolution until the water flows out of the rock or reaches a cave and regains 

equilibrium with the atmospheric pressure, resulting in degassing of CO2. The degassing of 

CO2 could result in supersaturation of calcium carbonate followed by subsequent precipitation 

of speleothems (James and Choquette, 1988; Bjorlykke, 2010), as observed in Figure 4.31. 

The location of the laminated fibrous cement along the margin of the thin sections, with 

corresponding uncertain cement distribution, may represent either phreatic (more uniform 

cement distribution within the pore) or vadose (pendant cement distribution within pore) 

cementation. 

 

 

Figure 4.31: Several generations of laminated fibrous calcite cement. Image showing at least four generations of 

calcite cements, labelled 1 through 4. Thin section stained with Alizarin Red-S and K-ferricyanide. 
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Figure 4.32: Principal sketch of the main zones of meteoric and mixing-zone diagenetic environments. After James 
and Choquette (1984). 

 

 

4.4 Depositional	units	

 

Eight depositional units are defined based on cyclic trends. Each unit shows a coarsening 

upwards trend and an associated change in sedimentary texture (wacke- to grainstone). In 

carbonate rocks it is important to realize that grain size is not only indicative of hydraulic 

energy but also reflects the original faunal and floral composition and bioturbating organisms, 

which again is related to grain morphology (Flügel, 2004). However, even though several 

factors may influence grain size, the grain-size distribution will in many cases reflect wave 

and current energy. The vertical microfacies distribution within each unit is gradually going 

from mud-supported texture with low grain content, to more grain-supported texture as the 

mud content decreases. High abundance of mud is commonly indicative for calm waters, 

whereas low mud content and high grain content, often indicates agitated waters and high 

energy environments (Flügel, 2004). The gradual increase in grain size combined with 

decrease in mud content make up four cycles in the studied sections, thus indicating cyclic 

trends. Each unit is thoroughly discussed in Chapter 5. The units are marked in Appendix 

WellCAD logs and Appendix I 1-3. 
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A microfacies classification scheme was developed by Wilson (1975) by defining 24 Standard 

Microfacies types (SMF). Flügel (2004) realized that the SMF-classification of Wilson (1975) 

was idealized for rimmed carbonate shelf and was not applicable to carbonate ramps. By 

surveying various articles, Flügel (2004) noticed that several microfacies types appear to 

dominate different parts of a carbonate ramp, and thus distinguished 30 Ramp Microfacies 

Types (RMF). Classification is based on grain types, grain frequency, matrix type, 

depositional fabrics, depositional texture and fossils (Figure 4.33). 

The different ramp zones (Figure 4.34) contain diagnostic RMF types as shown in Figure 

4.33, and can therefore be used as a quick guide for interpreting depositional environments. In 

the following description of the Units A-F, a correlation between the already classified 

microfacies (see above) and RMF is applied where possible. 
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Figure 4.33: Microfacies of Paleozoic and Mesozoic carbonate ramps. The list starts with microfacies in deep marine 
outer ramp zones, and progressively gets into more shallow mid- to inner ramp zones. Numbers in brackets 
correspond to the Standard Microfacies types (SMF) developed by Wilson (1975). Classification scheme after Flügel 
(2004). 
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Figure 4.34: Distribution of ramp microfacies (RMF) over a homoclinal carbonate ramp. RMF 10 and RMF 11 
commonly occur in distally steepened ramps. After (Flügel, 2004) 
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 Unit	A	4.4.1
 

Observations: 

The lower part of Unit A consists of an 18.45m thick wackestone/packstone sequence 

assigned to MF8a, with an average grain diameter of 50µm. It is characterized by a high 

abundance of sponge spicules and peloids. Overlying MF8a is a silt- and peloid-rich 

packstone (MF4) with an average grain diameter of 100µm. The upper part of Unit A shows 

alternating textures of packstone and grainstone (MF3) with a concomitant increase in the 

grain size. In MF3 the average grain size ranges between 250 and 900µm and the composition 

is characterized by moderately sorted large benthic foraminifera (dominantly orbitolinids and 

miliolids), peloids, echinoderm fragments (plates and spines), coral fragments and traces of 

red algae. Within this relatively thick and massive part of Unit A, an irregular and 

discontinuous bedding surface is observed (Figure 4.29). A well-sorted packstone (MF6) with 

high abundance of benthic foraminifera, peloids, circum-granular cracks and organic material 

is capping Unit A. 

 

Interpretation: 

The lower part of Unit A is characterized by mud-rich textures and faunal composition 

indicative of deposition below the storm wave base (SWB) in a mid-ramp setting (Figure 

4.35). The irregular discontinuous bedding contact observed, could suggest episodes of 

subaerial exposure and development of a paleo (epigenetic) karst surface (Figure 4.29). This 

observation suggests a shallowing upwards trend consistent with a ramp progradation and 

subsequent eustatic sea-level fall. By comparison with the Ramp Microfacies (RMF) 

developed by Flügel (2004), it is obvious that MF3 is similar to RMF13 and RMF16 (Figure 

4.33), indicating that Unit A ends with an inner ramp environment with fluctuating energy 

(open- to protected inner ramp).  
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Figure 4.35: Carbonate ramp model distinguishing inner, mid-, outer ramp and basin. The subdivision applies for 
both homoclinal and distally steepened ramps. The slope dip is strongly exaggerated. According to Wright and 
Burchette (1998) the slope dip is commonly less than 1º. The length of carbonate ramps vary from tens to hundreds of 
kilometers. Modified after Flügel (2004) and Burchette and Wright (1992). 

 

 Unit	B	4.4.2
 

Observations: 

Unit B is a 5.6m thick sequence (Figure 4.36) consisting of a moderately to well sorted 

packstone (MF8b) with an average grain diameter of 75µm in the lower part, and 150 µm in 

the upper part. The packstone is characterized by high abundance of sponge spicules and 

peloids, with minor abundance of quartz grains, undifferentiated benthic foraminifera and 

possible traces of belemnite rostra. Overlying MF8b is a coarser grained moderately to well 

sorted packstone (average grain diameter of 200µm), with high abundance of echinoderm 

fragments, peloids and some bivalve fragments. Virtually all grains exhibit micritic envelopes 

and show traces of both micro-borings. Thin dark brown to black irregular dissolution seams 

of clay are observed within the sequence.  Unit B is capped by a grainstone with an average 

grain diameter of 100µm, and is characterized by high abundance of echinoderm fragments, 

undifferentiated uniserial and biserial benthic foraminifera and peloids.  
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Figure 4.36: Overview of southern Jebel Fadeloun section (JF) with associated sample locations (black text). The 
seven picture collage in the upper part of the image represents outcrops exposed over the edge of the hill (black 
triangle). The vertical black arrows indicate logged sections. Due to the large area and difficult topography, all sample 
locations were not pictured or shown. Note persons for scale and that the picture angle give a wrong impression of bed 
thicknesses.  Photo by: Bjarte Lønøy and Fredrik Kjelkenes 
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Interpretation: 

The lower part of Unit B has a mud-rich texture and biogenic composition indicative of  

deposition below SWB in a mid-ramp setting. The abundance of micro-crystalline matrix 

decreases towards the top the unit, suggesting a drop in relative sea level and shallower 

depositional environments. The grainstone texture and biogenic assemblage of the upper part 

of Unit B is similar to RMF27 (Figure 4.33), and suggest deposition of carbonate sand shoals 

in agitated waters in an inner-ramp setting.  

 

 Unit	C	4.4.3
 

Observations: 

Unit C is a 53.4 meter thick sequence (Figure 4.36). The lower part consists of a 0.7m thick 

moderately to well sorted packstone (MF8b) with an average grain diameter of 100µm. 

Overlying MF8b, is a 45.8m thick packstone-grainstone (MF2 and MF4) with a slight 

coarsening upwards trend (from 100 to 200µm grain diameter). Sedimentary texture alternates 

between packstone and grainstone (MF2 and MF4). Grains are dominated by bivalve- and 

echinoderm fragments, peloids, ammonites and locally abundant silt-sized quartz grains. The 

upper part of Unit C is composed of a 6.9m thick sequence of relatively coarse grained 

(600µm) and poorly sorted packstones (MF3), characterized by high abundance of bivalve- 

and echinoderm fragments, peloids, benthic foraminifera (orbitolinids and miliolids) and 

some bryozoan fragments. The unit is capped by elongated and irregular cavities. Micritic 

envelopes are observed with various degree of grain alteration, throughout the unit. 

Horizontal burrows increase in abundance towards the top of the unit and are quite extensive 

close to MF3. 

 

Interpretation: 

The base of Unit C is characterized by the same microfacies as in Unit B (MF8b), and it is 

thus reasonable to suggest deposition in a mid-ramp setting, below SWB. According to Flügel 

(2004), intraclasts may occur in all ramp settings, but are mostly characteristic for mid- to 

outer ramp settings in distally steepened ramps (RMF9). 
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The middle part of the unit consists of a relatively thick succession of alternating MF2 and 

MF4 (close proximity to RMF27 and RMF7). These microfacies indicate shallow marine 

deposition in a mid- to inner ramp setting (Figure 4.33 and Figure 4.34). The moderately to 

well-sorted terrigenous, silt-sized quartz grains may represent eolian input (Flügel, 2004), into 

the overall shallow marine environment. Development of pendant cement is often indicative 

of deposition within the vadose zone, whereas circum-granular cracking (described in Chapter 

4.3.1) is mostly indicative of paleo-caliche formed during subaerial exposure (Flügel, 2004). 

Thus relative sea-level must have been fluctuating, possibly periodically exposing the 

carbonate ramp. However, the paleo-caliche may be a recent development and thus may not 

relate to an intra-Cretaceous subaerial exposure.  

The upper part of Unit C is characterized by large benthic foraminifera- and peloid-rich 

packstones which are comparable to RMF13 (Figure 4.33 and Figure 4.34), suggesting 

deposition in an inner ramp setting (Kalantari, 1986). The irregular/equidimensional cavities 

in the upper part of the unit are fenestral structures, and are typically formed in peritidal 

environments (Flügel, 2004).  

Unit G shallows upwards from mid-inner ramp to periodically subaerially exposed inner ramp 

deposits. 

 

 Unit	D	4.4.4
 

Observations: 

Unit D is a 13m thick sequence (Appendix I1) which in its lower part consists of a moderately 

to well sorted packstone/grainstone (MF2) with an average grain diameter of 100µm. The 

packstone/grainstone is characterized by high abundance of echinoderm- (plates and spines) 

and bivalve fragments, and peloids, with minor abundance of undifferentiated biserial benthic 

foraminifera and ostracods.  

Overlying MF2 is a moderately sorted packstone/grainstone (MF6) with an average grain 

diameter of 125µm and with high abundance of bioclastic material consisting of echinoderm- 

and bivalve fragments, peloids, undifferentiated benthic foraminifera, miliolids, ostracods, 

calcispheres and sponge spicules.  
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The upper part of the unit consists of a poorly sorted grainstone (MF5) with an average grain 

diameter of 400µm, containing high abundances of echinoderms, peloids and intraclasts. Thin 

isopachous cement coatings of fibrous to bladed calcite are observed within this section. 

Note that the uppermost part of Unit D and the lowermost part of the overlying sequence are 

covered by debris, and a continuous log was not possible. 

 

Interpretation: 

Unit D starts with a relatively thick sequence of MF2, with grain-supported textures and 

biogenic composition suggesting a microfacies closely resembling RMF27 in the Flügel 

(2004) ramp microfacies type classification (Figure 4.33 and Figure 4.34). This RMF type is 

commonly indicative for sediments originating in high-energetic shoals of mid- to inner ramp 

settings (Flügel, 2004). Upwards in the unit, the frequency of benthic foraminifera, 

calcispheres and sponge spicules increase as the abundance of matrix decreases. The 

depositional environment is probably still a mid- to inner ramp setting, but the high diversity 

of grains could suggest that the microfacies is similar to RMF26 (Figure 4.33). The upper part 

of Unit D is composed of a relatively coarse-grained (average grain diameter of 400µm) and 

poorly sorted grainstone (MF5), with high abundance of intraclasts, peloids and echinoderm 

fragments (spines and plates). Isopachous rims of bladed to fibrous cement represent early 

marine cementation. Cementation probably took place close to the sediment/sea-water 

interface, and indicates periods of slow sedimentation and low erosion rates in a shallow-

marine ramp setting (Flügel, 2004). Concentration of intraclasts combined with grain-

supported depositional textures could indicate reworking in an inner ramp setting.   

 

 Unit	E	4.4.5
 

Observations: 

Unit E is a 44.2m thick sequence with large areas covered by debris and vegetation. The 

lower part the unit consists of very fine-grained (grain diameter of 20µm), organic-rich 

wackestone (MF1), with high abundance of planktonic foraminifera and calcispheres. 

Overlying MF1 is a poorly to moderately sorted packstone/grainstone (MF2), with an average 

grain diameter of 200µm. The packstone/grainstone is characterized by a high abundance of 
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echinoderm- (plates and spines) and bivalve fragments, and peloids, with minor red algae, 

undifferentiated benthic foraminifera ostracods and intraclasts. The top of Unit E is 

characterized by a moderately to poorly sorted packstone/grainstone (MF7) with a high 

abundance of red algae, echinoderm fragments and peloids, and with an average grain 

diameter of 450µm.  

 

Interpretation: 

In chapter 4.2.1 MF1 is interpreted to be an Albian deep marine basinal deposit, probably 

deposited within the bathyal zone. Unit E becomes progressively coarser grained and more 

grain supported towards the top, with low diversity of biogenic grains, indicating mid- to 

inner ramp settings (Flügel, 2004).  The unit may represent a downfaulted section of the 

Upper Aptian-Lower Albian (Figure 4.4). This will be discussed further in Chapter 5. 

 

 Unit	F	4.4.6
 

Observations: 

Unit F consist of only one microfacies (MF1), a well-sorted mudstone with very small grains 

with average grain diameter of 25µm. The base of Unit F show a sharp boundary to the 

underlying unit, and grains are dominated by planktonic foraminifera, calcispheres and some 

sponge spicules. MF1 is more thoroughly described in chapter 4.2.1. 

 

Interpretation: 

Unit F consists of only one microfacies, with no general trend within the unit. Unit F is of 

Albian age according to the geological map (Figure 1.2), and is interpreted to represent deep 

marine basinal deposits, deposited within the bathyal zone (see Chapter 4.2.1). The sharp 

boundary between the Unit F and the underlying Aptian shallow marine deposits thus 

represents an unconformity. 
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 Unit	G	4.4.7
 

Observations: 

Unit G is a 55.8m thick unit which form all of the northern J.Fadeloun section (Figure 4.37). 

MF8b constitutes most of the unit, and consists of well to very well sorted fine-grained 

(average grain diameter 40µm) packstones. The microfacies is dominated by sponge spicules, 

peloids, planktonic foraminifera and calcispheres, with minor abundance of bivalve- and 

echinoderm fragments. The upper part (MF2) consists of relatively thin beds of poor to well 

sorted packstones to grainstones, and is dominated by peloids, echinoderms, bivalves and 

benthic foraminifera. Planktonic foraminifera are a minor constituent. There is a slight 

coarsening upward trend and thinning of bed thickness towards the top of the unit. Large open 

karst caves and vugs are observed towards the top of the outcrop (close to NFS-9S). Sample 

NFS-9S is sampled proximal to the observed open karst caves and vuggy pores, and have a 

quite high abundance of equant to blocky Fe-rich calcite cement. Undulating cavities infilled 

with blocky/equant calcite cement is observed in the uppermost sample (NFS-5S) in the unit. 
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Figure 4.37: Overview of northern Jebel Fadeloun section (NFS) with associated sample locations. The boundary 
between MF8b and MF2 is marked with red dashed line. The black dashed line indicates a possible collapse breccia. 
Note persons for scale and that the picture angle gives a wrong impression of bed thickness.  Photo by: Atef Bel Kahla 

 

Interpretation: 

The lower part of Unit G (Figure 4.37) is rich in sponge spicules and pelagic grains (MF8b), 

has a depositional texture and grain composition analogous to RMF7 and RMF8. This 

indicates deposition in an mid-ramp setting, according to the Flügel (2004) classification of 

microfacies on carbonate ramps. Towards the top of the unit the mud content decreases, 

which is indicative of more agitated waters. MF2, an important constituent of Unit G which 

closely resemble RMF7 and RMF27 is interpreted to represent relatively shallow marine 

deposition, probably in a mid- to inner ramp setting. The irregularly shaped and cemented 

cavities are believed to be fenestrae (Figure 4.6), and are common features in intertidal areas 

of ramps (Flügel, 2004). Thus, Unit G represents a shallowing upward section from a mid- to 

an inner ramp setting.  

 

MF8b 
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 Unit	H	4.4.8
 

Observations: 

Unit H is 5m thick, and represents all of the Garci section (Figure 4.38). The unit is composed 

of alternating moderate to well sorted wackestone/packstones (MF9) and moderate to poorly 

sorted packstones (MF10). MF9 is relatively fine grained (average grain diameter of 60 µm), 

has low mud content, and is composed of a faunal assemblage similar to RMF4 (Figure 4.33 

and Figure 4.34). The faunal assemblage and larger average grain size (average grain diameter 

of 100µm) of MF10 is similar to RMF7 (Figure 4.33 and Figure 4.34).  

 

 

Figure 4.38: Overview of Jebel Garci section (GS) with associated sample locations. The photo is arranged NW – SE. 
Abbreviations: Red dashed line = bedding boundaries; Yellow line = Logged section; GS-xS = Sample location, x 
indicating sample number. Photo modified from: Ahmed Klibi.  

NW SE 

GS-6S 
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Interpretation: 

The J.Garci section is described as a condensed Aptian section on geological maps and in the 

literature, and Unit H apparently forms a complete Aptian section (Directin du Service 

Géologique, 2003). Unit H consists of microfacies similar to RMF4 and RMF7, which 

represents deeper marine depositional environments, below FWWB in a mid to outer-ramp 

setting. The alternation between fine-grained (MF9) and coarse-grained (MF10) microfacies 

within the unit probably reflects relative sea level fluctuations. The low micritization of grains 

suggests that deposition took place below the photic zone. The microfacies assemblage of 

Unit H is similar to RMF4 and RMF7 (Figure 4.33 and Figure 4.34) of the Flügel (2004) 

ramp classification, and may thus represent a more distal depositional environment compared 

to the J.Fadeloun section. 

 

4.5 Diagenesis	

 

This chapter describes the post-depositional alterations to the studied carbonate rocks. 

Diagenetic alteration of a carbonate rocks is mainly controlled by the mineralogical- and 

chemical composition of grains, dissolution and precipitation rates, grain size, migration of 

pore fluids, chemical composition of pore fluids and by biological factors (Flügel, 2004). 

Diagenetic alterations observed are predominantly related to microbial micritization and to 

dissolution and cementation.  

The diagenetic alteration experienced by the Serdj Fm. at both J.Fadeloun and J.Garci have 

been studied by ordinary light-, fluorescence- and cathodoluminescence microscopy, fluid 

inclusions and isotope analysis. The results of these studies are presented in this chapter, 

whereas their implication for reservoir potential is discussed in Chapter 5. 

 

 Micritization	4.5.1
 

Observations: 

In the studied microfacies, early diagenetic alteration appears to relate to the formation of 

individual micro-borings, and the formation of circum-granular micritic envelopes on skeletal 

grains (Figure 4.39). This observation applies to all Aptian microfacies of the J.Fadeloun 
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sections with the exception of MF1 (sample JF-80S and JF-87S) where borings and micritic 

envelopes are absent or not clearly visible. In the J.Garci section micritization of grains is not 

as extensive as for the the J.Fadeloun sections, although it is recognized in all of the studied 

samples. In the microfacies with a high mud content micritization of grains can be very 

difficult to pinpoint.  

 

Figure 4.39: Microbial micritization of possible former aragonitic bivalve fragments and foram tests. Micritic 
envelope develops along grain perimeters (black arrow). Fb = Biserial undifferentiated benthic foraminifera. The thin 
section is stained for both non-ferroan calcite cement (red) and ferroan calcite cement (blue). Thin section in PPL. 

 

Interpretation: 

Boring of skeletal grains and hard substrates by endolithic organisms is a common particle 

alternationprocess that occurs preferentially in very shallow marine and freshwater (rare) 

environments (James and Choquette, 1983; Flügel, 2004). Endolithic organisms that produce 

micro-borings include green algae, blue-green algae, red algae, fungi, sponges and bacteria, 

and range in size from less than 1µm to over 100µm (Budd and Perkins, 1980). Micro-borings 

relates to biochemical dissolution of hard substrates by the aforementioned organisms, and 
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provide shelter, nutrition and wave- and scavenger protection for the endolithic organism 

(Budd and Perkins, 1980; Smith and Nelson, 2003). Their boring activity is restricted 

vertically by light penetration and latitudinally by water temperature (Budd and Perkins, 

1980; James and Choquette, 1983). Thus, in the upper part of the photic zone at depths down 

to 70m, phototrophs like blue-green and green algae appear to be most effective, whereas 

heterotrophs like fungi are more effective of depths below 500m (Smith and Nelson, 2003).  

The micritic envelopes are rims of micrite-filled voids that are a result of vacated micro-

borings produced by the endolithic organisms (Figure 4.40). This process is commonly cyclic 

and happens in three main stages: (i) The organism bore into the substrate wall, (ii) The 

organism die and decay, (iii) micritic aragonite or high-Mg calcite fills the vacated tubes 

(Bathurst, 1966; James and Choquette, 1983). Micritic envelopes will commonly withstand 

dissolution, whereas more soluble grains will often dissolve in contact with under-saturated 

pore waters. The dissolution of the initial grain commonly develops moulds. These moulds 

could either be open pore spaces, partially or completely filled with cement or matrix, or 

collapse as a result of compaction (Bathurst, 1966). Preservation of micritic envelopes is often 

controlled by the internal solubility contrasts as a result of mineralogical differences between 

envelope and grain (Winland, 1968), or by differences in mineralogical stabilization rates 

(James and Choquette, 1984).   

 

Figure 4.40: Illustration describing the sequence of events leading to the formation of a micrite envelope. This 
sequence of events may occur several times, leading to more extensive boring. The depth of the boring may also vary 
and thus this is only a principle sketch. After Bathurst (1966). 



   

- 90 - 
  

 

If infestation is intense and prolonged, the entire substrate or grain may be completely bored, 

and transformed into a lump of microcrystalline Mg-calcite or aragonite, without any traces of 

the original internal structure (James and Choquette, 1983). These “diagenetic peloids” will 

be very difficult to separate from fecal pellets and it may be impossible to determine the 

origin of the grain (James and Choquette, 1983).  

 

 Cementation	and	dissolution	4.5.2
 

This chapter describes the marine and meteoric diagenesis of southern J.Fadeloun- (JF), 

northern J.Fadeloun- (NFS) and J.Garci sections, with respect to cementation and dissolution. 

Cement is a chemical precipitate from solution growing in open pore space, and precipitation 

requires supersaturation of the ambient pore fluid with respect to the cement mineral (Flügel, 

2004). 

 

4.5.2.1 Cementation	

 

The following cement types have been observed:  

1) Isopachous fibrous to granular cements 

Isopachous rims of inclusion-poor microcrystalline granular to fibrous cement occur 

on bivalve- and bryozoan fragments, peloids, intraclasts and benthic foraminifera 

(Figure 4.41).  This type of cement is predominantly observed within sample JF-78 of 

Unit D. 

 



   

- 91 - 
  

 

Figure 4.41: Grainstone with microcrystalline calcite cement rims (black arrows) around peloid grains (P), 
and possible red algal fragment (Ar). Equant interparticle calcite cement with twinning postdates the 
microcrystalline calcite cement. Thin section in PPL. 

 

Isopachously-distributed fibrous to granular microcrystalline calcite cement is 

commonly indicative of early marine cementation, binding grains shortly after 

deposition (Munnecke et al., 1997). Modern early marine cementation with aragonite 

or high-Mg calcite occurs in shallow waters near the sediment-sea water interface and 

commonly represents very slow sedimentation and/or erosion, and continuous flushing 

with sea water. This cement type is commonly strongly controlled by factors such as 

permeability, water temperature and salinity (Flügel, 2004). However, during the 

Cretaceous the marine cements were probably composed of low-Mg calcite (Given 

and Wilkinson, 1985).  

 

The isopachous calcite cement is interpreted to be early diagenetic in origin and was 

probably precipitated shortly after deposition (more or less syndepositional), in a 

marine environment. The cement is considered to represent the earliest cementation 

phase of the Serdj Fm. 

 

 

 

P

Ar
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2) Syntaxial cement overgrowths 

Inclusion-poor syntaxial cement overgrowths on echinoderm fragments (plates and 

spines), is present within all microfacies of sections J.Fadeloun and J.Garci.  The 

abundance of syntaxial cement overgrowths is strongly controlled by the frequency of 

echinoderm fragments present, and the abundance of interparticle lime mud. Samples 

with high abundance of lime mud tend to exhibit less syntaxial cement overgrowth, 

simply because there was limited or no space available for cementation. The outer 

boundary of the syntaxial cement overgrowth can easily be distinguished because 

crystal and grain are in optical continuity, and experience simultaneously extinction in 

crossed-polarized light (Figure 4.42 and Figure 4.43). 

 

 

Figure 4.42: Syntaxial calcite cement overgrowth encasing echinoderm fragments (plates). Equant ferroan- 
and non-ferroan calcite cements are infilling pore space between grains. Abbreviations: Ec = Echinoderm, P 
= Peloids, Fb = Benthic foraminifera and yellow arrows = Equant ferroan calcite cement. Stained thin-
section in PPL. 
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Figure 4.43: Syntaxial calcite cement overgrowths enclosing echinoderm fragments (plates). Grains and 
associated syntaxial cement show simultaneous extinction. Abbreviations: Ec = Echinoderm, P = Peloids, Fb 
= Benthic foraminifera and white arrows = Equant ferroan calcite cement. Stained thin-section in crossed-
polarized light (XPL). 
 

Overgrowths of calcite cement on single-crystal grains, is common in near-surface 

marine, vadose-marine, meteoric-phreatic and in deep burial environments (Bathurst, 

1971). Inclusion rich cements with a cloudy appearance are commonly indicative for 

near-surface, vadose-marine and meteoric-phreatic environments, whereas a clear 

overgrowth often relates to deep burial environments (Flügel, 2004). The cement is 

usually low-Mg calcite and is commonly observed as overgrowth on echinoderm 

fragments. 

 

Precipitation of syntaxial cement overgrowths probably started shortly after deposition 

of the sediment, possibly synchronously with the precipitation of the early marine 

isopachous calcite cement, and may have continued during burial of the sediment. 

 

3) Equant calcite cement 

Two types of equant calcite cement, Fe-rich and Fe-poor, fill pore spaces between 

grains, moulds, fractures and primary intraparticle pore spaces. Fe-poor calcite cement 
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commonly line grain surfaces, whereas ferroan calcite cement often occurs as 

chaotically-distributed crystals in the center of the pores. The ferroan calcite 

distribution for different microfacies is presented in Figure 4.44. 

 

Cements are present throughout all sections, but are most common in microfacies 

MF7, MF5, MF6, MF3 and occasionally in MF2. The equant cements are usually 

evenly distributed within grainstones, whereas they have a patchy distribution in 

packstones. The cements tend to be more abundant towards the top of the units, due to 

the higher primary porosity in grainstones capping the units. 

 

Some samples have scattered secondary porosity related to later dissolution of the 

cements (Figure 4.45), and/or partial dissolution of echinoderm fragments (Figure 

4.46). 

 

 

 

Figure 4.44: Visually estimated ferroan calcite cement distribution with associated microfacies.  
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Figure 4.45: Sample JF-86S with open porosity (red arrow) related to dissolution of cement crystals. Thin 
section in PPL. 

 

 

Figure 4.46: Sample JF-86S with open microporosity (red arrow) related to partial dissolution of 
echinoderm fragments. Note syntaxial cement overgrowths on echinoderm fragments. Thin section in PPL. 
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Several moulds are infilled with ferroan and non-ferroan equant cement crystals. The 

cement distribution apparently is controlled by grain type, with sponge spicules, 

calcispheres and bivalve molds commonly being infilled by iron-rich calcite, and all 

other moulds commonly being infilled by non-ferroan calcite. Ferroan calcite cements 

are often related to burial cementation taking place at temperatures of 40-250ºC, 

representing burial depths of a few hundred meters to several kilometers (Choquette 

and James, 1987). The formation waters from which ferroan calcite has precipitated 

have stagnant to moderately rapid flow rates, and are often brackish to highly saline 

(Choquette and James, 1987). 

 

Cemented fractures tend to be completely filled by ferroan and/or non-ferroan equant 

calcite cement. In some samples calcite cemented fractures are observed in cross-

cutting relationships. When both cements are present in the fractures, the Fe-poor 

cement tends to line fracture walls, whereas the iron-rich cement fills the central part 

of the fractures.   

 

Primary intraparticle pore space cemented with equant calcite cements is commonly 

restricted to chambered fossils with stable primary mineralogical composition (low-

Mg calcite). The calcite cements filling these chambers are predominantly non-

ferroan, with a few exceptions (especially larger benthic foraminifera) filled with 

ferroan cements. 

 

Precipitation of ferroan cement is controlled by the redox potential and trace-element 

composition of the pore water and available pore space.  

 

In Unit D virtually all microfacies consist of Fe-poor equant calcite cement. Fe-rich 

cement is restricted to some fractures and coarser-grained facies with high abundance 

of primary interparticle pores (top of the unit). 

 

Equant calcite cement is commonly precipitated after dissolution of aragonite grains 

and cements, or late diagenetic by infilling of remaining pore space. The cement is 

typical in meteoric (phreatic and vadose) and burial environments (Flügel, 2004). 

Shallow burial equant cement typically contain no to little iron if precipitation takes 

place from positive Eh pore waters (Tucker and Wright, 1990)  
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Fe-rich cements are more common during late diagenetic burial cementation 

(Lindholm and Finkelman, 1972; Richter and Füchtbauer, 1978; Chilingarian et al., 

1992) . The uppermost meter or so from the water-sediment interface commonly gets 

depleted in Fe2+ as a result of pyrite formation by the activity of sulphate reducing 

bacteria within the sediment (Berner, 1974; Chilingarian et al., 1992). Thus the uptake 

of Fe2+ by calcite in marine connate waters commonly occurs below the sulphate 

reducing zone, or may not happen at all if there is no iron available after the formation 

of pyrite. 

 

4) Pendant cement (gravitational/micro-stalactitic cement) 

In JF-37S (Unit C), distinct thickening of microcrystalline and fibrous calcite cement 

occur beneath grains and fracture walls (Figure 4.47). The cement hangs like “droplets 

or curtains” beneath the outer walls. 

 

 

Figure 4.47: Packstone within Unit C with pendant calcite cement. Cement crystal morphology shows 
similarities to laminated, fibrous speleothem cements shown in Figure 4.31 and described in text paragraph 
below. Note the “downwards” growth of the cement. Thin section in plane polarized light. 
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In the literature, pendant cement is also often referred to as gravitational cement, 

micro-stalactitic druse cement or stalactitic cement (Figure 4.49).  The cement forms 

during gravitational migration of saturated mobile pore fluids. Once the fluid vacate 

the pore space, a thick supersaturated water film will remain as coat on the underside 

of grains and after multiple phases of drainage and precipitation, pendant calcite 

cement will form (e.g. Flügel, 2004; Bjorlykke, 2010). Pendant cement is formed 

below the zone of capillarity and above the water table within the meteoric-vadose 

zone (Figure 4.48), and is often associated with meniscus cement. In rare occasions 

this cement can also occur in the marine-vadose diagenetic environment (sea water 

splash zone) (Flügel, 2004).  

 

Figure 4.48: Sketch of an idealized permeable carbonate island with associated distribution of major diagenetic 
environments. The vadose zone is subaerially exposed and pores space is occupied by water and air. Pore space below 
the water table is permanently saturated by fresh water, whereas in the mixing zone less dense water floats on top of 
the denser saline waters. Sketch from Bjorlykke (2010) 
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Figure 4.49: Illustration of pendant cement. A) Dripstone cement: distinct thickening of cement crust beneath grains 
and solution voids. This is observed in thin section as a gravitational beard-like pattern. B) Meniscus cement: Cement 
precipitated in a meniscus style proximal or at grain contacts. Meniscus cement is commonly associated with 
dripstone cement. Modified after Flügel (2004). 

 

 

5) Laminated fibrous cement 

Thin section JF-21S and JF-76S show several irregular laminations of fibrous to 

bladed calcite cement (Figure 4.31). The cement is growing outwards into the pore 

space that developed during late diagenetic dissolution of primary grains and matrix. 

Laminations show variations in colour and thickness, and consist of non-ferroan 

calcite cement. 

 

Laminations or bands of fibrous calcite cements, are often indicative for precipitation 

of carbonate cements formed as speleothems in karst caves (Flügel, 2004). Karst caves 

are formed by chemical dissolution from under-saturated meteoric waters percolating 

downwards into the rock (“surface karst”), or from migration of aggressive 

hydrothermal fluids in the subsurface (“subsurface karst”). The dissolution results in 

development of open voids and cavities (e.g. vugs and caves) (Flügel, 2004). 

 

Speleothems are indicative of precipitation from freshwater super-saturated with 

respect to calcium carbonate in “surface karst”, rather than “subsurface karst”. The 
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freshwater contains CO2 at a higher partial pressure than at the surface due to the 

weight of the overlying water column and the lower ambient temperature. Increased 

partial pressure of CO2 will promote increased dissolution until the water flows out of 

the rock or reaches a cave and regains equilibrium with the atmospheric pressure, 

resulting in degassing of CO2. This could result in supersaturation of calcium 

carbonate and formation of speleothem (Bjorlykke, 2010; Boop, 2014). Changes in 

mineralogical composition and cement types are reflected in the colour change and 

geometry of the cement generations observed, and may reflect short- or long-termed 

cyclic oscillations of climatic factors (Flügel, 2004).  

 

Brief summary of cements:  

The marine cement (1) represents an early, almost syn-sedimentary diagenetic phase 

(eogenetic). (2) Syntaxial cement overgrowths on echinoderm fragments probably started 

precipitating shortly after deposition (eogenetic), although precipitation may have continued 

during burial diagenesis (mesogenetic). (3) Equant non-ferroan calcite and ferroan cements 

probably precipitated at shallow burial or in the meteoric freshwater zone, and at deeper 

burial, respectively. (4) Pendant cement and (5) speleothems precipitated during subaerial 

exposure of the ramp. 

 

4.5.2.2 Dissolution	

 

Dissolution of carbonate grains commonly occur early in the history of burial (eogenetic 

stage) and is often associated with meteoric diagenesis (Longman, 1980). The meteoric waters 

are often acidified from atmospheric- and soil CO2, resulting in dissolution within the vadose 

zone and the upper phreatic environments. When the pore waters become supersaturated with 

respect to calcite, as a result of evaporation or degassing of CO2, pendant- or meniscus calcite 

cement may precipitate (Longman, 1980). Dissolution in phreatic environments commonly 

relates to differences in mineral solubility, whereas in a mesogenetic stage (late burial), 

hydrocarbon maturation or shale dewatering may provide aggressive pore fluids that are 

highly corrosive with respect to carbonate minerals (Longman, 1980; Moore, 2001). 
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The dissolution of carbonate grains is controlled by pore-fluid saturation and its chemical 

composition, grain mineralogy and grain surface area. Large surface areas are more prone to 

extensive dissolution than small surface areas, as the solvent can corrode on a larger area 

simultaneously. The grain surface area is reflected by the size of the grain and its surface 

microstructures (Walter and Morse, 1984), whereas the grain mineralogy controls the 

solubility and determine whether the grain dissolves or undergo neomorphism (Moore, 2001). 

Low-Mg calcite is chemically relative stable, whereas high-Mg calcite typically will undergo 

neomorphism, with no gain in porosity. Aragonite is chemically unstable and will dissolve 

and form secondary porosity which, if preserved, can account for significant pore volumes. 

Heterozoan faunal associations are dominated by calcitic grains (high- and low-Mg calcite), 

and secondary porosity is usually poorly developed. Photozoan faunal associations, however, 

often have a high content of aragonitic grains and therefore has a much better potential for 

secondary porosity development (Lucia, 2007). 

High-Mg calcite commonly dissolves incongruently, and gets depleted in magnesium without 

any significant transport of calcium carbonate. Dissolution of high-Mg therefore generally 

will not develop moulds. Dissolution of metastable aragonite on the other hand, results in 

significant transport of calcium carbonate away from the dissolution site, resulting in 

development of mouldic pore space (Moore, 2001). High-Mg calcite is generally very 

unstable in freshwater and thus easily transforms to low-Mg calcite during incongruent 

leaching, with little to no internal change in microstructures and micro-fabrics (Flügel, 2004). 

The pre-diagenetic mineralogical composition of carbonate grains can therefore be predicted 

by light microscope studies, as grains of low-Mg or high-Mg calcite in origin will commonly 

preserve their internal structures, whereas aragonitic grains typically appear as open, partly 

cemented or completely cemented moulds. 

In the studied sections, dissolution of aragonitic grains has resulted in the development of 

moulds that have subsequently been completely or partially cemented with non-ferroan and 

ferroan calcite. The cemented moulds observed within the Serdj Fm. predominantly occur in 

bivalve fragments and sponge spicules (Appendix I 1-3). 

 

 Deep	burial	diagenesis	4.5.3
 

Burial diagenesis is in general defined as any change, or the collection of changes, that occur 
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below the zone of near-surface diagenesis, but above the realm of low-grade metamorphism 

(Choquette and James, 1987). The extent of burial diagenesis can vary widely from one 

sedimentary basin to another, or even within the same basin, and is mainly a consequence of 

changes in hydrology, pore fluid chemistry, temperature and pressure (Choquette and James, 

1987). Deep burial diagenesis includes several processes that result in different products, but 

can be separated into two main processes; physical and chemical compaction.  

 

Physical compaction 

Physical compaction starts at shallow burial by grain rearrangement and denser packing of 

grains. At increased uniform or differential stress from the overburden rock, pressure 

dissolution and brittle and/or ductile grain deformation takes place (Choquette and James, 

1987). Pressure dissolution starts with dissolution seams that eventually develop into 

stylolites. The presence of stylolites suggest a burial depth of at least a few hundred meters 

(Flügel, 2004). 

Physical compaction causes a reduction in sediment thickness, porosity and permeability 

(Choquette and James, 1987). 

 

Chemical compaction 

Chemical compaction or pressure solution is the result of higher pressures at greater burial 

depths (Choquette and James, 1987), and is by Lloyd (1977) defined as the loss of porosity 

and decrease of thickness caused by “autochthonous” carbonate cements brought into 

limestones by pressure solution. Increased pressure due to overburden or tectonic stress is 

transmitted and concentrated at grain or crystal contacts, increasing the solubility and 

associated dissolution of the stressed grain/crystal contacts. The most obvious product of 

chemical compaction is stylolites, which form by dissolution of soluble load-bearing material, 

leaving insoluble minerals (Choquette and James, 1987).  

Physical compaction is often related to an earlier diagenetic phase, whereas chemical 

compaction is often related to a later phase of deep burial diagenesis. Within the different 

microfacies, both mechanical- and chemical compaction is observed, as described for each 

microfacies in Chapter 4.2. 
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4.6 Geochemical	analysis	

 

Geochemical analyses were performed on 36 bulk rock samples (14 radiogenic isotope 

analyses and 22 stable isotope analyses). The bulk rock samples contain grains, matrix, and 

ferroan and non-ferroan calcite cements. 

 

 Stable	isotopes	(18O	and	13C)	4.6.1
 

Stable isotope analysis may provide information on the temperature and salinity of the 

ambient water and terrigenous input, and can also provide useful information on the changes 

in carbon cycling of ancient systems and global climate fluctuations (Flügel, 2004). The 

oxygen isotopic signal of carbonates precipitated from seawater is strongly controlled by 

temperature-dependent fractionation and ambient seawater δ18O-composition (Epstein et al., 

1953), whereas the carbon isotopic signal is mainly a function of the ambient seawater δ13C -

composition and the availability of isotopically light organic carbon (Tucker and Wright, 

1990). Carbon isotope ratios of organisms commonly also reflect the isotope ratios of their 

diets (vital effect), and thus the ratio of stable isotopes can change between diet and consumer 

due to differential digestion, or fractionation during absorption and metabolic processes 

(McCutchan et al., 2003). Species-specific metabolic effects are common in controlling the 

carbon isotopic fractionation in echinoderm skeletal parts (Weber, 1968). 

The isotopic signature of marine and other calcium carbonate cements are commonly 

preserved and thus the different cement signatures can be distinguishable (James and 

Choquette, 1983).  Marine cements (isopachous, radiaxial fibrous, micritic and botryoidal) 

typically develop in equilibrium with ambient marine waters which have δ18O and δ13C-

values close to zero (Sharp, 2007). The succession of cements developed in limestones 

undergoing burial diagenesis, tend to be enriched in lighter oxygen isotopes, and generally but 

not necessarily, accompanied by enrichment of lighter carbon isotopes (James and Choquette, 

1983). Enrichment of lighter oxygen and carbon isotopes in cement is a result of re-

equilibration with ambient pore waters at increasing temperatures and/or precipitation from 

meteoric water (James and Choquette, 1983). 
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The stable-isotope results of bulk samples from the Serdj Fm. are presented in Table 4-1 and 

Figure 4.50 to Figure 4.53Figure 4.51, with ranges and averages for different cement 

compositions given in Table 4-2. 
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Table 4-1: Samples and associated stable δ18O- and δ13C- values. Ferroan calcite cement abundance is based on visual 
estimations from thin-sections. 

 

Stable oxygen and carbon isotope values 

Sample* 
δ13C Mean 
(‰ vPDB) 

δ18O Mean 
(‰ vPDB) 

Ferroan 
calcite 
cement 

abundance** 

GS‐1S  3.1  ‐3.32   

GS‐4S  2.91  ‐2.76   

GS‐6S  3.67  ‐3.15   

JF‐14S  3.15  ‐2.76   

JF‐16S  3.37  ‐2.35   

JF‐17S  2.93  ‐3.19   

JF‐22S  3.2  ‐2.66   

JF‐30S  3.09  ‐2.56   

JF‐35S  2.26  ‐2.05   

JF‐40S  3.14  ‐2.19   

JF‐45S  2.93  ‐2.45   

JF‐49S  3.29  ‐2.4   

JF‐57S  3.35  ‐2.06   

JF‐60S  2.64  ‐2.44   

JF‐66S  3.08  ‐3.16   

JF‐69S  3.08  ‐2.46   

JF‐74S  2.33  ‐3.16   

JF‐80S  2.09  ‐1.78   

JF‐87S  0.82  ‐1.75   

NFS‐1S  3.69  ‐2.46   

NFS‐3S  3.96  ‐2.69   

NFS‐5S  3.54  ‐1.83   
 

* GS = J.Garci section, JF = J.Fadeloun section and NFS = Northern J.Fadeloun section 

**Red: No ferroan calcite; pale blue: 1-3% ferroan calcite; medium blue: 3-6% ferroan calcite; dark blue: >6% 

ferroan calcite (ferroan calcite content and stable isotope results will not be compared due to patchy cement 

distribution; see main text for further comments). 
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Table 4-2: 18O and 13O ranges and averages for different cements compositions. 

 

Samples 
δ18O (‰) δ13C (‰) 

Range Average Range Average 
All -1.75 to -3.32 -2.53 0.82 to 3.96 2.98 
Non-ferroan calcite only -1.75 to -2.66 -2.30 0.82 to 3.69 2.97 
1-3% ferroan calcite -1.78 to -2.76 -2.35 2.09 to 3.96 3.07 
3-6% ferroan calcite -3.15 to -3.32 -3.20 2.33 to 3.67 3.02 
>6% ferroan calcite -2.05 to -2.76 -2.41 2.26 to 3.91 2.59 
 

 

 

 

Figure 4.50: Abundance of Fe-rich calcite cement and associated stable oxygen and carbon isotope values. Note the 
relationship between the abundance of Fe-rich calcite cement and δ18O values (red and blue circles). Heavier oxygen 
isotopes (less negative δ18O values) tend to be associated with low ferroan calcite content (red circle), whereas lighter 
oxygen isotopes (more negative δ18O values) are associated with higher ferroan calcite cement content (blue circle). 
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Figure 4.51: Stable isotope values (‰ vPDB) of δ13C and δ18O for different localities. Samples marked with a red 
circle are of Albian age, and their 18O and 13C compositions deviate from the stable-isotope composition of the 
Aptian samples. 

  

 

Figure 4.52: δ18O and Fe-calcite cement (%) relationships. All measured values are presented. Note the low R2-value. 
Raw data is presented in Appendix H. Number of samples: 20. 
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Figure 4.53: δ18O and Fe-calcite cement (%) relationships. Thin section studies reveal that sample JF-35S has a 
patchy Fe-cement distribution and that the sampled area is not representative for the whole sample. Sample GS-4S 
have a Fe-cementation restricted to clusters of certain grain types (probably originally aragonitic bivalve fragments) 
and to fracture infill, thus the area sampled is not representative for the measured isotope values. Samples JF-35S and 
GS-4S are therefore removed from the plot, resulting in an increase in the R2-value, indicating a more accurate trend.  
Raw data is presented in Appendix H. Number of samples: 18. 

 

The data show that increased abundance of Fe-rich calcite cement is associated with 

enrichment of the lighter 16O isotope, whereas there is no obvious change in δ13C values 

(Figure 4.50). By comparing the measured δ18O values with the percentage of ferroan calcite 

cement it is possible to get a rough estimate of the δ18O value of the cement (Figure 4.52 and 

Figure 4.53). The present pore space cemented by ferroan calcite cement was estimated 

subjectively by visual comparison with Terry and Chilingar (1955) comparison chart for 

visual percentage estimation. Thin-section studies show that the ferroan calcite cement in two 

samples is patchily distributed, and that the percentage ferroan cement within the isotope 
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excluded from the data set in order to get a more representative comparison of percentage 

ferroan calcite and δ18O. This gave a significant increase in the coefficient of determination 
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enough isotope samples collected to give a statistical significant result, a weak inverse trend 

between Fe-rich calcite cement and 18O is observed (Figure 4.53). The predicted average 
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18O for 100% ferroan calcite cement was calculated to -23.3 (‰ vPDB), based on the 

equation given in Figure 4.53. 

 

Paleotemperatures 

Paleotemperatures from 18O (‰ vPDB) were calculated using an equation from Hays and 

Grossman (1991) (Equation 4-1). The results are given in Figure 4.54 and Figure 4.55. 

 

Equation 4-1: Paleotemperature equation for stable oxygen isotopes (Hays and Grossman, 1991). 
 

 15.7 4.36 0.12⁰  
where: 

δc = δ18O of calcite (sample measurement) 

δSW = δ18O of sea water.  -2.5 to -2.0 ‰ vPDB in late Aptian, based on Grossman (2012) 

T = Temperature (C) 

 

Calculated paleotemperatures for samples lacking ferroan calcite cement (Figure 4.55) range 

between 13 and 17ºC. The calculated temperatures are probably close to the temperatures of 

the ambient waters from which the calcite formed, and as cool/temperate ramp carbonates 

generally accumulate in seawaters colder than 20ºC, the paleotemperatures derived from 

δ18O-analysis suggest precipitation from temperate waters (James, 1997).  

 

The precipitation temperature for the ferroan calcite cement, using Equation 4-1, is calculated 

to ca. 160C. 

There is a significant uncertainty in the prediction of the 18O and temperature of the ferroan 

calcite cement, due to: 

 Few data points. 

 Available data points are clustered into two main groups. 

 No data points with more than 5% ferroan calcite are available. 

 Relatively low coefficient of determination (R2=0.55). 
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 Ferroan calcite content was estimated from visual estimation. 

 Bulk volumes applied for stable isotope analyses (3D volume) and ferroan 

calcite quantification (2D area) are not the same. 

 

In spite of the low statistical significance it can be concluded that ferroan calcite cement 

probably is late diagenetic in origin and that it precipitated at elevated temperatures. 

Fluid inclusions in the ferroan calcite cement would probably give more accurate paleo-

temperatures. However, no inclusions were observed. 

 

 

Figure 4.54: Marine water temperatures of all samples (ferroan and non-ferroan calcite cemented) derived from 
stable isotope analysis of oxygen (method described in Chapter 3.5). Line = temperature range based on max and min 
18O values for each sample; Triangle = calculated mean value, green = Aptian, blue = Albian. 
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Figure 4.55: Marine water temperatures of samples with non-ferroan calcite cement, derived from stable isotope 
analysis of oxygen (method described in Chapter 3.5). These samples have a variable abundance of non-ferroan calcite 
cement, which may have an impact on the calculated paleo-water temperatures. Meteoric cements would lower 18O 
and give a higher calculated paleo-water temperature. Line = Temperature range based on max and min 18O values 
for each sample; Green triangle = Calculated mean value; Red circle = Albian. 

 

 

 Radiogenic	isotopes	4.6.2
 

Radiogenic isotopes are either unstable or decay to another nuclei, as opposed to stable 

isotopes whose abundance is unchanged during radioactive processes. Sr-isotope analysis 

offers a mean to date and correlate carbonate deposits, provided that the analyzed material has 

persevered the original seawater Sr-isotope signal. Low-Mg calcite (LMC) shells of marine 

taxa are preferred candidates for strontium-isotope stratigraphy since they are diagenetically 

more stable than those of aragonitic origin (McArthur, 1994; Martin et al., 1999). By 

measuring the 87Sr/86Sr of carbonate rock, it is possible to determine the time of mineral 

precipitation (McArthur, 1994). The measured values and associated ages of the studied 

sections are presented in Table 4-3 and Figure 4.56 to Figure 4.58. Age is determined by 

correlating reported 87Sr/86Sr-values with ages presented by  McArthur et al. (2001). 
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Table 4-3: Measured 87Sr/86Sr values and estimated ages for the sampled sections at J.Fadeloun and J.Garci.  

Sample # 
Depth 

(m) 
 87/86Sr corrected Age (Ma) 

      Min 
Best 
fit 

Max 

JF‐87S  ‐1,50  0.707608  >75.59  75.76  <75.93 

JF‐80S  45  0.707622  >74.94  75.13  <75.30 

JF‐69S  59.9  0.707551  >78.54  78.78  <79.03 

JF‐66S  68.3  0.707568  >77.60  77.78  <77.99 

JF‐60S  75.2  0.707688  >72.58  72.69  <72.80 

JF‐57S  77.85  0.707488  >82.68  82.88  <83.07 

JF‐49S  90.65  0.707503  >81.77  81.98 <82.19 

JF‐14S  145.15  0.707852  >32.83 32.98 <33.15 

NFS‐5S  0.4  0.707722  >71.43 71.56 <71.68 

NFS‐3S  4.8  0.707603  >75.83 76.00 <76.17 

NFS‐1S  55.8  0.707727  >71.24 71.38 <71.52 

GS‐6S  0.2  0.707841  >33.03 33.21 <33.38 

GS‐4S  3.25  0.708411  >20.59 20.74 <20.88 

GS‐1S  5  0.708761  >15.42 15.62 <15.8 

 

 

Figure 4.56: Age derived from strontium isotope analysis of southern J.Fadeloun versus depth. Note that the reported 
ages are scattered, with no clear trend, and that the deepest sample has the youngest predicted age. The reported ages 
are also younger than the expected Aptian age (see Chapter 5.1.3). Obviously, the age determinations are unreliable 
and cannot be applied (see additional comments in Chapter 5.1.3). Zero depth represents top Aptian. 
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Figure 4.57: Age derived from strontium isotope analysis of northern J.Fadeloun versus depth. Note that the reported 
ages are scattered and that there is no clear trend. The reported ages are also younger than the expected Aptian age 
(see Chapter 5.1.3). Zero depth represents top Aptian. 

 

 

Figure 4.58: Age derived from strontium isotope analysis of the J.Garci section versus depth. Note that the trend 
indicates that the sedimentary rocks surprisingly get progressively younger with burial depth. Moreover, all estimated 
ages are much younger than the expected Aptian age (McArthur et al., 2001), and date to Oligocene and Miocene 
(Chapter 5.1.3). Zero depth represents top Aptian. 
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4.7 Fractures	

 

Fractures with various apertures, and often in cross-cutting relationships, are observed 

throughout J.Fadeloun and J.Garci. There are no observed offset between the cross-cutting 

fractures. Observed fractures show all variations of cementation, from completely open to 

completely cemented. Fracture-filling cements are granular to equant, non-ferroan and ferroan 

calcite cements. Some of the open fractures may have been induced during sampling. 

 

4.8 Porosity	and	permeability	

 

The quality of a reservoir is mainly determined by the porosity and permeability of the rock. 

These properties are functions of both depositional and diagenetic processes, and determine 

(along with saturation) the estimated volume of hydrocarbons that can be produced from a 

reservoir. Porosity and saturation are important for determination of the possible hydrocarbon 

pore volume, while permeability relates to the ease at which the hydrocarbons can be 

recovered (Lucia, 1999). 

 

 Introduction	to	porosity	4.8.1
 

Porosity (ф) is defined as the fraction of volume in a rock that is not occupied by any grains, 

cement or matrix, and is given as percentage or fraction of the bulk rock volume. The pore 

volume is either occupied by water, oil, gas or a combination of these, and is crucial for the 

reservoir´s fluid/gas storage capacity (Lucia, 1999). It is often convenient to distinguish 

between absolute (or total) porosity and effective porosity on the basis of connectivity of the 

pores. Absolute porosity (øA) of a rock body is determined by the ratio between the total 

volume of pore space (Vps) and the bulk volume of the rock (Vb), expressed in Equation 4-2: 

 

Equation 4-2: Absolute porosity. ΦA expressed as percentage. 

 
∗ 100 
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The effective porosity (øEf) of a rock is determined by the ratio between the total volume of 

interconnected pore space (Vcps) and the bulk volume of the rock (Vb), and is expressed in 

percent in Equation 4-3: 

 

Equation 4-3: Effective porosity. ΦEf expressed as percentage 

 
∗ 100 

  
 

To determine fluid flow properties, effective porosity is often considered. There is no simple 

relationship between porosity, grain size and sorting in carbonates (Lucia, 1999), so the 

effective porosity is often dependent on a combination of several factors such as grain type, 

fabric, sorting, weathering, clay content and cementation. Effective porosity in carbonate 

reservoirs are commonly in the range of 1 to 35%, with an average of approximately  10%  for 

dolomite reservoirs and approximately 12% for limestone reservoirs (Schmoker et al., 1985). 

The percentage of visible (in thin section) porosity can be used to obtain a qualitative estimate 

of the reservoir quality (Table 4-4) using the Archie (1952) classification (Table 4-4): 

 

Table 4-4: Reservoir quality based on visible porosity (modified from Ahr (2008)) 

Porosity: Qualitative Description:
<5% Poor 
10% Fair 
15% Good 

<20% Excellent 
 

Porosity is usually subdivided into primary and secondary porosity on the basis of the process 

of formation. Sedimentologists also commonly use the term minus-cement porosity, when 

discussing potential porosity of a reservoir (Flügel, 2004). 

 

Primary porosity consists of pore space developed during depositional and early post 

depositional processes. The porosity and pore geometry developed during these processes 

strongly vary with packing of grain, sorting, roundness, and the abundance and distribution of 

clay (Choquette and Pray, 1970; Ahr, 2008).  
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Secondary porosity (also often referred to as post depositional porosity), develop after burial 

of the sediment and/or during subsequent uplift.  The voids developed, are results of either 

dolomitization, dissolution, fracturing or a combination of these processes (Choquette and 

Pray, 1970; Ahr, 2008). 

Minus-cement porosity is the porosity available after removal of cements, i.e. the pore 

volume of cements plus open pores. Minus-cement porosity thus represents a measure of pre-

cementation porosity (Flügel, 2004). 

 

 Classification	of	pore	types	4.8.2
 

Carbonate pore types are varied and complex as a consequence of different depositional 

settings and diagenetic alteration. In order to better understand the elements affecting 

permeability, several different porosity classification systems have been developed on the 

basis of deposition, diagenesis, geometric features, flow properties and pore size. 

In 1952 Guastavus E. Archie developed a classification system with focus on estimating 

porosity. He realized that not all pore space is visible with an optical light microscope and he 

divided pore space into matrix and visible porosity (Lucia, 1995). Later, Choquette and Pray 

(1970) developed a pore-type classification system that is based on pore geometries and 

which is related to depositional and diagenetic processes. This classification system consists 

of 15 pore types. Lucia´s (1983) pore-type classification system focuses more on the 

geometric features and flow properties of the pores. 

Lønøy (2006) noticed that several other elements than those described by Choquette and Pray 

(1970) and (Lucia, 1983, 1995, 1999) had an effect on permeability, and he therefore 

developed a new classification system (Table 4-5) that integrates the Choquette & Pray and 

Lucia systems and incorporates some new elements. In his classification system, Lønøy 

subdivided interparticle, intercrystalline and mouldic porosity into subclasses based on their 

pore size. Lønøy (2006) also recognized the importance of pore type distribution, and 

distinguished between uniform and patchy pore space. The pore type classification of Lønøy 

is based on an empirical optimization of global permeability relationships, and it includes 21 

pore type classes. The system shows a predictable relationship between porosity and 

permeability, and it combines both sedimentologic and diagenetic features with flow related 
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properties (Lønøy, 2006). The pore type classification system developed by Lønøy (2006), is 

applied in current study (Table 4-5).  
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Table 4-5: Lønøy´s pore type classification system for carbonate rocks (modified from Lønøy (2006) 

Pore Type 
Pore 
Diameters 

Pore 
Distribution  

Pore Fabric  Code 

Interparticle  1

Interparticle 
(BP)  

Micropores 
(10‐50 μm) 

Uniform 
Interparticle, uniform 
micropores 

1.11

Patchy  Interparticle, patchy micropores  1.111

Mesopores 
(50‐100 μm) 

Uniform  Interparticle, uniform mesopores  1.12

Patchy  Interparticle, patchy mesopores  1.112

Macropores 
(>100 μm) 

Uniform 
Interparticle, uniform 
macropores 

1.13

Patchy  Interparticle, patchy macropores  1.113

Vuggy  2

Vuggy           2

Mouldic  3

Mouldic (MO) 

Micropores 
(10‐20 μm) 

   Mouldic micropores  3.11

Macropores 
(20‐30 μm) 

   Mouldic macropores  3.13

Intercrystalline  4

Inter‐
crystalline 

Micropores 
(10‐20 μm) 

Uniform 
Intercrystalline, uniform 
micropores 

4.11

Patchy 
Intercrystalline, patchy 
micropores 

4.111

Mesopores 
(20‐60 μm) 

Uniform 
Intercrystalline, uniform 
mesopores 

4.12

Patchy 
Intercrystalline, patchy 
mesopores 

4.112

Macropores 
(>60 μm) 

Uniform 
Intercrystalline, uniform 
macropores 

4.13

Patchy 
Intercrystalline, patchy 
macropores 

4.113

Intraparticle  5

Intraparticle 
(WP) 

        

5

Mudstone microporosity  6

Mudstone 
microporosity 

Micropores  
(<10 μm) 

   Tertiary chalk  6.01

   Cretaceous chalk  6.02

Uniform  Chalky micropores, uniform  6.03

Patchy  Chalky micropores, patchy  6.04
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4.8.2.1 Interparticle	(BP)	porosity	

 

Interparticle (BP – Between Particles) porosity, often also referred to as intergranular 

porosity, is the porosity occurring between grains (Choquette and Pray, 1970). The porosity is 

commonly primary in origin, but may also be formed by secondary dissolution of matrix or 

cements. Interparticle porosity is divided into six subclasses based on pore size (micro-, 

meso- and macropores; 10–50µm, 50-100µm and >100µm pore diameters, respectively) and 

pore distribution (uniform or patchy), as shown in Table 4-5. Patchy interparticle porosity is 

commonly related to diagenetic overprint, either by selective dissolution of matrix or cements, 

and/or patchy cementation of both primary and secondary porosity.  

Depositional settings commonly associated with interparticle porosity are medium to high 

energy shallow-marine settings, such as rimmed platform-margin shoals,  platform-interior 

shoals, ramp shoal complexes, middle-ramp barrier shoals, beaches, wash-over fans, gravity-

driven flow deposits and other settings. While macropores are most common in high energy 

grainstones; micropores commonly occur within recrystallized mud of mud-lean packstones 

(Lønøy, 2006). 

 

4.8.2.2 Vuggy	(VUG)	porosity	

 

Vuggy porosity are secondary solution pores that are not fabric selective, and can therefore 

cut grain and/or cement boundaries (Choquette and Pray, 1970; Lønøy, 2006). The pores are 

commonly of irregular shape and size, and are either isolated or interconnected. It can be very 

difficult to determine the interconnectivity of vuggy pores, in 3D. Many vuggy pores are 

solution enlarged mouldic pores with little or no evidence of the precursor grain (Lønøy, 

2006). Vugs commonly form by dissolution under the influence of chemically aggressive pore 

fluids during sea-level low-stands. Dissolution commonly occurs by meteoric diagenesis in 

humid climates, but can also form in the deep subsurface by dissolution from basinal fluids. 

(Budd et al., 1995). 

Vuggy porosity is separated from cavern and channel porosity based on the size and 

geometry, respectively. Whereas vuggy porosity is commonly in the range of approximately 

1mm to 1m, cavern porosity is significantly larger, i.e. man-sized. In the oil industry cavern 
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porosity is typically defined by drill-bit drops. Channel porosity consist of elongated tabular 

and flat channels, whilst vuggy porosity is commonly more spherical (Lønøy, 2006).  

 

4.8.2.3 Mouldic	(MO)	porosity	

 

Lønøy (2006) defines mouldic pores as secondary pores formed by complete or partial 

dissolution and recrystallization of grains or crystals. This definition is somewhat different 

from the one proposed by Choquette and Pray (1970); by including partial dissolution and 

recrystallization of grains or crystals. Mouldic porosity is subdivided into micro (<10-20µm 

pore diameters) and macropores (>20-30µm pore diameters), based on the pore size (Lønøy, 

2006).  

There must be a distinctive difference in solubility between grains and framework in order for 

mouldic porosity to form. This difference commonly relates to mineralogical differences. 

Mouldic pores are often recognized by their size, shape and relict features, indicating the 

former presence of a grain or crystal.  

 

4.8.2.4 Intercrystalline	porosity	

 

Intercrystalline porosity is porosity between primary and/or secondary crystals (Choquette 

and Pray, 1970). Intercrystalline porosity is divided into six subclasses by Lønøy (2006), 

based on pore size and pore distribution.  

Reflux dolomitization of lagoonal micrite, commonly favor the development of uniform 

micro- and mesoporosity (10-20µm and 20-60µm pore diameters, respectively)(Lucia, 2007). 

Intercrystalline macroporosity with uniform distribution can occur in any depositional setting 

but commonly relates to slow dolomitization during deeper burial and are also common in 

high-energy settings. The distribution of pores is often controlled by fluid migration pathways 

(pers. comm. A.Lønøy, 2015). 

Patchy intercrystalline porosity (micro-, meso- and macroporosity) often relates to patchy 

cementation. The cement is commonly composed of silica or evaporites. Compared to 
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uniform porosity distribution, patchy cement distribution tend to increase the permeability to 

porosity ratio (Lønøy, 2006).  

 

4.8.2.5 Intraparticle	porosity	(WP)	

 

Intraparticle porosity is pore space occurring within grains. The porosity is either primary in 

origin, or it can be formed through decay and removal of organic material in carbonate 

skeletons  (Lønøy, 2006). This definition is slightly different than the one proposed by 

Choquette and Pray (1970), by excluding porosity related to dissolution. Lønøy (2006) 

considers porosity related to dissolution as mouldic porosity, and is the nomenclature applied 

in this work.  

The pores are commonly fauna dependent, and often form within carbonate skeletons of 

gastropods, foraminifera, corals, bryozoans and calcispheres (Lønøy, 2006). 

 

4.8.2.6 Mudstone	microporosity	

 

Mudstone microporosity is interparticle- or intercrystalline porosity comprised of pores with 

extremely small pore sizes (typically on the scale of only a few micrometers). Individual 

pores are not visible under a standard petrographic microscope although the porosity may be 

discerned by a weak bluish colour to the thin section using blue-dyed-epoxy (method briefly 

described in section 3.2.2) (Lønøy, 2006).  

Mudstone microporosity is subdivided into chalk and chalky microporosity (Lønøy, 2006). 

Chalk porosity is commonly diagnostic for deposition in deeper marine settings, and porosity 

constitutes of voids between the carbonate skeletons of coccolithophorid algae. 

 

 Introduction	to	permeability	4.8.3
 

Permeability (k) is a rock property that relates to the potential migration rate of fluids through 

a reservoir, and hence to the rate at which hydrocarbons can be recovered. Permeability is 

measured in Darcy (D) and milliDarcy (mD), and the values range considerably within a 
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reservoir from below 0.01 mD to well above 1 D.  1 Darcy (D) is defined as the permeability 

through a porous medium with a flow of 1cm3/s   and a fluid with a viscosity of 1cP (1 

mPa*s) under atmospheric pressure, acting across an area of 1cm2. A permeability of 0.1 mD 

is by Lucia (1999) considered as the absolute minimum permeability for oil production and is 

qualitatively described by North (1985) and Ahr (2008) in Table 4-6. 

 

Table 4-6: Qualitative ranking of reservoir permeability (modified from North (1985)) 

Permeability (mD) 
Qualitative 
description 

< 1.0-15 Poor to fair 
15-50 Moderate 
50-250 Good 

250-1000 Very Good 
>1000 Excellent 

 

 

Permeability is expressed by Darcy´s law as shown in Equation 4-4, principle illustrated in 

Figure 4.59: 

 

Equation 4-4: Darcy´s law. Q is flow rate, k is permeability, µ is fluid viscosity, ΔP/L relates to the pressure drop 
across a horizontal sample and A to the cross-sectional area of the sample. 

 ∆
 

  
  
Where Q is flow rate expressed with SI unit m3/s, k is permeability expressed in Darcy (1 

Darcy  10-12m2), µ is viscosity expressed in pascal seconds (Pa * s), P is pressure expressed 

in Pascal (Pa), L is length expressed in meters (m) and A is cross-sectional area of sample 

expressed in meters (m). 
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Figure 4.59: Darcy´s law explained with a core plug injected with a fluid of known viscosity, in an air-tight sleeve with 
length L and areal A. The confining pressure should be as equivalent to in situ reservoir conditions as possible 
(modified figure from Lucia, 2007). 

 

Permeability measurements are typically carried out using one single fluid, commonly air or 

water, and the results must be corrected for the varying saturations that occur in a reservoir. 

Permeability measured at atmospheric pressure tends to be higher than those measured at 

confined subsurface pressures. As a consequence the measured permeability must be 

corrected to restore true value at reservoir conditions (Gluyas and Swarbrick, 2009). 

Permeability is therefore expressed as either absolute, effective or relative permeability 

(Lucia, 1999; Ahr, 2008): 

Absolute permeability: Permeability of a rock which is 100% saturated with one fluid phase 

(Lucia, 1999; Gluyas and Swarbrick, 2009).  

Effective permeability: Permeability of a rock with two fluids measured at a specific 

saturation state. The measured effective permeability will always be lower than the absolute 

permeability and will change as the saturation changes. 

Relative permeability: Permeability measured at a specific fluid saturation and expressed as a 

fraction of the absolute permeability (Lucia, 1999). Thus relative permeability is the ratio of 
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the effective permeability of a given fluid with a particular saturation, to absolute 

permeability of the given fluid at total saturation. In a reservoir it is useful to know the 

relative permeability versus the saturation in order to predict the production rate changes with 

changes in water saturation (Lucia, 1999). The water and oil saturations are not constant in a 

reservoir (e.g. Figure 4.60), and will vary both laterally and vertically in response to the 

position in the oil column, petrophysical differences (controlled by sedimentological and 

diagenetic processes) and as the hydrocarbons are produced (Gluyas and Swarbrick, 2009). 

 

 

Figure 4.60: Diagram showing water and oil distribution under different conditions for a water-wet rock. A. 100% 
water saturation (before oil migration), B. Injection of oil (non-wetting fluid; accumulation of oil), C. Injection of 
water (wetting fluid; production of oil) (modified from Lucia, 2007). Black = oil, white = water, gray = grains. 
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 Pore	types,	porosity	and	permeability	4.8.4
 

In this section the pore types in the studied samples are described, and porosity and 

permeability estimation and measurement are reported. Pore types are determined by detailed 

thin section analyses and classified according to Lønøy (2006) pore-type classification system 

for carbonate rocks (Table 4-5). Porosity is estimated by means of image analysis of 37 thin 

sections (method described in chapter 3.3.3) and permeability was measured by means of the 

TinyPerm instrument (method described in chapter 3.3.1). Permeability measurements were 

measured parallel to the bedding plane, both vertically through the successions, and (where 

possible) also laterally within the same bed (approximately 5m distance between each 

sample). Permeability was estimated based on porosity calculations from image analysis of 

thin sections and published porosity-permeability transforms for different pore-type classes 

published by Lønøy (2006). Two plugs were also sampled, and porosity, permeability and 

grain density data were derived by conventional laboratory methods. 

 

4.8.4.1 Pore	types	

 

The pore-type distribution within each microfacies and section is presented in  

Figure 4.61. Mud-supported microfacies are dominated by mouldic macropores. Grain-

supported microfacies (MF2, MF3, MF5, MF6 and MF7) are dominated by mouldic and 

interparticle pores. Microfacies MF3 and MF6, which are rich in chambered fossils (e.g. 

benthic foraminifera, bryozoan etc.), additionally have a high abundance of intraparticle pore 

space. The pore types present tend to reflect the grain types, abundance of matrix, mineral 

stability and diagenetic evolution of each microfacies. 

Microfacies with high abundance of echinoderm fragments commonly show extensive 

syntaxial calcite cementation of primary interparticle pores. Microfacies with terrigenous 

quartz tend to have open fractures and interparticle pore space. The volumetrically most 

important pore types are primary interparticle- and secondary mouldic macro-pores (Figure 

4.61). However, most pores are infilled with ferroan and non-ferroan calcite cements. 
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Micro-
facies Microfacies name 

Location Pore type 
JF NFS GS Dominant Minor 

MF1 Pelagic Mudstone/Wackestone X   MO WP 
MF2 Bivalve-Echinoderm-Peloidal 

Pack-/Grainstone 
X X X BP, MO WP 

MF3 Miliolid-Orbitolina-Peloidal 
Pack-/Grainstone 

X   BP, WP MO 

MF4 Silty-Peloidal Pack-/Grainstone X   MO BP, 
WP 

MF5 Intraclastic-Peloidal-Echinoderm 
Grainstone 

X   BP, MO  

MF6 Bioclastic-Peloidal Pack-
/Grainstone 

X   MO, WP  

MF7 Red algae-Peloidal-Echinoderm 
Grainstone 

X   BP,MO WP 

MF8a Spiculitic-Peloidal 
Wackestone/Packstone 

X   MO  

MF8b Spiculitic-Peloidal Packstone X X  MO WP 
MF9 Peloidal Wacke-/Packstone   X MO  
MF10 Forminifera-Echinoderm-Peloidal 

Packstone 
  X MO, WP BP 

 
Figure 4.61: Distribution of pore types within the studied microfacies and localities. Abbreviation: JF = northern 
J.Fadeloun section, NFS = northern J.Fadeloun section, GS = J.Garci section, BP = Interparticle porosity, MO = 
Mouldic porosity and WP = Intraparticle porosity. 

 

4.8.4.2 Porosity	and	permeability	

 

Plug-measured permeabilities and porosities are presented in Table 4-7. Tiny-Perm 

permeabilities and image analysis porosities are given in Appendices B and C. The data are 

plotted in Figure 4.62, and the total porosity distributed by microfacies is given in Figure 

4.63. 

 

Table 4-7: Porosity, permeability and grain density from plug measurements. 

Plug Measurements 

Sample 
He‐Porosity 

(%) 

Permeability (Kl) (mD)  Grain density 
(g/cm3) Vertical  Horizontal 

JF‐56S  2.52  <0.1  <0.1  2.71 

JF‐16S  0.91  <0.1  <0.1  2.70 
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Figure 4.62: TinyPerm permeability vs. image analysis porosity for all microfacies within southern J.Fadeloun, 
northern J.Fadeloun and J.Garci. Very high permeabilities (>200 mD) probably indicate the presence of open 
fractures (Chapter 5.4). Note that permeabilities are presented as average values for lateral measurements within 
each bed (six samples within each bed, with ca. 5 meter lateral separation between each sample).  

 

Figure 4.63: Distribution of porosity given as a percentage of total porosity by microfacies (e.g. 35% of the open pore 
volume occurs within MF4).  = Porosity. 
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Image analysis was performed on all thin sections in order to estimate the average porosity 

and the dominant pore type. Based on the dominant pore type and the estimated porosity, 

permeability predictions were carried out for each sample using the permeability vs. porosity 

cross-plots developed by Lønøy (2006) (Figure 4.64 and Figure 4.65). The estimated porosity 

and permeability, together with predicted permeability values are presented in Table 4-8. 

Figure 4.66 to Figure 4.69 and Table 4-8 show that there is no or poor agreement between 

measured and predicted permeabilities, based on predictions from Lønøy’s (2006) equations. 

The relatively high measured TinyPerm permeabilities, even at low porosities, do not make 

sense, and measured porosity-permeability relationships are only comparable to connected 

vug systems and/or fractured samples (Lønøy, 2006). It is thus reasonable to believe that the 

TinyPerm measurements are either affected by open fractures or by measurement errors 

caused by gas leakage. In fact, several open fractures have been observed in many of the thin 

sections. The measured plug permeabilities are reported to be <0.1mD (apparently the lower 

limit of permeability detection reported by the laboratory), and may therefore correspond to 

predicted values.  

The prediction cross-plots developed by Lønøy (2006) do not include circum-granular 

cracking, and samples JF-27S and JF-42S were therefore excluded from Figure 4.66 to Figure 

4.69. 
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Figure 4.64: Permeability vs. interparticle microporosity cross-plot. After Lønøy (2006). This is one of the dominant 
pore types in the Serdj Fm. 
 

 

Figure 4.65: Permeability vs. mouldic porosity cross-plot. After Lønøy (2006). This is one of the dominant pore types 
in the Serdj Fm. 
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Figure 4.66: Permeability vs porosity for interparticle micropores with uniform distribution at the southern 
J.Fadeloun locality. Only six samples have both permeability and porosity values available. Note that the plug 
permeability was reported to be <0.1mD. The green dashed lines show the possible range of the measured plug 
permeabilities. There is no clear relationship between measured permeabilities and the permeabilities predicted from 
Lønøy (2006) equation. 

The relatively high measured TinyPerm permeabilities, even at low porosities, do not make sense, and measured 
porosity-permeability relationships are only comparable to connected vug systems and/or fractured samples (Lønøy, 
2006). It is thus reasonable to believe that the TinyPerm measurements are either affected by open fractures or by 
measurement errors caused by gas leakage. In fact, several open fractures have been observed in many of the thin 
sections. 

Measured plug permeabilities are reported to be <0.1mD, and may therefore correspond to predicted values (green 
dashed lines). 
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Figure 4.67: Predicted (based on Lønøy, 2006 ) vs. measured permeability for uniformly-distributed interparticle 
micropores. Please see Figure 4.66  for additional comments regarding plotted plug permeabilities and deviation 
between measured and predicted permeability values. Green dashed lines = possible plug permeability range 
(reported to <0.1mD by laboratory). 
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Figure 4.68: Permeability vs porosity for macro-mouldic porosity at the southern J.Fadeloun locality (only one 
sample). 
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Figure 4.69: Predicted (based on Lønøy, 2006 ) vs. measured permeability for macro-mouldic porosity (only one 
sample). 
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Table 4-8: Sample overview with associated measured image analysis porosity and TinyPerm permeability, and 
predicted permeability values (Lønøy, 2006). Reported TinyPerm permeabilities of 0.00mD refer to measurements 
where no flow was recorded within the time-frame of the measurement. Measured permeabilities Red numbers 
represents measured permeabilities that can only be explained by open fractures, connected vugs or measurement 
errors (pers. comm. A. Lønøy, 2015). * MO = Mouldic; BP = Between-particle (interparticle); CGC = Circum-
granular cracking. 

 

Porosities, Permeabilities and Pore Types 

Sample 
Image 
analysis 

porosity (%) 

TinyPerm 
permeability (mD) 

Predicted permeability 
(mD) 

Dominant pore 
type* 

JF‐86S  0.42  0.00  0.0052  Macro MO 

JF‐78S  0.47  20.50  0.0053  Macro MO 

JF‐71S  1.18  0.00  0.0088  Micro BP 

JF‐70S  0.84  0.00  0.0047  Micro BP 

JF‐64S  0.14  0.00  0.0002  Micro BP 

JF‐56S  0.60  0.00  0.0026  Micro BP 

JF‐54S  0.73  2.29  0.0037  Micro BP 

JF‐51S  4.50  4.88  0.1030  Micro BP 

JF‐50S  2.02  623.95  0.0237  Micro BP 

JF‐47S  0.09  22.22  0.0001  Micro BP 

JF‐45S  0.85  0.00  0.0048  Micro BP 

JF‐42S  16.12  461.21  1.0701  Micro BP/CGC 

JF‐37S  6.20  0.00  0.1854  Micro BP/CGC 

JF‐36S  0.76  0.00  0.0039  Micro BP/CGC 

JF‐27S  5.53  88.63  0.1503  Micro BP/CGC 

JF‐26S  0.10  0.00  0.0001  Micro BP 

JF‐24S  0.10  2.87  0.0001  Micro BP 

JF‐22S  0.43  0.00  0.0014  Micro BP 

JF‐17S  0.10  0.00  0.0001  Micro BP 

JF‐11S  0.27  3.59  0.0006  Micro BP 

 

  



   

- 135 - 
  

5. Discussion	and	summary	

 

This chapter discusses the results presented in Chapter 4 with respect to depositional 

environments, diagenetic history and reservoir properties. The depositional environments of 

the three studied sections are reviewed, and their diagenetic history is presented. The reservoir 

quality of the Serdj Fm. is evaluated, and the reservoir potential of the Fkirine permit is 

discussed. Suggestions for further studies are presented. 

 

5.1 Depositional	environment	

 

The evaluation of depositional environments within the studied area is mainly based on 

detailed sedimentological logging, microfacies associations, geochemical analysis and 

mapping of sedimentary surfaces. The depositional environment for each section (J.Fadeloun 

and J.Garci) is presented separately, and the possibility of merging the southern- and northern 

J.Fadeloun log into one composite log is discussed. 

 

 Jebel	Fadeloun	5.1.1
 

The J.Fadeloun section consists of a tectonically folded carbonate ramp outcropping in an 

anticline, and is characterized by limestones with alternations between massive limestone 

beds and more loosely consolidated mixed siliciclastic-carbonate beds (often highly eroded 

and covered by debris). The studied section consists of extensively faulted and fractured 

wackestones, packstones and grainstones and is part of the eastern limb of the anticline. 

In the literature, several terms are used to describe climate-related grain assemblages. The 

descriptive terms applied in this work are heterozoan and photozoan, as described by Lees 

and Buller (1972). The faunal composition of the Aptian section at J.Fadeloun and J.Garci is 

consistent with a heterozoan faunal assemblage, being dominated by foraminifera, molluscs, 

bryozoans, red algae, echinoderms, ostracods and sponges. Stable isotope analyses of oxygen 

show paleotemperatures of ambient sea water ranging between 13 and 17C (Chapter 4.6.1), 

indicating temperate waters (<20C). All this is consistent with literature descriptions of 

temperate carbonate ramp settings (James, 1997). However, even though several features 
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suggest a heterozoan association, peloids and ooids are commonly indicative for the 

photozoan association and elevated oceanic salinities (Lees, 1975; James, 1997). Ooids are 

absent in the studied sections, but are in the literature observed and described for Aptian 

deposits at other localities (Lehmann et al., 2009). The combination of heterozoan and 

photozoan associations could thus indicate temperature fluctuations. 

Carbonate ramps are commonly subdivided into inner- mid- and outer ramp settings on the 

basis of water depth, wave energy, depositional processes and facies characteristics (Burchette 

and Wright, 1992). The inner ramp is defined as the part of the ramp profile that is above the 

fair weather wave-base (FWWB) and is often associated with lagoonal- , tidal flat-, sabkha- 

and strand plain settings. This part of the ramp may have a wide range of sedimentary textures 

but are often dominated by grain-supported textures. The mid-ramp is often associated with 

thin-bedded storm deposits and/or mud mounds, and comprises the part of the ramp profile 

between FWWB and the storm wave-base (SWM). This part of ramp is commonly 

characterized by mud-supported textures. The outer ramp extend out to the basin plain and is 

associated with pelagic limestones and marls deposited below the SWM (Burchette and 

Wright, 1992; Flügel, 2004). 
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Figure 5.1: Depositional model for the Serdj Fm. Note that the J.Fadeloun succession only contains the more distal 
facies of the depositional system (from inner ramp/open marine to outer ramp), whereas Jebel Serdj represent the 
type locality and include all of the Serdj Fm. (from inner ramp/high energy shoal to outer ramp). Figure after 
Spalluto (2012).  

 

5.1.1.1 Inner‐ramp		

 

The inner-ramp setting of J.Fadeloun is dominated by packstones and grainstones with high 

abundances of bivalve fragments, benthic foraminifera, echinoderm fragments and peloids 

(Figure 5.1). In units A, B, C and D the inner ramp is represented by packstones and 

grainstones of MF2, MF3, MF4, MF5 and MF6, and contains significant amounts of 

intraclasts (only MF5), miliolids, orbitolinids, bivalves, echinoderm fragments and peloids. 

Unit E is interpreted to be a repetition of top Aptian/base Albian, as it shifts from outer ramp 
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deposits characterized by Albian wackestones (MF1) into Aptian inner ramp deposits 

characterized by MF2 and MF7 (see discussion in chapters 4.2.1 and 5.1.1.5). Unit E thus 

does not represent a chronological correct shallowing upwards sequence, but represents a 

repetition of top Aptian/base Albian. 

The rich and diversified heterozoan faunal assemblage of the inner ramp packstones and 

grainstones indicate deposition in relative open waters (Lees and Buller, 1972; James, 1997). 

The few observed coral fragments observed in MF3 of Unit A may be derived from patch 

reefs developed in back-barrier lagoons. Extensive and continuous reef complexes are 

commonly absent in carbonate ramps (Tucker and Wright, 2009). The low abundance of coral 

fragments, heterozoan faunal assemblage and δ18O isotope derived temperatures, indicate that 

the inner ramp setting of the Serdj Fm. at J.Fadeloun comprise open, temperate-water 

carbonates (Lees and Buller, 1972; James, 1997; Tucker and Wright, 2009). 

 

5.1.1.2 Mid‐ramp	

 

The mid-ramp setting of J.Fadeloun is dominated by wackestones and packstones (MF8a and 

MF8b) with high abundance of calcispheres, sponge spicules and peloids, and minor 

intraclasts and benthic foraminifera (miliolids and orbitolinids). The presence of miliolids and 

orbitolinids, commonly indicative of inner ramp deposits (Kalantari, 1986; Flügel, 2004), 

mixed with intraclasts and grains typical for outer ramp settings, could indicate deposits 

proximal to the slope break (mid-ramp) in a distally steepened ramp. 

 

5.1.1.3 Outer‐ramp	

 

Albian deposits are represented by outer-ramp facies at J.Fadeloun, as discussed in Chapter 

4.2.1. These deposits were not the focus of this study, and were only included to establish the 

Aptian/Albian boundary.  
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5.1.1.4 Depositional	trends	

 

Microfacies associations and grain size distributions (Figure 5.2 and Figure 4.24) define four 

shallowing upward cycles related to relative sea level fluctuations. These cycles correspond to 

the four lowermost units (A-D). 

Carbonate ramps experience rapids shifts of facies belts during minor relative sea level 

fluctuations, due to their gentle slope (typically <1). A minor fall in sea level will shift inner 

ramp facies belts basinwards in a “forced regression”, possibly associated with a reduction in 

carbonate production due to reduced accommodation space on distally steepened ramps 

(Burchette and Wright, 1992). Drop in sea level may also be associated with subaerial 

exposure of the former inner ramp deposits, possibly exposing the sediment to meteoric water 

and associated diagenesis. 

 

 

Figure 5.2: Grain size vs. Depth plot showing four shallowing upward sequences (numbered 1 to 4). Zero depth (0m) 
represents base Albian. The purple area shows the repetitive sequence of top Aptian and base Albian. 

 

1 Repetition 

 Top Aptian  

- 

Base Albian 

2 34
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The oldest shallowing upwards cycle, represented by Unit A, shows a transition from mid- to 

inner ramp deposits, and is capped by a subaerial exposure surface and paleosol. The paleosol 

and karst may potentially be related to post-Aptian processes, as no dating is available. 

However, their presence within the uppermost part of the shallowing upward cycle suggests a 

development during the Aptian. 

Karst caves observed at northern J.Fadeloun show horizontal alignment typical for caves 

developed in the upper part of the phreatic zone (Figure 4.32). The karst surface in southern 

J.Fadeloun seems to represent a lateral continuation of the karst caves at northern J.Fadeloun, 

and may represent reduced karstification towards the south. 

Overlying Unit A there is a second shallowing upwards cycle represented by Unit B. This 

shows a transition from mid- to inner ramp deposits, as in Unit A, but with no observed 

subaerial exposure. This cycle is relatively thin compared to underlying and overlying cycles. 

Unit C forms the third shallowing upward cycle and shows a transition from mid- to inner 

ramp deposits, interbedded with riverine or eolian-derived quartz. A few beds show 

development of fenestral structures, probably formed by expulsion of gas on a tidal flat or in 

the shallow subtidal. The presence of circum-granular cracking (Figure 4.25) and pendant 

cement (Figure 4.49) indicate periodic subaerial exposure of the ramp, with vadose diagenesis 

and development of a paleosol. The relatively thick inner ramp and thin mid ramp deposits 

may reflect strong progradation of the ramp due to low accommodation space (Burchette and 

Wright, 1992; Moore, 2001) 

The uppermost shallowing upward cycle, represented by Unit D, shows a transition from 

mid/inner- to inner ramp deposits with a gradual coarsening upward trend. The top of the 

cycle shows early marine cementation, typically occurring in shallow agitated waters near the 

sediment-sea water interface. Shallow agitated waters are supported by the abundance of 

intraclasts. The cycle marks the end of the Aptian sequence, and is capped by Albian deposits.  

 

5.1.1.5 Repetition	of	top	Aptian/base	Albian	

 

The isotopic signature of samples JF-87S (Unit F) and JF-80S (Unit E) in the southern 

J.Fadeloun section shows δ18O and δ13C isotopic compositions which deviate from those of 

Aptian age. The isotopic composition in association with texture, faunal assemblage and 
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geological map (Figure 1.2), suggest that the samples could be Albian of age. The samples 

below JF-80S and between JF-80S and JF-87S, show δ18O and δ13C isotopic compositions 

(Table 4-1) and microfacies associations that are similar to other inferred Aptian-age samples. 

Aptian samples (below JF-80S and between JF80S and JF87S) show minor variation in 

composition, but are by and large similar. Taking all observations into consideration it is 

reasonable to assume that the Aptian sequence ends after Unit D and that units E represents a 

repetition of the top Aptian/base Albian. 

 

5.1.1.6 Correlation	

 

An attempt was made to combine the southern and northern J.Fadeloun sections. The base of 

the southern section has a microfacies association that is somewhat similar to the top of the 

northern section, and mid-ramp deposits represented by MF8a and MF8b are restricted to 

these parts of the sections. 

87Sr/86Sr analyses could give an indication of correlative beds. However, the Sr-isotopes are 

all higher than expected for Aptian and Albian oceanic values (McArthur et al., 2001), and a 

radiogenic source must be responsible for the discrepancy. The radiogenic strontium could 

have been brought in together with terrigenous quartz during sea-level lowstands, and may 

also have accumulated in the meteoric cements. Thus, the reported ages were not useful for 

correlation 

 

 

Figure 5.3: Sketch of a ramp profile showing fenestral structure distributions during a relative sea-level rise. The 
fenestral structures at initial sea-level (T1) shift landwards during the relative sea-level rise (T2). Note that scales are 
highly exaggerated.  
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Beds with fenestral structures observed at the base of the southern section and at the top of the 

northern section may represent marker beds for correlation. However, even though the 

distance between the southern and northern sections is only ca. 600m, correlation based on 

fenestral structures may be uncertain as the structures may have formed during different times 

of the ramp development. Changes in relative sea-level rise may impose lateral shifts of 

depositional environments, as illustrated in Figure 5.3. 

Karst surfaces are developed in Lower Aptian limestones of both the southern and northern 

sections and their development could represent time-equivalent events. However, they might 

relate to post-Aptian karstification.  

There is no single feature that clearly correlates the northern and southern sections. However, 

combined observations suggest that the northern section can be correlated to the lower part of 

the southern section. 
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Figure 5.4: Lithostratigraphy of the southern and northern J.Fadeloun sections. MF8 is restricted to the lower part of 
the Serdj Fm., suggesting that the northern J.Fadeloun sections most likely correspond to the lowermost part of the 
southern J.Fadeloun section. Dashed lines show three potential correlations, and is based on microfacies distribution. 
The lowermost proposed correlation is also based on possible correlative karstification. Colour coding represents 
different microfacies. Symbols are presented in Appendix WellCAD logs 

 

 Jebel	Garci	5.1.2
 

The studied J.Garci section (6m thick) consists of a condensed Aptian section, characterized 

by fine-grained limestones in a mid- to outer ramp setting. The deposits alternate between 

outer ramp/basinal and mid-outer ramp deposits. A mixture of grains typical for inner ramp 

settings (especially miliolids) and grains typical for outer ramp settings (planktonic 

foraminifera and calcispheres), suggest deposition below FWWB (Flügel, 2004). The Aptian 

sequence of the J.Garci section indicates a more distal depositional environment than in the 

J.Fadeloun section.  
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 Paleotemperature,	burial	depth	and	age	5.1.3
 

Paleotemperatures 

Paleotemperature for each sample was estimated by using Equation 4-1, and all 

paleotemperature ranges are presented in Figure 4.54. Because stable isotope compositions 

were based on bulk samples, the compositions and calculated temperatures are affected by 

grains, matrix and cements. 

Marine calcite cement is commonly indicative of early diagenesis (as discussed in Chapter 

4.5.2) and would probably have an oxygen isotopic composition close to, but not necessarily 

identical to, that of the grains. 

Equant non-ferroan calcite cement is considered to have formed at shallow burial, and 

precipitated either from modified marine and/or meteoric waters. The effect of these cements 

on the bulk isotopic compositions and the calculated paleo-temperatures can vary. 

Late diagenetic ferroan calcite cement is probably precipitated at elevated temperatures and 

would therefore have a more significant impact on the bulk oxygen isotopic composition and 

on calculated temperatures. Prediction of the paleo sea water temperature should therefore 

preferentially be based on samples where ferroan calcite cements are absent, and on micritic 

samples (low content of non-ferroan calcite cement). Unfortunately, most Aptian samples 

have grain-supported textures and therefore generally have some non-ferroan calcite cement 

that may bias the results. Assuming that the pore fluids are derived from modified marine 

water during compaction, the early diagenetic cements would tend to give slightly too high 

calculated sea water temperatures. If the non-ferroan calcite cement precipitated from 

meteoric water the calculated sea water temperatures may also be too high. 

Excluding samples containing ferroan calcite cement, and assuming that the non-ferroan 

calcite cement has insignificant effect on the bulk isotopic composition, the calculated sea 

water temperature ranges from 13-17 ºC (Figure 4.55). This suggests deposition in a 

temperate waters setting. 

Samples with low content of ferroan calcite cement generally show lower calculated sea water 

temperatures than for samples with high ferroan calcite content. This reflects a lighter oxygen 

isotopic composition of the ferroan-rich calcite cement, suggesting higher temperature during 

precipitation. This is supported by textural relationships indicating that the ferroan calcite 
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cement is a relatively late cement. Samples JF-35S, JF-57S and NFS-5S have calculated 

paleotemperatures within the lowermost part of the Aptian temperature range (Figure 4.54). 

This may relate to vital effects as some organisms (Weber, 1968; Baumiller, 2001), especially 

echinoderms, biologically concentrate the isotopically lighter isotopes 16O and 12C during 

shell secretion. However, the echinoderm distribution and abundance in the studied Serdj Fm. 

do not show any clear relationship to the oxygen isotopic composition. 

 

Burial depth 

Vitrinite analysis collected by Thibault Cavailhes (DNO International ASA) indicated a burial 

depth of 2500-3500m for the Serdj Fm., within the Fkrine permit  (Cavailhes, 2015). 

Estimated precipitation temperature for the Fe-rich calcite is 160ºC (see Chapter 4.5.2). Using 

the present geothermal gradient of 40ºC/km (Bathurst, 1966) and a surface temperature of 

15ºC (based on Aptian sea water temperature of 13-17ºC, which is roughly similar to the 

present annual surface temperature, 18ºC), the Fe-rich calcite precipitated at burial depths of 

ca. 3600m. This depth is close to the depth range derived from vitrine analyses. 

 

Age 

Strontium-isotope ages for the southern J.Fadeloun section range from 32 to 82Ma (Rupelian-

Maastrichtian). The estimated ages of northern J.Fadeloun show a smaller age span, ranging 

from 71 to 76Ma (Maastrichtian-Campanian). No depth-related age trends are observed 

within J.Fadeloun. The J.Garci section shows ages ranging from 15 to 33Ma (Langhian-

Rupelian), and unexpectedly shows progressively older age towards the top of the succession. 

This may be explained by tectonic inversion of the sequence, but is considered unlikely as no 

other indications of inversion have been observed. 

The strontium isotope-derived ages deviate from the Aptian (113-125Ma), and must relate to 

an influx of strontium 87Sr (McArthur, 1994). The 87Sr/86Sr dating method is based on 

sediments incorporating strontium from well-mixed ambient sea-water. Continental 

weathering supply the ocean with higher 87Sr/86Sr, thus resulting in predicted ages to be 

younger than expected (McArthur, 1994). Thin-section studies show that several beds within 

the Aptian sections have input of terrigenous quartz, and precipitates within the test tubes 
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were reported during laboratory analyses. It is reasonable to assume that the input of fluvial 

and/or eolian sediments resulted in the apparently to young ages. The studied ramp probably 

faced open oceanic conditions, and combined with the fact that ramps commonly experience 

high wave energies in their proximal parts make it unlikely that the waters of the inner to mid 

ramp could have had Sr-isotope compositions significantly different those of the open ocean 

(Burchette and Wright, 1992; McArthur, 1994; Flecker and Ellam, 2006). It is more likely 

that significant amounts of radiogenic strontium could have been introduced during lowstand 

karstification. 

 

5.2 Diagenetic	evolution	

 

Diagenetic studies of the J.Garci and J.Fadeloun sections are based on detailed petrographic 

and geochemical analyses. The diagenetic events may broadly be grouped into eogenetic 

(early stage - shallow burial), mesogenetic (intermediate stage - deep burial) and telogenetic 

(late stage - uplift) processes (Figure 5.5) (Choquette and Pray, 1970). 

Microbial micritization of skeletal grains and precipitation of marine and syntaxial calcite 

cements are probably some of the first eogenetic processes affecting the sediment (Chapter 

4.5.1). Syntaxial calcite cementation probably continued during progressive burial of the 

sediment, possibly into the mesogenetic realm (Chapter 4.5.2.1). Non-ferroan equant calcite 

cement precipitated during shallow burial, as indicated from petrographic studies and stable 

isotope analyses (Chapter 4.5.2.1), or from meteoric water during subaerial exposure 

(eogenetic or telogenetic). 

Pendant cement is probably related to cementation within the fresh-water vadose zone after a 

relative drop in sea level, or during late telogenetic uplift which re-exposed the sedimentary 

rocks (Chapter 4.5.2.1). 

Mouldic porosity formation is related to dissolution of carbonate grains, preferentially 

aragonitic grains. This type of dissolution is often associated with meteoric diagenesis 

(eogenetic and telogenetic), but can also form during burial diagenesis. The formation of 

mouldic porosity commonly relates to differences in mineral solubility, maturation of organic 

material and shale dewatering. 
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Ferroan equant calcite cement precipitated during deep burial (chapters 4.5.2 and 5.1.3). The 

precipitation takes place by uptake of Fe2+ from connate waters, and continues as long as Fe2+ 

is available (Chapter 4.5.2.1). Later dissolution of the ferroan calcite relates to uplift and 

exposure to the meteoric environment (telogenetic), possibly during present day exposure. 

Under-saturated freshwater is highly aggressive and dissolution starts immediately after 

exposure (Flügel, 2004). 

Dissolution seams form by physical and chemical compaction at shallow depths, and develop 

at greater depths into stylolites by pressure-solution and recrystallization (Park and Schot, 

1968; Choquette and James, 1987). Increased pressure along the grain or crystal contact 

during burial results in increased solubility along the contact zone, and stylolitization will 

increase proportionally with increased pressure. Stylolite orientation will reflect the stress 

direction. Compaction-related dissolution will therefore often show horizontal stylolite 

development. 

Figure 5.6 summarizes and illustrates the relative sequence of diagenetic events in the Serdj 

Fm. at J.Fadeloun and J.Garci.  
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Figure 5.5: Subdivision of the net depositional and erosional realm with respect to eogenetic, mesogenetic and 
telogenetic processes. After (Choquette and Pray, 1970). 
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Figure 5.6: Relative sequence of diagenetic events. Red colour indicates porosity-destructive cementation. Green 
colour indicates porosity-enhancing dissolution. Bar thickness shows the relative importance of the different 
diagenetic events. Note that pendant calcite cement precipitated during subaerial exposure, either shortly after 
deposition of the sediment (eogenetic) or during later (present?) telogenetic diagenesis.  
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5.3 Diagenetic	evolution	in	a	sequence	stratigraphic	framework	

 

Thick carbonate ramp successions can often be subdivided into sequences and para-sequences 

in order to define a sequence stratigraphic framework (Burchette and Wright, 1992). An 

attempt was made to establish the diagenetic evolution into a sequence stratigraphic 

framework. With no age dating available, the shallowing upward cycles and sedimentary 

surfaces are difficult to correlate between the two studied (uncondensed and condensed) 

sections. The sequence stratigraphic framework was therefore established mostly based on the 

uncondensed section (J.Fadeloun). 

Due to the low slope angle of carbonate ramps, there will be only minor changes in ramp 

microfacies between sea-level high-stand (HST) and low-stand (LST) systems tracts 

(Burchette and Wright, 1992). A 3rd order sea-level fall exceeding the depth of the FWWB is 

necessary for inner ramp deposits of a relative LST to be completely separated from those of a 

previous HST. This further complicates sequence stratigraphic evaluation of carbonate ramps, 

and may explain why so few sequence boundaries have been observed within the studied 

Serdj Fm. Potential sequence boundaries observed at J.Fadeloun include paleosols and 

epigenic karst (Burchette and Wright, 1992). 

The Serdj Fm. at J.Fadeloun consists exclusively of mid- to inner ramp microfacies (Chapter 

5.1). The shallowing upward cycles (from mid- to inner ramp) indicate that deposition mostly 

took place during a HST. The presence of meteoric cements, karst cavities, the lack of 

evaporites, and the stable isotopic composition suggests deposition in a humid climate. Stable 

isotopic compositions in sea water dominated by evaporation are expected to be enriched in 

heavy isotopes, which is not the case for the Serdj Fm. The sequence boundaries represent 

periods of subaerial exposure during a LST, and are followed by flooding (transgressive 

system tract – TST). In J.Fadeloun there is virtually no difference in sedimentation (mid to 

inner ramp) above and below the sequence boundaries, indicating sea-level fluctuations less 

than the depth of the FWWB. 

During the LST no or insignificant new accommodation space is generated. The generation of 

accommodation space first starts to accelerate during rising sea level (TST), and will 

progressively decelerate during the following HST. If there is sufficient sediment supply 

during the HST, there will be a strong progradation of the carbonate ramp due to low 
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accommodation space (Burchette and Wright, 1992; Moore, 2001), and sheet-like geometries 

are typically formed (Figure 5.7). 

The hardground observed within the condensed section at J.Garci occurs at the Aptian-Albian 

transition. This may represent a maximum flooding surface during a transgressive system 

tract (TST), consistent with eustatic sea-level curves showing an Albian increase in eustatic 

sea level after a late Aptian sea-level low stand (Figure 2.9). Flooding surfaces on ramps are 

in general hard to detect, as they commonly are diachronous and fossil assemblage tend to 

migrate with their environment of formation (Burchette and Wright, 1992). 

Diagenesis and associated porosity modifications during HST are controlled by the 

sedimentology, climatic setting and accommodation space, and are extremely variable 

(Moore, 2001). Due to the gentle slope of a ramp, fluctuations in relative sea level will 

develop several overlapping freshwater lenses. Significant parts of the ramp may thus be 

exposed to meteoric diagenesis (Moore, 2001). Meteoric diagenesis at J.Fadeloun seems to be 

concentrated to the sequence boundaries. The origin of the non-ferroan equant calcite cement 

is uncertain, but may be related to cementation in the fresh water phreatic zone. Minor 

diagenetic modification usually occurs within the vadose zone, and is only represented by 

pendant cement in J.Fadeloun. Porosity modification is commonly centered along the water 

table, and is typically associated with karstification, as seen in J.Fadeloun. 
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Figure 5.7: Linear strings: Individual carbonate sand shoals. Sheet-like geometries: Progradation of shoal complexes 
or linear strings of shoals in areas with reduced accommodation space. Wedge: Progradation of shoal complexes in 
areas with important variations in subsidence or accommodation space (Esteban et al., 1997). 
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5.4 Reservoir	quality/potential		

 

Carbonate ramp plays typically have subtle variations in reservoir quality and great 

opportunities for stratigraphical and structural trapping of hydrocarbons (Burchette and 

Wright, 1992). The wide facies distributions in carbonate ramps make them perfect sites for 

structural and halokenetic traps. Low-energy ramps commonly have a sparse distribution of 

potential reservoir facies, whereas high-energetic ramps typically have a wide range of 

potentially good reservoir facies (Read, 1985; Burchette and Wright, 1992). Grainstone 

reservoirs are commonly relatively thin and have a wide lateral extent. The proportion of 

reservoir to non-reservoir facies generally decreases basinwards as the proportion of deep 

marine facies increases (Burchette and Wright, 1992). 

The Aptian section of J.Fadeloun is dominated by packstones and grainstones deposited in 

carbonate sand shoals on the mid- to inner ramp. The inner ramp of the J.Fadeloun probably 

reflects carbonate sand bodies formed along a high-energy shoreline, as the sedimentary 

sequences show a general coarsening upwards trend. The geometry of wave-dominated 

carbonate sand bodies on ramps varies from string-like to sheet-like depending on sediment 

influx and associated progradation. Wedge-like geometries normally do not develop due to 

limited accommodation space (Figure 5.7). 

The porosity and permeability of the Serdj Fm. at J.Fadeloun and J.Garci are controlled by 

both depositional and diagenetic processes. Porosity estimates from image analysis and plug-

measurements show that the J.Fadeloun section is dominated by porosities of 0-6% (Figure 

4.63), and permeabilities of 0-88 mD (Table 4-8 and Figure 4.62). The J.Garci section shows 

virtually no porosity and permeability. Most microfacies within the Serdj Fm. show low 

porosities and permeabilities due to extensive micritization and cementation, and poor sorting 

(Chapter 4.5). In spite of the general poor reservoir quality of the studied sections, the Serdj 

Fm. may have some reservoir potential in a hydrocarbon-saturated scenario, as discussed 

below. 

Figure 4.62 shows that the porosity in general is low, with most samples having a porosity 

<1%. Samples with poor reservoir quality commonly have high abundance of syntaxial calcite 

cement overgrowths and/or interparticle equant calcite cements (ferroan and/or non-ferroan). 

Most samples show a high permeability/porosity ratio that only fit the Lønøy (2006) porosity-

permeability transform for vuggy pore systems. However, vugs are not observed in any of the 
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studied samples. The high permeability/porosity ratios in the Serdj Fm. can therefore only be 

explained in terms of open fractures or by TinyPerm measurement inaccuracies (gas leakage). 

Open and partly open fractures are frequently observed in outcrop and in thin sections. Only 

four samples show relatively high porosity and permeability, which are controlled by circum-

granular cracking and/or mouldic porosity. 

Microfacies containing high abundance of late-diagenetic equant ferroan calcite cement could 

potentially have good reservoir quality.  Ferroan calcite cement constitutes as much as 15-

20% of the total rock volume in some samples (Figure 4.44), giving a relatively high minus-

cement porosity (Figure 5.8). If hydrocarbon migration predated the late-diagenetic 

cementation, the sediment may have significant porosities and permeabilities. 

The late ferroan calcite is most abundant as cement infilling interparticle and/or mouldic pore 

space of inner ramp microfacies. Fractures in the outer ramp setting are commonly cemented 

by ferroan calcite (Figure 4.44), but the fractures may enhance permeability if cementation 

was stopped due to oil emplacement. 

The studied outcrops at J.Fadeloun show large areas covered with scree. These areas could 

potentially have good reservoir quality, as porous carbonate rocks are more prone to 

weathering than non-porous carbonate rock. Shales and marls also easily weather, but these 

lithologies were not observed in the scree material. Scree-covered areas are commonly located 

within quartz-rich beds or within the uppermost part of Unit D. These areas may represent 

porous zones within the Serdj Fm. and could potentially have better reservoir quality than 

encountered within the more competent units. 

Early marine and meteoric cementation could inhibit physical compaction during sediment 

burial (Tucker, 1993; Moore, 2001), and could thus preserve primary porosity. Even though 

the cementation reduces compaction, deep burial pressure dissolution will eventually reduce 

the porosity and permeability. Stylolites can act as barriers to vertical flow, but increased flow 

rates may sometimes be expected along stylolite surfaces.  
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Figure 5.8: Minus-cement porosity with associated microfacies. The minus-cement porosity represents the porosity 
derived from image analysis and the volumetrically abundance of ferroan calcite cement. Note that the inner-ramp 
deposits (MF2, MF3, MF4, MF5, MF6 and MF7) have the highest porosity potential.  

 

The present pore space cemented by ferroan calcite cement is estimated subjectively by visual 

comparison with Terry and Chilingar (1955) comparison chart for visual percentage 

estimation (Appendix D; Appendix G; WellCAD logs). 

An interactive tool for predicting potential hydrocarbon pore volume (HCPV) of the Serdj 

Fm. has been developed. HCPV is the product of Bulk Rock Volume (BRV), net/gross ratio 

(N/G), oil saturation (So) and porosity (in this case minus-cement porosity). The tool requires 

several inputs, some of which have to be assumed. The intention of the tool is to predict 

HCPV given a set of input values (“what if” type of analyses). User-defined net average 

values for N/G, So and minus-cement porosity (porosity plus ferroan calcite cement), can be 

used as input in the interactive tool, given on the following page, to estimate potential HCPV 

relative to BRV. Note that N/G in J.Fadeloun is based on number of samples and not 

thickness. 
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NB! The interactive prediction tool will only work if use of Flash is accepted. Once the user 

press “allow one time” (or “always allow”), the file must be closed and reopened. Failure to 

do so, or if Flash is not installed, will give a blank page. Instructions on using the interactive 

tool are given within the tool. 
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The interactive prediction tool has been applied to estimate the potential HCPV for the Serdj 

Fm., using input data from the J.Fadeloun section, and assuming that the late ferroan calcite 

cement is absent (postdates oil migration) in a reservoir case situation. Porosity cut-offs 

depend on hydrocarbon composition and phase, pore geometry, and pore size (Lønøy, 2006). 

For simplicity a minus-cement porosity cut-off of 5% was applied to define net reservoir, and 

was based on the porosity definition of Ahr (2008). Input on oil saturation is uncertain, and a 

net average saturation of 70% was applied.  

11 of the 50 samples show a minus-cement porosity exceeding 5%, giving a N/G ratio of 

0.22. The average net minus-cement porosity was calculated to 10.8% based on the 

J.Fadeloun samples. The default input values in the interactive tool presented on the previous 

page are set to the aforementioned values, where N/G and net average minus-cement porosity 

is based on actual data from J.Fadeloun. 

The interactive tool gives the HCPV as a function as BRV, and the STOOIP (Stock Tank Oil 

Originally In Place) or GIIP (Gas Initially In Place) can be calculated by dividing the HCPV 

with the formation volume factors (Bo and Bg for oil and gas, respectively). For a tentative 

BRV of 1250 million m3, the default input values give a HCPV of 20.8 million m3. 

Low and high case HCPV scenarios were calculated using a N/G and minus-cement porosity 

of 0.1 and 5%, and 0.5 and 15%, respectively. Average net So and BRV were fixed at 

previously applied values (70% and 1250 million m3, respectively). This gave a HCPV of 4.4 

million m3 for the low case, and 65.6 million m3 for the high case. 

A case was run based on actual N/G and ImageJ porosities (not minus-cement porosity), using 

the same porosity cutoff, net average So and BRV as in previous cases. This gave a N/G of 

0.06, a net average porosity of 12.6%, and a HCPV of 6.6 million m3. 

The use of minus-cement porosity instead of porosity gives the hydrocarbon potential of the 

Serdj Fm. based on input data from the J.Fadeloun section. 

UV-microscopy studies have shown fluorescent hydrocarbons trapped in ferroan calcite 

cemented fractures at J.Garci (Figure 4.22). This indicates that oil migration in fact may 

predate at least some of the ferroan calcite cement, and that the use of minus-cement porosity 

in the HCPV calculations may be reasonable. 
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5.5 Proposed	further	studies	

	

 Additional stratigraphical logging covering a laterally more extensive area to better 

understand lateral variations in facies distribution, heterogeneity and thickness. A 

more extensive stratigraphical logging could also better reveal the diagenetic evolution 

in a sequence stratigraphic framework. 

 More extensive and systematic measurements of plug-derived porosities and 

permeabilities. This will help to establish the reservoir potential for the Serdj Fm. 

within the Fkririne permit.  

 Integrate reservoir characterization studies with structural analyses, especially related 

to fracture studies. 

 A geostatistical reservoir model comprising larger and more systematic data sets could 

be developed in order to determine fluid flow. 
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6. Conclusions	

 

The study of Serdj Fm. in Jebel Fadeloun and Jebel Garci has shown several interesting 

features. The main findings is based on field observations, petrographic studies, porosity 

estimations, permeability measurements and estimations, fluid inclusions, stable isotope δ18O, 

δ13C analyses, and radiogenic 87Sr/86Sr analyses. 

The main conclusions are: 

 The Aptian carbonate ramp at Jebel Fadeloun and Jebel Garci constitutes a distally 

steepened carbonate ramp composed of four shallowing upward cycles. The carbonate 

ramp was defined on the basis of microfacies distribution and the heterozoan or 

temperate water grain assemblage.  

 

 The Serdj Fm. of Jebel Garci constitutes a condensed section of Aptian deep marine 

deposits. The deposits represent deposition below SWB in an outer ramp/basinal 

setting, and were defined on the basis of microfacies distribution and association. 

Jebel Garci deposits are interpreted to be more distal ramp deposits compared to those 

at Jebel Fadeloun. 

 

 Eleven microfacies were defined on the basis of detailed thin section studies, of which 

nine were exclusively observed within the Jebel Fadeloun section, whereas the last 

two were exclusively found within the Jebel Garci section. Ten of the microfacies 

observed occur within Aptian deposits, whereas one microfacies (MF1) occur within 

Albian deposits. The observed microfacies within Jebel Fadeloun and Jebel Garci 

closely fit the typical, published facies models for a carbonate ramp. 

 

 Three sedimentary surfaces were observed within the studied sections:  

 

o Paleokarst surface (Jebel Fadeloun) 

o Hardground (top Aptian Jebel Garci) 

o Paleosol (Jebel Fadeloun) 
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 The paleokarst surface is observed as an irregular bedding surface in the Jebel 

Fadeloun section and probably relates to karstification within the vadose zone. 

 

 A 10-20cm thick hardground was observed at the top of the Aptian section in Jebel 

Garci. The hardground consists of an extensively bored and massive bed composed of 

bioclastic wacke- to packstone. The bed, which is rich in iron and has a high 

abundance of echinoderms, belemnites and some bivalve fragments, probably 

represented a longer period of non-deposition. 

 

 Paleosol horizons are observed within the Jebel Fadeloun section and indicate periods 

of subaerial exposure and soil development.  

 

 Eogenetic alteration in Jebel Fadeloun and Jebel Garci occurred shortly after 

deposition in the marine diagenetic environment. Microbial micritization by endolithic 

organisms and early marine cementation produced: 

 

o Isopachous rims of fibrous to granular calcite cement on benthic foraminifera, 

bivalves and red algae fragments. 

o Syntaxial calcite cement overgrowths on echinoderm fragments. Cement 

precipitation probably started shortly after deposition of the sediment, possibly 

synchronously with the precipitation of the early marine isopachous calcite 

cement (see above), and may have continued during burial of the sediment. 

 

 Mesogenetic and telogenetic alteration occurred after burial and later uplift, 

respectively, and are represented by precipitation of a wide range of different cements: 

o Non-ferroan equant calcite cement is filling interparticle pore space, and 

relates to precipitation in the meteoric (phreatic or vadose) or burial 

environments. 

o Ferroan equant calcite is related to deep burial cementation. 

o Pendant cement (gravitational or micro-stalactitic cement) developed within 

the meteoric-vadose zone. 
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o Speleothems are commonly related to cement precipitation induced by 

degassing of supersaturated fresh water pore fluids, and typically occur within 

karst caves (“surface karst”). 

 

 Fractures are observed with different degrees of cementation, from open to completely 

cemented. Open and partly open fractures are expected to give good field 

permeabilities and high flow rates. Ferroan calcite cemented fractures may be open in 

an oil saturated reservoir, giving increased permeabilities and flow rates. 

 

 The reservoir quality of the Serdj Fm. is relatively poor with porosities and 

permeabilities mostly in the range 0-6% and 0-88mD, respectively. Pore types are 

predominantly composed of interparticle (uniformly distributed micro and meso) and 

macro-mouldic pores. Most of the high permeabilities are probably related to 

measurement inaccuracies (instrument gas leakage) or fractures. 

 

 Equant ferroan calcite cement related to deep burial diagenesis postdates at least some 

of the oil migration. Given an oil trap, the ferroan calcite may be absent and the 

reservoir quality may potentially be significantly better. The minus-cement porosity 

may thus be a better measure of the reservoir potential of the Serdj Fm. 

 

 The Serdj Fm. has some reservoir potential given that oil migration predates late 

ferroan calcite cementation. In this case the average N/G increases from 0.06 to 0.22 

and average net porosity decreases from 12.6% to 10.8%, all based on a 5% porosity 

cutoff. The resulting HCPV depends on BRV, and at a BRV of 1250 million m3, the 

HCPV increases from 6.6 to 20.8 million m3. Using a tentative Bo of 1.1, the potential 

STOOIP increases from ca. 6 to 19 million m3. 
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Appendix A:  

Stable isotope data for oxygen and carbon (‰ VPDB), and radiogenic strontium data. 

Unit # MF # Sample # Mean 
δ18O/16O 

Mean 
δ 13C/12C   

Mean 
δ87Sr/86Sr  

Sampled 
Material 

Locality* 

  JF-14S -2.76 3.15 0.707852 Bulk JF 
  JF-16S -2.35 3.37 - Bulk JF 
  JF-17S -3.19 2.93 - Bulk JF 
  JF-22S -2.66 3.2 - Bulk JF 
  JF-30S -2.56 3.09 - Bulk JF 
  JF-35S -2.05 2.26 - Bulk JF 
  JF-40S -2.19 3.14 - Bulk JF 
  JF-45S -2.45 2.93 - Bulk JF 
  JF-49S -2.4 3.29 0.707503 Bulk JF 
  JF-57S -2.06 3.35 0.707488 Bulk JF 
  JF-60S -2.44 2.64 0.707688 Bulk JF 
  JF-66S -3.16 3.08 0.707568 Bulk JF 
  JF-69S -2.46 3.08 0.707551 Bulk JF 
  JF-74S -3.16 2.33 - Bulk JF 
  JF-80S -1.78 2.09 0.707622 Bulk JF 
  JF-87S -1.75 0.82 0.707608 Bulk JF 
  NFS-1S -2.46 3.69 0.707727 Bulk NFS 
  NFS-3S -2.69 3.96 0.707603 Bulk NFS 
  NFS-5S -1.83 3.54 0.707722 Bulk NFS 
  GS-1S -3.32 3.1 0.708761 Bulk GS 
  GS-4S -2.76 2.91 0.708411 Bulk GS 
  GS-6S -3.15 3.67 0.707841 Bulk GS 

*JF = Southern J. Fadeloun, NFS = Northern J.Fadeloun, GS = J.Garci Section 
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Appendix B: 

Porosity and permeability data from image analysis, plug and Tiny Perm II measurements. 

MF # MF – 
Name 

Sample # Porosity 
(%) 

Permeability
(mD) 

Grain 
density 
(g/cm3) 

Measurement 
type* 

Southern J.Fadeloun (JF) 
  JF‐87S 

(ALBIAN) 
0 0 - TP 

  JF‐86S  0.42 0 - TP 
  JF‐85S  0 0 - TP 
  JF‐83S  0 0 - TP 
  JF‐80S 

(ALBIAN?) 
0 0 - TP 

  JF‐78S  0.47 20.50 - TP 
  JF‐76S  0 0 - TP 
  JF‐74S  0 0 - TP 
  JF‐71S  1.18 0 - TP 
  JF‐70S  0.84 0 - TP 
  JF‐69S  0 0 - TP 
  JF‐66S  0 0 - TP 
  JF‐64S  0.14 0 - TP 
  JF‐60S  0 0 - TP 
  JF‐57S  0 58.22 - TP 
  JF‐56S  0.60 (2.52) 0 (<0.1) 2.71 TP - PL 
  JF‐54S  0.73 2.29 - TP 
  JF‐52S  0 163.09 - TP 
  JF‐51S  4.50 4.88 - TP 
  JF‐50S  2.02 623.95 - TP 
  JF‐49S  0 0 - TP 
  JF‐48S  0 0 - TP 
  JF‐47S  0.09 22.22 - TP 
  JF‐45S  0.85 0 - TP 
  JF‐43s  0 2.35 - TP 
  JF‐42S  16.12 461.21 - TP 
  JF‐41S  0 5.34 - TP 
  JF‐40S  0 19.31 - TP 
  JF‐37S  6.20 0 - TP 
  JF‐36S  0.76 0 - TP 
  JF‐35S  0 0 - TP 
  JF‐33S  0 2.87 - TP 
  JF‐30S  0 4.63 - TP 
  JF‐27S  5.53 88.63 - TP 
  JF‐26S  <1 0 - TP 
  JF‐24S  <1 2.87 - TP 
  JF‐23S  0 0 - TP 
  JF‐22S  0.43 0 - TP 
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  JF‐21S  0 0 - TP 
  JF17S  <1 0 - TP 
  JF‐16S  0 (0.91) 0 (<0.1) 2.70 TP - PL 
  JF‐14S  0 0 - TP 
  JF‐10S  0 0 - TP 
  JF‐11S  0.27 3.59 - TP 

Northern J.Fadeloun (NFS) 
  NFS‐5S  0 0 - TP 
  NFS‐9S  0 0 - TP 
  NFS‐4S  0.25 0 - TP 
  NFS‐3S  0 0 - TP 
  NFS‐2S  0 0 - TP 
  NFS‐1S  0 0 - TP 

J.Garci (GS) 
  GS‐6S  0 - - TP 
  GS‐5S  0 - - TP 
  GS‐4S  0 - - TP 
  GS‐3S  0 - - TP 
  GS‐2S  0 - - TP 
  GS‐1S  0 - - TP 
*TP = Tiny Perm II air permeability, PL = Plug Hg measurement.  

NB! All porosity values are estimated values derived from image analyses. The only exceptions are the bold 

values in brackets, which are results derived from plug measurements. A decrease in sample number represents 

progressively older strata. All permeability results are presented as average permeability as some beds also have 

lateral measurements within the same bed.  It is important to note that samples that show 0% porosity could have 

some porosity, but the pore spaces are too small to estimate using image analysis. Permeability of 0mD indicates 

a tight rock, and TinyPerm measurement did not give any result.
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Appendix C: 

Permeabilities are measured laterally within the same bed, and horizontally throughout the 

stratigraphy. Results are shown in both measured TinyPerm II values and calculated 

permeability values in mD (as described in 3.3.1.). All measurements are made parallel to 

bedding plane. Red colour indicates thin section sample. Measured value of 16, indicates tight 

rock. 

South on 
limb 

Measured values 
North on 

limb 
Sample 

# 
Avg. 

perm. 
South on 

limb 
Calculated permeability in mD 

North on 
limb: 

11.82 
11.8
7 

11.9
8 

11.9
2  11.8  11.56  JF‐78  20  19.23  16.72  12.28  14.53  20.34  39.89 

16  16  16  16  16  16  JF‐77  0  0  0  0  0  0  0 

16  16  16  16  16  16  JF‐76  0  0  0  0  0  0  0 

16  16  16  16  16  16  JF‐75  0  0  0  0  0  0  0 

16  16  16  16  16  16  JF‐74  0  0  0  0  0  0  0 

0 

16  16  16  16  16  16  JF‐58  0  0  0  0  0  0  0 

10.88  16  16 
11.3
1  16  16  JF‐57  58.22  268.88  0  0  80.46  0  0 

16  16  16  16  16  16  JF‐56  0  0  0  0  0  0  0 

16  16  16  16  16  16  JF‐55  0  0  0  0  0  0  0 

16  16 
11.9
4  16  16  16  JF‐54  2.29  0  0  13.73  0  0  0 

16  16  16  16  16  16  JF‐53  0  0  0  0  0  0  0 

11.22 
10.9
8 

10.6
1 

11.5
1 

11.7
2  11.7  JF‐52  163.09  103.57 

203.1
0 

573.5
8  45.90  25.46  26.93 

16  16 
11.6
7  16  16  16  JF‐51  4.88  0  0  29.30  0  0  0 

10.58 
11.3
4  10.6 

10.2
6 

10.6
1  10.79  JF‐50  623.16  623.95  73.96 

589.9
0 

1531.4
7 

573.5
8  346.13 

16  16  16  16  16  16  JF‐49  0  0  0  0  0  0  0 

‐  ‐  16  ‐  ‐  ‐  JF‐48  0  ‐  ‐  0  ‐  ‐  ‐ 

‐  ‐ 
11.1
3  ‐  ‐  ‐  JF‐47  22.22  ‐  ‐ 

133.3
2  ‐  ‐  ‐ 

16  16 
11.9
3  16  16  16  JF‐43  2.35  0  0  14.13  0  0  0 

‐ 
10.9
1 

11.5
9 

10.8
8 

11.3
6  10.14  JF‐42  461.21  ‐ 

247.1
8  36.67  268.88  69.92  2144.58 

16  16  16  16 
11.7
6  12.08  JF‐41  5.34  0  0  0  0  22.76  9.27 

16  16  16 
11.1
8  16  16  JF‐40  19.31  0  0  0  115.87  0  0 

‐ 
10.8
4 

10.7
5 

10.4
1 

10.7
7  ‐  JF‐39  343.25  ‐ 

300.8
2 

387.2
4 

1005.3
5 

366.1
1  ‐ 

16  16  16  16  16  16  JF‐35  0  0  0  0  0  0  0 

16 
11.8
6  16  16  16  16  JF‐33  2.87  0  17.19  0  0  0  0 

16 
12.1
6  16  16  11.8  ‐  JF‐30  4.63  0  7.41  0  0  20.34  ‐ 

12.19 
11.9
1 

10.9
4 

10.8
7 

12.2
2  ‐  JF‐27  88.63  6.81  14.94 

227.2
2  276.53  6.26  ‐ 

16  16  16  16  16  16  JF‐25  0  0  0  0  0  0  0 

16  16 
11.8
6  16  16  16  JF‐19  2.87  0  0  17.19  0  0  0 

‐  ‐  ‐  16  16  ‐  JF‐17  0  ‐  ‐  ‐  0  0  ‐ 

16  16  16  16  16  16  JF‐16  0  0  0  0  0  0  0 

16  16  16  16  16  16  JF‐9B  0  0  0  0  0  0  0 

16  16  16  16  16  16  JF‐15  0  0  0  0  0  0  0 

16  16  16  16  16  16  JF‐14  0  0  0  0  0  0  0 

16  16  16  16  16  16  JF‐13  0  0  0  0  0  0  0 

16  16  16  16  16  16  JF‐12  0  0  0  0  0  0  0 

16  16  16  16  16  16  JF‐10  0  0  0  0  0  0  0 

16  16 
11.7
8  16  16  16  JF‐11  3.59  0  0  21.52  0  0  0 
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Appendix D: 

Stable isotope data sorted by relative abundance of ferroan- (Fe2+) rich cement. The 

abundance is a subjective estimate of the Fe-rich cement content. The colour codes are the 

same as used in Figure 4.50. 

δ13C and δ 18O sorted by ferroan cement abundance 

Sample* δ 13C Mean δ 18O Mean 

Fe-rich 
calcite 
cement 

abundance 

Estimated 
Fe-rich 
calcite 

cement (%) 

Fracture 
cement (FR)

JF‐16S  3.37  ‐2.35 0 0 

JF‐22S  3.2  ‐2.66 0 0 

JF‐30S  3.09  ‐2.56 0 0 

JF‐69S  3.08  ‐2.46 0 0 

JF‐87S  0.82  ‐1.75 0 0 

NFS‐1S  3.69  ‐2.46 0 0 

NFS‐5S  3.54  ‐1.83 0 0 

JF‐14S  3.15  ‐2.76 1 1 

JF‐40S  3.14  ‐2.19 1 1  FR 

JF‐45S  2.93  ‐2.45 1 1‐3 

JF‐49S  3.29  ‐2.4 1 <1  FR 

JF‐57S  3.35  ‐2.06 1 1‐3 

JF‐60S  2.64  ‐2.44 1 <1 

JF‐66S  3.08  ‐3.16 1 5 

JF‐80S  2.09  ‐1.78 1 <1  FR 

NFS‐3S  3.96  ‐2.69 1 <1 

JF‐17S  2.93  ‐3.19 2 3‐5 

JF‐74S  2.33  ‐3.16 2 3‐5 

GS‐1S  3.1  ‐3.32 2 3‐5 

JF‐35S  2.26  ‐2.05 3 15 

GS‐4S  2.91  ‐2.76 3 5‐10 

GS‐6S  3.67  ‐3.15 3 3‐5  FR 
*JF = Southern J.Fadeloun, NFS = Northern J.Fadeloun, GS = J.Garci section 

Abbreviation Ferroan 
Calcite Cement 

0  None 

1  Traces/Minor 

2  Some  

3  Abundant 
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Appendix E: 

Stable isotope data showing estimated associated temperature ranges. 

 

δ13C/12C and δ18O/16O values with associated  
minimum and maxium temperatures 

Sample* Depth 

d 13C/12C  
Mean 

d 18O/16O  
Mean 

T (C⁰) min T (C⁰) max 

JF‐14S  145.15  3.15 ‐2.76 16.84  19.08

JF‐16S  140.55  3.37 ‐2.35 15.05  17.24

JF‐17S  138.95  2.93 ‐3.19 18.77  21.06

JF‐22S  135.20  3.2 ‐2.66 16.40  18.63

JF‐30S  129.80  3.09 ‐2.56 15.96  18.18

JF‐35S  124.20  2.26 ‐2.05 13.76  15.92

JF‐40S  112.60  3.14 ‐2.19 14.36  16.53

JF‐45S  98.00  2.93 ‐2.45 15.48  17.69

JF‐49S  90.65  3.29 ‐2.4 15.27  17.46

JF‐57S  77.85  3.35 ‐2.06 13.80  15.96

JF‐60S  75.2  2.64 ‐2.44 15.44  17.64

JF‐66S  68.3  3.08 ‐3.16 18.63  20.92

JF‐69S  59.90  3.08 ‐2.46 15.53  17.73

JF‐74S  58.50  2.33 ‐3.16 18.63  20.92

JF‐80S  45  2.09 ‐1.78 12.62  14.75

JF‐87S  ‐1.5  0.82 ‐1.75 12.50  14.62

NFS‐1S  55.8  3.69 ‐2.46 15.53  17.73

NFS‐3S  4.8  3.96 ‐2.69 16.53  18.77

NFS‐5S  0.4  3.54 ‐1.83 12.83  14.96

GS‐1S  5  3.1 ‐3.32 19.36  21.66

GS‐4S  3.25  2.91 ‐2.76 16.84  19.08

GS‐6S  0.2  3.67 ‐3.15 18.58  20.87
*JF = Southern J.Fadeloun, NFS = Northern J.Fadeloun, GS = J.Garci section 
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Appendix F: 

Radiogenic 87/86Sr values with associated ages. 

 

87/86Sr associated ages 

Sample* 
 

Depth 
 

87/86Sr corrected 
 

Age (Ma) 

Min Best fit Max 

JF‐87S  ‐1.50  0.707608  >75.59  75.76  <75.93 

JF‐80S  45  0.707622  >74.94  75.13  <75.30 

JF‐69S  59.9  0.707551  >78.54  78.78  <79.03 

JF‐66S  68.3  0.707568  >77.60  77.78  <77.99 

JF‐60S  75.2  0.707688  >72.58  72.69  <72.80 

JF‐57S  77.85  0.707488  >82.68  82.88  <83.07 

JF‐49S  90.65  0.707503  >81.77  81.98 <82.19 

JF‐14S  145.15  0.707852  >32.83 32.98 <33.15 

NFS‐5S  0.4  0.707722  >71.43 71.56 <71.68 

NFS‐3S  4.8  0.707603  >75.83 76.00 <76.17 

NFS‐1S  55.8  0.707727  >71.24 71.38 <71.52 

GS‐6S  0.2  0.707841  >33.03 33.21 <33.38 

GS‐4S  3.25  0.708411  >20.59 20.74 <20.88 

GS‐1S  5  0.708761  >15.42 15.62 <15.8 
*JF = Southern J.Fadeloun, NFS = Northern J.Fadeloun, GS = J.Garci section 
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Appendix G: 

Sample Unit MF # Fe-cem.* 
Vis. Fe-

cem. Est. 
(%) 

Avg. Vis. 
Fe-cem. 

(%) 

ImageJ 
porosity 

(%) 

Potential 
porosity 

(%) 

NFS‐9S 

G 

MF2 

2.5  10‐15  12.5  0  12.5 

NFS‐5S  0  0  0  0  0 

NFS‐4S  0  0  0  0.25  0.25 

NFS‐3S 

MF8b 

1 
<1  0  0  0 

NFS‐2S 
1 

<1  0  0  0 

NFS‐1S 
0 

0  0  0  0 

JF‐87S  F  MF1  0  0  0  0  0 

JF‐86S 

E 

MF7  3  10‐15  12.5  0.42  12.92 

JF‐85S 
MF2 

3  15‐20  17.5  0  17.5 

JF‐83S  1  1‐3  2  0  2 

JF‐80S  MF1  1 (FR)  <1  0  0  0 

JF‐78S 

D 

MF5  2  3‐5  4  0.47  4.47 

JF‐76S  MF6  1 (FR)  <1  0  0  0 

JF‐74S 

MF2 

2  3‐5  0  0  0 

JF‐71S  1 (FR)  <1  0  1.18  1.18 

JF‐70S  0  0  0  0.84  0.84 

JF‐69S  0  0  0  0  0 

JF‐66S 

C 

MF3 

1.5  5  5  0  5 

JF‐64S  2  5  5  0.14  5.14 

JF‐60S  MF2  1 (FR)  <1  0  0  0 

JF‐57S 

MF4 

1  1‐3  2  0  2 

JF‐56S  1  1‐3  2  0.6  2.6 

JF‐54S  1  1‐3  2  0.73  2.73 

JF‐52S  1  1‐3  2  0  2 

JF‐51S 

MF2 

1  3  3  4.5  7.5 

JF‐50S  1  1‐3  2  2.02  4.02 

JF‐49S  1 (FR)  <1  0  0  0 

JF‐48S  2  3‐5  4  0  4 

JF‐47S  MF4  1  1‐3  2  0.09  2.09 

JF‐45S 
MF2 

1  1‐3  2  0.85  2.85 

JF‐43s  1  1  1  0  1 

JF‐42S 
MF4 

0  0  0  16.12  16.12 

JF‐41S  1  1  1  0  1 

JF‐40S  MF2  1  1  1  0  1 
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JF‐37S  1  <1  0  6.2  6.2 

JF‐36S  MF8b  1  1‐3  1.5  0.76  2.26 

JF‐35S 

B 

MF6  3  15  15  0  15 

JF‐33S  MF2  1  1  1  0  1 

JF‐30S  MF8b  0  0  0  0  0 

JF‐27S 

A 

MF6  0  0  0  5.53  5.53 

JF‐26S 

MF3 

1  <1  0  0  0 

JF‐24S  1  1‐3  2  0  2 

JF‐23S  3  15  15  0  15 

JF‐22S  0  0  0  0.43  0.43 

JF‐21S  2 (FR)  5  5  0  5 

JF17S  2  3‐5  4  0  4 

JF‐16S  0  0  0  0  0 

JF‐14S  1  1  1  0  1 

JF‐11S  MF8a  3 (FR)  1‐3  2  0.27  2.27 

JF‐10S  MF4  1  1‐3  2  0  2 

GS‐6S 

H 

MF9 
3 (FR)  3‐5  4  0  4 

GS‐5S  1 (FR)  1‐3  2  0  2 

GS‐4S  MF10  3  5‐10  7.5  0  7.5 

GS‐3S  MF9  2  1‐3  2  0  2 

GS‐2S  MF10  2  3‐5  4  0  4 

GS‐1S  MF9  2  3‐5  4  0  4 

*Fe-cement abbreviation: 0 = None; 1 = Traces/Minor; 2 = Some and 3 = Abundant 
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Appendix H: 

Paleotemperatures of pore fluids during precipitation of ferroan calcite cement. 

 

Temperature during percipitation of Fe‐Cement 

Sample  δ13C  δ18O  Fe‐cem.* 
Est. Fe‐cem. 

(%) 

δ 18O at 
100% Fe‐
cem. 

Temp. 
percipitation of 
Fe‐Cem. (⁰C)  

JF‐16  3.37  ‐2.35  0  0       

JF‐22  3.2  ‐2.66  0  0       

JF‐30  3.09  ‐2.56  0  0       

JF‐69  3.08  ‐2.46  0  0       

JF‐87  0.82  ‐1.75  0  0       

NFS‐1  3.69  ‐2.46  0  0       

NFS‐5  3.54  ‐1.83  0  0       

JF‐14  3.15  ‐2.76  1  1       

JF‐40  3.14  ‐2.19  1  1       

JF‐45  2.93  ‐2.45  1  2       

JF‐49  3.29  ‐2.4  1  1       

JF‐57  3.35  ‐2.06  1  2       

JF‐60  2.64  ‐2.44  1  1       

JF‐66  3.08  ‐3.16  1  5  ‐15.70  94 

JF‐80  2.09  ‐1.78  1  1       

NFS‐3  3.96  ‐2.69  1  1       

JF‐17  2.93  ‐3.19  2  4  ‐19.75  127 

JF‐74  2.33  ‐3.16  2  4  ‐19.00  120 

GS‐1  3.1  ‐3.32  2  4  ‐23.00  156 

JF‐35  2.26  ‐2.05  3  15  0.50  4 

GS‐4  2.91  ‐2.76  3  8  ‐5.97  32 

GS‐6  3.67  ‐3.15  3  4  ‐18.75  118 

*Fe-cement abbreviation: 0 = None; 1 = Traces/Minor; 2 = Some and 3 = Abundant 

 



Appendix I‐1

Miliolid Orbitolina Other Bentic Planctonic

JF‐87S F 1 WcM/w ‐1.50 M Well 25 Planctonic foraminifera ‐Calcisphere M 1.5 0 0 1.5 0 0.5 0 0 0 4 0 0 0 0 4 0 2 0 0 0 0 0 0 1.5 1 0 0

JF‐86S 7 5peR 0.80 G Moderate to poor 450 Red algea‐peloidal‐echinoderm G 4.5 3 0 4 0 2.5 0 0 0 0 0 1 1 0 0 0 0 0 2 1 3 0 3 1.5 0 3 10‐15

JF‐85S 3.00 P/G? Poor to moderate 175 Peloid‐Echinoderm P/G 4 1 0 4 0 2 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1.5 2 0 3 15‐20

JF‐83S 8.40 P Poor to moderate 250 Peloid‐Echinoderm P 4.5 2 0 4 0 2.5 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 1‐3

JF‐80S 1 WcM/w 45.00 W Well 20 Planctonic foraminifera W 1 0 0 2 0 2 0 0 1.5 4 0 0 0 1 2 0 0 0 0 0 0 0 0 2 2 1 (FR) <1

JF‐78S 5 ipeR 46.90 G Poor 400 Intraclastic‐Peloid‐Echinoderm G 4.5 1 0 4 0 2 0 0 1 0 1 0 0 0 0 0 0 1 3.5 1.5 3 0 4 1 0 2 3‐5

JF‐76S 6 QpA/R 50.60 P/G Moderate 125 Bioclastic‐peloidal P/G 3.5 1 0 4 0 3 2 0 3.5 1 0 0 1 1.5 2 0 3 0 0 0 2.5 0 2 2.5 2.5 1 (FR) <1

JF‐74S 58.50 P Well to moderate 200 Echinoderm‐peloidal P 4 1 0 4.5 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1.5 0.5 2 3‐5

JF‐71S 59.15 P/G Well to moderate 100 Bivalve‐echinoderm‐peloidal P 3.5 0 0 4.5 0 3 1 0 2 1 0 0 0 1.5 1 0 1 1 0 0 0 0 1 2 2 1 (FR) <1

JF‐70S 59.50 P Moderate to well 50 Bivalve‐echinoderm‐peloidal P 3 0 0 4.5 0 3 0 0 2 1 0 0 1 2 1 0 1 0 0 3 1.5 0 1 1.5 2 0 0

JF‐69S 59.90 P/G Moderate to well 100 Bivalve‐echinoderm‐peloidal P/G 4 0 0 4.5 0 3.5 0 1 2.5 1 0 0 0 1.5 1 0 0 0 0 0 0 0 1 1.5 1.5 0 0

JF‐66S 68.30 P Poor 600 Orbitolina ‐peloidal‐miliolid P 4 1 0 4 1 4 4.5 4 2 1 0 0 0 0 1 0 0 0 0 0 0.5 0 2 1.5 3.5 1.5 5

JF‐64S 72.50 P Poor 600 Bivalve‐miliolid‐peliodal P 4 1.5 0 4 0 4 4 3.5 2.5 0 2.5 0 0 1 0 0 0 1 0 0 2 0 2 1.5 3 2 5

JF‐60S 2 BepA/R 75.20 G Moderate to poor 200 Bivalve‐Echinoderm‐peloidal G 4 1 0 4 1.5 3 0 1 1.5 1 2 0 0 1 0 0 1 0 1 0 0 1 3 2.5 1.5 1 (FR) <1

JF‐57S 77.85 G Well 125 Silty‐echinoderm‐peloidal G 3 1 0 4 2.5 1 0 0 2 1 0 0 0 1 1 0 1.5 0 0 0 0 0 2.5 2 1.5 1 1‐3

JF‐56S 82.70 P/G Well 100 Silty‐peloidal P/G 2.5 0 0 4.5 3.5 0 0 0 1.5 0 0 0 1 1 1 0 1 0 0 1 0 0 1 1.5 1 1 1‐3

JF‐54S 84.50 P/G Well 100 Silty‐peloidal P/G 2 0 0 4 3.5 1 0 0 2 1 0 0 0 1 1 0 1.5 0 0 1 0 0 1 1.5 1 1 1‐3

JF‐52S 86.20 P Moderate to well 100 Silty‐peloidal P 2 0 0 4 3.5 1.5 0 0 2 1.5 0 0 0 1 1 0 1.5 0 0 0 0.5 0 1 1.5 1.5 1 1‐3

JF‐51S 87.15 P Moderate 150 Echinoderm‐peloidal P 2.5 1 0 4 1 2 0 1 2.5 2 0 0 0 1.5 1 0 2 0 0 1 1 1 1 2 1.5 1 3

JF‐50S 87.70 P Moderate 150 Bivalve‐Spicule‐peloidal P 3 1.5 2 4 1.5 3 0 1 3 2 0 0 0 1.5 1.5 0 2.5 2 0 1 1 0 1.5 3 1.5 1 1‐3

JF‐49S 90.65 P Moderate to Poor 150 Bivalve‐peloidal P 2 1 0 4 1.5 3.5 1.5 1 2.5 1 0 0 0 1.5 1.5 0 0 0 0 1 1 0 2 2.5 1 1 (FR) <1

JF‐48S 94.45 P/G Moderate 150 Echioderm‐peloidal P/G 2.5 1.5 0 4 2.5 2 0 0 2.5 0 0 0 0 1 1 0 0 0 0 0 0 0 2.5 2.5 1.5 2 3‐5

JF‐47S 4 :pA/R 96.00 P Moderate to well 100 Silty‐peloidal P 3 0 0 4 3.5 2 0 0 2.5 1 1 0 0 1.5 1.5 0 0 0 0 1.5 1 1 2 2.5 2 1 1‐3

JF‐45S 98.00 P Moderate 150 Bivalve‐peloidal P 2.5 1 0 4.5 2.5 3 0 0 2.5 0 0 0 0 2.5 2 0 2.5 0 0 1.5 0 0 1.5 2.5 2 1 1‐3

JF‐43s 104.80 G Moderate 200 Bivalve‐Echinoderm‐peloidal G 3 1 0 4 2 3 1 0 2 0 0 0 0 1.5 0 0 0 1 0 0 1 0 3 2 1.5 1 1

JF‐42S 105.20 P Well 100 Silty‐peloidal P 2 1 0 4 3.5 1 0 0 2.5 1 1 0 0 0 1 0 0 0 1 4 3 0 1 1 2 0 0

JF‐41S 109.90 P Moderate to well 100 Silty‐peloidal P 2 0 0 4 3.5 2.5 0 0 2 1 1 0 1 0.5 1.5 0 0 0 0 1 0 0 2.5 1.5 1.5 1 1

JF‐40S 112.60 P Moderate to well 100 Bivalve‐peloidal P 2 1 0 4 1.5 2.5 0 1 2 1.5 1 0 0 1 2 0 1 0 0 0 1 0 1.5 3 2 1 1

JF‐37S 121.00 P moderate to well 75 Echinoderm‐peloidal P 2.5 0 0 4.5 2 2 0 1 2.5 1 0 0 0 1 1.5 0 1.5 0 1 3 1 0 2 3 2 1 <1

JF‐36S 8b SpA 121.70 P moderate to well 100 Spicule‐peloidal P 2 1 0 4.5 1 2 0 0 2.5 1 0 0 0 1.5 1.5 0 3.5 0 1.5 2 1 0 1.5 3 2 1 1‐3

JF‐35S 6 QpA/R 124.20 G Moderate 100 Echinoderm‐foraminifera‐peloidal G 3.5 1 0 4.5 1.5 2.5 1 0 4 1 0 0 1 1.5 1 0 0 0 0 0 1 0 4 2.5 2.5 3 15

JF‐33S 2 BepA/R 126.20 P Moderate to well 200 Echinoderm‐peloidal P 3.5 1 0 4 2 2.5 1 0 2.5 1 1 0 0 1.5 1 0 1 1 0 0 0 0 2 1 2 1 1

JF‐30S 8b SpA 129.80 P Moderate to well 75 Spicule‐peloidal P 2 0 0 4.5 2.5 1.5 1 1 2.5 0 0 0 0 0 1 0 3 1.5 0 1 1 1 2 1.5 1 0 0

JF‐27S 6 QpA/R 131.95 P Well 100 Foraminifera‐peloidal P 2.5 0 0 4.5 2 1.5 1 1 3.5 0 0 0 0 0 1 0 0 0 0 4 0 0 0 0 4 0 0

JF‐26S 132.78 P/G Poor to moderate 500 Bivalve‐miliolid‐peliodal P 2.5 1 0 4.5 0 4 4 3.5 3 0 1 0 0 0 0 0 0 0 1.5 0 1 0 3.5 3.5 3.5 1 <1

JF‐24S 133.78 P Moderate 550 Peloidal‐orbitlina P 3 1 0 4 0 2 3.5 4.5 2.5 0 1 0 0 0 2 0 0 0 1 1 1 0 1.5 2 3.5 1 1‐3

JF‐23S 134.45 P Moderate 450 Peloidal‐bivalve‐miliolid P 2.5 1 0 3.5 0 4 4 3.5 3 0 0 0 1 0 0 0 0 0 1 0 1 0 1 3 3 3 15

JF‐22S 135.20 P Moderate 900 Peloidal‐orbitlina P 2.5 0 0 4 0 2.5 3 4.5 2 0 0 0 0 0 1.5 1 0 0 2 2 0 0 1 2 3 0 0

JF‐21S 135.85 G Moderate 450 Peloidal‐miliolid G 3.5 0 0 4 0 2 4.5 3 3 0 0 0 0 0 1 1 0 0 0 1.5 1 0 3 1 3 2 (FR) 5

JF17S 138.95 P Moderate to poor 450 Miliolid‐peloidal P 3.5 0 0 4 0 2 3.5 2.5 1.5 0 0 0 0 0 1 1 0 0 1 1.5 1 1 3 1 3 2 3‐5

JF‐16S 140.55 G Well 550 Echinoderm‐Peloidal‐miliolid G 3 1 0 4 1 2.5 4.5 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 3.5 1 3.5 0 0

JF‐14S 145.15 G/P Moderate 250 Bivalve‐foram‐peloidal G/P 3 1 0 4 1 3.5 0 3 2.5 0 0 0 0 1 1 0 0 0 0 0 0 1 3 3 2 1 1

JF‐10S 4 :pA/R 149.75 P Well 100 Silty peloidal P/G 3 1 0 4 3.5 1 0 0 2 1 0 0 0 0 1 0 0 0 0 0 0 0 1.5 2 1 1 1‐3

JF‐11S 8a Spw/A 150.40 W/P Well 50 Spicule‐peloidal W/P 1 0 0 4 0 0 1 0 0 1.5 0 0 0 1 3 0 3 0 0 0 0 0 0 3 0 3 (FR) 1‐3
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Appendix I‐2

Miliolid Orbitolina Other Bentic Planctonic

NFS‐5S 0.4 P/G Moderate 150 Echinoderm‐Bivalve‐peloidal G 3.5 2 0 4 0 4 2 1 2.5 2.5 0 0 0 0 1.5 0 0 1 2 0 0 0 3 2 2 0 0

NFS‐9S 3.6 G Poor to moderate 150 Echinoderm‐Bivalve‐Peloidal G 4 0 0 4 0 4 3 2 2 1.5 0 0 0 0 0 0 0 0 1 0 0 0 3 3.5 2.5 2.5 10‐15

NFS‐4S 4.4 P Moderate to well 40 Peloidal P 2.5 0 0 4.5 0 2 1 0 2 1 0 0 0 1 1.5 0 0 0 0 0 0 0 0 1.5 1 0 0

NFS‐3S 4.8 P Well 40 Spiculitic‐Peloidal P 1 0 0 4.5 0 1.5 0 0 1.5 1 0 0 0 1.5 2 0 4 0 0 0 0 0 0 1.5 1 1 <1

NFS‐2S 21.2 P Well to very well 30 Spiculitic‐Peloidal P 0 0 0 4.5 0 1 0 0 1 2.5 0 0 0 0 2 0 4 0 0 0 0 0 0 2.5 1 1 <1

NFS‐1S 55.8 P Well 40 Spiculitic‐Peloidal P 1 0 0 4 0 1 0 0 1 2.5 0 0 0 0 1.5 0 4 0 0 0 1 0 0 2.5 1 0 0

G

8b SpA

2 BepA/R

Open Poretypes Cemented Poretypes

ForaminiferaTexture Sorting

Grain size 

(µm) 

dominant

Microfacies

Grains

Intraclast BP MO WP BP MOSponge spicules
Undifferentiated 

fossil

Sample # Unit Microfacies # Simplified Microfacies Depth
WP

Northern Jebel Fadeloun
Ferroan calcite 

cement abundance

Ferroan calcite 

cement (%) ‐ Visual 

estimationEchinoderm Red Algea Green Algea Peloids Quartz Bivalve Bryozoan Cephalopoda Gastropod Ostracoda Calcisphere Coral frag.



Appendix I‐3

Miliolid Orbitolina Other Bentic Planctonic

GS‐6S 0.20 W/P Well 40 Foraminifera‐Peloidal W/P 1.5 0 0 3.5 0 1 2 0 2.5 1.5 0 0 0 1 1 0 1 0 0 0 0 0 0 1.5 1.5 3 (FR) 3‐5

GS‐5S 2.10 P Moderate 60 Foraminifera‐Peloidal P 2 0 0 4.5 0 2.5 1 0 2.5 1.5 0 0 0 2 2 0 0 0 0 0 0 0 0 1.5 2 1 (FR) 1‐3

GS‐4S
10 fepA 3.25 P Moderate 100 Bivalve‐Echinoderm‐Peloidal P 2.5 0 0 4 0 2 0 0 2 1.5 0 0 0 2 1 0 1 1 0 0 1 0 1 2 1.5 3 5‐10

GS‐3S 9 pw/A 3.55 P Well 60 Peloidal P 2 0 0 4.5 0 2 0 0 1 2 0 0 0 2 1 0 0 0 0 0 1 1 0 2 2 2 1‐3

GS‐2S 10 fepA 4.30 P Moderate to poor 120 Foraminifera‐Echinoderm‐Peloidal P 4 0 0 4 0 2 0 0 2 2 0.5 0 0 1.5 1 0 0 0 0 0 0 0 0 2 2 2 3‐5

GS‐1S 9 pw/A 5.00 W/P Well 60 Peloidal W/P 2 0 0 4.5 0 2 1 0 1 2.5 0 0 0 1 1 0 1 0 0 0 0 0 0 1.5 2.5 2 3‐5

H

Open Poretypes Cemented Poretypes

Foraminifera

9 pw/A

Texture Sorting

Grain size 

(µm) 

dominant

Microfacies

Grains

Intraclast BP MO WP BPCoral frag. onge spicu
Undifferentiated 

fossil

Sample # Unit Microfacies # Simplified Microfacies Depth
MO WP

Jebel Garci
Ferroan calcite 

cement abundance

Ferroan calcite 

cement (%) ‐ Visual 

estimationEchinoderm Red Algea Green Algea Peloids Quartz Bivalve Bryozoan Cephalopoda Gastropod Ostracoda Calcisphere
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