
Dissertation for the degree of philosophiae doctor (PhD)

at the University of Bergen

Dissertation date:

Scientific environment

This thesis is funded through the Industrial PHD Scheme, an initiative by the Research
Council of Norway which aims to build relations between academia and industry. Un-
der this scheme, the supervison is shared by an academic institution and a company
within a relevant industry. In this case, these are the University of Bergen and BKK
Production AS. The funding is shared equally between the Reasearch Council of Nor-
way and BKK Production AS.

ii Scientific environment

Above we see a Pelton-turbine runner at one of BKK’s power plants being bolted onto

the runner shaft. The author can be seen in the foreground of the right image.

BKK1 is an energy and infrastructure company based in Bergen. BKK owns 32 hydro-
electric power-plants in western Norway, constituting BKK’s core business. With an
average annual production of 6.7 TWh, BKK is the fifth largest producer of electric
power in Norway.

BKK is a technology driven company with expressed effort in contributing to inno-
vation and technological development. This thesis is a part of that effort.

1BKK was originally an acronym for Bergenhalvøens Kommunale Kraftselskap (Muncipal Power Company

of the Bergen-Peninsula) but has since been privatized with BKK as the official name.

Acknowledgements

The author would like to thank the supervisors Alex C. Hoffmann2, Jan S. Vaagen3,
Laszlo Csernai4 and Arne Småbrekke5 for valuable insights and discussion. Their con-
tribution is greatly appreciated.

2Professor, University of Bergen, MAE
3Professor, University of Bergen, MAE
4Professor, University of Bergen, MAE
5Department Manager, BKK Production

Précis

The underlying motivation of this work is to better understand the flow in turbines,
aiming at a simplified design process and improved energy efficiency.

Based on this motivation there are many potential strategies and areas of interest to
consider. For example testing of scale models, developing measurement techniques or
the development of turbulence models. But in this thesis the focus has been on the de-
velopment of numerical methods for solving nonlinear differential equations and the
application to the governing equations in fluid dynamics – computational fluid dynam-
ics (CFD). The reasoning behind this is the progressive improvement in computational
hardware, giving ever increasing possibilities at predicting the behavior of fairly com-
plex systems based on fundamental physical principles.

There are, however, large challenges within the field of CFD. Most notably issues
with regard to the scale of the problems one would solve. Currently there are no meth-
ods which allow direct numerical simulation of a complete Pelton-turbine. A rough
estimation of the Kolmogorov length scale in a typical Pelton-turbine yields a length
scale on the order of 10−5 m in some regions. Given a computational domain of sev-
eral cubic meters, an ordinary uniform grid discretization nearing this resolution would
have on the order of 1023 grid points and require on the order of 109 petabyte of stor-
age. As a comparison, the Cray Titan supercomputer currently (2015) has less than one
petabyte working memory and 40 petabyte of storage capacity.

There are several ways to tackle this problem. Sub-grid modeling, averaging theory,
adaptive grids and particle based solvers to mention a few. We will study a different ap-
proach, which deals with how we represent a continuous medium as discrete quantities
of digital data.

vi Précis

Abstract

The focus in this thesis is the development and implementation of a new method for
solving nonlinear differential equations on a grid.

The method’s novelty lies in the way it represents continuously distributed variables
by discrete information stored in a grid. The grid contains information about both the
values and the values of the derivatives of the unknown functions at the grid points in
the computational domain. With this method the derivatives are thus explicitly defined
at each grid point rather than, as in conventional numerical schemes, implicitly given
by the function values at the surrounding grid points.

By using piecewise polynomial interpolation, functions can be represented with an
arbitrary order of continuity over the entire computational domain.

A mathematical framework is defined and the details of the polynomial interpolation
is discussed, leading to the definition of particular sets of basis function which have
especially favorable numerical properties for use with the current method.

It is shown how this method is used to formulate sets of differential equations as
algebraic equations. With special focus on the Navier-Stokes equations.

A solution algorithm is developed for parallel computation on graphics processor
units using C++ and OpenCL. Tests are performed on low cost hardware, and the imple-
mentation is developed to meet constraints in memory capacity and processing speed.
The algorithm is a residual-minimizing type and is based on the finite element method.
Test cases in 1D, 2D and 3D are numerically solved using the developed code. Two
conference presentations are based on the method developed in this thesis, showing ap-
plication to simulation of a rising bubble under gravity in three dimensions and a fluid
flow in a Pelton turbine cup, also in three dimensions.

viii Abstract

Contents

Scientific environment i

Acknowledgements iii

Précis v

Abstract vii

1 Introduction and Background 1
1.1 Fields and Discretization . 1

1.2 Grid Discretization . 1

1.3 Particle Based Discretization . 2

1.4 Function Approximation . 2

1.5 Continuity Based Approach . 2

2 Notation and Mathematical Framework 5
2.1 Notation . 5

2.2 Order of Continuity . 5

2.3 Grid Structure . 6

2.4 Choice of Basis functions . 7

2.4.1 Polynomial Basis Functions and Conditioning 7

2.4.2 Optimal Set of Basis Functions 8

2.4.3 Normalization . 10

2.5 Generalization to higher dimensions . 13

2.5.1 Basis Functions . 13

2.5.2 Grid Structure . 13

2.5.3 Grid-cell Approximation . 14

3 Algebraic Formulation of Differential Equations 15
3.1 Governing Equations and Grid Scale . 15

3.2 Algebraic Form . 16

3.3 Solution Algorithms . 17

3.3.1 Linearization and Iterative Steady State Solution 17

3.3.2 Linearization and Implicit Time Marching 18

3.3.3 Notes on Boundary Conditions 20

3.4 Mapping Matrices . 20

3.5 Sampling and Integration . 21

x CONTENTS

3.5.1 Numeric Versus Analytic . 21
3.5.2 Sampling . 22
3.5.3 Sub-grid Features . 22

3.6 Further Development on The Solution Algorithm 23

4 Implementation 25
4.1 Spherical Laplace Equation . 25

4.1.1 Governing Equations . 25
4.1.2 Implementation Details . 27
4.1.3 Output and Plots . 30

4.2 Code Structure and Data Layout . 32
4.2.1 Solver Application Structure . 32
4.2.2 Scalar and Vector Types . 34
4.2.3 Classes and Namespaces . 34
4.2.4 OpenCL sourcecode . 35
4.2.5 Grid Data Memory Management and Indexing 35

4.3 Numeric Integration on GPU . 37
4.3.1 Numeric Integration Scheme . 38

4.4 Solving The Linearized System . 39
4.4.1 Sparse Matrix Storage Scheme 39
4.4.2 Direct Solution Versus Iterative 39

5 Pelton Bucket Simulation 41
5.1 Outline . 41
5.2 Geometry and Computational Domain . 41

5.2.1 Boundary Conditions and Simulation Parameters 44
5.3 Simulation Results . 46
5.4 Outlook on Pelton-Turbine Simulation 47

6 Papers 49
6.1 Lid-Driven Cavity . 49
6.2 Bubble Simulation . 69

7 Conclusion and Outlook 83
7.1 Applicability . 83
7.2 Further Work . 83
7.3 Options . 84

A Governing Equations 85
A.1 Navier–Stokes Equations in Physical Dimensions 85
A.2 The Dimensionless Navier–Stokes Equations for Two Phases 86
A.3 Uniform Change of Spatial and Temporal Scales 87
A.4 Surface Tension . 88

B Source Codes 89
B.1 Laplace Equation Solver . 89
B.2 Matrix Classes . 94

List of Figures

1.1 This figure shows a two dimensional region discretized by a grid. The
line intersections are called grid-points and the enclosed individual re-
gions are called grid-cells (one grid-cell is grayed out as an illustration) 2

1.2 This figure shows four different approximations of a function, f (x).
Each approximation requires the same amount of floating point num-
bers and approximately the same number of operations to compute.
The C0 continuous approximation has 72 grid-points where a single
grid value is stored, while the C1 continuous approximation has 36
grid-points where both the function value and the derivative is stored
giving 72 floating point numbers in total. Further, the C2 and C3 con-
tinuous approximations uses 3×36 and 4×18 floating point numbers,
respectively. The root-mean-square (RMS) deviation from the original
function, f (x), is given and shows a decreasing trend as the order of
continuity increases. 3

2.1 Uniformly spaced grid-points in one dimension. F[k] contains the grid
components corresponding to the function, f , at the k’th grid-point.
The sub-grid coordinate, x′k, is defined on the interval x ∈ [x[k],x[k+1]]. 6

2.2 This figure shows a Venn diagram of the relations between the sets of
interior, boundary and grid-cell components. 7

2.3 This figure shows a plot of the normalized basis functions for Ω = 2 in
the interval x ∈ [0,1]. 12

2.4 This figure shows a plot of the normalized basis functions for Ω = 3 in
the interval x ∈ [0,1]. 12

2.5 This figure shows a plot of the normalized basis functions for Ω = 4 in
the interval x ∈ [0,1]. 13

3.1 This figure shows the different scales the computational domain cor-
responds to. x0 is the physical characteristic size which the Reynolds
number is based upon. This length corresponds to K −1 in the compu-
tational domain. 16

xii LIST OF FIGURES

3.2 The logical structure of the mapping matrices. If an interior (boundary)
component maps to a specific grid-cell component, there is a one in the
row corresponding to the grid-cell component and the column corre-
sponding to the interior (boundary) component. A row with all zeros
(see third row of grid-cell B) means that the grid-cell component has
no corresponding interior (boundary) component and is thus a bound-
ary (interior) component. Not that all columns must have at least one
nonzero entry, since all interior (boundary) components maps to at least
one grid-cell component. 21

3.3 Mapping matrix represented by an index array. The number in the array
is column index of the mapping matrix. 21

3.4 Illustration of different regions within a grid-cell where different gov-
erning equations are applied. In this example the sample points in black
falls within a solid region, the blue and red sample points represent flu-
ids with different properties. Since the integration is performed numeri-
cally, the different regions may have any shape. However, features very
small compared to the grid-cell will be approximated poorly unless the
order of continuity is increased to compensate. 22

4.1 This figure shows a plot of the RMS error from Table 4.6 on a logarith-
mic scale. 31

4.2 Plots of the computed solution, b̂T (x′k)fk, for four different grid res-
olutions (black lines with dots at the grid-points) compared with the
analytic reference solution (red line). 32

4.3 A diagram showing the basic layout of the application code which
was developed to test the current method. Dependencies points up-
ward within a given scope. Public open-source code is indicated with
white background. Code developed especially for this thesis is placed
on colored background. Green indicates plain old data (POD) or C99
standard code (compliant with OpenCL GPU source code), blue is used
for C++ classes and yellow for C++ namespaces. 33

4.4 Execution order of the expansion step. Each OpenCL kernel is given a
unique sample position, si, of which the contribution to the integral for
all grid-cell components is computed. 38

4.5 Execution order of the summation step. Each OpenCL kernel is given
a unique row, r, and column, c, and computes the sum over all sample
positions for this matrix entry. 39

5.1 Perspective renderings of the bucket (generated with ray-tracing). The
edges of the computational domain and grid resolution are given by the
small spheres. 42

5.2 The upper graph shows a cross section in the xz-plane. The lower graph
shows the outline and center of the ellipse the inner surface is extruded
along. The subtracted cylindrical section is also indicated. 43

5.3 A cross section in the xz-plane showing the initial phase distribution. . . 44

5.4 The graphs show the z-component of the velocity at the upper and lower
boundary through the center of the computational domain. 45

LIST OF FIGURES xiii

5.5 Surface Visualization at timesteps: 10,20,30,40,50 and 60 (each time-
step corresponding to 1/42’th of a time unit). The visualizations are
generated using ray-tracing. In the last frames surface artifacts appear. . 46

5.6 Visualization of the flow velocity through slices in the xz-plane at time-
steps 60 (left) and time-step 90 (right). The arrow length is constant and
the color goes from blue at zero velocity to yellow at the highest velocity. 47

7.1 The different basis functions for a C2 continuous grid where 3 grid-
points at positions, x ∈ {−1,0,1}, are interpolated. The polynomial or-
der is 8 (O(x9) terms are discarded). 84

xiv LIST OF FIGURES

Listings

4.1 Global Data . 27
4.2 Functions . 27
4.3 Main Function . 28
4.4 Basis Function Set . 29
4.5 System Assembly and Solution . 29
4.6 Console Output . 31
4.7 Real Type Definitions . 34
4.8 Vector Structures . 34
4.9 Grid Class Memory Managment and Indexing 35
B.1 Laplace Equation Solver . 89
B.2 Matrix Class Header . 94
B.3 Sparse Matrix Class Header . 96

xvi LISTINGS

Chapter 1

Introduction and Background

1.1 Fields and Discretization

Physical systems are described and explained as continuous fields in time and space.
Even fluids and matter, which are composed of particles, are treated as fields in the
macroscopic case. The behavior of these fields is governed by differential equations
based on physical principles. In some cases, these differential equations may be solved
analytically. However, in many cases of practical interest, the solutions must be found
numerically.

This requires a way to represent a field numerically which can be stored in com-
puter memory. An arbitrary quantity, continuously distributed in time and space, will
in general not be accurately representable in a finite amount of computer memory. Even
though matter and fluids are in reality composed of particles, the sheer number of par-
ticles prohibits individual treatment in the macroscopic case.

In numerical computing several different approaches are used to represent a con-
tinuously distributed variable. We will divide the most common approaches into grid
discretization, particle systems and function approximation. Combinations of these are
also possible.

1.2 Grid Discretization

A grid is a division of space and time into individual segments, each representing an
interval or point in space and time. The shape of these segments may be defined so that
the grid fits well to a particular geometric region. Figure 1.1 shows an example of a
two dimensional grid adjusted to fit with a nonlinear geometry.1

1In Figure 1.1 the grid-cell is defined to be a region surrounded by a set of grid-points. This definition is used

throughout the thesis. Other definitions of the grid-cell also exists. One may, for example, define the grid points

to be in the center of each grid-cell.

2 Introduction and Background

Figure 1.1: This figure shows a two dimen-

sional region discretized by a grid. The line

intersections are called grid-points and the

enclosed individual regions are called grid-

cells (one grid-cell is grayed out as an illus-

tration)

1.3 Particle Based Discretization

In this case, the field is approximated by a group of particles. The particles are not
ordered into a grid, but each has a definite position. Polyhedral grid-cells may be
constructed based on the distribution of the particles, but more common is the use of a
smoothing function, where the influence of different particles at a specific position is
weighted based on the distance from the particle to this position. In the CFD context,
Smoothed Particle Hydrodynamics (see [6] for further details) is currently state of the
art within particle based methods.

1.4 Function Approximation

A field may be approximated by a weighted sum of a set of basis functions, defined
on the region of interest. This may be very efficient if the basis functions also are ap-
proximate solutions to the equations governing the behavior of the field.2 The Spectral
Method is an example of this approach which is commonly used in fluid dynamics (see
[5] for details).

1.5 Continuity Based Approach

The method developed in this thesis is a combination of grid-discretization and function
approximation. The field in each grid-cell is described by a function approximation,
not unlike a spectral element approach. But in the current approach the information
of the derivatives, up to a given order, is explicitly given at each grid-point and define
the order of continuity of the grid (see Chapter 2 for details).3 By examining Figure

2For example, when solving a problem with oscillating or wave-like properties, one might benefit from using

wave functions to approximate the solution rather than, say, polynomials.
3The current approach shares some of the qualities of the Cubic Interpolated Propagation (CIP) method [7]

(an alternative version of the CIP acronym is used here), which includes the gradient of unknown quantities as

a free parameter. The CIP method is a third order method used successfully, for example, to simulate acoustic

1.5 Continuity Based Approach 3

1.2, we see that a better approximation can be produced, using the same quantity of
data, by increasing the order of continuity instead of the density of grid-points. This
provides a motivation for developing this approach. Additionally we may observe that,
for low orders of continuity, the position of the grid-points have a significant effect on
the accuracy of the approximation. But for higher orders of continuity, this dependency
is not as strong.

f (x)

C
0 :

72
×1,

R
M

S: 1
0
−3
.0

C
1 :

36
×2,

R
M

S: 1
0
−3
.6

C
2 :

24
×3,

R
M

S: 1
0
−3
.7

C
3 :

18
×4,

R
M

S: 1
0
−3
.8

Figure 1.2: This figure shows four different approximations of a function, f (x). Each ap-

proximation requires the same amount of floating point numbers and approximately the same

number of operations to compute. The C0 continuous approximation has 72 grid-points where

a single grid value is stored, while the C1 continuous approximation has 36 grid-points where

both the function value and the derivative is stored giving 72 floating point numbers in total.

Further, the C2 and C3 continuous approximations uses 3×36 and 4×18 floating point num-

bers, respectively. The root-mean-square (RMS) deviation from the original function, f (x), is

given and shows a decreasing trend as the order of continuity increases.

wave propagation.

4 Introduction and Background

Chapter 2

Notation and Mathematical Framework

2.1 Notation

Square brackets will be used to identify components in matrices. A component in a
two-dimensional matrix, A, will thus be referred to as A[r,c], where r is the row index
and c is the column index. Indices in an R×C matrix are defined to go from 0 to R−1
(rows) and 0 to C−1 (columns). If C = 1, then the matrix may be referred to as a column
vector and if R = 1, then the matrix may be referred to as a row-vector. A[∶,c] refers to
the c’th column and A[r, ∶] refers to the r’th row. A higher dimensional matrix may be
written equivalently as a matrix of matrices. For example a four-dimensional matrix, Q,
where Q[r,c][τ,ν] def= Q[r,c,τ,ν]. Square brackets are also used for closed continuous
intervals. If a matrix, A, is square and nonsingular, its inverse will be written as A−1.
The transpose of a two dimensional matrix (or a tensor), A, will be written AT . The
pseudo-inverse is defined in (2.1):

A+ def= (AT A)−1 AT (2.1)

Mapping of indices from multiple index form to single index form will, un-
less otherwise stated, be on the form a = b+ cD, where D is a positive integer and
b,c ∈ {0, . . . ,D−1} and a ∈ {0, . . . ,D2 −1}. The indices b and c may also be single in-
dex forms of other index tuples, in which case the mapping will recursively follow the
given form.

2.2 Order of Continuity

Consider a discretization of a function, f (x), on a grid. Let the matrix x be composed
of the positions of a set of grid-points. The grid-points are assumed to be uniformly
placed with a separation of unity, i.e. x[k+1]−x[k] = 1. Let the value of the function,
f (x), and its derivatives up to, and including, the (Ω−1)’th order be explicitly defined
for each grid-point in terms of the matrix, F, with components given by (2.2):

aαF[k,α] def= ∂ α f (x)
∂xα ∣

x=x[k]
(2.2)

where the index k identifies the grid-point and α ∈ {0, . . . ,Ω−1}. The discretization is
then by definition continuous and has continuous derivatives up to (Ω−1)’th order at

6 Notation and Mathematical Framework

the grid-points x[k]. This is referred to as CΩ−1 continuity. The coefficient aα is used
as a normalization constant. This will allow us to scale the values stored in the grid,
avoiding large variations in their numerical value (see Chapter 2.4.2).

2.3 Grid Structure

Consider the interval between two grid-points, k and k + 1, constituting a one-
dimensional grid-cell.

F[k−1,0] F[k,0] F[k+1,0] F[k+2,0]
F[k−1,1] F[k,1] F[k+1,1] F[k+2,1]⋮ ⋮ ⋮ ⋮
x[k−1] x[k] x[k+1] x[k+2]

x′k = x−x[k]
. . .

Figure 2.1: Uniformly spaced grid-points in one dimension. F[k] contains the grid components

corresponding to the function, f , at the k’th grid-point. The sub-grid coordinate, x′k, is defined

on the interval x ∈ [x[k],x[k+1]].
Further, let bN(x) be a column vector of polynomial basis functions with deg(bN) <

N on the interval x ∈ [0,1], where the total number of basis functions in the set is N and
bN(x)[n] refers to each function. Let the sub-grid coordinate, x′k, be defined by (2.3):

x′k = x−x[k] (2.3)

The function, f (x), may then be approximated by a weighted sum of these basis func-
tions, as shown in (2.4), where κk is a column vector with the weight of each basis
function.

f (x) = bT
2Ω(x′k)κk +O(x′2Ω

k) , x′ ∈ [0,1] (2.4)

We then require, in (2.5), that the approximation conforms with the order of continuity
given by (2.2):

∂ αbT
2Ω(x)κk

∂xα ∣
x=0

= aαF[k,α] (2.5a)

∂ αbT
2Ω(x)κk

∂xα ∣
x=1

= aαF[k+1,α] (2.5b)

We will use the term component when referring to individual entries in grid-points. We
will let boundary-components refer to components given by the boundary conditions
and interior-components refer to the remaining, unknown components. Further, we will
use the term grid-cell-component refer to a component in a particular grid-cell (without
regard to its interior/boundary status). Note that this naming convention then implies
that the sets of interior and boundary components does not intersect, while a set of
grid-cell-components may intersect with other grid-cells as well as with interior and
boundary components (see Figure 2.2).

2.4 Choice of Basis functions 7

boundary

interiorgrid-cell

grid-cell

Figure 2.2: This figure shows a Venn diagram of the relations between the sets of interior,

boundary and grid-cell components.

2.4 Choice of Basis functions

2.4.1 Polynomial Basis Functions and Conditioning

Any set of polynomial basis functions spanning the same polynomial vector space
would give the same (analytical) approximation. However, floating point errors dif-
fer greatly depending on the choice of basis functions. Consider (2.5) arranged into the
matrix equation (2.6), where the matrix product Bκk is equivalent to the summation on
the left hand side of (2.5) and the matrix A is diagonal, consisting of the constants aα .

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bT
2Ω(x) ∣x=0

∂
∂xbT

2Ω(x) ∣x=0⋮
bT

2Ω(x) ∣x=1
∂
∂xbT

2Ω(x) ∣x=1⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦���
B

κk =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 0 . . .
0 a1⋮ ⋱

a0 0 . . .
0 a1⋮ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦���
A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F[k,0]
F[k,1]⋮

F[k+1,0]
F[k+1,1]⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦��
fk

(2.6)

The coefficients, κk, are given by κk =B−1Afk. The condition number, cond(B), defined
in Eq.(2.7), gives an estimate of the relative numerical accuracy of the matrix product,
κk = B−1Afk – i.e.: the numerical accuracy of the weighting of the basis functions.
This is important because, as a high polynomial order gives high accuracy in exact

8 Notation and Mathematical Framework

arithmetic, the numerical accuracy tends to give the opposite effect.

cond(B) def= σmax (B)
σmin (B) (2.7)

In Eq.(2.7), σmax (B) is the largest singular value of B, and σmin (B) is the smallest sin-
gular value of B. When numerically solving the linear system, Afk =Bκk, using floating
point numbers with machine precision, εm, an error of order O(εmcond(B)) should be
expected.1 It is clear that the condition number of B is important in the relation be-
tween the numerical values stored in the grid (F) and the resulting approximation of
f (x). By examining Table 2.1 we see that condition numbers rise exponentially with
an increase of the order of continuity.

cond(B)
Ω monomials Bernstein Hermite

2 2.4×101 6.2×100 5.2×102

3 7.6×102 8.7×101 4.7×105

4 4.8×104 1.9×103 1.0×109

5 4.4×106 5.8×104 3.4×1012

6 5.5×108 2.2×106 2.9×1016

Table 2.1: Estimated floating point errors for different values of Ω for a selection of common

basis function sets. The matrix, B, is defined in (2.6) and the condition number, cond(B), is

defined by (2.7). This is the estimated precision of the numerical computation of the quantity

B−1Afk relative to the machine precision, εm. The first column shows different values of Ω,

corresponding to CΩ−1 continuity. The second column shows expected loss in precision when

the monomial basis functions, xn for n ∈ {0, . . . ,2Ω−1}, are used to construct the matrix B.

The third column shows the expected loss in precision when the Bernstein polynomial basis

functions are used to construct the matrix B. The fourth column shows the expected loss in

precision when the Hermite polynomial basis functions (translated to the interval [0,1]) are

used to construct the matrix B.

2.4.2 Optimal Set of Basis Functions

The best possible set of basis functions in this respect are those that give the smallest
possible condition number, i.e. cond(B) = 1. This is the case, for example, with B = I.
We will therefore require that B = I. Since the the basis functions are polynomials of
degree 2Ω−1, this requirement together with the form of B given in (2.7) yields the

1The reader may refer to Trefethen and Bau [8, pg. 95] for a more detailed explanation of the condition

number and numerical accuracy of linear equation systems.

2.4 Choice of Basis functions 9

linear system (2.8): ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x x2 x3 . . . x2Ω−1 ∣x=0
0 1 2x 3x2 . . . ∣x=0
0 0 2 6x . . . ∣x=0⋮
1 x x2 x3 . . . ∣x=1
0 1 2x 3x2 . . . ∣x=1
0 0 2 6x . . . ∣x=1⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
D = I (2.8)

The matrix, D, then contains the coefficients for each power of x in each basis function.
As a result the basis functions are

b2Ω(x) = [1 x x2 . . . x2Ω−1]D , with D =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 . . .
0 1 0 0 . . .
0 0 2 0 . . .⋮
1 1 1 1 . . .
0 1 2 3 . . .
0 0 2 6 . . .⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

(2.9)

The inverse of the matrix, D, is found with exact arithmetic without loss of precision.
By studying the basis functions, b2Ω(x), carefully, the following closed form presents
itself (2.10):

b2Ω[α](x) ∝ (1−x)Ω xα (Ω−1−α∑
n=0

cΩ[n]xn) (2.10a)

b2Ω[Ω+α](x) = (−1)αb2Ω[α](1−x) (2.10b)

α ∈ {0,Ω−1} (2.10c)

where the set of coefficients, cN , is defined in terms of the recursive relations (2.11).
Table 2.4.2 shows some computed coefficients.

c1[0] = 1 (2.11a)

cN[n] = n∑
m=0

cN−1[m] , n < N −1 (2.11b)

cN[N −1] = 2cN[N −2] (2.11c)

N cN[0] cN[1] cN[2] cN[3] cN[4]
1 1

2 1 2

3 1 3 6

4 1 4 10 20

5 1 5 15 35 70

Table 2.2: This table shows some computed values of the coefficients defined in (2.11).

10 Notation and Mathematical Framework

2.4.3 Normalization

The final degree of freedom in the choice of basis functions lies in the constant, aα ,
which we determine by normalizing the basis functions (2.12a):

b̂N[α](x) def= bN[α](x)
aα

(2.12a)

aα
def= 2

�������������
1∫

x=0

bN[α](x)dx

������������� (2.12b)

thus

�������������
1∫

x=0

b̂N[α](x)dx

������������� =
1

2
(2.13)

Importantly, we have a symmetry relation between α and Ω+α which gives us, pair-
wise, the same normalization constant for these basis functions. This ensures that the
normalization is consistent over the entire grid. By choosing to scale the functions to
the constant 1/2 we end up with a0 = 1 for all orders of continuity. The approxima-
tion given in (2.4) may now be given directly in terms of the grid values and the basis
functions as shown in (2.14):

f (x) = b̂T
2Ω(x′k)f+O(x′2Ω

k) , x′k ∈ [0,1] (2.14)

Due to the special properties of the basis functions, the weighting factors, κk, are no
longer needed; the grid-cell-components now are the weights. Table 2.3 shows the
resulting normalized basis functions for different orders of continuity. Figures 2.3 -
2.5 shows plots of the normalized basis functions, b̂4, b̂6 and b̂8. The symmetry/anti-
symmetry relations given in (2.10) can be observed.

2.4 Choice of Basis functions 11

Ω = 2 b̂4[0](x) 2x3−3x2+1(C1) b̂4[1](x) 6x3−12x2+6x
b̂4[2](x) 3x2−2x3

b̂4[3](x) 6x3−6x2

Ω = 3 b̂6[0](x) −6x5+15x4−10x3+1(C2) b̂6[1](x) −15x5+40x4−30x3+5x
b̂6[2](x) −30x5+90x4−90x3+30x2

b̂6[3](x) 6x5−15x4+10x3

b̂6[4](x) −15x5+35x4−20x3

b̂6[5](x) 30x5−60x4+30x3

Ω = 4 b̂8[0](x) 20x7−70x6+84x5−35x4+1(C3) b̂8[1](x) 140
3 x7−168x6+210x5− 280

3 x4+ 14
3 x

b̂8[2](x) 84x7−315x6+420x5−210x4+21x2

b̂8[3](x) 140x7−560x6+840x5−560x4+140x3

b̂8[4](x) −20x7+70x6−84x5+35x4

b̂8[5](x) 140
3 x7− 476

3 x6+182x5−70x4

b̂8[6](x) −84x7+273x6−294x5+105x4

b̂8[7](x) 140x7−420x6+420x5−140x4

Ω = 5 b̂10[0](x) −70x9+315x8−540x7+420x6−126x5+1(C4) b̂10[1](x) −315
2 x9+720x8−1260x7+1008x6−315x5+ 9

2x
b̂10[2](x) −270x9+1260x8−2268x7+1890x6−630x5+18x2

b̂10[3](x) −420x9+2016x8−3780x7+3360x6−1260x5+84x3

b̂10[4](x) −630x9+3150x8−6300x7+6300x6−3150x5+630x4

b̂10[5](x) 70x9−315x8+540x7−420x6+126x5

b̂10[6](x) −315
2 x9+ 1395

2 x8−1170x7+882x6−252x5

b̂10[7](x) 270x9−1170x8+1908x7−1386x6+378x5

b̂10[8](x) −420x9+1764x8−2772x7+1932x6−504x5

b̂10[9](x) 630x9−2520x8+3780x7−2520x6+630x5

Ω = 6 b̂12[0](x) 252x11−1386x10+3080x9−3465x8+1980x7−462x6+1(C5) b̂12[1](x) 2772
5 x11−3080x10+6930x9−7920x8+4620x7− 5544

5 x6+ 22
5 x

b̂12[2](x) 924x11− 10395
2 x10+11880x9−13860x8+8316x7−2079x6+ 33

2 x2

b̂12[3](x) 1386x11−7920x10+18480x9−22176x8+13860x7−3696x6+66x3

b̂12[4](x) 1980x11−11550x10+27720x9−34650x8+23100x7−6930x6+330x4

b̂12[5](x) 2772x11−16632x10+41580x9−55440x8+41580x7−16632x6+2772x5

b̂12[6](x) −252x11+1386x10−3080x9+3465x8−1980x7+462x6

b̂12[7](x) 2772
5 x11− 15092

5 x10+6622x9−7326x8+4092x7−924x6

b̂12[8](x) −924x11+ 9933
2 x10−10725x9+ 23265

2 x8−6336x7+1386x6

b̂12[9](x) 1386x11−7326x10+15510x9−16434x8+8712x7−1848x6

b̂12[10](x) −1980x11+10230x10−21120x9+21780x8−11220x7+2310x6

b̂12[11](x) 2772x11−13860x10+27720x9−27720x8+13860x7−2772x6

Table 2.3: This table shows normalized basis functions for different orders of continuity. The

functions are normalized to the constant value of 1/2 over the interval [0,1]. Note that in an

implementation it is beneficial to factorize the polynomials to reduce round-off errors occur-

ring when subtracting one large number from another large number.

12 Notation and Mathematical Framework

b̂4[0] b̂4[1]

b̂4[2]

b̂4[3]

x �→0

1

−1

Figure 2.3: This figure shows a plot of the normalized basis functions for Ω = 2 in the interval

x ∈ [0,1].

b̂6[0] b̂6[1] b̂6[2] b̂6[3]

b̂6[4]

b̂6[5]

x �→0

1
2

1

−1
2

Figure 2.4: This figure shows a plot of the normalized basis functions for Ω = 3 in the interval

x ∈ [0,1].

2.5 Generalization to higher dimensions 13

b̂8[0] b̂8[1] b̂8[2] b̂8[3]

b̂8[4]

b̂8[5]

b̂8[6]

b̂8[7]

x �→0

3
2

1

−3
2

Figure 2.5: This figure shows a plot of the normalized basis functions for Ω = 4 in the interval

x ∈ [0,1].
2.5 Generalization to higher dimensions

2.5.1 Basis Functions

The one-dimensional grid is generalized into higher dimension by using the product
of different basis functions corresponding to each spatial or temporal dimension. We
will focus on the three spatial dimensions with the three-dimensional basis functions
defined in (2.15). The general principles remain the same as in the one-dimensional
case. The main task here is to consistently map the components of the grid to the
three dimensional basis functions. Note that the order of continuity may be different
for different spatial directions, and for the sake of brevity we omit the indication of
continuity order for the multi-dimensional basis functions.

ˆ̂̂
b[n](x,y,z) def= b̂2Ωx[nx](x)b̂2Ωy[ny](y)b̂2Ωz[nz](z) , n = nx+2Ωx(ny+2Ωynz) (2.15)

2.5.2 Grid Structure

As in the one-dimensional case we assume a uniform grid with an interval spacing
between the grid-points equal to unity. The primed coordinates, defined in (2.16), are
cell-specific coordinates on the interval [0,1]3.

x′k
def= x−x[k] , y′l

def= y−y[l] , z′m
def= z−z[m] , (x′k,y

′
l,z
′
m) ∈ [0,1]3 (2.16)

14 Notation and Mathematical Framework

2.5.3 Grid-cell Approximation

The grid now contains information about derivatives, including mixed derivatives, up
to a given order in each spatial direction. The three dimensional version of the grid
definition is given in (2.17), and the three-dimensional function approximation is given
in (2.19) (corresponding to the one dimensional definitions (2.2) and (2.14)).

∂ α∂ β ∂ γ f (x,y,z)
∂xα∂yβ ∂ zγ ∣

x=x[k],y=y[l],z=z[l]

def= aαbβ cγF[k, l,m][α,β ,γ] (2.17)

α ∈ {0, . . . ,Ωx−1} , β ∈ {0, . . . ,Ωy−1} , γ ∈ {0, . . . ,Ωz−1} (2.18)

f (x,y,z) = ˆ̂̂
bT (x′k,y

′
l,z
′
m)fk,l,m+O(x′2Ωx

k +y′2Ωy
l + z′2Ωz

m) (2.19)

All the grid data belonging to a particular grid-cell is stored in the column vector, fk,l,m,
defined in (2.20). This is the three-dimensional generalization of fk which was used in
the one-dimensional case (2.6).

fk,l,m[ΩxΩyΩzi+τ] def= F[k+ ix, l+ iy,m+ iz][α,β ,γ] (2.20)

where
i = ix+2(iy+2iz) and τ = α +Ωx(β +Ωyγ). (2.21)

Note that the index mappings, in (2.20) and (2.21), must agree with the definition of
the basis functions for three dimensions, (2.15), in order to express the approximation
as a single product of vectors shown in (2.19).

Chapter 3

Algebraic Formulation of Differential
Equations

3.1 Governing Equations and Grid Scale

As an example we will use the time-dependent Navier–Stokes equations for incom-
pressible flow for mass conservation and momentum conservation (differential form)
without gravity. The dimensionless Navier–Stokes equations are commonly expressed
in a reference frame where a unit of length corresponds to a characteristic physical
length, x0, of the system. We will let this characteristic length scale correspond to the
size of our computational domain in the spatial x-direction. Given K×L×M grid points,
placed at unit intervals, the corresponding size of the grid then is K−1. Figure 3.1 illus-
trates these relations. As (3.1) is expressed in the reference frame of the computational
domain, spatial differentiation then generates a factor, K−1

def= η , in the governing equa-
tions. In the continuity equation, (3.1a), these factors all cancel out since each term has
exactly one spatial derivative. In the momentum equations, (3.1b-3.1d), the diffusion
and time derivative terms will be scaled with η and η−1, respectively.

∂u
∂x

+ ∂v
∂y

+ ∂w
∂ z

= 0 (3.1a)

η−1 ∂u
∂ t

+u
∂u
∂x

+v
∂u
∂y

+w
∂u
∂ z

= −∂ p
∂x

+ η
Re

∇2u (3.1b)

η−1 ∂v
∂ t

+u
∂v
∂x

+v
∂v
∂y

+w
∂v
∂ z

= −∂ p
∂y

+ η
Re

∇2v (3.1c)

η−1 ∂w
∂ t

+u
∂w
∂x

+v
∂w
∂y

+w
∂w
∂ z

= −∂ p
∂ z

+ η
Re

∇2w (3.1d)

The scaling of the Navier – Stokes equations is further discussed in Appendix A, where
independent scaling of the temporal dimension is also shown.

16 Algebraic Formulation of Differential Equations

y
→

x →
(0,0,m) (1,0,m) (3,0,m) ... (K−2,0,m) (K−1,0,m)

(0,1,m) (1,1,m) ...

⋮

(K−2,1,m) (K−1,1,m)

(0,L−2,m) (1,L−2,m) ...

(0,L−1,m) (1,L−1,m) (3,L−1,m) ...

x0 ≅ K−1
def= η

L
−1

z

Figure 3.1: This figure shows the different scales the computational domain corresponds to.

x0 is the physical characteristic size which the Reynolds number is based upon. This length

corresponds to K−1 in the computational domain.

3.2 Algebraic Form

First we will express the differential equations as algebraic equation systems defined
for each grid-cell given by the indices k, l and m. The grid-cell systems are coupled
and this must be taken into account when solving for the equation for all the grid-
components. The velocity and pressure are taken to be continuously distributed vari-
ables approximated as defined in (2.19), where pk,l,m contains the pressure components
for the grid-cell and uk,l,m, vk,l,m and wk,l,m contain the velocity components for the spa-
tial x,y and z directions, respectively (see Chapter 2.3). The approximation is shown in
(3.2) for all the fluid components.

p(x,y,z) ≈ ˆ̂̂
bT (x′k,y

′
l,z
′
m)pk,l,m (3.2a)

u(x,y,z) ≈ ˆ̂̂
bT (x′k,y

′
l,z
′
m)uk,l,m (3.2b)

v(x,y,z) ≈ ˆ̂̂
bT (x′k,y

′
l,z
′
m)vk,l,m (3.2c)

w(x,y,z) ≈ ˆ̂̂
bT (x′k,y

′
l,z
′
m)wk,l,m (3.2d)

Further, a short-hand notation for the derivatives of the basis functions is defined in
(3.3):

bμ
def= ∂

∂ μ
ˆ̂̂
b(x′k,y

′
l,z
′
m) , bμμ

def= ∂ 2

∂ μ2

ˆ̂̂
b(x′k,y

′
l,z
′
m) , . . . (3.3)

3.3 Solution Algorithms 17

By substituting the approximated pressure and velocity (3.2) into the Navier–Stokes
equations (3.1) and applying the proper scaling we arrive at the algebraic form of the
differential equations, (3.4), for each grid-cell. Note that the cell-indices, k, l,m are
ommitted in (3.4) for the sake of brevity.

bT
x u+bT

y v+bT
z w = 0 (3.4a)

1

η
∂
∂ t

bT u+(bT ubT
x +bT vbT

y +bT wbT
z)u = −bT

x p+ η
Re

(bT
xx+bT

yy+bT
zz)u (3.4b)

1

η
∂
∂ t

bT v+(bT ubT
x +bT vbT

y +bT wbT
z)v = −bT

y p+ η
Re

(bT
xx+bT

yy+bT
zz)v (3.4c)

1

η
∂
∂ t

bT w+(bT ubT
x +bT vbT

y +bT wbT
z)w = −bT

z p+ η
Re

(bT
xx+bT

yy+bT
zz)w (3.4d)

3.3 Solution Algorithms

3.3.1 Linearization and Iterative Steady State Solution

In order to solve the nonlinear system of equations, (3.4), one possible approach is to
linearize the system and solve iteratively. In the steady state case, the time derivatives
are by definition zero, so the partial time derivative term is discarded. In (3.5) we
collect the remaining nonlinear convection terms, and in (3.6) we collect the viscous
stress terms.

mT
n

def= bT ubT
x +bT vbT

y +bT wbT
z (3.5)

sT def= − η
Re

(bT
xx+bT

yy+bT
zz) (3.6)

The equation set for each grid-cell can thus be written on matrix form as shown in (3.7)
and (3.8). ⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 bT
x bT

y bT
z

bT
x mT + sT 0 0

bT
y 0 mT + sT 0

bT
z 0 0 mT + sT

⎤⎥⎥⎥⎥⎥⎥⎥⎦���
Ak,l,m

⎡⎢⎢⎢⎢⎢⎢⎢⎣
p
u
v
w

⎤⎥⎥⎥⎥⎥⎥⎥⎦%
xk,l,m

= 0 (3.7)

Ak,l,mxk,l,m = 0 (3.8)

As shown in (3.7) we let xk,l,m be constructed from the grid-cell components. The grid-
cell systems, (3.8), appear to be homogeneous. However, boundary conditions have
not yet been taken into account. All the grid-cell matrices, Ak,l,m, are gathered into one
matrix, Π, as shown in (3.9):⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0,0,0 0 . . .
0 A0,0,1⋮ ⋱

Ak,l,m ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
def= Π (3.9)

We will let some of the grid-components be constant due to boundary conditions, and
define the two column matrices, g and c, containing all the non-boundary components

18 Algebraic Formulation of Differential Equations

and the boundary components of the grid, respectively. Further, we will define two
mapping matrices, I and B which map the interior and boundary components of the
grid to the grid-cell components, xk,l,m as shown in (3.10):

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0,0,0

x0,0,1⋮
xk,l,m⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Ig+Bc (3.10)

Each row in the mapping matrices, I and B, contains exactly one nonzero element,
equal to unity, which maps one element in g or c to its corresponding grid-cell compo-
nent. All the grid-cell systems may then be written as one matrix equation, shown in
(3.11):

Π(Ig+Bc) = 0 (3.11)

We would like to find a solution which satisfies (3.11) as well as possible in the entire
computational domain.

∇g∫
V

(Ig+Bc)T ΠT Π(Ig+Bc)dV = 0 (3.12)

Recall that Π depends on the grid-components, which are unknown. In order to solve
(3.12) as a linear system, we will use an iteration where Π is taken as constant, con-
structed using an initial guess and subsequently updated with the latest approximation
of the grid components.

∫
V

IT ΠT
(n)Π(n)IdV

��
ΦT
(n)Φ(n)

g(n+1) = −∫
V

IT ΠT
(n)Π(n)BdV c

���
ω(n)

(3.13)

ΦT
(n)Φ(n)g(n+1) = ω(n) (3.14)

The iteration1 defined in (3.14) constitutes a fully coupled scheme since it solves for
the velocity and pressure simultaneously and will, under conditions which will be stud-
ied further, give solutions for g which converge toward a constant value until floating
point errors become dominant. This approach is successfully used in [9] (with variable
relaxation factors).

3.3.2 Linearization and Implicit Time Marching

Time marching can be approached in much the same way as in the steady state case.
We are using an incompressible fluid in the current example, so explicit time marching
is unstable. One way to deal with this is to use artificial compressibility. Another
way is to use implicit time marching, which we will go through here using backward

1A type of fixed point iteration.

3.3 Solution Algorithms 19

Euler integration (used to simulate two-phase incompressible 3D flow in Chapter 5 and
Chapter 6.2).

f∣t=1&
f(1)

= f∣t=0&
f(0)

+h
∂ f
∂ t

∣
t=h�����������

ḟ(1)

(3.15)

Thus we substitute u(i−1) + hu̇(i) for u, v(i−1) + hv̇(i) for v, w(i−1) + hẇ(i) for w and
p(i−1)+hṗ(i) for p in (3.4). In this case u̇(i), v̇(i), ẇ(i) and ṗ(i) are the unknown quan-
tities. As before we collect nonlinear convection terms and viscous stress terms. How-
ever, we must add the time derivative on the left hand side and subtract the previous
timestep on the right hand side.

m(i)Tn
def= bT u(i)bT

x +bT v(i)bT
y +bT w(i)bT

z (3.16)

In this case we let the pressure term be treated as constant when solving for the velocity
and vice versa. This gives us the two systems (3.17) and (3.18), which are smaller than
the corresponding system (3.7) which was used in the steady state case and may be
solved using a semi-coupled scheme or an uncoupled scheme.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hbT
x hbT

y hbT
z

bT

η +h(m(i)T + sT) 0 0

0 bT

η +h(m(i)T + sT) 0

0 0 bT

η +h(m(i)T + sT)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

u̇(i)
v̇(i)
ẇ(i)

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−(bT

x u(i−1)+bT
y v(i−1)+bT

z w(i−1))−bT
x p(i)−(m(i)T + sT)u(i−1)−bT
y p(i)−(m(i)T + sT)v(i−1)−bT
z p(i)−(m(i)T + sT)w(i−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.17)

⎡⎢⎢⎢⎢⎢⎣
hbT

x
hbT

y
hbT

z

⎤⎥⎥⎥⎥⎥⎦ ṗ(i) =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

−bT
x p(i−1)− bT u̇(i)

η −(m(i)T + sT)u(i)−bT
y p(i−1)− bT v̇(i)

η −(m(i)T + sT)v(i)−bT
y p(i−1)− bT ẇ(i)

η −(m(i)T + sT)w(i)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.18)

Now, recalling that the system is nonlinear – unknown quantities are present in the
cell matrices as well as in the solution vector, we employ the same strategy as with
the steady state case. The only differences are that we have two systems, and that the
unknowns now are the time derivatives, u̇, v̇, ẇ and ṗ. Since we have two systems, two
sets of mapping matrices are needed. Let the velocity system be Ivg+Bvc and let the
pressure system be Iph+Bpd. Further, let Π be the matrix of the grid-wide system for
the velocity and Ξ be the matrix of the grid wide system for the pressure. We omit the
time-step indication, (i), and let it be understood that the equation sets deal with the
i’th time step where the i’th interior components are unknown.

Π(Ivgv+Bvcv) = π (3.19)

Ξ(Ipgp+Bpcp) = ξ (3.20)

20 Algebraic Formulation of Differential Equations

A least squares solution is then formulated for both systems.

∫
V

IT
v ΠT
(n)Π(n)IvdV

��
ΦT
(n)Φ(n)

g(n+1) = ∫
V

IT
v ΠT
(n)(π(n)−Π(n)Bvc(n))dV

���
ω(n)

(3.21)

∫
V

IT
p ΞT
(n)Ξ(n)IpdV

��
ΘT
(n)Θ(n)

h(n+1) = ∫
V

IT
p ΞT
(n)(ξ(n)−Ξ(n)Bpd(n))dV

��
ψ(n)

(3.22)

For each time-step, we have the following linearized iterations

ΦT
(n)Φ(n)g(n+1) = ω(n) (3.23)

ΘT
(m)Θ(m)h(m+1) = ψ(m) (3.24)

We may choose to run these iterations interchangeably, always using the latest approx-
imation of one when solving the other (semi-coupled scheme), or we may choose to
solve the velocity iteration completely and then solving the pressure system in one step
since it is linear once the velocity is taken as constant (uncoupled scheme).

3.3.3 Notes on Boundary Conditions

A grid-point on the boundary may contain both quantities which are known (given by
the boundary conditions) but may, at the same time, also contain unknown quantities.
For example, assume we have no-slip Diriclet boundary conditions for the velocity at
a boundary in the xy-plane. In this case the velocity components, including derivatives
in the x and y directions will be given by the boundary conditions, but any derivatives
in the z direction, including mixed derivatives, will be unknown because they do not
describe the condition on the boundary – rather the condition as we move away from
the boundary. Von Neumann boundary conditions may similarly be applied directly by
simply defining the derivatives in the grid points at the boundary as known quantities.

In the incompressible case there must also be a constraint for the pressure. This can
be implemented by assigning a constant pressure to a fixed point, or by adding an extra
conservation-like equation to the pressure.

3.4 Mapping Matrices

The mapping matrix I is a highly sparse matrix with either exactly one or none nonzero
entries in each row which is equal to unity. Each row then corresponds to one element in
one particular grid cell and each column corresponds to one of the interior-components
(hence it may be zero if the element in the grid cell is a boundary-component). The
mapping matrix B is structured in the same way, except that in this case the columns
correspond to boundary-components. Figure 3.2 illustrates the logical layout of the
mapping matrices.

3.5 Sampling and Integration 21

grid-cell A

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 0

0 1 0

0 0 1 0

0 0 0 1 0

grid-cell B

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 0 0 1 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 1 0

. . .

grid-cell C

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 0 0 0 0 1 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0

grid-cell D

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 ⋱⋮��
components

Figure 3.2: The logical structure of the mapping matrices. If an interior (boundary) component

maps to a specific grid-cell component, there is a one in the row corresponding to the grid-cell

component and the column corresponding to the interior (boundary) component. A row with

all zeros (see third row of grid-cell B) means that the grid-cell component has no correspond-

ing interior (boundary) component and is thus a boundary (interior) component. Not that all

columns must have at least one nonzero entry, since all interior (boundary) components maps

to at least one grid-cell component.

In practice, the mapping matrices are not formed explicitly. Instead they are imple-
mented as algorithms or as one-dimensional index arrays (see Figure 3.3). The matrix
form is useful when formulating the equation system and the index/algorithmic ap-
proach is useful for the actual computation as it is efficient in terms of storage and
operation count.

0 1 2 3���
grid-cell A

3 4 −1 5���
grid-cell B

5 6 7 8���
grid-cell C

7 8 . . .��
grid-cell D

Figure 3.3: Mapping matrix represented by an index array. The number in the array is column

index of the mapping matrix.

3.5 Sampling and Integration

3.5.1 Numeric Versus Analytic

The integration over the computational domain, (3.13), may in some cases be com-
puted analytically (see for example the test case in Chapter 4.1). For general purposes,

22 Algebraic Formulation of Differential Equations

however, this integration must be performed numerically.

3.5.2 Sampling

The numeric integration is done for each grid-cell separately and then added to the prod-
uct ((3.14), (3.23) or (3.24)) using the mapping matrices. A set of sample positions for
each grid-cell are defined and the value of the integral is taken to be approximately the
sum of the value of the integrand at each point, divided by the number of points. Both
uniform and randomly distributed sample points have been tested.2 This summation is
suitable for parallel computation and we will go through the implementation on GPU
in Chapter 4.3.

3.5.3 Sub-grid Features

The numeric integration allows us to apply different governing equations independent
of the grid resolution and orientation. Different fluid properties (i.e. multiphase flow)
and solid objects may thus be included without adapting the grid to fit a variable ge-
ometry. Figure 3.4 shows how different regions may intersect with a grid-cell. At each
sample position one select the appropriate governing equation and apply its contribu-
tion to the integral.

Figure 3.4: Illustration of different regions within a grid-cell where different governing equa-

tions are applied. In this example the sample points in black falls within a solid region, the

blue and red sample points represent fluids with different properties. Since the integration

is performed numerically, the different regions may have any shape. However, features very

small compared to the grid-cell will be approximated poorly unless the order of continuity is

increased to compensate.

2Uniform sample positions are used in Chapter 6.1, while randomly distributed sample positions are used in

Chapter 5 and Chapter 6.2.

3.6 Further Development on The Solution Algorithm 23

3.6 Further Development on The Solution Algorithm

The use of iterative linearization, together with sparse matrix schemes, in order to solve
the algebraic equation system was originally implemented for the two dimensional
steady state case. As the dimension increases to 3 and 4, the memory requirement
becomes an obstacle, even with the benefit of sparse matrix storage schemes. In par-
ticular GPU memory is a limiting factor. For this purpose, the next step in developing
this method should be the implementation of a pure nonlinear algorithm, e.g. non-
linear conjugate gradients, which does not require a linearized equation system to be
created. This would enable higher resolution in the three-dimensional simulations and
would also enable us to formulate a time dependent problem on a four-dimensional grid
without using a marching scheme.

24 Algebraic Formulation of Differential Equations

Chapter 4

Implementation

4.1 Spherical Laplace Equation

Before diving into the Navier–Stokes Equations in higher dimensions we will go
through the implementation of a simple example; the Laplace equation in spherical
coordinates with no angular dependence. The problem is discretized for a general res-
olution (K grid-points) and a fixed C2 continuity, i.e. Ω = 3.

4.1.1 Governing Equations

The problem is defined by the differential equation (4.1) and the boundary conditions
(4.2). Together these yield the analytical solution (4.3).

2

r
∂ f
∂ r

+ ∂ 2 f
∂ r2

= 0 (4.1)

f (r0) = f0 , f (r1) = f1 (4.2)

f (r) = r1 f1− r0 f0

r1− r0
− r0r1 (f1− f0)

r1− r0
r−1 (4.3)

We now turn to the numerical solution. In accordance with the mathematical frame-
work, we represent f on a uniform grid with a spacing between the grid-points equal to
unity. Let there be K grid-points, with coordinates x[k] = k for k ∈ {0, . . . ,K −1}. Thus
we have

r = r1− r0

K−1
x+ r0 (4.4a)

∂ f
∂ r

= K−1

r1− r0

∂ f
∂x

(4.4b)

∂ 2 f
∂ r2

= (K−1

r1− r0
)2 ∂ 2 f

∂x2
(4.4c)

We write (4.1) in grid coordinates as

∂ f
∂x

+ x+Ar0

2

∂ f 2

∂x2
= 0 where A def= K−1

r1− r0
(4.5)

26 Implementation

8c2+4c+1
7/15

240c2+96c+17
28/5

24c2+16c+3
14/15

−8c2+4c+1
7/15

240c2+144c+29
7/15

−24c2+8c+1
14/15⋰ 192c2+31c+12

7/5
88c2+48c+9

14/15
−240c2+96c+17

28/5
432c2+216c+37

28/5
−(4c−1)(4c+1)

7/15⋰ ⋰ 24c2+6c+1
7/90

−24c2+16c+3
14/15

(4c+1)(4c+3)
7/15

8c2+4c+1
7/45⋰ ⋰ ⋰ 8c2+4c+1

7/15
−240c2+144c+29

28/5
24c2+8c+1

14/15⋰ ⋰ ⋰ ⋰ 384c2+322c+89
14/5

−88c2+40c+7
14/15⋰ ⋰ ⋰ ⋰ ⋰ 12c2+9c+2

7/180

Table 4.1: Analytically computed elements of the symmetric matrix, Lk, where c def=(x[k]+Ar0)/2
Using the approximation given in (2.14), we arrive at the following algebraic equation
for the k’th grid-cell (4.6):

(∂bT
2Ω(x′k)
∂x

+ x+Ar0

2

∂ 2bT
2Ω(x′k)
∂x2

)fk = 0 where x′k = x−x[k] (4.6)

We can write (4.6) as
lTk (x′k)fk = 0 (4.7)

The grid-cell system then is

K−2∑
k=0

1∫
0

lk(x′k)lTk (x′k)dx′k

���
Lk

fk = 0 (4.8)

K−2∑
k=0

Lkfk = 0 (4.9)

The integrand in (4.8) is a symmetric 2Ω×2Ω matrix with polynomial entries. The
integral is computed analytically. The entries of Lk is shown in Table 4.1. The unknown
interior-components are ordered into a column-vector as shown in (4.10):⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F[1,0]
F[1,1]⋮

F[1,Ω−1]
F[2,0]
F[2,1]⋮

F[K−2,Ω−2]
F[K−2,Ω−1]

F[K−1,1]
F[K−1,2]⋮

F[K−1,Ω−1]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.10)

4.1 Spherical Laplace Equation 27

Note that the the boundary-components, F[0,0] and F[K − 1,0], are not present in
(4.10). The ordering of the grid-components is in principle arbitrary. However, for
larger systems it is convenient to arrange them so that the resulting system becomes
narrow banded. The mapping matrices are not formed explicitly but implemented as
algorithms. The equation system is linear and is solved directly using Gaussian elimi-
nation.

4.1.2 Implementation Details

The implementation is kept simple by using a fixed order of continuity of 2 (thus Ω= 3).
The grid resolution is variable. The code is written in C++ using standard libraries only.
The complete source code is given in Listing B.1 and is tested with the MinGW 64 bit
compiler. We will go through the important details and explain how they relate to the
mathematical framework. Grid data, boundary values and other grid properties are
stored as global data shown in Listing 4.1. We use 64 bit double precision for all real
numbers and 32 bit signed integers for indices and counters.

Listing 4.1: Global Data

/ / g r i d p r o p e r t i e s
c o n s t i n t Omega = 3 ; / / number o f d e r i v a t i v e s
c o n s t double f0 = 1 . 0 ; / / l ower boundary v a l u e
c o n s t double f1 = 1 0 . 0 ; / / upper boundary v a l u e
c o n s t double r0 = 1 . 0 ; / / l ower boundary r a d i u s
c o n s t double r1 = 1 0 . 0 ; / / upper boundary r a d i u s
i n t K = 5 ; / / number o f gr id − p o i n t s
double A = (K− 1) / (r1 − r0) ; / / r e f e r e n c e − f rame change
v e c t o r <double > F (K*Omega , 0 . 0) ; / / g r i d v a l u e s

The algoritm is implemented using the set of functions shown in Listing 4.2.

Listing 4.2: Functions

/ / Computes n o r m a l i z e d b a s i s f u n c t i o n s f o r Omega = 3 .
/ / The f i r s t argument i s t h e g r i d c e l l c o o r d i n a t e .
/ / The b a s i s f u n c t i o n s are e v a l u a t e d and s t o r e d i n t h e
/ / a r r a y g i v e n i n t h e second argument
void b a s i s 6 (c o n s t double , double [6]) ;

/ / E v a l u a t e s a f u n c t i o n based on gr id − c e l l components
/ / g i v e n i n an a r r a y (second argument) , a t c o o r d i n a t e
/ / g i v e n i n t h e f i r s t argument
double e v a l u a t e 6 (c o n s t double , c o n s t double [6]) ;

/ / R e t u r n s t h e a n a l y t i c r e f e r e n c e s o l u t i o n :
/ / f (r) = a + b / r
double a n a l y t i c (c o n s t double) ;

/ / R e t u r n s t h e computed s o l u t i o n
double computed (c o n s t double) ;

28 Implementation

/ / Computes t h e l a p l a c i a n v e c t o r p r o d u c t i n t e g r a t e d over
/ / t h e k ’ t h gr id − c e l l . R e s u l t i s s t o r e d i n t h e array ,
/ / which i s t r e a t e d as a 6 by 6 m a t r i x (s t o r e d row−wise)
void s p h L a p l a c i a n I n t e g r a l (c o n s t i n t , double [3 6]) ;

/ / Maps gr id −components t o non−boundary components
/ / r e t u r n s −1 i f g i v e n a boundary component
i n t mapComp (c o n s t i n t) ;

/ / Maps t h e non−boundary components t o t h e gr id −components
i n t unmapComp (c o n s t i n t) ;

/ / Computes t h e s o l u t i o n t o our t e s t problem f o r a g i v e n
/ / r e s o l u t i o n
void s o l v e S y s t e m (c o n s t i n t) ;

/ / S o l v e s a symmetr ic , l i n e a r e q u a t i o n s y s t e m
void solveSym (c o n s t i n t , / / s i z e

v e c t o r <double > &, / / m a t r i x
v e c t o r <double > &); / / r e s u l t

/ / Compares t h e computed s o l u t i o n t o t h e a n a l y t i c s o l u t i o n
double getRMSerror (void) ;

The main function, Listing 4.3, computes solutions for a range of resolutions and prints
the RMS error to the console.

Listing 4.3: Main Function

/ / Compute s o l u t i o n s f o r d i f f e r e n t g r i d r e s o l u t i o n s
/ / p r i n t t h e RMS e r r o r f o r each r e s o l u t i o n
i n t main ()
{

f o r (i n t i = 5 ; i <= 2 0 ; i ++)
{

c o u t << "K = " << se tw (3) << i ;
s o l v e S y s t e m (i) ;
c o u t << " , RMS e r r o r : "

<< se tw (1 2) << getRMSerror () << s t d : : e n d l ;
}

re turn 0 ;
}

Listing 4.4 shows the implementation of the basis functions, b̂6(x) in Table 2.3. The
polynomials are factorized in order to reduce round-off errors. For Ω = 3, there are six
basis functions. These are needed together, thus the function evaluates them all and
stores the result in an array.

4.1 Spherical Laplace Equation 29

Listing 4.4: Basis Function Set

/ / x i s t h e c o o r d i n a t e , r e s u l t i s s t o r e d i n B []
void b a s i s 6 (c o n s t double x , double B [6])
{

c o n s t double x2 = x*x ;
c o n s t double x3 = x2*x ;
c o n s t double y = 1 − x ;
c o n s t double y2 = y*y ;
c o n s t double y3 = y2*y ;

B[0] = y3 * (3 * (2 * x + 1)* x + 1) ;
B[1] = 5* y3*x *(3* x + 1) ;
B[2] = 30* y3*x2 ;
B[3] = x3 * (3 * (2 * y + 1)* y + 1) ;
B[4] = −5*x3*y *(3* y + 1) ;
B[5] = 30* x3*y2 ;

}

Listing 4.5 shows the implementation the assembled algorithm. A grid wide system is
instantiated, and a loop over all the grid cells adds the grid-cell systems, (4.9), to the
grid-wide system. The system is solved (Gaussian elimination) and copied back to the
grid.

Listing 4.5: System Assembly and Solution

/ / Computes t h e s o l u t i o n t o our t e s t problem
void s o l v e S y s t e m (c o n s t i n t n u m _ g r i d p o i n t s)
{

K = n u m _ g r i d p o i n t s ;
F . r e s i z e (K*Omega , 0 . 0) ;
A = (K− 1) / (r1 − r0) ;

/ / S e t boundary components (a0 = 1)
F [0] = f0 ;
F [Omega *(K−1)] = f1 ;

/ / I n s t a n t i a t e and i n i t i a l i z e m a t r i c e s
c o n s t i n t N = Omega*K − 2 ; / / s y s t e m s i z e
v e c t o r <double > M(N*N , 0 . 0) ; / / s y s t e m m a t r i x
v e c t o r <double > B(N , 0 . 0) ; / / s y s t e m r e s u l t
double LLT[4* Omega*Omega] ; / / c e l l s y s t e m

/ / Loop over a l l t h e gr id − c e l l s
f o r (i n t k = 0 ; k < K−1; k ++)
{

/ / Get t h e l a p l a c i a n i n t e g r a l f o r c u r r e n t c e l l
s p h L a p l a c i a n I n t e g r a l (k , LLT) ;

30 Implementation

/ / Add t h e c e l l − s y s t e m t o t h e gr id −wide s y s t e m
c o n s t i n t i 0 = Omega*k ;
f o r (i n t i = 0 ; i < 2*Omega ; i ++)
{

c o n s t i n t row = mapComp (i 0 + i) ;

/ / i g n o r e rows c o r r e s p o n d i n g t o t h e boundary
i f (row >= 0)

f o r (i n t j = 0 ; j < 2*Omega ; j ++)
{

c o n s t i n t c o l = mapComp (i 0 + j) ;
c o n s t double L i j = LLT[2* Omega* i + j] ;

/ / c o l >= 0:
/ / non−boundary −> add t o m a t r i x

/ / c o l < 0:
/ / boundary −> add t o s o l u t i o n

i f (c o l >= 0)
M[N*row + c o l] += L i j ;

e l s e
B[row] −= L i j *F [i 0 + j] ;

}
}

}

/ / s o l v e t h e l i n e a r s y s t e m
solveSym (N,M, B) ;

/ / copy s o l u t i o n back t o g r i d
f o r (i n t i = 0 ; i < N; i ++)

F [unmapComp (i)] = B[i] ;
}

4.1.3 Output and Plots

Listing 4.6 shows the console output of the program and Figure 4.1 shows a plot of
the RMS error on a logarithmic scale. As expected, the RMS error decreases exponen-
tially with an increasing grid resolution. Figure 4.2 shows plots of different computed
solutions together with the reference.

4.1 Spherical Laplace Equation 31

10−5

10−1

5 K �→ 20

Figure 4.1: This figure shows a plot of the RMS error from Table 4.6 on a logarithmic scale.

Listing 4.6: Console Output

K = 5 , RMS e r r o r : 0 .109125
K = 6 , RMS e r r o r : 0 .0447779
K = 7 , RMS e r r o r : 0 .0198103
K = 8 , RMS e r r o r : 0 .00936651
K = 9 , RMS e r r o r : 0 .00469804
K = 10 , RMS e r r o r : 0 .00247644
K = 11 , RMS e r r o r : 0 .00136312
K = 12 , RMS e r r o r : 0 .000781452
K = 13 , RMS e r r o r : 0 .000463423
K = 14 , RMS e r r o r : 0 .000283197
K = 15 , RMS e r r o r : 0 .000177757
K = 16 , RMS e r r o r : 0 .000114372
K = 17 , RMS e r r o r : 7 .53395 e−005
K = 18 , RMS e r r o r : 5 .06704 e−005
K = 19 , RMS e r r o r : 3 .46625 e−005
K = 20 , RMS e r r o r : 2 .42191 e−005

32 Implementation

K = 15 K = 20

K = 5 K = 10

(r0, f0) (r0, f0)

(r0, f0) (r0, f0)
(r1, f1) (r1, f1)

(r1, f1) (r1, f1)

Figure 4.2: Plots of the computed solution, b̂T (x′k)fk, for four different grid resolutions (black

lines with dots at the grid-points) compared with the analytic reference solution (red line).

4.2 Code Structure and Data Layout

4.2.1 Solver Application Structure

The code environment used to implement and test the current method was chosen based
on requirements on versatility, memory management control, low level control and
available application programming interfaces (APIs). In order to achieve acceptable
computation speed with low-cost hardware it was necessary to implement algorithms
for use in parallel on GPU devices. The Open Compute Library (OpenCL) was used
for this purpose. Visualization, which is essential for debugging and verification, was
implemented using the Open Graphics Library (OpenGL) for real time visualization
and ray-tracing for higher quality rendered graphics.

4.2 Code Structure and Data Layout 33

Host global scope

C++ standard libraries

OpenGL OpenCL Real Type

2,3,4 - Vector

Interpolation

Matrix

Sparse Matrix

OpenCL utility functions

Grid

Visualization/Interaction

GPU device global scope

Generated code

GPU Kernels

Simulation geometry

Figure 4.3: A diagram showing the basic layout of the application code which was developed

to test the current method. Dependencies points upward within a given scope. Public open-

source code is indicated with white background. Code developed especially for this thesis is

placed on colored background. Green indicates plain old data (POD) or C99 standard code

(compliant with OpenCL GPU source code), blue is used for C++ classes and yellow for C++

namespaces.

Figure 4.3 shows the basic layout of the application code used for in the simula-
tion of unsteady three dimensional flow. Some alterations were made for the different
computed results presented in Chapters 5 - 6. Partly improvements and partly modifica-
tions to suit each test case. A complete functioning implementation consists of between
20000 and 50000 lines of code, which is too extensive to be listed in this thesis. We
will go through parts of the source-code with emphasis on the program structure and
key sections necessary to create an efficient implementation.

34 Implementation

4.2.2 Scalar and Vector Types

All computed results presented in this work have been obtained using 64-bit floating
point numbers. However, tests with 32-bit and 128-bit1 floating point numbers has been
made during the development process. Preprocessor directives define a general floating
point type used for real numbers2. Listing 4.7 shows the preprocessor definitions used
when compiling for 64-bit precision. The floating point precision can thus be altered
without rewriting any major part of the code.

Listing 4.7: Real Type Definitions

i f d e f FLOAT64
d e f i n e REAL_TYPE double
d e f i n e REAL_ONE 1 . 0
d e f i n e REAL_TWO 2 . 0
d e f i n e REAL_ZERO 0 . 0
d e f i n e REAL_HALF 0 . 5
d e f i n e REAL_PI 3.14159265358979323846264338327950
d e f i n e REAL_TWOPI 6.283185307179586476925286766559
d e f i n e REAL_EPSILON 2.2204460492503131 e−16
e n d i f / / FLOAT64

Vector types of constant size for spatial and temporal coordinates and indices are de-
fined (Listing 4.8) in accordance with the Plain Old Data (POD) specification. This
ensures that the data is contiguous in memory and is compatible with common imple-
mentations of the OpenCL built in data types.

Listing 4.8: Vector Structures

s t r u c t vec2 { REAL_TYPE x , y ; } ;
s t r u c t vec3 { REAL_TYPE x , y , z ; } ;
s t r u c t vec4 { REAL_TYPE x , y , z , t ; } ;
s t r u c t i n t 2 { i n t k , l ; } ;
s t r u c t i n t 3 { i n t k , l , m; } ;
s t r u c t i n t 4 { i n t k , l , m, n ; } ;

4.2.3 Classes and Namespaces

The matrix class implements a variable sized dense matrix (dynamic memory alloca-
tion) based on the real type (Listing 4.7) with arithmetic operations, some common
factorizations and partially pivoted Gaussian elimination (see Listing B.2).

The sparse matrix class implements different sparse matrix storage schemes for
symmetric matrices and common matrix operations optimized for sparse matrices (see
Listing B.3 in the appendix).

The OpenCL utility functions is a class containing a collection of functions which
facilitates initialization of OpenCL and encapsulates the handles to the GPU device,

1Current GPU’s are limited to 32-bit or 64-bit floating point numbers. As a consequence, the tests with 128-bit

floating point precision were performed on CPU only.
2C++ templates could have been used instead of preprocessing. But this would have reduced compatibility

with OpenCL source code.

4.2 Code Structure and Data Layout 35

context and the GPU programs on the test system. Additionally it simplifies parsing
of the source code and debugging information between the GPU compiler and the host
system.

The simulation geometry class contains information about the computational do-
main, e.g. which equations to use in different regions and the boundary conditions.

The grid class contains the grid data and implements the algorithm used for the
iterative solution approach. It also contains the host code necessary to instruct the GPU
device in doing the numeric integration.

The interpolation name-space contains functions which generates OpenCL source-
code associated with the basis functions and grid-cell function approximation.

The visualization name-space implements real-time visualization using OpenGL
(glfw 3) and user interaction.

4.2.4 OpenCL sourcecode

The OpenCL source-code consists of a set of kernel functions which are compiled and
executed on a OpenCL compatible device via instructions from the main program (the
host). Multiple instances of each kernel may be executed in parallel and (preferably)
performs computations on its own limited chunk of data. Each kernel also has access
to globally defined functions and data. The global data is accessible to all kernels
but, when reading from and writing to global memory, potential access conflicts arise
since several kernels are executed simultaneously. A large part of the GPU source
code is generated by the host program upon its execution in order to ensure consistency
between the host code and the OpenCL code. We will take a closer look at the GPU
computations in Chapter 4.3.

4.2.5 Grid Data Memory Management and Indexing

The way the grid data is aligned in memory affects how efficiently it can be accessed
and may thus affect computational speed in principle. In practice, the use of precom-
puted indexes (the mapping matrices) ensures that reading or writing grid data does not
greatly affect the computational speed in current implementations. All grid data is dy-
namically allocated as needed and accessed through index lists and pointers. In Listing
4.9 we see the parts of the grid-class which deals with memory allocation and indexing.
For each time-step there is a pointer to an array of grid-point structs. Each grid-point
struct also contains pointers to grid-components – one for each function which is used
in the Navier–Stokes equations.

Listing 4.9: Grid Class Memory Managment and Indexing

c l a s s Grid {

p u b l i c :

enum Var type { X_VEL=0 , Y_VEL=1 , Z_VEL=2 , PRESSURE=3 , PHASE=4 } ;

/ / each g r i d p o i n t c o n t a i n s p o i n t e r s t o t h e g r i d da ta o f t h i s p o i n t
s t r u c t G r i d p o i n t

{

REAL_TYPE *U; / / x− v e l o c i t y
REAL_TYPE *V; / / y− v e l o c i t y
REAL_TYPE *W; / / z− v e l o c i t y

36 Implementation

REAL_TYPE *P ; / / p r e s s u r e
REAL_TYPE *F ; / / phase

} ;

/ / i n d i c e s g i v i n g a s p e c i f i c g r i d component
s t r u c t ComponentID

{

i n t 3 i ; / / g r id − p o i n t
i n t 3 s ; / / d e r i v a t i v e o r d e r
Var type t y ; / / t y p e (e . g . x−v e l , y−v e l , p r e s s u r e e t c)

} ;

/ / i n d e x e s o f components i n a gr id − c e l l
s t r u c t C e l l I n d e x

{

i n t 3 i ; / / c e l l i n d e x
s t d : : v e c t o r < i n t > vInd ; / / p o s i t i o n i n i n t e r i o r i n d e x
s t d : : v e c t o r < i n t > pInd ;

s t d : : v e c t o r < i n t > f I n d ;

s t d : : v e c t o r <ComponentID > vCmp ; / / p o s i t i o n i n g r i d
s t d : : v e c t o r <ComponentID > pCmp ;

s t d : : v e c t o r <ComponentID > fCmp ;

} ;

/ / r e t u r n s t h e number o f gr id − p o i n t s
i n t numGr idpo in t s (void) c o n s t { re turn i n t 3 _ p r o d (num_gpts) ; }

/ / r e t u r n s t h e number o f components (o f a t y p e) i n each gr id − p o i n t
i n t n u m D e r i v a t i v e s (void) c o n s t { re turn i n t 3 _ p r o d (num_sdrv) ; }

/ / r e t u r n s t h e number components (o f a t y p e) i n each gr id − c e l l
i n t numCellVar (void) c o n s t { re turn i n t 3 _ p r o d (2* num_sdrv) ; }

/ / a l l o c a t e s memory f o r a s e t o f g r i d p o i n t s and r e t u r n s a
/ / p o i n t e r t o t h e da ta i n memory
G r i d p o i n t * a l l o c a t e G r i d p o i n t s (void) c o n s t
{

c o n s t i n t N_G = numGr idpo in t s () ;

c o n s t i n t N_S = n u m D e r i v a t i v e s () ;

G r i d p o i n t *gp = new G r i d p o i n t [N_G] ;

f o r (i n t i = 0 ; i < N_G; i ++)

{

gp [i] . U = new REAL_TYPE[N_S] ;

gp [i] . V = new REAL_TYPE[N_S] ;

gp [i] .W = new REAL_TYPE[N_S] ;

gp [i] . P = new REAL_TYPE[N_S] ;

gp [i] . F = new REAL_TYPE[N_S] ;

}

re turn gp ;

}

/ *
member f u n c t i o n s s n i p p e d f o r b r e v i t y
* /

4.3 Numeric Integration on GPU 37

/ / s i z e o f t h e g r i d i n s p a t i a l d i r e c t i o n s
i n t 3 num_gpts ;

/ / number o f d e r i v a t i v e s i n each s p a t i a l d i r e c t i o n
i n t 3 num_sdrv ;

/ / as gr id −da ta f o r each t ime − s t e p i s a l l o c a t e d , a p o i n t e r i s appended
/ / a t t h e end t o t h e g r i d D a t a a r r a y
s t d : : v e c t o r < G r i d p o i n t *> g r i d D a t a ;

/ / t h e f o l l o w i n g i n d e x e s are used t o e f f i c i e n t l y a c c e s s t h e g r i d da ta
s t d : : v e c t o r <ComponentID > v e l o c i t y I n d e x ;

s t d : : v e c t o r <ComponentID > p r e s s u r e I n d e x ;

s t d : : v e c t o r <ComponentID > p h a s e I n d e x ;

s t d : : v e c t o r < C e l l I n d e x > c e l l I n d e x ;

} ;

4.3 Numeric Integration on GPU

In Chapter 4.1 the integration over the grid-cells was performed analytically. This can
not be done in the general case. In the two dimensional case, numerical integration us-
ing single threaded CPU computation is feasible, however for three or four dimensional
grids, this is would require too much computation time to be practical.

Algorithm 1 This pseudo-code illustrates how the GPU device is instructed to perform the

numeric integration and how the result is mapped back to the linearized system, (3.14), here

represented by Lx = z. The GPU computation is performed in two steps – expansion and

summation, which is explained further in Chapter 4.3.1.

for 0 ≤ s < numGridCells() do
Ghost ← gridCellData(s)
Gdev ← copyHostToDevice(Ghost)
Adev ← gpuExpansionStep(Gdev)
AT

devAdev ← gpuSummationStep(Adev)
Shost ← copyDeviceToHost(AT

devAdev)
N ← numGridCellComponents(s)
for 0 ≤ k < N do

r ← mapGridCellComponent(k)
if 0 ≤ r then

for 0 ≤ l < N do
r ← mapGridCellComponent(l)
if 0 ≤ c then

L[r,c] ← L[r,c]+S[k, l]
else

z[r] ← z[r]−S[k, l]Ghost[k]
end if

end for
end if

end for
end for

38 Implementation

4.3.1 Numeric Integration Scheme

An expansion-summation scheme was used for the numeric integration on the GPU
device. If we study (3.9) and (3.13) we see that the products AT

k,l,mAk,l,m may be inte-

grated independently for each grid-cell. The expansion-summation scheme entails that
we first compute the value of Ak,l,m for a range of sample positions in parallel. This is
the expansion step (see Figure 4.4). Then the summation for each component is com-
puted in parallel. This is the summation step (Figure 4.5). The numeric integral for
each grid cell is then added to the system of interior components or to the boundary
components using the mapping matrices (see Algorithm 1). The advantage of doing
the numeric integral in two steps has to do with GPU-memory accessing – the expan-
sion part is done most efficiently in parallel for the sample points, where the result for
each sample adds to the matrix entries of the grid-cell components. Thus there would
be a conflict in memory access if one attempted to do the summation in the expansion
step, while doing the expansion in the summation step would require evaluation of the
basis functions at the given sample position several times.

se
ri

al
ex

ec
u
ti

o
n

o
v
er

co
m

p
o
n
en

ts

parallell execution over samples

A
(s 0)

A
(s 1)

A
(s 2)

A
(s 3)

A
(s 4) ⋮

Figure 4.4: Execution order of the expansion step. Each OpenCL kernel is given a unique

sample position, si, of which the contribution to the integral for all grid-cell components is

computed.

4.4 Solving The Linearized System 39

se
ri

al
ex

ec
u
ti

o
n

o
v
er

sa
m

p
le

s
parallell execution over components

∑ s n
A
[0]T

A
[0]

∑ s n
A
[0]T

A
[1]

∑ s n
A
[0]T

A
[2]

⋮ ∑ s n
A
[r]T A

[c]

⋮

Figure 4.5: Execution order of the summation step. Each OpenCL kernel is given a unique

row, r, and column, c, and computes the sum over all sample positions for this matrix entry.

4.4 Solving The Linearized System

4.4.1 Sparse Matrix Storage Scheme

Once the integration over all grid-cells is performed and mapped to the linearized sys-
tems for the interior components (see (3.14),(3.23) or (3.24)), the remaining task is to
solve these systems. These systems tend to become quite large as the number of ma-
trix entries grows proportionally to the resolution and the spatial order to the power of
2×d, where d is the number of dimensions. For example, with Ω = 3 on a 10×10×10
grid, using a dense storage scheme with 64 bit floating point numbers would require
approximately 89 GB of system memory (or 49 GB for the velocity system if solved
independently). However, since the linear systems are symmetric and sparse (typical
sparsity around 2 % - 3 % depending on the order of continuity, boundary components
and grid resolution) when using the indexed sparse matrix storage scheme (see Listing
B.3) the required memory is reduced by nearly two orders of magnitude.

4.4.2 Direct Solution Versus Iterative

In the presented 3D simulations the semi-coupled scheme was used. For the velocity
system, the conjugate gradient iteration was found to be very efficient if preconditioned
properly (see Chapter 6.2). The smaller pressure system was most efficiently solved
directly (Gaussian elimination without pivoting).

40 Implementation

Chapter 5

Pelton Bucket Simulation

5.1 Outline

The material in the current chapter was presented at the Coupled Problems 2015 [1]
conference and aims to demonstrate a feasible potential for use of the current method
for simulating two phase flow, describing the basic mechanical property of flow in a
Pelton-turbine bucket. As previously discussed, we can not hope to achieve an accu-
rate realistic simulation without resorting to some form of modeling to compensate for
the lacking resolution of the grid. Instead we will construct idealized situation with
one stationary bucket and two incompressible fluids which differ only in density. The
bucket is symmetric, but we are not exploiting this. The bucket has a discontinuous
curvature in the symmetry plane, so using the symmetry plane to simplify computa-
tions could obscure potential issues with the interaction of the fluid and the bucket in
this region. We employ the methodology as described in Chapter 3.3.2 (and also used
in [10]).

5.2 Geometry and Computational Domain

For the purpose of this idealized simulation it is convenient to use an idealized bucket
design. We will define an analytic model of the turbine bucket.1 The analytic bucket is
designed to be mathematically simple, yet capable of performing the mechanical task
of a real turbine bucket.

r(y′) = Sx

4556
1+(y′

Sy
)2

(5.1a)

z′(x′,r) = −x′
√

r
x′
−1 (5.1b)

1 = (x′

Sx+δ
)2+(y′

Sy+δ
)2+(z′

Sx+2δ
)2

(5.1c)

The inner surface is a half-circle in the xz-plane extruded along an ellipse in the xy-
plane. The ellipse is defined in (5.1a), and (5.1b) gives the half-circle. The primed

1A parametric or polygon based model of an actual modern bucket design may be hard to obtain and may also

require further processing in order to be implemented in a numeric solver.

42 Pelton Bucket Simulation

coordinates, x′,y′ and z′, are here relative to the center of the bucket rather than relative
to the origin in the computational domain (not to be confused with sub-grid coordi-
nates). A cylindric section is subtracted from the tip of the bucket, allowing a rotation
into the beam without obstructing the previous bucket. Figure 5.2 shows cross sections
of the inner surface and Figure 5.1 shows perspective renderings from different angles.
The outer surface of the bucket is the xy-plane at z′ = 0 and a spheroid defined by (5.1c).
The parameter δ determines the thickness. The different parameters in (5.1) and Figure
5.2 are given in Table 5.1.

Sx Sy δ rb
0.35 0.35 0.05 0.1

Table 5.1: Analytic bucket parameters

Figure 5.1: Perspective renderings of the bucket (generated with ray-tracing). The edges of

the computational domain and grid resolution are given by the small spheres.

5.2 Geometry and Computational Domain 43

x �→

y
�→

z�→
r(y′)

2

r(y ′
)2

r(y′)

r(y′)
2

← r b
→

Sx

Sy

Sy
2

Figure 5.2: The upper graph shows a cross section in the xz-plane. The lower graph shows the

outline and center of the ellipse the inner surface is extruded along. The subtracted cylindrical

section is also indicated.

44 Pelton Bucket Simulation

5.2.1 Boundary Conditions and Simulation Parameters

The simulation parameters are given in Table 5.2. Figure 5.3 shows a cross-section of
the initial phase distribution.

L 15

η 14

τ 42/14

Ω 2

Re 1000

βheavy 10−2

βlight 10

Table 5.2: Simulation parameters with notation in accordance with the formulation of the

governing equations in Appendix A.

(0, 1
2 ,0) (1, 1

2 ,0)

(0, 1
2 ,1) (1, 1

2 ,1)
h
ea

v
y

fl
u
id

li
g
h
t

fl
u
id

solid

← 2rb →

Figure 5.3: A cross section in the xz-plane showing the initial phase distribution.

5.2 Geometry and Computational Domain 45

The z-component of the velocity is set to a constant value of one along the vertical
boundaries. The top boundary (z = 1) and bottom boundary (z = 0) have (time) constant
z-velocity given as a function of the distance from the horizontal axis center of the
computational domain (see (5.2) and Figure 5.4)

r =√(x−1/2)2+(y−1/2)2
(5.2a)

a = max(2r,1) (5.2b)

b = 1−a (5.2c)

wtop = −(a5+5a4b)+(10a3b2+10a2b3+5ab4+b5) (5.2d)

wbottom = (a3+3a2b)/21+3ab2+b3 (5.2e)

wtop

wbottom

x → 0.2 0.4 0.6 0.7

w
→

li
g
h
t

fl
u
id

h
ea

v
y

fl
u
id

−1

−1
2

0

1
2

1

Figure 5.4: The graphs show the z-component of the velocity at the upper and lower boundary

through the center of the computational domain.

Note that the total fluid volume in the computational domain is conserved with the
boundary conditions given in (5.2), i.e. (5.3) is satisfied:

1/2∫
r=0

2πrwtop(r)dr = 1/2∫
r=0

2πrwbottom(r)dr (5.3)

46 Pelton Bucket Simulation

5.3 Simulation Results

Figure 5.5: Surface Visualization at timesteps: 10,20,30,40,50 and 60 (each time-step corre-

sponding to 1/42’th of a time unit). The visualizations are generated using ray-tracing. In the

last frames surface artifacts appear.

5.4 Outlook on Pelton-Turbine Simulation 47

Figure 5.6: Visualization of the flow velocity through slices in the xz-plane at time-steps 60

(left) and time-step 90 (right). The arrow length is constant and the color goes from blue at

zero velocity to yellow at the highest velocity.

The simulation successfully describes the splitting of the incoming beam by the bucket.
As each half of the beam is deflected within the bucket it spreads out to gradually thin-
ner layers. As a result the details of the surface geometry reaches a scale much smaller
than the grid resolution. As this happens surface artifacts appear and the simulation no
longer gives an good description of the flow (see Figure 5.5). The velocity configura-
tion does not vary greatly with time and shows the expected 180o deflection of the flow
(see Figure 5.6). The convergence profile of the iteration is essentially the same as ob-
served in the simulations discussed in Chapter 6.2. Each step in the iteration required
typically 280 s ± 10 s (using the same hardware configuration).

5.4 Outlook on Pelton-Turbine Simulation

The Pelton bucket simulation shows that the method has potential use for this kind of
problem, but the following steps need to be taken i) The algorithms must be optimized
in terms of memory usage to allow higher resolution. ii) For a full scale turbine simu-
lation direct numerical simulation is not feasible, instead phase averaging would be a
suitable approach combined with the current method.

48 Pelton Bucket Simulation

Chapter 6

Papers

6.1 Lid-Driven Cavity

The paper entitled A Numerical Approach to Solving Nonlinear Differential Equations
on a Grid with Potential Applicability to Computational Fluid Dynamics [9], is an early
version of the current approach. It validates the method for two dimensional steady flow
by comparing it with previously obtained results from different sources [4], [3] and
[11]. This paper also demonstrates the advantage of increasing the order of continuity
versus grid refinement. The method has since been updated to use an optimal set of
polynomial basis functions which improves the conditioning of the linear stage of the
solution algorithm. The lid-driven cavity is defined in Chapter 3 and Figure 1 of [9].1

1Note that in [9], page 13, first paragraph a reference is made to Figure 7. It should be Figure 6.

A Numerical Approach to Solving Nonlinear Differential

Equations on a Grid with Potential Applicability to

Computational Fluid Dynamics∗

Jesper Tveit†

Department of Physics and Technology, University of Bergen, Norway
BKK Production, Kokstad, Norway

November 7, 2014

Abstract

A finite element method for solving nonlinear differential equations on a grid, with po-
tential applicability to computational fluid dynamics (CFD), is developed and tested.

The current method facilitates the computation of solutions of a high polynomial degree
on a grid. A high polynomial degree is achieved by interpolating both the value, and the
value of the derivatives up to a given order, of continuously distributed unknown variables.

The two-dimensional lid-driven cavity, a common benchmark problem for CFD methods,
is used as a test case. It is shown that increasing the polynomial degree has some advan-
tages, compared to increasing the number of grid-points, when solving the given benchmark
problem using the current method. The current method yields results which agree well with
previously published results for this test case.

1 Introduction

Through development and testing in the well known case of lid-driven cavity flow (see Figure 1
for details) the current method is shown to have potential applicability to CFD. Steady state
solutions of the Navier-Stokes equations for incompressible two-dimensional flow are computed
for this test case with Reynolds number Re ≤ 4× 104.

Obtaining a steady-state flow solution in a two-dimensional lid-driven cavity becomes increas-
ingly challenging as the Reynolds number increases. Computing a steady-state flow solution is
therefore useful as a bench-mark for the quality of numerical schemes, although the solution
does not necessarily describe a physical fluid. In order to compute a solution, which accurately
represents details at high Reynolds numbers, the most successful approaches have been using
very high grid resolutions [Erturk et al., 2005, Wahba, 2012]. The current approach obtains
comparable results with much lower grid resolutions.

The current solutions have up to 9’th order (polynomial degree) of spatial accuracy and the
highest grid resolution is 135 by 135 grid points. Several other high order solutions to the lid-
driven cavity have previously been presented. Barragy and Carey [1996] present solutions for
the lid-driven cavity up to Re = 12500 (as well as an under-resolved solution for Re = 16500)

∗Previously published at arxiv.org (2014), arXiv:1409.1072 [physics.flu-dyn]
†email: jtv001@uib.no

1

50 Papers

with spatial accuracies from 6’th to 8’th order. Other works which present high order solutions
include Schreiber and Keller [1982] (8’th order), and Nishida and Satofuka [1992] (10’th order).

Wahba [2012] present reliable steady state solutions of comparably high Reynolds numbers
(Re ≤ 35 × 103) but this is the first time reliable high order (above fourth, in polynomial
degree) steady state solutions for Reynolds number, Re ≥ 20000, to the lid-driven cavity in two
dimensions have been presented.

The explicit definition of derivatives employed by the current method is a feature which is
partially shared by the CIP method [Takewaki et al., 1984], since the CIP method includes the
gradient of unknown quantities as a free parameter. The CIP method is a third order method
used successfully, for example, to simulate acoustic wave propagation.

The current method is a finite element type of approach and solves nonlinear differential
equations through several steps. First a discretization is defined to contain information about
the unknown functions in a given set of differential equations. This information includes both
the value, and the value of the derivatives, of the unknown functions at specific positions (grid
points) in a computational domain. Next, the differential equations are formulated as a nonlinear
system of equations (weak form) depending on the information contained in the grid. This system
of equations is solved through an iteration, which minimizes the square of a uniformly weighted
residual. Each iteration has both a linear and a nonlinear stage, and finds an approximate
solution that improves the previous approximate solution.

The specific details involved in each of these steps will be thoroughly explained in Sections
2 - 5. Results of particular interest will be presented in Section 6. The complete data of all the
computed results can be obtained from the author upon request.

2 Notation and Mathematical Framework

2.1 Notation

Square brackets will be used to identify components in matrices. A component in a two-
dimensional matrix, A, will thus be referred to as A[r, c], where r is the row index and c is
the column index. Indices in an R×C matrix are defined to go from 0 to R− 1 (rows) and 0 to
C − 1 (columns). If C = 1, then the matrix may be referred to as a column vector and if R = 1,
then the matrix may be referred to as a row-vector. A matrix of matrices will be equivalent to
a four dimensional matrix, Q, where Q[r, c][τ, ν] ≡ Q[r, c, τ, ν]. If a matrix, A, is square and
nonsingular, its inverse will be written as A−1.

For brevity, the evaluation of a derivative of a function, Φ(ζ), at a certain point, ζ0, will in
unambiguous cases be written as shown on the right-hand side of Eq.(1):

∂Φ(ζ)

∂ζ

∣∣∣∣
ζ=ζ0

≡ ∂Φ(ζ0)

∂ζ
(1)

For functions of two variables, the first and the second argument will be referred to as the x-,
and the y- component (or variable), respectively.

Mapping of indices from double index form to single index form will, unless otherwise stated,
be on the form a = b + cD, where D is a positive integer and b, c ∈ {0, . . . , D − 1} and a ∈
{0, . . . , D2 − 1}. The indices, b and c, may also a single index form of other index tuples, in
which case the mapping will recursively follow the given form.

2

6.1 Lid-Driven Cavity 51

2.2 Order of Continuity

Consider a discretization of a function, f(x, y), on a uniform two-dimensional grid. Let the
matrices x and y be composed of the x and y components, respectively, of the position of the
grid points. Let the value of the function, f(x, y), and its derivatives up to, and including, the
(Ω − 1)’th order in each direction be explicitly defined for each grid point in terms of the (four
dimensional) matrix, F, with components given by Eq.(2):

∂α+βf (x [k, l] ,y [k, l])

∂xα∂yβ
≡ F [k, l, α, β] (2)

where α ∈ {0, . . . ,Ω−1}, β ∈ {0, . . . ,Ω−1}, and the indices, k and l, identify the grid point. The
discretization is then by definition continuous and has continuous derivatives up to (Ω − 1)’th
order at the grid points (x [k, l] ,y [k, l]). This is referred to as CΩ−1 continuity.

2.3 Grid Structure

For the sake of simplicity the grid will be oriented and scaled such that the location of each grid
point is uniquely determined by its indices, k and l, as shown in Eq.(3):

(x [k, l] ,y [k, l]) ≡ (k, l) (3)

defining a uniform square grid.

2.4 Polynomial Basis-function Expansion

Let the functions, bm,n(x, y), be a set of polynomial basis functions where the value of m is the
polynomial degree of the first variable, x, and the value of n is the polynomial degree of the
second variable, y.

Let the matrix of column vectors, f , the row vector-function, b(x, y), and the matrix, B, be
defined as shown in Eqs.(4-6), respectively:

f [k, l] [τ, 0] ≡ F [k + i, l + j, α, β] (4)

b[0,m+Nn](x, y) ≡ bm,n(x, y) (5)

B [τ,m+Nn] ≡ ∂α+βbm,n(i, j)

∂xα∂yβ
(6)

where τ = α+βΩ+Ω2(i+2j), i ∈ {0, 1}, j ∈ {0, 1}, m ∈ {0, . . . , N −1}, n ∈ {0, . . . , N −1} and
N = 2Ω. It follows that each column vector in the matrix, f , then has (2Ω)2 = N2 components,
that the matrix, B, is a N2 × N2 square matrix and that the row vector-function, b(x, y), has
N2 components.

The four neighboring points: (x [k, l] ,y [k, l]), (x [k + 1, l] ,y [k + 1, l]), (x [k, l + 1] ,y [k, l + 1])
and (x [k + 1, l + 1] ,y [k + 1, l + 1]), surround a square region which will be referred to as the
k, l’th grid-cell.

Within the k, l’th grid-cell, the function, f(x, y), may be approximated by a weighted sum of
the polynomial basis functions, bm,n(x, y), written in matrix form in Eq.(7):

f(x, y) = b(x′, y′)B−1f [k, l] +O(x′N + y′N) ≈ b(x′, y′)B−1f [k, l] (7)

where x′ = x− x [k, l] and y′ = y − y [k, l].

3

52 Papers

From the definitions, Eqs.(4-6), it is clear that the approximation, b(x′, y′)B−1f [k, l], matches
up exactly with the discretization, F, at the four grid points, i.e.:

F [k + i, l + j, α, β] =
∂α+βb(i, j)

∂xα∂yβ
B−1f [k, l] (8)

where i ∈ {0, 1} and j ∈ {0, 1} as previously.

2.5 Hermite Splines

The idea of approximating a function by sampling both its value and the value of its derivatives is
known as Hermite interpolation. The approximation, b(x′, y′)B−1f [k, l], of the function, f(x, y),
is a two-dimensional generalization of a Hermite spline, equivalent to recursively interpolating a
set of Hermite splines.

2.6 Choice of Basis Functions

The condition number, cond(B), defined in Eq.(9), gives an estimate of the relative numerical
accuracy of the matrix product, B−1f [k, l].

cond (B) ≡ σmax (B)

σmin (B)
(9)

In Eq.(9), σmax (B) is the largest singular value of B, and σmin (B) is the smallest singular value
of B. When numerically solving a linear system, f = Bc, using floating point numbers with
machine precision, εm, an error of order O (εmcond (B)) should be expected. The reader may
refer to Trefethen and Bau [1997, pg. 95] for a more detailed explanation of the condition number
and numerical accuracy of linear equation systems.

The condition number, cond(B), depends on the choice of basis functions, bm,n(x, y), and on
the order of continuity (in other words, the value of Ω).

For the computations in this paper, the basis functions, bm,n(x, y), are defined in terms of
the Bernstein polynomials, Bλ,Λ(x), given in Eq.(10):

Bλ,Λ(x) =

(
Λ

λ

)
xλ(1− x)Λ−λ, λ ∈ {0, . . . ,Λ} (10)

as
bm,n(x, y) ≡ Bm,Ω−1(x)Bn,Ω−1(y) (11)

Table 1 shows that the condition number of the matrix, B, increases exponentially with the
value of Ω. The machine precision is a limiting factor for the computation of the function
approximation, Eq.(7). For higher orders of continuity, it may be considered an ill-conditioned
system. As a result one should not expect the coefficients of the function approximation, Eq.(7),
to be accurate down to machine epsilon. For this reason, the main results presented in this paper
have been computed using 64 bit floating point numbers (double in C++ syntax) rather than
the more common 32 bit float. The corresponding ISO C standard definition of machine epsilon
is 2−52 ≈ 2.2× 10−16, referred to in this paper as ε64.

4

6.1 Lid-Driven Cavity 53

ε64cond (B) ε64cond (B)
Ω with bm,n(x, y) with xmyn

2 8.5× 10−15 1.3× 10−13

3 1.7× 10−12 1.3× 10−10

4 8.2× 10−10 5.0× 10−7

5 7.5× 10−7 4.4× 10−3

6 1.1× 10−3 23.5

Table 1: Estimated floating point errors for different values of Ω. The matrix, B, is defined in
Eq.(6) and the condition number, cond (B), is defined by Eq.(9). This is the estimated precision
of the numerical computation of the quantity B−1f using 64 bit floating point numbers with
machine precision, ε64 ≈ 2.2× 10−16, (ISO C standard). The first column shows different values
of Ω, corresponding to CΩ−1 continuity. The second column shows, ε64cond (B), constructed with
the basis functions, bm,n(x, y), as given by Eq.(11). The third column shows what the expected
precision would be if the monomial basis functions, xmyn, of equal degree were used to construct
the matrix B instead of bm,n(x, y).

3 Discretization the Navier–Stokes Equations

3.1 Navier–Stokes Equations for Steady State Incompressible Flow in Two Dimen-
sions

The grid has L × L grid-points at positions defined in Eq.(3). The indices, k and l, then have
values ranging from 0 to L− 1 and the grid is square with length and width equal to L− 1. The
computational domain is thus the two dimensional interval [0, L− 1]× [0, L− 1] (see Figure 1).

The Navier–Stokes Equations for steady state incompressible flow in two dimensions, where
the physical variables have been scaled with appropriate scales, read

0 = u
∂u

∂x
+ v

∂u

∂y
+

∂p

∂x
− 1

Re′

(
∂2u

∂x2
+

∂2u

∂y2

)
(12a)

0 = u
∂v

∂x
+ v

∂v

∂y
+

∂p

∂y
− 1

Re′

(
∂2v

∂x2
+

∂2v

∂y2

)
(12b)

0 =
∂u

∂x
+

∂v

∂y
(12c)

where u and v are the x– and y–components of the flow velocity, respectively, p is the pressure and
Re′ = Re/(L − 1). The definition of the Reynolds number, Re, is the same as in the references
[Ghia et al., 1982, Erturk et al., 2005, Wahba, 2012]. However, since the the computational
domain used by the references is the two dimensional interval [0, 1]× [0, 1], the Reynolds number,
Re, must be scaled with the size of the current domain, L − 1, so that Eqs.(12a-12c) remain
mathematically equivalent to the equations solved in the references.

The variables u, v and p will be referred to as the flow-variables and are functions of the two
variables x and y. Additionally, the pair (u, v) will be referred to as the flow-velocity.

The pressure-velocity form of the Navier–Stokes equations (Eqs.(12a-12c)) is usually trans-
formed into an equivalent vorticity-streamfunction form which, in the two dimensional case, has
one less flow variable to deal with. Most published papers dealing with the lid-driven cavity in
two dimensions use the vorticity-streamfunction form. In the current work, however, we solve
for the pressure and velocity directly.

5

54 Papers

3.2 Boundary Conditions

The no-slip Dirichlet boundary condition is imposed on the flow velocity, (u(x, y), v(x, y)). Figure
1 shows the details of the boundary of the computational domain of the grid. This test case is
known as the lid-driven cavity for two dimensions. No boundary values are required for the
pressure during the iterative solution process. The origin of the pressure is implicitly determined
by the initial condition for the iteration (see Section 5).

(0, 0) (L− 1, 0)

(0, L− 1) (L− 1, L− 1)

y
→

x →
u = 1, v = 0

u = 0, v = 0

u
=

0,
v
=

0

u
=

0,
v
=

0

Figure 1: This figure shows
the computational domain of the
grid and its boundary condi-
tions. The flow velocity, u(x, y)
and v(x, y), along the edges is
given. The lower edge, where
y = 0, is a ”lid” which drives
the flow by sliding horizontally
(positive x- direction) at a con-
stant speed equal to one. At
the three remaining edges, both
components of the flow velocity
are zero. This system is referred
to as a lid-driven cavity.

3.3 Navier-Stokes Equations in Matrix Form

The flow-variables, velocity and pressure, are discretized as shown in Section 2, with U,V, and
P being the discrete counterparts of u(x, y), v(x, y) and p(x, y), respectively. In each grid-cell,
the flow variables are approximated by

u(x, y) = b(x′, y′)B−1u [k, l] +O(x′N + y′N) (13a)

v(x, y) = b(x′, y′)B−1v [k, l] +O(x′N + y′N) (13b)

p(x, y) = b(x′, y′)B−1p [k, l] +O(x′N + y′N) (13c)

where u, v and p are defined in terms of U,V, and P in the same way as f was defined in terms
of F in Section 2.

Let the row vector-functions, cα,β(x, y) and s(x, y), and the matrix of row vector-functions,
m(x, y), be defined as shown in Eq.(14), Eq.(15) and Eq.(16):

cα,β(x, y) ≡ ∂α+βb(x, y)

∂xα∂yβ
B−1 (14)

s(x, y) ≡ −L− 1

Re
(c2,0(x, y) + c0,2(x, y)) (15)

m [k, l] (x, y) ≡ (c0,0(x, y)u[k, l]) c1,0(x, y) + (c0,0(x, y)v[k, l]) c0,1(x, y) + s(x, y) (16)

6

6.1 Lid-Driven Cavity 55

The Navier–Stokes equations, Eqs.(12a-12c), are then approximated, within a grid-cell as

0 =m[k, l]u[k, l] + c1,0p[k, l] +O(xN−2 + yN−2) (17a)

0 =m[k, l]v[k, l] + c0,1p[k, l] +O(xN−2 + yN−2) (17b)

0 =c1,0u[k, l] + c0,1v[k, l] +O(xN−1 + yN−1) (17c)

As indicated in Eqs.(17a-17c), the formal polynomial order of accuracy is reduced due to the
differentation with respect to x and y. From now on, the indication of polynomial order of
accuracy, O(. . .), will be omitted.

Eqs.(17a-17c), can be written in the form of a single matrix equation, as shown in Eq.(18):

0 = E[k, l](x, y)z[k, l] (18)

where the 3 × 3N2 matrix-functions, E[k, l](x, y), and the 3N2 × 1 column vectors, z[k, l], are
defined by Eq.(19) and Eq.(20), respectively, as:

E[k, l](x, y) ≡
⎡
⎣ m[k, l](x, y) 0 c1,0(x, y)

0 m[k, l](x, y) c0,1(x, y)
c1,0(x, y) c0,1(x, y) 0

⎤
⎦ (19)

and

z[k, l] ≡
⎡
⎣ u[k, l]

v[k, l]
p[k, l]

⎤
⎦ (20)

3.4 Boundary Components of the Grid

In accordance with the definition of the grid structure, Eq.(3), and the boundary conditions for
the lid-driven cavity (Figure 1), a grid component of the flow velocity, U[k, l, α, β] or V[k, l, α, β],
will be defined to be a constant boundary component if (l = 0 ∨ l = L− 1) ∧ β = 0 (boundary
parallel to the x-axis) or if (k = 0 ∨ k = L− 1) ∧ α = 0 (boundary parallel to the y-axis). Note
that derivatives, parallel to the boundary, at the boundary are also defined as boundary compo-
nents. The values of the boundary components are all zero, except in the cases given by Eq.(21)
and Figure 2. The components which are not defined to be boundary components will be referred
to as internal components or as internal flow components.

U [k, 0, 0, 0] =

{
1, for 0 < k < L− 1
1
2 , for k ∈ {0, L− 1} (21)

4 Linear Approximation of the Navier-Stokes Equations

4.1 Integrated Error-Squared

In this subsection (4.1), the grid-cell indices, [k, l], will be omitted occasionally for the sake of
brevity. Unless otherwise stated, the equations and definitions will be understood to correspond
to a single, arbitrary grid-cell.

7

56 Papers

[x →

← y]

b
(x
,y
)B

−
1
u
[0
,0
]

1

1/2

0

Ω
=
2Ω

=
3

Ω
=

4

Ω
=

5

11 0

Figure 2: This figure shows how the bound-
ary value of the x-component of the veloc-
ity, u(x, y), is approximated near the lower
left corner (x = y = 0) of the boundary
for different values of Ω. The graphs on the
right hand side of the figure are for y = 0
out to the nearest grid point along the x-
axis. The graphs on the left hand side of the
figure are for x = 0 out the to the nearest
grid point along the y-axis. By using a stan-
dard least squares algorithm (see for exam-
ple Howard [2000, pg. 437]), the components
U[0, 0, {2, . . . ,Ω − 1}, 0] are set to produce
the best fit to the unit boundary condition
and the components U[0, 0, 0, {1, . . . ,Ω−1}]
are set to produce the best fit to the zero
boundary condition. Note that the deriva-
tive of u with respect to x at the corner,
U[0, 0, 1, 0], must be zero since the deriva-
tive of v with respect to y at the corner,
V[0, 0, 0, 1], is zero (otherwise the continu-
ity equation, Eq.(12c), would not be satis-
fied at these points). The velocity near the
lower right corner is modeled in the same way
(mirrored along the x-axis).

The error-squared, R2, for each grid-cell will be defined, using the approximated Navier-
Stokes equations on matrix form (Eq.(18)), as

R2 ≡ 1

2

1∫
0

1∫
0

zTET (x, y)E(x, y)z dxdy (22)

A linear approximation of the derivatives of the error-squared, R2[k, l], with respect to the
components of the column vector, z, is

∂R2

∂z
≈

⎛
⎝ 1∫

0

1∫
0

ET (x, y)E(x, y) dxdy

⎞
⎠ z (23)

The derivative, given in Eq.(23), is an approximation because the matrix, E, is taken to be
constant (while, in fact, it depends on the flow velocity through its dependence on the matrix,
m[k, l]).

It is possible to compute the integral, Eq.(23), analytically. But, by using numerical inte-
gration, the following procedure is more flexible (with future modifications and extensions in
mind).

Let the points, (xs, ys), for s ∈ {0, . . . , S2−1} form a uniform set of sample positions, defined
in Eq.(24):

(xs, ys) ≡
(
1 + sx
1 + S

,
1 + sy
1 + S

)
(24)

8

6.1 Lid-Driven Cavity 57

where s = sx + syS and sx, sy ∈ {0, . . . , S − 1}. From Eq.(24) it is clear that 0 < xs < 1 and
0 < ys < 1. The approximation of the derivatives of the error-squared, R2[k, l], with respect to
the components of the column vector, z[k, l], where the integral has been replaced by a sum over
the samples, (xs, ys), read:

∂R2

∂z
≈

⎛
⎝ 1

S2

S2−1∑
s=0

ET (xs, ys)E(xs, ys)

⎞
⎠ z (25)

4.2 Sub-cell System to Grid-wide System

Let the (L− 1)× (L− 1)× 3N2 × 3N2 matrix, R, be defined by Eq.(26):

1

S2

S2−1∑
s=0

E[k, l]T (xs, ys)E[k, l](xs, ys) ≡ R[k, l] (26)

with the matrix, E, as defined in Eq.(19). The definition, Eq.(26), implies that the the 3N2×3N2

matrices, R[k, l], are symmetric. The grid-cell system, Eq.(25), may be written as shown in
Eq.(27):

∂R2[k, l]

∂z
≈ R[k, l]z[k, l] (27)

To find an approximate minimum of the error-squared, R2[k, l], for all the grid-cells, we formulate
the equation system given in Eq.(28) from which a solution for the internal flow components is
implied.

R[k, l]z[k, l] = 0 (28)

Recall that the matrices, u, v and p (and thus also z), are defined in terms of the three four-
dimensional matrices U,V, and P. From the definition given in Eq.(4) it is clear that there is
an overlap between some of the components in the vectors, u[k, l], v[k, l] and p[k, l], for different
values of the cell indices, k and l (for example, the components u[k, l][α + βΩ + 3Ω2, 0] and
u[k + 1, l + 1][α+ βΩ, 0], with α, β ∈ {0, . . . ,Ω− 1}, correspond to the same components in the
matrix, U, and are then by definition equal). The system given in Eq.(28) can thus not be solved
independently for each grid-cell but must be solved for the entire grid.

In order to employ efficient techniques for solving linear systems, it is convenient to formulate
the set of systems for each grid cell, Eq.(28), into a single system for the entire grid, given in
Eq.(29):

Πw = t (29)

where Π is a square, symmetric matrix and w and t are column vectors. This is done by
defining a one to one index mapping from all the internal flow components to the components in
the column vector, w. Coefficients of the components in the grid cell systems (i.e. components
in the symmetric matrix, R[k, l] in Eq.(28)), are added to Π if they correspond to internal
components. If a component of z[k, l] is a boundary component, then it is multiplied with the
corresponding row in R[k, l] and subtracted, forming the right hand vector, t, in Eq.(29). This
procedure is shown in detail by Algorithm 1.

It is convenient to arrange components so that the matrix, Π, gets a narrow band structure,
allowing more efficient computations on the system. For computations presented in this paper
the order is arranged by first sorting the internal flow components according to their location in
the grid (indices k, l), then by what type of flow component (x-velocity, y-velocity or pressure),
then by the order of the derivative (indices α, β).

Note that Algorithm 1 shows the entire matrix, Π, being assembled. In the implementation
of this algorithm the sub-diagonal elements are not stored since the matrix is symmetric.

9

58 Papers

Algorithm 1 This pseudo-code shows the details of how the set of grid-cell systems (Eq.(28))
is reformulated into the system given by Eq.(29). The variables, k, l, m, n, L and N are all
integers following their previous definitions from Section 2. The temporary variables r and c are
also integers and contain the row and column indices for the matrix Π. Internal flow components
are ordered, first by the grid point location, then by what type of flow component, and then by
the order of the derivative, into a contiguous list. The method, index(. . .), returns the position
in this list if its arguments correspond to a an internal component. Otherwise, a negative number
is returned.
Π ← 0, t ← 0
for 0 ≤ k < L, 0 ≤ l < L do

for 0 ≤ m < 3N2 do
r ← index(k, l,m)
if 0 ≤ r then

for 0 ≤ n < 3N2 do
c ← index(k, l, n)
if 0 ≤ c then

Π[r, c] ← Π[r, c] +R[k, l][m,n]
else

t[r] ← t[r]−R[k, l][m,n]z[m, 0]
end if

end for
end if

end for
end for

5 Iterative Solution of the Nonlinear System of Equations

The Navier-Stokes equations on matrix form, Eq.(18), are solved by an iteration over several
stages. Initially the internal flow components are either set to zero (velocity) and one (pressure)
or corresponding to a solution for a lower Reynolds number, forming an initial approximate
matrix, Π0, and an approximate solution, w0, of the system given in Eq.(29).

5.1 Linear Substep

At the (κ− 1)’th iteration, the system, Eq.(29), is formed using the approximate values, wκ−1.
A new approximate solution, w′

κ−1, is found using the linear conjugate gradient iteration [see
for example Trefethen and Bau, 1997, chap. 38]. The linear conjugate gradient iteration is
terminated when the relative improvement factor, r̂κ−1, defined in Eq.(30), of the solution of the
linear system reaches a predetermined value, r̂κ−1 ≤ ω̂ � 1.∥∥Πκ−1w

′
κ−1 − tκ−1

∥∥
2

‖Πκ−1wκ−1 − tκ−1‖2
≡ r̂κ−1 (30)

The approximation, w′
κ−1, is used to define a search direction, Δwκ−1, as shown in Eq.(31):

Δwκ−1 ≡ w′
κ−1 −wκ−1 (31)

The search direction is defined to have corresponding grid-cell components given by Eq.(32):

Δzκ−1[k, l] = z′κ−1[k, l]− zκ−1[k, l] (32)

10

6.1 Lid-Driven Cavity 59

where the mapping from z′κ−1 tow
′
κ−1 is the same as used in Algorithm 1 for internal components.

If a component, z′κ−1[k, l][τ, 0], corresponds to a boundary component, then it is defined to be
equal to its initial value, zκ−1[k, l][τ, 0], giving Δzκ−1[k, l][τ, 0] = 0 for boundary components.
The updated flow components, zκ[k, l], are given by Eq.(33):⎡

⎣ uκ[k, l]
vκ[k, l]
pκ[k, l]

⎤
⎦ =

⎡
⎣ uκ−1[k, l]

vκ−1[k, l]
pκ−1[k, l]

⎤
⎦+

⎡
⎣ θuΔuκ−1[k, l]

θvΔvκ−1[k, l]
θpΔpκ−1[k, l]

⎤
⎦ (33)

where θu, θv and θp are three parameters to be determined in each iterative step and

zκ[k, l] ≡
⎡
⎣ uκ[k, l]

vκ[k, l]
pκ[k, l]

⎤
⎦ , zκ−1[k, l] ≡

⎡
⎣ uκ−1[k, l]

vκ−1[k, l]
pκ−1[k, l]

⎤
⎦ , Δzκ−1[k, l] ≡

⎡
⎣ Δuκ−1[k, l]

Δvκ−1[k, l]
Δpκ−1[k, l]

⎤
⎦ (34)

in accordance with the definition given in Eq.(20).

5.2 Nonlinear Substep

Consider the integrand of the grid-cell residual squared (Eq.(22)) at the κ’th stage:

zTκ [k, l]E
T
κ [k, l](x, y)Eκ[k, l](x, y)zκ[k, l] ≡ ρκ[k, l](θu, θv, θp, x, y) (35)

According to Eq.(33), the column vector, zκ, depends linearly on the parameters θu, θv and θp,
and the matrix, Eκ(x, y), depends linearly on the parameters θu and θv. Eq.(35) can thus be
written as a fourth degree polynomial of θu, θv and θp, shown in Eq.(36)

ρκ[k, l](θu, θv, θp, x, y) = c000 + c100θu + c200θ
2
u + c300θ

3
u + c400θ

4
u+

c010θv + c110θuθv + c210θ
2
uθv + c310θ

3
uθv+

c020θ
2
v + c120θuθ

2
v + c220θ

2
uθ

2
v+

c030θ
3
v + c130θuθ

3
v+ (36)

c040θ
4
v+

c001θp + c101θuθp + c201θ
2
uθp+

c011θvθp + c111θuθvθp+

c021θ
2
vθp + c002θ

2
p

The coefficients, c...[k, l](x, y), in Eq.(36) are determined from the definition of E[k, l](x, y) (see
Eq.(19)) andm[k, l](x, y) (see Eq.(16)) through basic algebraic operations by substituting uκ−1+
θuΔuκ−1 for u, vκ−1+ θvΔvκ−1 for v and pκ−1+ θpΔpκ−1 for p (the grid cell indices [k, l] and
function arguments (x, y) for the coefficients, c...[k, l](x, y), are omitted in Eq.(36) for the sake
of brevity). Eq.(36) is integrated numerically over the entire grid by the sum given in Eq.(37):

P (θu, θv, θp) ≡ 1

W

L−2∑
k=0
l=0

S2−1∑
s=0

ρκ[k, l](θu, θv, θp, xs, ys) (37)

11

60 Papers

where W = S2(L− 1)2, yielding

P (θu, θv, θp) =C000 + C100θu + C200θ
2
u + C300θ

3
u + C400θ

4
u+

C010θv + C110θuθv + C210θ
2
uθv + C310θ

3
uθv+

C020θ
2
v + C120θuθ

2
v + C220θ

2
uθ

2
v+

C030θ
3
v + C130θuθ

3
v+ (38)

C040θ
4
v+

C001θp + C101θuθp + C201θ
2
uθp+

C011θvθp + C111θuθvθp+

C021θ
2
vθp + C002θ

2
p

The function, P (θu, θv, θp), is then minimized with respect to the parameters θu, θv, θp. The
minimization of Eq.(38) is not a computationally expensive step since the function, P (θu, θv, θp),
is a fourth degree polynomial depending on only three variables. For the purposes of this paper,
the nonlinear conjugate gradient iteration was sufficient. A fixed number of iterations (50) was
used and the Fletcher-Reeves method determined the line search direction (the reader may refer
to Shewchuk [1994] for details concerning the nonlinear conjugate gradient iteration).

With the parameters θu, θv, θp determined, the flow components are updated as shown in
Eq.(33) and the iteration may be repeated until desired accuracy is reached or until errors, due
to limited floating point precision or due to the approximate nature of the discretization, prevents
further improvement.

6 Results

Solutions were computed for Reynolds numbers, Re ∈ {100, 1000, 5000, 10000, 20000, 30000, 40000}.
The data from all the computations is too extensive to be displayed in detail in this paper but
is available from the author upon request. In Subsections 6.1-6.3 details of a selection of the
computed solutions are discussed.

6.1 Velocity Profiles

The x-component of the velocity, u(x, y), through the geometric center of the cavity, from the
center of the ”lid”, (x = (L − 1)/2, y = 0), to the opposing side, (x = (L − 1)/2, y = L − 1), is
shown in Figures 3-5. This will simply be referred to as a velocity profile from now on.

For Reynolds number, Re = 100, the well known results from Ghia et al. [1982] are used as
a comparison (Figure 3). For Reynolds number, Re = 20000, the current results are compared1

with the very fine-grid solutions from Erturk et al. [2005] and Wahba [2012] (Figure 4). Addition-
ally, the interesting features for various high Reynolds numbers from Re = 5000 to Re = 40000
is compared with each other (Figure 5).

Figure 3, which shows the velocity profile for Reynolds number, Re = 100, confirms that the
current results agree with established results [Ghia et al., 1982] for this Reynolds number.

Figure 4, which shows the velocity profile for Reynolds number, Re = 20000, shows a small
deviance from the reference solutions by Erturk et al. [2005] and Wahba [2012]. In this case the
current solution tends to agree with the references where they coincide and tends to lie between
the references where they do not coincide.

1Reynolds number, Re = 20000, was the highest Reynolds number for which multiple reference results were
available.

12

6.1 Lid-Driven Cavity 61

−1 u −→

Ghia et al.

Current

1

y
→

0
4

Figure 3: This figure shows
the computed x-component
of the velocity on a verti-
cal line through the geomet-
ric center of the grid for
Reynolds number, Re = 100.
The line shows current re-
sults, b(x′, y′)B−1u[k, l] for
x = (L − 1)/2, 0 ≤ y ≤
L− 1, with L = 5 and Ω = 4
where x′ = x − x [k, l] and
y′ = y − y [k, l]. The dot-
ted circles show results pre-
sented by Ghia et al. [1982]
as a comparison.

Figure 5 shows how the upper and lower parts of the velocity profile evolve as the Reynolds
number increases. The upper part shows a systematic trend where minimum drops while shifting
increasingly closer to the edge. The lower part shows a similar trend for Re = 5000 to Re = 20000.
However from Re = 20000 to Re = 40000, the local minimum move toward the edge at a much
smaller rate while increasing in magnitude at a greater rate.

Figure 7 shows the velocity profiles for Reynolds number, Re = 1000, obtained with increasing
values of Ω and decreasing values of L, compared with the results given by Ghia et al. [1982],
Erturk et al. [2005]. The value of L was the lowest value which did not give any significant
deviance from solutions obtained using a higher resolution. These results illustrate how an
increase of the order of continuity allows for a lower grid resolution while still achieving results
of similar accuracy. Also note that the amount of data contained in the grid (proportional to
L2Ω2 in a two dimensional grid) decreases with increasing values of Ω.

6.2 Flow Configurations

Figure 7 shows visualizations of computed flow configurations. Due to the high polynomial
degree of the solution, flow features below grid resolution are resolved. This can be seen in
the close-up plot in Subfigure 7(b). At higher Reynolds numbers the required grid resolution
is higher compared to the scale of the main vortices of the flow. However, secondary, tertiary
and quaternary vortices all split up in several sub-vortices at high Reynolds numbers. It seems
reasonable to assume that the higher resolution requirement is connected to this phenomenon.

6.3 Computation Time and Convergence

The computation times were achieved on a standard desktop computer (quad core Xeon W3565
CPU at 3.2 GHz with 12 GB RAM). The computation times are not comparable to what might
be achieved on a high end system utilizing parallel computing, but might have some use for
internal comparison. Up to four separate computations were run simultaneously (each single
threaded) each utilizing 23-25 percent of the CPU capacity.

Figure 8 shows examples of accuracy versus computation time for different Reynolds numbers,

13

62 Papers

−1 u −→

Wahba

Erturk et al.

Current

1

y
→

0
9
9

(a) The complete velocity profile

0
1 1
0
99

99
9 1
0
99

8 1
0
99

10.80.60.4

0−0.2−0.4−0.6

Wahba

Erturk et al.

Current

u −→

y
→

(b) The upper and lower range of the velocity profile

Figure 4: These figures show the computed x-component of the velocity on a vertical line through
the geometric center of the grid for Reynolds number, Re = 20000. The line shows current results,
b(x′, y′)B−1u[k, l] for x = (L−1)/2, 0 ≤ y ≤ L−1, with L = 100 and Ω = 5 where x′ = x−x [k, l]
and y′ = y−y [k, l]. The dotted circles show results presented by Erturk et al. [2005] and Wahba
[2012] as a comparison. Subfigure 4(a) shows the plot for the entire y-range while subfigure 4(b)
shows a larger view of the upper and lower y-range.

grid resolutions and order of continuity. The linear conjugate gradient iteration (see Subsection
5.1) accounted for most of the computation time (typically about 95 %). For higher Reynolds
numbers, a higher grid resolution was required to achieve convergence. For Reynolds number,
Re > 5000, computations were only carried out with Ω = 5 since the required grid resolution
for lower values of Ω made computations on the current system too time consuming. For the
highest Reynolds number, Re = 40000, the computation was run for approximately 72 hours
with L = 135 and Ω = 5.

The error,
√
P , plotted with empty squares in Figure 8, shows a rapid initial convergence

followed by a much slower rate of convergence. It is clear, however, when comparing with
the reference figures from Erturk et al. [2005], plotted with solid squares in Figure 8, that the
computed solutions still undergo changes during the final iterations. This may be explained by
the fact that, while the quantity

√
P only measures how well the solution conforms to the given

differential equations (independently) at each point in the computational domain, the quantity
RMSref depends on the value of the solution at specific points which may be affected by the
accumulation of small errors elsewhere in the computational domain. Additionally, some areas of
the computational domain (e.g. near the lower corners where the velocity is discontinuous) may
suffer from large errors compared to the rest of the grid, dominating the value of the quantity√
P in the later stages of the iteration. The residual of the solutions computed by the references

[Erturk et al., 2005, Wahba, 2012] converge to a smaller factor than the error of the current
solutions. However, the error between grid points is not taken into consideration by Erturk et al.
[2005], Wahba [2012], whereas in the current work the error is computed over a large number of
sub-grid sample points.

14

6.1 Lid-Driven Cavity 63

u −→

Re = 40000

Re = 30000

Re = 20000

Re = 10000

Re = 5000

y
→

0

L−1
10

10.80.60.4

0−0.2−0.4
L− 1

9(L−1)
10

8(L−1)
10

Figure 5: This figure shows the
computed x-component of the
velocity on a vertical line through
the geometric center of the
grid for Reynolds number, Re ∈
{5000, 10000, 20000, 30000, 40000}.
Only the upper (y near L − 1)
and lower (y near 0) part of the
computational domain is plotted.
The different lines shows current
results, b(x′, y′)B−1u[k, l] for
x = (L − 1)/2, 0 ≤ y ≤ L − 1,
with L ∈ {40, 60, 100, 120, 135}
and Ω = 5 where x′ = x − x [k, l]
and y′ = y − y [k, l].

It is clear that both an increase of the grid resolution, L, and the order of continuity, Ω− 1,
increases the size of the linear system, Π (see Eq.(29)), and thus the required computation time
and the required amount of memory. It should also be noted, however, that increasing the order
of continuity (i.e. increasing Ω) also increases the number of nonzero sub/super-diagonals of the
linear system, Π, which also increases memory requirements and computation time. Despite this
disadvantage for higher orders of continuity, it was found that using higher values of Ω was more
efficient at computing solutions for high Reynolds numbers (Re � 2500), yielding solutions of
acceptable accuracy for lower values of the grid resolution, L. The value of Ω is limited by the
floating point errors, as shown in Subsection 2.6. For this reason, a maximum value of 5 was
chosen (i.e. Ω ≤ 5 in all computations), corresponding to a spatial 4’th order of continuity (C4)
and a polynomial accuracy of order 9.

7 Conclusion and Outlook

An increase in spatial order (polynomial degree) of the grid (p-refinement) has advantages com-
pared to increasing the grid resolution (h-refinement) in some cases when using the current
method, as shown by the high Re solutions for the lid-driven cavity. These solutions, computed
on an ordinary desktop computer, are among the highest Reynolds numbers at which steady
state solutions for the lid-driven cavity have been published, even though obvious optimizations
(e.g. mesh grading or parallel computation) were not used.

Unlike pseudo-time finite differencing approaches, the current method for arriving at a steady
state solution does not yield periodic solutions as artifacts. Instability may appears if the grid
resolution is insufficient, but it is chaotic, and does not resemble a periodic flow configuration.

It is clear from physical evidence that, for the high Reynolds numbers (Re � 5000), the
presented steady state solutions do not correspond to a physical three dimensional flow. It is,
however, interesting to note that small perturbations, which are thought to initiate turbulence
in a real flow, may be mimicked by numerical inaccuracies and potentially initiate turbulence or
periodic behavior in simulations. The large differences in reported Reynolds number at which
steady state solutions have been obtained for the lid-driven cavity in two dimensions may be

15

64 Papers

L = 70, Ω = 2
L2Ω2 = 19600

L = 35, Ω = 3
L2Ω2 = 11025

L = 11, Ω = 4
L2Ω2 = 1936

L = 8, Ω = 5
L2Ω2 = 1600

y = L− 1

y = 0

Ghia et al.

Erturk et al.

Current

Figure 6: This figure shows a comparison of the computed x-component of the velocity on a
vertical line through the geometric center of the grid for (L,Ω) ∈ {(70, 2), (35, 3), (11, 4), (8, 5)}
with Reynolds number, Re = 1000. At the top (y = L − 1) of the figure the x-component
of the velocity is zero and at the bottom (y = 0) it is one (positive x-direction). The dotted
circles show results presented by Erturk et al. [2005] and Ghia et al. [1982].

explained by the different nature and magnitude of these inaccuracies. If a periodic behavior,
observed when solving the two dimensional system, was exclusively due to the mathematical
qualities of the of the system (i.e. due to Poincaré–Andronov–Hopf bifurcation), it is reasonable
to assume that this behavior would have occurred at similar Reynolds numbers even though
different numerical schemes were used.

The grids with the highest order of continuity, Ω = 5 (equivalent to a polynomial degree of
9, see Subsection 2.2-2.4), were the most efficient for computing steady state solutions for high
Reynolds number flows, but the numerical accuracy imposed limitations on further increase of
the order of continuity. An improvement, for example by using increased floating point precision
or by finding basis functions with better numerical properties, is clearly possible.

It is clear from the mathematical framework (see Section 2) that the current method can
be generalized to higher dimensions. Further, linear terms (e.g. time derivative, for unsteady
flows) may also be added to the governing equations in matrix form (see Subsection 3.3) with-
out fundamentally changing the properties of the method. With the current method, and other
finite-element based methods, one obtains coupled sets of equations depending on information
in a grid. The computational cost required to solve these systems tend to grow exponentially
with the number of grid points. However, the computational cost of the numerical integration,
which defines the equation set for the current method (see Subsection 4.1) grows linearly with
the number of grid points. This is an advantage because, instead of adapting the grid to complex
geometry or to different fluid phases, with the current method it is possible to select different
governing equations independently at different sample points. One can also increase the density
of sample points in some areas if necessary (assuming appropriate weighting is applied). Inter-

16

6.1 Lid-Driven Cavity 65

action with objects smaller than the grid scale can thus be incorporated. An interface between
immiscible fluid phases can be incorporated in the same way. The latter will be demonstrated
with three-dimensional unsteady flow in a forthcoming paper.

Acknowledgments

This work was supported by BKK Production and The Research Council of Norway under The
Industrial Ph.D Scheme.

Alex Hoffmann2, Jan Vaagen3, Laszlo Csernai4 and Arne Småbrekke5 are acknowledged for
productive discussions and valuable suggestions.

Bibliography

E. Barragy and G. F. Carey. Stream function-vorticity driven cavity solutions using p finite
elements. Computers and Fluids, 26, 1996.

E. Erturk, T. C. Corke, and Gökçöl. Numercal solutions of 2-d steady incompressible driven
cavity flow at high reynolds numbers. International Journal for Numerical Methods in Fluids,
48, 2005.

U. Ghia, K. N. Ghia, and T. C. Shin. High-re solutions for incompressible flow using the navier-
stokes equations and a multigrid method. Journal of Computational Physics, 48, 1982.

Anton Howard. Elementary Linear Algebra. Wiley, New York, 2000.

H. Nishida and N. Satofuka. Higher-order solutions of square driven cavity flow using a variable-
order multigrid method. International Journal for Numerical Methods in Engineering, 34,
1992.

R. Schreiber and H. B. Keller. Driven cavity flows by efficient numerical techniques. Journal of
Computational Physics, 49, 1982.

Jonathan R. Shewchuk. An introduction to the conjugate gradient method without the agonizing
pain, 1994.

H. Takewaki, A. Nishiguri, and T. Yabe. Cubic interpolated pseudo-particle method (CIP) for
solving hyperbolic-type equations. Journal of Computational Physics, 61, 1984.

Lloyd N. Trefethen and David Bau, III. Numerical Linear Algebra. Siam, Philadelphia, 1997.

E. M. Wahba. Steady flow simulations inside a driven cavity up to reynolds number 35,000.
Computers and Fluids, 66, 2012.

2Professor, University of Bergen, MAE
3Professor, University of Bergen, MAE
4Professor, University of Bergen, MAE
5Department Manager, BKK Production

17

66 Papers

y
→

x →0 19

0
1
9

(a) L = 20, Ω = 2, Re = 100

y
→

x →
19

17
15

0 2 4

(b) L = 20, Ω = 2, Re = 100

y

x

y
→

x →0 134

0
13
4

(c) L = 135, Ω = 5, Re = 40000

y
→

x →

45
0

0 45

(d) L = 135, Ω = 5, Re = 40000

Figure 7: Subfigures 7(a) and 7(b) show the computed flow configuration for Reynolds number,
Re = 100, with L = 20 and Ω = 2. Subfigure 7(a) shows the entire computational domain, while
Subfigure 7(b) shows details at the upper left corner (commonly referred to as the tertiary vortex).
Subfigures 7(c) and 7(d) show the computed flow configuration for Reynolds number, Re = 40000,
with L = 135 and Ω = 5. Subfigure 7(c) shows the entire computational domain, while Subfigure
7(d) shows details at the lower left corner (commonly referred to as the quaternary vortex,
however in this case it is split up into multiple sub-vortices). The color indicates the magnitude
of the velocity, ‖(u, v)‖2, where orange is for ‖(u, v)‖2 = 1, green is for ‖(u, v)‖2 = 1/2 and bright
blue is for ‖(u, v)‖2 = 0 (and interpolated between these colors for the intermediate values).
Contour lines of the velocity magnitude are drawn in white with a contour interval of 1/20 in
Subfigure 7(a), 1/1000 in Subfigure 7(b), 1/20 in Subfigure 7(c) and 1/200 in Subfigure 7(d). The
arrows are of constant length in each subfigure and are drawn in a Lagrangian coordinate system,
defined by the two orthogonal unit vectors x̂l = (u, v)/‖(u, v)‖2 and ŷl = (v,−u)/‖(u, v)‖2,
pointing in the positive direction along the unit vector, x̂l. The grid resolution is indicated by
dots along the edge of the grid.

18

6.1 Lid-Driven Cavity 67

RMSref

√
P

R
M

S
r
e
f

−→

√ P
−→

10−
5
2

10
1
2

10−3

10−
1
2

0 56computation time (seconds)

(a) L = 20, Ω = 3, Re = 1000

RMSref

√
P

R
M

S
r
e
f

−→

√ P
−→

10−
5
2

10
1
2

10−3

10−1

0 38computation time (seconds)

(b) L = 11, Ω = 4, Re = 1000

RMSref

√
P

R
M

S
r
e
f

−→

√ P
−→

10−
7
2

10
1
2

10−
5
2

10−1

0 17computation time (hours)

(c) L = 200, Ω = 2, Re = 5000

RMSref

√
P

R
M

S
r
e
f

−→

√ P
−→

10−3

10
1
2

10−3

10−1

0 193computation time (minutes)

(d) L = 40, Ω = 5, Re = 5000

Figure 8: These figures show the error (empty squares) and the deviance (solid squares) from
a reference solution [Erturk et al., 2005] on a logarithmic scale for four separate computations,
run through several iterations until comparable accuracy was reached. The error,

√
P , (plotted

with empty squares) is the root–mean–square grid-cell error (numerically integrated over the
entire grid). The quantity, P , is given in Eq.(37) as a function of the parameters θu,θv and
θp which are determined as explained in Subsection 5.2. The quantity, RMSref , (plotted with
solid squares) is the root–mean–square deviance of the computed solution as compared with the
figures given by Erturk et al. [2005] for the x-component of the velocity along a vertical line
through the geometric center of the cavity. Subfigures 8(a) and 8(b) shows these quantities over
25 iterations using L = 20,Ω = 3 and L = 11,Ω = 4, respectively, and with Reynolds number,
Re = 1000, where an approximate solution for Reynolds number, Re = 400, was used to initialize
the flow components. Subfigures 8(c) and 8(d) shows these quantities over 30 and 50 iterations
using L = 200,Ω = 2 and L = 40,Ω = 5, respectively, with Reynolds number, Re = 5000,
where an approximate solution for Reynolds number, Re = 2500, was used to initialize the flow
components.

19

68 Papers

6.2 Bubble Simulation 69

6.2 Bubble Simulation

The paper entitled A High order Approach to Solving Nonlinear Differential Equations
Applied to Direct Numerical Simulation of Two-Phase Unsteady Flow, was presented
at the Multiphase 2015 conference [10],[2]. This paper shows the method employed
to simulate bubble rising under gravitational influence (implicit time marching). Fig-
ure 1 in [10] illustrates the problem to be solved. The simulations are performed us-
ing relatively low cost hardware (CPU: Intel Xeon E5-1650v2, GPU: AMD FirePro
W7000).

A High Order Approach to Solving
Nonlinear Differential Equations Applied
to Direct Numerical Simulation of
Two-Phase Unsteady Flow

Jesper Tveit
University of Bergen
BKK Production
Bergen, Norway

Abstract

A method for solving nonlinear differential equations, which facilitates the
computation of solutions of a high polynomial degree on a grid, is tested for
use in direct numerical simulation (DNS) of two-phase unsteady flow.
The method uses a grid discretization to approximate continuously dis-

tributed variables, represented by functions of time and space, in a given
set of differential equations. The grid contains information about both the
values and the values of the derivatives of the unknown functions at the
grid points in the computational domain. With this method the derivatives
are thus explicitly defined at each grid point rather than, as in conventional
numerical schemes, implicitly given by the function values at the surrounding
grid points. Using piecewise polynomial interpolation, functions can be rep-
resented with an arbitrary order of continuity over the entire computational
domain.
The high polynomial order used in this method allows for simulation

of flow features smaller than the interval separating each grid point. This
reduces the required number of grid points and the need to adapt the grid
to complex boundary geometry or to the interphase between different fluid
phases. This simplifies grid generation and reduces the computational cost.
Keywords: discretization, high order, direct numerical simulation, two-phase
unsteady flow.

70 Papers

1 Introduction

The mathematical framework and algorithms employed are described in
detail in ref. [1], together with computed results for the lid-driven cavity
test case. This method has been developed for a finite element, residual
minimizing type of approach.
In the current work we apply the method to three dimensional unsteady

two phase flow. Simulations of a bubble in a cubical domain are carried out
as a proof of concept.
The current results are obtained after some improvements have been made.

We will therefore make a short review of these, as well as the changes that
have been made in order to perform two-phase flow simulations.

2 Adaption to Two–Phase Unsteady Flow

2.1 Basis Functions and Conditioning

C1 b40(x) = 2x3 − 3x2 + 1

b41(x) = 6x3 − 12x2 + 6x

b42(x) = −2x3 + 3x2

b43(x) = −6x3 + 6x2

C2 b60(x) = −6x5 + 15x4 − 10x3 + 1

b61(x) = −15x5 + 40x4 − 30x3 + 5x

b62(x) = −30x5 + 90x4 − 90x3 + 30x2

b63(x) = 6x5 − 15x4 + 10x3

b64(x) = −15x5 + 35x4 − 20x3

b65(x) = 30x5 − 60x4 + 30x3

C3 b80(x) = 20x7 − 70x6 + 84x5 − 35x4 + 1

b81(x) = (140x7)/3− 168x6 + 210x5 − (280x4)/3 + (14x)/3

b82(x) = 84x7 − 315x6 + 420x5 − 210x4 + 21x2

b83(x) = 140x7 − 560x6 + 840x5 − 560x4 + 140x3

b84(x) = −20x7 + 70x6 − 84x5 + 35x4

b85(x) = (140x7)/3− (476x6)/3 + 182x5 − 70x4

b86(x) = −84x7 + 273x6 − 294x5 + 105x4

b87(x) = 140x7 − 420x6 + 420x5 − 140x4

Table 1: Polynomial basis functions, bΓγ , for different orders of continuity.

6.2 Bubble Simulation 71

As shown in [1] the choice of interpolating basis functions is important with
respect to the numerical conditioning of the resulting system of equations.
Bernstein polynomials were found to have acceptable properties. However,
in the current work we use a different set of polynomials (Table 1). The
polynomials given in Table 1 are chosen especially such that they produce a
well conditioned system. These polynomials are constructed such that at the
end points (where the interpolating variable, x, is either zero or one) they
satisfy the conditions given in Equations (1a - 1b). Note that, for each order
of continuity, there are an even number of basis functions. Of each set, the
lower half (λ ∈ {0 . . .Λ/2− 1}) corresponds to the point at x = 0 while the
rest (λ ∈ {Λ/2 . . .Λ− 1}) corresponds to the point at x = 1.

∂k

∂xk
bΛλ (x)|x=0 = akδkλ (1a)

∂k

∂xk
bΛλ (x)|x=1 = akδ(k+Λ/2)λ (1b)∣∣∣∣∣∣

1∫
x=0

bΛλ (x)dx

∣∣∣∣∣∣ = 1 (1c)

k ∈ {0 . . .Λ/2− 1} (1d)

Here ak is a positive normalization constant chosen such that sub-equation
(1c) is satisfied. Thus, a polynomial approximation of a function f(x), based
on the function values at the two end points (i.e. grid points) is given directly
by the values of f(x) and its derivatives at the end points by

f(x) =

Λ/2−1∑
λ=0

bΛλ (x)aλ
∂λf(x)

∂xλ

∣∣∣∣
x=0

+

Λ/2−1∑
λ=0

bΛλ+Λ/2(x)aλ
∂λf(x)

∂xλ

∣∣∣∣
x=1

+O (
xΛ

)

At each grid point then, the values {a0f, a1f ′, a2f ′′, . . . } ≡ {f̂ , f̂ ′, f̂ ′′, . . . }
up to a desired order of continuity are stored (here, prime denotes deriva-
tive and ˆ indicates a normalized quantity). A matrix inversion is no longer
needed to produce the piecewise polynomial approximation for each cell.
As a consequence the floating point accuracy is no longer a limiting factor
(see [1] section 2). Since the higher derivatives tend to take on values of
greatly varying magnitude even with small variations of the flow configura-
tion, computing the scaled values directly rather than derivatives, improves
the conditioning of the resulting equation system.

72 Papers

2.2 Basis Functions in Three Dimensions

The basis functions are generalized to higher dimensions by taking the prod-
uct, BΛ

k,l,m(x, y, z) = bΛk (x)b
Λ
l (y)b

Λ
m(z). In the current work we use this dis-

cretization with the same order of continuity in the three spatial dimensions,
and implicit marching in the temporal direction.1

2.3 Unsteady Flow

The continuity and momentum equations depend on the fluid phase in a way
which is not easily linearized. As a consequence we do not linearize all the
governing equations into a single system. Instead the velocity, pressure and
phase are mapped into separate linearized global equation systems, where
the time derivatives of the next time-step are the unknowns (including time
derivatives of the spatial derivatives, up to the given order of continuity).
This is an implicit time–marching scheme (see Table 2) where the solution
for each time step is found by repeatedly solving for velocity, pressure and
phase, taking the previous solution as constant in each step.2

0 0 0

1 0 1

0 1

Table 2: Buther tableau for the implicit marching scheme.

2.4 Interphase Tracking

Numerical methods solving two-phase unsteady flow typically rely on either
adjusting the discretization geometry of the computational domain to fit the
interphase between the different fluid phases, or by using particles moving
with the flow, like the Particle in Cell (PIC) method [2, 3] and its successor,
the Smoothed Particle Hydrodynamics (SPH) [4] method.
The current method uses a constant grid combined with a sub-grid inte-

gration scheme to achieve sub-grid accuracy. An iso-surface of a scalar func-
tion, f , is used to track the interphase between different fluid phases. This
approach is also employed by for example the Volume of Fluid (VOF) method
[5].

1It is also possible to employ this discretization in the temporal dimension, and to use

different order of continuity in different directions.
2The nonlinear optimization used in [1] was not implemented, as current procedure

alone produced acceptable convergence rates.

6.2 Bubble Simulation 73

The scalar function, f , is discretized in the same manner as the velocity
and density. Its time evolution is determined by convection along with the
fluid flow (see appendix for details). At each sample point, the distance,
r, from the interphase is approximated by r ≈ f/

√∇f · ∇f . A smoothing
function, s(r), which is nonzero for small values of r determines the sur-
face effects (see appendix, Equation (7)). The smoothing function s(r) is a
polynomial with continuous first and second derivatives. The interphase is
thus approximated by a layer near f = 0 of finite thickness. The necessary
thickness depends on the density of the sample points. In the current work
the interphase thickness was approximately 7.79× 10−3 (relative to the size
of the computational domain).

2.5 Preconditioning

Solving the global equation system for the velocity is a potential bottleneck
as the resolution increases (the cost of the direct solution grows asN3(k+1)3,
with N and Ck being the number of grid points and order of continuity).
However, by using the Cholesky factorization of the initial equation system as
a preconditioner, the system may be solved very efficiently in the subsequent
iterations using the conjugate gradient (CG) iteration (typically around five
CG iterations).

3 Governing Equations

The differential form of the Navier–Stokes equations (dimensionless, scaled
with appropriate physical quantities) are solved. Table 3 shows the numerical
values of the different parameters determining the fluid properties. The grid
dependent parameters are τ = T−1

L−1and η = L − 1, where L and T are the
spatial and temporal grid resolutions, respectively. The reader may examine
the appendix for a detailed formulation of the governing equations.

4 Simulation

The simulation is of a fictitious fluid with high viscosity. The aim is to
demonstrate the method’s applicability to two-phase unsteady flow together
with boundary details on a sub-grid scale. The reader may refer to [1] for a
verification and comparison of the results of this method with conventional
methods. Figure 1 shows the set up. The grid used in this case uses C2

continuity and thus a spatial (polynomial) order of five (O(x6) terms are
discarded). With seven-cubed grid points we have L = 7 ⇒ η = L− 1 = 6.
Further we let one time unit correspond to sixty steps, thus τ = (T−1)/(L−
1) = 10.

74 Papers

phase I phase II

α 1011 1011

β 1/10 10

Re 100 100

�g (0, 0,−1) (0, 0,−1)

σ 10−3 10−3

Table 3: The numerical values of the parameters of the governing equations.
The two fluids have equal properties except for the density, which
is lower (by a factor 100) for the bubble (phase II), resulting in a
higher value of β.

z
→

x →
Figure 1: This figure shows the initial conditions of the system. The com-

putational domain is a cube. A solid, spherical object with radius
0.15 is fixed at the center of the x-y plane at a (center) height 0.75.
The lightest phase is initially a sphere with radius 0.2 positioned
at the center of the x-y plane at a height 0.25 (scales relative to the
size of the computational domain). A cross section of the compu-
tational domain of the grid is shown on the left hand side. On the
right hand side we have a perspective rendering showing the solid
and the interphase at its initial position. The initial flow velocity is
zero and the initial pressure is constant. No-slip Dirichlet bound-
ary conditions are enforced throughout the simulation. The grid
resolution is indicated by dots (in this case 73 = 343 grid points)

4.1 System Configuration

Figure 1 describes the computational domain and the initial conditions. The
initial distribution of the light fluid phase is axially symmetric and the com-
putational domain is cubical.

6.2 Bubble Simulation 75

4.2 Time Evolution

t = 1/6 t = 2/6 t = 3/6

t = 4/6 t = 5/6 t = 6/6

Figure 2: This figure shows a perspective rendering (obtained with ray cast-
ing) of the bubble interphase at different times. The surrounding
dots are grid-points at the edge of the computational domain.

Figures 2 and 3 shows snapshots of the simulation at different times. Table
4 shows numerical values of theoretically verifiable quantities at different
time-steps. As the bubble shape becomes stretched out and thinner compared
to the grid resolution, an increased inaccuracy is observed.

5 Computational Cost

The computational cost can be divided into two parts, (i) the numeric inte-
gration over all sample points which form the linearized system of equations,
and (ii) the cost of solving these equations. In this simulation the numeric
integration required most time (on average 262 seconds per iteration). Less
than ten percent of the time was spent on solving the systems (on average
27 seconds per iteration) due to the rapid convergence of the CG iteration.
It should be noted that the cost of the numeric integration grows linearly
with the number of grid-points. It is also easily parallelizable.

76 Papers

t = 1/6 t = 2/6 t = 3/6

t = 4/6 t = 5/6 t = 6/6

Figure 3: This figure shows the x − z cross section (y centered) at different
times. The arrows are of constant length in each figure and are
drawn in a Lagrangian coordinate system, projected into the x− z
plane.

5.1 convergence

Figure 4 shows the convergence history for 12 different time-steps.

6 Conclusion and Outlook

Two main problems have been tested in these simulations. i) Two phase
flow and ii) sub grid geometry. Both of these were studied simultaneously
without fundamentally changing the method to fit either issue. Compared
with the two dimensional computations presented in [1] we see that the main
computational effort is spent on numeric integration, while solving the linear
systems is comparatively cheap due to efficient use of preconditioners. Since
the algorithms used for numeric integration are easily parallelizable and have
a O(N) cost, the benefit of increasing the hardware capabilities should be
high compared to other methods.

6.2 Bubble Simulation 77

step mass x–momentum y–momentum

0 9.63863 0 0

5 9.63871 −1.69635× 10−5 8.60974× 10−6

10 9.63813 1.31676× 10−5 1.65046× 10−5

15 9.63808 9.96706× 10−6 5.95129× 10−5

20 9.63750 9.644× 10−5 9.89× 10−5

25 9.63620 0.000254756 0.000242913

30 9.63827 0.00035846 0.000307487

35 9.62337 0.000497964 0.000484558

40 9.63011 0.000585154 0.000473407

45 9.61777 0.000430384 0.000362024

50 9.61049 0.000440684 0.000301131

55 9.60459 0.000514161 0.000194891

60 9.60225 0.000688966 0.000309241

Table 4: This table shows computed numerical values of the physically con-
stant quantities: total mass and total horizontal momentum in x–
and y–directions (obtained with Monte Carlo integration). The
exact value of the mass is 10

(
1− 4

3π0.2
3
)
+ 4

3π0.2
3/10 ≈ 9.668

and the exact value of the horizontal momentum is zero.

10−6

10−4

10−2

100

1 10

Figure 4: The convergence history of twelve different time-steps of the sim-
ulation is shown. The plotted value (dots) is the root of the sum
of squares of the step length of all flow components in the grid for
each iteration. Each iteration was terminated once this quantity
dropped below 10−6.

78 Papers

Appendix

The Dimensionless Navier-Stokes Equations for Two Phases

The characteristic length and velocity scales, which map to unity in the com-
putational domain, are x0 and v0 (t0 = v0/x0) and define the dimensionless
(non-primed) quantities:

�v′ = v0�v (2a)

ρ′ = ρ0ρ (2b)

p′amb = ρ0v
2
0pamb (2c)

p′ = ρ0v
2
0 (p+ pamb) (2d)

�g′ =
v20
x0

�g (2e)

∂

∂t′
=

v0
x0

∂

∂t
(2f)

∇′ =
1

x0
∇ (2g)

T
′ =

μv0
x0

T =
μv0
x0

(
∇�v + (∇�v)

T
+

λ

μ
(∇ · �v) I

)
(2h)

σ′ = σ0σ = ρ0x0v
2
0σ (2i)

f ′ = f (2j)

Here, ρ is density, p is pressure, �v is velocity, T is the viscous stress tensor.
The sign of the scalar function, f , defines the fluid phase. The equation
of state is approximated by a linear relation between density and pressure.
The superscript T , is the transpose and I is the identity tensor. The phase
dependent properties are μ and λ (first and second viscosity coefficients),
ρamb (ambient density) and k = Kamb/ρamb whereKamb is the bulk modulus
at ambient conditions.

6.2 Bubble Simulation 79

The dimensionless phase dependent properties are determined by the dimen-
sionless parameters Re (viscosity), α (compressibility) and β (density):

Re =
x0v0ρamb

μ
, α =

kρamb

v20ρ0
=

Kamb

v20ρ0
, β =

ρ0
ρamb

(3)

We let λ/μ = −2/3. The viscous stress term, written as an operator S, acting
on the velocity reads

∇ · T = S · �v =

⎡
⎢⎣

∇2 + 1
3

∂2

∂x2
2
3

∂2

∂x∂y
2
3

∂2

∂x∂z
2
3

∂2

∂x∂y ∇2 + 1
3

∂2

3∂y2
2
3

∂2

∂y∂z
2
3

∂2

∂x∂z
2
3

∂2

∂y∂z ∇2 + 1
3

∂2

3∂z2

⎤
⎥⎦ · �v (4)

The dimensionless formulation is then:

0 =
1

α

[
∂p

∂t
+ p∇ · �v + �v · ∇p

]
+∇ · �v (5a)

0 =
1

α

[
p

(
∂�v

∂t
+ v · ∇�v − �g

)]
+

(
∂�v

∂t
+ v · ∇�v − �g

)
+ β∇p− 1

Re
S · �v

(5b)

0 =
∂f

∂t
+ �v · ∇f (5c)

Since the fluids are assumed weakly compressible, α is large and the brack-
eted terms make only a small contribution. If the flow is incompressible
(α → ∞ ⇒ ∇ · �v = 0) it can be shown that S reduces to I∇2. In the single-
phase case one would choose ρ0 = ρamb yielding β = 1. In the two-phase
case ρ0 may be set to ρamb of one of the fluids, or something in between.

Adapting Spatial and Temporal Scales to Grid Dimensions

The spatial and temporal scales in Eq.(5) are defined so that their size
is equal to the interval [0, 1]4 in the computational domain. If the grid is
uniform, floating point round off errors might be reduced by defining the
characteristic length scales so that they instead correspond to the interval
[0, L− 1]3 × [0, T − 1] in the computational domain. With L being the spa-
tial grid resolution and T the temporal grid resolution (i.e. the grid has
L × L × L × T grid-points) the spacing between grid points becomes equal

80 Papers

to one. The corresponding set of equations are:

0 =
1

α

[
τ
∂p

∂t
+ p∇ · �v + �v · ∇p

]
+∇ · �v (6a)

0 =
1

α

[
p

(
τ
∂�v

∂t
+ �v · ∇�v − �g

η

)]
+

(
τ
∂�v

∂t
+ �v · ∇�v − �g

η

)
+ β∇p− η

Re
S · �v (6b)

0 = τ
∂f

∂t
+ �v · ∇f (6c)

where τ = T−1
L−1 and η = L− 1.

Surface Tension

Surface tension gives rise to a pressure discontinuity in the equilibrium case.
Since the discontinuity is difficult to express accurately with continuous basis
functions we add it as an additional force (source term) in the momentum
equation instead of incorporating it in the pressure directly. The interphase
is approximated by a small interval around f = 0 with a smoothing function,
s, depending on the the distance, r, from the interphase. The momentum
equation, with surface tension included reads

0 =
1

α

[
p

(
τ
∂�v

∂t
+ �v · ∇�v − �g

η

)]
+

(
τ
∂�v

∂t
+ �v · ∇�v − �g

η

)
+

β

(
∇p− ησ

∇f

|∇f |
∂s

∂r
∇ ·

(∇f

|∇f |
))

− η

Re
S · �v (7)

References

[1] Tveit, J., A Numerical Approach to Solving Nonlinear Differential Equa-
tions on a Grid with Potential Applicability to Computational Fluid
Dynamics. arXiv, 2014.

[2] Harlow, F.H. & Welch, J.E., Numerical calculation of time-dependent
viscous incompressible flow of fluid with free surface. Physics of Fluids,
8, p. 2182, 1965.

[3] Harlow, F.H. & Welch, J.E., Numerical study of large amplitude free-
surface motions. Physics of Fluids, 9, p. 842, 1966.

[4] Hu, X.Y. & Adams, N.A., An incompressible multi-phase sph method.
Journal of Computational Physics, 227, pp. 264–278, 2007.

[5] Hirt, C.W. & Nichols, B.D., Volume of fluid (vof) method for the dynam-
ics of free boundaries. Journal of Computational Physics, 39, pp. 201–225,
1981.

6.2 Bubble Simulation 81

82 Papers

Chapter 7

Conclusion and Outlook

7.1 Applicability

Through this thesis we have developed a method for solving nonlinear differential equa-
tions, based on a novel grid-discretization. The approach is quantitatively verified by
the computed solutions to the lid-driven cavity, where the results agree with previously
computed results from different independent sources. The lid-driven cavity results also
show favorable scaling properties when increasing the order of continuity as indicated
in the introduction. On this foundation the approach is further developed for three
dimensional two-phase flow. Simulations of three-dimensional two phase flow demon-
strates, in a qualitative way, the potential utilization in the study of two phase flow pat-
ters in mechanical systems such as a Pelton-turbine. From these we also learn where
focus must lie in the further development and optimization of the method.

7.2 Further Work

Based on the experience gained in developing this method, there are three main prin-
ciples which stand out as interesting in the further development. i) A pure nonlinear
solution algorithm which does not require the formation of a linearized equation sys-
tem. The nonlinear conjugate gradient iteration is an algorithm with potential, as it only
requires the computation and storage of gradients and search directions. Additionally,
the linear conjugate gradient iteration was able to solve the linearized velocity systems
efficiently. ii) A hybrid particle-sample based integration scheme. In the Pelton-bucket
simulation the level set method which was used to distinguish the different phases pro-
duced artifacts as the flow features became too fine compared to the grid resolution.
Having the sample points act as particles following the fluid flow would counter this
problem, but at the cost of not having a functional definition of the interface. iii) Op-
timization of the numeric integration for parallel computing. The numeric integration
was the most computational expensive step in the three-dimensional simulations. As
the resolution increases, the cost of the numeric integration should become less signif-
icant if implemented effectively since it is a parallelizable computation which scales
linearly with the number of grid-cells.

84 Conclusion and Outlook

7.3 Options

The methodology is based on the interpolation in a grid-cell, which was defined to cover
a region enclosed by the surrounding grid-points. This is convenient since we may use
the same interpolation method in all grid-cells in the same manner regardless of their
location relative to the edge of the grid. However it is fully possible to implement a
central-difference analogue – interpolation over three grid points (see Figure 7.1). This
yields a higher polynomial order of accuracy (given the same grid information) and
thus potentially more accurate solutions. However the algebraic systems will be more
coupled (less sparse linearized systems) and the grid-cells near the edge of the grid
must be treated as special cases, making the implementation more complicated.

←� x �→
0−1 1

−1

0

1

Figure 7.1: The different basis functions for a C2 continuous grid where 3 grid-points at posi-

tions, x ∈ {−1,0,1}, are interpolated. The polynomial order is 8 (O(x9) terms are discarded).

Appendix A

Governing Equations

A.1 Navier–Stokes Equations in Physical Dimensions

Weak compressibility and a Newtonian fluid is assumed and temperature dependence
is ignored.

0 = ∂ρ ′

∂ t′
+∇′ ⋅ (ρ ′v′) (A.1a)

0 = ρ ′(∂v′

∂ t′
+v′ ⋅∇′v′)+∇′p′−∇′ ⋅T′−ρ ′g′ (A.1b)

0 = ∂ f ′

∂ t′
+v′ ⋅∇′ f ′ (A.1c)

In (A.1) ρ ′ is density, p′ is pressure, v′ is velocity, T′ is the viscous stress tensor and f ′
defines the fluid phase. If the system is closed we also have

0 = ∫ ∂ (ρ ′v′)
∂ t′

dV ′ (A.2a)

0 = ∫ ∂ρ ′

∂ t′
dV ′ (A.2b)

Where V ′ is the volume of the closed system. The equation of state is approximated by
a linear relation between density and pressure:

p′− p′amb = k(ρ ′−ρamb) , thus (A.3a)

∂ρ ′

∂ t′
= 1

k
∂ p′

∂ t′
(A.3b)

∇′ (ρ ′v′) = 1

k
∇′ ⋅ [v′(p′− p′amb)]+ρamb∇′ ⋅v′ (A.3c)

The viscous stress tensor is given by

T
′ = μ [∇′v′+(∇′v′)T]+λ (∇′ ⋅v′)I (A.4)

Where the superscript, T , is the transpose and I is the identity tensor. The phase de-
pendent properties are μ and λ (first and second viscosity coefficients), ρamb (ambient
density) and k =Kamb/ρamb where Kamb is the bulk modulus at ambient conditions. The

86 Governing Equations

density free formulation, (A.5), is obtained by solving (A.3) for the density, ρ ′, and
replacing the density in (A.1).

0 = 1

k
[∂ p′

∂ t′
+∇′ ⋅ (v′(p′− p′amb))]+ρamb∇′ ⋅v′ (A.5a)

0 = 1

k
[(p′− p′amb)(∂v′

∂ t′
+v′ ⋅∇′v′−g′)]+ρamb(∂v′

∂ t′
+v′ ⋅∇′v′−g)+∇p′−∇′ ⋅T′

(A.5b)

0 = ∂ f ′

∂ t′
+v′ ⋅∇′ f ′ (A.5c)

The density free global conservation equations read

0 = ∫ (1

k
1

∂ t′
(v′(p′− p′amb))+ρamb

∂v′

∂ t′
)dV ′ (A.6a)

0 = ∫ 1

k
∂ p′

∂ t′
dV ′ (A.6b)

A.2 The Dimensionless Navier–Stokes Equations for Two
Phases

The characteristic length and velocity scales, which map to unity in the computational
domain, are x0 and v0 (t0 = v0/x0) and define the dimensionless (non-primed) quantities:

v′ = v0v (A.7a)

ρ ′ = ρ0ρ (A.7b)

p′amb = ρ0v2
0 pamb (A.7c)

p′ = ρ0v2
0 (p+ pamb) (A.7d)

g′ = v2
0

x0
g (A.7e)

∂
∂ t′

= v0

x0

∂
∂ t

(A.7f)

∇′ = 1

x0
∇ (A.7g)

T
′ = μv0

x0
T = μv0

x0
(∇v+(∇v)T + λ

μ
(∇⋅v)I) (A.7h)

σ ′ = σ0σ = ρ0x0v2
0σ (A.7i)

f ′ = f (A.7j)

The dimensionless surface tension is given by the parameter σ , equal to the physical
surface tension, σ ′, scaled with σ0

def= ρ0x0v2
0. The phase dependent properties are de-

termined by the dimensionless parameters Re (viscosity), α (compressibility) and β

A.3 Uniform Change of Spatial and Temporal Scales 87

(density):

Re = x0v0ρamb

μ
(A.8a)

α = kρamb

v2
0ρ0

= Kamb

v2
0ρ0

(A.8b)

β = ρ0

ρamb
(A.8c)

We let λ /μ = −2/3. The viscous stress term, written as an operator, S, on the velocity
reads

∇⋅T = S ⋅v =
⎡⎢⎢⎢⎢⎢⎢⎢⎣
∇2+ 1

3
∂ 2

∂x2
2
3

∂ 2

∂x∂y
2
3

∂ 2

∂x∂ z
2
3

∂ 2

∂x∂y ∇2+ 1
3

∂ 2

3∂y2
2
3

∂ 2

∂y∂ z
2
3

∂ 2

∂x∂ z
2
3

∂ 2

∂y∂ z ∇2+ 1
3

∂ 2

3∂ z2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⋅v (A.9)

The dimensionless formulation is then:

0 = 1

α
[∂ p

∂ t
+ p∇⋅v+v ⋅∇p]+∇⋅v (A.10a)

0 = 1

α
[p(∂v

∂ t
+v ⋅∇v−g)]+(∂v

∂ t
+v ⋅∇v−g)+β∇p− 1

Re
S ⋅v (A.10b)

0 = ∂ f
∂ t

+v ⋅∇ f (A.10c)

Since the fluids are weakly compressible, α is large and the bracketed terms make only
a small contribution. If the flow is incompressible (α →∞⇒∇⋅v = 0) it can be shown
that S reduces to I∇2. In the single-phase case one would choose ρ0 = ρamb yielding
β = 1. In the two-phase case ρ0 might be set to ρamb of one of the fluids, or something
in between. The global mass conservation, separated for two different phases, l and g,
reads:

0 =
4556αgβg

αlβl
∫
Vl

∂ p
∂ t

dV +4556 αlβl

αgβg
∫
Vg

∂ p
∂ t

dV (A.11)

A.3 Uniform Change of Spatial and Temporal Scales

The spatial and temporal scales in (A.10) are defined so their size is equal to the interval[0,1]4 in the computational domain. If the grid is uniform, floating point round off
errors might be reduced by defining the characteristic length scales so that they instead
correspond to the interval [0,L−1]3 ×[0,T −1] in the computational domain. With L
being the spatial grid resolution and T the temporal grid resolution (i.e. the grid has
L×L×L×T grid-points) the spacing between grid points becomes equal to one. The

88 Governing Equations

equivalent set of equations are:

0 = 1

α
[τ

∂ p
∂ t

+ p∇⋅v+v ⋅∇p]+∇⋅v (A.12a)

0 = 1

α
[p(τ

∂v
∂ t

+v ⋅∇v− g
η
)]+(τ

∂v
∂ t

+v ⋅∇v− g
η
)+β∇p− η

Re
S ⋅v (A.12b)

0 = τ
∂ f
∂ t

+v ⋅∇ f (A.12c)

where (A.12d)

τ = T −1

L−1
(A.12e)

η = L−1 (A.12f)

A.4 Surface Tension

Surface tension gives rise to a pressure discontinuity in the equilibrium case and may
be approximated in terms of the phase function

∇′ f ′ ⋅∇′p′σ ′ = −σ ′
∂ s′

∂ f ′
∣∇′ f ′∣2∇′ ⋅ (∇′ f ′∣∇′ f ′∣) (A.13)

Here Δ f ′ is a small interval which approximate the interface between the two phases.
The dimensionless form, scaled with the grid resolution reads

∇ f ⋅∇pσ = −ησ
∂ s
∂ f

∣∇ f ∣2∇⋅(∇ f∣∇ f ∣) (A.14)

Where s(f) is a function which approximates the discontinuity of the pressure at the
interface. Since the discontinuity is difficult to express accurately with continuous
basis functions it might be added as an additional force (source term) in the momentum
equation instead of incorporating it in the pressure directly. The momentum equation
now reads

0 = 1

α
[p(τ

∂v
∂ t

+v ⋅∇v− g
η
)]+

(τ
∂v
∂ t

+v ⋅∇v− g
η
)+β (∇p−ησ∇ f

∂ s
∂ f

∇⋅(∇ f∣∇ f ∣))− η
Re

S ⋅v (A.15)

Alternatively, the distance from the interface may be approximated from f and s may
be taken as a function of the distance, r, from the interface

0 = 1

α
[p(τ

∂v
∂ t

+v ⋅∇v− g
η
)]+

(τ
∂v
∂ t

+v ⋅∇v− g
η
)+β (∇p−ησ

∇ f∣∇ f ∣ ∂ s
∂ r

∇⋅(∇ f∣∇ f ∣))− η
Re

S ⋅v (A.16)

Appendix B

Source Codes

B.1 Laplace Equation Solver

Listing B.1 shows the complete source-code for the Laplace-equation solver. This does
not depend on external libraries other than the C++ standard and may be copied into
any modern compiler and tested as it is.

Listing B.1: Laplace Equation Solver

i n c l u d e < i o s t r e a m >

i n c l u d e <iomanip >

i n c l u d e < v e c t o r >

i n c l u d e <cmath >

i n c l u d e < c s t d l i b >

us ing namespace s t d ;

/ / g r i d p r o p e r t i e s
c o n s t i n t Omega = 3 ; / / number o f d e r i v a t i v e s
c o n s t double f0 = 1 . 0 ; / / l ower boundary v a l u e
c o n s t double f1 = 1 0 . 0 ; / / upper boundary v a l u e
c o n s t double r0 = 1 . 0 ; / / l ower boundary r a d i u s
c o n s t double r1 = 1 0 . 0 ; / / upper boundary r a d i u s
i n t K = 5 ; / / number o f gr id − p o i n t s
double A = (K− 1) / (r1 − r0) ; / / r e f e r e n c e − f rame change
v e c t o r <double > F (K*Omega , 0 . 0) ; / / g r i d v a l u e s

/ / Computes n o r m a l i z e d b a s i s f u n c t i o n s f o r Omega = 3 .
/ / The f i r s t argument i s t h e g r i d c e l l c o o r d i n a t e .
/ / The b a s i s f u n c t i o n s are e v a l u a t e d and s t o r e d i n t h e
/ / a r r a y g i v e n i n t h e second argument
void b a s i s 6 (c o n s t double , double [6]) ;

/ / E v a l u a t e s a f u n c t i o n based on gr id − c e l l components
/ / g i v e n i n an a r r a y (second argument) , a t c o o r d i n a t e
/ / g i v e n i n t h e f i r s t argument
double e v a l u a t e 6 (c o n s t double , c o n s t double [6]) ;

/ / R e t u r n s t h e a n a l y t i c r e f e r e n c e s o l u t i o n :
/ / f (r) = a + b / r
double a n a l y t i c (c o n s t double) ;

/ / R e t u r n s t h e computed s o l u t i o n
double computed (c o n s t double) ;

90 Source Codes

/ / Computes t h e l a p l a c i a n v e c t o r p r o d u c t i n t e g r a t e d o v er
/ / t h e k ’ t h gr id − c e l l . R e s u l t i s s t o r e d i n t h e array ,
/ / which i s t r e a t e d as a 6 by 6 m a t r i x (s t o r e d row−wise)
void s p h L a p l a c i a n I n t e g r a l (c o n s t i n t , double [3 6]) ;

/ / Maps gr id −components t o non−boundary components
/ / r e t u r n s −1 i f g i v e n a boundary component
i n t mapComp (c o n s t i n t) ;

/ / Maps t h e non−boundary components t o t h e gr id −components
i n t unmapComp (c o n s t i n t) ;

/ / Computes t h e s o l u t i o n t o our t e s t problem f o r a g i v e n
/ / r e s o l u t i o n
void s o l v e S y s t e m (c o n s t i n t) ;

/ / S o l v e s a symmetr ic , l i n e a r e q u a t i o n s y s t e m
void solveSym (c o n s t i n t , / / s i z e

v e c t o r <double > &, / / m a t r i x
v e c t o r <double > &); / / r e s u l t

/ / Compares t h e computed s o l u t i o n t o t h e a n a l y t i c s o l u t i o n
double getRMSerror (void) ;

/ / Compute s o l u t i o n s f o r d i f f e r e n t g r i d r e s o l u t i o n s
/ / p r i n t t h e RMS e r r o r f o r each r e s o l u t i o n
i n t main ()

{

f o r (i n t i = 5 ; i <= 2 0 ; i ++)

{

c o u t << "K = " << se tw (3) << i ;

s o l v e S y s t e m (i) ;

c o u t << " , RMS e r r o r : "

<< se tw (1 2) << getRMSerror () << s t d : : e n d l ;

}

re turn 0 ;

}

/ / x i s t h e c o o r d i n a t e , r e s u l t i s s t o r e d i n B []
void b a s i s 6 (c o n s t double x , double B [6])

{

c o n s t double x2 = x*x ;

c o n s t double x3 = x2*x ;

c o n s t double y = 1 − x ;

c o n s t double y2 = y*y ;

c o n s t double y3 = y2*y ;

B[0] = y3 * (3 * (2 * x + 1)* x + 1) ;

B[1] = 5* y3*x *(3* x + 1) ;

B[2] = 30* y3*x2 ;

B[3] = x3 * (3 * (2 * y + 1)* y + 1) ;

B[4] = −5*x3*y *(3* y + 1) ;

B[5] = 30* x3*y2 ;

}

/ / x i s t h e c o o r d i n a t e , F [] i s t h e gr id − c e l l components
double e v a l u a t e 6 (c o n s t double x , c o n s t double F [6])

B.1 Laplace Equation Solver 91

{

double f = 0 . 0 ;

double B [6] ;

b a s i s 6 (x , B) ;

f o r (i n t i = 0 ; i < 6 ; i ++)

f += B[i]* F [i] ;

re turn f ;

}

/ / R e t u r n s t h e a n a l y t i c r e f e r e n c e s o l u t i o n
double a n a l y t i c (c o n s t double r)

{

c o n s t double C0 = r1 * f1 − r0 * f0 ;

c o n s t double C1 = r0 * r1 * (f1 − f0) ;

re turn (C0 − C1 / r) / (r1 − r0) ;

}

/ / R e t u r n s t h e computed s o l u t i o n
double computed (c o n s t double r)

{

c o n s t double x = (r − r0)*A;

c o n s t i n t xf = s t a t i c _ c a s t < i n t >(f l o o r (x)) ;

c o n s t i n t k = max (min (xf , K− 2) , 0) ;

re turn e v a l u a t e 6 (x−k ,&F [Omega*k]) ;

}

/ / R e s u l t i s s t o r e d i n t h e m a t r i x o b j e c t LLT
void s p h L a p l a c i a n I n t e g r a l (c o n s t i n t k , double LLT [3 6])

{

c o n s t double C = (A* r0 + k) / 2 ;

c o n s t double C2 = C*C ;

c o n s t double S = 2 1 0 . 0 ;

LLT [0] = S *(8*C2+4*C+ 1) / 9 8 ;

LLT [1] = S *(240*C2+96*C+ 1 7) / 1 1 7 6 ;

LLT [2] = S *(24*C2+16*C+ 3) / 1 9 6 ;

LLT [3] = −S *(8*C2+4*C+ 1) / 9 8 ;

LLT [4] = S *(240*C2+144*C+ 2 9) / 1 1 7 6 ;

LLT [5] = −S *(24*C2+8*C+ 1) / 1 9 6 ;

LLT [6] = LLT [1] ;

LLT [7] = S *(192*C2+31*C+ 1 2) / 2 9 4 ;

LLT [8] = S *(88*C2+48*C+ 9) / 1 9 6 ;

LLT [9] = −S *(240*C2+96*C+ 1 7) / 1 1 7 6 ;

LLT [1 0] = S *(432*C2+216*C+ 3 7) / 1 1 7 6 ;

LLT [1 1] = −S * ((4 *C−1)*(4*C + 1)) / 9 8 ;

LLT [1 2] = LLT [2] ;

LLT [1 3] = LLT [8] ;

LLT [1 4] = S * (3 * (2 4 * C2+6*C + 1)) / 4 9 ;

LLT [1 5] = −S *(24*C2+16*C+ 3) / 1 9 6 ;

LLT [1 6] = S * ((4 *C+1)* (4*C + 3)) / 9 8 ;

LLT [1 7] = S * (3 * (8 * C2+4*C + 1)) / 9 8 ;

LLT [1 8] = LLT [3] ;

92 Source Codes

LLT [1 9] = LLT [9] ;

LLT [2 0] = LLT [1 5] ;

LLT [2 1] = S *(8*C2+4*C+ 1) / 9 8 ;

LLT [2 2] = −S *(240*C2+144*C+ 2 9) / 1 1 7 6 ;

LLT [2 3] = S *(24*C2+8*C+ 1) / 1 9 6 ;

LLT [2 4] = LLT [4] ;

LLT [2 5] = LLT [1 0] ;

LLT [2 6] = LLT [1 6] ;

LLT [2 7] = LLT [2 2] ;

LLT [2 8] = S *(384*C2+322*C+ 8 9) / 5 8 8 ;

LLT [2 9] = −S *(88*C2+40*C+ 7) / 1 9 6 ;

LLT [3 0] = LLT [5] ;

LLT [3 1] = LLT [1 1] ;

LLT [3 2] = LLT [1 7] ;

LLT [3 3] = LLT [2 3] ;

LLT [3 4] = LLT [2 9] ;

LLT [3 5] = S * (6 * (1 2 * C2+9*C + 2)) / 4 9 ;

}

/ / f i i s t h e gr id −component i n d e x
i n t mapComp (c o n s t i n t f i)

{

c o n s t i n t b i = Omega *(K−1) ;

i f (f i < b i) re turn f i −1;

i f (f i > b i) re turn f i −2;

re turn −1;

}

/ / s i i s t h e i n d e x o f t h e s o l u t i o n v e c t o r
i n t unmapComp (c o n s t i n t s i)

{

c o n s t i n t b i = Omega *(K−1) ;

i f (s i + 1 < b i) re turn s i + 1 ;

re turn s i + 2 ;

}

/ / Computes t h e s o l u t i o n t o our t e s t problem
void s o l v e S y s t e m (c o n s t i n t n u m _ g r i d p o i n t s)

{

K = n u m _ g r i d p o i n t s ;

F . r e s i z e (K*Omega , 0 . 0) ;

A = (K− 1) / (r1 − r0) ;

/ / S e t boundary components (a0 = 1)
F [0] = f0 ;

F [Omega *(K−1)] = f1 ;

/ / I n s t a n t i a t e and i n i t i a l i z e m a t r i c e s
c o n s t i n t N = Omega*K − 2 ; / / s y s t e m s i z e
v e c t o r <double > M(N*N , 0 . 0) ; / / s y s t e m m a t r i x
v e c t o r <double > B(N , 0 . 0) ; / / s y s t e m r e s u l t
double LLT[4* Omega*Omega] ; / / c e l l s y s t e m

B.1 Laplace Equation Solver 93

/ / Loop over a l l t h e gr id − c e l l s
f o r (i n t k = 0 ; k < K−1; k ++)

{

/ / Get t h e l a p l a c i a n i n t e g r a l f o r c u r r e n t c e l l
s p h L a p l a c i a n I n t e g r a l (k , LLT) ;

/ / Add t h e c e l l − s y s t e m t o t h e gr id −wide s y s t e m
c o n s t i n t i 0 = Omega*k ;

f o r (i n t i = 0 ; i < 2*Omega ; i ++)

{

c o n s t i n t row = mapComp (i 0 + i) ;

/ / i g n o r e rows c o r r e s p o n d i n g t o t h e boundary
i f (row >= 0)

f o r (i n t j = 0 ; j < 2*Omega ; j ++)

{

c o n s t i n t c o l = mapComp (i 0 + j) ;

c o n s t double L i j = LLT[2* Omega* i + j] ;

/ / c o l >= 0:
/ / non−boundary−> add t o m a t r i x

/ / c o l < 0:
/ / boundary−> add t o s o l u t i o n

i f (c o l >= 0)

M[N*row + c o l] += L i j ;

e l s e
B[row] −= L i j *F [i 0 + j] ;

}

}

}

/ / s o l v e t h e l i n e a r s y s t e m
solveSym (N,M, B) ;

/ / copy s o l u t i o n back t o g r i d
f o r (i n t i = 0 ; i < N; i ++)

F [unmapComp (i)] = B[i] ;

}

/ / S o l v e s t h e m a t r i x e q u a t i o n Ax = B , where :
/ / A i s assumed s y m m e t r i c w i t h n o n z e r o d i a g o n a l e l e m e n t s ,
/ / N i s t h e d i m e n s i o n and t h e r e s u l t i s s t o r e d i n B
void solveSym (c o n s t i n t N, / / s i z e

v e c t o r <double > &A, / / m a t r i x
v e c t o r <double > &B) ; / / r e s u l t

{

f o r (i n t d = 0 ; d < N−1; d ++)

f o r (i n t r = d +1; r < N; r ++)

{

c o n s t double l e l = −A[N*d + r] / A[N*d + d] ;

c o n s t double * c o n s t U = &A[N*d + r] ;

double * c o n s t V = &A[N* r + r] ;

c o n s t i n t M = N− r ;

94 Source Codes

f o r (i n t n = 0 ; n < M; n ++)

V[n] += U[n]* l e l ;

B[r] += B[d]* l e l ;

A[N*d + r] = l e l ;

}

f o r (i n t d = 0 ; d < N; d ++)

B[d] /= A[N*d + d] ;

f o r (i n t r = N−2; r >= 0 ; r −−)

f o r (i n t i = N−1; i > r ; i −−)

B[r] += A[N* r + i]*B[i] ;

}

/ / Compares t h e computed s o l u t i o n t o t h e a n a l y t i c s o l u t i o n
double getRMSerror (void)

{

c o n s t i n t num_samp = 10000*(K−1)*Omega ;

double R2 = 0 . 0 ;

f o r (i n t i = 0 ; i < num_samp ; i ++)

{

c o n s t double r = r0 + ((r1 − r0)* r an d ()) / RAND_MAX;

c o n s t double dR = computed (r) − a n a l y t i c (r) ;

R2 += dR*dR ;

}

re turn s q r t (R2 / num_samp) ;

}

B.2 Matrix Classes

Listings B.2-B.3 shows the header files (member declarations) of the matrix classes
developed for this thesis. The purpose of each member function is explained in the
comments on the same line or above. The implementations of the matrix classes are
too large to include in a printed paper but will be made available on-line or by request
to the author. Some member functions are capable of using GPU accelerated parallel
processing and requires initialized OpenCL context, command queue and programs.

Listing B.2: Matrix Class Header

i f n d e f MATRIX_H_INCLUDED

d e f i n e MATRIX_H_INCLUDED

i n c l u d e < i o s t r e a m >

i n c l u d e < f s t r e a m >

i n c l u d e <iomanip >

i n c l u d e <cmath >

i n c l u d e " r e a l . h "

B.2 Matrix Classes 95

c l a s s M a t r i x {

p u b l i c :

M a t r i x (void) ; / / c r e a t e s empty m a t r i x
M a t r i x (c o n s t i n t , c o n s t i n t) ; / / a l l o c a t e s s t o r a g e
M a t r i x (c o n s t M a t r i x &); / / c r e a t e s a copy o f argument
~ Ma t r i x (void) ;

void s e t S i z e (c o n s t i n t , c o n s t i n t) ;

void s e t I d e n t i t y (c o n s t i n t) ; / / i n i t i a l i z e s an i d e n t i t y m a t r i x
void setRandom (void) ; / / r a n d o m i z e s m a t r i x (normal d i s t r i b u t i o n)
void setRandomSym (void) ; / / random s y m m e t r i x m a t r i x
void s e t A l l (c o n s t REAL_TYPE) ; / / s e t a l l e l e m e n t s e q u a l t o argument

/ / o p e t a t o r s
M a t r i x & operator = (c o n s t M a t r i x &);

M a t r i x & operator *= (c o n s t REAL_TYPE) ;

M a t r i x & operator −= (c o n s t M a t r i x &);

M a t r i x & operator += (c o n s t M a t r i x &);

c o n s t REAL_TYPE & operator () (c o n s t i n t , c o n s t i n t) c o n s t ;

REAL_TYPE & operator () (c o n s t i n t , c o n s t i n t) ;

M a t r i x operator + (c o n s t M a t r i x &) c o n s t ;

M a t r i x operator − (c o n s t M a t r i x &) c o n s t ;

M a t r i x operator * (c o n s t M a t r i x &) c o n s t ;

M a t r i x operator * (c o n s t REAL_TYPE &) c o n s t ;

Ma t r i x & s o l v e (M a t r i x &); / / p a r t i a l l y p i v o t e d g a u s s i a n e l i m i n a t i o n
Ma t r ix & solveSym (M at r i x &); / / s y m m e t r i c g a u s s i a n e l i m i n a t i o n
M a t r i x & s o l v e N o p i v (M a t r i x &); / / non− p i v o t e d g a u s s i a n e l i m i n a t i o n
void s o l v e C h o l (M a t r i x &); / / s o l v e v i a c h o l e s k y f a c t o r i z a t i o n
Ma t r ix & i n v e r t (void) ; / / i n v e r t s v i a g a u s s i a n e l i m i n a t i o n on i d e n t i t y
Ma t r ix g e t T r a n s p o s e (void) c o n s t ; / / r e t u r n s a t r a n s p o s e d copy
void normal izeRows (Ma t r i x &); / / s c a l e s rows by i n f i n i t y −norm

/ / r e t u r n s sub m a t r i x based on argument i n d i c e s
M a t r i x sub (c o n s t i n t , c o n s t i n t , c o n s t i n t , c o n s t i n t) c o n s t ;

/ / d i f f e r e n t norm t y p e s and c o n d i t i o n i n g
REAL_TYPE maxAbsElm (void) c o n s t ;

REAL_TYPE frobNorm (void) c o n s t ;

REAL_TYPE frobNormSq (void) c o n s t ;

REAL_TYPE svdNorm (void) c o n s t ;

REAL_TYPE cond i t i onNumber (void) c o n s t ;

void QRlsqr (Ma t r i x &B) ; / / pseudo i n v e r s e v i a QR f a c t o r i z a t i o n
void NRMlsqr (Ma t r i x &B) ; / / pseudo i n v e r s e v i a normal e q u a t i o n s

/ / s i n g u l a r v a l u e d e c o m p o s i t i o n (adap ted from n u m e r i c a l r e c i p e s)
void svdcmp (REAL_TYPE [] , Ma t r i x &);

c o n s t i n t map (c o n s t i n t , c o n s t i n t) c o n s t ; / / memory l a y o u t

/ / save t o d i s k i n v a r i o u s t e x t f o r m a t s
void saveForm (c o n s t char *) c o n s t ;

void saveForm (s t d : : o f s t r e a m &) c o n s t ;

void saveOctaveForm (c o n s t char *) c o n s t ;

/ / p r o d u c e s s y m m e t r i c m a t r i x by c o p y i n g upper t r i a n g u l a r t o lower
void copyUpperTr iToSubTr i (void) ;

96 Source Codes

i n t rows , c o l s ; / / s i z e
REAL_TYPE * d a t a ; / / p o i n t e r t o da ta i n memory

} ;

e n d i f / / MATRIX_H_INCLUDED

Listing B.3: Sparse Matrix Class Header

i f n d e f SPARSEMAT_H

d e f i n e SPARSEMAT_H

i n c l u d e < t h r e a d >

i n c l u d e <CL / c l . hpp >

i n c l u d e " M a t r i x . h "

c l a s s Spa r sema t

{

p u b l i c :

/ / i n d e x e d m a t r i x e l e m e n t
s t r u c t Elm

{

i n t c ;

REAL_TYPE v ;

} ;

/ / row o p e r a t i o n (mu l t p w i t h s and add t o q)
s t r u c t RowOp

{

i n t p , q ;

REAL_TYPE s ;

} ;

/ / h o u s e h o l d e r r e f l e c t i o n w i t h rows and a n g l e s
s t r u c t Househo lde rRe f

{

i n t p , q ;

REAL_TYPE c , s ;

} ;

/ / banded s t o r a g e scheme used f o r p r e c o n d i t i o n i n g
s t r u c t BandedConSym

{

i n t rows , bwdt ;

s t d : : v e c t o r <REAL_TYPE> d a t a ;

} ;

/ / m a t r i x row o f i n d e x e d e l e m e n t s s t a r t i n g from d i a g o n a l
c l a s s Row

{

p u b l i c :

Row(c o n s t i n t i d) : r (i d) { }

Row(void) : r (0) { }

Row(c o n s t Row &o t h e r) : r (o t h e r . r) , elm (o t h e r . elm) { }

~Row(void) { }

void getRawRow (s t d : : v e c t o r <REAL_TYPE> &) c o n s t ;

i n t numElm (void) c o n s t { re turn s t a t i c _ c a s t < i n t >(elm . s i z e ()) ; }

i n t elmPos (c o n s t i n t) c o n s t ;

bool nonze ro (c o n s t i n t) c o n s t ;

B.2 Matrix Classes 97

REAL_TYPE getElm (c o n s t i n t) c o n s t ;

REAL_TYPE frobNormSq (void) c o n s t ;

void se tE lm (c o n s t i n t , c o n s t REAL_TYPE) ;

void addToElm (c o n s t i n t , c o n s t REAL_TYPE) ;

void multElm (c o n s t i n t , c o n s t REAL_TYPE) ;

void divElm (c o n s t i n t , c o n s t REAL_TYPE) ;

void cgPrecon (c o n s t M a t r i x &);

void multRow (REAL_TYPE &, c o n s t M a t r i x &) c o n s t ;

void multColSub (Ma t r i x &, c o n s t REAL_TYPE) c o n s t ;

void z e r o A l l (void) ;

void c l e a r (void) ;

i n t r ;

s t d : : v e c t o r <Elm> elm ;

} ;

/ / i n i t i a l i z a t i o n
Spa r sema t (void) ;

Spa r sema t (c o n s t i n t) ;

v i r t u a l ~ Spa r sema t (void) ;

Spa r sema t (c o n s t Spa r sema t &o t h e r) ;

Spa r sema t & operator = (c o n s t Spa r sema t &o t h e r) ;

bool e x i s t s (c o n s t i n t , c o n s t i n t) c o n s t ; / / i s e l e m e n t a l l o c a t e d ?
bool nonze ro (c o n s t i n t , c o n s t i n t) c o n s t ; / / t r u e i f nonzero
REAL_TYPE getElm (c o n s t i n t , c o n s t i n t) c o n s t ; / / r e t u r n s v a l u e
i n t maxBand (void) c o n s t ; / / l a r g e s t non− z e r o d i s t a n c e from d i a g o n a l

/ / v a r i o u s o p e r a t i o n s on e l e m e n t s , a l l o c a t e s memory i f n e c e s s a r y
void se tE lm (c o n s t i n t , c o n s t i n t , c o n s t REAL_TYPE) ;

void addToElm (c o n s t i n t , c o n s t i n t , c o n s t REAL_TYPE) ;

void multElm (c o n s t i n t , c o n s t i n t , c o n s t REAL_TYPE) ;

void divElm (c o n s t i n t , c o n s t i n t , c o n s t REAL_TYPE) ;

/ / m u l t i p l y w i t h p o s i t i v e − d e f i n i t e m a t r i x
c o n s t Ma t r ix posDefMul t (c o n s t M a t r i x &) c o n s t ;

/ / m u l t i p l y w i t h p o s i t i v e − d e f i n i t e m a t r i x w i t h an added d i a g o n a l
c o n s t Ma t r ix p o s D e f M u l t S h i f t (c o n s t M a t r i x &, c o n s t M a t r i x &) c o n s t ;

/ / a p p l y p r e c o n d i t i o n e r
c o n s t Ma t r ix cgPrecon (Ma t r i x &, M a t r i x &);

c o n s t M a t r i x c g P r e c o n S h i f t (M a t r i x &, M a t r i x &, M a t r i x &);

/ / c o n j u g a t e g r a d i e n t w i t h v a r i o u s p r e c o n d i t i o n e r s and o p t i o n a l
/ / u t i l i z a t i o n o f GPU d e v i c e f o r p a r a l l e l comput ing

c o n s t REAL_TYPE c o n j u g a t e G r a d i e n t (Ma t r i x &, c o n s t M a t r i x &,

c o n s t REAL_TYPE , i n t &, c o n s t i n t) ;

c o n s t REAL_TYPE cgPre (Ma t r i x &, Ma t r i x &, c o n s t REAL_TYPE ,

i n t &, c o n s t i n t) ;

c o n s t REAL_TYPE cgPre (Ma t r i x &, Ma t r i x &, c o n s t REAL_TYPE , i n t &,

c o n s t i n t , c l : : C o n t e x t * , c l : : CommandQueue * , c l : : Program *) ;

c o n s t REAL_TYPE cgPre (Ma t r i x &, Ma t r i x &, c o n s t BandedConSym &,

c l : : C o n t e x t * , c l : : CommandQueue * , c l : : Program *) ;

c o n s t REAL_TYPE cgPre (Ma t r i x &, Ma t r i x &, i n t &, c o n s t BandedConSym &,

c l : : C o n t e x t * , c l : : CommandQueue * , c l : : Program *) ;

c o n s t REAL_TYPE cgPre (Ma t r i x &, Ma t r i x &, c l : : C o n t e x t * ,

c l : : CommandQueue * , c l : : Program *) ;

98 Source Codes

c o n s t REAL_TYPE c g P r e S h i f t (Ma t r i x &, Ma t r i x &, Ma t r i x &, c l : : C o n t e x t * ,

c l : : CommandQueue * , c l : : Program *) ;

/ / expand da ta a l l o c a t i o n i n t o sub−d i a g o n a l r e g i o n (by c o p y i n g)
void s e t E x p l i c i t S u b d i a g (void) ;

REAL_TYPE frobNorm (void) c o n s t ;

/ / a p p l y h o u s e h o l d e r r e f l e c t i o n
void h o u s e h o l d e r P r e c o n (s t d : : v e c t o r < Househo lderRef > &);

Ma t r i x a p p l y O p e r a t i o n T r a n (c o n s t M a t r i x &,

c o n s t s t d : : v e c t o r < Househo lderRef > &) c o n s t ;

Ma t r i x a p p l y O p e r a t i o n (c o n s t M a t r i x &,

c o n s t s t d : : v e c t o r < Househo lderRef > &) c o n s t ;

/ / compute c h o l e s k y f a c t o r i z a t i o n and s av e as banded p r e c o n d i t i o n e r
void c h o l e s k y F a c (BandedConSym &);

void c h o l e s k y F a c (BandedConSym &, c l : : C o n t e x t * ,

c l : : CommandQueue * , c l : : Program *) ;

M a t r i x s o l v e C h o l (M a t r i x &); / / s o l v e v i a c h o l e s k y f a c t o r i z a t i o n
Ma t r ix solveSym (M at r i x &); / / s o l v e v i a s y m m e t r i c g a u s s i a n e l i m i n a t i o n
M a t r i x s o l v e S y m S h i f t (M a t r i x &, M a t r i x &);

c o n s t i n t dims (void) c o n s t ; / / g e t d i m e n s i o n
void conver tToRawData (BandedConSym &); / / c o n v e r t s t o r a g e scheme
void crea teFromRawData (c o n s t BandedConSym &);

void i n v e r t (void) ; / / i n v e r s e v i a g a u s s i a n e l i m i n a t i o n on i d e n t i t y
void s a v e F o r m a t t e d (s t d : : o f s t r e a m &) c o n s t ; / / sav e as t e x t f i l e

void c l e a r (void) ; / / r e l e a s e memory
void s e t S i z e (c o n s t i n t) ; / / s e t d i m e n s i o n
void z e r o A l l (void) ; / / s e t a l l e l e m e n t s e q u a l t o z e r o (r e l e a s e s memory)

s t d : : v e c t o r <Row> row ; / / m a t r i x da ta
} ;

e n d i f / / SPARSEMAT_H

Bibliography

[1] Proc. Coupled Problems 2015, 2015. CIMNE. 5.1

[2] Proc. Multiphase Flow 2015, volume 89 of WIT Transactions on Engineering
Sciences, 2015. Witpress. 6.2

[3] E. Erturk, T. C. Corke, and Gökçöl. Numercal solutions of 2-d steady incom-
pressible driven cavity flow at high reynolds numbers. International Journal for
Numerical Methods in Fluids, 48, 2005. 6.1

[4] U. Ghia, K. N. Ghia, and T. C. Shin. High-re solutions for incompressible flow us-
ing the navier-stokes equations and a multigrid method. Journal of Computational
Physics, 48, 1982. 6.1

[5] M. Y. Hussaini. Spectral methods in fluid dynamics. NASA Langley Research
Center, 1986. 1.4

[6] J. J. Monaghan. Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys,
30:543–74, 1992. 1.3

[7] H. Takewaki, A. Nishiguri, and T. Yabe. Cubic interpolated pseudo-particle
method (CIP) for solving hyperbolic-type equations. Journal of Computational
Physics, 61, 1984. 3

[8] Lloyd N. Trefethen and David Bau, III. Numerical Linear Algebra. Siam,
Philadelphia, 1997. 1

[9] Jesper Tveit. A numerical approach to solving nonlinear differential equations on
a grid with potential applicability to computational fluid dynamics. 2014. 3.3.1,
6.1, 1

[10] Jesper Tveit. A high order approach to solving nonlinear differential equations
applied to direct numerical simulation of two-phase undsteady flow. Proc. Com-
putational Methods in Multiphase Flow, VIII, 2015. 5.1, 6.2

[11] E. M. Wahba. Steady flow simulations inside a driven cavity up to reynolds num-
ber 35,000. Computers and Fluids, 66, 2012. 6.1

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

