Kloning, karakterisering og ligandaktivering av aryl hydrokarbonreseptor 2 (AHR2) fra Atlanterhavstorsk (*Gadus morhua*)

Masteroppgave i miljøtoksikologi

Alexander Klevedal Madsen

Institutt for biologi, Universitet i Bergen

Mars 2016

Forord

Arbeidet med denne masteroppgaven ble utført i forskningsgruppen for miljøtoksikologi ved institutt for biologi, Universitetet i Bergen. Denne oppgaven er en del av forskningsprosjektet 'iCod 2.0: Integrative environmental genomics of Atlantic cod (Gadus morhua)' som er finansiert av Norges forskningsråd og Universitetet i Bergen, prosjektnummer 244564/E40.

Jeg vil gjerne takke veilederne mine, Odd Andre Karlsen, Marta Eide og Anders Goksøyr som har vært til god hjelp. Jeg vil spesielt takke Odd Andre for sitt gode engasjement og tett oppfølging gjennom hele prosjektet, og Marta som har vært til stor hjelp under skriveprossessen.

En stor takk til Roger Lille-Langøy i miljøtoksikolgi-gruppen for opplæring og diskusjon av metoder brukt i denne oppgaven.

Tilslutt vil jeg takke de andre studentene og ansatte i miljøtoksikolgi-gruppen som har bidratt til et hyggelig studiemiljø og familie og venner som har støttet meg gjennom det siste året.

Bergen, mars 2016

Alexander Klevedal Madsen

Innholdsfortegnelse

FOROR	D	I
SAMM	ENDRAG	V
FORKO	RTELSELISTE	VII
1 INT	RODUKSJON	1
1.1	Perspektiv	
1.2	MILIØGIFTER	
1.3	BIOTRANSFORMASJON	
1.4	TRANSKRIPSJONSFAKTORER	
1.5	ARYL HYDROKARBONRESEPTOR	
1.6	LIGANDER FOR AHR	8
1.7	AHR MEDIERT TOKSISITET	
1.8	ATLANTERHAVSTORSK	
1.9	Studier av ligandaktivering av AHR	
1.10	MÅL FOR OPPGAVEN	15
2 MA	TERIALER	17
2.1	Kjemikalier	
2.2	ENZYMER	
2.3	DNA-rensing	
2.4	OLIGONUKLEOTIDER	
2.5	Cellelinjer	21
2.6	Plasmider	21
2.7	Dyrkningsmedium	
2.8	Løsninger	23
2.9	Programvare	25
2.10	INSTRUMENTER	25
3 ME	TODE	27
3.1	Oversikt over metoder	
3.2	Prøvetakning	
3.3	RNA-ISOLERING	
3.4	cDNA-syntese	
3.5	PCR	30
3.6	SANGERSEKVENSERING	
3.7	Plasmidkonstruksjon	
3.8	LIGANDAKTIVERINGSFORSØK	

3.9	Databehandling	
3.10	SEKVENSANALYSE	47
3.11	STATISTIKK	48
3.12	FIGURER	
4 RES	SULTATER	
4.1	RNA-ISOLERING	
4.2	CDNA-SYNTESE OG PCR KLONING	50
4.3	Konstruksjon av reseptorplasmid	54
4.4	PLASMIDKVALITET	57
4.5	LIGANDAKTIVERINGSFORSØK	59
4.6	Sekvensanalyse	71
5 DIS	SKUSJON	79
- 4		
5.1	Fylogeni og sekvensanalyse	79
5.1 5.2	Fylogeni og sekvensanalyse Ligandaktivering	79 81
5.1 5.2 5.3	Fylogeni og sekvensanalyse Ligandaktivering Vurdering av metoder	79 81 85
5.1 5.2 5.3 5.4	Fylogeni og sekvensanalyse Ligandaktivering Vurdering av metoder Konklusjon	
5.1 5.2 5.3 5.4 5.5	Fylogeni og sekvensanalyse Ligandaktivering Vurdering av metoder Konklusjon Fremtidig arbeid	
5.1 5.2 5.3 5.4 5.5 6 LIT	Fylogeni og sekvensanalyse Ligandaktivering Vurdering av metoder Konklusjon Fremtidig arbeid TERATUR.	
5.1 5.2 5.3 5.4 5.5 6 LIT VEDLE(Fylogeni og sekvensanalyse Ligandaktivering Vurdering av metoder Konklusjon Fremtidig arbeid TERATUR GG A	
5.1 5.2 5.3 5.4 5.5 6 LIT VEDLE(Fylogeni og sekvensanalyse Ligandaktivering Vurdering av metoder Konklusjon Fremtidig arbeid TERATUR GG A GG B	
5.1 5.2 5.3 5.4 5.5 6 LIT VEDLEC VEDLEC	Fylogeni og sekvensanalyse Ligandaktivering Vurdering av metoder Konklusjon Fremtidig arbeid TERATUR GG A GG B GG C	

Sammendrag

Aryl hydrokarbonreseptor (AHR) er en ligandaktivert transkripsjonsfaktor som regulerer en rekke fase I- og fase II biotransformasjonsenzymer. AHR tilhører en familie av transkripsjonsfaktorer som inneholder et basisk heliks loop heliks (bHLH)- og et Per-ARNT-Sim (PAS) domene. AHR aktiveres av en rekke halogenerte og polyaromatiske forbindelser, hvor den svært giftige forbindelsen 2,3,7,8tetraklorodibenzo-p-dioksin (2,3,7,8-TCDD) har vært en prototype-agonist i forsøk med AHR. I tillegg til å være en reseptor for eksogene forbindelser, har AHR også viktige fysiologisk roller. I fisk eksisterer det flere ulike varianter av AHR. Disse kan deles i to hovedgrupper kalt AHR1 og AHR2. Mange av de skadelige effektene i fisk som induseres av 2,3,7,8-TCDD og lignende forbindelser medieres gjennom AHR2. I genomet fra Atlanterhavstorsk (*Gadus morhua*), som er en økologisk og økonomisk viktig teleost, er det i genomsekvensen annotert to ahr-gener, *ahr1* og *ahr2*.

Målet med denne oppgaven var å klone, sekvensere, og karakterisere AHR2, og etablere et gen reportersystem for å studere aktivering av reseptoren med ulike ligander. Gen-reporter-systemet ble basert på AHR2 fusjonert til det DNA-bindende domenet av Gal4, en transkripsjonsfaktor fra gjær.

Sekvensanalyser viste at torskAHR2 kodes av 3384 nukleotider som utgjør et predikert protein på 1128 aminosyrer og en estimert molekylvekt på 122,7 kDa. Sekvenssammenstilling av AHR2 fra torsk med AHR2 fra andre fisk, viste en høy grad av konservering i bHLH- og PAS-domenene, inkludert aminosyrer forbundet med ligand- og DNA-binding. Den C-terminale delen av AHR2 er lite konservert blant ulike fisk, og som for andre fisk inneholder torskens AHR2 ikke et glutamin-rikt transaktiveringsdomene. Det ble vist at AHR2 er et funksjonelt protein som kan binde og aktiveres av strukturelt ulike ligander *in vitro*. AHR2 ble aktivert av forbindelsene β -naftoflavon, benzo(a)pyren, PCB-126 og, formylindolo[3,2b]carbazol (FICZ), men ikke fenantren, α -naftoflavone og PCB-153. FICZ, som er et endogent signalmolekyl induserte aktivering av AHR2 ved svært lave konsentrasjoner (pM).

Basert på sekvensdata og studier av ligandbinding, foreslås det at AHR2 fra torsk har en rolle som sensormolekyl for eksogene forbindelser i torsk, og en rolle som regulator av biotransformasjon (og potensialt andre fysiologiske funksjoner).

Forkortelseliste

Forkortelse	Full navn
2,3,7,8-TCDD	2,3,7,8-tetraklorodibenzo-p-dioksin
A _{230/260/280}	Absorbans ved 230/260/280 nm
AGE	Agarose gel-elektroforese
АНН	aryl hydrokarbon-hydroksylase
AHR	Aryl hydrokarbonreseptor
ANF	A-naftoflavon
ARNT	Aryl hydrokarbonreseptor kjernetranslokator
bHLH	Basisk heliks loop heliks
BNF	B-naftoflavon
bp	Basepar
CALUX	Kjemisk aktivert luciferase-genuttrykking
cDNA	Komplimentert DNA
СҮР	Cytokrom P450
DBD	DNA-bindende domene
DMEM	Dulbecco's Modified Eagle's Medium
DMSO	Dimetyl sulfoksid
dNTP	Deoksynukleotider
FBS	Fetal Bovin Serum
FICZ	6-formylindolo[3,2-b]carbazol
GC	Guanin-cytosin
GST	Glutation S-transferase
НАН	Halogenerte aromatiske hydrokarboner
HIF	Hypoksia induserbar faktor
HSP90	Varmesjokk-protein 90
kb	Kilobase
LBD	Ligand-bindende domene
РАН	Polyaromatisk hydrokarbon
PAS	Per-ARNT-Sim
PBS	Fosfatbufret løsning
PCB	Polyklorert bifenyl
PCB-126	3,3',4,4',5-Pentaklorobifenyl
PCR	Polykjede-reaksjon
PXR	Promiskuøs xenobiotisk reseptor
RFE	Relativ fluorescense-enhet
RLE	Relativ lucierase-enhet
RPM	Rotasjoner per minutt
RSD	Relativt standardavvik
SAP	Alkaline fosfatase fra reke
SD	Standardavvik
TAD	Transkripsjonell aktiveringsdomene
TAE	Tris Acetat EDTA
TBE	Tris Borate EDTA

temperatur
øms aktiveringssekvens
sitetet i Bergen
tasjonskraften
tt B virus X-assosiert protein
otisk responselement
ktosidase

I denne oppgaven er proteiner navngitt med STORE bokstaver.

Gen-navn er angitt i kursiv.

Introduksjon

1 Introduksjon

1.1 Perspektiv

Industrialisering og utvikling av ny teknologi har gitt en betydelig velstandsøkning i mange deler av verden, men har sammen med befolkningsøkningen og økt ressursbruk også ført med seg et betydelig press på naturressurser og økosystemer. Overbeskatning, klimaendringer og forurensning er noen av de mer alvorlige miljøproblemene som det moderne samfunnet står ovenfor. Forurensning er uønskede elementer i miljøet som kan ha negative virkninger på dyreliv og mennesker, og er en konsekvens av utslipp fra blant annet industri, kraftproduksjon og bruk av syntetiske materialer. Kunnskap og forståelse av hvordan kjemiske forbindelser og annen forurensning påvirker levende organismer og økosystemer, bidrar med å forbygge og hindre at forurensning fører til alvorlige konsekvenser for miljøet som vi alle avhenger av.

1.2 Miljøgifter

Miljøgifter er en samlebetegnelse på en stor og variert gruppe av forbindelser som er giftige, eller som kan antas å være giftige, selv i svært lave konsentrasjoner. Mange av disse forbindelsene er lite eller tungt nedbrytbare (persistente), både i miljøet og i organismer. Ved utslipp til miljøet kan vind og havstrømmer frakte disse forbindelsene over store avstander. Det er derfor mulig å detektere relativt høye konsentrasjoner av miljøgifter langt borte fra utslippskilden, blant annet i arktiske og polare områder (de Wit et al. 2010; Riget et al. 2010). Mange av miljøgiftene er også upolare og fettløselige. Disse egenskapene favoriserer opptak i fettholdige vev, og nivåene av en forbindelse kan bli høyere i organismen enn i det omliggende miljøet. Da mange forbindelser er persistente, vil inntaket av slike stoffer gjennom føde og fra andre kilder være større enn hva som blir utskilt. Dette medfører at konsentrasjonen av forbindelsen i organismer øker over tid, et fenomen som kalles for bioakkumulering. Konsentrasjonen av en forbindelse vil også kunne øke mellom ulike ledd i næringsnettet (biomagnifikasjon) og organismer på høyere trofiske nivå kan dermed inneholde betydelige mengder av miljøgifter. Spesielt utsatt er organismer på toppen av næringskjeden, for eksempel store fisker, fugler og pattedyr som hval, sel, isbjørn og mennesker. En oversikt over bioakkumulering og biomagnifikasjon av miljøgifter i levende organismer er vist i Figur 1.

Mange av forbindelsene som i dag regnes som miljøgifter har vært produsert i stor skala, som for eksempel insekt- og plantevernmidler og tilsetninger i industri- og husholdningsprodukter hvor det har vært stilt krav til spesielle egenskaper. Et velkjent eksempel er DDT (dikloro-difenyl-trikloroetane), et insektmiddel som ble utviklet på 1940-tallet og viste seg å være svært persistent i miljøet.

1

Introduksjon

Figur 1 - Forurensning i levende organismer. Fettløselige og tungt nedbrytbare forbindelser vil over tid oppkonsentreres i enkeltorganismer og mellom trofiske nivå. Illustrasjon: Alexander Klevedal Madsen

Nedbrytningsprodukter av DDT førte blant annet til en nedgang i mange rovfuglebestander, som følge av tynnere eggeskall (Lundholm 1997). Noen forbindelser som regnes som miljøgifter har ikke vært produsert direkte, men oppstår som biprodukter av kjemikalieproduksjon, industriprosesser eller forbrenning. Økt bevissthet rundt påvirkning av miljøet de siste tiårene, har ført til internasjonale avtaler om utfasing av mange stoffer. Stockholm-konvensjonen fra 2001 (UNEP 2001) trådde i kraft i 2004 med mål om å begrense produksjon og utslipp av miljøgifter, og er per i dag ratifisert av 179 land. Konvensjonen omhandlet i utgangspunktet 12 forbindelser (kjent som" the dirty dozen"), blant annet DDT og polyklorerte bifenyler (PCB), men har senere blitt utvidet til å gjelde en rekke andre forbindelser, blant annet polybromerte- og polyfluorerte molekyler. Andre stoffer er lite persistente i miljøet, men kan gjennom kontinuerlige utslipp påvirke levende organismer på en negativ måte. En rekke av disse forbindelsene har blitt klassifisert som hormonhermere, dvs. stoffer eller blandinger som påvirker funksjonen til det naturlige hormonsystemet og som har en negativ innvirkning på organismen. Et eksempel er det syntetiske østrogenet, 17α -etynyl estradiol (EE2), blant annet brukt i prevensjonsmidler, som har vist å kunne påvirke reproduksjonsrate og ha negative virkninger på bestandsnivå av fisk (Kidd et al. 2007). Bisfenol A (BPA) er en annen forbindelse som blant annet blir brukt i plast- og epoksyproduksjon, og har blitt vist å påvirke reproduksjonssystemet i fisk (Flint et al. 2012).

Utslipp og avrenning fra forurensede landmasser, industri og avløpsvann fører til at mange miljøgifter ender opp i akvatiske miljøer og kan påvirke vannlevende organismene, blant annet fisk. Nivåene av ulike forbindelser i levende organismer vil avhenge av i hvor stor grad forbindelsen blir tatt opp, distribuert, metabolisert og fjernet fra organismen.

1.3 Biotransformasjon

Fisk og andre vertebrater har en rekke enzymatiske systemer som er involvert i metabolisme og utskillelse av både endogene og eksogene forbindelser (blant annet miljøgifter). Hos fisk, som i andre vertebrater, er leveren et sentralt organ for opptak, metabolisme og lagring av næringsstoffer, men også viktig for metabolisme og utskillelse av fettløselige forbindelser, inkludert mange fremmedstoffer (Hinton et al. 2008). Biotransformasjon er en betegnelse på en serie av reaksjoner som omdanner og modifiserer forbindelser til mer vannløselige metabolitter som gjør at de lettere kan fjernes fra systemet, men som i noen tilfeller også kan resultere i mer reaktive mellomprodukter som er skadelige for organismen. Biotransformasjon består av flere faser som involverer ulike typer proteiner (Schlenk et al. 2008). Fase I-reaksjoner inkluderer reduksjon, oksidasjon og hydrolyse som omdanner upolare og fettløselige forbindelser til mer polare og vannløselige forbindelser. Disse reaksjonene er blant annet katalysert av cytokrom P450 (CYP) enzymer, dehydrogenaser og epoksid hydrolaser (fase I). Neste steg i biotransformasjonen består av fase II-reaksjoner som øker forbindelsenes polaritet ytterligere ved konjugering av fase I-metabolittene med endogene molekyler. Eksempler på grupper av fase II enzymer er glutation S-transferaser (GST), UDP-glukuronosyltransferaser (UGT) og NAD(H)P: Quinon oksidoreduktase 1 (NQO1). Den siste fasen av biotransformasjon er når vannløselige forbindelser fra fase II transporteres ut fra cellen (ofte kalt fase III). Dette kan skje gjennom interaksjoner med ATP-bindende kassett (ABC)-proteiner (Lončar et al. 2010).

1.4 Transkripsjonsfaktorer

Mange biotransformasjonsenzymer reguleres gjennom spesifikke transkripsjonsfaktorer. Dette er proteiner som binder til DNA og medierer transkripsjonen av bestemte målgener. En stor gruppe av transkripsjonsfaktorer som er viktig i forbindelse med å forstå hvordan organismer responderer til miljøgifter er reseptorer som aktiveres av xenobiotiske forbindelser (XAR). Det finnes fire hovedgrupper av disse reseptorene: Aryl hydrokarbonreseptor (AHR), NFE2 (Kjernefaktor erythroid 2)-relatert faktor 2 (Nrf2), metall-responsiv transkripsjonsfaktor 1 (MTF1) og kjernereseptorene (NR) (Ma 2008). AHR binder blant annet binder ulike halogenerte og aromatiske forbindelser og regulerer mange

enzymer involvert i både fase I og fase II av biotransformasjonen, som CYP1A1, CYP1A2, CYP2 (fase I) og GSTA2, UGT1A1 og UGT1A6 (fase II) (Kohle & Bock 2007). Nrf2 aktiveres av blant annet oksidanter, elektrofiler og metaller som kadmium, krom og arsen, og har en rolle i beskyttelse mot oksidativt stress (Ma 2013). Reseptoren regulerer en rekke gener, blant annet GST, UGT, NQO1 og CYP2A5. MTF1 regulerer cellulære responser ved metalleksponering gjennom regulering av gener involvert blant annet i transport av metaller og metallhomeostase (Günther et al. 2012). Kjernereseptorene er en stor familie av transkripsjonsfaktorer som er involvert i blant annet hormonsignalisering, men som kan binde ulike xenobiotiske stoffer. To viktige kjernereseptorer er konstituativ androstan-reseptor (CAR) og promiskuøs xenobiotisk reseptor (PXR, også kjent som pregnan X reseptor) som regulerer blant annet CYP2C9 og CYP3A4 (fase I), UGT1A1, UGT1A6 og UGT1A9 (fase II) og fase III protein, og ulike multi-legemiddelresistens-assosierte protein (MRP) (fase III) (Klaassen & Aleksunes 2010; Kohle & Bock 2009). Felles for alle de overnevnte transkripsjonsfaktorene er at de gjenkjenner og binder til spesifikke DNA-sekvenser, såkalte responselement som ligger oppstrøms for de ulike målgenene. Ved ligandbinding interagerer reseptoren med responselementet, i mange tilfeller som en dimer og regulerer uttrykkingen av genet. Reseptorene dimeriserer enten med seg selv (som for MTF1 og enkelte kjernereseptorer) eller med andre protein.

1.5 Aryl hydrokarbonreseptor

AHR er en ligandaktivert transkripsjonsfaktor som regulere transkripsjon av en rekke enzymer involvert i biotransformasjon, og har vært mye studert for sin evne til å binde halogenerte aromatiske hydrokarboner (HAH) og polyaromatiske hydrokarboner (PAH). Den svært giftige forbindelsen 2,3,7,8tetraklorodibenzo-p-dioksin (2,3,7,8-TCDD) binder til AHR med høy affinitet og mye av det som er kjent om AHR og induksjon av blant annet CYP1A, er fra studier basert på denne forbindelsen (Beischlag et al. 2008).

AHR er medlem av en familie av transkripsjonsfaktorer som inneholder et basisk heliks loop heliks (bHLH) og Per-ARNT-Sim (PAS) domene (Figur 2). PAS-domenet er vidt utbredt i bakterier, arker og eukaryoter (Taylor & Zhulin 1999) og var opprinnelige definert på bakgrunn av homologe sekvenser fra tre forskjellige proteiner; Per, Sim og ARNT (McIntosh et al. 2010). PAS-domenet finnes også i andre transkripsjonsfaktorer, blant annet i HIF- (hypoksia induserbar faktor) og CLOCK-proteiner som er involvert i reguleringen av sentrale metabolske funksjoner som tilgang på oksygen og døgnrytme (McIntosh et al. 2010). Sammenlignet med AHR i pattedyr (95-130 kDa) er AHR i fisk litt større (105-145 kDa) (Hahn 1998). En oversikt over de funksjonelle delene av AHR og områdene for binding til kofaktorer er vist i Figur 2. I ubundet tilstand eksisterer AHR i cytoplasma som et kompleks på ca. 300 kDa (Kazlauskas et al. 1999). I dette komplekset er AHR bundet til to varmesjokk 90 (HSP90) proteiner (90 kDa) (Chen & Perdew 1994; Fukunaga et al. 1995). HSP90-proteinene er bundet til AHR gjennom bHLH- og PAS B- domenene (Fukunaga et al. 1995; Perdew & Bradfield 1996; Whitelaw et al. 1993). HSP90 sørger for å holde AHR i en inaktiv tilstand når reseptoren ikke er bundet til en ligand (Heid et al. 2000; Soshilov & Denison 2011). Binding av HSP90 til AHR er overlappende med den ligandbindende lommen i PAS B domenet. Det har blitt vist at ligandbinding til et GST-merket-AHR-PASB fragment resulterer i en dissosiering av HSP90 (*in vitro*), selv om tilsvarende ikke ble observert i full-lengde AHR (Soshilov & Denison 2011). Binding av HSP90 til bHLH-domenet av AHR er også viktig i regulering og transport av AHR etter ligandbinding (Kazlauskas et al. 2001). AHR inneholder et kjernelokaliseringssignal (NLS) som er nødvendig for transport av proteinet fra cytoplasma til cellekjernen (Ikuta et al. 1998). NLS-sekvensen i AHR befinner seg i bHLH-domenet, og er delvis overlappende med den DNA bindende delen av AHR (Ikuta et al. 1998). I ubundet AHR er NLS-sekvensen trolig maskert av HSP90 som hindrer reseptorprotein involvert i transport over kjernemembranen å gjenkjenne NLS (Ikuta et al. 1998; Ikuta et al. 2004).

I tillegg til HSP90 inneholder AHR-komplekset et 38 kDa protein, hepatitt B virus X-assosiert protein (XAP2, også beskrevet som ARA9 og AIP) (Carver & Bradfield 1997; Ma & Whitlock 1997; Meyer et al. 1998). XAP2 binder til PAS-domenet i AHR og er avhengig av et stabilt AHR-HSP90 kompleks for binding (Kazlauskas et al. 2001). XAP2 er trolig involvert i lokalisering og stabilisering av AHR-komplekset i cellen, men i hvilke grad denne kofaktoren regulerer AHR-aktivitet er ikke kjent (Hollingshead et al. 2006; Kazlauskas et al. 2001). Den siste delen av AHR-komplekset er proteinet p23 (Kazlauskas et al. 1999). p23 binder til både bHLH og PAS B domenet av AHR, og har trolig en stabiliserende effekt på AHR-HSP90-komplekset (Kazlauskas et al. 2001). AHR kan binde ligander uavhengig av p23, og er

Figur 2 - Funksjonelle domener i AHR. Basert på annotering av AHR fra mus (*M. musculus*) (Berg & Pongratz 2001; Fukunaga et al. 1995; Ikuta et al. 1998). NLS: Kjerne-lokaliseringssignal. NES: Kjerne-eksportsignal. HSP90: varmesjokk-protein 90.

uavhengig av p23 for å oppnå en funksjonell respons (Flaveny et al. 2009), men fravær av p23 fører til en destabilisering av AHR som tillater ligand-uavhengig binding til responselementer sammen med Aryl hydrokarbonreseptor kjernetranslokator (ARNT) (Kazlauskas et al. 1999; Kazlauskas et al. 2001). Ved binding en ligand, transporteres AHR til cellekjernen, samtidig som HSP90, XAP2 og p23 frigjøres, og AHR danner en heterodimer med ARNT (Denison et al. 2002; Probst et al. 1993).

ARNT er et annet bHLH-PAS protein på omtrent 80 kDa (78 kDa i killifisk (*Fundulus heteroclitus*) og 87 kDa i menneske (Powell et al. 1999)) og er nødvendig for den gen-regulerende aktiviteten til

Figur 3 - ARNT:HIF2 α heterodimer-kompleks med HRE DNA fra mus. Krystallstrukturen til ARNT i kompleks med HIF2 α bundet til hormon responselement (HRE). Figur fra RCSB PDB (www.rcsb.org) av PDB ID 4ZPK (Berg & Pongratz 2001; Ikuta et al. 1998; Wu et al. 2015). Rød struktur – ARNT, gul – HIF2 α .

AHR og andre bHLH-PAS-transkripsjonsfaktorer, blant annet HIF2α (Figur 3) (Gordan & Simon 2007; Ko et al. 1996). ARNT ble på et tidspunkt antatt å være involvert i translokalisering av AHR fra cytoplasma til cellekjerne ved ligandbinding, derav navnet (Hoffman et al. 1991). Det viste seg derimot at ARNT i all hovedsak befinner seg i kjernen, både med og uten eksponering til for kjente AHR agonister (Holmes & Pollenz 1997; Pollenz et al. 1994; Sojka et al. 2000). AHR-ARNT-komplekset (200 kDa), som blir dannet ved ligandbinding til AHR, gjenkjenner og binder responselementet kalt xenobiotisk responselement (XRE, også kjent som dioksin responselement) (Denison et al. 1988; Probst et al. 1993). En oversikt over noen av de mest sentrale mekanismene av AHR-indusert transkripsjon av cytokrom P450 enzymet CYP1A er vist i Figur 4.

Den transkripsjonsregulerende aktiviteten til AHR-ARNT-komplekset etter DNA-binding (transaktivering) er avhengig av en rekke kofaktorer som interagerer med den C-terminale delen av AHR. Det er blant annet vist at den C-terminale delen av AHR er nødvendig for å indusere CYP1A1 mRNA-transkripsjon *in vivo* ved eksponering for 2,3,7,8-TCDD (Ko et al. 1996). Den C-terminale delen av ARNT er mindre viktig i dette, mens de N-terminale delene, involvert i dimerisering med AHR og DNA-binding er nødvendig. Hos pattedyr inneholder C-terminalene av AHR og ARNT en region med flere transkripsjonelle aktiveringsdomener (TAD), som er involvert i rekruttering av en rekke kofaktorer ved DNA-binding. Et eksempel er steroid reseptor koaktivator 1 (SRC-1) som er en av mange kofaktorer som innehar histon acetyltransferase-aktivitet og interagerer med AHR (Hankinson 2005). TAD-regionen i AHR består av flere domener. Disse områdene inneholder en stor andel av glutamin, sure

Figur 4 - Skjematisk oversikt over ligand-indusert AHR-aktivering. Uten bundet ligand finnes AHR i cytoplasma i et kompleks med HSP90, XAP2 og p23. Ved binding til en ligand, transporteres komplekset inn i cellen, hvor kofaktorene frigjøres, og AHR dimeriserer med ARNT. AHR-ARNT dimeren binder til XRE som finnes oppstrøms for målgenet CYP1A1 og initierer transkripsjon av genet. CYP1A1 er blant annet involvert i biotransformasjon av benzo(a)pyren til benzo(a)pyren-7,8-dihydrodiol-9,10-epoksid. Basert på (Murray & Perdew 2011).

aminosyrer (aspartat og glutamat), prolin og serin, og hvor domenene har en uavhengig funksjon av hverandre i forbindelse med transaktivering (Ko et al. 1997; Sogawa et al. 1995). I ARNT er domenet som er involvert i transaktivering todelt, og strekker seg over et kortere område sammenlignet med AHR (Sogawa et al. 1995). I tillegg til den klassiske mekanismen hvor AHR dimeriserer med ARNT ved ligandbinding og binder til XRE, kommuniserer AHR også med andre systemer, som østrogenreseptoren (ER) (Swedenborg & Pongratz 2010). Blant annet har 2,3,7,8-TCDD blitt vist å mediere anti-østrogene effekter gjennom AHR in vitro, samtidig som ER kan ha en rolle i AHR-mediert genregulering (Göttel et al. 2014). AHR kommuniserer også med mitogen-aktiverte proteinkinaser (MAPK), som i tillegg til å modulere AHR-aktivitet kan ha en rolle i prosesser som er viktig for celledeling og celledød, blant annet ved interaksjoner med retinoblastoma protein og E2F-transkripsjonfaktorprotein (Puga et al. 2009). Det har blitt vist at i sebrafisk reguleres cyp3a65 av både PXR og AHR, og induseres ved eksponering til 2,3,7,8-TCDD (Tseng et al. 2005). I tillegg til hverandres målgener, har PXR og AHR også blitt vist å regulere uttrykking av seg selv og hverandre (Chang et al. 2013; Kubota et al. 2015). Problemer med å fremstille tilstrekkelig mengder av AHR rekombinant, har gjort det vanskelig å bestemme den eksakte strukturen til proteinet og det er foreløpig kun PAS A-domenet fra mus som har en kjent krystallstruktur (Dalei et al. 2013). Det eksisterer derimot strukturer fra andre PAS-proteiner (f.eks. HIF2 α) som har bidratt med viktig informasjon om AHR sin funksjon, blant annet gjennom in silico modellering (Pandini et al. 2009).

Introduksjon

1.5.1 AHR i fisk

I motsetning til de fleste pattedyr, hvor det i hovedsak kun eksisterer en variant av AHR, har mange fiskearter opptil flere ulike varianter av AHR. Disse kan deles inn i to hovedgrupper, AHR1 og AHR2 (Hahn et al. 1997). I tillegg til de to hoved-variantene eksisterer det en tredje gruppe AHR3, som så langt bare er funnet i bruskfisk (Hahn & Karchner 2011). Tilstedeværelsen av de ulike AHR variantene er trolig resultatet av en rekke evolusjonære begivenheter hvor enten hele genom-materialet har gjennomgått dupliseringer, eller hvor bare gen-materialet til AHR har blitt duplisert (Hahn 2002; Hahn 2006). Dette har resultert i, at det nå finnes en stor diversitet av AHR-gener i ulike vertebrater, og AHR er beskrevet i en rekke fiskearter. I den mye brukte modellorganismen sebrafisk (*Danio rerio*) finnes det tre varianter av AHR; AHR1a, AHR1b og AHR2 (Andreasen et al. 2002a; Karchner et al. 2005; Tanguay et al. 1999). I atlanterhavslaks (*Salmo salar*) har det skjedd en ytterligere genomduplisering som medfører at det eksisterer seks varianter; fire AHR2 og to AHR1 (Hansson et al. 2004; Hansson & Hahn 2008). Det har også blitt klonet et eller flere AHR-gener fra killifisk (*Fundulus heteroclitus*) (Karchner et al. 1999), gullfisk (*Carassius auratus*) (Lu et al. 2013), rød havbrasme (*Pagrus major*) (Yamauchi et al. 2005), regnbueørret (*Oncorhynchus mykiss*) (Abnet et al. 1999b) og atlantisk tomcod (*Microgadus tomcod*) (Roy & Wirgin 1997; Wirgin et al. 2011).

1.6 Ligander for AHR

AHR-signalveien er kjent for å kunne aktiveres av en rekke endogene og eksogene forbindelser. Klassiske ligander for AHR er dioksiner og andre dioksinlignende forbindelser (Figur 5). Dette er en gruppe av HAH-forbindelser, som hovedsakelig består av polyklorerte varianter av dibenzo-p-dioksiner (PCDD), dibenzofuraner (PCDF) og bifenyler (PCB). Disse forbindelsene er i hovedsak er av antropogen opprinnelse og oppstår gjennom ulike typer av forbrenning, industri-prosesser som blant annet papirproduksjon, og direkte eller som biprodukter av produksjon av kjemikalier som for eksempel PCB (Kulkarni et al. 2008). På grunn av sine spesielle egenskaper, som høy kjemisk stabilitet, liten brennbarhet, lav akutt toksisitet og elektrisk isolerende egenskaper, har PCB-forbindelser vært brukt til en rekke industrielle formål. Blant annet har det vært mye brukt i transformatorer og kondensatorer, i hydraulisk utstyr, smøringsmidler og som tilsetningsstoff i andre produkter (Borja et al. 2005). Den viktigste kilden til dioksiner og furaner er gjennom forbrenning av blant annet husholdningsavfall (Kulkarni et al. 2008). PCB og de andre dioksinlignende forbindelser viste seg etter hvert å ha en rekke uheldige egenskaper, blant annet at de brytes sakte ned i miljøet, transporteres over store avstander, og akkumulerer i biologiske systemer, spesielt organismer på toppen av næringskjeden (Erdmann et al. 2013; Riget et al. 2006; Ross et al. 2000). På grunn av sine uheldige egenskaper ble det i enkelte land innført forbud mot bruk og produksjon av PCB-forbindelser allerede på 1970-tallet (Borja et al. 2005), og noe senere i Norge i 1979 (Andersson et al. 2004). Dioksiner, furaner og PCBer er en del av de opprinnelige forbindelsene i Stockholm-konvensjonen. Det eksisterer henholdsvis 75, 135 og 209 ulike kongenerer (isoformer) av PCDD, PCDF og PCB, men kun et fåtall av disse forbindelsene forårsaker dioksin-lignende toksisitet. For PCDD og PCDF gjelder dette de kongenerene med klor-atomer i posisjon 2,3,7 og 8, og for PCB, kongenerer med fire eller flere klor-atomer i posisjoner som tillater molekylet å innta en planær konfigurasjon (Kulkarni et al. 2008). Av de dioksinlignende forbindelsene er 2,3,7,8-TCDD blant forbindelsene med størst potensiale for AHR-mediert toksisitet. 2,3,7,8-TCDD binder til AHR med høy affinitet har vært brukt som referanse for å bestemme toksisk ekvivalentfaktor (TEF), et tall på toksisk potensiale for dioksinlignende forbindelsene målt i lever fra torsk fra Barentshavet og vårgytende sild fra Norskehavet, utgjorde kongeneren PCB-126 (3,3',4,4',5-Pentaklorobifenyl) den største andelen (Frantzen et al. 2011; Julshamn et al. 2013). Av ikke-dioksinlignende forbindelser var PCB-153 (2,2',4,4',5,5'-Heksaklorobifenyl) og PCB-138 (2,2',3,4,4',5'-Heksaklorobifenyl) de dominerende kongenerene.

2,3,7,8-Tetraklorodibenzo-p-dioksin

β-naftoflavon

3,3',4,4',5-Pentaklorobifenyl

3-Metylcholantren

2,3,7,8-Tetraklorodibenzofuran

Benzo(a)pyren

Figur 5 – Eksempler på AHR-ligander. AHR kan binde og aktiveres av en rekke ligander, blant annet dioksinlignende forbindelser (øverst) og polyaromatiske hydrokarboner (nederst). Strukturer fra Chemspider.com

En annen viktig gruppe av forbindelser som kan binde AHR er PAH-forbindelser. Dette er stoffer som består av to eller flere konjugerte benzenringer. En rekke PAH-forbindelser induserer CYP1A i fisk eller cellelinjer, spesielt forbindelser med 4 eller flere benzenringer, som blant annet benzo(a)pyren og benzo[k]fluoranthene (Lee & Anderson 2005). Det finnes både naturlige og menneskeskapte kilder til PAH-forbindelser. PAH-forbindelser kan oppstå i og blir distribuert naturlig fra vulkaner, skogbranner og naturlig utsiving av olje. PAH-forbindelser blir også dannet ved ufullstendig forbrenning av fossilt brensel, tjære, tre, avfall og ved utslipp fra petroleumsaktivitet (Haritash & Kaushik 2009). Eksempler på PAH-forbindelser er vist i Figur 5. I tillegg til de klassiske AHR forbindelsene som HAH og PAH, finnes det en rekke andre strukturelt diverse forbindelser som kan binde AHR (Denison & Nagy 2003; Nguyen & Bradfield 2008). Dette er forbindelser som ikke nødvendigvis har vist seg å ha noen fysiologiske effekter, men som potensielt kan ha en rolle i AHR signalisering (Nguyen & Bradfield 2008). Spesielt i planter og i plantebasert materiale finnes det en rekke naturlige forbindelser (blant annet karotenoider og flavonoider) som direkte eller gjennom metabolitter kan binde AHR, i tillegg til endogene forbindelser som indoler, tetrapyroler og metabolitter av arakidonsyre (Denison & Nagy 2003).

1.7 AHR mediert toksisitet

Fisk er spesielt følsomme for eksponering til HAH- og PAH-forbindelser på tidligere stadier av utviklingen. Etter eksponering av rød havbrasme-embryo for 2,3,7,8-TCDD har man observert endringer i en rekke morfologiske trekk, som plommesekk-ødem, redusert vekst, underutviklede kjever og finner, og deformiteter i ryggsøyle (Yamauchi et al. 2006). Et av de mest utsatte organene i fiskeembryo ved eksponering for 2,3,7,8-TCDD er hjertet, hvor det blir observert blant annet strukturelle deformiteter og nedsatt hjertefunksjon (Antkiewicz et al. 2006; Clark et al. 2010). Med hensyn til toksiske effekter på hjerte har det i sebrafisk blitt observert en lavere sensitivitet på senere utviklingsstadier (25 dager etter befruktning) (Lanham et al. 2012). På senere stadier oppstår det derimot andre effekter ved eksponering til 2,3,7,8-TCDD, blant annet kakeksi (wasting syndrome) og deformiteter i hode og finner. Baker et al. (2013) observerte at eksponering for 2,3,7,8-TCDD ved tidlige utviklingsstadier (3-7 uker etter befruktning) hos sebrafisk medfører effekter hos voksne individer, blant annet endringer i reproduksjonssystemet og endret beinutvikling/deformiteter, samt reproduktive effekter også i den påfølgende generasjonen. Som vist i Figur 6 er det store artsforskjeller i hvor sensitive ulike arter er for eksponering mot 2,3,7,8-TCDD (basert på embryodødelighet), hvor laksefiskene utpeker seg blant mest sensitive artene.

Figur 6 - Embryotoksisitet i fisk. LD50 for utvalgte fiskearter. Basert på data fra Elonen et al. (1998); Toomey et al. (2001); Walker og Peterson (1991); Walker et al. (1991); Walker og Peterson (1994); Yamauchi et al. (2006).

Det finnes en rekke studier som har hatt som mål å undersøke hvilke av AHR-variantene i fisk som er ansvarlig for å mediere responsene ved eksponering for ulike AHR agonister. Det har blitt vist at selv om både AHR1b og AHR2 fra sebrafisk, og AHR1 og AHR2 fra killifisk kan binde 2,3,7,8-TCDD, så har AHR1-variantene lavere transaktivering i *in vitro* gen-reporter-forsøk (Karchner et al. 2002; Karchner et al. 2005). For å undersøke rollen til AHR1 og AHR2 har det i mange studier blitt benyttet embryo injisert med AHR-spesifikk antisense oligonukleotider (morfolino) som reduserer mengden av ønsket AHR variant. Mange av effektene på hjerte observert i sebrafisk-embryo etter eksponering for PCB-126 og 2,3,7,8-TCDD, blant annet misdannelse av hjertekammerne, hjertevolum, effekt og hjerteødem ble redusert ved injeksjon av AHR2-morfolinoer (Antkiewicz et al. 2006; Jönsson et al. 2007). Uttrykking av CYP1-genene *cyp1a, cyp1b1, cyp1c1* og *cyp1c2* ved eksponering for PCB-126 og 2,3,7,8-TCDD ble også redusert (Jönsson et al. 2007). Tilsvarende ble observert i embryo fra killifisk, hvor injeksjon av AHR2-morfolinoer ga en reduksjon av hjertedeformiteter forbundet med eksponering til βnaftoflavon, benzo[k]fluoranthene, benzo(a)pyren og PCB-126 (Clark et al. 2010). Mye tyder derfor på at AHR2 har en viktig rolle i forbindelse med dioksin-indusert toksisitet i fisk.

Introduksjon

1.8 Atlanterhavstorsk

Atlanterhavstorsk (Gadus morhua) er en teleost i torskefamilien (Gadidae) som har sitt utbredelsesområde i nordlige deler av Atlanterhavet (Figur 7). Det eksisterer flere ulike bestander, og i norske farvann kan atlanterhavstorsken i hovedsak deles opp i kysttorsk og havtorsk (skrei). Kysttorsken består av stedegne bestander som har lite forflytning, og som gyter i fjorder og tidvis også lengre ut langs kysten. Størstedelen av kysttorsken finnes nord for Stadt. Her har fangst og gytebestand blitt redusert fra 1997 frem til 2013, men bestanden har vist tegn på bedring de siste årene (Bakketeig et al. 2015). I motsetning til kysttorsken gjennomfører havtorsken store vandringer til og fra gyteplasser. Den største bestanden av torsk i Norge er den nordøstarktiske torsken som har sitt leveområde i Barentshavet og gyter langs norskekysten ned til Møre, med hovedområde for gytingen i Lofoten og Vesterålen (Kolle & Kristiansen 2014). I Barentshavet er torsken den dominerende fiskespisende arten samtidig som den er et viktig byttedyr for blant annet vågehval og grønlandssel (Link et al. 2009), og spiller på denne måten en viktig rolle i ulike økosystemer. Den nordøstarktiske torsken har de siste årene opplevd en kraftig økning, med en estimert bestand på over tre millioner tonn de siste årene (Bakketeig et al. 2015). I 2013 var den norske fangsten av torsk på mer enn fire hundretusen tonn og med en samlet salgsverdi på over fire milliarder norske kroner (Fiskeridirektoratet 2015). Selv om den nordøstarktiske torskestammen har økt de siste årene, er

Utbredelseområde Atlanterhavstorsk

Figur 7 - Utbredelsesområdet for Atlanterhavstorsk. Det finnes bestander av Atlanterhavstorsk i den nordlige delen av Atlanterhavet på østkysten av USA og Canada, rundt Grønland og Island, og i Barentshavet sørover langs norskekysten til de britiske øyer og Østersjøen. Basert på kart fra Aquamaps (2015).

torskebestander andre steder betydelig redusert i forhold til tidligere. Den største påvirkningen av torskepopulasjoner er fiske, men det er også andre faktorer som blant annet klima som kan spille en rolle (Link et al. 2009). Ettersom torsken er både økologisk og økonomisk viktig vil det være av interesse å få ny kunnskap og forstå hvordan arten påvirkes av ulike faktorer, blant annet utslipp av menneskeskapte forbindelser. Gyteområdet til den nordøstarktiske torsken ligger i et område som er interessant for fremtidig oljeutvinning, og hvor skipstrafikken er forventet å øke som følge av mindre isdekke i arktiske områder. Utslipp av olje, vil kunne på virke torsken og det har blitt vist at olje induserer negative effekter i torskelarver, og oppregulerer gener for blant annet AHR2 og CYP1A (Olsvik et al. 2011).

1.8.1 AHR i torsk

Torskegenomet ble for noen år siden sekvensert gjennom «the cod genome project» (Star et al. 2011). Dataene er gjort tilgjengelig i Ensembl-databasen (Cunningham et al. 2015) hvor det er annotert to AHR-gen hos torsk; *ahr1b* og *ahr2*. Hos mange fiskearter, blant annet hos sebrafisk og japansk kulefisk (*T. rubripes*), ligger AHR-genene med en tandem oppbygning (Hahn 2006). En tilsvarende oppbygning finnes også i torskegenomet hvor *ahr1b* befinner seg oppstrøms for *ahr2* på den reverse tråden (Figur 8).

Figur 8 - AHR-gener i Atlanterhavstorsk. I Ensembl er det annotert to AHR-gen, *ahr2* og *ahr1b*. Modifisert figur fra Ensembl (ensembl.org).

1.9 Studier av ligandaktivering av AHR

In vitro gen-reportersystem er en mye brukt metode for karakterisering av ligandaktivering for transkripsjonsfaktorer, inkludert AHR. Et eksempel på et slikt system er hvor en eukaryot cellelinje (for eksempel COS-7) blir transfektert med plasmider som inneholder et reporter-gen (luciferase), sammen med artsspesifikk ARNT og AHR. Reportergenet er under kontroll av ett eller flere responselement for AHR, fra for eksempel CYP1A. Ved ligandbinding vil AHR dimerisere med ARNT og indusere uttrykking av reportergenet og gi en doseavhengig respons. En skjematisk oversikt er vist i del A, Figur 9. Denne metoden har blitt brukt for karakterisering av AHR i en rekke fiskearter (Abnet et al. 1999b; Andreasen et al. 2002a; Hansson & Hahn 2008; Karchner et al. 2005).

Et annet gen-reporter-system som ligner på dette er GAL4/UAS-systemet. I dette systemet benyttes et fusjonsprotein av det DNA-bindende domenet (DBD) fra gjærsopp-proteinet Gal4 bundet til en reseptor. Reporter-genet er kontrollert av en eller flere oppstrøms aktiveringssekvenser for Gal4 (UAS). Ved ligandbinding binder Gal4-reseptorproteinet til UAS og induserer uttrykking av reporter-genet (del B, Figur 9). Fordelen med dette systemet er at det er uavhengig av reseptorenes naturlige partnerprotein og responselement. Dette systemet har blitt brukt til å karakterisere ligandbinding og aktivering for kjernereseptorer, blant annet for PXR fra sebrafisk og isbjørn (*Ursus maritimus*) (Bainy et al. 2013; Lille-Langøy et al. 2015).

Systemet har tidligere også blitt brukt for ligandbindingsforsøk med AHR (Backlund & Ingelman-Sundberg 2004), men har, etter det som er kjent, ikke vært brukt med AHR fra fisk. Ved bruk av sebrafisk PXR i Gal4/UAS-systemet har det blitt observert at Gal4-PXR-konstruksjoner som inneholder det ligandbindende domenet (LBD) og «hinge»-regionen ga bedre ligandaktivering i dette systemet sammenlignet med full-lengde PXR som inkluderer det DNA-bindende domenet og reporter plasmid kontrollert av promotor med CYP3A responselement (Bainy et al. 2013). Det har samtidig blitt observert at GST-merket konstrukt av full-lengde AHR (fra mus) som bare inneholder enten PAS B, eller både PAS A og PAS B, kan ha en redusert, men fremdeles funksjonell, ligandbinding til 2,3,7,8-TCDD i forhold til fullengde AHR (Soshilov & Denison 2008). Tilsvarende ble observert med β-naftoflavon (BNF) hvor det ble benyttet konstrukt av human AHR som bare inneholdt PAS A og B domenet (Tsuji et al. 2014). På bakgrunn av dette var det ønskelig å benyttet Gal4/UAS-systemet for å karakterisere ligandbinding og transaktiverende egenskaper til torsk AHR, og undersøke effekten av Gal4-AHRkonstruksjoner som inneholdt kortere deler av AHR (inkludert LBD) sammenlignet med fullengde AHR. Ettersom flere studier har observert at det hovedsakelig er AHR2-varianten som er involvert i toksisitet ved dioksinlignende forbindelser ble det valgt å fokusere på AHR2 i dette studiet.

1.10 Mål for oppgaven

Hovedmålet for denne oppgaven har vært å øke kunnskapen om responser og regulering av biotransformasjon i torsk ved å karakterisere sekvensen og ligandaktivering av reseptorproteinet AHR2. Dette ble gjort gjennom følgende delmål:

- Bestemme den kodende DNA-sekvensen for AHR2 i torsk (Gadus morhua).
- Analysere og sammenligne sekvensen til AHR2 fra torsk mot AHR fra andre arter.
- Etablere et genreporter-system basert på Gal4-DBD-AHR for å måle ligandaktivering.
- Bestemme ligandaktivering for AHR2 fra torsk i et *in vitro* genreporter-forsøk og sammenligning med AHR2β fra laks.

2 Materialer

2.1 Kjemikalier

Tabell 1 - Kjemikalier

Navn	Kjemisk formel	Leverandør /
		produktnummer
2,2',4,4',5,5'-Heksaklorobifenyl (PCB- 153)	$C_{12}H_4Cl_6$	Sigma-Aldrich / 35602
2-Mercaptoethanol	HSCH ₂ CH ₂ OH	Aldrich / M6250
2-Nitrofenyl β-D-galactopyranoside	$C_{12}H_{15}NO_8$	Sigma / N1127
(ONPG)		
3,3',4,4',5-Pentaklorobifenyl (PCB 126)	$C_{12}H_5CI_5$	Cambridge Isotope
		Laboratories / PCB-126-C
Adenosin 5'-trifosfat dinatrium salt hydrat (ATP)	$C_{10}H_{14}N_5Na_2O_{13}P_3 \bullet xH_2O$	Sigma/A2383
Agar-agar		Merck / 101614
Agarose		Lonza / 50005
Ampicillin-natriumsalt	$C_{16}H_{18}N_3NaO_4S$	Sigma-Aldrich / A9518
Benzo(a)pyren	$C_{20}H_{12}$	Sigma / B1760
Betain	(CH ₃) ₃ N ⁺ CH ₂ COO [−]	Sigma / B0300
Borsyre	H ₃ BO ₃	Merck / 100165
Bovin Serum Albumin (BSA)		Sigma / A9647
CHAPS	C ₃₂ H ₅₈ N ₂ O ₇ S	Thermo / 28299
Dimetyl sulfoksid	(CH₃)₂SO	Sigma / D8418
Dinatriumhydrogenfosfat dihydrat	$Na_2HPO_4 \bullet 2H_2O$	Sigma-Aldrich / 30435
DL-Dithiothreitol (DTT)	HSCH ₂ CH(OH)CH(OH)CH ₂ SH	Sigma-Aldrich / D0632
D-luciferin Firefly	$C_{11}H_8N_2O_3S_2$	Biosynth / L-8200
Dulbecco's Modified Eagle's Medium –		Sigma / D5671
høy glukose (med fenol rød)		
Dulbecco's Modified Eagle's Medium –		Sigma / D1145
høy glukose (uten fenol rød)		
Eddiksyre	CH ₃ CO ₂ H	Sigma-Aldrich / 33209
Etanol	CH ₃ CH ₂ OH	Sigma-Aldrich / 34852
Etidiumbromid	$C_{21}H_{20}BrN_3$	Aldrich / 160539
Etylen glycol-bis(2-aminoetyleter)-	$[-CH_2OCH_2CH_2N(CH_2CO_2H)_2]_2$	Sigma? / E3889?
N,N,N',N'-tetraedikksyre (EGIA)		March (400440
Etylendiamintetraeddiksyre (EDTA)	$C_{10}H_{14}N_2Na_2O_8 \bullet 2H_2O_6$	Merck / 108418
Fenantren	$C_{14}H_{10}$	Sigma / P2528
Fetal Bovin Serum		Sigma / F7524
FILZ	υ ₁₉ Π ₁₂ Ν ₂ υ	
Formamid	HCONH	/ BIVIL-GK200-0100
Futurdilliu Eactathutrat lecning (DBS) 10V		Sigma / PE402
Coloktoso	C-H-O-	Sigilia / KS482
Galaktuse	C611206	

Materialer

Navn	Kjemisk formel	Leverandør / produktnummer
GelRed		Biotium / 41003
Gjærekstrakt		Fluka / 92144
Glycerol	HOCH ₂ CH(OH)CH ₂ OH	Sigma / G5516
Isopropanol	C ₃ H ₈ O	Kemetyl / 603-117-00-0
Kaliumfosfat, dibasisk trihydrat	K ₂ HPO ₄ • 3H ₂ O	Sigma-Aldrich / P5504
Kaliumfosfat, monobasisk	KH ₂ PO ₄	Merck / 529568
Kaliumklorid	KCI	Sigma / P9541
Kalsiumklorid dihydrat	$CaCl_2 \bullet 2H_2O$	Merch / 102382
Kloroform	CHCl₃	Sigma-Aldrich / 650498
Koenzyme A trilithium salt	$C_{21}H_{33}Li_3N_7O_{16}P_3S$	Sigma / C3019
L-Glutamin	$C_5H_{10}N_2O_3$	Sigma / G7513
L-α-Phosphatidylcholine		Sigma / P3644
Magnesium-karbonathydroksid	$(MgCO_3)_4 \bullet Mg(OH)_2$	Sigma / M5671
pentahydrate		
Magnesiumklorid-heksahydrat	$MgCl_2 \bullet 6H_2O$	Sigma-Aldrich / M9272
Magnesiumsulfat-heptahydrat	MgSO ₄ • 7H ₂ O	Sigma-Aldrich / 63140
Natriumdihydrogenfosfat monohydrat	$H_2NaO_4P \bullet H_2O$	Merck / 106346
Natriumhydroksid	NaOH	Merck / 106498
Natriumklorid	NaCl	Merck / 106404
Natriumpyruvat	C ₃ H ₃ NaO ₃	Sigma / S8636
Opti-MEM [®] I Reduced Serum Medium		Life Technologies /
		31985-062
Penicillin-Streptomycin		Sigma / P4458
Phenylmethanesulfonyl fluorid	C ₇ H ₇ FO ₂ S	Sigma / P7626
(PMSF)		
SOC vekstmedium		New England Biolabs /
		B9020S
TransIT [®] -LT1 Transfeksjonsreagens		Mirus / MIR 2300
Tricine	(HOCH ₂) ₃ CNHCH ₂ CO ₂ H	Sigma / T0377
TriReagent		Sigma / T9424
Tris-PO4 (Trizma [®] fosfat dibasisk)	(C₄H ₁₁ NO ₃)₂ ● H ₃ PO ₄	Sigma / T4258
Trizma [®] base	NH ₂ C(CH ₂ OH) ₃	Sigma / T1503
Trypan Blue løsning	$C_{34}H_{24}N_6Na_4O_{14}S_4$	Fluka / 93595
Trypsin-EDTA løsning 1X (0,05% trypsin,		Sigma / 59417c
0,02% EDTA)		
Trypton		Merck / 111931
α-naftoflavon	$C_{19}H_{12}O_2$	Aldrich / N5757
β-naftoflavon	$C_{19}H_{12}O_2$	Aldrich / N3633

2.2 Enzymer

Tabell 2 - Enzymer og kloningsreagenser med medfølgende bufferløsninger.

Navn	Bruk	Leverandør / Produkt #
BamHI	Restriksjonskutting	Takara / 1010A
- 10X K Buffer		
- 10X lastebuffer		
Big-Dye terminator v3.1	Sekvensering	Applied Biosystems / 4337455
 Big-Dye Sekvenseringsbuffer 		
DreamTaq grønn DNA-polymerase	PCR	Life Technologies / EP0711
 10X DreamTaq grønn buffer 		
EcoRI	Restriksjonskutting	Takara / 1040A
Oligo(dT) ₁₂₋₁₈ primer	cDNA-syntese	Invitrogen / 18418-012
PrimeSTAR GXL DNA Polymerase	PCR	Takara / R050A
 5X Primestar GLX buffer 		
 2,5 μM dNTP blanding 		
Random hexamerprimer	cDNA-syntese	Applied biosystems / N8080127
RNase H	cDNA-syntese	New England BioLabs / M0297L
RnaseOUT	cDNA-syntese	Invitrogen / 10777-019
Superscript III Revers transkriptase	cDNA-syntese	Invitrogen / 18080-093
- 5X First Strand Buffer		
- DTT		
T4 DNA ligase	Ligering	Takara / 2011A
 10X T4 DNA Ligase Buffer 		
Alkalisk fosfatase fra reke (SAP)	Defosforilering	Affymetrix / 78390
Alkalisk fosfatase fra reke 10X Buffer	Defosforilering	Affymetrix / 70103
Ncol	Restriksjonskutting	Takara / 1160A
Nhel	Restriksjonskutting	Takara / 1241A
- 10X M Buffer		
 10X lastebuffer 		
StrataClone PCR Kloningssett	PCR-Kloning	Agilent Technologies / 240205
StrataClone Blunt PCR Kloningssett	PCR-Kloning	Agilent Technologies / 240207
qScript™ cDNA-syntesesett	cDNA-syntese	Quanta Biosciences / 95047-500

2.3 DNA-rensing

Tabell 3 - Sett for DNA-rensing.

Navn	Bruk	Produktnummer
NucleoBond [®] Xtra Maxi/Midi	Plasmidrensing (storskala)	Macherey-Nagel / 740414/ 740410
MicroElute [®] Gel Extraction Kit	Rensing av DNA fra agarose-gel	Omega Bio-tek / D6294-02
E.n.z.a. Plasmid DNA Mini Kit	Plasmidrensing (småskala)	Omega Bio-tek / D6942-02
GenElute™ PCR Clean-Up	Rensing av PCR-produkt	Sigma / NA1020

2.4 Oligonukleotider

ID	Navn	Sekvens (5'-3')	Lokalisering
#1327*	pCMX_rev	TGGACAAACTACCTACAGAGATT	рСМХ
#1329*	Gal4N_fwd	TGCCGTCACAGATAGATTGG	Gal4-DBD
MT41*	Т3	ATTAACCCTCACTAAAGGGA	pSC-A
MT43*	T7_rev	TAATACGACTCACTATAGGG	pSC-A
MT74	zf_actinF/811	GAGAAGATCTGGCATCACACCTTC	
MT75	zf _ actinR/812	GGTCTCGTGGATACCGCAAGATTC	
MT876	AhR2_pasA+B Forward	cgacgtgaattcTACCTGAGAGTCAAGGG	223-240
MT877	AhR2_pasB Forward	actgctgaattcCTGGACAACTCCTCTGG	661-678
MT878	AhR2_pasA+B Reverse	atcaggatcctcaGAAGCAGCCCAGTAAGC	1301-1318
MT879	Cod_AhR2_Forward	GAAGGGCTACGTCCAATGGG	3093-3113
MT888	Cod_AhR2_Full_fwd	GAACAATAAGCCGAGTGACACC	5'-UTR < 0
MT890	Cod_AhR2_bHLH+pasA_rev	GTAGAAGACCAATCCCTCAGC	370-391
MT891*	Cod AhR2 pasA+B rev	CGTTCTTGTCCTGGTTGAGG	1317-1337
MT895	Tomcod AhR2 F2 rev	ACGATGCGTTTCAAACTCAG	3381> 3'-UTR
MT896	CodAhr2 part2 fwd	GCTTCGTGATCGTGGTCACC	350-370
MT897	CodAhr2 part2 rev	GCGCCCTTGGAATTTCAAAGC	685-706
MT898	CodAhr2 part4 fwd	GACCAGTCAAAGCTTCACCAGC	1257-1279
MT899	CodAhr2 part4 rev	GGCGAAAAGCAGCTAGACTGG	1743-1764
MT900	CodAhr2 part5 fwd	GGAGAGCCTGCTCAGTAATGAC	1659-1681
MT901*	CodAhr2 part5 rev	CATTGTGAGGGAGGTTGGACG	2591-2612
MT903*	CodAhr2 part6 rev	CCATTGGACGTAGCCCTTCG	3092-3112
MT906	SalmonAhR2b pasA+B fwd	cgacgtgaattcTACCTGAAGGTCAAGAGC	220-238
MT907	SalmonAhR2b pasB fwd	actgctgaattcCTCGACAACTCTTCTGG	676-693
MT908	SalmonAhR2b pasA+B rev	atcaggatcctcaTAAGGAGCCCAGCAGAG	1319-1336
MT915	AHR2 COD Fwd EcoRI	atcggaattcATGTTGGGTAACGCTGGG	1-19
MT917	AHR2B SALMON Fwd EcoRI	atcggaattcATGTTGAGTAACGCTGGAGTC	1-21
MT920	AHR2 COD Rev BamHI	atcgggatccTCAGAAGTTGCAACAGTTGAG	3364-3384
MT921*	AHR2 COD 2F	GACCGGACTTCATCATTGCAC	1103-1124
MT923*	AHR2B SALMON Rev SEQ1	TCTCCAAAATGGACGGGTTC	813-832
MT924*	AHR2B SALMON Fwd SEQ2	CTTCCTGGCTCTGAACTTCC	693-713
MT925*	AHR2B SALMON Rev SEQ3	TGAGATCGCTAGATTCAATCTGG	2436-2459
MT926*	AHR2B SALMON Fwd SEQ4	GACCACAGCAGATCTCTGTTC	2339-2360
MT1019	AHR2 COD aa37 EcoRI Fwd	atcggaattcCGCCACAGGGATCGG	109-123
MT1020	AHR2B SALMON aa36 EcoRI Fwd	atcggaattcCGCCACCGGGATCGG	106-120
MT1065	AHR2b SALMON Nhel Rev	atcggctagcTTAGAAGTTGCAATAGTTGGTTTGG	3153-3178

Tabell 4 - Oversikt over oligonukleotider brukt til amplifisering og sekvensering.

Alle MT primere ble levert av Sigma-Aldrich. *Brukt for sekvensering og PCR-screening. Små bokstaver indikerer sekvens med kuttesete.

2.5 Cellelinjer

Tabell 5 – Oversikt over cellelinjer.

Prokaryot:	Beskrivelse	Leverandør / produktnummer
Strataclone solopack kompetente	For transformering og	Agilent / 240205,240207
celler (<i>E. coli</i>)	dyrking av plasmid.	
10-β kompetente celler (<i>E. coli</i>)	For transformering og	New England Biolabs / C3019H
	dyrking av plasmid.	
Fukarvot:	Beskrivelse	Referanse
COS-7 celler	Littrykking av Gal4-AHR2-	Referance
	plasmider.	
	Cellelinje fra «African	Gluzman (1981)
	green monkey»	
	(Cercopithecus aethiops).	

2.6 Plasmider

Tabell 6 - Oversikt over plasmider

Navn	Aminosyrer	Beskrivelse	Kilde
pCMX-Gal4		pCMX-plasmid med DNA-bindende	
		domenet fra Gal4 (S. cerevisiae).	
mh(100)x4tk luc		Plasmid med luciferase-reporter-gen	Blumberg et
		kontrollert av fire oppstrøms	al. 1998)
		aktiveringssekvenser (UAS) for Gal4.	
pCMV-β-Gal		Plasmid med gen for β-Galaktosidase.	_
pEGFP-AhR		AHR2β fra laks (<i>Salmo salar</i>)	R. Male, MBI
pCMX-Gal4-torskAHR2 LBD	75-439	AHR2 fra torsk (Gadus morhua) av	
pCMX-Gal4-torskAHR2 LBD + pasA	221-439	ulike lengder i leseramme med DNA-	
pCMX-Gal4-torskAHR2 ΔAA1-36	37-1127	bindende domenet fra Gal4 (S.	
pCMX-Gal4-torskAHR2	1-1127	cerevisiae) i pCMX-ekspresjons-	
		plasmid.	
pCMX-Gal4-laksAHR2β LBD	74-445	AHR2β fra laks (Salmo salar) av ulike	
pCMX-Gal4-laksAHR2β LBD + pasA	226-445	lengder i leseramme med DNA-	
pCMX-Gal4-laksAHR2β ΔAA1-35	36-1058	bindende domenet fra Gal4 (S.	
pCMX-Gal4-laksAHR2β	1-1058	cerevisiae) i pCMX-ekspresjons-	
		plasmid.	

2.7 Dyrkningsmedium

Tabell 7 - Lysogeny	broth (LE	3)-medium
---------------------	-----------	-----------

Komponent	Konsentrasjon
Trypton	10 g/L
Gjærekstrakt	5 g/L
Natriumklorid	10 g/L
Deionisert H ₂ 0	-

Før bruk ble løsningen autoklavert på 121° i 20 min. Ved tillaging av dyrkningsplater med LB-medium ble det tilsatt 15 g/L Agar-agar før autoklavering og 100 mg/L ampicillin rett før bruk.

Tabell 8 - Frysemedium for lagring av COS7-celler

Komponent	Konsentrasjon
DMEM-10%FBS (Tabell 9)	1X
DMSO	5% (v/v)

Tabell 9 - Dyrkingsmedium for kultivering av COS7-celler (DMEM-10%FBS)

Komponent	Konsentrasjon
Dulbecco's Modified Eagle's Medium – høy glukose	0,87
L-Glutamin (200mM)	3,48 mM
Penicillin-Streptomycin (5000U & 5mg/ml)	86 U / 0,86 mg/ml
Natriumpyruvat (100mM)	0,87 mM
Fetal Bovin Serum	8,7%

Ved ligandeksponering ble det benyttet DMEM uten fenol rødt og superstrippet FBS.

2.8 Løsninger

2.8.1 Agarose-gel elektroforese

Tabell 10 - Tris Acetat EDTA (TAE) buffer (50X)

Tabell 11 - TAE agarosegel

Reagens	Konsentrasjon	Reagens	Konsentrasjon
Trizma base	2,00 M	TAE buffer (50X)	1X
Eddiksyre	1,00 M	Agarose	0,7-0,85%
EDTA	0,05 M		
H ₂ 0	-		

Tabell 12 - Tris Borate EDTA (TBE) buffer (5X)

Tabell 13 - TBE agarosegel

Reagens	Konsentrasjon	Reagens	Konsentrasjon
Trizma base	0,45 M	TBE buffer (5X)	0,5X
Borsyre	0,45 M	Agarose	0,7-0,85%
EDTA	0,01 M		
H ₂ 0	-		

2.8.2 Ligandaktiveringsforsøk

Tabell 14 - Lysering basebuffer (1X)

Tabell 15 - Reaksjonsløsning lysering

Reagens	Konsentrasjon	Reagens	Konsentrasjon
Tris-PO ₄ , pH 7,8	25 mM	Basebuffer lysering (1X)	1 X
Glycerol	15 %	EGTA	4 mM
CHAPS	2 %	MgCl ₂	8 mM
L-α-Phosphatidylcholine	1%	PMFS	0,4 mM
BSA	1 %	DTT	1 mM

Tabell 16 - β-galaktosidase basebuffer (10X)

Tabell 17 - Reaksjonsløsning β-galaktosidase:

Reagens	Konsentrasjon	Reagens	Konsentrasjon
Na ₂ HPO ₄	60 mM	β-galaktosidase-buffer (10X)	1X
NaH ₂ PO ₄	40 mM	β-mercaptoetanol	52,9 mM
KCI	10 mM	ONPG	8,6 mM
MgCl ₂	1 mM		

Tabell 19 - Reaksjonsløsning luciferase-aktivitet

Reagens	Konsentrasjon	Reagens	Konsentrasjon
Tricine	80 mM	Luciferasebuffer (4X, pH 7,8)	1 X
$(MgCO_3)_4 \bullet Mg(OH)_2 \bullet 5H_2O$	4,28 mM	ATP	0,5 mM
EDTA	0,4 mM	DTT	5 mM
MgSO ₄	10,68 mM	Koenzym A*	0,15 mM
-		Na-luciferin*	0,5 mM
		Deionisert-H ₂ 0	-
		*Tilsatt rett før bruk	

Tabell 18 – Luciferase basebuffer (4X, pH 7,8)

2.8.3 Celleviabilitet-forsøk

Tabell 20 - Løsning A

Tabell 21 - Løsning B

Reagens	Konsentrasjon	Reagens	Konsentrasjon
NaCl	133,33 g / L	$CaCl_2 \bullet 2H_2O$	14 g/L
KCI	6,67 g / L	H ₂ 0	-
MgSO ₄ •7H ₂ 0	3,33 g / L		
MgCl ₆ •6H ₂ O	3,33 g / L		
H ₂ 0	-		

Tabell 22 - Løsning C

Tabell 23 - L15/ex

Reagens	Konsentrasjon	Reagens	Konsentrasjon
Na ₂ HPO4	6,33 g / L	Løsning A (Tabell 20)	6 %
KH ₂ PO4	2 g / L	Løsning B (Tabell 21)	1,06 %
H_2O	-	Løsning C (Tabell 22)	3 %
		Galaktose	0,88 %
		Natriumpyruvat	0,88 %
		H ₂ 0	Til 100%

Tabell 24 – Reaksjonsløsning

Reagens	Konsentrasjon
Resazurin (0,15 mg/ml)	10 %
CFDA-AM (4 mM i DMSO)	1 %
L15/ex (Tabell 23)	Til 100 %

2.9 Programvare

Navn	Bruk	Opphav/referanse
Clustal Omega	Sekvenssammenstilling	EMBL-EBI
ApE – A plasmid Editor v2.0.47	Sekvensanalyse, primerdesign	M. Wayne Davis
Jalview 2.8.2	Visualisering av sammenstillinger	Waterhouse et al. (2009)
Mega 6.06	Fylogenetiske trær	Tamura et al. (2013)
Inkscape v0.91	Figurer	Inkscape.org
Excel 2013	Databehandling, statistikk	Microsoft
OligoEvaluator	Sekundærstrukturprediksjon	Sigma-Aldrich
Powerpoint 2013	Figurer	Microsoft
Prism 6 v6.07	Figurer, statistikk	GraphPad
Ensembl	Genomsekvenser	Cunningham et al. (2015)
UniProt	Proteindatabase	Consortium (2015)

Tabell 25 - Programvare og verktøy

2.10 Instrumenter

Tabell 26 - Instrumenter

Navn	Bruk	Produsent / leverandør
Heraeus Multifuge X3R	Sentrifuge	Thermo Scientific
PowerPac™ HC High-Current Power Supply	Gelelektroforese	Bio-Rad
NanoDrop 1000 Spectrophotometer	Spektrofotometer	Thermo Scientific
Milli-Q A10 Advantage	Deionisert H ₂ 0	Merch Millipore
G:BOX	Avlesning av geler	Syngene
Gel Doc™ EZ Imager	Avlesning av geler	Bio-Rad
DOPPIO Thermal Cycler with dual 48 well blocks	RT- PCR	VWR
HS 501 Digital	Risteplate	IKA-Werke
EnSpire 2300 multimode platereader	Plateleser	Perkin-Elmer
Avanti J-26XP	Stor sentrifuge	Beckman Coulter
Himac CT 15RE	Liten sentrifuge	Hitachi
GD100	Varmebad	Grant
Buerker haemocytometer	Celletelling	Marienfeld
Leica DM IL inverted microscope	Cellearbeid	Leica
3.1 Oversikt over metoder

Det ble brukt en rekke ulike metoder i denne oppgaven, inkludert molekylærbiologiske metoder og bioinformatiske analyser. En oversikt over de viktigste metodene brukt i denne oppgaven er vist i Figur 10.

Figur 10 – Oversikt over viktige metoder benyttet i denne oppgaven. Vevsprøver fra torsk ble brukt til å isolere total-RNA. RNA ble revers transkribert til cDNA og sekvensen til torskAHR2 og laksAHR2β ble amplifisert med PCR. PCR-produktene ble deretter sekvensert og analysert, før de ble brukt i konstruksjonen av ulike plasmider hvor AHR2 ble fusjonert til Gal4 DNA-bindende domenet. Plasmidene ble videre brukt for å undersøke ligandbindende egenskaper til AHR2.

3.2 Prøvetakning

Atlanterhavstorsk (*Gadus morhua*) ble kjøpt fra Austevoll havbruksstasjon (HI, Bergen, Norge) og holdt ved ILAB (Universitetet i Bergen (UiB), Norge). To ulike fisk ble avlivet med et slag mot hodet og bløgget, og det ble tatt prøver fra lever og hjerte. Leverprøver fra den første fisken ble kjølt ned på tørris og videre lagret på -80 °C. Vev fra lever og hjerte fra den andre fisken ble direkte homogenisert med TriReagent (metode 3.3) og videre lagret på -80 °C.

3.3 RNA-isolering

Total-RNA fra torskelever ble ekstrahert ved brukt av TriReagent (Sigma) etter leverandørens anbefalinger. Denne metoden benytter seg av en forbedret utgave av Chomczynskis opprinnelige metode for RNA-ekstrahering (Chomczynski & Sacchi 1987). Levervev (100 mg) ble tint, tilsatt TriReagent og homogenisert grundig med en elektrisk drevet støter av plast. Prøvene ble tilsatt kloroform, sentrifugert, og det ble dannet tre ulike faser som inneholdt RNA, DNA og proteiner. Den øverste fasen som inneholdt RNA ble forsiktig fjernet, og total-RNA ble felt ut ved bruk av isopropanol (100%). Ved sentrifugering ble det dannet en RNA-pellet, som så ble vasket med 75% etanol, lufttørket, og deretter løst i deionisert vann. RNA-konsentrasjon og -renhet ble målt spektrofotometrisk (A260nm/A260/280-ratio, Nanodrop1000). RNA har en maksimal absorbans ved 260 nm, og forholdet mellom absorbanse ved 260 og 280 nm (A260/280) brukes ofte for å undersøke renhet. En A260/280 på mellom 1.8 til 2 indikerer rent RNA, men både pH og ionestyrke kan påvirke målingene (Wilfinger et al. 1997). A_{260/230} er et annet mål på renhet. Proteiner, fenol og kaotropiske salter absorberer lys på 230 nm, og en lav A260/230-verdi er en indikasjon på kontaminering av en av disse. Integriteten av RNA prøvene ble vurdert ved bruk av agarose gel-elektroforese (AGE) (metode 3.3.1). Størstedelen av total-RNA består av ribosomalt RNA, og intakt RNA, vil vises som klare to bånd hvor 28S båndet har dobbelt så høy intensitet som 18S, uten bakgrunnsignal. RNA-prøver ble lagret på -80°C inntil videre bruk.

3.3.1 RNA-elektroforese

Kvaliteten til RNA ble analysert ved bruk av denaturerende AGE med en metode tilpasset fra AGE for DNA (metode 3.5.5). RNA-prøver ble tilsatt formamide (50% v/v), deionisert H₂O og 10X lastebuffer. Prøvene ble varmebehandlet på 65°C i 10 min og lastet på gelen. Tilsetting av formamid og varmebehandling denaturerer RNA og fjerner eventuelle sekundærstrukturer.

3.4 cDNA-syntese

RNA-komplementært DNA (cDNA) ble benyttet som templat for PCR, og ble syntetisert ved hjelp av to ulike metoder. Til å begynne med ble det benyttet qScript cDNA-syntesesett (Quanta) (Tabell 27) til å produsere cDNA for amplifisering av AHR2 ligandbindende-domenet (LBD), og for å bestemme deler av sekvensen til AHR2-mRNA. Dette settet inneholder en ferdig reaksjonsblanding med dNTP, magnesium (Mg²⁺), primere og buffer. Ifølge produsenten består primerne av en optimal blanding av hexamer- og oligo(dT)-primere. Oligo(dT)-primere er oligonukleotider bestående av tymin-baser som kan hybridisere til poly-A halen på mRNA. Random hexamer-nukleotider består av tilfeldige oligonukleotider bestående av seks baser som kan binde mRNA på ulike steder. I tillegg, hvis ønskelig, kan det brukes genspesifikke primere som består av oligonukleotider laget for å binde på et spesifikt sted i mRNA-sekvensen. For cDNA-syntese for amplifisering av torskAHR2 LBD+pasA og for resterende deler av AHR2-sekvensen ble det benyttet Superscript III revers transkriptase (Invitrogen) (Tabell 28). Dette enzymet leveres med enkeltkomponenter som gjør det det mulig å bruke ulike kombinasjoner av primere i reaksjonen. Det ble utført totalt seks forsøk på å optimalisere cDNA syntesen ved å bruke ulike primerkombinasjoner. En liste over primerne er gitt i Tabell 29.

Tabeli 27 - Protokoli for gscript conka synthesis kit		
Reagens	Volum	Konsentrasjon
RNA templat	-	1 μg
MQ-H ₂ 0	Til 20 μL	-
qScript Reaction Mix (5X)	4 μL	1X
qScript Reverse Transkriptase (20X)	1 μL	1X

Tabell 27 - Protokoll for qScript cDNA Synthesis Kit

Temperaturprogram:		
Temperatur	Tid	Antall sykluser
22°C	5 min	
42°C	30 min	1
85°C	5 min	

Tabell 28 - Protokol for SuperScriptIII revers transkriptase

Reagens	Volum	Konsentrasjon
Oligo(dT) ₁₂₋₁₈ (0,5 μg/μL)	1 μL	500 ng
Random Hexamer (50 μM)	1 μL	95,06 ng
Genspesfikke primere (2 μM hver)	1 μL	2 pmol hver
Total RNA	-	2 μg
dNTP mix (10 mM)	1 μL	0,5 mM
MQH ₂ 0	Til 13 μL	-

Reagensene over ble inkubert på 65°C i 5 min og deretter 1 min på is.

Tilsatte følgende:		
Reagens	Volum	Konsentrasjon
5X first strand buffer	4 μL	1X
DTT (0,1M)	1 μL	5mM
RNaseOUT (40U/μL)	1 μL	2 U/μL
Superscript III RT (200U/µL)	1 μL	10 U/μL

Tempera	aturprogram:

Temperatur	Tid	Merknad:
25°C	5 min	For random-primere
50°C	60 min	Random og oligo(dT)-primere
55°C	60 min	Genspesifikke primere
70°C	15 min	

		. 1	
Lilsat	te tø	blger	nde:

Reagens	Volum	Konsentrasjon
RNase H (5000 U/mL)	0,4 μL	0,1 U/μL

Prøvene ble inkubert ved 37°C i 20 min.

Komponent	Primer ID
Random Hexamer	-
Oligo(dT) ₁₂₋₁₈	-
Random Hexamer + oligo(dT) ₁₂₋₁₈	-
Miks av genspesifikke primere	MT895, MT897, MT899, MT901, MT903, MT905
Genspesifikk	MT895
Genspesifikk	MT905

Tabell 29 - Oligonukleotider for cDNA-syntese

3.5 PCR

Polymerase kjedereaksjon (PCR) er en metode for å lage et stort antall kopier av en bestemt nukleotidsekvens (Saiki et al. 1988). I revers transkripsjon PCR brukes cDNA for å bestemme tilstedeværelsen og sekvensen av ulike transkripter. Komplementært DNA i denne oppgaven ble laget ved å benytte revers transkripsjon av total-RNA (metode 3.4). Den fullstendige sekvensen til torskAHR2 ble bestemt gjennom å amplifisere en rekke overlappende fragmenter med bruk av PCR, og cDNA som templat. Det var ikke mulig å amplifisere hele AHR2-leserammen. Fire spesifikke varianter av torskAHR2 ble amplifisert for videre bruk i ligandkarakterisering. Disse fragmentene var som følgende: LBD (nukleotid 661 til 1318), LBD+pasA (223-1318), ΔAA1-36 (109-3384) og full-lengde (1-3384). LBD, LBD+pasA og fullengde (satt sammen fra to overlappende fragmenter) ble amplifisert fra cDNA. ΔAA1-36 ble senere amplifisert fra et plasmid som inneholdt fullengde AHR2. Det ble amplifisert fire tilsvarende fragmenter for laksAHR2β: LBD (676-1336), LBD+pasA (220-1336), ΔAA1-35 (106-3178) og full-lengde (1-3178). Alle fire variantene av laksAHR2β ble amplifisert fra et plasmid gitt av Prof. Rune Male ved Molekylærbiologisk Institutt (MBI), ved UiB (materialer 2.6). En oversikt over hvilke deler som ble amplifisert med PCR og primerne (materialer 2.4) som ble benyttet, er vist i Figur 11.

3.5.1 Primerdesign

For å amplifisere sekvenser fra torskAHR2 og laksAHR2β ble primere laget etter visse kriterier for å oppnå så optimal binding til templatet som mulig: de bestod hovedsakelig av 15-30 nukleotider, hadde guanin/cytosin (GC)-innhold mellom 40-60%, og under 5 °C forskjell i smeltetemperatur (Tm) mellom to primere i et primerpar. 3'-enden av primerne ble laget slik at de optimalt inneholdt en til tre guanineller cytosin-baser. Sekundærstrukturprediksjon ble gjort ved hjelp av OligoEvaluator (SigmaAldrich). For amplifisering av AHR2β fra laks ble primerne basert på sekvensdata tilgjengelig i UniProtdatabasen. Primere for amplifisering av AHR2 fra torsk ble i hovedsak basert på den tilgjengelige genomsekvensen tilstede i Ensembl-databasen, men den manglet deler av sekvensen nær 3'-enden. Det ble derfor laget en 3'-primer basert på AHR2 fra en annen torskefisk, atlantisk tomcod (*M. tomcod*) hvor hele AHR2 sekvensen var tilgjengelig (se vedlegg A for identifikasjonsnummer).

3.5.2 Introduksjon av kutteseter for restriksjonsenzymer

For å konstruere fusjonsproteinet Gal4-DBD-AHR2, ble det brukt restriksjonsenzymer for å kutte AHR2, og ligere det inn i et plasmid som inneholdt Gal4-DBD (pCMX-Gal4-DBD) (materialer 2.6). Restriksjonsenzymer er endonukleaser med bakterielt opphav som gjenkjenner og kutter spesifikke DNA-sekvenser. Plasmidet med Gal4-DBD inneholder kutteseter for blant annet type II endonukleasene BamHI, EcoRI og NheI (Figur 12). Det ble introdusert kutteseter på 5'-enden av hver primer som var komplementære med kuttesetene i plasmidet. For å angi retning på AHR2 fragmentet i plasmidet, ble det benyttet to ulike enzymer på henholdsvis fremover- og revers primer. Primerne ble laget slik at pCMX-Gal4-DBD-AHR2 inneholdt AHR2 i leseramme med Gal4-DBD, og ved uttrykking i en eukaryot cellelinje ga et funksjonelt protein med Gal4-DBD fusjonert til AHR2. Ved å legge til 4-6 nukleotider 5' på hver primer ble det optimalisert for en effektiv kutting ved direkte restriksjonskutting av PCR-produkt. Når det ikke ble benyttet fullengde AHR2, ble det i revers primere lagt til et stopp kodon (TGA) for terminering av transkripsjon.

Figur 12 – Oversikt over kutteseter i pCMX-Gal4-plasmidet brukt for konstruksjon av Gal4-DBD-AHR2.

3.5.3 DNA-polymerase

Det ble benyttet to ulike DNA-polymeraser for å amplifisere torskAHR2 og laksAHR2β. For torskAHR2 LBD og kortere fragmenter ble det benyttet DreamTaq DNA-polymerase (Thermo) etter produsentens anbefalinger (Tabell 30).

Tabell 30 – Generell reaksjonsblanding og program for DreamTaq DNA-polymerase

Reagens	Volum	Konsentrasjon
10X DreamTaq Green Buffer	5 μL	1X
dNTP-blanding (2,5 mM)	4 μL	200 μM hver
Primer 1 (10 μM)	2,5 μL	0,5 μΜ
Primer 2 (10 μM)	2,5 μL	0,5 μΜ
Templat*	-	-
DreamTaq DNA polymerase (0.5 U/μL)	2,5 μL	1,25 U
MQH ₂ O	Til 50 μL	-
* A hard the standard of East DAVA his da		

* Avhengig av templattype. For cDNA ble det benyttet $2\mu L$.

Program varmesyklus:		
Temperatur	Tid	Antall sykluser
95°C	3 min	1
95°C	30 sek	
50°C	30 sek	30
72°C	1 min/kb	
72°C	5 min	1

For amplifisering av lengre fragmenter av torskAHR2, og alle variantene av laksAHR2β ble det benyttet Primestar GLX DNA-polymerase (Takara) etter produsentens anbefaling (Tabell 31). Primestar GLX DNA-polymerase er et enzym med korrekturlesende aktivitet som gjør at feil innsetting av enkeltnukleotider skjer med en mye lavere frekvens sammenlignet med Taq-polymeraser, som vil være en fordel ved amplifisering av lengre fragmenter og hvor sekvensen må være uten feil.

Tabell 31 - Generell reaksjonsblanding og program	n for PrimeSTAR GLX DNA-polymerase
---	------------------------------------

Reagens	Volum	Konsentrasjon
5X PrimeSTAR GLX buffer	10 μL	1X
dNTP-blanding (2,5 mM hver)	4 μL	200 μM hver
Primer 1 (10 μM)	1,25 μL	0,25 μM
Primer 2 (10 μM)	1,25 μL	0,25 μM
Templat*	-	-
PrimeSTAR GLX DNA polymerase (1,25	1 μL	1,25 U
U/μL)		
MQH ₂ O	Til 50 μL	-
* Aubanaia au tamplattuna (placmid 10 p	CONA 201)	

* Avhengig av templattype (plasmid 10 ng, cDNA 2µL)

Program varmesyklus:

Temperatur	Tid	Antall sykluser
98°C	10 sek	
60°C	15 sek	30
68°C	1 min/kb	

3.5.4 Spesielle amplifikasjons-betingelser

I begynnelsen av prosessen for å kartlegge sekvensen til torskAHR2 oppsto det problemer med å amplifisere lengre fragmenter og visse deler av sekvensen. For å forsøke å forbedre PCR-reaksjonene ble det tilsatt betain (1 M) eller trehalose (0,34 M) som har vist å gi bedre amplifisering (Spiess et al. 2004). Det ble videre gjort endringer i parameterne for temperatur ved å bruke gradient PCR, hvor temperaturen for annealing-steget i PCR reaksjonen ble forsøkt optimalisert ved å prøve flere temperaturer parallelt. Det ble også brukt lengre denatureringstid (10 min) og antall sykluser ble økt til 35 eller 40.

3.5.5 DNA-elektroforese

DNA ble analysert ved hjelp av gel-elektroforese. Elektroforesen benytter en horisontal agarosegel hvor DNA (og også RNA) blir separert som følge av størrelsesavhengig ulikheter i migrasjonshastighet i et elektrisk felt. Molekylenes negative ladning vil føre dem mot den positive elektroden og molekylenes størrelse og form vil avgjøre hvor fort de beveger seg gjennom den porøse agerosegelen. Før prøvene ble påsatt i gelen ble det tilsatt en 10X lastebuffer. Denne bufferen øker tettheten på prøvene og gjør at de synker til bunnen av brønnen. I de fleste tilfeller ble det benyttet 0,7% agarosegel som gir tilstrekkelig oppløsning for DNA-molekyler mellom 300-10000 nukleotider. Det ble benyttet to ulike bufferløsninger for tillagning av gel-løsning og som elektroforesebuffer (Tabell 11 og Tabell 13). Prøvene ble visualisert ved å tilsette etidiumbromid eller GelRed, enten direkte i gelen før støpning, eller ved farging av gelen i en bufferløsning etter at prøvene elektroforesen var ferdig. Gel Doc[™] EZ Imager (Bio-Rad) eller Gel:BOX (Syngene) ble brukt for fotografering av elektroforesegeler.

3.5.6 Rensing av nukleinsyrer fra agarosegel

Ved amplifikasjon og kutting med restriksjonsenzymer ble prøvene analysert ved bruk av AGE. DNAfragmenter av forventet størrelse ble kuttet ut av gelen og renset ved bruk av et «MicroElute® Gel Extraction Kit» (Omega Bio-tek) etter produsentens anbefalinger. Gelbitene med DNA ble smeltet på 60°C sammen med en løsning som inneholder guanidiumklorid som bidrar til binding av DNA til en silisiumkolonne. Prøvene ble sentrifugert gjennom kolonnen og vasket for å fjerne urenheter. Kolonnen ble sentrifugert tørr og DNAet ble ekstrahert ved å bruke en alkalisk buffer (10 mM Tris/HCl pH 8,5).

3.5.7 Kloning

For kloning av PCR-produkter ble det brukt StrataClone PCR kloningssett eller StrataClone Blunt PCR kloningssett (Agilent) etter produsentens anbefalinger. Taq-polymeraser (som DreamTaq DNA polymerase) produserer et enkelt adenin-overheng på hver 3' -ende av PCR-produktet. Kloningsettet inneholder vektorarmer med samsvarende 5' uridin-overheng som muliggjør ligering av PCR-produktet inn i kloningsvektoren ved hjelp av med vektorarmene. I motsetning til Taq-polymeraser så produserer korrekturlesende DNA-polymeraser (som Primestar GLX), PCR-produkter uten adenin-overheng. PCR-produkter fra reaksjoner hvor det ble brukt denne typen polymerase ble derfor klonet ved bruk av et kloningssett som inneholder vektorarmer uten overheng. Renset PCR-produkt ble tilsatt kloningsbuffer og vektorblanding etter Tabell 32. StrataClone kompetente *E. coli* celler ble transformert (metode

3.5.8) med ligeringsblandingen (3 μ L per 25 μ L bakterieceller). I denne prosessen rekombineres kloningsarmer og PCR-produktet til et plasmid (pSC-A), som inneholder gener som koder for ampicillinog kanamycin-resistanse.

Reagens	Volum
StratacClone Cloning Buffer	1,5 μL
Renset PCR-produkt	1 μL
StraClone Vector Mix amp/kan	0,5 μL

Tabell 32 – Protokoll for StrataClone PCR kloningssett

Komponentene ble blandet i rekkefølgen over og inkubert ved romtemperatur i 5 min og satt på is.

3.5.8 Transformering av E. coli

Kompetente celler er bakterieceller behandlet med saltløsning for å gjøre dem mer mottakelig for opptak av ekstracellulært DNA. Ved å inkubere cellene sammen med DNA på is, binder DNA til cellene. En rask varmebehandling forårsaker endringer i fluiditeten til cellemembranen og gjør at bundet DNA blir tatt opp i cellen (Panja et al. 2008). I denne oppgaven ble det hovedsakelig benyttet StrataClone kompetente *E. coli* celler (Agilent) for transformering av ligerte PCR-produkter og pCMX-Gal4-DBD AHR2-plasmider. For transformasjon av full-lengde laksAHR2 β , laksAHR2 β Δ AA1-35 og torskAHR2 Δ AA1-36 ble det benyttet 10- β *E. coli* celler (New England Biolabs).

StrataClone-celler (oppbevart på -80 °C) ble tint på is og tilsatt ligeringsprodukt. Mengde ligeringsprodukt varierte og er beskrevet under metode 3.5.7 og 3.7.4. Celleløsningen ble blandet forsiktig og inkubert på is i 20 minutter. Videre ble cellene varmebehandlet i varmebad på 42°C i 45 sekunder og deretter 2 minutter på is. Det ble tilsatt et volum forvarmet SOC-medium (125 per 25 μ L celler) og cellene ble inkubert ved 37 °C i risteinkubator (250 RPM) i ca. 1 time. Til slutt ble cellene platet ut på LB-agar med ampicillin (0,1 mg/ml) og inkubert på 37 °C i ca. 16 timer. 10- β -cellene ble behandlet som for StrataClone-cellene, men med inkubering på is i 30 min, varmebad i 30 sekunder og 5 min på is.

3.5.9 Identifikasjon av ønskede kloner (screening)

Etter utplating av transformerte celler ble det dannet enkeltkolonier. Bakteriecellene brukt for transformasjon ble dyrket under selektive forhold (ampicillin), hvor kun cellene som inneholder et plasmid og kan uttrykke antibiotikaresistens overlever. Selv om cellene inneholder et plasmid, er det ikke gitt at plasmidet inneholder det ønskede DNA-produktet. For å bestemme om plasmidene inneholdt det ønskede DNA-produktet, ble flere enkeltkolonier undersøkt. PCR ble utført med primere som binder kloningsvektoren på hver side av det innsatte produktet. Hvis cellene inneholder en tom vektor vil kun et kort område av hver vektorarm amplifiseres (200-300 bp). Positive transformanter med innsatt DNA-produkt ble dyrket opp i flytende medium over natt (LB medium, 0,1 mg/ml ampicillin). Det ble deretter renset plasmid fra cellene (metode 3.5.10.1) og sekvensen til det innsatte DNAet ble verifisert med sekvensering (metode 3.6).

3.5.10 Plasmidrensning

For sekvensering og konstruksjon av plasmider ble det renset plasmid-DNA. Det ble brukt to ulike metoder for dette; miniprep (metode 3.5.10.1) og midi- og maxi-prep, (metode 3.5.10.2). I denne prosessen blir celler som har blitt dyrket i et selekterende medium (tilsatt antibiotika) sentrifugert og tilsatt en resuspensjonsbuffer som inneholder RNase. RNase bryter ned RNA i de senere stegene. Cellene blir lysert med en løsning som ødelegger cellene (ved hjelp av NaOH og natriumdodecylsulfat (SDS)) og denaturer proteiner og DNA. Ved tilsetting av en nøytraliseringsbuffer som inneholder acetat vil proteiner, kromosomalt DNA og andre cellerester bli felt ut. Plasmid-DNA vil gjenoppta en dobbelttvunnet konfigurasjon som gjør det mulig å skille plasmid-DNA fra andre cellekomponenter. Tilsetting av saltløsning fremmer binding av plasmid-DNA til en silisiumkolonne, hvor andre komponenter blir vasket ut. Uønskede cellerester blir fjernet enten ved sentrifugering (miniprep) eller ved filtrering (midi- og maxi-prep). Plasmid-DNA bundet til kolonnen frigis tilslutt ved å bruke en alkalisk buffer. I storskalarensing blir frigjort plasmid-DNA renset ytterligere med isopropanol-utfelling.

3.5.10.1 Småskalarensing av plasmid ved bruk av miniprep

For rensing av plasmid-DNA til bruk i sekvensering og til konstruksjon av pCMX-Gal4-AHR ble det benyttet småskalarensing. 2mL LB-medium med ampicillin (0,1 mg/mL) ble inokulert med bakterieceller og dyrket ved 37 °C på 250 RPM i ca. 16-20 timer. Plasmidene ble deretter renset ved hjelp av et «E.n.z.a.® Plasmid Mini Kit I» (Omega-Biotek) etter produsentens anbefalinger.

3.5.10.2 Storskalarensing av plasmid ved bruk av midi/maxi-prep

For rensing av plasmid-DNA for ligandaktiveringsforsøk og transfeksjon i COS7-celler ble det benyttet storskalarensing. 300mL LB-medium med ampicillin (0,1 mg/mL) inokulert med 4 μL startkultur ble inkubert ved 37 °C på 250 RPM i ca. 16-20 timer. Cellekulturen ble renset ved bruk av et «NucleBond® Xtra Maxi/Midi kit» (Macherey-Nagel) etter produsentens anbefalinger. Plasmider renset ved bruk av denne metoden ble løst i 5 mM Tris/HCl (pH 8,5) buffer.

For oppdyrking av plasmid ble det benyttet StrataClone kompetente celler eller 10-beta kompetente celler. Konsentrasjonen av renset plasmid ble målt spektrofotometrisk (Nanodrop1000) og DNAets integritet ble analysert etter storskalarensing ved bruk av AGE. Dobbelttvunnet plasmid-DNA som er den foretrukne formen vil bevege seg raskere enn lineært (brudd i begge DNA-trådene) og avslappet plasmid-DNA (brudd i en DNA-tråd.)

3.6 Sangersekvensering

All sekvensering ble utført av sekvenseringslaboratoriet ved Molekylærbiologisk institutt (ved UiB). Sekvenseringlaboratoriet benytter seg av automatisert Sanger DNA-sekvensering ved bruk av en kapillær-basert 3730XL Analyzer (Applied Biosystems). Sekvenseringen baserer seg på amplifisering av den aktuelle DNA-sekvensen ved bruk av en blanding av deoksynukleotider og fluorescens-merkede dideoksynukleotider. Dideoksynukleotidene mangler en 3' hydroksylgruppe som fører til at elongeringen av DNA-molekyler terminerer. Tilfeldig innsetting av dideoksynukleotider fører til fragmenter av ulike størrelser som kan separeres ved hjelp av elektroforese og detekteres ved bruk av fluorescens. Hvert fragment inneholder en av fire forskjellige dideoksynukleotider som leses av, og ut i fra lengden på fragmentet bestemmes nukleotidenes posisjon. Sangersekvensering er begrenset til sekvensering av omtrent 900 basepar i hver reaksjon, og ved sekvensering av lengre fragmenter ble det benytter flere primere for å dekke hele sekvensen. I sekvenseringsreaksjonene ble renset plasmid-DNA (metode 3.5.10.1) amplifisert etter oppsettet beskrevet i Tabell 33 og levert til sekvenseringslaboratoriet for analysering. Dataene fra sekvenseringen ble behandlet i programmet ApE (v2.0.47). Sekvenseringer som bestod av flere sekvenseringsreaksjoner ble manuelt behandlet og satt sammen for å dekke den ønskede sekvensen.

Antall sykluser

1

25

1

Reagens	Volum	Konsentrasjon
Big-Dye versjon 3.1	1 μL	
Sekvenseringsbuffer	1 μL	
Plasmid-DNA	-	200 ng
Primer (2μM)	1,6 μL	3,2 pmol
Deionisert H ₂ O	Til 10 μL	-

Tid

5 min

10 sek

5 sek

4 min

 ∞

Tabell 33 – Protokoll for sekvensering

Etter sekvenseringsreaksjonen ble det tilsatt deionisert-H₂O til totalt 20µl.

Temperatur

96°C

96°C

50°C

60°C

4°C

3.7 Plasmidkonstruksjon

Gal4-DBD-AHR2 med ulike lengder av torskAHR2 og laksAHR2β ble konstruert ved å ligere AHR2fragmenter amplifisert med PCR sammen med pCMX-Gal4-plasmidet som inneholdt Gal4-DBD.

3.7.1 DNA-kutting

Temperaturprogram:

Initiell denaturering

Denaturering

Annealing

Ekstensjon

Steg

Plasmidet pCMX-Gal4-DBD og AHR2 ble kuttet med to eller flere restriksjonsenzymer (Tabell 34) for å lage fragmenter med kompatible ender som kunne ligeres sammen. Kuttereaksjonene (Tabell 35) ble inkubert ved 37°C i 2 timer, tilsatt 10X lastebuffer og separert ved bruk av AGE. Fragmenter som korresponderte til linearisert pCMX-vektor og AHR2-fragmenter ble kuttet ut av gelen under UV-lys og renset. For konstruksjon av Gal4-DBD-torskAHR2, Gal4-DBD-torskAHR2 Δ AA1-36, Gal4-DBD-laksAHR2 β og Gal4-DBD-laksAHR2 β Δ AA1-35 ble AHR-fragmentene først kuttet i to deler som så ble ligert sammen med pCMX-Gal4-plasmidet. Sekvensen fra torsk og laks inneholder interne kutteseter som fører til intern kutting av sekvensen (Figur 13). Torsk inneholder kun et intern kuttesete for EcoRI, som var mulig å omgå ved å kutte sekvensen i to deler. Sekvensen til laksAHR2 β inneholder flere interne kutteseter for EcoRI og BamHI, og dette gjorde det nødvendig å bruke andre enzymer for kutting av laksAHR2 β LBD+pasA ble det benyttet de samme enzymene som for torsk, men i en partiell kuttereaksjon (metode 3.7.2)

	EcoRI	BamHI	Nhel
Ncol	Del 1 laksAHR2β	Del 2 torskAHR2	Del 2 laksAHR2β
	Del 1 laksAHR2β ΔAA1-35	Del 2 torskAHR2 ∆AA1-36	Del 2 laksAHR2β ΔAA1-35
	Del 1 torskAHR2		
	Del 1 torskAHR2 ∆AA1-36		
BamHI	pCMX-Gal4-DBD		
	laksAHR2β LBD+pasA		
	laksAHR2β LBD		
	torskAHR LBD		
	torskAHR LBD+pasA		
Nhel	pCMX-Gal4-DBD		

Tabell 34 - Enzymer brukt i dobbelkutting med restriksjonsenzymer

Tabell 35 - Protokoll for dobbelkutting med restriksjonsenzymer

Reagens	Volum	Konsentrasjon	
		Vektor:	Innsatt DNA:
DNA	-	10 μg/40μL	2 μg/40μL
Enzym 1 (15U/μL)	1 μL	0,375 U/μL	0,375 U/μL
Enzym 2 (15U/μL)	1 μL	0,375 U/μL	0,375 U/μL
10X Buffer K/M	4 μL	1X	1X
BSA (0.1%)	4 μL	0,01%	0,01%
MQH ₂ O	Til 40 μL	-	-

EcoRI (2778)	EcoR	l (1264)	BamHI (3	3127)
Ncol (2507)	Ncol (884)	BamH	ll (2209)	
TorskAHR2	La	aksAHR2β		-

3.7.2 Delvis kutting med restriksjonsenzymer

For å konstruere Gal4-DBD-laksAHR2 LBD og LBD+pasA ble det benyttet en partiell kuttereaksjon. PasA og LBD delen av sekvensen inneholder kun et internt kuttesete for EcoRI. For å unngå kutting av EcoRI i dette setet, ble det satt opp flere parallelle reaksjoner med laksAHR2β og en konstant konsentrasjon av BamHI. Hver reaksjon ble tilsatt EcoRI fortynnet 1:2 i forhold til den foregående prøve. Ellers var det likt som beskrevet i Tabell 35, men med mindre volumer. Prøvene ble inkubert ved 37°C i 2 timer og separert ved bruk av AGE. Reaksjonene som ga et tilfredsstillende produkt ble gjentatt med større volumer og produktene ble renset for videre bruk.

3.7.3 Defosforylering

For å hindre religering av linearisert pCMX-Gal4-vektor ble vektoren defosforylert ved bruk av alkalisk fosfatase fra reke (SAP). SAP er en fosfatase og fjerner fosfatgruppen 5' på vektoren som oppstår ved kutting med restriksjonenzymer. En beskrivelse av reaksjonsblandingen for defosforylering er gitt i Tabell 36. Volumet for antall mol DNA-ender ble beregnet ut i fra Formel 1.

Tabell 36 – Protokoll for defosforylering

Reagens	Volum	Konsentrasjon
Lineært DNA	-	1pmol DNA-ender
SAP Buffer 10X	2 μL	1X
SAP (1U/μL)	1 μL	1 U
MQH ₂ O	Til 20 μL	-
Reaksjonsmiksen ble inkubert ved 37°C i 45 min.	SAP ble inaktivert ved å va	rmebehandle prøvene på
65°C i 15 min.		

Formel 1 – Beregning av antall ender

pmol DNA-ender = ng DNA × (pmol / 660pg) × $(10^{3}pg / 1ng)$ × (1/N) × 2

N = antall nukleotider (basepar)

3.7.4 Ligering

Plasmidene pCMX-Gal4-DBD-AHR2 ble konstruert ved å ligere sammen kuttet og renset pCMX-Gal4-DBD plasmid med et eller to fragmenter av AHR2 ved bruk av T4 DNA-ligase (Takara). T4 DNA-ligase katalyserer dannelsen av fosfodiesterbånd mellom 5' fosfat og 3' -hydroksylgrupper. En beskrivelse av ligeringsreaksjonen er gitt i Tabell 37. Masse av innsatt DNA for ligeringsreaksjonen ble beregnet ved hjelp av formel 2. Det ble brukt et molart forhold tilsvarende 1:1 eller 3:1 mellom innsatt-DNA og vektor ved ligering av 3 fragmenter og et 3:1–forhold ved ligering av to fragmenter. 3-10 µL ligeringsprodukt ble transformert med Strataclone kompetente celler (Agilent) eller 10-beta-celler (New England Biolabs) etter metode 3.5.8 og renset plasmid ble sekvensert for verifisering av rett leseramme for Gal4-DBD-AHR2.

Reagens	Volum Konsentrasjon		
pCMX-Gal4 (vektor)	-	25ng	
AHR2 (innsatt DNA)	-	Se formel 2.	
T4 Ligase (350U/μL)	0,5 μL	17,5 U/μL	
10X T4 DNA Ligase Buffer	1 μL	1X	
MQH ₂ O	Til 10 μL	-	
Reaksjonsløsningen ble inkubert på 12°C i ca.	16 timer eller 10 min ved ro	omtemperatur. T4-ligasen	
ble inaktiverte på 65°C i 15 min.			

Tabell 37 – Protokoll for ligeringsreaksjon

Formel 2 – Beregning av masse av innsatt DNA i vektoren

Masse (ng) = Molart innsats/vektorforhold x masse av vektor (ng) x forholdet mellom innsats- og vektorlengde.

3.8 Ligandaktiveringsforsøk

3.8.1 Prinsipp

For å måle ligand-indusert aktivering av torskAHR2 og laksAHR2β ble det benyttet et luciferasebasert genreporter-system. I dette systemet blir reporterplasmid, som inneholder reportergenet luciferase, og reseptorplasmid, med rekombinant Gal4-DBD-AHR2, transfektert inn i COS-7-celler. Etter transfeksjonen blir fusjonsproteinet Gal4-DBD-AHR2 uttrykt i cellene. Reporterplasmidet er kontrollert av flere oppstrøms aktiveringssekvenser (UAS) til Gal4-proteinet, og ved ligandbinding til Gal4-DBD-AHR2 oppstår det konformasjonsendringer som aktiverer Gal4-domenet, og får det til å binde UAS og indusere uttrykking av reportergenet. Luciferase blir uttrykt og translatert, og katalyserer dannelsen av oxyluciferin fra luciferin. Denne reaksjonen produserer lys og gjør det mulig å detektere og kvantitere aktivering av reseptor-proteinet (Figur 14).

Figur 14 – Skjematisk oversikt over prinsippet bak ligandaktiveringsforsøk med Gal4-DBD UAS-systemet. Plasmider med reseptor- og reporter-gen (luciferase) blir transfektert inn i en cellelinje. Ved ligandbinding aktiveres reseptorproteinet bundet til Gal4 DNA-bindende-domene (Gal4-DBD). Gal4-DBD binder til UAS, som ligger oppstrøm av luciferase-genet og induserer uttrykking av luciferase. Luciferase katalyserer omdannelsen av luciferin til oxyluciferin, og gir et signal som kan kvantifiseres.

3.8.2 pCMX-Gal4-AHR2

Reseptorplasmidet pCMX-GAL4-DBD består av en eukaryot ekspresjonsvektor pCMX som inneholder det DNA-bindende domene fra Gal4 (Harmon et al. 1995; Sadowski & Ptashne 1989; Umesono et al. 1991). Ulike lengder av torskAHR2 og laksAHR2β ble klonet inn i leseramme med Gal4-DBD som beskrevet tidligere (metode 3.7).

3.8.3 Luciferaseaktivitet

Luciferase er et enzym som finnes blant annet i lysbiller og er et mye brukt reporter-gen i *in vitro* celleforsøk. Luciferase-enzymet som ble brukt i disse forsøkene katalyserer omdannelsen av luciferin (ved bruk av ATP og O₂) til oxyluciferin (i tilegg til AMP og PPi). Denne kjemiske reaksjonen avgir lys ved 560nm som kan måles spektrofotometrisk. I ligandaktiveringsforsøkene ble det brukt plasmidet mh(100)x4tk luc (se Tabell 6 for opphav) som inneholder genet for luciferase kontrollert av fire oppstrøms aktiveringssekvenser (UAS) (Kang et al. 1993) for Gal4 fra gjærsopp (*Saccharomyces cerevisiae*) (Harmon et al. 1995).

3.8.4 β-galactosidase

For å korrigerer for ulikheter i transfeksjonseffektivitet, ble pCMX-GAL4-DBD-AHR2 og mh(100)x4tk luc plasmidene transfektert sammen med pCMV- β -Gal-plasmider (Tabell 6) (i lik mengde som reporterplasmid) og som inneholder genet for β -galactosidase (β -Gal). β -Gal er et bakterielt enzym som katalyserer kløyving av blant annet β -galactoside-bindinger (Sambrook & Russell 2001). β -Gal katalyserer dannelsen av galaktose og orto-nitrofenol fra orto-nitrofenyl- β -galaktosid (ONPG). Denne reaksjonen danner et gult produkt som kvantifiseres spektrofotometrisk ved å måle absorbanse på 420nm. For at observerte endringer i luciferase-aktivitet ikke skulle påvirkes av ulik transfeksjonseffektivitet ble målt luminescens normalisert ved å dele verdien på β -Gal-aktivitet (absorbans).

3.8.5 Kultivering av COS-7-celler

COS-7-celler lagret i frysemedium (Tabell 8) i gassfasen over flytende nitrogen ble tint, tilsatt 10 mL dyrkingsmedium (DMEM-10% FBS, Tabell 9) og sentrifugert ved 250 x g i 5 min for å fjerne dimetyl sulfoksid (DMSO). Mediet ble fjernet, cellepelleten resuspendert i 10 mL dyrkingsmedium og sådd ut på kultiveringsplater, som så ble inkubert ved 37 °C i 5 % CO₂.

Ved en celletetthet (konfluens) på mellom 50-80 % ble cellene splittet. Dyrkingsmedium ble fjernet og cellene vasket med 1X PBS (pH 7,4). Cellene ble behandlet med Trypsin-EDTA (0,05 % trypsin, 0,02 % EDTA) i 45 sekunder som kutter intercellulære interaksjoner og gjør at cellene løsner fra dyrkningsplaten. Overskuddsløsning ble fjernet og cellene ble inkubert i 5 min ved 37 °C og 5 % CO₂. Cellene ble resuspendert i dyrkingsmedium og fortynnet 1:10 eller 1:20 og overført til en ny kultiveringsskål for videre inkubering ved 37 °C i 5 % CO₂. Dagen før ligandaktiveringsforsøk ble cellene splittet og fortynnet 1:2.

Standard betingelser for COS7-cellene var bruk av DMEM-10% FBS dyrkingsmedium og inkubering ved 37 °C og 5 % CO₂.

3.8.6 Utsåing av celler

COS-7-celler ble behandlet med trypsin-EDTA og resuspendert i 10 mL DMEM-10% FBS. Et volum celleløsning ble blandet 1:1 (v/v) med trypan blue, inkubert ved romtemperatur i 5 min og celletettheten ble bestemt ved bruk av et haemocytometer (Buerker) og lysmikroskopi. Det ble tilsatt 5000 celler i hver brønn på en 96-brønnsplate som ble inkubert ved 37 °C og 5 % CO₂ i 24 timer.

3.8.7 Transfeksjon

Gammelt vekstmedium ble fjernet og cellene ble tilsatt en blanding bestående av DMEM-10%FBS og plasmid, redusert medium (Opti-MEM I) og transfeksjonsreagens (TransIT-LT1) (Tabell 38). Transfeksjonsreagenset består av en blanding av lipider, proteiner og polyaminer som fasiliterer transport av plasmid-DNA over cellemembranen. Plasmid-DNA (100 ng/brønn) ble fortynnet i Opti-MEM I og tilsatt TransIT-LT1 reagens. Blandingen ble inkubert i 30 min ved romtemperatur og tilsatt DMEM-10%FBS. Etter tilsetting av vekstmedium og transfeksjonsblanding ble cellene inkubert ved 37 °C og 5% CO₂ i 24 timer.

Tabell 38 -	Reagenser for	transfeksjon
-------------	---------------	--------------

Reagens	Mengde per brønn (96-brønn plate)
Opti-MEM I	9 μL
Plasmid-miks (1μg/μL)	0,1 μL
TransIT-LT1	0,3 μL
DMEM-10%FBS	92 μL
Totalt	101,4 μL

3.8.8 Eksponering

Et døgn (24 timer) etter transfeksjon av plasmid-DNA ble gammelt medium fjernet og cellene eksponert for ulike forbindelser. Alle forbindelsene brukt i eksponeringsforsøkene ble løst i DMSO og fortynnet til ønsket konsentrasjon i DMEM-10%ss FBS (uten fenol rød og med kull- og resinstrippet FBS). Det ble laget en fortynningsrekke A-G i en 96-brønns plate, med fem ganger fortynning mellom hver rad. Rad H fungerte som kontroll og inneholdt kun DMSO. Fortynningsrekken ble laget med to ganger (2X) den endelig konsentrasjon av ligand og løsemiddel (DMSO). Endelig konsentrasjon (1X) ble oppnådd ved å tilsette 100 μ L fra hver brønn av fortynningen til 100 μ L DMEM-10% ssFBS i hver brønn på celleplaten (96-brønner) (Figur 15). Endelig DMSO-konsentrasjon var mellom 0,1-0,5 % av totalvolumet, og lik for alle konsentrasjoner av teststoffer og løsemiddelkontrollen. Cellene ble eksponert i 24 timer, ved 37 °C og 5 % CO₂.

Figur 15 – Fortynning av test-forbindelser brukt i ligandaktiveringsforsøkene. Det ble laget en fortynningsrekke for hver test-forbindelse hvor forbindelsen ble fortynnet 5 ganger i gjentatte steg. For å oppnå ønsket konsentrasjon ble hver brønn i fortynningsrekken fortynnet 1:2 direkte med dyrkingsmedium på celleplaten.

3.8.9 Måling av luciferase- og β-galaktosidaseaktivitet

Etter eksponering i 24 timer ble medium fjernet og COS-7 cellene inkubert sammen med en lyseringsløsning (Tabell 15) i 30 min ved romtemperatur og lett risting. Lyseringsløsningen ødelegger cellemembraner, stabiliserer proteiner og inhibererer protease-aktivitet. Lysat (50 μ L) ble så overført til en hvit luminescens-plate (96-brønn), og til en gjennomsiktig plate (96-brønn) for måling av absorbans. Platen for absorbans ble tilsatt 100 μ L av β -Gal-reaksjonsløsning (Tabell 17) i hver brønn og inkubert ved romtemperatur i ca. 20 min til en gulfarge oppstod, og avlest ved 420nm. Platen for måling av luminescens ble tilsatt 100 μ L luciferase-reaksjonsløsning (Tabell 19) i hver brønn og avlest øyeblikkelig. Både absorbans og luminescens ble avlest i en Enspire 2300 plateleser (PerkinElmer).

3.8.10 Utprøving av Gal4-DBD-AHR2 varianter

For å undersøke hvilke varianter av Gal4-DBD-torskAHR2 og Gal4-DBD-laksAHR2 β som var mest responsive ble alle variantene transfektert inn i COS-7-celler. Det ble brukt et 1:10 masseforhold mellom reseptor- og reporterplasmid. Cellene ble videre eksponert for 192 pM til 3 µM BNF og inkubert i 24 timer ved 37 °C og 5 % CO₂. Gal4-DBD-AHR2-variantene som ga best resultat ble brukt videre i påfølgende forsøk.

3.8.11 Optimalisering av forholdet mellom reseptor og reporter-plasmid

For å optimalisere ligandaktiveringsforsøkene ble COS-7 celler transfektert med Gal4-DBD-AHR2varianter i ulike masseforhold mellom reseptor- og reporterplasmid, som vist i Tabell 39. Cellene ble så eksponert for BNF (0,96 nM-15 μ M) og inkubert i 24 timer ved 37 °C og 5 % CO₂. Forholdet mellom reseptor og reporter-plasmid som ga best resultat ble brukt videre i påfølgende forsøk.

Tabell 39 - Plasmidmengde (ng) per brønn (96-brønn plate) ved ulike masseforhold mellom reseptorog reporter-plasmid.

Plasmid:	1:2	1:5	1:10	1:20
mh(100)x4tk luc (reporter)	40,00	45,45	47,62	48,78
pCMV-β-Gal	40,00	45,45	47,62	48,78
pCMX-Gal4-DBD-AHR2 (reseptor)	20,00	9,09	4,76	2,44

3.8.12 Ligandspesifikk aktivering av AHR2 fra fisk

COS-7 celler transfektert med Gal4-DBD-torskAHR2 og Gal4-DBD-laksAHR2 β ble eksponert for ulike forbindelser og inkubert i 24 timer ved 37 °C og 5 % CO₂. Det ble brukt syv forskjellige konsentrasjoner for hver forbindelse i tillegg til kontrollen som kun innehold løsemiddelet (DMSO). En oversikt over forbindelser og hvilke konsentrasjoner som ble brukt er vist i Tabell 40.

Tabell 40 – Eksponeringskonsentrasjoner av test-forbindelser (μM)

β-naftoflavone	α -naftoflavone	Benzo(a)pyren	Phenanthrene	PCB-126	PCB-153	FICZ
3	3,2	4,7	4,6	2	2	0,1
0,6	0,64	0,94	0,92	0,4	0,4	0,02
0,12	0,128	0,188	0,184	0,08	0,08	0,004
0,024	0,0256	0,0376	0,0368	0,016	0,016	0,0008
0,0048	0,00512	0,00752	0,00736	0,0032	0,0032	0,00016
0,00096	0,001024	0,001504	0,001472	0,00064	0,00064	0,000032
0,000192	0,0002048	0,0003008	0,0002944	0,000128	0,000128	0,0000064

3.8.13 Celleviabilitet

For å undersøke om viabiliteten til COS-7 cellene ble påvirket av ligandeksponering ble det utført et celleviabilitets-forsøk. Det ble benyttet en kombinasjon av resazurin (også kjent som Alamar Blue) og CFDA-AM som en indikasjon på henholdsvis metabolsk aktivitet og membranintegritet (Schreer et al. 2005). COS-7-celler ble transfektert med Gal4-DBD-torskAHR2 og Gal4-DBD-laksAHR2β og eksponert for BNF (0,96 nM-15 µM) i 24 timer ved 37 °C og 5 % CO₂. Etter eksponering ble gammelt medium fjernet og cellene vasket med 1X PBS (pH 7,4). Det ble tilsatt 100 µL av resazurin/CFDA-AM-løsning (Tabell 24) i hver brønn og cellene ble tildekket og inkubert i 2 timer ved 37 °C og 5% CO₂. Det ble tilsatt resazurin/CFDA-AM-løsning i tomme brønner (uten celler) for å bestemme bakgrunnssignal. Fluorscence ble avlest i en plateleser (Enspire 2300) ved 530 nm (eksitering) og 590 nm (emisjon) for resazurin, og ved 485 nm/530 nm for CFDA-AM. Bakgrunnssignal ble trukket fra de avleste verdiene.

3.9 Databehandling

Data fra ligandaktiveringsforsøkene ble importert og bearbeidet i Microsoft Excel 2013. Luciferaseverdier for hver inviduelle brønn ble normalisert ved å dele på β -galactosidase-verdien fra den samme brønnen. Ved å dele det normaliserte luciferase-signalet for hver brønn på gjennomsnittet av verdiene fra kontrollprøvene ble det så beregnet fold ligandaktivert induksjon av luciferase i forhold til kontrollprøvene (kun løsemiddel). GraphPad Prism (versjon 6.07) ble brukt til å visualisere gjennomsnitt og standardavvik av x-antall replikater for hvert punkt.

3.10 Sekvensanalyse

Den kodende nukleotidsekvensen for torsk AHR2 ble translatert til proteinkodende sekvens ved bruk av ApE (v.2.0.47). Proteinsekvensen ble sammenstilt med proteinsekvenser for andre arter tilgjengelig fra Uniprot-databasen og Ensembl-databasen. UniProt- eller Ensembl-identifikasjonsnumre for nedlastede sekvenser finnes i Vedlegg A. For sammenstilling av proteinsekvenser av AHR fra ulike arter ble Clustal Omega (EMBL-EBI) benyttet med standard innstillinger (Goujon et al. 2010). Clustal Omega er et internett-basert program for multippel sammenstilling av sekvenser, og kan brukes til å sammenstille store datasett (Sievers et al. 2011). Sammenstillingene ble visualisert i JalView (versjon 2.9.0b2), og programmet MEGA6 (Versjon 6.06) ble benyttet til å beregne og visualisere fylogenetiske forhold. Den fylogenetisk analysen ble gjort ved bruk av maksimal sannsynlighet og bootstrap-test med 1000 replikasjoner.

3.11 Statistikk

For sammenligning av gjennomsnittsverdier mellom ulike grupper ble det utført t-test med og uten korreksjon for ulik varians i Microsoft Excel 2013. En-veis-ANOVA med Dunnets test ble brukt for å teste gjennomsnittsverdier mellom tre eller flere grupper i GraphPad Prism (versjon 6.07)

3.12 Figurer

Figurer ble laget eller redigert ved hjelp av InkScape (versjon 0.91) og Microsoft Powerpoint 2013.

Resultater

4 Resultater

I dette kapittelet vil resultater oppnådd i denne oppgaven bli beskrevet. Resultatene er basert på teknikkene beskrevet i kapittel 3.

4.1 RNA-isolering

Total-RNA fra torskelever og torskehjerte ble ekstrahert, og kvaliteten og integriteten til RNA ble kontrollert spektrofotometrisk og ved bruk av AGE (Figur 16). Fra alle ekstraksjoner ble det observert to distinkte bånd ved ca. 1200 og 2300 bp på agarosegelen, som indikerer lite nedbrytning av RNA (Figur 16). Direkte homogenisering i TriReagent ga noe renere 28S/18S-bånd (del B, Figur 16) sammenlignet med direkte nedfrysning hvor det ble observert noe mer bakgrunnssignal (del A, Figur 16). Ved direkte nedfrysning av leverprøvene, ga spektrofotometriske målinger A_{260/280}-verdier fra 1,78 til 1,82 og A_{260/230} fra 0,47 til 0,96. Ved homogenisering i TriReagent før nedfrysning var A_{260/280}-verdiene 1,97 og 2,01 og A_{260/230}-verdiene 1,02 og 2,15, for forholdsvis lever og hjertevev.

Figur 16 - Kvalitetskontroll av RNA ved hjelp av agarose gel-elektroforese. Total RNA med 28S og 18S ribosomale enheter visualisert med AGE. M = 2 log referansemarkør. A) To parallelle RNA-ekstraksjoner fra torskelever. Brønn 1 og 2 = 800ng, 3 og 4 = 500ng. B) 600ng fra RNA-ekstraksjon av hjerte (brønn 1) og lever fra torsk (brønn 2).

Resultater

4.2 cDNA-syntese og PCR kloning

I denne oppgaven ble ulike deler av torsk AHR2 amplifisert med PCR fra cDNA og klonet inn i *E. coli* (beskrevet i detalj nedenfor). Ulike lengder av laksAHR2β ble amplifisert fra et plasmid. En oversikt over hvilke deler av AHR2 som ble amplifisert er vist i Figur 17, og vil bli brukt som referanse gjennom kapittelet.

Figur 17 - Kloningsstrategi. Figuren viser en oversikt over torskAHR2- og laksAHR2β-fragmenter som ble amplifisert med PCR. Nukleotidnummer er vist ved siden av hvert fragment.

4.2.1 Kloning av torskAHR2 LBD

Ved bruk av PCR ble det amplifisert fragmenter fra cDNA fra torskelever som i størrelse tilsvarte det ligandbindende domenet (i underkant av 700 bp, Figur 18). PCR-fragmentene ble renset og ligert inn i plasmid (pSC-A), og videre transformert inn i kompetente *E. coli*-celler. Deretter ble det brukt PCR for å selektere ut enkeltkolonier som inneholdt plasmid med produkter av riktig lengde (positive transformanter) (Figur 19). Fra bakteriecellene ble det renset plasmid som ble sekvensert, og det ble bekreftet at nukleotidsekvensen til det innsatte fragmentet stemte sammenlignet med sekvensdataene for AHR2 som var tilgjengelig i Ensembl-databasen.

Figur 19 - PCR-utvelgelse (screening) for positive transformanter. Enkeltkolonnier transformert med ligeringsprodukt av pSC-A-torskAHR2 LBD ble undersøkt med PCR og AGE for hvorvidt de innehold plasmid med det ønskede torskAHR2-fragmentet innsatt. Kolonier som innehold plasmid med torskAHR2 LBD vises som bånd på ca. 800-900 bp, mens kolonier med tomme plasmid viser bånd på <300 bp. Hver brønn representer en enkeltkoloni. M = 2 log referansemarkør.

Det ble forsøkt å amplifisere torskAHR2 LBD+pasA med samme metode som for torskAHR2 LBD, men det ble ikke observert PCR-produkter i dette forsøket (ikke vist). Dette ble gjentatt med nytt cDNA og nye primere, samtidig som det ble gjort endringer i betingelsene for PCR-reaksjonen. Tilsetting av betain og trehalose, sammen med en lengre denatureringsperiode i starten av PCR-reaksjonen ga en noe mer effektiv amplifikasjon av torskAHR2 LBD (Figur 20). Det hadde derimot ingen positiv effekt på amplifisering av torskAHR2 LBD+pasA, og heller ikke på lengre fragmenter av torskAHR2 (fullengde).

Figur 20 - PCR med betain og trehalose. TorskAHR2 LBD ble amplifisert ved bruk av PCR med forlenget initial denaturering (10 min). Brønn 1 og 5 er uten tilsetning av et additiv (annealing temperatur: 51,3 °C), brønn 2-4 ble tilsatt 1 M betain og brønn 6-8 ble tilsatt 0,34 M trehalose begge ved varierende annealing-temperaturer (44,8-48,3 °C). M = 2 log referansemarkør.

4.2.2 Sekvensering av torskAHR2

Den tilgjengelig sekvensen i Ensembl-databasen var ikke fullstendig, blant annet manglet et område overlappende med pasA-motivet og et lengre område 3' i sekvensen (se Vedlegg B for sekvens). Ettersom det ikke lot seg gjøre å amplifisere lengre fragmenter av torsk AHR2 enn LBD, ble deler av sekvensen kartlagt ved å amplifisere og sekvensere en rekke kortere og overlappende fragmenter (del 1, 2, 3 og 5 i Figur 17). Gel-elektroforese av disse fragmentene er vist i Figur 21. Del 4 var på det daværende tidspunktet ikke mulig å amplifisere.

4.2.3 Kloning av torskAHR2 LBD+pasA

Da det til tross for omfattende optimalisering av PCR-reaksjonen ikke var mulig å amplifisere LBD+pasA eller lengre fragmenter fra AHR2, ble en annen metode brukt for å syntetisere cDNA. Ved bruk av SuperScript III revers transkriptase med ulike primerkombinasjoner cDNA-syntesen var det nå mulig å amplifisere både torskAHR2 LBD og LBD+pasA (Figur 22). Av de seks ulike primer-kombinasjonene som ble benyttet for cDNA-syntesen var det random hexamerprimere alene eller sammen med Oligo(dT)₁₂₋ 18-primere som ga best resultat. Ved å bruke cDNA laget med denne metoden ble torskAHR2 LBD+pasA amplifisert, klonet og sekvensert. Det sammen ble gjort med del 4 av sekvensen slik at hele sekvensen til torskAHR2 var kartlagt (Figur 23).

Figur 22 - Forbedret cDNA syntese. Tre ulike deler av torskAHR2 ble amplifisert ved bruk av PCR. A) LBD, B) LBD+pasA C) del 1 (nukleotid 1-391). Det ble benyttet cDNA-templat laget ved bruk av ulike primere: 1) Oligo(dT)₁₂₋₁₈. 2) Random hexamer. 3) Oligo(dT)+Random. 4) Seks gen-spesifikke primere. 5-6) Enkel gen-spesifikk primer. M = 2 log referansemarkør.

Figur 23 – Amplifisering av torskAHR2 LBD+pasA og del 6. A) TorskAHR2 LBD+pasA (nukleotid 223-1318) og B) del 6 (1659-3112) ble amplifisert med PCR. M = 2 log referansemarkør.

Resultater

4.2.4 Kloning av fullengde-AHR2

Den nye metoden for cDNA-syntese gjorde det mulig å amplifisere mye lengre fragmenter av torskAHR2 enn tidligere. Til tross for dette, var det fremdeles ikke mulig å amplifisere fullengde torskAHR2. Som for torskAHR2 LBD og LBD+pasA ble det forsøkt med ulike primerpar og endring av reaksjonsbetingelsene i PCR-reaksjonen. Det ble også isolert nytt total-RNA fra lever og hjerte-vev og cDNA ble syntetisert ved bruk av Superscript III med en blanding av random hexamer og oligo(dT)₁₂₋₁₈-primere. Fra cDNA syntetisert RNA isolert fra hjerte ble det amplifisert lengre fragmenter (>2000 bp), men det var ikke mulig å amplifisere torskAHR2-sekvensen i sin helhet. For å konstruere en fullstendig torskAHR2-sekvens for bruk i ligandaktiveringsforsøk ble torskAHR2 amplifisert i to deler som inneholdt overlappende segmenter (Figur 24). PCR-produktene ble deretter blunt-klonet inn i et pSC-A-plasmid og sekvensert. Fra de to delene ble det konstruert et fragment på 3384 bp som tilsvarte full-lengde torskAHR2. Dette fragmentet ble også videre brukt som templat for amplifisere et fragment uten de første 108 nukleotidene av sekvensen (del ΔAA1-36, Figur 17).

Figur 24 – PCR av to overlappende fragmenter av torskAHR2. TorskAHR2 ble amplifisert i to overlappende fragmenter fra nukleotid 1-2612 (brønn 1-2, 2612bp) og nukleotid 1659-3384 (brønn 3-4, 1725bp). M = 2 log referansemarkør.

4.3 Konstruksjon av reseptorplasmid

For å undersøke ligandbindende egenskaper ble det konstruert plasmider med Gal4-DBD fusjonert til AHR2. Kloningsplasmid med ulike fragmenter av AHR2 (pSC-A-AHR2) ble kuttet med restriksjonsenzymer og ligert sammen med det eukaryote ekspresjonsplasmidet pCMX-Gal4-DBD.

4.3.1 TorskAHR2

Plasmidene pSC-A-torskAHR2 LBD og LBD+pasA ble sammen med pCMX-plasmidet restriksjonskuttet og fragmentene ble separert med AGE (Figur 25). AHR2-fragmentene og pCMX-Gal4-DBD-vektoren ble renset og ligert sammen til plasmidene pCMX-Gal4-torskAHR2 LBD og pCMX-Gal4-torskAHR2 LBD+pasA. Videre ble det konstruert et plasmid som bestod av hele sekvensen til torskAHR2. De to overlappende delene av torskAHR2 (1-2612 og 1659-3384) som sammen utgjorde en fullstendig sekvens, inneholdt begge et kuttesete for enzymet Ncol. De to delene ble kuttet ut fra pSC-A-plasmidet slik at fragmentene hadde kompatible ender, separert med AGE (Figur 26) og ligert sammen med kuttet pCMX-vektor til plasmidet pCMX-Gal4-DBD-torskAHR2. Ligeringsproduktet ble transformert inn i kompetente celler, og det ble utført PCR-screening av bakteriekoloniene (Figur 27). For å undersøke om det hadde blitt dannet en sammenhengende AHR2-sekvens, ble renset plasmid fra en enkeltkoloni kuttet med ulike enzymer. Plasmidet ble kuttet med EcoRI, BamHI og NcoI i ulike kombinasjoner og produktene ble separert ved hjelp av AGE som vist i Figur 28. Kuttemøsteret som ble observert tilsvarte det som var forventet fra en AHR2-sekvens, og dette plasmidet ble derfor brukt videre. Fra dette plasmidet var det nå også mulig å amplifisere fullengde AHR2 med primere som i tidligere forsøk ga negative resulat. Fra pCMX-Gal4-DBD-torskAHR2 ble det amplifisert et fragment uten de første 108 nukleotidene 5' i sekvensen (109-3384). For å unngå et internt kuttesete for EcoRI, ble dette fragmentet kuttet i to deler som for pCMX-Gal4-DBD-torskAHR2 og ligert sammen med pCMX-Gal4-DBD til plasmidet pCMX-Gal4-DBD-AHR2 ΔAA1-36. Alle pCMX-Gal4-DBD-AHR2-plasmidene ble sekvensert og bekreftet at AHR2-fragmentene var i leseramme med Gal4-DBD.

Figur 25 - Restriksjonskutting av torskAHR2 LBD og LBD+pasA. A) pCMX-Gal4-DBD ukuttet (1) og kuttet med EcoRI og BamHI (2) og pSC-A-torskAHR2-LBD ukuttet (3) og kuttet med EcoRI og BamHI (4). B) pCMX-Gal4-DBD ukuttet (1) og kuttet med EcoRI og BamHI (2) og pSC-A-torskAHR2-LBD+pasA ukuttet (3) og kuttet med EcoRI og BamHI (4). M= 2 log referansemarkør.

Figur 26 - Kuttereaksjon med to overlappende fragmenter av torskAHR2. pCMX-GAL4-DBDplasmid (vektor) og to overlappende deler av torskAHR2 i pSC-A-plasmid ble kuttet med restriksjonsenzymer. 1) Ukuttet vektor. 2) vektor kuttet med EcoRI+BamHI. 3) Ukuttet torskAHR2 (1-2612). 4) torskAHR2 (1-2612) kuttet med EcoRI og NcoI. 5) Ukuttet torskAHR2 (1659-3384). 6) torskAHR2 (1659-3384) kuttet med BamHI og NcoI. M = 2 log referansemarkør.

Figur 27 - PCR-utvelgelse (screening) av kolonier transformert med ligeringsprodukt. Det ble utført PCR med vektor-spesifikke primere som binder på hver side av innsatt DNA, for å undersøke hvorvidt kolonier fra transformasjonen inneholder plasmid med et innsatt produkt (>3000bp) eller kun tom vektor (300bp). A) 1:1 molart forhold mellom vektor og innsatt DNA i ligeringsreaksjonen. B) 1:3 molart forhold mellom vektor og innsatt DNA. M = 2 log referansemarkør.

Figur 28 - Restriksjonsanalyse av pCMX-Gal4-torskAHR2 konstruksjon. Renset plasmid (1) ble kuttet med BamHI (2), BamHI + EcoRI (3), BamHI + NcoI (4) og EcoRI + NcoI (5) og visualisert med AGE. M = 2 log referansemarkør.

Resultater

4.3.2 LaksAHR2β

For å sammenligne ligandbinding for torskAHR2 med en reseptor fra en annen art ble tilsvarende laksAHR2β-fragmenter amplifisert fra et plasmid (Figur 17). Sekvensen til laksAHR2β inneholdt en rekke interne kutteseter for restriksjonsenzymene som ble brukt for å konstruere pCMX-Gal4-DBD-torskAHR2-plasmidene, og medførte at det ble dannet fragmenter som var kortere enn ønskelig. Ved å redusere konsentrasjonen av enzymet som gjenkjente det interne kuttesetet (partiell kutting) var det mulig å kutte sekvensen i rette lengder slik at produktene for laksAHR2β LBD og LBD+pasA ble dannet (Figur 29). Fragmentene ble renset og ligert inn i pCMX-Gal4-DBD til pCMX-Gal4-DBD-laksAHR2β LBD og pCMX-Gal4-DBD-laksAHR2β LBD+pasA. Denne fremgangsmåten var ikke effektiv for lengre fragmenter (full-lengde og ΔAA1-35) siden disse fragmentene inneholdt flere interne kutteseter enn de kortere variantene. pCMX-Gal4-DBD-laksAHR2β (full-lengde) og pCMX-Gal4-DBD-laksAHR2β ΔAA1-35 ble dermed konstruert på samme måte som for torskAHR2, ved å kutte den amplifiserte sekvensen i to deler som ble renset og ligert sammen med pCMX-Gal4-DBD. Alle pCMX-Gal4-laksAHR2β-plasmidene ble sekvensert og det ble bekreftet at laksAHR2β-fragmentene var i leseramme med Gal4-DBD.

Figur 29 - Delvis restriksjonskutting av laksAHR2 LBD og LBD+pasA. For å unngå uspesifikk kutting pSC-A laksAHR2 β LBD og LBD+pasA kuttet med ulike konsentrasjoner av EcoRI sammen med en konstant konsentrasjon av BamHI. Konsentrasjonen av EcoRI ble halvert for hvert steg til det var mulig å observere bånd av ønsket størrelse. A) laksAH2 β LBD+pasA kuttet med 0,012 til 0,0007 enheter EcoRI/µL (1-5). B) laksAHR2 β LBD kuttet med 0,047 til 0,0029 enheter EcoRI/µL (1-5). M = 2 log referansemarkør.

4.4 Plasmidkvalitet

De ulike variantene av pCMX-Gal4-AHR-plasmidene ble dyrket i cellekultur og renset ved bruk av midieller maxiprep. Konsentrasjon og renhet av plasmidene ble målt spektrofotometrisk ved bruk av NanoDrop 1000 (Thermo Scientific). Alle plasmidene hadde $A_{260/280}$ verdier mellom 1,8-1,9 og $A_{260/230}$ 2,3, som indikerer rent DNA uten forurensninger. Videre ble kvaliteten på pCMX-Gal4-AHRplasmidene, reporterplasmid ((mh100) x4 tk luc) og referanseplasmid (pCMV- β -Gal) undersøkt på gelelektroforese. Reporterplasmidet (mh100) x4 tk luc og referanseplasmid pCMV- β -Gal som ble brukt i ligandaktiveringsforsøk med torskAHR2 og laksAHR2 β ble tidligere renset av R. Lille-Langøy (Institutt for biologi, UiB). Hovedvekten av plasmidene var i en dobbelttvunnet konformasjon og dermed egnet for videre bruk for transfeksjon (Figur 30).

Figur 30 – Kvalitetskontroll av plasmider brukt i ligandaktiveringsforsøk. De ulike variantene av pCMX-Gal4-DBD-AHR2/2 β ble sammen med reporter-plasmid ((mh100) x4tk luc) og referanse-plasmid (pCMV- β -Gal) separert ved bruk av AGE for å undersøke plasmidkonformasjon (200 ng av hvert plasmid). M = 2 log referansemarkør.

Resultater

4.5 Ligandaktiveringsforsøk

I denne oppgaven ble ligandaktivering av Gal4-DBD-AHR kvantifisert ved å måle uttrykking av luciferase i reportersystemet beskrevet i metode 3.8.

4.5.1 Sammenligning av ulike Gal4-AHR2 varianter

For å undersøke om ulike varianter av Gal-DBD-AHR2 fra torsk og laks hadde ligandbindende og transaktiverende egenskaper, ble COS-7 celler transfektert med de fire variantene av plasmidene pCMX-Gal4-DBD-torskAHR2 og pCMX-Gal4-DBD-laksAHR2 β sammen med reporterplasmidet (mh100 tk x4 luc) og referanseplasmidet (pCMV- β -Gal). Det ble benyttet et 1:10 masseforhold mellom reseptorplasmidene og reporter/referanse-plasmidene. COS-7 celler ble videre eksponert i 24 timer for ulike konsentrasjoner av β -naftoflavon (BNF) og lysert. Den enzymatiske aktiviteten til luciferase og β -galaktosidase ble lest av og luciferase-aktiviteten ble normalisert mot β -Gal-aktivitet og uttrykt som relative luciferaseenheter (RLE). Ligandaktivering av Gal4-DBD-AHR er beskrevet som fold endring i uttrykking av reportergenet mellom eksponerte prøver og prøver med kun løsemiddel (DMSO).

Alle varianter av Gal4-DBD-torskAHR2 (beskrevet videre som torskAHR2) ga maksimal aktivering ved 0,6 μ M BNF, men hadde signifikante forskjeller i grad av aktivering (Figur 31). TorskAHR2 LBD og torskAHR2 LBD + pasA hadde en maksimal aktivering på henholdsvis 2,38- og 2,41-fold i forhold til løsemiddelkontrollen. For torskAHR2 Δ AA1-36 og torskAHR2 var maksimal aktivering 4,57 fold. For torskAHR2 LBD og torskAHR2 LBD + pasA var laveste signifikante aktivering i forhold til DMSO-kontrollen henholdsvis ved 0,12 μ M og 0,6 μ M BNF. For torskAHR2 Δ AA1-36 og torskAHR2 var laveste signifikante aktivering ved 0,96 nM BNF.

For variantene av Gal4-DBD-laksAHR2 β (beskrevet videre som laksAHR2 β) ble det observert maksimal aktivering ved 0,6-3 μ M BNF (Figur 32). LaksAHR2 β LBD og laksAHR2 β LBD+pasA hadde en maksimal aktivering på henholdsvis 3,54 og 3,06 fold og 4,31 og 4,88 for henholdsvis for laksAHR2 β Δ AA1-35 og laksAHR2 β . Laveste statistisk signifikante aktivering for laksAHR2 β LBD, laksAHR2 β Δ AA1-36 og laksAHR2 β i forhold til DMSO-kontrollen var ved 0,96 nM BNF. For laksAHR2 β LBD+pasA var laveste signifikante aktivering ved 24 nM BNF. Den maksimal aktiveringen for laksAHR2 β -variantene var tilsvarende som for torskAHR2-variantene, med unntak av laksAHR2 β LBD som hadde en høyere aktivering enn tilsvarende variant fra torsk. For alle AHR-variantene (både torsk og laks) ble det observert en moderat nedgang i aktivering ved eksponering til 3 μ M BNF i forhold til ved 0,6 μ M BNF. Ved eksponering til 15 μ M BNF ble det observert en betydelig nedgang til et nivå som var lavere enn løsemiddelkontrollen. Maksimal aktivering og minste signifikante aktivering av de ulike AHR-variantene er oppsummert i Tabell 41.

Figur 31 – Ligand-aktiveringsforsøk med ulike varianter av torskAHR2. COS-7 celler transfektert med ulike varianter av pCMX-Gal4-torskAHR2 ble eksponert for β -naftoflavon (BNF, 0,96 nM-15 μ M) i 24 timer. Hvert punkt viser gjennomsnittet av tre replikater med standardavvik for hvert punkt. Punktet med den laveste konsentrasjonen viser data fra celler kun eksponert for løsemiddelet (DMSO). BNF-indusert aktivering av Gal4-AHR2 er vist som fold endring i relative luciferase-enheter (RLE) fra celler eksponert for BNF i forhold til celler kun eksponert for DMSO. *indikerer statistisk signifikans (p<0,05).

Figur 32 - Ligand-aktiveringsforsøk med ulike varianter av laksAHR2 β . COS-7 celler transfektert med ulike varianter av pCMX-Gal4-laksAHR2 β ble eksponert for β -naftoflavon (BNF, 0,96 nM-15 μ M) i 24 timer. Hvert punkt viser gjennomsnittet av tre replikater med standardavvik for hvert punkt. Punktet med den laveste konsentrasjonen viser data fra celler kun eksponert for løsemiddelet (DMSO). BNF-indusert aktivering av Gal4-AHR2 er vist som endring i relative luciferase-enheter (RLE) fra celler eksponert for BNF i forhold til fra celler kun eksponert for DMSO. *indikerer statistisk signifikans (p<0,05).

Tabell 41 – Maksimal og minste signifikante aktivering av ulike varianter av torskAHR2 og AHR2β. Tabellen viser aktivering (fold endring) i forhold til DMSO-kontrollen for celler transfektert med ulike Gal4-AHR2-plasmider. Cellene ble eksponert for BNF i 24 timer. Hver verdi er et gjennomsnitt av tre replikater. RSD = relativt standardavvik. Statistisk signifikans i forhold til DMSO-kontrollen ble beregnet ved hjelp av t-test og er oppgitt som P-verdi.

	TorskAHR2				LaksAHR2β				
	Aktivering	Konsen-	RSD	P-verdi	Aktivering	Konsen-	RSD	P-verdi	
	(fold)	trasjon	%	(t-test)	(fold)	trasjon	%	(t-test)	
Maksimal aktivering:									
LBD	2,38	0,6 μM	12	<0,01	3,54	0,6 μM	5	<0,01	
LBD+pasA	2,41	0,6 μM	14	0,01	3,06	0,6 μM	8	<0,01	
AAΔ1-35/36	4,57	0,6 μM	6	<0,01	4,31	0,6 μM	7	<0,01	
Fullengde	4,57	0,6 μM	11	0,01	4,88	3 μΜ	8	<0,01	
Minste signifikante									
aktivering (p<0,05):									
LBD	1,64	0,12 μM	14	0,02	1,30	0,96 nM	4	<0,01	
LBD+pasA	1,82	0,6 μM	18	0,01	1,62	24 nM	6	<0,01	
AAΔ1-35/36	1,48	0,96 nM	7	<0,01	1,25	0,96 nM	8	0,02	
Fullengde	1,80	0,96 nM	9	<0,01	1,42	0,96 nM	4	0,01	

4.5.2 Optimalt forhold mellom reseptor og reporter-plasmid

På bakgrunn av resultatene fra det tidligere forsøket (resultat 4.5.1) ble det valgt å bruke Gal4-DBDtorskAHR2 og Gal4-DBD-laksAHR2β i videre forsøk. For å optimalisere ligand-aktiveringsforsøkene, ble COS-7-celler transfektert med flere ulike masseforhold mellom reseptorplasmidene (AHR) og reporterplasmid (luciferase). Referanseplasmidet (β-Gal) ble alltid brukt i samme mengde som reporterplasmidet. For torskAHR2 ble høyeste maksimale aktivering observert i COS-7-celler transfektert med et 1:20 forhold mellom reseptor- og reporter-plasmid (6,12 fold ved 0,6 μ M BNF) (Figur 33). For celler transfektert med 1:2, 1:5 og 1:10-forhold var aktiveringen ved 0,6 μ M BNF henholdsvis 4,43, 4,86, og 5,10 fold. Den maksimale aktivering ved et 1:20-forhold var ikke statistisk signifikant forskjellig fra celler transfektert med et 1:5 og 1:10-forhold (t-test, p<0,05). Den laveste konsentrasjonen hvor det ble observert endringer i aktivering sett i forhold til DMSO-kontrollen var ved 4,8 nM (1:2 forhold mellom reseptor- og reporterplasmid), 0,96 nM (1:5 og 1:10) og ved 192 pM (1:20).

For laksAHR2 β ble den høyeste maksimale aktivering i COS-7-celler transfektert med 1:2, 1:5 og 1:10 forhold mellom reseptor- og reporter-plasmid observert ved 0,6 μ M BNF, og beregnet til henholdsvis 5,59, 5,57 og 4,49 fold (Figur 34). Gjennomsnittsverdiene for disse tre gruppene (reporter-reseptor forholdene) var ikke statistisk-signifikant forskjellig (ANOVA F(2,6) = 4,129, P=0,0745). For celler transfektert med et 1:20 forhold var derimot aktiveringen signifikant lavere enn ved de andre reseptor-reporter forholdene, og ble beregnet til 3,13 fold ved 0,6nM BNF. Den laveste konsentrasjonen hvor
det ble observert endringer i aktivering i forhold til DMSO-kontrollen var ved 24 nM, 4,8 nM, 192 pM (men ikke ved 0,96 nM) og 4,8 nM ved bruk av henholdsvis et 1:2, 1:5, 1:10 og 1:20 forhold mellom reseptor- og reporterplasmid. Maksimal aktivering og minste signifikante aktivering av de ulike forholdene mellom reseptor- og reporter-plasmid er oppsummert i Tabell 42.

Figur 33 - Ligand-aktiveringsforsøk for torskAHR2 med ulike forhold mellom reseptor- og reporterplasmid. COS-7 celler transfektert med ulike masseforhold (1:2-20) mellom pCMX-Gal4torskAHR2 (reseptor) og mh100 x4 tk luc (reporter) ble eksponert for β -naftoflavon (BNF) i 24 timer. Hvert punkt viser gjennomsnittet av tre replikater med standardavvik for hvert punkt. Punktet med den laveste konsentrasjonen viser data fra celler kun eksponert for løsemiddelet (DMSO). BNF-indusert aktivering av Gal4-AHR2 er vist som endring i relative luciferase-enheter (RLE) fra celler eksponert for BNF i forhold til fra celler kun eksponert for DMSO. *indikerer statistisk signifikans (p<0,05).

Figur 34 - Ligand-aktiveringsforsøk for laksAHR2 β med ulike forhold mellom reseptor- og reporterplasmid. COS-7 celler transfektert med ulike masseforhold (1:2-20) mellom pCMX-Gal4laksAHR2 β (reseptor) og mh100 x4 tk luc (reporter) ble eksponert for β -naftoflavon (BNF) i 24 timer. Hvert punkt viser gjennomsnittet av tre replikater med standardavvik for hvert punkt. Punktet med den laveste konsentrasjonen viser data fra celler kun eksponert for løsemiddelet (DMSO). BNFindusert aktivering av Gal4-AHR2 er vist som endring i relative luciferase-enheter (RLE) fra celler eksponert for BNF i forhold til fra celler kun eksponert for DMSO. *indikerer statistisk signifikans (p<0,05).

Tabell 42 - Maksimal og minste signifikante aktivering av torskAHR2 og AHR2β ved bruk av ulike forhold mellom reseptor- og reporter-plasmid. Tabellen viser aktivering (fold endring) i forhold til DMSO-kontrollen for celler transfektert med ulike forhold mellom reseptor (full-lengde AHR2/AHR2β)- og reporter-plasmid (1:2-1:20). Cellene ble eksponert for BNF i 24 timer. Hver verdi er et gjennomsnitt av tre replikater. RSD = relativt standardavvik. Statistisk signifikans i forhold til DMSO-kontrollen ble beregnet ved hjelp av t-test og er oppgitt som P-verdi.

	TorskAHR2				LaksAHR2β			
	Aktivering	Konsen-	RSD	P-verdi	Aktivering	Konsen-	RSD %	P-verdi
	(fold)	trasjon	%	(t-test)	(fold)	trasjon		(t-test)
Maksimal aktivering:								
1:2	4,43	0,6 μM	4	<0,01	5,59	0,6 μM	9	<0,01
1:5	4,86	0,6 μM	8	<0,01	5,57	0,6 μM	12	<0,01
1:10	5,10	0,6 μM	7	<0,01	4,49	0,6 μM	9	<0,01
1:20	6,12	0,6 μM	13	0,01	3,13	0,6 μM	10	<0,01
Minste signifikante								
aktivering (p<0,05):								
1:2	1,59	4,80 nM	10	0,01	1,95	24 nM	18	0,04
1:5	1,54	0,96 nM	3	<0,01	1,46	4,80 nM	5	0,01
1:10	1,40	0,96 nM	6	0,01	1,36	0,19 nM	11	0,02
1:20	1,15	0,19 nM	3	0,01	1,20	4,80 nM	7	0,03

4.5.3 Ligandspesifikk aktivering av AHR2 fra fisk

For å karakterisere aktivering av torskAHR2 med ulike ligander, samt undersøke eventuelle forskjeller i ligandspesifikk aktivering av AHR2 fra torsk og laks, ble COS-7 celler transfektert med henholdsvis pCMX-Gal4-DBD-torskAHR2 og pCMX-Gal4-DBD-laksAHR2 β og eksponert for ulike eksogene og endogene forbindelser. Basert på tidligere forsøk (resultater 4.5.2) ble det valgt å bruke et 1:20 forhold mellom reseptor- og reporterplasmid for torsk, og 1:5 for laks forhold mellom reseptor og reporterplasmid. Det ble brukt et utvalg av forbindelser som er kjent for å være AHR agonister, som benzo(a)pyren (B(a)P), PCB-126, 6-formylindolo(3,2-b)carbazol (FICZ), og de potensielt svake AHR agonistene fenantren og α -naftoflavon (ANF). I tillegg ble det brukt en mono-orto-substituert bifenyl (PCB-153) som ikke ble forventet å inneha AHR-agonistiske egenskaper.

4.5.3.1 Torsk

For torskAHR2 eksponert for fenantren, ANF og PCB-153 ble det ikke observert noen endring i luciferaseaktivitet i forhold til DMSO-kontrollen (som vist Figur 35). Ved eksponering for benzo(a)pyren ble det observert en gradvis økende aktivering med økende konsentrasjoner. Laveste statistisk signifikante aktivering var ved eksponering for 0,3 nM og maksimal aktivering i forhold til DMSO-kontrollen ble beregnet til 4,91 fold ved 4,7 μ M B(a)P. PCB-126-eksponering ga en signifikant aktivering ved 80 nM. Maksimal aktivering ble beregnet til 1.91 fold ved 2 μ M PCB-126. I motsetning til det som ble observert etter eksponering av BNF, så ble det ikke oppnådd et platå for maksimal aktivering for B(a)P og PCB-126. For BNF-eksponerte celler som fungerte som en intern kontroll ble det observert aktivering lik tidligere forsøk (se 4.5.1 og 4.5.2), men maksimal aktivering var noe lavere i dette forsøket sammenlignet med tidligere forsøk (4,22 mot 6,12 fold ved 0,6 μ M i forsøk 2). Eksponering for det endogene tryptofan-derivatet FICZ ga en maksimal aktivering ved 0,8-20 nM, med 4,00 folds aktivering som høyeste gjennomsnittsverdi (ved 20nM) i forhold til DMSO-kontroll. Den laveste konsentrasjonen hvor det var statistisk-signifikant endring i aktivering var ved 6,4 pM med en aktivering på 2,06 fold.

4.5.3.2 Laks

For laksAHR2 β eksponert for fenatren, ANF og PCB-153 ble det, som observert for torskAHR2, ikke funnet noen endring i luciferaseaktivitet i forhold til DMSO-kontrollen (Figur 36). I motsetning til torskAHR2 ga laksAHR2 β ingen aktivering ved eksponering med PCB-126 ved konsentrasjonene benyttet i dette forsøksoppsettet. For B(a)P ble maksimal aktivering observert ved 4,7 μ M (2,39 fold) og laveste konsentrasjon hvor det ble observert aktivering var ved 7,5 nM. Ved eksponering for FICZ ble det observert en maksimal aktivering på 14,5 fold ved 4 nM i forhold til DMSO-kontrollen. Den maksimale aktiveringen for FICZ var betydelig høyere enn hva som ble observert for torskAHR2 (4,00 fold ved 20 nM). Den laveste konsentrasjon hvor det ble observert aktivering og minste signifikant aktivering ved eksponering for ulike testforbindelser er oppsummert i Tabell 43.

Figur 35 - Aktivering av torskAHR2 av ulike forbindelser. COS-7 celler transfektert med pCMX-Gal4torskAHR2 ble eksponert for 7 ulike forbindelser i varierende konsentrasjoner i 24 timer. Hvert punkt viser gjennomsnittet av tre replikater med standardavvik for hvert punkt. Punktet med den laveste konsentrasjonen viser data fra celler kun eksponert for løsemiddelet (DMSO). Aktivering av Gal4-AHR2 er vist som fold endring i relative luciferase-enheter (RLE) fra celler eksponert for testforbindelsen i forhold til celler kun eksponert for DMSO. *indikerer statistisk signifikans (p<0,05).

Figur 36 - Aktivering av laksAHR2 β **av ulike forbindelser**. COS-7 celler transfektert med pCMX-Gal4laksAHR β 2 ble eksponert for 7 ulike forbindelser i varierende konsentrasjoner i 24 timer. Hvert punkt viser gjennomsnittet av tre replikater med standardavvik for hvert punkt. Punktet med den laveste konsentrasjonen viser data fra celler kun eksponert for løsemiddelet (DMSO). Aktivering av Gal4-AHR2 β er vist som fold endring i relative luciferase-enheter (RLE) fra celler eksponert for testforbindelsen i forhold til celler kun eksponert for DMSO. *indikerer statistisk signifikans (p<0,05).

Tabell 43 - Maksimal og minste signifikante aktivering av torskAHR2 og AHR2β ved eksponering for ulike ligander. Tabellen viser aktivering (fold endring i forhold til DMSO-kontrollen) av AHR2/AHR2β ved eksponering for ulike testforbindelser i 24 timer. Hver verdi er et gjennomsnitt av tre replikater. RSD = relativt standardavvik. Statistisk signifikans i forhold til DMSO-kontrollen ble beregnet ved hjelp av t-test og er oppgitt som P-verdi. Forbindelser hvor det ikke ble observert aktivering er oppgitt uten verdi (-).

	TorskAHR2				LaksAHR2β				
Forsøk 3	Aktivering	Konsentra-	RSD	P-verdi	Aktivering	Konsentra-	RSD	P-verdi	
	(fold)	sjon	%	(t-test)	(fold)	sjon	%	(t-test)	
Maksimal									
aktivering:									
B(a)P	4,91	4,7 μΜ	8 %	<0,01	2,39	4,7 μM	18 %	<0,01	
BNF	4,22	0,6 μM	4 %	<0,01	4,33	0,6 μM	31 %	0,05	
FICZ	4,00	20 nM	7 %	<0,01	14,51	4 nM	22 %	0,02	
PCB-126	1,91	2 μM	19 %	0,01	-				
ANF	-				-				
PCB-153	-				-				
Phenanthrene	-				-				
Minste signifikante									
aktivering (p<0,05):									
B(a)P	1,65	0,30 nM	13 %	0,01	1,26	7,52 nM	2 %	<0,01	
BNF	1,25	0,19 nM	8 %	0,02	1,78	4,80 nM	23 %	0,04	
FICZ	2,06	6,4 pM	3 %	<0,01	2,53	0,16 nM	13 %	<0,01	
PCB-126	1,43	80 nM	3 %	<0,01	-				
ANF	-				-				
PCB-153	-				-				
Phenanthrene	-				-				

4.5.4 Forskjeller i basal luciferaseaktivitet i ikke-eksponerte celler

Under uttestingen av ulike Gal4-DBD-AHR-varianter (forsøk 1) ble det observert store forskjeller i bakgrunn-nivåene av luciferaseaktivitet (Figur 37). For COS-7 celler transfektert med torskAHR2 og torskAHR2 Δ AA1-36 ble det målt henholdsvis 1,3×10⁶ og 0,7×10⁶ relative luciferase-enheter (RLE) ved eksponering til kun DMSO. Ved bruk torskAHR2 LBD og LBD+pasA, samt alle laksAHR2 β -variantene var det målte signalet mellom 8729 og 12233 RLE.

4.5.5 Celleviabilitet

Ved eksponering av COS-7-celler for BNF ble det observert en nedgang i aktivering ved de høyeste konsentrasjonene (3 og 15 μ M). For å undersøke eventuelle toksiske effekter i COS-7-cellene, som potensielt kunne påvirke uttrykking av reseptor- og reporterproteinet, ble det målt to ulike parametere for celleviabilitet. Både for resazurin og CFDA-AM ble det observert en nedgående trend i fluorscensesignalet (Figur 38), men det ble ikke observert en tilsvarende nedgang slik det ble for ligandaktiveringen ved høye BNF-konsentrasjoner.

Figur 37 – **Bakgrunnsnivåer av luciferase-signal i ligandaktiveringsforsøk 1**. Figuren viser bakgrunnsnivåene av det relative luciferase-signalet (RLE) i COS-7 celler eksponert for DMSO for 24 timer transfektert med ulike varianter av AHR2/2β.

Figur 38 – Celleviabilitet i COS-7-celler transfektert med Gal4-AHR2 eksponert for BNF i 24 timer. Hver punkt er basert på gjennomsnittet av tre replikater og er vist med standardavvik. RFE = relative fluorescens-enheter. Laveste konsentrasjon indikerer celler eksponert for kun løsemiddel (DMSO).

4.6 Sekvensanalyse

4.6.1 Synteny-analyse

I genom-databasen Ensembl er det annotert to gen, *ahr1b* og *ahr2* for torsk. Data fra Ensembl ble brukt til å gjøre en synteny-analyse av *ahr*-gener fra ulike fiskearter som er genomsekvensert. Som vist i Figur 39 er *ahr1* og *ahr2* genene i torsk organisert på en tilsvarende måte som observert hos de fleste andre fiskearter.

Figur 39 – Synteny-analyse av ahr-gener hos ulike arter av fisk. *ahr* og omliggende gener fra ulike fiskearter ble sammenstilt for å undersøke gen-organisering i forhold til torsk *ahr1b og ahr2*. Mange fiskearter, inkludert torsk har *ahr*-variantene i en tandem organisering. Stjerne (*) indikerer at genene er orientert motsatt retning (i henhold til fremover og revers DNA) i forhold til øvrige arter. (a) og (b) indikerer ulike former av *ahr1* og *ahr2*. Basert på data fra Ensembl.

Den kodende sekvensen som er annotert i Ensembl for torsk *ahr2* består av 2571 nukleotider fordelt på 42 exon (for sekvens se Vedlegg B). Dette er i sterk kontrast til andre fiskarter, hvor blant annet AHR2 i sebrafisk er fordelt på 11 exon, og 10 exon i medaka (*O. latipes*) og japansk kulefisk (fugu). Det ble også observert manglende sekvens fra nukleotid 251 til 300, og fra 2571 og videre 3' i AHR2 sekvensen tilstede i Ensembl. Basert på nukleotidsekvensen fra overlappende cDNA fragmenter fra laboratorieforsøk (Figur 17) har vi nå kunnet fastslå at den predikerte kodende AHR2-sekvensen i torsk består av 3384 nukleotider (se Vedlegg C for full sekvens). For å verifisere cDNA-sekvensen ble det benyttet flere parallelle PCR-reaksjoner for å utelukke feil som kan introduseres i PCR-amplifiseringen. På bakgrunn av sekvensert cDNA for torskAHR2 ble det også gjort BLAST (grunnleggende søkeverktøy for lokal sammenstilling)-søk mot genomsekvensen for torsk, og det var deretter mulig å gjenfinne alle deler av AHR2 cDNA-sekvensen i genomdatabasen, men som foreløpig ikke er korrekt annotert.

4.6.2 Sekvenslikhet

Den proteinkodende AHR2-sekvensen fra torsk kan translateres til 1127 aminosyrer og utgjør et protein på 122,7 kDa. Basert på den predikerte proteinsekvensen for AHR2 fra torsk og sekvensen fra andre arter ble det utført en multippel sekvenssammenstilling (Clustal Omega) for å undersøke sekvenslikheten mellom forskjellige arter og ulike isoformer av AHR2. Det ble beregnet prosentvis likhet for flere funksjonelt viktige regioner av AHR, som viste at det er relativt stor sekvenslikhet i visse områder i AHR2 blant ulike fiskearter (Tabell 44). bHLH som involver blant annet binding til DNA og interaksjonen til ARNT og HSP90 hadde i andre fiskearter en likhet fra 74 % til 100 % sammenlignet med torskAHR2. For PAS A-domenet, som hovedsakelig er involvert i heterodimeriseringen med ARNT, var det 67-97 % likhet med torskAHR2. I PAS B-domenet som binder til HSP90 og også inneholder det ligandbindende domenet, viste sammenligningen fra 73 % til 97 % likhet til andre fiskearter. I motsetning til bHLH, PAS A og PAS B ble det i C-terminale deler av AHR2, som er involvert i transaktivering observert en betydelig lavere grad av sekvenslikhet fra 23% til 38%. Unntaket var tomcodAHR2, som var 87 % lik i denne delen sammenlignet med torskAHR2, og som også var den arten som er mest lik i sekvens i bHLH- og PAS-domene. Sammenligning av sekvensen til torsk sammen med et delvis fragment fra polartorsk (B. saida) (aminosyre 137-329 i torsk) viste en sekvenslikhet på 96 %. For sammenligning av ligandbinding mellom ulike arter, ble det i denne oppgaven benyttet laksAHR2β, og av de fire AHR2-formene som finnes i laks, var laksAHR2 α og laksAHR2 β de formene som viste størst likhet i sekvensen med torskAHR2.

Navn, Isoform	Artsnavn	bHLH	PAS A	PAS B	C-terminal	Totalt	Lengde	
Torsk AHR2	G. morhua	100	100	100	100	100	1127	
Tomcod AHR2	M. tomcod	100	97	97	87	90	1104	
Laks AHR2b	S. salar	82	84	84	38	53	1058	
Regnbueørret AHR2a	O. mykiss	82	86	83	38	53	1058	
Regnbueørret AHR2b	O. mykiss	82	83	85	38	53	1059	
Laks AHR2a	S. salar	82	84	84	34	52	1071	
Rød havbrasme AHR2	P. major	86	81	81	38	52	990	
Japansk kulefisk AHR2a	T. rubripes	80	81	84	32	49	912	
Killifisk AHR2	F. heteroclitus	78	81	78	32	48	951	
Laks AHR2d	S. salar	82	79	84	29	47	1107	
Laks AHR2g	S. salar	82	78	82	28	46	1106	
Sebrafisk AHR2	D. rerio	79	78	85	28	46	1027	
Gullfisk AHR2	C. auratus	79	78	80	27	45	1025	
Japansk kulefisk AHR2b	T. rubripes	81	74	78	26	43	981	
Japansk kulefisk AHR2c	T. rubripes	74	67	73	23	43	818	
Menneske AHR	H. sapiens	69	70	72	22	42	848	

Tabell 44 - Prosentvis likhet mellom torskAHR2 og AHR2 fra andre arter

4.6.3 Fylogenetisk analyse

For å undersøke det fylogenetiske forholdet mellom AHR i ulike organismer og AHR2 fra torsk, ble en rekke AHR1- og AHR2-sekvenser fra fisk og andre vertebrater sammenstilt ved hjelp av multippel sekvenssammenstilling. I tillegg til den klonede sekvensen for torskAHR2, ble en ufullstendig sekvens av torskAHR1b (tilgjengelig i Ensembl) også inkludert i sammenstillingen. På bakgrunn av den multiple sekvenssammenstillingen ble det konstruert et fylogenetisk tre (basert på maksimal sannsynlighet). Som vist i Figur 40 grupperes torskAHR2 sammen med andre AHR2-former fra fisk. Det fylogenetiske forholdet mellom AHR2 ser også ut til å reflektere den antatte evolusjonære utviklingen av strålefinnefisk (Near et al. 2012), hvor torsk og tomcod grupperes sammen (orden Gadiformes) ved siden av gruppen med fisk som killifisk, havbrasme og kulefisk (overorden Acanthopterygii). Av AHR2-variantene fra laks grupper torskAHR2 sammen med andre AHR1-former som inkluderer AHR-formen som finnes i pattedyr (menneske og mus).

4.6.4 Konservering av viktige aminosyrer

Multippel sekvenssammenstilling ble brukt for å sammenstille proteinsekvenser for AHR2 fra fem forskjellige fiskearter; sebrafiskAHR2, killifiskAHR2, laksAHR2β, tomcodAHR2 og torskAHR2 (Figur 41). Som beskrevet tidligere, er de N-terminale delene av AHR2 fra torsk godt konservert sammenlignet med andre arter. I pattedyr AHR har aminosyrene P34, S35, K36, R37, H38, R39, og muligens også Y8 og R13 (nummering for torsk) vist å være viktig i binding av AHR til responselementer (Bacsi & Hankinson 1996; Fukunaga & Hankinson 1996; Swanson & Jun-hua 1996)(merket rødt, Figur 41). Disse aminosyrene var konservert i alle vertebrat-AHR som ble undersøkt, inkludert torskAHR2. I det ligandbindende domenet har flere spesifikke aminosyrer tidligere blitt vist å være viktig for ligandbinding. Aminosyrene F280, H284, F288, F317, I318, H320 og A374 (for torsk) har blitt vist å være viktig for ligandbinding i forsøk med mus (merket gult, Figur 41). I alle AHR2 som ble undersøkt i denne sammenstillingen var disse aminosyrene konservert og identisk med det som finnes i AHR fra mus. Det ble samtidig observert en rekke aminosyrer i det ligandbindende domenet som var forskjellig mellom torskAHR2 og laksAHR2β, men ingen av disse er enda kjent for å ha en viktig rolle i ligandbinding. I tillegg til spesifikke aminosyrer i LBD, så har også andre aminosyrer andre steder i proteinsekvensen blitt vist å være viktig for funksjonen til AHR. Hos LaksAHR2β er aminosyre 110 en lysin (K). K110 i regnbueørret er vist å være viktig for reseptorens funksjon ved ligandbinding (Andreasen et al. 2002b). I alle andre arter som ble undersøkt og i de andre laksAHR2-variantene er denne aminosyren en glutamat (E).

Figur 40 - Fylogenetisk analyse av AHR. Den fylogenetiske forholdet mellom ulike former av AHR1 og AHR2 ble beregnet ved bruk av maksimal sannsynlighet-metoden basert på en JTT-matrise-basert modell. Prosentvis andel av replikerte trær hvor assosierte AHR befinner seg sammen i en bootstraptest (1000 replikasjoner) er vist ved siden av hver forgreining. Den fylogenetiske analysen ble konstruert i Mega 6.06 på bakgrunn av sekvenser sammenstilt med ClustalOmega (EMBL-EBI). AHR-lignende protein fra C. elegans ble bruk som utgruppe.

	Basisk Basisk	
Sebrafish AHR2	1 MSAG IGTYAVKKRKKPVOK IPKPPPDG - VKSNPSKRHRDR	LNSELD 46
Killifisk AHR2	1 MSVNPGTYANKKRKKPVLKOKKMADSNEVVKSNPSKRHRDR	LNGELD 47
Laks AHR2β	1 MLSNAGVYAVKKRKKPVOK IKKTPAP - EVVKSNPSKRHRDR	LNGELD 46
Tomcod AHR2	1 MLGNAGTYAMKKRKKPVOKPKKLPGVDGV IKSNPSKRHRDR	LNGELD 47
Torsk AHR2	1 MLGNAGTYAMKKRKKPVOKPKKLPGVDGV IKSNPSKRHRDR	LNGELD47
	Heliks-loop-heliks	
Sebrafish AHR2	47 KLTNLLPFSEDVRARLDKLSVLRLSVGYLKVKSFFNAT IKK	TGGNGW93
Killifisk AHR2	48 RLMELLPFPDE IRSRLDKLSVLRLSVGYLRVKSYFKASMKN	SNGS 92
Laks AHR2B	47 RLTGLLPFPEDVCSRLDKLSVLRLSVGYLKVKSFFKATMKK	SSVL 91
Tomcod AHR2	48 RLTDLLPFSED IRTRLDKLSVLRLSVGYLRVKGFFKATMKK	NNAP 92
Torsk AHR2	48 RLTDLLPF SED IRTRLDKLSVLRLSVGYLRVKGFF KATMKK	HNGP 92
Sebrafish AHR2	94 LNDRSGTFGGN <mark>G</mark> QTASSLDGVNF <mark>SEGELLLQALNGFV</mark> LVVT	AEGYVF 140
Killifisk AHR2	93 RV - APGVNGQNMDSFSF <mark>SEGELLLQALNGFVL</mark> VVT	SEGMVF 132
Laks AHR2β	92 F P S G N G L N I N G M E A T T F S <mark>K</mark> G D L L L Q A L N G F V L V V T	AEGHVF 132
Tomcod AHR2	93 IGQGRNGLDLAT ISEGDLLLQALNGFV IVVT	AEGLVF 129
Torsk AHR2	93 NGQGRNGVDVAALSEGDLLLQALNGFVIVVT	AEGLVF 129
	PAS-A	\rightarrow
Sebrafish AHR2	141 YSSPT IQDYLGFHQSDVVHHSVFEL IHTDDRAMFRRQLHFA	LNPSSD 187
Killifisk AHR2	133 YASPT IKDYLGFHQSDVVHQSVFEL IHTDDRAMFREQLHFA	L N P P V 179
Laks AHR2β	133 YASPT IQDYLGFHQSDVVHQSVFEL IHTDDRAMFRRQLHFA	LNPKPF179
Tomcod AHR2	130 YSSST IQDYLGFHQSDVVHQSVYEL IHTDDRAMFREQLHFA	LNPKLY176
Torsk AHR2	130 YSSST IQDYLGFHQSDVVHQSVYEL IHTDDRGMFREQLHFA	LNPKLY176
Sebrafish AHR2	188S-ADGSEAMQSSSD ITRDMVNYNPQH IPPENSSFLERSFCC	RFRCLL 233
Killifisk AHR2	180 ASDAE FSQ -GCAKAVMYNPEQLPPDSSSFLERSFVC	RFRCLL 220
Laks AHR2β	180 DP EQGGDGMESSSD ITRN IV TYNP EQLPPENSSFLERNFVC	RFRCLL 226
Tomcod AHR2	177 AAEQGGDALALQ CNSDQVKYDPERLPPENSSFLERSFVC	RFRCLL 221
Torsk AHR2	177 ATEQGGDVSALQCSSDQVKYDPERLPPENSSFLERSFVC	RFRCLL 221
	Ligandbindende dome	ne
Sebrafish AHR2	234DNSSGFLALNFQGRLKYLHGQNKLAEDGTLAHPQLALF I IA	TPLQPP280
Killifisk AHR2	221 DNSSGFLALKFHGRLKYLQGQNLCKD IETCKKVQLALFA IA	MP V Q P P 267
Laks AHR2β	227 DNSSGFLALNFQGRLKFLHTQSMLGDDGTRNQPNLGLFTIA	TAVQNP 273
Tomcod AHR2	222 DNSSGF LALKFQGRLKYLHGQSMMSDDGTRVQSQLALFS IA	VPVQTP 268
Torsk AHR2	222 DNSSGFLALKFQGRLKYLHGQSMMGEDGSRVQSQLALFSIA	V P V Q T <mark>P</mark> 268
Sebrafish AHR2	281 S ILE IRSKTLL <mark>F</mark> QTKHKLDFTPMG IDTRGKVVLGYTE IELC	MRGSGY 327
Killifisk AHR2	268 S IVE IRAKMLL <mark>F</mark> QTRHKLDFTPTGVDTRGKA ILGYTE IELC	MKGSGY 314
Laks AHR2β	274 SILE IRTKT IFFQTKHKLDFTPMGVDARGKVVLGYSEMELC	MRGSGY 320
Tomcod AHR2	269 S ILE IRAKTL IFQTKHQLDF TPMG IDNRGKVVLGYSELELC	MRGSGY 315
Torsk AHR2	269 S ILE IRTKTL IFQTKHQLDFTP IG IDNRGKVVLGYSELELC	MRGSGY 315
Cobrofich AUD2		
	328 QF I HAADMMYCADNH IRM IK TGESGL TVFRLLSKGGTWIWV	VENAKL 374
KIIIITISK AHRZ	315QFTHAADMMYCADNHIRMIKTGESGLTVFRLLSKSNGWVWV	KSNAKL 361
Laks AHRZB	321QFTHAADMMYCADNUU PM IKTGESGLTTFRLLQKTGCWVWV	QANARL 367
Tomcoa AHRZ	316 QF I HAADMMYCADNH IRM IK I GESGLI VFRLLSKSSGWVWV	QANAKE 362
IUISK AMKZ		QANAKL 362
Sebrafish AHD?		
Villifick AUDO	362 IVEEDDEE I IAEOKAL TNAEGEEVI DODDI OLDESCATCE	
Lake AUD20		
Tomcod AUD?		
Torck AHD?		
I UISK AITKZ	JUS THOUSE DI TIMEQUALTIMEDELIERQUELQEFTSFITUE	

Figur 41 - Multippel sekvens-sammenstilling av AHR2 bHLH og PAS domener. AHR2 fra flere ulike arter ble sammenstilt med Clustal Omega (EMBL-EBI) og visualisert med JalView. Konserverte aminosyrer er merket med blå farge og inndeling av bHLH, pas-domene og LBD ble gjort etter (Andreasen et al. 2002a). Aminosyrer som har en viktig funksjon i ligandbinding til LBD er merket med gult og aminosyrer viktig for DNA-binding er merket med rødt (se tekst for referanse).

Basert på en utvidet sekvenssammenstilling av AHR2 og AHR1 fra ulike arter (Vedlegg D) ble det observert en rekke enkeltaminosyrer som hovedsakelig er konserverte blant forskjellige AHR1 og AHR2, men hvor torsk og tomcod har en aminosyreendring sammenlignet med de fleste andre arter. Spesifikt for torsk er dette aminosyrene G25, G80, I120, G161, E165, S254, V263, Q285, N295 og S342. Q285, som befinner seg i det ligandbindende domenet, er unik for torsk og tomcod, hvor andre arter har en lysin (K) i denne posisjonen. Tomcod fra PCB-forurensede områder (Hudson River, USA) som viser lavere CYP1A indusering ved eksponering for PCB og 2,3,7,8-TCDD innehar en AHR-variant som blant annet mangler F439 og L440 (Wirgin et al. 2011). Torsk har begge disse aminosyrene intakte.

Både kjernelokalisering-signal (K11-H38) og kjerneeksport-signal 1 (R62-S72) og 2 (R211-N223) er godt konservert i torskAHR2. LxxLL er et motiv som finnes i kjerneproteiner og koaktivatorer som er nødvendig for interaksjoner med kjernereseptorer. I AHR fra menneske har dette motivet blitt vist å være involvert i regulering av cellulær lokalisering og transkripsjon av målgenet *cyp1a1 in vitro* (Heery et al. 1997; Ikuta et al. 2002). I torsk ble det funnet to slike motiv. Det første er aminosyre L49-L53, som er konservert i de fleste arter. Det andre motivet finnes i aminosyre L553 til L557, og dette ble bare funnet i AHR2 fra torskefisk sammen med AHR1 fra de andre undersøkte artene. Den C-terminale delen av AHR som er involvert i transaktivering ved ligandbinding viser liten grad av konservering.

Hos pattedyr består C-terminalen av AHR av et aktiveringsdomene som kan deles inn i tre regioner med et høy innehold av visse aminosyrer (Rowlands et al. 1996). Disse er asparginsyre og glutaminsyre (sure aminosyrer), glutamin (Q-rik) og prolin, serin og treonin (P/S/T-rik). Figur 42 viser fordelingen av disse tre aminsyregruppene for C-terminale deler av torskAHR2. Det ble observert at sekvensen inneholder en kort region med høyt innehold av sure aminosyrer (480-540) og et lengre område fra aminosyre 580 til 1100 med høyt innehold av prolin, serin og treonin. Det ble ikke observert et vedvarende område med høyt glutamin-innhold i sekvensen, men aminosyre 440-460, 740-800 og 900-920 har høyere andel av glutamin enn resten av sekvensen. Det ble observert at sekvensen til AHR2 fra torsk og tomcod, inneholder en rekke repeterte aminosyre-segmenter som ikke finnes i noen av de andre artene som ble undersøkt. Denne delen av sekvensen som strekker seg fra aminosyre 735-804 i torsk består av flere repeterte SNQTL eller SNQML-segmenter (Figur 43). Det ble utført et BLAST-søk med disse sekvensene fra torsk, men det var ikke mulig å identifisere tilsvarende strukturer i andre proteiner i databasene.

Figur 42 – Fordeling av aminosyregrupper i torskAHR2 C-terminal. Prosentvis innhold av ulike grupper av aminosyrer ble beregnet per 20 aminosyrer. De tre gruppene er glutamin (Q), sure aminosyrer: asparginsyre (D) og glutaminsyre (E), og en gruppe med prolin (P), serin (S) og treonin (T).

Sebrafish AHR2 Killifisk AHR2 Laks AHR2β Tomcod AHR2 Torsk AHR2	693 P NQVNLGLQGVVQENG IVPCGQRNLLTGNQPHPNTMTL PLQSPL 736 671 P NISVNASFP ANLSCHQVS IGPASSSQSGY 700 720 P HSSGQNGAVTFGTNMAGSCAQAPNNHM 747 704 P KLPLASNDLR SFEPCGQAL ISHYQGLPSNAMSNQTLSNQT - 744 703 P KLPLASNDLR TFDPCGQAS ISHYQGLAGNAMSNQMLSNQTPS 745
Sebrafish AHR2 Killifisk AHR2 Laks AHR2β Tomcod AHR2 Torsk AHR2	701
Sebrafish AHR2 Killifisk AHR2 Laks AHR2β Tomcod AHR2 Torsk AHR2	737VQGTSTQPMGF 747 703VQGTSTQPMGF 747 752GITGQVHSNQSPPQF-FTAQQLVQPGSHLGAPGLTG 720 752HNG-VPATMAP 778 779MVSNQMLSNQMHSNHTLTNQTLSTKTLSPQSLQPCPLTGRPAAPMMG 825 793MLSNQMLSNQMLSNHTLPNQTLSTTTLSPQSLQPCPLTGGPAAPMGA 839

Figur 43 - Sekvens-sammenstilling av AHR2. Et segment orientert C-terminalt i AHR2 fra flere ulike arter ble sammenstilt med Clustal-Omega (EMBL-EBI) og visualisert med JalView. Konserverte aminosyrer er merket med blå farge. AHR2 fra torsk og tomcod inneholder et segment med repeterende aminosyre-sekvens (omringet av firkant) som ikke er tilstede i andre arter som er undersøkt.

4.6.5 Nukleotidinnhold

For å undersøke hvorfor det ikke var mulig å amplifisere fullengde cDNA for den kodende regionen av torskAHR2 ble det laget en oversikt over innholdet av guanin og cytosin (GC) i cDNAet. Disse to DNAbasene fører til høyere smeltepunkt i DNA og mer stabile sekundærstrukturer og kan derfor gjøre PCRamplifisering vanskeligere for templater med et høyt GC-innhold. Sekvensdataene for torskAHR2 viser at innholdet av GC i mange deler er relativt høyt (>60%), men at det også er svært varierende (Figur 44). Delen av sekvensen som inneholder nukleotid 2900 til 3200 har et vedvarende høyt innehold av GC.

Figur 44 - GC-profil av torskAHR2 cDNA. Figuren viser prosentvis (%) innhold av guanin og cytosin i sekvensen til torskAHR2, basert på overlappende cDNA-fragmenter.

Diskusjon

5 Diskusjon

I denne oppgaven har fokuset vært å klone og karakterisere AHR2 fra torsk, en ligandindusert transkripsjonsfaktorer som kan binde en rekke endogene og eksogene forbindelser, deriblant kjente miljøgifter, og som regulerer uttrykking av flere viktige gener involvert i biotransformasjon. Det har blitt vist at *ahr2* fra torsk uttrykkes i lever og hjertevev og utgjør et predikert protein på 122,7 kDa som fusjonert til Gal4 DNA-bindende domene aktiveres av flere kjente AHR-agonister, blant annet den endogene forbindelsen FICZ *in vitro*.

5.1 Fylogeni og sekvensanalyse

Ut i fra evolusjonært perspektiv er AHR er interessant protein. AHR er representert i alle grupper av vertebrater (Hahn 2002) og AHR-homologer har blitt karakterisert fra en rekke evertebrater, blant annet fra sjøanemonen N. vectensis, rundormen C. elegans, D. melanogaster (bananflue) og M. arenaria (vanlig sandskjell) (Butler et al. 2001; Duncan et al. 1998; Powell-Coffman et al. 1998; Reitzel et al. 2014). I motsetning til AHR fra vertebrater som binder en rekke ulike ligander, så har ingen av de nevnte AHR-homologene evnen til å binde 2,3,7,8-TCDD eller BNF (Butler et al. 2001; Powell-Coffman et al. 1998; Reitzel et al. 2014). AHR-homologene er derimot viktig for utvikling i disse organismene, blant annet for utvikling av nervesystem og ekstremiteter (Emmons et al. 1999; Qin & Powell-Coffman 2004). Sammen med at AHR også har en fysiologisk rolle i pattedyr, tyder dette på at AHR oppstod som et fysiologisk regulatorprotein, som senere har evolvert til å være en reseptor og genregulator for eksogene forbindelser (Hahn & Karchner 2011). Utviklingen og diversiteten av AHR-gener i vertebrater antas å være en konsekvens av flere genom- og gen-dupliseringer på ulike tidspunkt i utviklingen, hvor en genspesifikk duplisering var opphavet til de to hovedgruppene av AHR som blir observert i fisk (Hahn 2006). Tandem duplisering er en viktig evolusjonær drivkraft og ti prosent av genom-materialet fra menneske består av gener i en tandem organisering (Pan & Zhang 2008). En sammenligning av genorganisering fra ulike fiskearter viste at de fleste arter har AHR organisert på denne måten, inkludert AHR-variantene fra torsk. En ytterligere genomduplisering i fisk (Postlethwait et al. 2004), var trolig opphavet til ulike undervarianter av AHR1 og AHR2, observert i blant annet japansk kulefisk og sebrafisk (Hahn 2006). Sebrafisk har to varianter, AHR1b og AHR2 som begge binder og aktiveres av 2,3,7,8-TCDD. I tillegg eksisterer også en tredje variant i sebrafisk, kalt AHR1a. Denne varianten var lenge antatt å være et pseudogen uten ligandbindende egenskaper, men har senere vist å kunne binde og indusere CYP1A ved eksponering for den uklassiske AHR-liganden leflunomid (Goodale et al. 2012). Ettersom det bare er annotert to AHR-varianter i torskegenomet har denne teleosten trolig mistet eventuelle paraloger til AHR1b og AHR2. Fremtidig genomanalyse og reannotering av torskegenomet vil likevel kunne avdekke om også torsk har flere varianter enn det som kjent til nå. Det ble i denne oppgaven valgt å fokusere på AHR2, ettersom flere studier har vist at skadelige effekter i fiskeembryo forårsaket av 2,3,7,8-TCDD og andre dioksinlignende forbindelser er avhengig av AHR2. Funksjonen til AHR1 som også kan binde og aktiveres av 2,3,7,8-TCDD er på det nåværende tidspunktet ikke kjent, men det har vært foreslått at den er involvert i fysiologiske mekanismer (Karchner et al. 2005). I pattedyr hvor det hovedsakelig eksisterer én variant av AHR, er reseptoren involvert i regulering av biotransformasjon og toksisitet, men har også en viktig fysiologisk rolle, blant annet i utvikling (Nguyen & Bradfield 2008).

I denne oppgaven ble det vist at AHR2 fra torsk har en kodende sekvens på 3384 nukleotider som tilsvarer et protein på 122,7 kDa. Dette er relativt stort sammenlignet med andre arter, hvor predikert proteinvekt for AHR2 er 112,8 kDa i sebrafisk, 104,5 kDa i killifisk, 109,0 kDa i rød havbrasme. I tomcod er AHR2 predikert til 120,8 kDa, som tyder på at torskefiskene har relativt store AHR2-protein sammenlignet med andre teleoster. Sammenligningen av de funksjonelle regionene av AHR2 fra ulike arter viste at både bHLH- og PAS-domenet er relativt godt konservert mellom ulike arter. Dette er å forvente ettersom denne delen av AHR er involvert i DNA-binding, ligandbinding, cellulær lokalisering og dimerisering med HSP90, XAP2, p23 og ARNT. Sekvenssammenstillinger viste også at aminosyrer kjent for å være viktig for DNA- og ligandbinding var bevart i torskAHR2. Det ble observert noen aminosyrer i LBD fra torsk og tomcod som er unike blant artene undersøkt her, men det er ikke kjent hvilke rolle disse har for ligandbinding og eventuelle andre funksjoner. I andre deler av proteinet var sekvensene i mye mindre grad konservert blant ulike fiskearter. Tilsvarende har blitt vist for AHR fra mus og menneske, hvor sekvenslikheten i den C-terminale delen var 58% i motsetning til 86% i den Nterminal delen (Flaveny et al. 2008). I pattedyr inneholder den C-terminale delen et aktiveringsdomene (TAD) som har et høyt innhold av aspargin- og glutamin-syre, glutamin og prolin/serin/treonin. I AHR2 fra blant annet killifisk, regnbueørret, rød havbrasme, sebrafisk og tomcod mangler den glutamin-rike delen som er forbundet med transaktivering hos pattedyr (Abnet et al. 1999b; Karchner et al. 1999; Roy & Wirgin 1997; Tanguay et al. 1999; Yamauchi et al. 2005), og det har blitt foreslått at den ekstreme sensitiviteten som finnes hos enkelte fiskearter kan være en konsekvens av mangel på et område med høyt innehold av glutamin (Yamauchi et al. 2005). I motsetning til AHR2-variantene så inneholder AHR1 ofte en glutamin-rik del, og dette gjenspeiler den evolusjonære utviklingen hvor AHR1 og AHR i pattedyr er ortologe proteiner. Hos AHR2 fra torsk ble det observert et område med høyt innhold av sure aminosyrer og en lengre del med høyt innhold av prolin, serin og treonin etter et mønster som ligner det som ble observert i rød havbrasme (Yamauchi et al. 2005). Forskjellige deler av TAD-sekvensen (glutamin-rik og sure aminosyrer) viser ulik evne til å gjenkjenne LxxLL-motiver som er involvert i binding og rekruttering av koaktivatorer eller korepressorer (Flaveny et al. 2008). Det ble vist at det glutamin-rike område i AHR fra menneske er nødvendig for ligandaktivering av 2,3,7,8-TCDD, men var mindre viktig i AHR fra mus hvor underdomenet med sure aminosyrer også er involvert i binding til koaktivatorer (Flaveny et al. 2008). At AHR2 fra torsk ikke inneholder et glutamin-rikt område indikerer at transaktivering er forbundet med andre deler av reseptoren enn det som blir observert i menneske og mus. En interessant detalj er at det ble observert et LxxLL motiv i den Cterminale delen (L553-L557) som ser ut til å være unikt for AHR2 fra torskefisk. Motivet ble også observert i AHR1 fra ulike fiskearter. Ettersom LxxLL-motivet er involvert i binding av reseptorprotein til blant annet koaktivatorer, kan det tenkes at AHR2 fra torsk og andre torskefisker har interaksjoner med andre proteiner som er med på å regulere aktivitet av enten AHR2 eller andre reseptor-protein, som er ulik fra andre fisk og vertebrater. I tillegg til LxxLL-motiver ble det i den C-terminale delen også oppdaget at sekvensen til torskefiskene inneholdt en lengre del som besto av flere repeterende sekvenser. Det har ikke lykkes å identifisere tilsvarende sekvens i andre organismer, men sammen med LxxLL-motivet åpner dette muligheten for nyvinninger i funksjonen til AHR2 som bare finnes i torskefisk.

5.2 Ligandaktivering

AHR som reseptorprotein og transkripsjonsfaktor ble først oppdaget i arbeid hvor blant annet 2,3,7,8-TCDD hadde blitt vist å induserte cytokrom P450-enzymet aryl hydrokarbon hydroksylase (AHH, senere identifisert som CYP1A1) i ulike organismer (Poland & Glover 1973; Poland & Glover 1974). Det ble observert at binding av radioaktivt merket 2,3,7,8-TCDD ([³H]TCDD) bandt til en komponent i levercytosol og at binding av andre forbindelser samsvarte med potensialet for å indusere av AHH in vivo (Poland et al. 1976). Ved bruk av [³H]TCDD og fraksjonering av cytosol (ved bruk av blant annet sukrosegradienter) ble det fra lever identifisert et reseptorkompleks (ah reseptor, AHR) som kunne binde 2,3,7,8-TCDD (Okey et al. 1979). Ulike deler av den ligandinduserte mekanismen ble videre kartlagt, inkludert translokalisering av AHR, DNA-binding og transkripsjon av målgenet AHH (Denison et al. 1984). Senere ble reseptoren isolert og det var mulig å bestemme deler av aminosyresekvensen (Bradfield et al. 1991), som videre lå grunnlaget for kloning av cDNA-sekvensen til AHR fra mus (Burbach et al. 1992). Det ble tidlig foreslått å bruke CYP1A1-aktivitet i cellelinjer for deteksjon av 2,3,7,8-TCDD (Poland et al. 1976), og på bakgrunn av det som var kjent om AHR og mekanismen bak ligandindusert uttrykking av blant annet CYP1A1, var det nå mulig kvantifisere ligandbinding og aktivering ved bruk av ulike reportersystem. Blant annet ble det utviklet ulike cellelinjer som inneholdt et stabilt transfektert luciferasegen sammen med deler av promotorregion for CYP1A1 (Garrison et al. 1996; Postlind et al. 1993). Dette systemet ofte kalt kjemisk aktivert luciferase-genuttrykking (CALUX), var en ny og sensitiv metode for å detektere og kvantifisere dioksinlignende og andre forbindelser, som ble også utviklet i cellelinjer fra fisk (Richter et al. 1997). CALUX har blitt videre optimalisert de siste årene (Brennan et al. 2015; He et al. 2011; Zhao et al. 2010), og er i stand til å detektere svært lave konsentrasjoner av 2,3,7,8-TCDD (10⁻¹³ M). En annen metode for deteksjon og aktivering av dioksinlignende forbindelser er immunoassay basert på AHR. Et eksempel er AH immunoassay hvor AHR fra cytoplasmisk ekstrakt fra leverceller (marsvin) brukes sammen med ARNT for å detektere dioksinlignende forbindelser (Casado et al. 2006). Dette systemet fungerer ved at ligandbundet AHR/ARNT-kompleks binder til oligonukleotider som inneholder XRE, og ubundet kan AHR/ARNT vaskes vekk. Aktiveringen detekteres så ved å bruke antistoffer mot ARNT.

Det ble også tidlig foreslått og bruke CYP1A som biomarkør for forurensning i fisk (Payne & Penrose 1975; Payne 1976), og de tidligste arbeidene på torsk som involverte AHR-signalisering var i forbindelse med kartleggingen av cytokrom P450-enzymer. Fra torsk eksponert for BNF ble det fra lever isolert ulike fraksjoner av P450-enzymer hvor den viktigste fraksjonen besto av hovedsakelig av CYP1A (Goksøyr 1985; Goksøyr & Förlin 1992). CYP1A og etoksyresorufin-O-deethlyase (EROD)-aktivitet har blitt en veletablerte biomarkør i fisk (Whyte et al. 2000), og brukes også i torsk som biomarkør for blant annet PAH-forbindelser (Abrahamson et al. 2008; Sundt et al. 2012).

5.2.1 Ligandaktivering av ulike forbindelser i torskAHR2

For å undersøke ligandaktivering av AHR i fisk har en CALUX-lignende metode vært den foretrukne metoden, hvor COS-cellelinjer med AHR/ARNT og et reporter-gen har vært benyttet. Dette systemet er, med visse forbehold, også sammenlignbart med metoden brukt i denne oppgaven. I tillegg har spesifikk bindingsaffinitet ofte vært undersøkt ved å bruke sedimentering av AHR inkubert sammen med [³H]TCDD på en sukrosegradient, men dette ble ikke undersøkt i denne oppgaven.

I studier hvor det har blitt undersøkt dose-avhengig respons, er maksimal aktivering normalt fra 10 til 100 nM 2,3,7,8-TCDD og laveste aktivering fra 10 til 100 pM, selv om dette varier mellom AHR fra ulike arter og metode (Abnet et al. 1999b; Bak et al. 2013; Doering et al. 2015; Karchner et al. 2005). Forbindelsen 2,3,7,8-TCDD er regnet som referanse-forbindelsen i forsøk med AHR og har blitt benyttet i de fleste studier av AHR i fisk. 2,3,7,8-TCDD har også vist å indusere EROD-aktivitet i lever i torsk (Hektoen et al. 1994). Av praktiske årsaker ble 2,3,7,8-TCDD ikke benyttet i denne oppgaven. Det ble derfor valgt å bruke en annen forbindelse, formylindolo[3,2-b]carbazol (FICZ). Denne forbindelsen ble først oppdaget som en mulig ligand, ved at UV-eksponert tryptofan ga produkter med høy affinitet for binding til AHR (Rannug et al. 1987; Rannug et al. 1995). FICZ har en høyere affinitet for AHR fra

rotte sammenlignet med 2,3,7,8-TCDD, og både i amfibier og fugler er responsen for FICZ sterkere sammenlignet med 2,3,7,8-TCDD in vitro (Farmahin et al. 2014; Laub et al. 2010; Rannug et al. 1987). FICZ har også vist å binde både AHR1b og AHR2 fra sebrafisk, og induserer flere cyp1-gener, hovedsakelig gjennom AHR2 (Jönsson et al. 2009). FICZ oppfyller kriteriene for å bli regnet som et endogent signalmolekyl, og er involvert i en rekke biologiske prosesserer, blant annet adaptive responser til UV-lys (Smirnova et al. 2016). Det har blitt foreslått at hovedfunksjonen til AHR er binding til endogene forbindelser som FICZ, og ikke som et sensorprotein for eksogene forbindelser og nedbrytningen av disse (Smirnova et al. 2016). Ved eksponering for FICZ ble det observert at torskAHR2 var relativt sensitiv med en signifikant aktivering ved 6,4 pM, som er innenfor det som blir observert med 2,3,7,8-TCDD. Ettersom denne konsentrasjonen var den laveste som ble benyttet, er det sannsynlig at torskAHR2 også aktiveres ved enda lavere FICZ-konsentrasjoner. At torskAHR2 aktiveres av denne forbindelsen ved svært lave konsentrasjoner åpner en mulighet for at FICZ er en endogen ligand også i torsk. LaksAHR2ß som ble brukt som sammenligning var mindre sensitiv, hvor minste aktivering var ved 160 pM, men laksAHR2 β hadde en tre ganger høyere maksimal aktivering sammenlignet med torskAHR2. Dette er i tråd med hva som ble observert av Hansson og Hahn (2008) ved eksponering av laksAHR2β for 2,3,7,8-TCDD, hvor laksAHR2β var lite sensitivitet men hadde høy maksimal respons.

I tillegg til FICZ ble det testet ut flere andre forbindelser som har vist å kunne indusere CYP1A eller forårsake AHR2-medierte effekter i fisk. Den polyklorerte bifenylen PCB-126 er en utbredt kontaminant, og den dominerende dioksin-lignende forbindelsen i torskelever (Julshamn et al. 2013). Eksponering for PCB-126 resulterer i blant annet hjertedeformiteter og redusert svømmeblærefunksjon i fisk, effekter som hovedsakelig er mediert gjennom AHR2 (Clark et al. 2010; Jönsson et al. 2012). På bakgrunn av dette var PCB-126 forventet å være en relativ sterk AHR-agonist. I gen-reporterforsøk tilgjengelig fra fisk er det stor variasjon i PCB-126 i sensitivitet. I ulike arter av stør (*A. transmontanus* og *A. fulvescens*) er laveste aktivering av AHR2 ved 0,1-0,3 nM og responsen flater ut ved 100 nM. AHR2 fra rød havbrasme (*P. major*) har derimot vist å være veldig lite sensitiv for PCB-126 (sammenlignet med 2,3,7,8-TCDD) (Bak et al. 2013). I denne oppgaven var minste aktivering av for torskAHR2 ved 80 nM PCB-126, som tyder på torsk heller ikke er spesielt sensitiv for denne forbindelsen via AHR2. Det ble ikke observert aktivering av laksAHR2β-tetre eksponering for PCB-126, og dette kan være et resultat av den lave sensitiviteten for laksAHR2β-varianten som beskrevet tidligere.

Polyaromatiske hydrokarboner er en annen gruppe av forbindelser som er utbredt i akvatiske miljøer, og i denne oppgaven ble det undersøkt aktivering av AHR2 for to ulike PAH-forbindelser. Benzo(a)pyren (B(a)P) er en relevant kontaminant som i høye konsentrasjoner forårsaker blant annet

83

Diskusjon

perikardialt ødem i sebrafisk og induserer CYP1A, delvis mediert gjennom AHR2 (Incardona et al. 2011). B(a)P er et kjent pro-carcinogen i pattedyr, hvor AHR-mediert biotransformasjon fører til blant annet dannelsen av det reaktive og mutagene mellomproduktet benzo(a)pyren-7,8-diol-9,10-epokside og har i sebrafisk vist å kunne forårsake morfologiske deformiteter i de påfølgende generasjonene (Corrales et al. 2014; Shimizu et al. 2000). Av de syv ulike forbindelsene som ble undersøkt i denne oppgaven, var det B(a)P som ga den sterkeste aktivering for torskAHR2. I motsetning til det som ble observert for enkelte andre forbindelser, nådde ikke B(a)P et platå, og dette betyr at eksponering for høyere konsentrasjoner trolig vil resultere i en enda høyere aktivering. B(a)P-eksponering ga både høy maksimal aktivering og aktiverte AHR2 ved relativt lave konsentrasjoner, og indikerer at torsk kan være følsom for tyngre PAH-forbindelser (som B(a)P). Den andre PAH-forbindelsen som ble undersøkt var fenantren. Denne forbindelsen har tidligere vist å indusere CYP1A i marin medaka- (O. melastigma) og sebrafisk-embryo, men ikke i torskelever (Goksøyr et al. 1986; Incardona et al. 2005; Mu et al. 2012). Selv om indusering av CYP1A hovedsakelig skjer gjennom AHR, har toksiske effekter forårsaket av fenantren vist å være AHR-uavhengig (Incardona et al. 2005). Fenantren induserer CYP1A i mange fiskearter, men det ble ikke observert aktivering av enten torskAHR2 eller laksAHR2^β. Dette tyder på at fenantren er en svak eller ikke er en agonist for AHR2 fra torsk, som samsvarer med mangel på induksjon av CYP1A i torskelever. Det har likevel blitt observert at fenantren oppregulerte cyp1a i hodenyreceller fra torsk (i cellekultur) (Holen & Olsvik 2014). Dette kan skyldes en AHR2-uavhengig respons, eller være et resultat av forskjellige metoder med bruk av ulike vev. Holen og Olsvik (2014) viste med bruk av western blot og antistoffer for AHR, at et protein på 110-120 kDa ble oppregulert av fenantren i hodenyreceller. Det ble samtidig observert at ahr2-transkripsjon ikke økte, som kan tyde på at AHR1b har en rolle i responsen til fenantren og andre lettere hydrokarboner.

De to siste forbindelsene som ble brukt i denne oppgaven tilhører flavonoidene, en stor og divers gruppe av forbindelser som finnes i blant annet planter, og som regulerer en rekke enzymer involvert i fase I- og fase II-biotransformasjon (Moon et al. 2006). ANF er en syntetisk flavonoid som er vist å indusere CYP1A i sebrafisk embryo, men som inhiberer CYP1A-aktivitet i marin medaka og regnbueørret (Hodson et al. 2007; Mu et al. 2012; Timme-Laragy et al. 2007). Det ble ikke ble observert aktivering av denne forbindelsen, som tyder på at også denne forbindelsen enten er en svært svak eller ikke en agonist for torskAHR2 og laksAHR2β. Ettersom ANF har vist å ha antagonistiske egenskaper i tidligere forsøk gjennom inhibering av CYP1A-aktivtet, kan det også være at den binder AHR men ikke forårsaker videre aktivering og indusering av reportergenet. BNF er en annen syntetisk flavonoid som har vært mye benyttet som testforbindelse i forsøk med cytokrom P450-enzymer og karakterisering AHR-signalveien. I *in vivo* forsøk med torsk er BNF vist å indusere økt CYP1A-nivå i lever (Goksøyr 1985). BNF induserer også utrykking av *cyp1a* i ex-vivo forsøk med torskelever, og har vist seg å ha høy

84

affinitet for AHR1 og AHR2 fra killifisk, sammen med AHR fra pattedyr (Eide et al. 2014; Karchner et al. 2002). Ikke uventet ble det observert høy aktivering av både torskAHR2 og laksAHR2β, og BNF ga en fin dose-avhengig respons over et bredt spekter av konsentrasjoner. Det ble derfor valgt å bruke denne forbindelsen i de innledende forsøkene hvor ulike reseptor-varianter ble undersøkt og for metodeoptimaliseringen. I motsetning til FICZ, PCB-126 og B(a)P, som ga relativt forskjellige aktivering mellom torskAHR2 og laksAHR2β, ga BNF en relativ lik respons over alle konsentrasjoner. Tidligere arbeid fra laks og regnbueørret har vist at AHR2β-variantene fra disse artene er mindre sensitive for 2,3,7,8-TCDD og er forårsaket av en endring fra glutamat til lysin i aminosyre 110 (hos laks) (Andreasen et al. 2002b; Hansson & Hahn 2008). Tilsvarende ble observert for FICZ, B(a)P og muligens også PCB-126, og det er derfor interessant at laksAHR2β ser ut til å være tilsvarende sensitiv som torskAHR2 for BNF. Soshilov og Denison (2014) viste at effekten på aktivering av AHR som oppstår ved mutering av kritiske aminosyrer for ligandbinding (i LBD), var avhengig av de spesifikke ligandene som ble undersøkt. Det kan derfor tenkes at mutasjonen i laks og regnbueørret AHR2β som forårsaker lav sensitivt også er en ligandspesifikk effekt, selv om den kritiske aminosyren i dette tilfellet ikke er lokalisert i det ligandbindende domenet.

Det har i denne oppgaven blitt vist at AHR fra torsk aktiveres av en rekke ulike ligander kjent for å binde og aktivere AHR, og som blant annet induserer biotransformasjonsenzymet CYP1A. Dette indikerer at torskAHR2 trolig fungerer som et sensormolekyl for eksogene forbindelser, på lik linje med det som er kjent fra andre fiskearter. En videreføring av arbeidet i denne oppgaven på ligandaktivering, kan sammen med effekter på gen- og proteinnivå, bidra til en mer helhetlig forståelse av mekanismene bak AHR/CYP1A-signalisering i torsk. På et høyere plan vil dette kunne øke kunnskapen og hvordan torsken reagerer på eksponering for miljøgifter og bidra til en bedre og mer helhetlig forvaltning av denne viktige teleosten.

5.3 Vurdering av metoder

5.3.1 Genreporter-systemet brukt i denne oppgaven

For å undersøke ligandbindende og transaktiverende egenskaper til AHR2 ble det brukt et Gal4/UAS genreporter-system. Dette er et system som er veletablert for reseptorkarakterisering av kjernereseptorer, men i mindre grad har vært brukt for å karakterisere AHR. Det vil videre diskuteres fordeler og ulemper med dette systemet sammenlignet med AHR/ARNT/XRE-system nevnt tidligere. Fordelen med Gal4/UAS-systemet er at det er uavhengig av ARNT og XRE. Det er ikke nødvendig å klone eller uttrykke ARNT, som er en fordel hvis det ikke er en arts-spesifikk ARNT tilgjengelig, hvor ulik binding til ARNT vil kunne påvirke ligandaktivering. Ved å bruke UAS som responselement i stedet

for XRE, vil systemet i liten grad påvirkes av eventuelle endogen AHR i cellelinjen som blir brukt. (Andreasen et al. 2002b) observerte at ligandaktivering av regnbueørretAHR2 var avhengig av hvilke CYP1A responselement (fra ulike arter) som ble brukt til å drive reporter-genet. Ved å alltid bruke samme responselement (UAS), vil eventuelle artsspesifikke effekter av binding til responselementet kunne utelukkes. Det har blitt vist i denne oppgaven og i tidligere arbeid, at Gal4-DBD-AHR kan aktiveres av kjente AHR-agonister (Backlund & Ingelman-Sundberg 2004), men det er ikke usannsynlig av mangel på ARNT eller XRE, likevel vil kunne påvirke resultatene. En sammenligning mellom ligandaktivering i et Gal4/UAS-system og AHR/ARNT/XRE-system vil øke gyldigheten av metoden brukt i denne oppgaven.

For anvendelsen av Gal4/UAS-systemet i ligandaktivering av svake AHR-agonister og deteksjon av forbindelser ved lave konsentrasjoner, er høy sensitivitet nødvendig. En rekke faktorer kan tenkes å påvirke sensitiviteten til denne metoden, blant annet eksponeringstid. Det ble i denne oppgaven bruk 24 timer eksponering, men i andre studier har kortere tid vist å gi høyere aktivering. Backlund og Ingelman-Sundberg (2004) observerte at ligandaktivering av Gal4-DBD-AHR fra rotte var høyere ved eksponering i 12 timer sammenlignet med 24 timer for 2,3,7,8-TCDD. I et CALUX-system (tilpasset for dioksinlignende forbindelser) ble det vist at B(a)P ga en høyere respons etter 6 timer eksponering sammenlignet med 24 timer, trolig som følge av B(a)P ble metabolisert over tid (Pieterse et al. 2013). Ettersom opptak og metabolisme vil avhenge av egenskaper til hver enkelt forbindelse, kan det være nødvendig å tilpasse eksponeringstid for ulike stoffgrupper.

Valg av cellelinje kan være viktig for å oppnå sensitiv og maksimal ligandaktiveringen. COS-7-cellelinjen som ble brukt i ligandaktiveringsforsøkene har tidligere vært brukt for reseptorkarakterisering ved bruk av Gal4/UAS-systemet med PXR (Bainy et al. 2013; Lille-Langøy et al. 2015). COS-7-celler har også vært brukt for karakterisering av ligandbinding og transaktivering for AHR fra en rekke fiskearter (Abnet et al. 1999a; Andreasen et al. 2002a; Doering et al. 2015; Hansson & Hahn 2008; Karchner et al. 2002; Karchner et al. 2005; Tanguay et al. 1999). Selv om COS-7-cellelinjen er veletablert for reseptorkarakterisering er det mulig at metoden som ble brukt i denne oppgaven kan forbedres ved å bruke en annen cellelinje. (Backlund & Ingelman-Sundberg 2004) viste for eksempel at aktivering av Gal4-DBD-AHR (AHR fra rotte) av 2,3,7,8-TCDD var avhengig av cellelinje. Mens det i H4IIE fra rotte og HepG2 fra menneske ble observert 22- og 15-fold aktivering, ble det i Hepa1-C12 fra mus kun observert en 3-fold aktivering i forhold til kontrollen. Ettersom ligandbinding og aktivering av AHR er avhengig av blant annet kofaktorene HSP90, XAP og p23, er det er mulig at hvis kofaktorene tilstede i COS-7-cellene ikke binder optimalt vil dette påvirke resulatene. Ved bruk av torskAHR2 eller torskAHR2 ΔAA1-36 ble det observert et bakgrunns-signal av luciferase som var betydelige høyere enn for resten av AHR2plasmidene, noe som kan tyde på at det skjer aktivering uavhengig av ligandbinding. Torsk ΔAA1-36 ga

omtrent halvparten så høyt bakgrunns-signal som torskAHR2. De 36 første aminosyrene er i musAHR involvert i binding til HSP90, kjerneimport og DNA-binding. Dette indikerer at noe av bakgrunnssignalet kan tillegges funksjoner i aminosyre 1-36, enten gjennom direkte interaksjoner med kofaktorer eller gjennom endringer i strukturen til fusjonsproteinet. Det finnes flere eksempler på tilfeller hvor det blir observert liganduavhengig aktivering av AHR, blant annet hvor AHR som mangler PAS B og har redusert evne til å binde HSP90, dimeriserer med ARNT og binder DNA (Soshilov & Denison 2008). Mangel på kofaktoren p23 har også vist å resultere i ligand-uavhengig aktivering og DNA-binding for AHR (Kazlauskas et al. 1999; Kazlauskas et al. 2001). Til tross for det var mer enn hundre ganger høyere bakgrunns-signal for torskAHR2 sammenlignet med laksAHR2β, var aktiveringen ved BNF-eksponering omtrent like, noe som viser at systemet fremdeles er egnet som modell for å måle ligandaktivering. Det ble også observert at ved å øke masseforholdet mellom reseptorplasmidet og reporterplasmidet så økte aktiveringen av torskAHR2, samtidig som bakgrunns-signalet ble redusert. Det er uvisst om den observerte økning i aktivering er en konsekvens av lavere bakgrunnsnivå eller om det er andre faktorer som er avgjørende. Det ble for laksAHR2β observert det motsatte, hvor et lavere masseforhold ga høyere aktivering. Dette kan tyde på at under normale omstendigheter er reseptoren den begrensende faktoren, og økt mengde reseptor gir et høyere signal.

En siste faktor som kan påvirke ligandaktivering, er temperatur. Det ble observert at aktiveringen av AHR økte i CALUX-system hvor cellene ble eksponert for 2,3,7,8-TCDD ved 33°C sammenlignet med eksponering ved 37°C, en effekt som ble forklart ved at reportergenet (luciferase) har høyere aktivitet ved lave temperatur (Zhao et al. 2010). Ettersom det i denne oppgaven også ble brukt luciferase som reportergen, kan dette være relevant også her. Sammen med faktorene beskrevet over viser dette at det er en rekke parametere som kan påvirke hvor godt ulike genreporter-systemer fungerer.

5.3.2 Bruk av ulike Gal4-DBD-AHR2-varianter for ligandaktivering

Det ble valgt å bruke fire forskjellige varianter av Gal4-DBD-AHR2 fra torsk og laks i ligandaktiveringsforsøkene. Det har tidligere blitt vist at PXR fra sebrafisk ga en høyere aktivering når det ble brukt en kortere variant uten DBD i Gal4/UAS-systemet, sammenlignet med full-lengde PXR i et system hvor reporterplasmidet kontrolleres av en promotor med CYP3A responselement (Bainy et al. 2013). Kjernereseptorer som PXR har en annen organisering enn AHR, hvor LBD strekker seg over en større del av proteinet sammenlignet med AHR. Det var derfor knyttet usikkerhet til hvorvidt kortere AHR-fragmenter fremdeles ville inneha ligandbindende og aktiverende egenskaper i Gal4/UAS-systemet. Det har tidligere blitt vist at kortere fragmenter av AHR som inneholder det ligandbindende domenet kan binde til ligander (Soshilov & Denison 2008; Tsuji et al. 2014). I tråd med dette ble det observert at både LBD alene og LBD og PAS A aktiveres av BNF, men i motsetning til kjernereseptorer ble LBD (og også LBD + PAS A) av AHR2 i lavere grad aktivert sammenlignet med lengre varianter.

AHR uten de første 36 aminosyrene hadde tidligere blitt vist å fungere med Gal4-AHR (Backlund & Ingelman-Sundberg 2004), og tilsvarende ble derfor konstruert for torskAHR2 og laksAHR2β. Det ble også valgt å bruke hele lengden av AHR2 fra torsk og AHR2β fra laks for å se om de første 36 aminosyrene ga en høyere eller lavere aktivering enn fullengde, men det ble ikke observert en forskjell mellom de to lengste variantene. På grunn av begrenset med tid var det bare anledning til å undersøke de ulike AHR2-variantene ved eksponering for BNF. Selv om BNF er en veletablert AHR-agonist er det mulig at andre ligander hadde gitt en annen respons for de kortere variantene.

5.3.3 Amplifikasjon

I denne oppgaven var det ikke mulig å amplifisere et sammenhengende fragment av AHR2 fra torsk. En vellykket PCR-reaksjon er avhengig av flere faktorer, blant annet et bra templat. Leveren er et viktig organ for biotransformasjon i fisk og ble derfor brukt som utgangspunktet for isolering av total RNA. RNA fra lever som ble fryst og homogenisert senere hadde lave A_{260/280}-verdier sammenlignet med RNA fra vev som ble homogenisert direkte. A_{260/230}-verdiene var noe bedre ved direkte homogenisering sammenlignet med direkte nedfrysning, men A_{260/230} for lever var generelt lavere enn for hjerte. Ved bruk av gel-elektroforese ble det observert en del bakgrunnsignal fra prøver som ble fryst direkte, som kan tyde på en noe lavere RNA-integriteten i disse prøvene. En egenskap til torskelever er at den er særdeles fettrik, og dette kan tenkes å kunne påvirke isoleringen av RNA. Dette kan forklare lavere renhet (A_{230/260}) som var lav for samtlige leverprøver, men ikke lav A_{260/280} eller RNA-integritet ettersom dette ble forbedret ved å bruke direkte homogenisering.

For å utelukke at kvaliteten på isolert RNA og eller lav uttrykking av AHR2 i lever påvirket amplifiseringen av AHR2, ble RNA isolert fra hjerte. Studier har vist at AHR2 er uttrykt i både hjerte og lever i mange arter (Abnet et al. 1999b; Hansson et al. 2003; Hansson et al. 2004; Hansson & Hahn 2008; Karchner et al. 1999; Lu et al. 2013; Yamauchi et al. 2005). Roy og Wirgin (1997) observerte at uttrykking av AHR2 i tomcod var relativ lav i lever sammenlignet med andre vev som gjeller og hjerte. I fisk er hjerte blant de mest utsatte organene for toksisitet forårsaket av dioksinlignende forbindelser, og har ofte en høy uttrykking av AHR2 (Lu et al. 2013; Roy & Wirgin 1997; Yamauchi et al. 2005). I denne oppgaven ga isolering fra hjerte, høyere renhet enn fra lever, men til tross for dette var det ikke mulig å amplifisere hele AHR2, som tyder på andre faktorer var viktigere. En årsak kan være at det ble brukt ufullstendig cDNA i PCR-reaksjonen. En utfordring med kloning av lange transkripter er å syntetisere fullstendig cDNA (Hawkins et al. 2003). Den første metoden for cDNA-syntese som ble brukt i denne oppgaven ga utilstrekkelig amplifisering av lengre fragmenter. Det ble derfor byttet til SuperScript III RT, og dette enzymet ga bedre resulter og amplifisering av lange fragmenter. Ved bruk av oligo(dT)-primere var det mulig å amplifisere kortere fragmenter av AHR2 (1-391 og 661-1318), men

Diskusjon

ikke LBD+pasA (223-1318). Ved bruk av denne type primere, blir cDNA syntetisert fra polyA-halen på mRNA, og PCR av de kortere fragmenter 5' i sekvensen er avhengig av fullengde cDNA. Dette sammen med at det ble amplifisert et fragment på 2612 basepar på et senere tidspunkt tyder på at det ble dannet fullstendig cDNA. Til tross for isolert RNA av høy kvalitet og en mer effektiv cDNA-syntese, var det likevel ikke mulig å amplifisere fullengde-fragmenter av torskAHR2 fra cDNA. En vellykket PCRreaksjon er avhengig av en rekke faktorer, blant annet primere og temperatur i ulike steg av reaksjonen. Det ble forsøkt med flere ulike primerpar som hver for seg var effektive i amplifisering av kortere fragmenter, i tillegg til amplifisering av torskAHR2 fra plasmid. Annealing-temperaturen er spesielt viktig for å oppnå spesifikk primerbinding, og temperaturen ble variert over et bredt område rundt det som ble beregnet (teoretisk) som optimal temperatur for primerne. Ettersom heller ikke dette ga resultater i forbindelse med amplifisering av fullengde AHR2, tyder dette på en annen bakomliggende årsak. En slik årsak kan være et høy innehold av visse nukleotider. Sekvensen for AHR2 inneholder flere områder hvor det er et høyt innehold av GC (>60%). Utfordringen med et høyt innehold av GC er at det fører til økt smeltepunkt og hvor det kan dannes stabile sekundærstrukturer som fører til terminering av PCR reaksjonen. Det finnes en rekke tilsetningsstoffer som har vist å forbedre PCR-amplifikasjon av DNA med høyt innehold GC (Mammedov et al. 2008). I denne oppgaven ble det brukt betain og trehalose i amplifisering av LBD sammen med økt lengde for første denatureringssteg, men dette ga ikke forbedret amplifisering av lengre fragmenter. Selv om forlenget denaturering eller tilsetning av ulike forbindelser ikke forbedret reaksjonen, kan det ikke utelukkes at problemene med å amplifisere fullengde AHR2 skyldes et høyt innhold av GC i sekvensen, gjerne i kombinasjon med andre faktorer diskutert tidligere.

Diskusjon

5.4 Konklusjon

I denne oppgaven ble AHR2 fra atlanterhavstorsk klonet og sekvensert. Det ble vist at den kodende sekvensen for AHR2 består av 3384 nukleotider, og som av strukturelle eller andre årsaker er vanskelig å amplifisere med PCR. Den kodende sekvensen for torskAHR2 utgjør et predikert protein som er relativt stort sammenlignet med mange andre fiskearter. Sammenstilling med andre AHR2 protein fra fisk, har vist at AHR2 i torsk er relativt godt konservert i bHLH- og PAS-domenet og viktige aminosyrer forbundet med DNA- og ligand-binding er konservert. Den C-terminale delen som involverer transaktivering er i mindre grad konservert, og har vist å inneholde elementer som så langt er unike i torskefisk. Sammenligning av torskAHR2 med AHR2 fra tomcod og et ufullstendig AHR2-fragment fra polartorsk viste en høy grad av konservering blant torskefisk. På bakgrunn av den klonede sekvensen har det blitt utviklet et genreporter-system som har vist at AHR2 er et funksjonelt protein som innehar evnen til å binde og aktiveres av ulike ligander med forskjellig strukturer in vitro. I gen-reportersystemet aktiveres AHR2 av kjente agonister, som benzo(a)pyren, β-naftoflavon, PCB-126 og formylindolo[3,2-b]carbazol (FICZ). På bakgrunn av egenskapene til torskAHR2 og det som er kjent fra andre fiskearter, er torskAHR2 trolig et sensormolekyl for eksogene forbindelser som regulerer CYP1A og andre biotransformasjonsenzymer. AHR2 i torsk aktiveres samtidig av svært lave konsentrasjoner av den endogene forbindelsen FICZ, som indikerer at proteinet også kan en fysiologisk rolle utenom å være en xenosensor. I hvilke grad AHR2 faktisk har slike roller i torsk vil kreve videre arbeid.

5.5 Fremtidig arbeid

I denne oppgaven har det blitt vist at AHR2 fra torsk kan binde og aktiveres av en rekke ligander *in vitro*. Hvilke aminosyrer og strukturer i torskAHR2 som bestemme spesifikk ligandbinding er derimot ukjent. Det finnes flere studier hvor ligandbinding til det ligandbindende domenet i AHR har vært undersøkt ved hjelp av modellering (Bisson et al. 2009; Pandini et al. 2009). Dette kan sammen med for eksempel mutasjon-studier være et nyttig verktøy for å forstå hvilke strukturer og aminosyrer som bestemmer de ligandbindende egenskapene til en reseptor. Selv om dette ikke ble brukt i denne oppgaven, vil det være av fremtidig interesse å utvikle en struktur/bindings-modell for torskAHR2 for i å større grad forstå hvilke faktorer som er avgjørende for binding og aktivering.

Ettersom det eksisterer minst to AHR i torsk vil det være av interesse å undersøke hvilke rolle de ulike variantene har (AHR1b og AHR2), både som sensormolekyl for eksogene stoffer og en eventuell fysiologiske rolle. Et steg på veien har vært å klone AHR2 og undersøke dens evne til å binde og aktiveres av ulike ligander. Neste steg vil kunne være å klone og karakterisere AHR1b, og undersøke om også denne reseptoren binder og aktiveres av kjente AHR-agonister.

For å gjøre kunnskapen fra ligandaktiveringsforsøkene mer relevant og kunne forstå responser på høyere nivåer, vil det være nyttig å supplere ligandbinding med responser på gen- eller protein-nivå. Dette kan være viktig ettersom som det har blitt observert at 2,3,7,8-TCDD regulerer ulike sett av gener i hepatocytter fra mus, menneske og rotte, og i hepatocytter fra mus som uttrykker menneskeAHR (Flaveny et al. 2010; Forgacs et al. 2013). En måte å undersøke responser på gen- eller protein-nivå, uten å måtte eksponere hele fisk, er bruk av for eksempel cellekulturer eller vev fra torsk. Både primære hepatocytter fra lever og leverskiver fra torsk har vist å kunne brukes for å undersøke cellulære responser ved eksponering til forbindelser som binder AHR (Eide et al. 2014; Søfteland et al. 2010). En bedre forståelse for hvilke mekanismer som er involvert i regulering av biotransformasjon og andre systemer vil øke kunnskapen om hvordan sensorsystemer og forsvarsmekanismer i ulike organismer fungerer og har utviklet seg over tid. Å forstå hvordan torsk og andre arter responderer til miljøet rundt seg, deriblant ved påvirkning av miljøgifter vil være viktig for å kunne forvalte disse artene på en god måte.

I denne oppgaven ble det vist at Gal4/UAS-systemet kan brukes for å undersøke ligandaktivering av AHR2 i torsk. Det har her blitt beskrevet flere ulike faktorene som kan påvirke ligandaktivering i ulike reporter-system. På bakgrunn av dette vil parametere som eksponeringstid og temperatur sammen med valg av cellelinje være av fremtidig interesse for å oppnå et Gal4/UAS-system med høyere sensitivitet og aktivering, og for deteksjon av svake AHR-agonister.

Som i mange andre studier hvor det har blitt studert ligandbinding, ble det i denne oppgaven benyttet et reportersystem basert på uttrykking av reportergenet i en cellelinje. Ettersom dette er tidkrevende og krever spesielle fasiliteter, er det av interesse å utvikle reportersystemer som ikke avhenger av cellelinjer. Det finnes tilgjengelig teknologi som kan brukes til å studere protein og DNA-interaksjoner i et cellefritt miljø. En slik teknologi er AlphaLisa (PerkinElmer), som har blitt brukt blant annet for å bestemme binding av transkripsjonsfaktoren varmesjokk faktor 1 (HSF1) til DNA, men som også kan brukes for andre transkripsjonsfaktorer (Vuori et al. 2009). Dette systemet er enkelt og lite tidkrevende og er ikke avhengig av å arbeide med cellelinjer. Å utvikle et slikt system for AHR, men også for andre ligandinduserte reseptorer vil kunne være nyttig både i arbeid med ligandkarakterisering, og som en fremtidig metode for deteksjon av uønskede forbindelser i miljøet.

6 Litteratur

- ABNET, C., TANGUAY, R., HEIDEMAN, W. & PETERSON, R. (1999a). Transactivation activity of human, zebrafish, and rainbow trout aryl hydrocarbon receptors expressed in COS-7 cells: Greater insight into species differences in toxic potency of polychlorinated dibenzo-p-dioxin, dibenzofuran, and biphenyl congeners. *Toxicology and Applied Pharmacology*, 159 (1): 41-51.
- ABNET, C. C., TANGUAY, R. L., HAHN, M. E., HEIDEMAN, W. & PETERSON, R. E. (1999b). Two forms of aryl hydrocarbon receptor type 2 in rainbow trout (Oncorhynchus mykiss). Evidence for differential expression and enhancer specificity. *Journal of Biological Chemistry*, 274 (21): 15159-66.
- ABRAHAMSON, A., BRANDT, I., BRUNSTRÖM, B., SUNDT, R. C. & JØRGENSEN, E. H. (2008). Monitoring contaminants from oil production at sea by measuring gill EROD activity in Atlantic cod (Gadus morhua). *Environmental Pollution*, 153 (1): 169-175.
- ANDERSSON, M., OTTESEN, R. T. & VOLDEN, T. (2004). Building materials as a source of PCB pollution in Bergen, Norway. *Science of The Total Environment*, 325 (1–3): 139-144.
- ANDREASEN, E., HAHN, M. E., HEIDEMAN, W., PETERSON, R. & TANGUAY, R. (2002a). The zebrafish (Danio rerio) aryl hydrocarbon receptor type 1 is a novel vertebrate receptor. *Molecular Pharmacology*, 62 (2): 234-249.
- ANDREASEN, E. A., TANGUAY, R. L., PETERSON, R. E. & HEIDEMAN, W. (2002b). Identification of a Critical Amino Acid in the Aryl Hydrocarbon Receptor. *Journal of Biological Chemistry*, 277 (15): 13210-13218.
- ANTKIEWICZ, D. S., PETERSON, R. E. & HEIDEMAN, W. (2006). Blocking expression of AHR2 and ARNT1 in zebrafish larvae protects against cardiac toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin. *Toxicological Sciences*, 94 (1): 175-82.
- AQUAMAPS. (2015). Reviewed distribution maps for Gadus morhua (Atlantic cod), with modeled year 2100 native range map based on IPCC A2 emissions scenario. Tilgjengelig fra: www.aquamaps.org (lest 01.09.15).
- BACKLUND, M. & INGELMAN-SUNDBERG, M. (2004). Different Structural Requirements of the Ligand Binding Domain of the Aryl Hydrocarbon Receptor for High- and Low-Affinity Ligand Binding and Receptor Activation. *Molecular Pharmacology*, 65 (2): 416-425.
- BACSI, S. G. & HANKINSON, O. (1996). Functional Characterization of DNA-binding Domains of the Subunits of the Heterodimeric Aryl Hydrocarbon Receptor Complex Imputing Novel and Canonical Basic Helix-Loop-Helix Protein-DNA Interactions. *Journal of Biological Chemistry*, 271 (15): 8843-8850.
- BAINY, A. C. D., KUBOTA, A., GOLDSTONE, J. V., LILLE-LANGØY, R., KARCHNER, S. I., CELANDER, M. C., HAHN, M. E., GOKSØYR, A. & STEGEMAN, J. J. (2013). Functional characterization of a full length pregnane X receptor, expression in vivo, and identification of PXR alleles, in Zebrafish (Danio rerio). Aquatic Toxicology, 142–143: 447-457.
- BAK, S.-M., IIDA, M., HIRANO, M., IWATA, H. & KIM, E.-Y. (2013). Potencies of Red Seabream AHR1and AHR2-Mediated Transactivation by Dioxins: Implication of Both AHRs in Dioxin Toxicity. *Environmental Science & Technology*, 47 (6): 2877-2885.
- BAKER, T. R., PETERSON, R. E. & HEIDEMAN, W. (2013). Early Dioxin Exposure Causes Toxic Effects in Adult Zebrafish. *Toxicological Sciences*, 135 (1): 241-250.
- BAKKETEIG, I. E., GJØSÆTER, H., HAUGE, M., SUNNSET, B. H. & TOFT, K. Ø. (red.). (2015). *Havforskningsrapporten 2015.* Fisken og havet, særnr. 1-2015.
- BEISCHLAG, T. V., MORALES, J. L., HOLLINGSHEAD, B. D. & PERDEW, G. H. (2008). The aryl hydrocarbon receptor complex and the control of gene expression. *Critical Reviews in Eukaryotic Gene Expression*, 18 (3): 207-250.

- BERG, P. & PONGRATZ, I. (2001). Differential Usage of Nuclear Export Sequences Regulates Intracellular Localization of the Dioxin (Aryl Hydrocarbon) Receptor. *Journal of Biological Chemistry*, 276 (46): 43231-43238.
- BISSON, W. H., KOCH, D. C., O'DONNELL, E. F., KHALIL, S. M., KERKVLIET, N. I., TANGUAY, R. L., ABAGYAN, R. & KOLLURI, S. K. (2009). Modeling of the Aryl Hydrocarbon Receptor (AhR) Ligand Binding Domain and Its Utility in Virtual Ligand Screening to Predict New AhR Ligands. Journal of Medicinal Chemistry, 52 (18): 5635-5641.
- BLUMBERG, B., SABBAGH, W., JUGUILON, H., BOLADO, J., VAN METER, C. M., ONG, E. S. & EVANS, R.
 M. (1998). SXR, a novel steroid and xenobioticsensing nuclear receptor. *Genes & Development*, 12 (20): 3195-3205.
- BORJA, J., TALEON, D. M., AURESENIA, J. & GALLARDO, S. (2005). Polychlorinated biphenyls and their biodegradation. *Process Biochemistry*, 40 (6): 1999-2013.
- BRADFIELD, C. A., GLOVER, E. & POLAND, A. (1991). Purification and N-terminal amino acid sequence of the Ah receptor from the C57BL/6J mouse. *Molecular Pharmacology*, 39 (1): 13-19.
- BRENNAN, J. C., HE, G., TSUTSUMI, T., ZHAO, J., WIRTH, E., FULTON, M. H. & DENISON, M. S. (2015).
 Development of Species-Specific Ah Receptor-Responsive Third Generation CALUX Cell Lines with Enhanced Responsiveness and Improved Detection Limits. *Environmental Science & Technology*, 49 (19): 11903-11912.
- BURBACH, K. M., POLAND, A. & BRADFIELD, C. A. (1992). Cloning of the Ah-Receptor cDNA Reveals a Distinctive Ligand-Activated Transcription Factor. *Proceedings of the National Academy of Sciences of the United States of America*, 89 (17): 8185-8189.
- BUTLER, R. A., KELLEY, M. L., POWELL, W. H., HAHN, M. E. & VAN BENEDEN, R. J. (2001). An aryl hydrocarbon receptor (AHR) homologue from the soft-shell clam, Mya arenaria: evidence that invertebrate AHR homologues lack 2,3,7,8-tetrachlorodibenzo-p-dioxin and β-naphthoflavone binding. *Gene*, 278 (1–2): 223-234.
- CARVER, L. A. & BRADFIELD, C. A. (1997). Ligand-dependent Interaction of the Aryl Hydrocarbon Receptor with a Novel Immunophilin Homolog in Vivo. *Journal of Biological Chemistry*, 272 (17): 11452-11456.
- CASADO, S., ALONSO, M., HERRADÓN, B., TARAZONA, J. V. & NAVAS, J. M. A. (2006). Activation of the aryl hydrocarbon receptor by carbaryl: Computational evidence of the ability of carbaryl to assume a planar conformation. *Environmental Toxicology and Chemistry*, 25 (12): 3141-3147.
- CHANG, C.-T., CHUNG, H.-Y., SU, H.-T., TSENG, H.-P., TZOU, W.-S. & HU, C.-H. (2013). Regulation of zebrafish CYP3A65 transcription by AHR2. *Toxicology and Applied Pharmacology*, 270 (2): 174-184.
- CHEN, H. S. & PERDEW, G. H. (1994). Subunit composition of the heteromeric cytosolic aryl hydrocarbon receptor complex. *Journal of Biological Chemistry*, 269 (44): 27554-27558.
- CHOMCZYNSKI, P. & SACCHI, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. *Analytical Biochemistry*, 162 (1): 156-159.
- CLARK, B. W., MATSON, C. W., JUNG, D. & DI GIULIO, R. T. (2010). AHR2 mediates cardiac teratogenesis of polycyclic aromatic hydrocarbons and PCB-126 in Atlantic killifish (Fundulus heteroclitus). *Aquatic Toxicology*, 99 (2): 232-240.
- CONSORTIUM, T. U. (2015). UniProt: a hub for protein information. *Nucleic Acids Research*, 43 (D1): D204-D212.
- CORRALES, J., THORNTON, C., WHITE, M. & WILLETT, K. L. (2014). Multigenerational effects of benzo[a]pyrene exposure on survival and developmental deformities in zebrafish larvae. *Aquatic Toxicology*, 148: 16-26.
- CUNNINGHAM, F., AMODE, M. R., BARRELL, D., BEAL, K., BILLIS, K., BRENT, S., CARVALHO-SILVA, D., CLAPHAM, P., COATES, G., FITZGERALD, S., et al. (2015). Ensembl 2015. *Nucleic Acids Research*, 43 (D1): D662-D669.
- DALEI, W., NALINI, P., YOUNGCHANG KIM & RASTINEJAD, F. (2013). Structure and Dimerization Properties of the Aryl Hydrocarbon Receptor PAS-A Domain. *Molecular and Cellular Biology*, 33 (21): 4346.

- DE WIT, C. A., HERZKE, D. & VORKAMP, K. (2010). Brominated flame retardants in the Arctic environment trends and new candidates. *Science of the Total Environment*, 408 (15): 2885-2918.
- DENISON, M. S., FINE, J. & WILKINSON, C. F. (1984). Protamine sulfate precipitation: A new assay for the Ah receptor. *Analytical Biochemistry*, 142 (1): 28-36.
- DENISON, M. S., FISHER, J. M. & WHITLOCK, J. P. (1988). THE DNA RECOGNITION SITE FOR THE DIOXIN-AH RECEPTOR COMPLEX - NUCLEOTIDE-SEQUENCE AND FUNCTIONAL-ANALYSIS. *Journal of Biological Chemistry*, 263 (33): 17221-17224.
- DENISON, M. S., PANDINI, A., NAGY, S. R., BALDWIN, E. P. & BONATI, L. (2002). Ligand binding and activation of the Ah receptor. *Chemico-Biological Interactions*, 141 (1–2): 3-24.
- DENISON, M. S. & NAGY, S. R. (2003). Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. *Annual Review Pharmacology and Toxicology*, 43 (1): 309-34.
- DOERING, J. A., FARMAHIN, R., WISEMAN, S., BEITEL, S. C., KENNEDY, S. W., GIESY, J. P. & HECKER, M. (2015). Differences in Activation of Aryl Hydrocarbon Receptors of White Sturgeon Relative to Lake Sturgeon Are Predicted by Identities of Key Amino Acids in the Ligand Binding Domain. *Environmental Science & Technology*, 49 (7): 4681-4689.
- DUNCAN, D. M., BURGESS, E. A. & DUNCAN, I. (1998). Control of distal antennal identity and tarsal development in Drosophila by spineless–aristapedia, a homolog of the mammalian dioxin receptor. *Genes & Development*, 12 (9): 1290-1303.
- EIDE, M., KARLSEN, O. A., KRYVI, H., OLSVIK, P. A. & GOKSØYR, A. (2014). Precision-cut liver slices of Atlantic cod (Gadus morhua): An in vitro system for studying the effects of environmental contaminants. *Aquatic Toxicology*, 153 (0): 110-115.
- ELONEN, G. E., SPEHAR, R. L., HOLCOMBE, G. W., JOHNSON, R. D., FERNANDEZ, J. D., ERICKSON, R. J., TIETGE, J. E. & COOK, P. M. (1998). Comparative toxicity of 2,3,7,8-tetrachlorodibenzo-pdioxin to seven freshwater fish species during early life-stage development. *Environmental Toxicology and Chemistry*, 17 (3): 472-483.
- EMMONS, R. B., DUNCAN, D., ESTES, P. A., KIEFEL, P., MOSHER, J. T., SONNENFELD, M., WARD, M. P., DUNCAN, I. & CREWS, S. T. (1999). The spineless-aristapedia and tango bHLH-PAS proteins interact to control antennal and tarsal development in Drosophila. *Development*, 126 (17): 3937-3945.
- ERDMANN, S. E., DIETZ, R., SONNE, C., BECHSHØFT, T. Ø., VORKAMP, K., LETCHER, R. J., LONG, M. & BONEFELD-JØRGENSEN, E. C. (2013). Xenoestrogenic and dioxin-like activity in blood of East Greenland polar bears (Ursus maritimus). *Chemosphere*, 92 (5): 583-591.
- FARMAHIN, R., CRUMP, D. & KENNEDY, S. W. (2014). Sensitivity of avian species to the aryl hydrocarbon receptor ligand 6-formylindolo [3,2-b] carbazole (FICZ). *Chemico-Biological Interactions*, 221: 61-69.
- FISKERIDIREKTORATET. (2015). Statistikk Norges fiskerier 2013. *Fiskeridirektoratet v/ statistikkavdelingen*. Tilgjengelig fra: http://www.fiskeridir.no/Yrkesfiske/Statistikkyrkesfiske/Fangst-og-kvoter/Norges-fiskerier (lest 19.08.15).
- FLAVENY, C., REEN, R. K., KUSNADI, A. & PERDEW, G. H. (2008). The mouse and human Ah receptor differ in recognition of LXXLL motifs. *Archives of Biochemistry and Biophysics*, 471 (2): 215-223.
- FLAVENY, C., PERDEW, G. H. & MILLER III, C. A. (2009). The Aryl-hydrocarbon receptor does not require the p23 co-chaperone for ligand binding and target gene expression in vivo. *Toxicology Letters*, 189 (1): 57-62.
- FLAVENY, C. A., MURRAY, I. A. & PERDEW, G. H. (2010). Differential Gene Regulation by the Human and Mouse Aryl Hydrocarbon Receptor. *Toxicological Sciences*, 114 (2): 217-225.
- FLINT, S., MARKLE, T., THOMPSON, S. & WALLACE, E. (2012). Bisphenol A exposure, effects, and policy: A wildlife perspective. *Journal of Environmental Management*, 104: 19-34.

- FORGACS, A. L., DERE, E., ANGRISH, M. M. & ZACHAREWSKI, T. R. (2013). Comparative Analysis of Temporal and Dose-Dependent TCDD-Elicited Gene Expression in Human, Mouse, and Rat Primary Hepatocytes. *Toxicological Sciences*, 133 (1): 54-66.
- FRANTZEN, S., MÅGE, A., IVERSEN, S. A. & JULSHAMN, K. (2011). Seasonal variation in the levels of organohalogen compounds in herring (Clupea harengus) from the Norwegian Sea. *Chemosphere*, 85 (2): 179-187.
- FUKUNAGA, B. N., PROBST, M. R., REISZ-PORSZASZ, S. & HANKINSON, O. (1995). Identification of functional domains of the aryl hydrocarbon receptor. *The Journal of biological chemistry*, 270 (49): 29270.
- FUKUNAGA, B. N. & HANKINSON, O. (1996). Identification of a Novel Domain in the Aryl Hydrocarbon Receptor Required for DNA Binding. *Journal of Biological Chemistry*, 271 (7): 3743-3749.
- GARRISON, P. M., TULLIS, K., AARTS, J. M. M. J. G., BROUWER, A., GIESY, J. P. & DENISON, M. S. (1996). Species-Specific Recombinant Cell Lines as Bioassay Systems for the Detection of 2,3,7,8-Tetrachlorodibenzo-p-dioxin-like Chemicals. *Fundamental and Applied Toxicology*, 30 (2): 194-203.
- GLUZMAN, Y. (1981). SV40-transformed simian cells support the replication of early SV40 mutants. *Cell*, 23 (1): 175-182.
- GOKSØYR, A. (1985). Purification of hepatic microsomal cytochromes P-450 from β-naphthoflavonetreated Atlantic cod (Gadus morhua), a marine teleost fish. *Biochimica et Biophysica Acta (BBA) - General Subjects*, 840 (3): 409-417.
- GOKSØYR, A., SOLBAKKEN, J. E. & KLUNGSØYR, J. (1986). Regioselective metabolism of phenanthrene in Atlantic cod (Gadus morhua): Studies on the effects of monooxygenase inducers and role of cytochromes P-450. *Chemico-Biological Interactions*, 60 (3): 247-263.
- GOKSØYR, A. & FÖRLIN, L. (1992). The cytochrome P-450 system in fish, aquatic toxicology and environmental monitoring. *Aquatic Toxicology*, 22 (4): 287-311.
- GOODALE, B. C., LA DU, J. K., BISSON, W. H., JANSZEN, D. B., WATERS, K. M. & TANGUAY, R. L. (2012). AHR2 Mutant Reveals Functional Diversity of Aryl Hydrocarbon Receptors in Zebrafish. *PLoS ONE*, 7 (1): e29346.
- GORDAN, J. D. & SIMON, M. C. (2007). Hypoxia-inducible factors: central regulators of the tumor phenotype. *Current Opinion in Genetics & Development*, 17 (1): 71-77.
- GOUJON, M., MCWILLIAM, H., LI, W., VALENTIN, F., SQUIZZATO, S., PAERN, J. & LOPEZ, R. (2010). A new bioinformatics analysis tools framework at EMBL–EBI. *Nucleic Acids Research*, 38 (suppl 2): W695-W699.
- GÜNTHER, V., LINDERT, U. & SCHAFFNER, W. (2012). The taste of heavy metals: Gene regulation by MTF-1. *Biochimica et Biophysica Acta (BBA) Molecular Cell Research*, 1823 (9): 1416-1425.
- GÖTTEL, M., LE CORRE, L., DUMONT, C., SCHRENK, D. & CHAGNON, M. C. (2014). Estrogen receptor α and aryl hydrocarbon receptor cross-talk in a transfected hepatoma cell line (HepG2) exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. *Toxicology Reports*, 1: 1029-1036.
- HAHN, M. E., KARCHNER, S., SHAPIRO, M. A. & PERERA, S. A. (1997). Molecular evolution of two vertebrate aryl hydrocarbon (dioxin) receptors (AHR1 and AHR2) and the PAS family. *Proceedings of the National Academy of Sciences of the United States of America*

94 (25): 13743-13748.

- HAHN, M. E. (1998). The aryl hydrocarbon receptor: A comparative perspective. *Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology*, 121 (1–3): 23-53.
- HAHN, M. E. (2002). Aryl hydrocarbon receptors: diversity and evolution. *Chemico-Biological Interactions*, 141 (1–2): 131-160.
- HAHN, M. E. (2006). Unexpected diversity of aryl hydrocarbon receptors in non-mammalian vertebrates: Insights from comparative genomics. *Journal of experimental zoology. Part A, Comparative experimental biology*, 305A (2): 131-131.

- HAHN, M. E. & KARCHNER, S. I. (2011). Structural and functional diversification of AHRs during metazoan evolution. I: Pohjanvirta, R. (red.) *AH Receptor in Biology and Toxicology*. Hoboken, NJ, USA: John Wiley & Sons.
- HANKINSON, O. (2005). Role of coactivators in transcriptional activation by the aryl hydrocarbon receptor. *Archives of Biochemistry and Biophysics*, 433 (2): 379-386.
- HANSSON, M. C., WITTZELL, H., PERSSON, K. & VON SCHANTZ, T. (2003). Characterization of two distinct aryl hydrocarbon receptor (AhR2) genes in Atlantic salmon (Salmo salar) and evidence for multiple AhR2 gene lineages in salmonid fish. *Gene*, 303: 197.
- HANSSON, M. C., WITTZELL, H., PERSSON, K. & VON SCHANTZ, T. (2004). Unprecedented genomic diversity of AhR1 and AhR2 genes in Atlantic salmon (Salmo salar L.). *Aquatic Toxicology*, 68 (3): 219-232.
- HANSSON, M. C. & HAHN, M. E. (2008). Functional properties of the four Atlantic salmon (Salmo salar) aryl hydrocarbon receptor type 2 (AHR2) isoforms. *Aquatic Toxicology*, 86 (2): 121-130.
- HARITASH, A. K. & KAUSHIK, C. P. (2009). Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review. *Journal of Hazardous Materials*, 169 (1–3): 1-15.
- HARMON, M. A., BOEHM, M. F., HEYMAN, R. A. & MANGELSDORF, D. J. (1995). Activation of mammalian retinoid X receptors by the insect growth regulator methoprene. *Proceedings of the National Academy of Sciences of the United States of America*, 92 (13): 6157-60.
- HAWKINS, P. R., JIN, P. & FU, G. K. (2003). Full-length cDNA synthesis for long-distance RT-PCR of large mRNA transcripts. *Biotechniques*, 34 (4): 768-70, 772-73.
- HE, G., TSUTSUMI, T., ZHAO, B., BASTON, D. S., ZHAO, J., HEATH-PAGLIUSO, S. & DENISON, M. S. (2011). Third-Generation Ah Receptor–Responsive Luciferase Reporter Plasmids: Amplification of Dioxin-Responsive Elements Dramatically Increases CALUX Bioassay Sensitivity and Responsiveness. *Toxicological Sciences*, 123 (2): 511-522.
- HEERY, D. M., KALKHOVEN, E., HOARE, S. & PARKER, M. G. (1997). A signature motif in transcriptional co-activators mediates binding to nuclear receptor. *Nature*, 387 (6634): 733-736.
- HEID, S. E., POLLENZ, R. S. & SWANSON, H. I. (2000). Role of Heat Shock Protein 90 Dissociation in Mediating Agonist-Induced Activation of the Aryl Hydrocarbon Receptor. *Molecular Pharmacology*, 57 (1): 82-92.
- HEKTOEN, H., BERNHOFT, A., INGEBRIGTSEN, K., UTNE SKAARE, J. & GOKSØYR, A. (1994). Response of hepatic xenobiotic metabolizing enzymes in rainbow trout (Oncorhynchus mykiss) and cod (Gadus morhua) to 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD). Aquatic Toxicology, 28 (1–2): 97-106.
- HINTON, D. E., SEGNER, H., AU, D. W. T., KULLMAN, S. W. & HARDMAN, R. C. (2008). Liver Toxicity. I: Di Giulio, R. T. & Hinton, D. E. (red.) *The Toxicology of fishes*. Boca Raton: CRC Press.
- HODSON, P. V., QURESHI, K., NOBLE, C. A. J., AKHTAR, P. & BROWN, R. S. (2007). Inhibition of CYP1A enzymes by α-naphthoflavone causes both synergism and antagonism of retene toxicity to rainbow trout (Oncorhynchus mykiss). *Aquatic Toxicology*, 81 (3): 275-285.
- HOFFMAN, E., REYES, H., CHU, F., SANDER, F., CONLEY, L., BROOKS, B. & HANKINSON, O. (1991). Cloning of a factor required for activity of the Ah (dioxin) receptor. *Science*, 252 (5008): 954-958.
- HOLEN, E. & OLSVIK, P. A. (2014). Aryl hydrocarbon receptor protein and Cyp1A1 gene induction by LPS and phenanthrene in Atlantic cod (Gadus morhua) head kidney cells. *Fish & Shellfish Immunology*, 40 (2): 384-391.
- HOLLINGSHEAD, B. D., PATEL, R. D. & PERDEW, G. H. (2006). Endogenous Hepatic Expression of the Hepatitis B Virus X-Associated Protein 2 Is Adequate for Maximal Association with Aryl Hydrocarbon Receptor-90-kDa Heat Shock Protein Complexes. *Molecular Pharmacology*, 70 (6): 2096-2107.
- HOLMES, J. L. & POLLENZ, R. S. (1997). Determination of Aryl Hydrocarbon Receptor Nuclear Translocator Protein Concentration and Subcellular Localization in Hepatic and Nonhepatic Cell Culture Lines: Development of Quantitative Western Blotting Protocols for Calculation of

Aryl Hydrocarbon Receptor and Aryl Hydrocarbon Receptor Nuclear Translocator Protein in Total Cell Lysates. *Molecular Pharmacology*, 52 (2): 202-211.

- IKUTA, T., EGUCHI, H., TACHIBANA, T., YONEDA, Y. & KAWAJIRI, K. (1998). Nuclear Localization and Export Signals of the Human Aryl Hydrocarbon Receptor. *Journal of Biological Chemistry*, 273 (5): 2895-2904.
- IKUTA, T., WATANABE, J. & KAWAJIRI, K. (2002). Characterization of the LxxLL motif in the aryl hydrocarbon receptor: Effects on subcellular localization and transcriptional activity. *Journal of Biochemistry*, 131 (1): 79-85.
- IKUTA, T., KOBAYASHI, Y. & KAWAJIRI, K. (2004). Phosphorylation of nuclear localization signal inhibits the ligand-dependent nuclear import of aryl hydrocarbon receptor. *Biochemical and Biophysical Research Communications*, 317 (2): 545-550.
- INCARDONA, J. P., CARLS, M. G., TERAOKA, H., SLOAN, C. A., COLLIER, T. K. & SCHOLZ, N. L. (2005). Aryl hydrocarbon receptor-independent toxicity of weathered crude oil during fish development. *Environmental Health Perspectives*, 113 (12): 1755-1762.
- INCARDONA, J. P., LINBO, T. L. & SCHOLZ, N. L. (2011). Cardiac toxicity of 5-ring polycyclic aromatic hydrocarbons is differentially dependent on the aryl hydrocarbon receptor 2 isoform during zebrafish development. *Toxicology and Applied Pharmacology*, 257 (2): 242-249.
- JULSHAMN, K., DUINKER, A., BERNTSSEN, M., NILSEN, B. M., FRANTZEN, S., NEDREAAS, K. & MAAGE, A. (2013). A baseline study on levels of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, non-ortho and mono-ortho PCBs, non-dioxin-like PCBs and polybrominated diphenyl ethers in Northeast Arctic cod (Gadus morhua) from different parts of the Barents Sea. *Marine Pollution Bulletin*, 75 (1–2): 250-258.
- JÖNSSON, M. E., JENNY, M. J., WOODIN, B. R., HAHN, M. E. & STEGEMAN, J. J. (2007). Role of AHR2 in the Expression of Novel Cytochrome P450 1 Family Genes, Cell Cycle Genes, and Morphological Defects in Developing Zebra Fish Exposed to 3,3',4,4',5-Pentachlorobiphenyl or 2,3,7,8-Tetrachlorodibenzo-p-dioxin. *Toxicological Sciences*, 100 (1): 180-193.
- JÖNSSON, M. E., FRANKS, D. G., WOODIN, B. R., JENNY, M. J., GARRICK, R. A., BEHRENDT, L., HAHN, M. E. & STEGEMAN, J. J. (2009). The tryptophan photoproduct 6-formylindolo[3,2b]carbazole (FICZ) binds multiple AHRs and induces multiple CYP1 genes via AHR2 in zebrafish. *Chemico-Biological Interactions*, 181 (3): 447-454.
- JÖNSSON, M. E., KUBOTA, A., TIMME-LARAGY, A. R., WOODIN, B. & STEGEMAN, J. J. (2012). Ahr2dependence of PCB126 effects on the swim bladder in relation to expression of CYP1 and cox-2 genes in developing zebrafish. *Toxicology and Applied Pharmacology*, 265 (2): 166-174.
- KARCHNER, S., POWELL, W. & HAHN, M. E. (1999). Identification and functional characterization of two highly divergent aryl hydrocarbon receptors (AHR1 and AHR2) in the teleost Fundulus heteroclitus - Evidence for a novel subfamily of ligand-binding basic helix loop helix-Per-ARNT-Sim (bHLH-PAS) factors. *Journal of Biological Chemistry*, 274 (47): 33814-33824.
- KARCHNER, S. I., FRANKS, D. G., POWELL, W. H. & HAHN, M. E. (2002). Regulatory interactions among three members of the vertebrate aryl hydrocarbon receptor family: AHR repressor, AHR1, and AHR2. *Journal of Biological Chemistry*, 277 (9): 6949-6959.
- KARCHNER, S. I., FRANKS, D. G. & HAHN, M. E. (2005). AHR1B, a new functional aryl hydrocarbon receptor in zebrafish: tandem arrangement of ahr1b and ahr2 genes. *Biochemical Journal*, 392 (Pt 1): 153-61.
- KAZLAUSKAS, A., POELLINGER, L. & PONGRATZ, I. (1999). Evidence that the Co-chaperone p23 regulates ligand responsiveness of the dioxin (aryl hydrocarbon) receptor. *Journal of Biological Chemistry*, 274 (19): 13519-13524.
- KAZLAUSKAS, A., SUNDSTRÖM, S., POELLINGER, L. & PONGRATZ, I. (2001). The hsp90 Chaperone Complex Regulates Intracellular Localization of the Dioxin Receptor. *Molecular and Cellular Biology*, 21 (7): 2594-2607.
- KIDD, K. A., BLANCHFIELD, P. J., MILLS, K. H., PALACE, V. P., EVANS, R. E., LAZORCHAK, J. M. & FLICK, R. W. (2007). Collapse of a fish population after exposure to a synthetic estrogen.

Proceedings of the National Academy of Sciences of the United States of America, 104 (21): 8897-8901.

- KLAASSEN, C. D. & ALEKSUNES, L. M. (2010). Xenobiotic, Bile Acid, and Cholesterol Transporters: Function and Regulation. *Pharmacological Reviews*, 62 (1): 1-96.
- KO, H. P., OKINO, S. T., MA, Q. & WHITLOCK, J. P. (1997). Transactivation domains facilitate promoter occupancy for the dioxin-inducible CYP1A1 gene in vivo. *Molecular and Cellular Biology*, 17 (7): 3497-507.
- KO, H. S. P., OKINO, S. T., MA, Q. & WHITLOCK, J. P. (1996). Dioxin-induced CYP1A1 transcription in vivo: The aromatic hydrocarbon receptor mediates transactivation, enhancer promoter communication, and changes in chromatin structure. *Molecular and Cellular Biology*, 16 (1): 430-436.
- KOHLE, C. & BOCK, K. W. (2007). Coordinate regulation of Phase I and II xenobiotic metabolisms by the Ah receptor and Nrf2. *Biochem Pharmacol*, 73 (12): 1853-62.
- KOHLE, C. & BOCK, K. W. (2009). Coordinate regulation of human drug-metabolizing enzymes, and conjugate transporters by the Ah receptor, pregnane X receptor and constitutive androstane receptor. *Biochem Pharmacol*, 77 (4): 689-99.
- KOLLE, N. & KRISTIANSEN, A. (2014). Norges fiskeri- og kysthistorie. Bergen: Fagbokforlaget.
- KUBOTA, A., GOLDSTONE, J. V., LEMAIRE, B., TAKATA, M., WOODIN, B. R. & STEGEMAN, J. J. (2015).
 Role of Pregnane X Receptor and Aryl Hydrocarbon Receptor in Transcriptional Regulation of pxr, CYP2, and CYP3 Genes in Developing Zebrafish. *Toxicological Sciences*, 143 (2): 398-407.
- KULKARNI, P. S., CRESPO, J. G. & AFONSO, C. A. M. (2008). Dioxins sources and current remediation technologies A review. *Environment International*, 34 (1): 139-153.
- LANHAM, K. A., PETERSON, R. E. & HEIDEMAN, W. (2012). Sensitivity to Dioxin Decreases as Zebrafish Mature. *Toxicological Sciences*, 127 (2): 360-370.
- LAUB, L. B., JONES, B. D. & POWELL, W. H. (2010). Responsiveness of a Xenopus laevis cell line to the aryl hydrocarbon receptor ligands 6-formylindolo[3,2-b]carbazole (FICZ) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). *Chemico-Biological Interactions*, 183 (1): 202-211.
- LEE, R. F. & ANDERSON, J. W. (2005). Significance of cytochrome P450 system responses and levels of bile fluorescent aromatic compounds in marine wildlife following oil spills. *Marine Pollution Bulletin*, 50 (7): 705-723.
- LILLE-LANGØY, R., GOLDSTONE, J. V., RUSTEN, M., MILNES, M. R., MALE, R., STEGEMAN, J. J., BLUMBERG, B. & GOKSØYR, A. (2015). Environmental contaminants activate human and polar bear (Ursus maritimus) pregnane X receptors (PXR, NR1I2) differently. *Toxicology and Applied Pharmacology*, 284 (1): 54-64.
- LINK, J. S., BOGSTAD, B., SPARHOLT, H. & LILLY, G. R. (2009). Trophic role of Atlantic cod in the ecosystem. *FISH and FISHERIES*, 10: 58-87.
- LONČAR, J., POPOVIĆ, M., ZAJA, R. & SMITAL, T. (2010). Gene expression analysis of the ABC efflux transporters in rainbow trout (Oncorhynchus mykiss). *Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology*, 151 (2): 209-215.
- LU, M., CHANG, Z., BAE, M., OH, S. M., CHUNG, K. & PARK, J. (2013). Molecular characterization of the aryl hydrocarbon receptor (AhR) pathway in goldfish (Carassius auratus) exposure to TCDD: The mRNA and protein levels. *Fish Shellfish Immunology*, 35 (2): 469-475.
- LUNDHOLM, C. E. (1997). DDE-induced eggshell thinning in birds: Effects of p,p'-DDE on the calcium and prostaglandin metabolism of the eggshell gland. *Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology*, 118 (2): 113-128.
- MA, Q. & WHITLOCK, J. P. (1997). A Novel Cytoplasmic Protein That Interacts with the Ah Receptor, Contains Tetratricopeptide Repeat Motifs, and Augments the Transcriptional Response to 2,3,7,8-Tetrachlorodibenzo-p-dioxin. *Journal of Biological Chemistry*, 272 (14): 8878-8884.
- MA, Q. (2008). Xenobiotic-Activated Receptors: From Transcription to Drug Metabolism to Disease. *Chemical Research in Toxicology*, 21 (9): 1651-1671.
- MA, Q. (2013). Role of Nrf2 in Oxidative Stress and Toxicity. *Annual Review of Pharmacology and Toxicology*, 53 (1): 401-426.
- MAMMEDOV, T. G., PIENAAR, E., WHITNEY, S. E., TERMAAT, J. R., CARVILL, G., GOLIATH, R., SUBRAMANIAN, A. & VILJOEN, H. J. (2008). A Fundamental Study of the PCR Amplification of GC-Rich DNA Templates. *Computational biology and chemistry*, 32 (6): 452-457.
- MCINTOSH, B. E., HOGENESCH, J. B. & BRADFIELD, C. A. (2010). *Mammalian Per-Arnt-Sim Proteins in Environmental Adaptation*. Annual Review of Physiology, 72. 625-645 s.
- MEYER, B. K., PRAY-GRANT, M. G., VANDEN HEUVEL, J. P. & PERDEW, G. H. (1998). Hepatitis B virus X-associated protein 2 is a subunit of the unliganded aryl hydrocarbon receptor core complex and exhibits transcriptional enhancer activity. *Molecular and Cellular Biology*, 18 (2): 978-988.
- MOON, Y. J., WANG, X. & MORRIS, M. E. (2006). Dietary flavonoids: Effects on xenobiotic and carcinogen metabolism. *Toxicology in Vitro*, 20 (2): 187-210.
- MU, J.-L., WANG, X.-H., JIN, F., WANG, J.-Y. & HONG, H.-S. (2012). The role of cytochrome P4501A activity inhibition in three- to five-ringed polycyclic aromatic hydrocarbons embryotoxicity of marine medaka (Oryzias melastigma). *Marine Pollution Bulletin*, 64 (7): 1445-1451.
- MURRAY, I. A. & PERDEW, G. H. (2011). Role of chaperone proteins in AHR function. I: Pohjanvirta, R. (red.) *AH Receptor in Biology and Toxicology*. Hoboken, NJ, USA: John Wiley & Sons.
- NEAR, T. J., EYTAN, R. I., DORNBURG, A., KUHN, K. L., MOORE, J. A., DAVIS, M. P., WAINWRIGHT, P. C., FRIEDMAN, M. & SMITH, W. L. (2012). Resolution of ray-finned fish phylogeny and timing of diversification. *Proceedings of the National Academy of Sciences of the United States of America*, 109 (34): 13698-13703.
- NGUYEN, L. P. & BRADFIELD, C. A. (2008). The search for endogenous activators of the aryl hydrocarbon receptor. *Chemical Research in Toxicology*, 21 (1): 102-116.
- OKEY, A. B., BONDY, G. P., MASON, M. E., KAHL, G. F., EISEN, H. J., GUENTHNER, T. M. & NEBERT, D. W. (1979). Regulatory gene product of the Ah locus. Characterization of the cytosolic inducer-receptor complex and evidence for its nuclear translocation. *Journal of Biological Chemistry*, 254 (22): 11636-48.
- OLSVIK, P. A., HANSEN, B. H., NORDTUG, T., MOREN, M., HOLEN, E. & LIE, K. K. (2011). Transcriptional evidence for low contribution of oil droplets to acute toxicity from dispersed oil in first feeding Atlantic cod (Gadus morhua) larvae. *Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology*, 154 (4): 333-345.
- PAN, D. & ZHANG, L. (2008). Tandemly Arrayed Genes in Vertebrate Genomes. *Comparative and Functional Genomics*, 2008: 11.
- PANDINI, A., SOSHILOV, A. A., SONG, Y., ZHAO, J., BONATI, L. & DENISON, M. S. (2009). Detection of the TCDD Binding-Fingerprint within the Ah Receptor Ligand Binding Domain by Structurally Driven Mutagenesis and Functional Analysis. *Biochemistry*, 48 (25): 5972-5983.
- PANJA, S., AICH, P., JANA, B. & BASU, T. (2008). How does plasmid DNA penetrate cell membranes in artificial transformation process of Escherichia coli? *Molecular Membrane Biology*, 25 (5): 411-422.
- PAYNE, J. F. & PENROSE, W. R. (1975). INDUCTION OF ARYL-HYDROCARBON (BENZO A PYRENE) HYDROXYLASE IN FISH BY PETROLEUM. *Bulletin of Environmental Contamination and Toxicology*, 14 (1): 112-116.
- PAYNE, J. F. (1976). FIELD EVALUATION OF BENZOPYRENE HYDROXYLASE INDUCTION AS A MONITOR FOR MARINE PETROLEUM POLLUTION. *Science*, 191 (4230): 945-946.
- PERDEW, G. H. & BRADFIELD, C. A. (1996). Mapping the 90 kDa heat shock protein binding region of the Ah receptor. *IUBMB Life*, 39 (3): 589-593.
- PIETERSE, B., FELZEL, E., WINTER, R., VAN DER BURG, B. & BROUWER, A. (2013). PAH-CALUX, an Optimized Bioassay for AhR-Mediated Hazard Identification of Polycyclic Aromatic Hydrocarbons (PAHs) as Individual Compounds and in Complex Mixtures. *Environmental Science & Technology*, 47 (20): 11651-11659.
- POLAND, A. & GLOVER, E. (1973). Chlorinated Dibenzo-p-dioxins: Potent Inducers of δ-Aminolevulinic Acid Synthetase and Aryl Hydrocarbon Hydroxylase : II. A Study of the Structure-Activity Relationship. *Molecular Pharmacology*, 9 (6): 736-747.

- POLAND, A. & GLOVER, E. (1974). Comparison of 2,3,7,8-Tetrachlorodibenzo-p-dioxin, a Potent Inducer of Aryl Hydrocarbon Hydroxylase, with 3-Methylcholanthrene. *Molecular Pharmacology*, 10 (2): 349-359.
- POLAND, A., GLOVER, E. & KENDE, A. S. (1976). Stereospecific, high affinity binding of 2,3,7,8tetrachlorodibenzo-p-dioxin by hepatic cytosol. Evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase. *Journal of Biological Chemistry*, 251 (16): 4936-4946.
- POLLENZ, R. S., SATTLER, C. A. & POLAND, A. (1994). The aryl hydrocarbon receptor and aryl hydrocarbon receptor nuclear translocator protein show distinct subcellular localizations in Hepa 1c1c7 cells by immunofluorescence microscopy. *Molecular Pharmacology*, 45 (3): 428-438.
- POSTLETHWAIT, J., AMORES, A., CRESKO, W., SINGER, A. & YAN, Y.-L. (2004). Subfunction partitioning, the teleost radiation and the annotation of the human genome. *Trends in Genetics*, 20 (10): 481-490.
- POSTLIND, H., VU, T. P., TUKEY, R. H. & QUATTROCHI, L. C. (1993). Response of Human CYP1-Luciferase Plasmids to 2,3,7,8-Tetrachlorodibenzo-p-dioxin and Polycyclic Aromatic Hydrocarbons. *Toxicology and Applied Pharmacology*, 118 (2): 255-262.
- POWELL-COFFMAN, J. A., BRADFIELD, C. A. & WOOD, W. B. (1998). Caenorhabditis elegans orthologs of the aryl hydrocarbon receptor and its heterodimerization partner the aryl hydrocarbon receptor nuclear translocator. *Proceedings of the National Academy of Sciences of the United States of America*, 95 (6): 2844-2849.
- POWELL, W. H., KARCHNER, S. I., BRIGHT, R. & HAHN, M. E. (1999). Functional diversity of vertebrate ARNT proteins: Identification of ARNT2 as the predominant form of ARNT in the marine teleost, Fundulus heteroelitus. *Archives of Biochemistry and Biophysics*, 361 (1): 156-163.
- PROBST, M. R., REISZ-PORSZASZ, S., AGBUNAG, R. V., ONG, M. S. & HANKINSON, O. (1993). Role of the aryl hydrocarbon receptor nuclear translocator protein in aryl hydrocarbon (dioxin) receptor action. *Molecular Pharmacology*, 44 (3): 511-518.
- PUGA, A., MA, C. & MARLOWE, J. L. (2009). The aryl hydrocarbon receptor cross-talks with multiple signal transduction pathways. *Biochemical Pharmacology*, 77 (4): 713-722.
- QIN, H. & POWELL-COFFMAN, J. A. (2004). The Caenorhabditis elegans aryl hydrocarbon receptor, AHR-1, regulates neuronal development. *Developmental Biology*, 270 (1): 64-75.
- RANNUG, A., RANNUG, U., ROSENKRANZ, H. S., WINQVIST, L., WESTERHOLM, R., AGURELL, E. & GRAFSTRÖM, A. K. (1987). Certain photooxidized derivatives of tryptophan bind with very high affinity to the Ah receptor and are likely to be endogenous signal substances. *Journal of Biological Chemistry*, 262 (32): 15422-15427.
- RANNUG, U., RANNUG, A., SJOBERG, U., LI, H., WESTERHOLM, R. & BERGMAN, J. (1995). Structure elucidation of two tryptophan-derived, high affinity Ah receptor ligands. *Chemistry & Biology*, 2 (12): 841-5.
- REITZEL, A. M., PASSAMANECK, Y. J., KARCHNER, S. I., FRANKS, D. G., MARTINDALE, M. Q., TARRANT, A. M. & HAHN, M. E. (2014). Aryl hydrocarbon receptor (AHR) in the cnidarian Nematostella vectensis: comparative expression, protein interactions, and ligand binding. *Development genes and evolution*, 224 (1): 13-24.
- RICHTER, C. A., TIEBER, V. L., DENISON, M. S. & GIESY, J. P. (1997). An in vitro rainbow trout cell bioassay for aryl hydrocarbon receptor-mediated toxins. *Environmental Toxicology and Chemistry*, 16 (3): 543-550.
- RIGET, F., VORKAMP, K., DIETZ, R. & RASTOGI, S. C. (2006). Temporal trend studies on polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in ringed seals from East Greenland. *Journal of Environmental Monitoring*, 8 (10): 1000-1005.
- RIGET, F., BIGNERT, A., BRAUNE, B., STOW, J. & WILSON, S. (2010). Temporal trends of legacy POPs in Arctic biota, an update. *Science of the Total Environment*, 408 (15): 2874-2884.

- ROSS, P. S., ELLIS, G. M., IKONOMOU, M. G., BARRETT-LENNARD, L. G. & ADDISON, R. F. (2000). High PCB Concentrations in Free-Ranging Pacific Killer Whales, Orcinus orca: Effects of Age, Sex and Dietary Preference. *Marine Pollution Bulletin*, 40 (6): 504-515.
- ROWLANDS, J. C., MCEWAN, I. J. & GUSTAFSSON, J. A. (1996). Trans-activation by the human aryl hydrocarbon receptor and aryl hydrocarbon receptor nuclear translocator proteins: direct interactions with basal transcription factors. *Molecular Pharmacology*, 50 (3): 538-548.
- ROY, N. & WIRGIN, I. (1997). Characterization of the aromatic hydrocarbon receptor gene and its expression in Atlantic tomcod. *Archives of Biochemistry and Biophysics*, 344 (2): 373-386.
- SADOWSKI, I. & PTASHNE, M. (1989). A vector for expressing GAL4(1-147) fusions in mammalian cells. *Nucleic Acids Research*, 17 (18): 7539.
- SAIKI, R. K., GELFAND, D. H., STOFFEL, S., SCHARF, S. J., HIGUCHI, R., HORN, G. T., MULLIS, K. B. & ERLICH, H. A. (1988). Primer-Directed Enzymatic Amplification of DNA with a Thermostable DNA Polymerase. *Science*, 239 (4839): 487-491.
- SAMBROOK, J. & RUSSELL, D. W. (2001). *Molecular Cloning: A Laboratory Manual*. 3 utg., bok 3. New York: Cold Spring Harbor Laboratory Press.
- SCHLENK, D., CELANDER, M., GALLAGHER, E. P., GEORGE, S., JAMES, M., KULLMAN, S. W., VAN DEN HURK, P. & WILLETT, K. (2008). Biotransformation in Fishes. I: Di Giulio, R. T. & Hinton, D. E. (red.) *The Toxicology of fishes*. Boca Raton: CRC Press.
- SCHREER, A., TINSON, C., SHERRY, J. P. & SCHIRMER, K. (2005). Application of Alamar blue/5carboxyfluorescein diacetate acetoxymethyl ester as a noninvasive cell viability assay in primary hepatocytes from rainbow trout. *Analytical Biochemistry*, 344 (1): 76-85.
- SHIMIZU, Y., NAKATSURU, Y., ICHINOSE, M., TAKAHASHI, Y., KUME, H., MIMURA, J., FUJII-KURIYAMA, Y. & ISHIKAWA, T. (2000). Benzo[a]pyrene Carcinogenicity Is Lost in Mice Lacking the Aryl Hydrocarbon Receptor. *Proceedings of the National Academy of Sciences of the United States of America*, 97 (2): 779-782.
- SIEVERS, F., WILM, A., DINEEN, D., GIBSON, T. J., KARPLUS, K., LI, W., LOPEZ, R., MCWILLIAM, H., REMMERT, M., SÖDING, J., et al. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. *Molecular Systems Biology*, 7 (1): 539.
- SMIRNOVA, A., WINCENT, E., VIKSTRÖM BERGANDER, L., ALSBERG, T., BERGMAN, J., RANNUG, A. & RANNUG, U. (2016). Evidence for New Light-Independent Pathways for Generation of the Endogenous Aryl Hydrocarbon Receptor Agonist FICZ. *Chemical Research in Toxicology*, 29 (1): 75-86.
- SOGAWA, K., IWABUCHI, K., ABE, H. & FUJII-KURIYAMA, Y. (1995). Transcriptional activation domains of the Ah receptor and Ah receptor nuclear translocator. *Journal of Cancer Research and Clinical Oncology*, 121 (9-10): 612-20.
- SOJKA, K. M., KERN, C. B. & POLLENZ, R. S. (2000). Expression and subcellular localization of the aryl hydrocarbon receptor nuclear translocator (ARNT) protein in mouse and chicken over developmental time. *The Anatomical Record*, 260 (4): 327-334.
- SOSHILOV, A. & DENISON, M. S. (2008). Role of the Per/Arnt/Sim Domains in Ligand-dependent Transformation of the Aryl Hydrocarbon Receptor. *Journal of Biological Chemistry*, 283 (47): 32995-33005.
- SOSHILOV, A. & DENISON, M. S. (2011). Ligand Displaces Heat Shock Protein 90 from Overlapping Binding Sites within the Aryl Hydrocarbon Receptor Ligand-binding Domain. *Journal of Biological Chemistry*, 286 (40): 35275-35282.
- SOSHILOV, A. A. & DENISON, M. S. (2014). Ligand Promiscuity of Aryl Hydrocarbon Receptor Agonists and Antagonists Revealed by Site-Directed Mutagenesis. *Molecular and Cellular Biology*, 34 (9): 1707-1719.
- SPIESS, A.-N., MUELLER, N. & IVELL, R. (2004). Trehalose Is a Potent PCR Enhancer: Lowering of DNA Melting Temperature and Thermal Stabilization of Taq Polymerase by the Disaccharide Trehalose. *Clinical Chemistry*, 50 (7): 1256-1259.

- STAR, B., NEDERBRAGT, A. J., JENTOFT, S., GRIMHOLT, U., MALMSTROM, M., GREGERS, T. F., ROUNGE, T. B., PAULSEN, J., SOLBAKKEN, M. H., SHARMA, A., et al. (2011). The genome sequence of Atlantic cod reveals a unique immune system. *Nature*, 477 (7363): 207-210.
- SUNDT, R. C., RUUS, A., JONSSON, H., SKARPHÉÐINSDÓTTIR, H., MEIER, S., GRUNG, M., BEYER, J. & PAMPANIN, D. M. (2012). Biomarker responses in Atlantic cod (Gadus morhua) exposed to produced water from a North Sea oil field: Laboratory and field assessments. *Marine Pollution Bulletin*, 64 (1): 144-152.
- SWANSON, H. I. & JUN-HUA, Y. (1996). Mapping the Protein/DNA Contact Sites of the Ah Receptor and Ah Receptor Nuclear Translocator. *Journal of Biological Chemistry*, 271 (49): 31657-31665.
- SWEDENBORG, E. & PONGRATZ, I. (2010). AhR and ARNT modulate ER signaling. *Toxicology*, 268 (3): 132-138.
- SØFTELAND, L., HOLEN, E. & OLSVIK, P. A. (2010). Toxicological application of primary hepatocyte cell cultures of Atlantic cod (Gadus morhua) — Effects of BNF, PCDD and Cd. *Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology*, 151 (4): 401-411.
- TAMURA, K., STECHER, G., PETERSON, D., FILIPSKI, A. & KUMAR, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. *Molecular Biology and Evolution*, 30 (12): 2725-2729.
- TANGUAY, R. L., ABNET, C. C., HEIDEMAN, W. & PETERSON, R. E. (1999). Cloning and characterization of the zebrafish (Danio rerio) aryl hydrocarbon receptor. *Biochimica et Biophysica Acta (BBA) Gene Structure and Expression*, 1444 (1): 35-48.
- TAYLOR, B. L. & ZHULIN, I. B. (1999). PAS Domains: Internal Sensors of Oxygen, Redox Potential, and Light. *Microbiology and Molecular Biology Reviews*, 63 (2): 479-506.
- TIMME-LARAGY, A. R., COCKMAN, C. J., MATSON, C. W. & DI GIULIO, R. T. (2007). Synergistic induction of AHR regulated genes in developmental toxicity from co-exposure to two model PAHs in zebrafish. *Aquatic Toxicology*, 85 (4): 241-250.
- TOOMEY, B. H., BELLO, S., HAHN, M. E., CANTRELL, S., WRIGHT, P., TILLITT, D. E. & DI GIULIO, R. T. (2001). 2,3,7,8-Tetrachlorodibenzo-p-dioxin induces apoptotic cell death and cytochrome P4501A expression in developing Fundulus heteroclitus embryos. *Aquatic Toxicology*, 53 (2): 127-38.
- TSENG, H.-P., HSEU, T.-H., BUHLER, D. R., WANG, W.-D. & HU, C.-H. (2005). Constitutive and xenobiotics-induced expression of a novel CYP3A gene from zebrafish larva. *Toxicology and Applied Pharmacology*, 205 (3): 247-258.
- TSUJI, N., FUKUDA, K., NAGATA, Y., OKADA, H., HAGA, A., HATAKEYAMA, S., YOSHIDA, S., OKAMOTO, T., HOSAKA, M., SEKINE, K., et al. (2014). The activation mechanism of the aryl hydrocarbon receptor (AhR) by molecular chaperone HSP90. *FEBS Open Bio*, 4: 796-803.
- UMESONO, K., MURAKAMI, K. K., THOMPSON, C. C. & EVANS, R. M. (1991). Direct Repeats as Selective Response Elements for the Thyroid-Hormone, Retinoic Acid, and Vitamin-D3 Receptors. *Cell*, 65 (7): 1255-1266.
- UNEP. (2001). Final Act of the Conference of Plenipotentiaries on The Stockholm Convention on Persistent Organic Pollutants; United Nations Environment Programme.
- VAN DEN BERG, M., BIRNBAUM, L., BOSVELD, A. T. C., BRUNSTRÖM, B., COOK, P., FEELEY, M., GIESY, J. P., HANBERG, A., HASEGAWA, R., KENNEDY, S. W., et al. (1998). Toxic Equivalency Factors (TEFs) for PCBs, PCDDs, PCDFs for Humans and Wildlife. *Environmental Health Perspectives*, 106 (12): 775-792.
- VAN DEN BERG, M., BIRNBAUM, L. S., DENISON, M., DE VITO, M., FARLAND, W., FEELEY, M., FIEDLER, H., HAKANSSON, H., HANBERG, A., HAWS, L., et al. (2006). The 2005 World Health
 Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-Like Compounds. *Toxicological Sciences*, 93 (2): 223-241.
- VUORI, K. A., AHLSKOG, J. K., SISTONEN, L. & NIKINMAA, M. (2009). TransLISA, a novel quantitative, nonradioactive assay for transcription factor DNA-binding analyses. *FEBS Journal*, 276 (24): 7366-7374.

- WALKER, M. K. & PETERSON, R. E. (1991). Potencies of polychlorinated dibenzo-p-dioxin, dibenzofuran, and biphenyl congeners, relative to 2,3,7,8-tetrachlorodibenzo-p-dioxin, for producing early life stage mortality in rainbow trout (Oncorhynchus mykiss). *Aquatic Toxicology*, 21 (3-4): 219-237.
- WALKER, M. K., SPITSBERGEN, J. M., OLSON, J. R. & PETERSON, R. E. (1991). 2,3,7,8 Tetrachlorodibenzo-p-dioxin (TCDD) Toxicity during Early Life Stage Development of Lake
 Trout (Salvelinus namaycush). *Canadian Journal of Fisheries and Aquatic Sciences*, 48 (5):
 875-883.
- WALKER, M. K. & PETERSON, R. E. (1994). TOXICITY OF 2,3,7,8-TETRACHLORODIBENZO-p-DIOXIN TO BROOK TROUT (SALVELINUS FONTINALIS) DURING EARLY DEVELOPMENT. *Environmental Toxicology and Chemistry*, 13 (5): 817.
- WATERHOUSE, A. M., PROCTER, J. B., MARTIN, D. M. A., CLAMP, M. & BARTON, G. J. (2009). Jalview Version 2—a multiple sequence alignment editor and analysis workbench. *Bioinformatics*, 25 (9): 1189-1191.
- WHITELAW, M. L., GOTTLICHER, M., GUSTAFSSON, J. A. & POELLINGER, L. (1993). Definition of a Novel Ligand-Binding Domain of a Nuclear Bhlh Receptor - Colocalization of Ligand and Hsp90 Binding Activities within the Regulable Inactivation Domain of the Dioxin Receptor. *Embo Journal*, 12 (11): 4169-4179.
- WHYTE, J. J., JUNG, R. E., SCHMITT, C. J. & TILLITT, D. E. (2000). Ethoxyresorufin-O-deethylase (EROD) Activity in Fish as a Biomarker of Chemical Exposure. *Critical Reviews in Toxicology*, 30 (4): 347-570.
- WILFINGER, W. W., MACKEY, K. & CHOMCZYNSKI, P. (1997). Effect of pH and ionic strength on the spectro-photometric assessment of nucleic acid purity. *Biotechniques*, 22 (3): 474-&.
- WIRGIN, I., ROY, N. K., LOFTUS, M., CHAMBERS, R. C., FRANKS, D. G. & HAHN, M. E. (2011).
 Mechanistic Basis of Resistance to PCBs in Atlantic Tomcod from the Hudson River. *Science*, 331 (6022): 1322-1325.
- WU, D., POTLURI, N., LU, J., KIM, Y. & RASTINEJAD, F. (2015). Structural integration in hypoxiainducible factors. *Nature*.
- YAMAUCHI, M., KIM, E., IWATA, H. & TANABE, S. (2005). Molecular characterization of the aryl hydrocarbon receptors (AHR1 and AHR2) from red seabream (Pagrus major). *Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology*, 141 (2): 177-187.
- YAMAUCHI, M., KIM, E. Y., IWATA, H., SHIMA, Y. & TANABE, S. (2006). Toxic effects of 2,3,7,8tetrachlorodibenzo-p-dioxin (TCDD) in developing red seabream (Pagrus major) embryo: an association of morphological deformities with AHR1, AHR2 and CYP1A expressions. *Aquatic Toxicology*, 80 (2): 166-79.
- ZHAO, B., BASTON, D., KHAN, E., SORRENTINO, C. & DENISON, M. (2010). Enhancing the response of CALUX and CAFLUX cell bioassays for quantitative detection of dioxin-like compounds. *Science China Chemistry*, 53 (5): 1010-1016.

Vedlegg A

Tabell 45 – Identifikasjonsnummer for sekvenser fra Uniprot og Ensembl.

Artsnavn	Navn	Isoform	Uniprot/Ensembl*
Acipenser transmontanus	Hvit stør	AHR1	A0A023PT29
Acipenser transmontanus	Hvit stør	AHR2	A0A023PRZ8
Boreogadus saida	Polartorsk	AHR2	B3GE01
Caenorhabditis elegans	Rundorm	AHR	O44712
Carassius auratus	Gullfisk	AHR2	E4W694
Danio rerio	Sebrafisk	AHR2	Q9YGV3
Danio rerio	Sebrafisk	AHR1a	Q8QGQ3
Danio rerio	Sebrafisk	AHR1b	Q4U3K9
Fundulus heteroclitus	Killifisk	AHR2	Q90505
Fundulus heteroclitus	Killifisk	AHR1	057452
Gadus morhua	Atlanterhavstorsk	AHR2	ENSGMOT0000005198*
Gadus morhua	Atlanterhavstorsk	AHR1b	ENSGMOG0000004692*
Gallus gallus	Høns	AHR2	A0A0A0V9I6
Gallus gallus	Høns	AHR	Q9PTI7
Gallus gallus	Høns	AHR1b	A0A0A0V8Q5
Homo Sapiens	Menneske	AHR	P35869
lctalurus punctatus	Kanalmalle	AHR	W5ULE3
Microgadus tomcod	Atlantisk tomcod	AHR2	B6E9W5
Mus musculus	Mus	AHR	P30561
Oncorhynchus mykiss	Regnbueørret	AHR2a	Q78CN1
Oncorhynchus mykiss	Regnbueørret	AHR2b	Q9YGE9
Pagrus major	Rød havbrasme	AHR2	Q4LER2
Pagrus major	Rød havbrasme	AHR1	Q4LER3
Salmo salar	Atlanterhavslaks	AHR2b	Q6XPT1
Salmo salar	Atlanterhavslaks	AHR2a	Q6XPT2
Salmo salar	Atlanterhavslaks	AHR2d	Q7ZTG9
Salmo salar	Atlanterhavslaks	AHR2g	Q7ZTG6
Salmo salar	Atlanterhavslaks	AHR1a	Q6SL85
Salmo salar	Atlanterhavslaks	AHR1b	Q6SL84
Takifugu rubripes	Japansk kulefisk	AHR2a	Q4JHL4
Takifugu rubripes	Japansk kulefisk	AHR2b	Q4JHL3
Takifugu rubripes	Japansk kulefisk	AHR2c	H2VDH4
Takifugu rubripes	Japansk kulefisk	AHR1a	Q4JHL6
Takifugu rubripes	Japansk kulefisk	AHR1b	Q4JHL5
Xenopus laevis	Afrikansk klofrosk	AHR1a	Q4QY31
Xenopus laevis	Afrikansk klofrosk	AHR1b	Q4QY30

Vedlegg B

Kodende sekvens for torskAHR2 fra Ensembl (predikert fra genomsekvens). N = Ukjent sekvens.

ATGTTGGGTAACGCTGGGACTTACGCTATGAAGAAGCGGAAGAAGCCCGTTCAAAAACCCAAGAAGCTCCCTGGA GTGGATGGGGTCATCAAGTCGAACCCTTCCAAGCGCCACAGGGATCGGCTGAACGGGGAGCTGGATCGCCTGACC GATCTGCTGCCCTTCTCCGAGGACATCCGTACGCGCCTGGACAAACTGTCCGTGCTCCGACTTAGCGTGGGCTAC GTCACCGCTGAGGGATTGGTCTTCTACTCCTCTTCCACAATCCAAGACTACCTGGGCTTCCATCAGTCGGACGTG GTCCACCAGAGTGTGTACGAGCTCATCCACAGAGATGACCGGGGCATGTTCAGAGAGCAGCTTCACTTCGCTCTC AACCCCAAACTCTATGCAACAGGAACAAGGTGGAGACGCCTTGCAGTGCAGCAGCGACCAGGTGAAGTATGACCCC GAGAGACTCCCCCGGAGAACTCCTCCTTCCTGGAGCGGAGCTTCGTCTGCCGTTTCCGCTGTCTCCTGGACAAC TCCTCTGGCTTCCTGGCTTTGAAATTCCAAGGGCGCCTGAAGTACCTCCACGGCCAGAGCATGATGGGCGAGGAC GGCTCGCGGGTCCAGTCTCAGCTAGCCCTGTTCAGCATCGCCGTCCCGTCCAGACTCCATCCTGGAGATC AGGACCAAAACACTCATCTTCCAGACCAAGCACCAGCTGGACTTCACCCCGATGGGCATCGACAACAGGGGGAAG GTTGTTCTCGGCTACTCAGAGCTCGAGTTGTGTATGCGAGGCTCGGGGTACCAGTTCATCCATGCAGCTGACATG ATGTACTGCGCAGACAACCACATACGCATGATAAAGACAGGCGAGAGTGGGCTGAGTGTTTTCCGACTGCTGTCC AAATCGAGTGGCTGGGTGTGGGGTGCAGGCCAACGCCAAGCTGGTGTACAAAGGAGGGCGACCGGACTTCATCATT GCACGCCAGAGAGCTTTAGTCAATGCCGAGGGAGAGAGGAGCACCTCAGGCAGCGCCGGCTCCAGCTGCCCTTCAGC TTCACCACGGGGGGGGGGCCATGCTCTATGAGGTGGGCCCCAGCCTTGACGTCACGCAGATCGAGACCAGTCAAAGC TTCACCAGCGGCCAGCAGGAGGAGGTGGGCGGCTTACTGGGCTGCTTCCTCAACCAGGACAAGAACGTCTATGTG CAGGACTCGGAGGCCCAGCTCCCGGTGGACCAGGTGTTCATGGAGAGCCGGGCGCTTGTCAACGTGCCCAGCGAC CCGGACGACGGCGGGAACATGATCAAGGAGGAGGGCGTCACTTCTGTGTCGGCCATGATGAACGCCCTGGAGGAC TTCGTGGAGAACGGGGACTGGTGTGCCCTGGAGGGGCTGGACGTGGACGCCGGCGAGCTGATGGAGTGGGAGAAC ACGCTCAAGAAGCTCAGTCAGGGAGAACGGCAAAACGCCGACCAGACCAAGTACGAGCTGGAGAGCCTGCTCAGT AATGACATTTTTGCCTACGTGGACAATGTTTTGTTTAAGAATCGCAGAGGCTGCCAGTCTAGCTGCTTTTCGCCC GTCAACAATAATCCAATCCGACCTCTTCGGTCAGAGGGCGCACTACTCTGGCTCCGGGGACACTTGTGACATGATG ATGTTTCAGTCGCCTGCTGTTGGCCAAACGCTGTCTCCCACGAAGGGCCTCTGCGGTGGCCCGCAGCCCATGCAC AACCGGCCGCGGCCAAAGGCTACCCCGGCGTTGTTTAACAGCACTCAGAAACTCTCCCACCGCCACCCCGGCTTT GCCACCCCTCAGCTGCTCACAGACTTTTTCAACCCCTCCGTCAACCTCCCGGGCCTCAACCTTATGGGGGGCCAAC GGACACTTTCTCCAGGGTTCCATTCAGCAAGGCGGCATGGCACCCAACGTGGTGGCCCCTGCGCCGTCCAACCTC CCTCACAATGACTTTTCCATGCCGGCCAATCCCAGCCTCTCTTTACTGGCAACTGCGCAGGGCGGCGCCCCATTT CAAACACAGCAGCAACCAGAGGCACCGGCAATGGCAGCCGGACCTCCAGCCGCGCCTCTAGCCCATGCCAGCGTG GCTCACAGCTGGCAGCCACAGCCAAGCCTTGAGCCAGCGACTCGCCTGGGCCTCTGGGCACAGCGGAAACCAGCCTC CCGCACCGAGGCCTGGCCGGCCCCTGCGGACCAATCCCAGCAGCTGCATGCTGGACAAGCCCTTCCCCACCAAC CTGGCCAGCGCCAACGGCCGGGGCTCGTCCCCGCCATTGTGCCAGAGGGGCAACGAGGCACCGGCTCTGCACCAG AGCCCTCCGAAGGGCTACGTCCAATGGGGCCAAGGCCAAGGCATGCCCCCGATGGGCACCGCCGCCACGGGCCAG GAGAACGCCGCCTTTGGCGCG

Vedlegg C

Kodende nukleotidsekvens for torskAHR2:

ATGTTGGGTAACGCTGGGACTTACGCTATGAAGAAGCGGAAGAAGCCCGTTCAAAAACCCAAGAAGCTCCCTGGA GTGGATGGGGTCATCAAGTCGAACCCTTCCAAGCGCCACAGGGATCGGCTGAACGGGGAGCTGGATCGCCTGACC GATCTGCTGCCCTTCTCCGAGGACATCCGTACGCGCCTGGACAAACTGTCCGTGCTCCGACTTAGCGTGGGCTAC CTGAGAGTCAAGGGCTTCTTCAAAGCCACCATGAAGAAGCACAATGGCCCGAATGGACAGGGCCGGAATGGCGTG GACGTCGCCGCCCTATCTGAGGGCGATCTCCTGCTCCAGGCGTTGAACGGCTTCGTGATCGTGGTCACCGCTGAG GGATTGGTCTTCTACTCCTCTTCCACAATCCAAGACTACCTGGGCTTCCATCAGTCGGACGTGGTCCACCAGAGT GTGTACGAGCTCATCCACAGATGACCGGGGCATGTTCAGAGAGCAGCTTCACTTCGCTCTCAACCCCAAACTC TATGCAACAGAACAAGGTGGAGACGTGTCGGCCTTGCAGTGCAGCGGCCAGCGAGCAGGTGAAGTATGACCCCGAGAGA CTCCCCCGGAGAACTCCTCCTGGAGCGGAGCGTCGTCTGCCGTTTCCGCTGTCTCCTGGACAACTCCTCT GGCTTCCTGGCTTTGAAATTCCAAGGGCGCCTGAAGTACCTCCACGGCCAGAGCATGATGGGCGAGGACGGCTCG CGGGTCCAGTCTCAGCTAGCCCTGTTCAGCATCGCCGTCCCGTCCAGACTCCATCCTGGAGATCAGGACC AAAACACTCATCTTCCAGACCAAGCACCAGCTGGACTTCACCCCGATAGGCATCGACAACAGGGGGAAGGTTGTT CTCGGCTACTCAGAGCTCGAGTTGTGTATGCGAGGCTCGGGGTACCAGTTCATCCATGCAGCTGACATGATGTAC TGCGCAGACAACCACATACGCATGATAAAGACAGGCGAGAGTGGGCTGAGTGTTTTCCGACTGCTGTCCAAATCG AGTGGCTGGGTGTGGGTGCAGGCCAACGCCAAGCTGGTGTACAAAGGAGGAGACCGGACTTCATCATTGCACGC CAGAGAGCTTTAGTCAATGCCGAGGGAGAGGAGCACCTCAGGCAGCGCCGGCTCCAGCTGCCCTTCAGCTTCACC ACGGGGGGGGGCCATGCTCTATGAGGTGGGCCCCAGCCTTGACGTCACGCAGATCGAGACCAGTCAAAGCTTCACC AGCGGCCAGCAGGAGGAGGTGGGCGGCTTACTGGGCTGCTTCCTCAACCAGGACAAGAACGTCTATGTGCAGGAC TCGGAGGCCCAGCTCCCGGTGGACCAGGTGTTCATGGAGAGCCGGGCGCTTGTCAACGTGCCCAGCGACCCCTGG CAGGCCCTGCGGCTGCAAGGGGACGACGGCGGGAACATGATCAAGGAGGGGGGCGTCACTTCTGTGTCGGCCATG ATGAACGCCCTGGAGGACTTCGTGGAGAACGGGGAGCTGGTGTCGGCCCTGGAGGGGCTGGACGTGGATGCCGGC TACGAGCTGGAGAGCCTGCTCAGTAATGACATTTTTGCCTACGTGGACAATGTTTTGTTTAAGGAAATCGCAGAG GCGCACTACTCTGGCTCCGGGGACACTTGTGACATGATGATGTTTCAGTCGCCTGCTGTTGGCGCAAACGCTGTC GGCTTGCCCCCACAAACCCCGGCGTTGTTTAACAGCACTCAGAAACTCTCCCATTATGGACCCGCCATCCCTGAG GCCGTCCCCGGCTTTCCGCCACCCTCAGCTGCTCACAGACTTTTTCAACCCCTCCGTCAACCTCCCGGGCCTC AACCTTCCCAAGTTGCCGTTGGCCAGCAACGACCTGCGGACCTTTGATCCTTGTGGACAGGCGTCGATCAGCCAC TATCAAGGGCTGGCCGGCAACGCGATGTCCAACCAGATGCTGTCCAACCAGACGCCGTCCAAGCAGACGCTGTCC AACCAGACGCTGGCAAACCAGATGCTCTCCAACCAGACGCTGTCCAACCAGACACTGTCCAACCAGACGCTGTCC AACCAGACGCTGGCAAACCAGATGCTCTCCAACCAGACGCTGTCCAACCAGATGCTCTCCAACCAGATGCTCTCC AACCAGATGCTCTCCAACCACGCTGCCCAACCAGACGCTGTCCACCACGACGCTGTCGCCTCAGTCCCTCCAG CCATGCCCCCTCACCGGAGGGCCCGCAGCCCCCATGGGGGGCCAACGGACACTTTCTCCAGGGTTCCATTCAGCAA GCCAATCCCAGCGAAAACAGCGCTCTCTTTACTGGCAACTGCATGGTGCAGGGCGCGCCCCATTTCAAACACAC AGCAACCACAGAGCACCGCAATGGCAGCCGGACCTCCAGCGCCAGCATCAGCCTCTAGCCCATGCCAGCGTGGCT CAGAATTCACACACACTGCCAGCTGGCAGCCACAGCCAAGCCTTTGAGAGCCAGCGACTCGCTGGCCTCTGGGCA TGCATGCTGGACAAGCCCTTGCACCCGCCTCCCGCCACACACCCTCGGCCACCCTCACCCCCACACCAACGGC AACCTGGCCAGCGCCAACGGCACGGGGCTCGTCCCCGCCATGCAGCTGTGCCAGAGGGGCAACGAGGCACCGGCT CTGCACCAGAGCCCTCCGAAGGGCTACGTCCAATGGGGCCAGGGCCAAGGCATGCCCCCGATGGGCACCGCCGCC ACGGGCCAGGAGAACGCCGCCTTTGGCGCGACGCCGCGGCAGCTGCTGCCGGCTAACATTTCCTCGGGCGCGCCA AACGATCTGCTCGCCATACCTCCCCTCGTCGATGGAAATATTTACTTTTCCGATCAGTCACAACTCAACTGTTGC AACTTCTGA

Predikert proteinsekvens for AHR2:

MLGNAGTYAMKKRKKPVQKPKKLPGVDGVIKSNPSKRHRDRLNGELDRLTDLLPFSEDIRTRLDKLSVLRLSV GYLRVKGFFKATMKKHNGPNGQGRNGVDVAALSEGDLLLQALNGFVIVVTAEGLVFYSSSTIQDYLGFHQSDV VHQSVYELIHTDDRGMFREQLHFALNPKLYATEQGGDVSALQCSSDQVKYDPERLPPENSSFLERSFVCRFRC LLDNSSGFLALKFOGRLKYLHGOSMMGEDGSRVQSQLALFSIAVPVQTPSILEIRTKTLIFQTKHQLDFTPIG IDNRGKVVLGYSELELCMRGSGYOFIHAADMMYCADNHIRMIKTGESGLSVFRLLSKSSGWVWVQANAKLVYK GGRPDFIIARQRALVNAEGEEHLRQRRLQLPFSFTTGEAMLYEVGPSLDVTQIETSQSFTSGQQEEVGGLLGC FLNQDKNVYVQDSEAQLPVDQVFMESRALVNVPSDPWQALRLQGDDGGNMIKEEGVTSVSAMMNALEDFVENG ELVSALEGLDVDAGELMEWENTLKKLSQEENGENADQTKYELESLLSNDIFAYVDNVLFKEIAEANLNTSQSS CFSPVNNNQSDLFGQRAHYSGSGDTCDMMMFQSPAVGANAVSHAKGLSPAVAPQPMHNRPASVAAKGLPPQTP ALFNSTQKLSHYGPAIPEAVPRLSATPQLLTDFFNPSVNLPGLNLPKLPLASNDLRTFDPCGQASISHYQGLA GNAMSNOMLSNOTPSKOTLSNOTLANOMLSNOTLSNOTLSNOTLSNOTLSNOTLSNOMLSNOMLSNOM LSNHTLPNQTLSTTTLSPQSLQPCPLTGGPAAPMGANGHFLQGSIQQPAVHMAPNVVAPAPSNLPHNDFSMPA NPSENSALFTGNCMVQGGAPFQTHSNHRAPQWQPDLQRQHQPLAHASVAQNSHTLPAGSHSQAFESQRLAGLW AQNYNGMNQPPPHRGLAGPLRTNPSSCMLDKPLHPPPATHTLGHPHPHTNGNLASANGTGLVPAMQLCQRGNE APALHOSPPKGYVOWGOGOGMPPMGTAATGOENAAFGATPROLLPANISSGAPDDMAAMPHYLDGNKHTOMLS LPTEDNDLLAIPPLVDGNIYFSDQSQLNCCNF

Vedlegg D

Utvidet sekvenssammenstilling:

Killifisk-AHR1	1						- MYAGR	KRRK <mark>PVQ</mark> F	ALKQ	<mark>T</mark> I	- AEGT	K <mark>SNP</mark> SK		ERLA <mark>S</mark> LLP	FPE	50
Kulefisk-AHR1a	1						- M <mark>Y</mark> A <mark>G</mark> R	KRRK <mark>P</mark> V <mark>Q</mark> F	A <mark>VK</mark> Q	<mark>P</mark>	- A <mark>EGA</mark>	K <mark>snps</mark> k	RHRDRLNGE	_ <mark>er</mark> la <mark>s</mark> llp	FPE	50
Laks-AHR1b	1												L <mark>N</mark> SE	_ <mark>dr</mark> la <mark>s</mark> llp	FPE	16
Laks-AHR1a	1						- M <mark>Y</mark> A <mark>GR</mark>	KRRK <mark>P</mark> V <mark>Q</mark> F	<mark>GIE</mark> VKDQ	KEKQTA	S-SEGT	K <mark>SNPS</mark> K	RHRDRLNSE	_ <mark>dr</mark> la <mark>s</mark> llp	FPE	58
Sebrafisk-AHR1b	1						- M <mark>Y</mark> A <mark>G</mark> R	KRRK <mark>P</mark> V <mark>Q</mark> F	ד <mark>∨א</mark> ם	<mark>P</mark> I	- A <mark>EG</mark> V	K <mark>SNPS</mark> K	RHRDRLNSE	_ <mark>dr</mark> ls <mark>s</mark> llp	FPE	50
Havbrasme-AHR1	1						- M <mark>Y</mark> A <mark>G</mark> R	KRRK <mark>P</mark> A <mark>Q</mark> k	(GV <mark>K</mark> P	T	- T <mark>EG</mark> A	K <mark>SNPS</mark> K	RHRDRLNSE	_ <mark>dr</mark> la <mark>s</mark> llp	FPE	50
Kulefisk-AHR1b	1						- M <mark>YAG</mark> R	KRRK <mark>PLQ</mark> K	(GV <mark>K</mark> P	A	² - T <mark>EG</mark> A	K <mark>SNPS</mark> K	RHRDRLNSE	_DRLA <mark>S</mark> LLP	FSE	50
Sebrafisk-AHR1a	1	MLALKK	TLTNH	ESVS	LEIM	sssi	NIYAS <mark>R</mark>	KRRK <mark>P</mark> V <mark>Q</mark> K	(S <mark>VK</mark> Q	<mark>P</mark> I	TCV	K <mark>SNPS</mark> K	RHRDRMNEV	ASLAREIP	FPQ	72
Stør-AHR1	1						- M <mark>Y</mark> AS <mark>R</mark>	KRRK <mark>P</mark> V <mark>Q</mark> K	(SA <mark>KP</mark>	<mark>S</mark> I	<mark>PE</mark> - A	K <mark>SNPS</mark> K	R HRDRLNTEI	_ <mark>er</mark> la <mark>s</mark> llp	FPQ	49
Mus-AHR	1				-MSS	GAN	I T <mark>Y</mark> AS <mark>R</mark>	KRRK <mark>P</mark> V <mark>Q</mark> K	(TV <mark>K</mark> P		P - A <mark>EG I</mark>	K <mark>SNPS</mark> K	RHRDRLNTE	_ <mark>dr</mark> la <mark>s</mark> llp	FPQ	57
Menneske-AHR	1				MNSS	SAN	ITYASR	KRRK <mark>P</mark> V <mark>Q</mark> K	(T <mark>VKP</mark>	11	P - AEG I	KSNPS <mark>K</mark>	RHRDRLNTE	_DRLA <mark>S</mark> LLP	FPQ	58
Laks-AHR2b	1				ML	SNA	GV <mark>Y</mark> AV <mark>K</mark>	(KRKK <mark>PVQ</mark> K	(IK <mark>KT</mark>	<mark>P</mark> /	a - <mark>PE</mark> VV	KSNPSK	RHRDRLNGE	_ DRLTGLLP	FPE	56
Laks-AHR2a	1				ML	SNT	GVYAVK	(KRKK <mark>P</mark> V <mark>Q</mark> K	ТК <mark>КТ</mark>	<mark>P</mark> /	a - <mark>PD</mark> ∨V	KSNPSK	RHRDRLNGE	_DRLTGLLP	FPE	56
Torsk-AHR2	1				ML	GNA	GTYAMK	KRKKPVQk	PKKL	<mark>P</mark> (GVDGVI	KSNPSK	RHRDRLNGE		FSE (57
Tomcod-AHR2	1				ML	GNA	GTYAMK	KRKKPV <mark>Q</mark> K	PKKL	P(<u>avd</u> gv i	KSNPSK	RHRDRLNGE		FSE (57
KIIIITISK-AHR2	1				MS		GIYANK	KRKKPVLK	QKKM	AL		KSNPSK			FPD	57
Havbrasme-AHR2	1				ML	GHPO	GSYANK		QKKL	Sl		KSNPSK			FSE (57
Kuletisk-AHR2a	1				ML	GNP	SSYANK		QKKP			KSNPSK	RHRDRLNGE		FSE	57
Kulefisk-AHR2C	1				MS	GNN	SPYVIR	KRRKPVQr	IVKP	PI	- A	KINPSK			FSU	53
KUIETISK-AHR2D	1				ML		ALYAAK	KRKKPVQr	VPKP	PI		KSNPSK				56
Saimon-AHR2g	1				IVIL	GST	AQYAAK	KRKKPVQr				KSNPSK			FSE :	56
Laks-AHRZO	1				IVIL			KRKKPVQr				KENDER			FSE	50
SIØI-ANKZ	1				IVIL.		OT VAVA	KRKKP I Qr				KENDER				56
Sebialisk-ARRZ	1				1015.	AGI		<u>nennev</u> ur	IPKP	<mark>P1</mark>	- PUGV	NSNPSN				00
Killifisk_AHD1	51		וו אר							P	N				FIL	109
Kulefisk-AHR1a	51	EVTATL		BIS	VSYL	RAK	NEESVT	INTRNGAS		AI	< F		- EDCKTP-R	VESKIPEG		110
laks-AHR1b	17	EVTSSL		RIS	VSYL	RTK	NEESVA	THACK		NI	.∟ +		-DNSKTT-G	VDGWMPEG	FIL	79
Laks-AHR1a	59	EVTSSI		RIS	VSYL	RTK	NEESVA	INTHACK	LKANGG-	NI	+		-DNSKTT-G	VDGWMPEG	FIL	121
Sebrafisk-AHR1b	51	EVTSSI		RIS	VSYL	RAK	NEESVT		LSSNNS-	NI	+		-DNSKAT-G	VDGCL REG	FLL	113
Havbrasme-AHR1	51			RLS	VSFL	RTK	SFFSVA		VNKSSD-	H	GD		-DS-RTS-G		ELL	113
Kulefisk-AHR1b	51	DVIASL			VSFL	RTK	GFFSGV		INKSSD-	H	GG		- GGGAAS - G	ERRLPEG	ELL	114
Sebrafisk-AHR1a	73	EIVSTL			VSYL	RAK	SHEKIT	LNSKSSSC	Q	A			NNT		EFL	125
Stør-AHR1	50		DKL <mark>S</mark> VI		VSYL	RAK	SFFTAS	INSNSCKR	P	A	GN		-GLD VNK	PCDELLEG	ELL	107
Mus-AHR	58				VSYL	RAK	S F F D V A	LKSTPADE	₹ <mark>N</mark>	G	GQ		- DQCRAQ - II		FL	116
Menneske-AHR	59		D <mark>K</mark> L <mark>S</mark> VI		VSYL	RAK	<mark>s</mark> ffdva	LKSSPTER	≀N	G(GQ		- DNCRAANFI	REGLNLQEG	EFL ·	118
Laks AHR2b	57	DVC <mark>SR</mark> LI	D <mark>K</mark> L <mark>S</mark> VI		V <mark>GY</mark> L	k∨k	S F F K A T	MKKS SV	/LF	- PSGN	GLNI		N <mark>G</mark> I	MEATTE <mark>S</mark> KG	DLL	114
Laks-AHR2a	57	DVR <mark>SR</mark> LI	DKL <mark>S</mark> VI	_ 🛛 I 🕏	VGYL	K VK	SFFKAT	MKKSSV	/LF	PGGG	GLNM		NGI	MN TP TF SEG	DLL	114
Torsk-AHR2	58	DIRTRLI			VGYL	RVK	GFFKAT	MKKHNG		PN0	GOGR		NG	DVAAL SEG	DLL	111
Tomcod-AHR2	58	DIRTRLI	DKLSVI		VGYL	RVK	GFFKAT	MKKNNA		PI	GQGR		NG	DLATISEG	DLL	111
Killifisk-AHR2	58	EIR <mark>SR</mark> LI	D <mark>K</mark> L <mark>S</mark> VI	_RL <mark>S</mark>	VGYL	RVK	SYFKA <mark>s</mark>	MKNSNGSF	2VA	PGVN	3Q		N	MDSFSF <mark>SEG</mark>	ELL	114
Havbrasme-AHR2	58	DIR <mark>SR</mark> LI	D <mark>K</mark> L <mark>S</mark> VI	_ <mark>R</mark> L <mark>S</mark>	VGYL	RVK	SHFKAT	MKNSNNSL	LF	<mark>PG</mark> ∨N	GHNG		NN	MD T GGF SEG	DLL	117
Kulefisk-AHR2a	58	EVRTRLI	DKL <mark>S</mark> VI		VGYL	RVK	SYCSA <mark>s</mark>	IRSRRTSF	LS	PGAS	GQNG		ss	TDAAGSSEG	DLL	117
Kulefisk-AHR2c	54	EIRSRLI	DKLSVI	RLS	VGYL	KAK	SCLQA <mark>P</mark>	LRKSSASL	. <mark>P</mark>			<mark>- P</mark> S	NGRNGNVAS	_GGVGF <mark>S</mark> EG	ELL	113
Kulefisk-AHR2b	57	DVR <mark>SR</mark> LI	D <mark>K</mark> L <mark>S</mark> VI	_RLS	VGYL	K∨K	SFFNAS	IKNGQNGS	SWNSERS	IMFGKI	STPLPS	SSN <mark>P</mark> SS	SSGSSQSTS	IDGVSF <mark>S</mark> EG	DLL	138
Salmon-AHR2g	57	DVRARLI	D <mark>K</mark> L <mark>S</mark> VI	_RLS	VGYL	K V K	SFFNAT	MKK GSF	GWGVERA	VGFGGN	GQITLA		-KSTVTTTS	DGVTFSEG	NLL	129
Laks-AHR2d	57	DVRARLI			VGYL	KVK.	SFFSAT	MKK GSF	GWGVERA	VGFGGN	BQITLA		- KSTAKTTS	EAVPF SEG	NLL	129
Stør-AHR2	57		DKL <mark>S</mark> VI		VGYL	RVK	SYFNAT	MKK NNV	GWLREK P	GTFGGN	GQSV		<mark>P</mark> Q	INGTSFSEG	DLL	121
Sebrafisk-AHR2	57		DKLSVI		VGYL	K V K	SFFNAT	IKKT-GGN	GWLNDRS	GTFGGN	GQTA		SS		ELL	122
						-									-	
Killifisk-AHR1	110		FVLVI	TADG	TIFY	SSH	TIQDYL	GFHQTDVI	HQSAYEL	VHTEDQ	RELERN	LHWALN	PPQAAASVI	SQDSSQEME	- <mark>P</mark> D	190
Kuletisk-AHR1a	111	LQALNG	FVLVI	IASG	IFY	SSH	TIQUYL	GEHQIDVM	HQSVYEL	VHIEDQ	RELERN	LHWALN	PPAAA-SIS	SQUSPQEME	- AD	190
Laks-AHR1D	80	LQALNG	FVLVI	TAEG	TIFY	SSH	TIQUYL	GEHQIDVN	HQSVFDL	THIEDQO	JEFRRN	LHWALN	PPAVPQQ-V	ESPPDGK	PVP	158
Laks-AHR1a	122		FVLVI	TAEG	ITEX	SSH	TIQUYL	GFHQTDVN	HUSVFUL	THTEDQ	JEFRRN		PPVVPQQ-V		PVP	200
Sebratisk-AHR1D	114		FVLVV	AEG	ILFY	CSH	TIQUYL	GEHQIDVN	HUNVFEL	THIEDQO	JAFRRN.		PPPASTQTE	DSSEDGD	PAP	193
Havbrasme-AHR1	114		FVLVV	AEG		CSH	TIQUYL	GFHQIDVN	HUSVFEL	THTEDQ	JEFRRN	LHWALN	PPAGLGPPS	DPSTDGE	SVS	193
KUIETISK-AHR1D	115	LUALNG	FVLVV	EG	NIFF	CSH	TRUYL	GEHQIDVN	HUSVFEM	THIEDQO	JEFREN	LHWGPD	IPIA	EPEIDGE	SVS	190
Sebratisk-AHR1a	126		FLLVV	1556	TVFY	VSS		GFHQSDVI	HQSVYEL	THIEDRI	1EFQRQ		PGFTPDSRQ	VQAS		200
SIØF-AHRT	108		FVLVV	DADG	SVFY	VSP		GENUSUVI	HUSVYEL	HIEDR	AEFORD		PGPPPUSGQ	VPAADNG-	7 7 7	185
Mus-AHR Mannaaka AUD	117	LOALNO	FVLVV			ASS	TIQUYL	GEOGEDVI	HOSVYEL	INTEDR/	AFFORO		PDSAU	SVDEA-HG-		189
Nenneske-Ank	115			TAFC		ABB		GELOSDVI	HUSVIEL	INTODE			PSQUIESGQ	DO M ES	COD -	195
Laks-ARRZD	110	LOALNO		TAEG		ADP	TIQUIL	GEHORDVV	HOOVEEL	INTODR	ATERRO		PKPEDPEQG		SSD	193
Laks-Ankza	110		FVLVV	TAEG		ADP	TIODYL	CEHORDVA	HORVEL	INTODR	MEREO		PKPEDPEQG		0.00	193
Tomcod_AUP2	112	LOALNO	EVINA	TAEC		000	TIODY	GEHOSDVA	HOSVEL	HTDDR	AMEREC			DA-L AL	0	189
Killifiek_AHD?	112	LOALNO	EVINA	TSEC		ACD		GEHOSDVA		IHTODR/			PPPVAG	DA-LAL	0-	187
Havbrasme AHDO	119		EVINA	TOPO	LVEY		TIKOVI	GEHOSDVA	HOSVEEL	IHTODE	ALEPOO		PPTACA	GG-D-VI	0	190
Kulefisk_AHD9a	118	LOALNO	EVMVV	TSEC	LVEY	VSP	TIKDYL	GEHOSDVA	HOSVEEL	IHTODE	SEPOO	LHEALN	PPAET		0	189
Kulefisk-AHP2c	114	I KALNC	EVINU	MADO	MVEY	ASP	TIODEL	GEHOSDVA		VHMDDD					SCS	185
Kulefisk-AHR2h	139	LOAL NO	EVIVV	TAEG	YVEY	TSP	TIODEL	GEHOSDVI	HOSVEEL	IHTODP	ALEPSO	HEAEL	PTSSO-ODE	GDSTSDOS	SVE	219
Salmon-AHR2a	130	HOAL NG	FVLVV	TAEG	YVEY	SSP	TVODY	GEHOSDVA		IHTODE	ALFRRO	LHEALN	PNQEDTERG	TTESLOPNN	ISSD	211
Laks-AHR2d	130	LOAL NG	EVLVV	TAFG	YVEY	SSP	TIONYI	GEHOSDVA	HOSVEEL	IHTODE		LHEALN	PSOFDSEPG	TESLOPNN	ISSD 1	211
Stør-AHR2	122	LOALNG	FVLVV	TAEG	YVEY	SSP	TIONYI	GEHOSDVA	HOSVPEL	IHTODE	AMERRO	LHEALN	PNPFESEOG	T-ELMOSES	NST	202
	1.000.000															

Killifisk-AHR1	191	s <mark>s</mark> ss	6LVT	'YN <mark>F</mark>	P <mark>EQ</mark> L	P P E N S	SSFL <mark>e</mark>	RNFV	C <mark>R</mark> F	RCLLD	NSS <mark>G</mark> F	LAL	I I <mark>Q</mark> GR L	L <mark>K</mark> F	"L H <mark>G</mark> QN	QQR -	EN <mark>GG</mark> K.	A <mark>TPQ</mark> L.	ALFAI.	A T P L QI	PP <mark>S</mark> 271
Kulefisk-AHR1a	191	ssss	6 L L T	YS	PEHL	PPENS	ssfl <mark>e</mark>	RNFM	ICRF	RCLLD	N S S <mark>G</mark> F	LALS	I <mark>Q</mark> GRL	L <mark>K</mark> F	"L H <mark>G</mark> QN	HRQ-	EN <mark>GT</mark> K	I <mark>PPQ</mark> L.	ALFAI	ATPLQI	PPS 271
Laks-AHR1b	159	SS-S	SLVT	YNF	PDQL	PPENS	SSFLE	RNFV	CRF	RCLLD	NSSGF	LALT		LKF	LHGQN	CRL-	DDGCN	VPPQL.	ALFAI.	ATPLQ	PPS 238
Laks-AHR1a	201	S <mark>S</mark> -S	SLVT	YNF	PDQL	PPENS	SSFLE	RNFV	CRF	RCLLD	NSSGF		LOGRI	LKE	LHGQN	CHL-		VPPQL.	ALFAI.	ATPLQ	PPS 280
Sebratisk-AHR1b	194	NM - S			PDQL	PPENS	SSFLE	RNEV	CRF	RCLLD	NSSGF		FQGRL		LHGQN	RRL-	DDGGQI	MPPQL.	ALFAI.		PPS 273
Havbrasnie-AHR1 Kulefisk AHD1b	194	Tee							CDE	PCLLD	NTSGE					NSU-	- 3E03	SPPUL.	ALFAI.		PPA 273
Sehrefisk-ARTD	201						STOLE			PCLLD	STSCE					FST-			ALFAI. Alfai		
Stør-AHR1	186				PEKI	PPENS	SAFLE	BNEV	CRI	RCLID	NSSGE		FOGRI		THGON	TKS-			AL EVV.		PPS 266
Mus-AHR	190	PPOA	ÂVY	YT F		PPENA	SEME	RCFR	CRI	RCLID	NSSGE		FOGRI		I HGON		KDGAL	PPOL	ALFAL		PPS 270
Menneske-AHR	196		vvc			PPENS		RCFI	CRI	RCLID	NSSGE	LAMN	FOGK		I HGOK	KKG-	KDGSI	PPOL	ALFAL		PPS 276
Laks-AHR2b	194	ITRN	IVT	YN	EQL	PPENS	SSFLE	RNFV	CRF	RCLLD	NSSGF	LAL	FOGR	LKF	LHTOS	MLG-			GLFTI	ATAVQ	NPS 274
Laks-AHR2a	194	ITRN	IVT	YN	PEQL	PPENS	SSFLE	RNFV		RCLLD	NSS <mark>G</mark> F	LAL	FQGRL	L <mark>K</mark> F	LH <mark>GQ</mark> S	ML <mark>G</mark> -	DDG <mark>T</mark> R	SQ <mark>PR</mark> L	GLF <mark>T</mark> I.	ATPVH	TPS 274
Torsk-AHR2	189	c <mark>s</mark> se	0Q <mark>v</mark> k		PERL	PPENS	SSFLE	RSFV	CRF	RCLLD	NSS <mark>G</mark> F	LAL	(F <mark>QGR</mark> L	L <mark>K</mark> Y	LH <mark>GQ</mark> S	MM <mark>G</mark> -	EDG <mark>S</mark> R'	vq <mark>sq</mark> l.	ALF <mark>S</mark> I.	AV <mark>P</mark> VQ	TPS 269
Tomcod-AHR2	189	CNSE)Q∨k	(YD <mark>F</mark>	PERL	PPE <mark>NS</mark>	SSFL <mark>e</mark>	RSFV	CRF	RCLLD	NSS <mark>G</mark> F	LAL	(F <mark>Q</mark> G <mark>R</mark> L	L <mark>K</mark> Y	LH <mark>GQ</mark> S	MMS -	DDG <mark>T</mark> R'	VQ <mark>SQ</mark> L.	ALF <mark>S</mark> I.	AV <mark>PVQ</mark>	TPS 269
Killifisk-AHR2	188	GCAK	(<mark>av</mark> n	1 Y N F	PEQL	PPDS S	SSFL <mark>E</mark>	RSFV	CRF	RCLLD	N S S <mark>G</mark> F	LAL	(F H <mark>GR</mark> L	L <mark>K</mark> Y	LQ <mark>GQN</mark>	LCK-		KK <mark>VQ</mark> L.	ALF <mark>A</mark> I.	am <mark>p∨Q</mark> I	PPS 268
Havbrasme-AHR2	191	GCGN	1 <mark>6</mark> /N	1 Y P F	PEQL	PPENS	ssfl <mark>e</mark>	RSFV	CRF	RCLLD	N S S G F	LALK	(F <mark>QGR</mark> L	L <mark>K</mark> F	VH <mark>G</mark> H -	R -	VNGTC	NK <mark>PQ</mark> L.	ALF <mark>S</mark> I.	am <mark>pvqi</mark>	PPT 268
Kulefisk-AHR2a	190	SCGS	AVT	YS	PDQL	PPENS	SSFLE	RTFV	CRF	RCLLD	NSSGF	LALS	FQGRL		LHGQN	GLR -		S <mark>hpq</mark> l.	ALF <mark>T</mark> I.	AVPVH	PPP 270
Kulefisk-AHR2c	186	CSNE	PVS			PPESS	SSFLE	RSFC	CRL	RCLLD	NTSGF		FTGRL		LSLLG	TRG-	ADGG -	TA.	ALFAI.	ATPVE	PPS 262
KUIETISK-AHR2D	220					PPENS	SSFLE	RNFC	CRF	RCLLD	NSSGF		FHGRL		THGQN	RMA -	EDGIL	VHPQL.	ALFAV.	ATPMQ	PPS 300
Saimon-AHR2g	212	ITCN				PPENS	SSFLE	RSEV		RCLLD	NSSGE				LHGQN	KINS -			ALFLV.	ATPIQ	TPS 292
Star AUD2	202					DDENG	REFIE	DSEC	CDE	BCLLD					LHCON	NW13 -	EDGT				DDG 292
Sebrafisk_AHD2	203					DDENG		DSEC	CPF	PCLLD	NSSGE				LHGON	KLA.	EDGT				DDS 203
SCDI BIISK-AITINZ	201											LAL				NEA-					10 201
Killifisk-AHR1	272	ILEI	RTK	NM		KHKLE		ACDA	KGK	IVL <mark>G</mark> Y	TEAEL	RVRC	SGYQF	FIH					SGLTV	FRLLT	KEN 353
Kulefisk-AHR1a	272	ILEI	RTK	NM	IFRT	KHKLC	DE TPM	ACDA	KGK	IVL <mark>G</mark> Y	TEAEL	.RV <mark>R</mark> G	SGYQF	FIH	AADML	YCAE	NHVRM	M <mark>KT</mark> GE	SGLTV	FRLLT	KEN 353
Laks-AHR1b	239	ILEI	RTK	NM	I FR T	K <mark>h</mark> kle	DF <mark>T</mark> PM	ACDA	RGK	IVL <mark>G</mark> Y	TEAEL	.RV <mark>R</mark> G	SGYQF	F I <mark>H</mark>	AADML	Y <mark>CAE</mark>	NH∨RM	I <mark>K T</mark> GE	SGLT∨	FRLLT	KDN 320
Laks-AHR1a	281	ILEI	RTK	NM	I FR T	K <mark>h</mark> kle	DF <mark>TP</mark> M	AC <mark>D</mark> A	RGK	I VL <mark>G</mark> Y	TEAEL	.RV <mark>R</mark> G	SGYQF	F I <mark>H</mark>	AA <mark>D</mark> ML	Y <mark>CA</mark> E	<mark>NH</mark> ∨RM	I <mark>K</mark> TGE	S <mark>G</mark> LT∨	FRLLT	KDN 362
Sebrafisk-AHR1b	274	I M <mark>E</mark> I	RTK	NM	I FR T	K <mark>h</mark> kle	DF <mark>TP</mark> M	AC <mark>D</mark> A	K <mark>G</mark> K	I VL <mark>G</mark> Y	TEAEL	.RV <mark>R</mark> G	S <mark>GYQ</mark> F	F I <mark>H</mark>	A A <mark>D</mark> M L	Y <mark>CA</mark> E	<mark>NH</mark> ∀ <mark>R</mark> M	I <mark>K T</mark> GE	S <mark>G</mark> LT∨	FRLLT	KDN 355
Havbrasme-AHR1	274	ILEI	RTR	NM	I F R T	K <mark>h</mark> kle	DE TPM	ACDA	KGK	I VL <mark>G</mark> Y	TEAEL	.RV <mark>R</mark> G	SGYQF	F I <mark>H</mark>	A A <mark>D</mark> M L	Y <mark>CAE</mark>	<mark>NH∨R</mark> M	I <mark>KT</mark> GE	SGLT∨	FRLLT	KEN 355
Kulefisk-AHR1b	272	ILEI	RTR	NM	IFRT	KHKLE	OF TPM	ACDA	KGK	I VL <mark>GY</mark>	TEAEL	.RV <mark>R</mark> G	SGYQF	FIH	AA <mark>D</mark> ML	YCAE	NH VRM	I <mark>KT</mark> GE	SGLT∨	FRLLT	KDN 353
Sebrafisk-AHR1a	282	ILEI	RTK	NLM	IFKT	KYKLE	DETPI	ACDT	NWN	FVLGY	TEAEL	CNSC	SGYQF	FIH		YCAE	GHMRM	MRTGE	TGLTV	FRLLT	KQN 363
Stør-AHR1	267	ILEI	RIR	NE	IFR	KHKLL		ACDA	KGK	IVLGY	TEXEL		IGYQH		AADML	YCAE	NHIRM	IKIGE	SGMIV		KQN 348
Mus-AHR	271		RIK			KHKLL		GCDA	KGU	LILGY	TEAEL		SGYQ			HCAE	SHIRM				KHS 352
Laks AHD2h	275		DTK		FOT			GUDA	PGK	VVLGY	SEMEL		SCYOR								KTC 356
Laks-AHR2D	275		P TR	TIF	FOT	KHKLE		GVDA	PGK		SEIEL		SGYOF	FIH					SGLITT		TG 356
Torsk-AHR2	270		RTK	ті	IFOT	кног	FTPI	GIDN	RGK		SELE	CMRG	SGYOF	FIH		YCAD	NHIRM		SGLSV	FRIIS	KSS 351
Tomcod-AHR2	270	ILEI	RAK	TL	FQT	KHQLE	FTPM		RGK	VVLGY	SELEL		SGYQE	FIH		YCAD	NHLRM	IKTGE	SGLTV	FRLLS	KSS 351
Killifisk-AHR2	269	IVEI	RAK	MLL	FQT	RHKLC	DFTPT	<mark>G∨</mark> D T	RGK	AIL <mark>G</mark> Y	TEIEL	.см <mark>к</mark> а	SGYQF	FIH		YCAD	NHIRM	I <mark>KT</mark> GE	SGLT∨	FRLL <mark>S</mark>	KSN 350
Havbrasme-AHR2	269	I V <mark>E</mark> I	RAK	MLL	FQT	K <mark>h</mark> kle	DF T P M	GIDS	RGK	VVL <mark>G</mark> Y	SEVEL	.см <mark>к</mark> е	SGYQF	F I <mark>H</mark>		Y <mark>CAD</mark>	SHLHM	I <mark>K T</mark> GE	TGLIV	FRLL <mark>S</mark>	KSN 350
Kulefisk-AHR2a	271	I ⊻ <mark>E</mark> I	RAK	MLL	_F <mark>QS</mark>	K <mark>h</mark> kle	DF <mark>T</mark> PM	I <mark>g i d</mark> s	RGR	VVL <mark>G</mark> Y	SETEL	.см <mark>к</mark> е	S <mark>GY</mark> QF	F I <mark>H</mark>	A A <mark>D</mark> M M	Y <mark>CAD</mark>	NHLRM	I <mark>KT</mark> GE	S <mark>G</mark> МT∨	FRLL <mark>S</mark>	KSS 352
Kulefisk-AHR2c	263	I TE I	RTK	TF	I F <mark>QT</mark>	K <mark>hr</mark> me	DF <mark>AP</mark> M	I <mark>G I D</mark> T	R <mark>G</mark> K	lvl <mark>gy</mark>	SETEL	.V <mark>T</mark> RG	S <mark>GYQ</mark> F	F I <mark>H</mark>	A A <mark>D</mark> M M	Y <mark>CAD</mark>	NHLKM	M <mark>KT</mark> GN	S <mark>G</mark> FTF	FRLLT	KTG 344
Kulefisk-AHR2b	301	IVEI	RAK	TL	IFQT	K <mark>h</mark> kle	DF T P M	GIDT	RGK	M∨L <mark>G</mark> Y	NEVEL	.CM <mark>K</mark> G	SGYNF	FIH	A A <mark>D</mark> M M	YCAD	NH I <mark>K</mark> M	I <mark>KT</mark> GE	SGFT∨	FRLLA	KSG 382
Salmon-AHR2g	293	ILEI	RTK	TL	IFQT	KHKLE	DFTPT	NVDT	RGK	VVL <mark>GY</mark>	TELEL	.CMRG	SGYQF	FIH		HCAD	NHIRM	IKTGE	TGLTV	FRLLA	KNG 374
Laks-AHR2d	293	ILEI	RTK	TL	IFQT	KHKLE	DETPT		RGK	VVLGY	TELEL		SGYQF	FIH		YCAD	NHIRM	IKTGE	SGLTV	FRLLA	KNG 374
Stør-AHR2	284		RIK		FQT	KHKLL		GCDT	RGK	VVLGY			IGYQH			HCAD					KNG 365
Sepransk-AHR2	282		RSK		FUI	MAKLL			RGK	VVL <mark>GY</mark>						YUAD				FRLLS	AGG 363
Killifisk-AHR1	354	R <mark>wkv</mark>	W <mark>O</mark> A	NA				ATOR	PLI		EHI RK	RSMH		FAT	GEALL	Y <mark>O</mark> SN	HPLAG	FID <mark>G</mark> S	OEKNS	т - күкі	KSR 434
Kulefisk-AHR1a	354	RWKV		NA	RLVY	KNGK		ATOR	PLL	DEEGG	EHLRK			YAT	GEALL		HPIAG	FIDDT	HEKNG	s - KSKI	KSR 434
Laks-AHR1b	321	RWRV	WQA			KNGK		ATOR	PLV	EEEGG	EHLRK	RSM⊢		FAT	GEALL	y <mark>a</mark> ss	<mark>үр</mark> ін <mark>с</mark>	LTDSL	QTK <mark>G</mark> K	T - KSKI	К <mark>G</mark> К 401
Laks-AHR1a	363	RWRV	w <mark>a</mark> a	NA	RLV <mark>Y</mark>	KNGK	PDY II	A T QR	PLV	'E <mark>EEGG</mark>	EHLRK	(<mark>R</mark> SM⊦	IL <mark>P</mark> FTF	FAT	GEALL	y <mark>q</mark> ss	Y <mark>P</mark> IH <mark>G</mark>	LTDSL	атк <mark>с</mark> к	T - KSKI	к <mark>б</mark> к 443
Sebrafisk-AHR1b	356	RWKV	w <mark>q</mark> ∧	NA	₹LV <mark>Y</mark>	K N G K F	P <mark>DY</mark> II	A T QR	PL∨	'E <mark>EE</mark> GG	EHLRK	(<mark>R</mark> SM⊢	IL <mark>P</mark> F T F	FAT	GEALL	Y <mark>Q</mark> I N	YPMLG	F <mark>P</mark> DTL	QDK <mark>G</mark> K	NNKTK	KSK 437
Havbrasme-AHR1	356	RWKV	w <mark>q</mark> ∧	NA	₹LV <mark>Y</mark>	KNGKF	PDY I I	ATQR	PL∨	D <mark>EE</mark> GG	EHLRK	(<mark>R</mark> SMH	IL <mark>P</mark> FTF	FAT	GE AML	Y <mark>Q</mark> TG	YPLHG	F <mark>P</mark> DSF	Q <mark>G</mark> KAK	3 SKSKI	KSK 437
Kulefisk-AHR1b	354	RWKV	W <mark>Q</mark> A	NA	2 L V <mark>Y</mark>	KNG <mark>K</mark> F	2 <mark>21</mark> 10	ATQR	PLV	D <mark>EEGG</mark>	EHLRK	(<mark>R</mark> SMF	IL <mark>PFT</mark> F	FAT	GE AML	Y Q T G	HPL HS	FSESV	Q <mark>G</mark> KAK	3 SKTKI	K <mark>G</mark> K 435
Sebrafisk-AHR1a	364	RWVV	was	NG	<l td="" v="" y<=""><td>KNG<mark>Q</mark>F</td><td></td><td>TSHR</td><td>VIT</td><td>AEEGE</td><td>ENLRN</td><td>I<mark>R</mark>AMN</td><td>IL<mark>PFS</mark>F</td><td>FTT</td><td><mark>GD</mark>AVL</td><td></td><td>C P T S SI</td><td>D <mark>P</mark>A</td><td>PSD</td><td></td><td> 433</td></l>	KNG <mark>Q</mark> F		TSHR	VIT	AEEGE	ENLRN	I <mark>R</mark> AMN	IL <mark>PFS</mark> F	FTT	<mark>GD</mark> AVL		C P T S SI	D <mark>P</mark> A	PSD		433
Stør-AHR1	349	RWAV	WQA	NA		KNGRF	PEYII	ATQR	ALS	DNEGL	ENLRK		LPFNF	FAT	GEAVL	YETT	FPLAM	T - Q	PMHAK.	AK <mark>G</mark> TS/	AT - 426
Mus-AHR	353		wqs	NA		RNGRI		ATOR		DEEGR	EHLQK				GEAVL	YEIS	SPESP		PIRIK	SNISRI	KD - 433
Laks AUD2b	359	CMAA	wus	NA		KOCP									GEAVL				FOTN		AD - 439 439
Laks-AHR2D	357	CWAA				KGGP			ALL	NSEGE					GEALL					DDK	429
Torsk-AHR2	352	GWW	WOA	NA		KGGR		AROR		NAEGE	EHLRC			FTT	GEAMI		PSLDV	TO	- IETS	OSE	425
Tomcod-AHR2	352	GWVV	WOA	NA		KGGR		AROR		NAEGE	FHIRG			FTT	GEAMI		PSLDV	то	- 1015	QTF	424
Killifisk-AHR2	351	Gw/v	WKS	NA		KEER		AFQK	ALT	NAEGE	EYLRC	RRLC		CAT	GEAIL	YNTG	PTMDI	sQ	-LKFN	KMF	423
Havbrasme-AHR2	351	RW//	w <mark>k</mark> s	NA		KGGR	PEFII	AYQR	ALV		EYLRC			F T <mark>T</mark>	GEAVL	YDNG	PTVDL	sq	- FQFN	NLF	423
Kulefisk-AHR2a	353	Gw/v	w <mark>k</mark> ⊿	NA	<l i="" td="" y<=""><td>KGGR</td><td>PD F I I</td><td>AYQR</td><td>ALV</td><td>NAEGE</td><td>EYLRC</td><td></td><td>LPFSF</td><td>FTT</td><td>GEAVL</td><td>Y<mark>D</mark>TG</td><td>P T V D I</td><td>s<u>q</u></td><td>- <u>FQF</u>N</td><td>KVF</td><td> 425</td></l>	KGGR	PD F I I	AYQR	ALV	NAEGE	EYLRC		LPFSF	FTT	GEAVL	Y <mark>D</mark> TG	P T V D I	s <u>q</u>	- <u>FQF</u> N	KVF	425
Kulefisk-AHR2c	345	CWLV	w <mark>q</mark> ∧	SA	2VVF	KNGR	PD F I I	ARQK	ALT	NKEGE	EHLHC		L <mark>P</mark> F N L	LS <mark>P</mark>	GDG∨L	Y <mark>D</mark> TW	MEPFS	L <mark>P</mark>	- <mark>GPP</mark> A	sda <mark>a</mark> s	419
Kulefisk-AHR2b	383	swiv	W <mark>Q</mark> A	NA		KDGK	PD FIV	'AR <mark>Q</mark> K	ALT	NEEGE	EQLHL	RRLC	L <mark>P</mark> F N F	FAT	GE AML	YDVT	PTIGP	<mark>P</mark> D	- <mark>P</mark> CSA	<mark>- P</mark> K	454
Salmon-AHR2g	375	VWIV	WQA	NA		KGGR		VRQR	PLS	NEGE		RRLC	IL P F N F	FTT	GEAVL	YEMG	PSLDV	TD	- V <mark>P</mark> SQ	SKGPK	449
Laks-AHR2d	375	VWVV		NA		KGGR			PLS	NKEGE	EQLRC			A	GEAVL		PSLDI.	AD		SKGPK	449
Sehrafisk_AHD9	364	TWLM	WQA	NA		KACD				NEECE	FHIDO				GEGVL			ΔE			438 /96
C Son anon-/htth	004		• • <mark>•</mark>					ALC: NOT				· • • • • • • • • • • • • • • • • • • •		- N						- n <mark>-</mark>	400

Killifisk_AHR1	435 GERLI					PK.TS		EHSN		SVSE <mark>P</mark> S.	R 490
Kulofick AUD1o								ELOO		SCADAS	
Kulelisk-Arik Ia	433 IDRL/		GSLLGALMS	QDESVI		PK-VS				SSADAS-	
Laks-AHR1D	402 LDKN	SSKUNGGLUP	SSLLGALMR	QUESVIN		PK-WS				EGHSSGC	TSGGPLGGG 469
Laks-AHR1a	444 LDKN	LSKDH <mark>GGLDP</mark>	S <mark>S</mark> LL <mark>G</mark> ALMR	QDESVY	/CQ <mark>P</mark> AVE	PK-MS		FHSS	GLF SERRE <mark>G</mark>	E <mark>G</mark> QSS <mark>GG</mark>	YS <mark>GGPLGGG</mark> 511
Sebrafisk-AHR1b	438 VNKS	S - - - KDD <mark>LDP</mark>	S <mark>S</mark> LLGAMMR	QDESVY	/CQ <mark>P</mark> AME	PR-MS		<mark>FH</mark> SS	GLF <mark>GE</mark> Q <mark>G</mark> ET	STFSSS-	A 493
Havbrasme-AHR1	438 QDKN	S SED <mark>LDP</mark>	K <mark>g</mark> llgalms	QDESVY	/CQ <mark>PDPE</mark>	PK-MS		<mark>YH</mark> SS	SLF S <mark>E</mark> Q <mark>P</mark> SD	SS	488
Kulefisk-AHR1b	436 Q S	S SDNLDP	K <mark>s</mark> ll <mark>g</mark> alms	QDESVY	/CQ <mark>P</mark> DS <mark>E</mark>	PA-VS		<mark>GP</mark> SS	LLSQQQTD	SECSSF -	<u>-</u> - <mark>- L</mark> 489
Sebrafisk-AHR1a	434 - <mark>G</mark> NT(Q <mark>P</mark> KTTRT <mark>V</mark> N <mark>P</mark> I	D <mark>s</mark> llv <mark>s</mark> llk	QPKSIYL	S <mark>PG</mark> DER	RSVLVQ		<mark>S</mark> L	<mark>G</mark> NKD		LD <mark>G </mark> 483
Stør-AHR1	427 GASSI	KARDQES <mark>LDP</mark>	N <mark>S</mark> LL <mark>G</mark> AILK		/CA <mark>P</mark> AQN	ITI S		F ET <mark>G</mark>	PFIDTKDD		LNGI 481
Mus-AHR	434 WAPQ	ST <mark>P</mark> SKDS <mark>FHP</mark>	S <mark>S</mark> LMSALIQ		CPPSSF	AL		LDSH	IFLMGS		VS 482
Menneske-AHR	440 SATT:	STLSKDSLNP	S <mark>S</mark> LLAAMMQ		YPASST	SSTAP		F ENN	FFNES		MN 491
Laks-AHR2h	430 10	CKVESIDE									RALTNV 476
Laks_AHR2a	430 10	CKVESI DP									RAL TNV 476
Torsk AUD2	425 1										
Tomand AUD2	425 13 425 - N										
Killifiala AUDO	423 N		TOLLOOFLO		OTVDT						RALVNV 470
KIIIIISK-ARKZ	424 E	SEDIKKDMLP									HAL VSV 472
Havbrasme-AHR2	424 53	SUDVHKUEPP	SSLLDCFLK	QUKTAY							RALV51 472
Kulefisk-AHR2a	426 Al	JGDLAKNVAPI	GSLLDSFLK	QDETAY				LPVDG	ANT MUS		RALLST 4/4
Kulefisk-AHR2c	420 VTI	K <mark>p</mark> aavdsl <mark>d</mark> p.	A <mark>sllgslh</mark> r	adhsvys	SCA <mark>P</mark> KPF	PORFPOR	PEELDSEP	PQSPLEC	AFWDS		HALLSV 486
Kulefisk-AHR2b	455 QI	RKLDDSS <mark>VS</mark> P	NSIL <mark>G</mark> CMMN	QDQSLY!				SID <mark>D</mark> L	AFK <mark>DT</mark>		HA <mark>T</mark> LSV 503
Salmon-AHR2g	450 IRI	KMAEEMA <mark>LDP</mark> I	D <mark>SLLGS</mark> MLK	Q <mark>D</mark> QA I YN	NQTSPSE	PSSEPPN	PQELC	S <mark>W</mark> E <mark>D</mark> C	AFSN <mark>S</mark>		HA <mark>M</mark> AN <mark>∨</mark> 511
Laks-AHR2d	450 IRI	KMAEEMA <mark>LDP</mark> I	D <mark>SMLGS</mark> MLK	Q <mark>D</mark> QS∨ <mark>Y</mark> N	NQTS <mark>P</mark> SE	PSSGPPN	PQELC	S <mark>W</mark> E <mark>D</mark> C	AFSN <mark>S</mark>		HA <mark>M</mark> AN∨ 511
Stør-AHR2	439 KI	K <mark>g</mark> aeqks <mark>IDP</mark>	N <mark>S</mark> LL <mark>G</mark> ARLK	Q <mark>D</mark> QS I YN	/SHAAS <mark>e</mark>	PQY		<mark>SLD</mark> K	AMDDT		T I VNV 488
Sebrafisk-AHR2	437 QI	KMLN <mark>PPSLDP</mark> I	D <mark>SLLGS</mark> MLK			ISQF		<mark>T I D</mark> K	AFGDS		HALLNV 487
Killifisk-AHR1	491 QSK <mark>S</mark>	WHEPRNGALG	PGI	P EPG	T <mark>S</mark> FD <mark>P</mark> LL	ATLDSLT		AED <mark>GGC</mark> S	NS <mark>ELFG</mark> AL	EGLGLSA	EDLELLLD 564
Kulefisk-AHR1a	491 LRR	NDETSNGVVA	PGA	TQAQVGS	S <mark>SEDPLL</mark>	ATLDSLS	LEGOGILDS	SD <mark>EGGC</mark> S		EGLGLSA	EDLELLLD 566
Laks_AHR1h	470 L GES	NSSVPNGVTT	AST	PNGEPPS	SSEDPLI	ATLDSLS	LEGD	ETCS			
Laks_AHD1a			TSTG		SEDPLI	ATLOSIS		ETCS			
Sebrefick AUD1h		NNPVONGVTT	191 <mark>0</mark>			ATLDSLS		Eece			
Sebialisk-ARRID	494 ENE		A3			ATLDSLS		E3U3	NOFLENAL	ENLGENA	
Havbrasme-AHR1	489		- Y	USSKA	ASFUPLL	ATLDSLS		EIUS	INSELFNAL	ENLGLNA	EDLELLLD 539
KUIETISK-AHR1D	490 GHNS	LH	VF	SNETS	SYDPLL	AILDSLI			SNIEIFNAL	ENLGLNA	
Sebrafisk-AHR1a	484 <mark>Y</mark> SIN	SQESVSVS <mark>G</mark> SI	C - <mark>P</mark> F	KQESV			F	- <mark>S</mark> SERDD	SCEILNEM	GSLGISL	EDLKFLQQK 536
Stør-AHR1	482 LSSD	MQDNIL <mark>P</mark> VAQ	NNA L	REE <mark>E</mark>			st	DCTLDGR	NN <mark>ELS</mark> NLM	KNLGISM	DDLELIQQD 535
Mus-AHR	483 KC <mark>GS</mark>	MQDSFAAA <mark>G</mark> SI	EAA L	KHE <mark>Q</mark> I <mark>G</mark> H		A	LSGGPSE	ELF <mark>P</mark> DNK	(NN <mark>DLY</mark> SIM	RNLGIDF	EDIR <mark>S</mark> MQN- 550
Menneske-AHR	492 ECR N	MQDNTA <mark>P</mark> MGNI	D <u>T</u> I <u>-</u> -L	KHEQIDO		•	FAG GH <mark>P</mark> (<mark>Glf</mark> qd <mark>s</mark> k	(NS <mark>DLY</mark> SIM	KNLGIDF	EDIR <mark>HM</mark> QN- 558
Laks-AHR2b	477 ACNS	MQSSME <mark>P</mark> Q <mark>GP</mark> I	DGDDDGDGP	SEVKQK	GAVV <mark>S</mark> M I		<mark>D</mark> /	AL <mark>Q</mark> KMAR	2D <mark>GD</mark> LCEAL	QGL D∨I	DAAELMEWE 542
Laks-AHR2a	477 ACNS	NQ T SME <mark>P</mark> Q <mark>GP</mark> I	D∨DDD <mark>G</mark> DS <mark>P</mark>	REVKQE	B ALVAMI		<mark>D</mark> /	AL <mark>E</mark> RM <mark>A</mark> G	QD <mark>GD</mark> LCAAL	QGMD∨	GTAELMEWE 542
Torsk-AHR2	471 PSDP	NQALRL	Q <mark>G</mark> DD <mark>GG</mark> N - M	I KE <mark>EG</mark> V1	⊺ <mark>s</mark> ∨samm	1	N/	AL <mark>E</mark> dfve	NGELVSAL	EGL DV	DA <mark>GELMEWE</mark> 531
Tomcod-AHR2	471 PSDT	NQAVRL I	RADD <mark>GG</mark> H∨M	IKEEGE	SVTAMI		D/	AL <mark>E</mark> dfve	GGELVSAL	EGL DV	DPSELMEWE 532
Killifisk-AHR2	473 GSNE	NQESNS	A A <mark>GP</mark> ML	VKEETKO	2 <mark>S</mark> VVAVI		<mark>D</mark>	SLEKL <mark>T</mark> C		GNL DII	DDAELMEWE 531
Havbrasme-AHR2	473 ASDA			VKEEAKO						ENL DM	ADTELMEWE 534
Kulefisk-AHR2a	475 PSDA		ASAAGV	VKEEAKO					- EDLOSAL		DDTEVAOWE 529
Kulofisk AHD2o	487 PCOS		AUAA <mark>u</mark> v								
Kulefisk AHD2h	504 PCDA	NIDTTEK HM	т			4					
Solmon AUD2a	512 DOD										
Salilion-Ankzy	512 - 505		D	AGIREES					DNSLOSSL		
Laks-AHR20	512 PGUS		<mark>P</mark> U	AGIREES					DNSLUSSL		
Stør-AHR2	489 LDDP	WIPGNHR	Q N	ANVKEES	SELLAMM	1	E L	DLQKLEN	I GN	DLQHV	DGLELKHWE 538
Sebratisk-AHR2	488 PGN	MQPSTPN	T V	PGIKEEA	AV <mark>V</mark> KD <mark>ML</mark>			I L <mark>Q</mark> QIIE			DRMELKEWE 543
KING-L ALIDA							FOTEN		TOVER		
KIIIITISK-AHR1	565 ERMIN	VEMDSE			ILSYIY	SCIEGKA	FSTEHGRL	APPS	SISV <mark>PP</mark> S	EI	NPSPGI 627
KUIETISK-AHR1a	567 ERMI	VEMDPE	RVPILE		ILSYIY		ESGGGGGGQ		TTURE	- EALAGH	NPASGA 635
Laks-AHR1D	540 ERMT	RVEMDPD	YIPSLN	DLLINNE	ILSYIF	IDSLENKI	EEGQGVDSI	HVSTPQT	TTHPPDPT	LNSVLIL	N <mark>P</mark> HIQAIPI 615
Laks-AHR1a	582 ERMI	VEMDPD	YI <mark>P</mark> SLN			DSLENKT	EEDQGRDSI	HVSIPPT	TTH <mark>PPGP</mark> I	LNSTLI <mark>P</mark>	NSYNQAT <mark>P</mark> I 657
Sebrafisk-AHR1b	560 ERMI	QVEVEPD	FI <mark>P</mark> SLN	DLLTNNE	IL <mark>SY</mark> VH		EDPAESQK	PSTA		LDSVENS	615
Havbrasme-AHR1	540 ERMM	QVELDPN	HI <mark>P</mark> TLS	DLLTNNE	EIL <mark>SY</mark> I⊦	IDALENGT	EGEDDT ·			SVTQQ	587
Kulefisk-AHR1b	548 ERMI	QVEL <mark>GP</mark> N	H I <mark>P</mark> T L S	DLLTNNE	IL <mark>SY</mark> IH	INKLENS <mark>P</mark>	EPADGDAG	₹ <u>¥</u>		G∨NAD	- <u>-</u> 599
Sebrafisk-AHR1a	537 DLFI	NIDL <mark>D</mark> SH	<u>N</u> D <mark>M</mark>	- ADL SD	ונ <mark>s</mark> א∨כ	QSLKLKM	DCTVSKNT	2 <mark>G</mark> N		KEQELIR	N <mark>P</mark> AQTI 594
Stør-AHR1	536 EEFL	KVEWDDP	<mark>G</mark> D	- TDVAD		ESLKRRS	DCMFSSCTI	LQK	P	L VQ	S <mark>P</mark> S <mark>G</mark> ML 589
Mus-AHR	551 EEFF	RTDSTAA	GEVDFK		ILTYVC	DSLNNS-	TLLNSACQ	Q-Q	P	V ТQ	HLSCML 606
Menneske-AHR	559 EKFF	NDF S	GEVDFR				PEIPSDYQ	200	s	L AL	NSSCMV613
Laks-AHR2b	543 SALL					FALEKES	SOGSGN (PNC S		INIETEM	ENN 613
Laks_AHP2a	543 STL		SCOTSLOLD				SEGSON- (I FTAV	I DN 611
Torsk_AHD2	532 NTL							1980 3	SPVNNN		501
Tomood AUD2	533 NTL						AEANLNIS	1990F			
Villifield ALIDO	522 COEV			NE LTO			CECCLARY SU	ussuF	JOVNNN		093
NIIIIISK-AHRZ	552 SUFK					SV-FRER		n S <mark>O</mark> C L	TOVO		586
Havprasme-AHR2	535 NALK	SQDEE-RQ				TVLEKEK	REDCMNSS	FFSCL	IGVSNN		592
Kulefisk-AHR2a	530 NALN		SV <mark>GS</mark> QLE	SV-FTS		SILFKEN	GEDL - NGTI	H <mark>P</mark> SC F	SPANHP		587
Kulefisk-AHR2c	538 NTLV	KNHERQ	DAANHLN	QA - LA <mark>N</mark> E	DVF <mark>S</mark> YVE	EALMRET	R <mark>GP</mark> LQSS <mark>G</mark> I	L <mark>P</mark> E	TA R T	LT <mark>P</mark> TQNS	Q <mark>P</mark> 598
Kulefisk-AHR2b	559 STLL	KL SNC	DMSD <mark>DL</mark> S	DI-LS <mark>N</mark> E	OVLMYVE	EQLQREG	GLKVLDQL) - <u>-</u>			602
Salmon-AHR2g	568 NTLL	KMSSSNC	EMSE <mark>DL</mark> D	DI-LNH	DIL <mark>SY</mark> VE	EHLFKEN	<mark>GG</mark> LKM <mark>P</mark> EHI	L - <mark>G</mark>	SL	L <mark>G</mark> SVSVN	N <mark>P</mark> L626
Laks-AHR2d	568 NTLL	KMSSSNC	EMSE <mark>DL</mark> D		DIL <mark>SY</mark> VE	EHLFKEI	<mark>GG</mark> LKM <mark>P</mark> EQI	L - <mark>G -</mark>	SM	L <mark>G</mark> SVSVN	N <mark>P</mark> L626
Stør-AHR2	539 ETLL	KMDINNS	EMSIELN	DI-LN <mark>N</mark> C	DIF <mark>SY</mark> VE	DALFKEQ	CK <mark>P</mark> NNNGKI	DN <mark>GP</mark> S	SINSLANQ	MDSI <mark>G</mark> VV	Q <mark>P</mark> N606
Sebrafisk-AHR2	544 NTLC	₹M NYNN	DME I N	EI-ITE	D I F <mark>S Y</mark> V E		<mark>g</mark> i q <mark>p</mark> l Ki	DL <mark>GP</mark> F	SEMS E <mark>G</mark>	L	595

Mathematical Base Autrition Base Autrin Base Autrin Base Autrition Base Autrition Base Autrition Base A				
KudetäHirlig BB N.Y. Control N.Y. Control BB N.Y. Control Control Control Control Control Control Control Control Control Contro Control Control <td>Killifisk-AHR1</td> <td>628 DVQMLFPHCKPHLVGQAPTVQL</td> <td>^SQQMQQHLNTR</td> <td>HDWSQQD DQL I 676</td>	Killifisk-AHR1	628 DVQMLFPHCKPHLVGQAPTVQL	^S QQMQQHLNTR	HDWSQQD DQL I 676
Laka Anfritz Jaka Anfritz Ja	Kulefisk-AHR1a	636 NVQMQF <mark>P</mark> HQK <mark>PP</mark> LVEQA <mark>PIV</mark> QL	30.000 M Q Q H <mark>L</mark> S M R P <u>P</u> S - K A <mark>F</mark>	PSWGQQG NRLT 684
Lees-Africa Seconds: Africa Seconds: Africa Se	Laks-AHR1b	616 MHISTLH <mark>PQATNPPAPQPMLPLHRLPKQPPIV</mark> QL	SQQMQQHLNLVKPVLAK	(Y <mark>PWPP</mark> TQTDV <mark>P</mark> 677
betweeterwarten 616	Laks-AHR1a	658 THISTINPOATNPPVPOPTIPPHRIPKOPPTIOL		YPWPPTOTDVP 719
Sectember Andre Sectember	Cobrofiels AUD4b			
Participation Base Participation Base Participation Base	Sebialisk-ARKTD			
Kudtha-AH70 600 0 - A.A. B. CREAK VOID CACHARGES - N.A. A.H. C. CREAK VOID CACHARGES -	Havbrasme-AHR1	588 P PAAPPAPPTTQL	SQQMQQHASAGVSQP	615
Sextema.net/16 99 90 90 90 90 90 90 90 90 90 90 90 90	Kulefisk-AHR1b	600 Q AAVPEPPAFVQQ	<mark>BQ</mark> Q <mark>M</mark> QQH <mark>VGSG</mark> V <mark>P</mark> AKAA	P630
Start-AHR 590 CODO-Line Column Colum	Sebrafisk-AHR1a	595 IPNDSCDTITLL	30 EQQMT FI TD KT	E <mark>P</mark> KIQLAQI-628
Numeric 617 C = C = C = C = C = C = C = C = C = C =	Stør-AHR1	590 0000 - L HPOL HP		
Mile Mile Concerned Concerne	Mup AUD			
Mannsber-Arrig Bid	MUS-AHR	60/RLQL		EPQQQLCQMV 636
Lake-AH220 614 NIODBET TEWV. 68 TO A. DO GENT ALLON EST IMAGE MUDE IN STONA ADD. IN STONA ADD. ADD. ADD. ADD. ADD. ADD. ADD. AD	Menneske-AHR	614QEHLHL	Q QQQ H H-QKQVVV	′E <mark>P</mark> QQQLCQK- 641
Lans-Arri22 612 NUCCENT TEGY - STTEA CONTROL LOKES WITH SHOULD SH	Laks-AHR2b	614 NNQDGPFTGMVSPTGV-GQCKPGLLD	RSFIHNGSPVNGQIGQVTGNGPDGL	664
Torde.MH72 ESS L. F_BOTA HYS SECT COMMERCE NVERMER BED AND AND AND AND AND AND AND AND AND AN	Laks-AHR2a	612 NNQGGPFTGGVSPTGA-GQCKPGLLD	<pre>KFSFVHNGSAVNDLNGISHSQVTGNRAVGLAG</pre>	QNQAGQNQ - AGQIQ 681
TomosovArr22 93 - OADLFEGITA HYAS SD TC FINUE FIS SD RATE HANGES ALL 650 Havbranne AHR2 93 - OADLFEGITA HYAS SD TC FINUE FIS SD RATE HANGES ALL 650 Havbranne AHR2 93 - OADLFTOTA HISS ST ELECTION ST HANGES HANGEN - OADLFTOTA Kumethon AHR2 93 OADLFTOTA HISS ST ELECTION ST HANGEN HANDEN - OADLFTOTA Stamon AHR2 93 HICS NULL HANGEN HANDEN - OADLFTOTA - HISS ST HELECTION ST HANDEN - OADLFTOTA Stamon AHR2 93 HICS NULL HANDEN - OADLFTOTA - HISS ST HELECTION ST HANDEN - HISS ST HELECTION ST HELECTION ST HANDEN - OADLFTOTA - HISS ST HELECTION	Torsk_AHR2		PAVGANAVSHAKGI S	
Interventer SST Unducturul ULA Interventer SST Unducturul ULA Interventer Int	Toran AUDO			
Killitäk-AHR2 687	TOMCOG-AHR2	594 QADLEDQTA HYAGSGDTUEMMLER	PSDGAKAHPHAKGLSPAVVP	QPTHNRP ANLA 649
Interested.AHR2 653 - OODLFTOTA	Killifisk-AHR2	587 NMSSS - ELCEPQLFC	COSPNCSYSPANG	YARAGETL-NRE 625
Kultersch.AHR2a 688 - 0.0	Havbrasme-AHR2	593 QQDLFTQTA RLSDT - GLCEPQLFP	PSPDHTYSPTNG	Y <mark>P</mark> LQQNTM-N <mark>G</mark> AVI 642
Number Arris Do Gal Description Description Description Description Arris Do Gal Gal Description Gal Description Gal Description Gal Description Gal Description Gal G	Kulefisk-AHR2a	588 QE PL RPTAA - GLCGPPSFP	PSPGCAYAPHCQ	Q <mark>G</mark> GLS 624
ILLINGSALAHR20 GOLD LUC ARLO Lo SIN HE GOLD DEAL DEAL <thdeal< th=""> DEAL DEAL</thdeal<>	Kulefisk_AHR2c			ANSID 641
Number Amr.20 003 - Lip - VABLO Lip	Kulefisk-AllR20			AN31D 641
Samon-AHR2g 221 EV PECL TAVO L. O. GUN TMM EQRIC HARVE ON CONCLL DM DM DE 665 Star-AHR2 GT LEV PECL TAVO L. HEN LAL MAN FOR MARKA OF CONCLL A. TOM - DUNOLLES AND CONCLL A. T	Kulelisk-AHR2D	603 - DTLPCVAPLDLQ-SHNHEV-PG	QUNFGWIGEPUNULLPNR	640
Lake-AR2d E21 LEV ECLITIVO L. HIN TIML FORK FINDER OCNOLL. E. G. GES Ster-AR2 S90 LEEGOLINE A A FRONT SOL. FORT TUDO CEPT LOSS FORMANIO March All Control Cept Loss Formania Killsk-AR2 S90 SEECLONILA A A NOEPS GOLE VIEGOLING A March All Control Cept Loss Formania March All Control Cept Loss Formania Killsk-AR2 S90 SEECLONILA A A NOEPS GOLE VIEGOLING A March All Control Cept Loss Formania March All Control Cept Loss Formania Killsk-MR1 S90 SEECLONILA A A NOEPS GOLE VIEGOLING A March All Control Cept Loss Formania March All Control Cept Loss Formania Killsk-MR1 S71 TISS CENTRE NOEMS TO LING THE NOEM VIECH CHUIL March All Control Cept Loss Formania March All Control Cept Loss Formania Killsk-MR1 TO E TISS CENTRE NOEMS THE NOEM VIECH CHUIL March All Control Cept Loss Formania March All Control Cept Loss Formania Killsk-MR1 TO E TISS CENTRE NOEMS THE NOEM VIET TH	Salmon-AHR2g	627 LEV <mark>P</mark> ECLTNVDLQ <mark>G</mark> NT <mark>MM</mark> -PG	K <mark>GFNWGVDP</mark> KQNQLL	665
Ster-AHR2 607 LPC BOLL NB FV A.J. PENDT SOLE. ND GRIT LOD TO LEPL LOS FO. A TOM-D LNOLL LSANOL C 683 Killfels-AHR1 677 N. BELLE HIN SLING WIT ADD LLW SY GRIT NO. SSKA-S 720 Killfels-AHR1 677 N. BELLE HIN SLING WIT ADD LLW SY GRIT NO. SSKA-S 720 Killfels-AHR1 685 N. A LAND LLW SY GRIT NO. SSKA-S 720 Killfels-AHR1 700 TS COL TS COL N.M.T. 5 731 Laks-AHR1 700 TS COL TS COL N.M.T. 5 781 Sebadits-AHR1 700 TS COL TS COL SSKA S 500 Sebadits-AHR1 700 TS COL SSKA S 500 SSKA S 500 Wardsmark 671 TS COL FS COL SSKA S 500 SSKA S 500 Sebadits-AHR1 672 TS COL FS COL SSKA S 500 SSKA S 500 Sebadits-AHR2 683 SSKA S 500 FS COL SSKA S 500 SSKA S 500 Sebadits-AHR2 683 SSKA S 500 FS COL SSKA S 500 SSKA S 500 <td>Laks-AHR2d</td> <td>627 LEVPECLTNVDLHGNTMM-PG</td> <td>K<mark>GFNWGADP</mark>QQNQLL</td> <td> 665</td>	Laks-AHR2d	627 LEVPECLTNVDLHGNTMM-PG	K <mark>GFNWGADP</mark> QQNQLL	665
Stardisk-AHR2 596 - SELELONILA A - NGEFSCORE PHOSS ECCEPTION 630 Kullsk-AHR1 677 N ELLE - HINSLINGOV AGOLILVITE KVLC- HINTOCMV ESSLA 570 Kullsk-AHR1 677 N - ALANDUM GSV FOR VS GOLL TASS IELE - HINTOCMV ESSLA 570 Laks-AHR1 678 T FISCE DTLO TTSL TVVINGAN, POQOH METE LDD HOHSOF Start 771 Laks-AHR1 678 T FISCE DTLO TTSL TVVINGAN, POQOH METE LDD HOHSOF Start 771 StartarkAHR1 674 T FISCE DTLO TTSL SVVINGAN, POQOH METE LDD HOHSOF StartarkAHR1 616 A EVENTISK SVINGAN, POQOH MENDE DIN HHN HTV LAKS StartarkAHR1 StartarkAHR1 StartarkAHR1 StartarkAHR1 StartarkAHR1 StartarkAHR1 StartarkAHR1 StartarkAHR2	Stør-AHR2	607 LEEGOLINGEVAQ-EGNOTOSOL-PO	RTI ODEOEPPI OSEOATON	1-DENOOLESANOLC 663
Statistick-MR7 671 N EELLE - HUSISL MR20 FROS LOLL LIGAS - KYLQ HUNITOOMY- ESIKAS 570 Kudistick-MR76 685 N - ALAND LUMIG SY GRE RYS COLL LIGAS - IELE - - KYLQ HUNITOOMY- FIGT 1: S 311 Last-MR76 671 N SEDERISK-MR76 DTL 02 THSL SYV MIGHNE PROOM WR TG - LDD HOHSU MR1 STATISTICS Last-MR76 674 TTSES DTL 02 THSL SYV MIGHNE PROOM WR TG - LDD HOHSU MR1 STATISTICS STA	Sebrafiek AHD2			N 630
Killingk-AHR1 671 ELLE - HUBSLENG XT GOD L VSTE KVLGS. KVLGS. FLS. FLS	Sebransk-Arrikz	350 - SEELEQNNEAANQEI SQUAQ-VII		- 11 0.50
Killinge-ArkRit 651 Al ANDUMIN DSV CPE VAS 20 LL XSTE KVLD HINT COMV SS SKA 3 20 Laka-ArkRit 651 Al ANDUMIN DSV CPE VAS 20 LL XSTE LDV HINT COMV SS SKA 320 Laka-ArkRit 671 S STA DT LOG TT SL TVV HINT WAR 2000 HINT L LDD HINT SL TVV HINT KAR 2000 HINT L LDD HINT SL TVV HINT KAR 2000 HINT L LDD HINT SL TVV HINT KAR 2000 HINT L LDD HINT SL TVV HINT KAR 2000 HINT L LDD HINT SL TVV HINT KAR 2000 HINT L LDD HINT SL TVV HINT KAR 2000 HINT L LDD HINT SL TVV HINT KAR 2000 HINT L LDD HINT SL TVV HINT KAR 2000 HINT L LDD HINT SL TVV HINT KAR 2000 HINT L LDD HINT SL TVV HINT KAR 2000 HINT L LDD HINT SL TVV HINT KAR 2000 HINT L LDD HINT SL TVV HINT KAR 2000 HINT L LDD HINT SL TVV HINT KAR 2000 HINT SL TVV HINT SAR 2000 HINT SL TVV HINT KAR 2000 HINT SL TVV HINT SL TVV HINT KAR 2000 HINT SL TVV HINT SAR 2000 HINT SL TVV HINT S				
Kuletsk-AHR16 665 N	Killifisk-AHR1	677 NGELLGHNPSLHNGQWTAQDILV	3 T <mark>G</mark> KYLQ <u>H</u> MN TQQMV	FSSKA-S 720
Lake-MHPTD 678 TS SOL DTLO TISLS VY MORENE GOOCHME TO LDD HCHS JORL WRETTS 578 Sebrafisk-AHRTD 674 TE SET ANFINADE TIL VISW VY NARWY EN HTOWINL DDD HCHS JINE NRETTS 578 Sebrafisk-AHRTD 674 TE SET ANFINADE TIL VISW VY NARWY TE HINN LDD HCHS JINE STA Sebrafisk-AHRTD 616 A TE AEAKGETELENGWY TITA NAROD DN HCH HITV FKA - S651 Kuldfisk-AHRTD 631 G COD LOT TICKS IN YA ANCODE OL COOLO - UNE TIC SEE TA - G650 SEF-AHRT 625 ACONA - GREGO YA NOT TEN KARON TER YA ANCODE OL COOLO - UNE TIC SEE TA - G650 Nerneske-AHR 642 ACONA - GREGO YA NOT TEN KARON TER YA ANCODE OL COOLO - UND I TE SEE TE SET IN BS CONRA - V 729 Lake-AHRZB 642 ACONA - GREGO YA SET RELSHERFO IN OL MOL NO TE TO SEE TA SET SEE TA SET AND TER YE AR - AXO - UND I TE SEE TE SET IN BS CONRA - V 729 Lake-AHRZB G65 ACONA - GREGO YA SET RELSHERFO IN OL MOL NO TE SEE TA SET SEE TA SET AND TER YE AR - AXO - UND I TE SEE TA SET AND TER YE AR - AXO - UND I TE SEE TA SET AND TER YE AR - AXO - UND I TE SEE TA SET AND TER YE AR - AXO - UND I TE SEE TA SET AND TER YE AR - AXO - UND I TE SEE TA SET AND TER YE AR - AXO - UND I TE SEE TA SET AND TER YE AR - AXO - UND I TE SEE TA SET AND TER YE AR - AXO - YE AR - AXO - UND I TE SEE TA SET AND TE YE AR - AXO - YE AR - AXO - UND I TE SEE TA SET AND TE YE AR - AXO - UND I TE SEE TA SET AND TE YE AR - AXO	Kulefisk-AHR1a	685 N A I AN <mark>G</mark> DLMN <mark>Q</mark> QSV <mark>PGRPW</mark> SSQDLLT	ASIELE <mark>P</mark> Y <mark>P</mark> AQQSV	FNGTT-S 731
Lake-AHF2 T2 T S OL TD L OT TNUS VV MOR WU ROOM AAG LDD - HCKS HeL - WOKT S 768 Haurdsme-AHF1 614 TT SEE A NEFNOLDT LINUS VV MU NOM WE HT OVULN S 713 Haurdsme-AHF1 611 - TE ALGET LINUS VV MU NOM WE HT OVULN S 713 Haurdsme-AHF1 611 - TE ALGET LINUS VV MU NOM WO HT ANAROL D N OVOLN S 713 Haurdsme-AHF2 621 - TE ALGET LINUS VV MU NOM NOM ANDEL D N OVOLN S 713 Kuettisk-AHF74 623 - TE ALGET LINUS VV MU NOM NOM ANDEL D N OVOLN S 713 Kuettisk-AHF74 625 - NEMM VV TV NOM NV NOM ANDEL D N OVOLN - TE S F16 S 713 Kuettisk-AHF22 625 - ALGONA D ODU DEKHT I INE FALWHT BEV E NO EDOO O OV VV T TO HENSING NU S 714 S 713 Kaes-AHF22 625 - ALGONA D ODU FIST RLS FEDO IN DIG CONTOLO D OOU ON VV T TO HENSING NU S 714 S 713 Torsch-HF22 625 - ALGONA D ODU FIST RLS FEDO IN DIG CONTOLO LND I TH S LEL IS IN HESS NOR S 714 S 713 Torsch-HF22 625 - ALGONA D ODU FIST RLS FEDO IN DIG CONTOLO LND I TH S LEU IS NON S 714 S 713	Laks-AHR1h			VNGKT-S 726
Lakasark21 G14 TESET AN FIGURE 1, VISUAL VALUE 4, VISUAL VALUE 4, VISUAL VALUE 4, VISUAL 4, VIS	Lake AUD1a			VNCKT 8 769
Sebaratis-AHR70 615 A. TOTAVANDA Softa	Laks-ARKTa		14 <mark>0</mark> LDDnch3 <mark>1</mark> n <mark>F</mark> L	<u>WNG</u> KT-5766
Hawbasme-AHR1 615 A. EVD TKULTG IN NORMWY TTENHAN. IN NORMY TTENHAN. <	Sebratisk-AHR1b	674 PITESETANENQHDITLVNSVPVVHNGHWVPEHTQV	VLN	
Kuldtisk-AHR10 631 E TAEAKGTTRL ENDERWITTANAROE OM OVGEHEV	Havbrasme-AHR1	616 - <u>A</u> PVDTK <u>VL</u> T <mark>GIPNGHWVV</mark> TTENH	1N <u>-</u> HHH <mark>P</mark> HTV	K <u>A</u> -S 651
Setzafiko-Altria 639 OPT TO CKE IV LO ID FIEHOD TER SN N ET ID FIEHOD TER SN N ID FIELD TER ID	Kulefisk-AHR1b	631 - P TAEAKGQTRLPNGHWVTNTANA	1Q <mark>P</mark> DN QVQ <mark>P</mark> H <mark>P</mark> V	LTP-S 669
StBr.AHR1 625 IMPACH INDER MINUE AND OVER DEDUCTORE OF OUR OWNER TO THE ADD OVER DEDUCTORE OWNER TO ADD OVER DEDUCTORE OWNER ADD OVER DEDUCTORE OWNER ADD OVER DEDUCTORE O	Sehrafisk_AHR1a			
Sileswith 200 COD LEPKHT INST FARMATINE VALUE AND DECODE CLOUD - CLIAD - SESTING CLARAGE AND	Star AUD4			
MUB-AHH B3 (C COULDERKING NAME PENNINGEN AND PENNINGE	SIØI-ART			VEGTA-Q 669
Menneske-AHR 642 Menneske-AHR 642 Menneske-AHR 664 Composition Composition <td>Mus-AHR</td> <td>637 CP QQDLGPKHIQINGTFASWNPIPPVS</td> <td>·NC<mark>P</mark>QQELKHYQLF-SS</td> <td> CQGIA-Q 685</td>	Mus-AHR	637 CP QQDLGPKHIQINGTFASWNPIPPVS	·NC <mark>P</mark> QQELKHYQLF-SS	CQGIA-Q 685
Laks-AHR2b 665 - AGONGA - GEHQVENST RLSHEGOIR 0 MOLN - I TLOQLO LND I TT SLELE ELSI HSS GONGA - V 729 Torsk-AHR2 662 - AGONGA - GOVENST RLSHEGOIR 0 MVGA - LTDF FINSLELE ELSI HSS GONGA - V 729 Torsk-AHR2 669 - AKGLPE - OT BALENST KLSHYGPA I PE - AVPR - LSAT - OL LTDF FINSVNL GGL NLPK LE LASNDLR 714 KIIIfisk-AHR2 650 - AOGLAT - OT BALENST KLSHYGPA I PE - AVPR - LSAT - OL LTDF FINSVNL GGL NLPK LE LASNDLR 714 KIIIfisk-AHR2 643 - TGFSLT - SAGI LSST KLSHYGPA I PE - AVPR - LSAT - OL LTDF FINSVNL GGL NLPK LE LASNDLR 714 KIIIfisk-AHR2 643 - TGFSLT - SAGI LSST KLSHYGPA I PE - AVPC - LSAT - OL LTDF FINSVNL GGL NLPK LE LASNDLR 714 KIIIfisk-AHR2 643 - TGFSLT - SAGI LSST KLSHYGPA I PE - AVPC - LSAT - OL LTDF FINSVNL GGL NLPK LE LASNDLR 714 KIIIfisk-AHR2 642 - HACHTL - KRANN HGL GSS SCROC AVPC - LCO LCO I FSS I EL GOL TVE TASAH - AASA 707 KIIIfisk-AHR2 641 - GOLSF - OL GA VC TIKK LSH	Menneske-AHR	642 <u> MKHMQVNGM</u> FENWNSNQFVP	⁻ NC <mark>P</mark> QQD <mark>P</mark> QQYNV <mark>F</mark> - <u>T</u> D	
Laks-AHR2a 642 - A KQLDA - GEQQVE KST RLSH COLD OL BOTGOL N - BLOOLO - LND FT SLEL ELSN HSGONE S. V 748 Torsk-AHR2 649 - A KQLDA - OT PANENST KLSH YOPA I PE - A VP - LSATE-OL - LTDE FIR SVILL GLUL NALL A SNDLR 713 Torsk-AHR2 650 - A OGLA T - OT PANENST KLSH YOPA I PE - A VP - LSATE-OL - LTDE FIR SVILL GLUL NALL A SNDLR 714 KUMTSK-AHR2 650 - A OGLA T - OT PANENST KLSH YOPA I PE - A VP - LSATE-OL - LTDE FIR SVILL GLUL NALL A SNDLR 714 KUMTSK-AHR2 650 - A OGLA T - OT PANENST KLSH YOPA I PE - A VP - LGAL - LTDE FIR SVILL GLUL NALL LA SNDLR 714 KUMTSK-AHR2 651 - A OGLA T - OT PANENST KLSH YAA LI GOLA AAN - VELCHLQ - LGA I FSS I EL GLUT V TASAH - ASA 707 KUMTSK-AHR2 652 - A - SA - GST T FSNTKLSH KUMTSK-AHR2 652 - A - SA - GST T FSNTKLSH KUMTSK-AHR2 654 - OGLA F VOG TIKL I H DP OL SAG DOG - FT LGH - CGP SSG LGG - 668 Samon-AHR2 664 - GL SAA - ET VSN VOG MKLT I MS OMG NGF - LGAAS SSRTF A OSL GENL - GL SAN KLSH YAA LI I I DP OL SAG DOG - T LGAAS - SSRTF A OSL GENL - GL SNANEL 722 Laks-AHR2 664 - GL SAA - ET VSN VOG MKLT I MS OMG NGF - LGAAS - SSRTF A OSL GENL - GL GSNANEL 722 Laks-AHR2 664 - GL SAA - ET VSN VOG MKLT I MS OMG NGF - LGAAS - SSRTF A OSL GENL - GL GSNANEL 722 Laks-AHR2 664 - GL SAA - ET VSN VOG MKLT I MS OMG NGF - LGAAS - SSRTF A OSL GENL - GL GSNANEL 722 Laks-AHR2 72 E GS - H SAGOL KHLQHONN - HLOSOWQOGNOH - LGAAS - SSRTF A OSL GENL - GL SNANEL 722 Laks-AHR2 72 E GS - H SAGOL KHLQHONN - HLOSOWQOGNOH - LGAVGLOSG ANLN TENSFYH I SODON - ME LNANNOL 735 Sebratisk-AHR1 72 1 C GG - H SAGOL KHLQHONN - HLOSOWQOGNOH - LGAVGLOSG ANLN TENSFYH A SUCHAK KKAA - 775 KUMTSK-AHR1 72 1 C GG - H SAGOL KHLQHONN - HLOSOWQOGNOH - LGAVGLOSG CHF KOGK - 772 Laks-AHR2 730 C GF - GAGOL KHLQHONN - HLOSOWQOGNOH - LGAVGLOSG CHF KOGK - 772 Laks-AHR2 714 T 77 O GF - H SAGOL KHLQHONN - H LOSOWQOGNOH - LGAVGLOSG CHF KOGK - 772 Laks-AHR2 710 T ST MSS O AA NANNSI SOT - KAP COC - H SK - 744 HAVDTASME-KAHR2 710 T ST MSS O AA ASLOW - ME ST I SOT LANOK SOT - 744 HAVDTASME AHR2 710 T ST MSS O AA NANNSI SOT - KAP COC - H SKO	Laks-AHR2b	665 AGQNQA GPHQVFNSTORLSHFGPQIPQ N)LNI <mark>P</mark> TLQQLQLNDI <mark>F</mark> T <mark>P</mark> SLEL <mark>P</mark> E	LSI <mark>P</mark> HSS <mark>G</mark> QN <mark>G</mark> A - V 729
Torsk-dHR2 649 - AKGL PE - OT BALE NST KLISH YOP ALPE - AV RALLS LATTE QL L TOP END SVNL PGLNLE KLE LASNDLR 713 Torskod-AHR2 650 - AQGL AT - OT BALE NST KLISH YOP ALPE - AV RALLS LATTE QL L TITE QL L TITE QL L TITE ALLE KLE VALSANDER 714 Killfisk-AHR2 623 - T GR SLT - SAF LA SRINK VSINGEL - L OS SS MPL LOLOL L DI TSS ST EL D'LTY TASAH ASAF 660 Habrasme-AHR2 643 - T GR SLT - SAF LA SS TOT SNTKLISH AAN - VPL CH LOLOL L DI TSS ST EL D'LTY TASAH ASAF 664 Kulefisk-AHR2 641 - GOL SF - GL SS C PGQ - D OS SC PGQ	Laks-AHR2a	682 AGONOA GPOOVEKSTORI SHEGPOIPOIPOI		ISNPHSSGONES-V 749
Donavinu 9 = 7.4.0 L =	Torsk AUD2			
Concode APR2 EB0 - A Get All OL PAMINS URLEST VERATE - A Vect - La Lo Le SALE LE ALS VEN US VEN COST Miltisk-ARR2 643 T Ces SLT - E SAOT SST EKLSH VEN COST D SS SMEPL DOL LO LE DI SSS I ELE DOL TVETAS AL-ASA 757 Wuefisk-ARR2 643 S A - S TOT SNT KLSH HARL I IIO - VAAN - VPL OLD LO LE SST ELE DOL TVETAS AL-ASA 754 Wuefisk-ARR2 643 S A - S TOT SNT KLSH - Le BOVEAVE - D SS SLE POL SVEAVE - D C SA SLE POL SVEAVE </td <td>TUISK-ARKZ</td> <td>649 AKGLPP QTPALENSTUKES TOPATPE A</td> <td>PRLSATP-QLLTDFFNPSVNLPG</td> <td>LNLPKLPLASNDLR 713</td>	TUISK-ARKZ	649 AKGLPP QTPALENSTUKES TOPATPE A	PRLSATP-QLLTDFFNPSVNLPG	LNLPKLPLASNDLR 713
Killitisk-AHR2 626	Tomcod-AHR2	650 AQGLAT QTPAMENSTQKLSHYGPAIPE A	/ <mark>P</mark> QL <mark>PT</mark> T <mark>P</mark> -QLLTNFFNPSVNL <mark>P</mark> G	LNL <mark>P</mark> KL <mark>PL</mark> ASNDLR 714
Habrasme-AHP2 643 - TOPSLT - ESAOTE SSTEKLS HABLELED LOI ESSELE COLTVETASAH - AASA 707 Kuletisk-AHR26 642 H. HAOHHL KRAMMEHGLOSS CROO OPESTER SAAAPP HH 681 Kuletisk-AHR26 642 H. HAOHHL KRAMMEHGLOSS CROO OPESTER SAAAPP HH 681 Kuletisk-AHR26 641 - GLOSF - OLGA CASA 654 SRDT FARSH - AASA 707 Kuletisk-AHR27 666 - GLSA ETVSNVGRMMKOT MIGOMGLOSF - TLOQAS SRDT FAGSLGKNL GLOSSNAPL 722 Laks-AHR27 666 - GLSA ETVSNVGRMMKOT MIGOMGLOSF - TLOQAS SRDT FAGSLGKNL GLOSSNAPL 722 Killitisk-AHR2 664 NGENOVGM DTSSPERG TVKLSHMGROM PGN NN FLOQASE SRDT FAGSLGKNL GLOSSNAPL 722 Killitisk-AHR1 721 ELGG HYL QQ E TH - QHFQLQQ PSMT0KQLSERRHAEQRS 757 Kuletisk-AHR17 732 ELDS K PRQQ H AH - QHYLQQ PSMT0KQLSERRHAEQRS 757 Kuletisk-AHR17 732 ELGS K PRQQ H AH - QHYLQQQ PSMT0KQLSERRHAEQRS 757 Kuletisk-AHR16 730 CGG HAAQUKHHOHON I ILD	Killifisk-AHR2	626 <u> SA</u> PIASRNQKVSHQ <mark>GS</mark> <u>- P</u> I)SSM <mark>PP</mark> LQQLQLQDI <mark>F</mark> S <mark>P</mark> AIEL <mark>P</mark> G	NLSV <mark>P</mark> NIS <mark>V</mark> N-ASF <mark>P</mark> 680
Kuletsk-AHR2a 625 - A - S A - S TOT F S N TRKLS	Havbrasme-AHR2	643 T <mark>gp</mark> slt esaqtlsst <mark>q</mark> kls <mark>h</mark> hapli t q V	AN V <mark>PP</mark> LQHLQ LQD I <mark>F</mark> SSS I EL <mark>P</mark> C	LTVPTASAH-AASA 707
Multinkinimum G23 H + AQHHL	Kulefisk_AHD2a	625 A SA CSTOTESNTRKI SH		
Kuletisk-AHR20 64 II + HAUHHL - KRAMMIN TALERS SUCKUU Call SP - OLLS AV COMMIN TALERS SUCKUU Call SP AV	Kulefisk-AllR2a			
Kuletsk-AHR2b 641	KUIEIISK-AHR2C	642 H - HAQHHL KRAMNTHGLUGSSSCRUQ	QPPSFRPSAAAPF	HH 681
Salmon-AHR2g 666	Kulefisk-AHR2b	641 GQLSF QLGAPVCGTMKLIHIDPPQLCSAGL)	688
Laks-AHR2d 666	Salmon-AHR2g	666 GLSAA ETVSNVQGMMKQTNMGSQMGLNGP -	SRNT <mark>F</mark> AQSL <mark>G</mark> ENL	<mark>G</mark> LQSNAN <mark>P</mark> L 722
Stør-AHR2 664 NQE NQVGM DELSL - AGFØGFLOAGPONHIGLNYSND - MOFRLOQQQS ANLNTENSFYHICSODN MELNANNOL 735 Sebrafisk-AHR2 631 IQEGM DTSSPGRETYKLSMMCPONLPGN NFIDSFGLDQTT QKMAANSNI 679 Killfisk-AHR1 721 ELGG HYL QQ E TH QHFQLQQ PSMTQKQLSERRHAEQRS 757 Killfisk-AHR1 721 ELGG HYL QQ E TH QHFQLQQ PSMTQKQLSERRHAEQRS 757 Killfisk-AHR1 721 ELGG HYL QQ E TH QHFQLQQ PSMTQKQLSERRHAEQRS 757 Kulefisk-AHR1 720 GF HGAGQLKHHQHONN HLQQQQQQNQH LQVQLQSQCHFRQOK 772 Laks-AHR1 769 QLGP QGAGQLKHHQHONN HLQSQWQQNQH LQVQLQSQCHFRQOK 772 Laks-AHR1 714 Q SDK ITGTS KAQ QQWQQNQH LQVQLQSQCHFRQOK 772 Laks-AHR1 610 CP QGAGQLKHHQHONI HLQQQWQQNQH LQVQLQSQCHFRQOK 772 Laks-AHR1 610 CP QGAGQLKHHQHONI HLQQQWQQNQH LQVQLQSQCHFRQOK 764 Sebrafisk-AHR1 610 CP SDK ITGTS KAQ QQWQQNQL HSLHL CQUQSQCHFRQOK 764 Kulefisk-AHR1 610 TL FK SS NSEL - KHL LESSQWSQDQLV HSLHL CTLYS 668 Mus-AHR 661 EF PY KS NSEL - KHL LESSQWSQDQLV HSLH CTLYS 668 Mus-AHR 686 EF PY KS SG AQA NNHMOS PO I I AGVQSNO P FN FN 704 Menneske-AHR2 686 EF PY KS SG AQA NNHMOS PO I I AGVQSNO P 704	Laks-AHR2d	666 GLSAA ETVSNVRGMMKLTHMGSQMGLNGP -	SRDT <mark>F</mark> AQSL <mark>G</mark> KNL	<mark>G</mark> LESNAN <mark>P</mark> L 722
Cash Mike Obsection Dissection	Stør-AHR2	664 NOPNOVEM DELSL - AGEOGEL OAGPONHIGUNY	SND - MOPRI 00005 PANI NTPNSEVHICSODN	L MELNANNOL 735
SebratakAHR2 651 FTGEBURG FTTGEBURG	Sobrofield AUD2			
Killifisk-AHR1 721 ELGG HYLQQ E TH QHFQLQQ PSMTQKQLSERRHAEQRS 757 Kulefisk-AHR1a 732 ELDS KPHQQ H AH QHFQLQQ PRMDSSHLSQQCHAKRKA 775 Laks-AHR1a 732 ELDS	SEDI dilsk-ARKZ	631 IQEGM DISS <mark>FORG</mark> IVKLS <mark>M</mark> MOPQMLFON		ALL OKMAGNSNI 679
Klittisk-AHR1 721 EL GG - HYL QQ - E - TH - QHFQL QQ - PPPPPPP PPP PPP PPP PR PRMDSKHLSQQCHAKRKA - 775 Kuletisk-AHR1a 732 EL DS - KPHQQ - HGAGQL KHHQHQNI - IHLQSQWQQQNQH - LQVQLQSQCHFKQQK - 772 Laks-AHR1b 773 QL GP - QGAGQL KHHQHQNI - IHLQSQWQQNQH - LQVQLQSQCHFKQQK - 772 Laks-AHR1b 713 QL GP - QGAGQL KHHQHQNI - IHLQSQWQQNQH - LQVQLQSQCHFKQQK - 712 Laks-AHR1b 140 QL QQ QQCHFKQQK - 714 Sebratisk-AHR1b 714 QL - SQ CAQLKHHQHQNI - HLQSQWQQNQH - VE FQCK - FAK RK - 714 716 Kuletisk-AHR1b 610 NSEL - KNE - KAQR QQWQQNQL P - VE FQCK - FAK RK - 714 Kuletisk-AHR1b 610 RL - SS - KHL - LESSQWSQQQL - HY SS RK - 714 Sebratisk-AHR1b 611 RK - SS - KHL - LSSQWSQQQL - CTLYS - 688 693 Star-AHR1 610 FL Y - KT - E - VDSVP YT - ONFAS - CTLYS - 688 693 Mus-AHR 684 EF P Y - KT - E - VDSVP YT - ONFAS - 702 704 Menneske-AHR2 730 F G TMMAS S AQAP NNHMS SPQ IT GQYLSNQS - PP - 764 704 Torsk-AHR2 730 F G TMMAS S AQAP NNHMS SPQ IT GQYLSNQS - PP - 764 705 Torsk-AHR2 714 F - VD PC GQA - SI SHYQGLAQNANSMLSNQT SNQT LANQMLSN - QTLSNQTLSNQTLSNQTLANQMLS TSNGT SNQT		-	-	
Kuletisk-AHR1a 732 E DS K P IQQ H - AH - QHYL DPPPPPPP PRMDSSHLSQQCHAKRKA	Killifisk-AHR1	721 ELGG HYLQQ E TH QHFQLQQ		3 757
Laks-AHR1b 727 QLGP HGAGQLKHHQHQNN IHLQSQWQQQNQH LQVQLQSQCHFKQQK 772 Laks-AHR1a 769 QLGP CGAGQLKHHQHQNI IHLQSQWQQNQH LQVQLQSQCHFKQQK 814 Sebrafisk-AHR1b 714 QL SDK ITGTS KAQPQQNQQNQLP VFFQCK PK 744 Havbrasme-AHR1 652 PL NGK HLSQWQQQQQQQ VFFQCK PK 744 Sebrafisk-AHR1a 661 TL PK NSEL KHL LESSQWSQDQLV HYP SH PQ 693 Sebrafisk-AHR1a 661 TL PK NSEL KHL LESSQWSQDQLV HYP SH PQ 693 Sebrafisk-AHR1 661 TL PK NSEL KHL LESSQWSQDQLV HYP SH PQ 693 Star-AHR1 661 TL PK NSEL KHL LESSQWSQDQLV HYP SH PQ 693 Star-AHR2 661 TL PK NSE H NTOP CTLYS 688 Mus-AHR 686 EF PY K K HY NT QNF IS 704 Laks-AHR2 710 TG TNMAGS CAAP NNHMGS PQ IT CQVHSNQS PP CTLYS RAF 762	Kulefisk-AHR1a	732 ELDSKPHQQHAHQHYLQPP	PPPPPPPRMDSSHLSQQCHAKRKA	
Laks-AHR1a T69 CLGP QAAG QLKHHQHQNIIHLOSQWQQQNQH	Laks-AHR1b	727 QLGP HGAGQLKHHQHQNN I HLQSQWQQQN	QH	
Sebrafisk-AHR1b T14 QL SDK IT GTS FAQ QAQQAQQLQEQ HSLHL F44 Havbrasme-AHR1 652 PL NSK HL SQQWQLQQEQ HSLHL F73 Kulefisk-AHR1b 670 RL NSEL-KHL L SSQQWQDQLQ HSLHL F60 CK FK Sebrafisk-AHR1a 661 T PK SS NSEL-KHL L SSQQWQDQLQ HSLHL F60 CK FK Sebrafisk-AHR1a 661 T PK SS SS H - ST I SQHLQF SNL PP F HEQVCEALRS P F693 Sebrafisk-AHR1 666 E F PY KT E UNVQ A ON SP YT QNFAP F744 Mesnake 666 E F PY KS E VD SV PYT QNFAP QNFAP F04 Laks-AHR2b 730 T F STIMS S CAAP NNHWS F0G I TGQ/HSNQS PP QNF AP F04 F44 Laks-AHR2a 750 T F STSMS S CAAP NNHWS F0G I TGQ/HSNQS PP F64 F07 F64 F74 F44 Torsk-AHR2 714 T F P C QQA - S I SHYQGLAGAAMANSNQH SNQT P SKQTLSNQTLSNQTLSNQTLSNQTLSNQTLSNQTLANQMLS T1 F65 F74 F74 F74 Torsk-AHR2 718 KInfish-AHR2 F81 AN	Laks_AHR1a			
Sebialsk-ARR10 T14	Cobrofiels AUD1b			744
Havbrasme-AHR1 652 PL NgK HLSQQWQLQQEQ HSLHL FIL FIL <td< td=""><td>Sepransk-AHR1D</td><td>/14 QLSDKTTGTSKAQPQQWQQNG</td><td>PPh</td><td></td></td<>	Sepransk-AHR1D	/14 QLSDKTTGTSKAQPQQWQQNG	PPh	
Kulefisk-AHR1b 670 RL	Havbrasme-AHR1	652 PL NGK HL SQQWQLQG	=QHS <mark>L</mark> HL	673
Sebrafisk-AHR1a 661 TLPKSSHSTISQHLQFSNLPPFHEQVCEALRSP 693 Stør-AHR1 670 DFLYKTELNTVQPACTLYS688 686 EFPYKP	Kulefisk-AHR1b	670 RLNSEL-KHLLESSQQWSQDC	<u>.V-</u> PC) 698
Stør-AHR1 670 D E LY KT E LNTVOP A CTLYS 688 Mus-AHR 686 E F PY KF E VDSVPYT QNFAP 704 Menneske-AHR 684 E F PY KF E VDSVPYT QNFAP 704 Laks-AHR2 730 T FG TNMAG S CAQAP NNHMG S PQG I TG QVHSNQS PP 764 Laks-AHR2 730 T FG TNMAG S CAQAP NNHMG S PQG I I G QVHSNQS PP 764 Torsk-AHR2 714 T F D P C G QA S I S HYQ C LAG NAMSNAML SNQT P SKQTL SNQT LANQMLSN QT L SNQT L SNQT L SNQT LANQMLS 785 Torsk-AHR2 714 T F D P C G QA L I S HYQ C LAG NAMSNAML SNQT P SKQT L SNQT LANQMLSN QT L SNQT L SNQT L SNQT LANQMLS 771 Killifisk-AHR2 681 A N L S C HQ V S I GP ASS SQ S Q G Q Q Q 732 Havbrasme-AHR2 718 L F Q S C G Q A HMG C P Q F TY E T Q S Q I	Sebrafisk-AHR1a	661 TLPKSSHSTISQHLQFSN	PPFHEQVCEALRS	693
Mus-AHR 686 EFPYKP E VDSVPYT QNFAP 704 Menneske-AHR 684 EFPYKS E VDSVPYT QNFAP 702 Laks-AHR2b 730 TFGTNMAGSCAQAPNNHMGSPQG ITGQVHSNQS PP QNF IS 702 Laks-AHR2b 730 TFGTNMAGSCAQAPNNHMGSPQG ITGQVHSNQS PP 764 Laks-AHR2b 750 TFGTSNSGSCAHAPNNHIGSPQG ITGQVHSNQS PP 764 Laks-AHR2b 714 TF DPCGQA SISHYQGLAGNAMSNQMLSNQT PP Torsk-AHR2 714 TF DPCGQA SISHYQGLAGNAMSNQMLSNQT PP Torsk-AHR2 715 SF E E PCGQA SISHYQGLAGNAMSNQMLSNQT PP Torsk-AHR2 715 SF E E PCGQA SISHYQGLAGNAMSNQMLSNQT SNQTLSNQTLSNQTLSNQTLANQMLS 765 Tomcod-AHR2 715 SF E E CQQCQA SISHYQQLAGNAMSNQTLSNQT SNQTLSNQTLSNQTLANQMLS 765 Havbrasme-AHR2 708 LF QSCQA HMCCPQCTYRETQSSQI 705 Kulefisk-AHR2a 655 AF QSCQA HMCCPQCTYRETQSSQI 702 Kulefisk-AHR2a 658 OL F QSCGRA ASSLCMWTL PGACS	Stør-AHR1	670 DEL YKTEEINT	OPACTLYS-	688
MMSANAR 606 E F T E VDSVFTI	Mue AUD			704
Menneske-AHR 684 EFPY KS MD SMPYT QNF IS 702 Laks-AHR2b 730 T FG T NMAG S CAQA P NNHMG S POG I T G QVHSNQS PP 764 Laks-AHR2a 750 T FS TSNSG S CAAA P NNHM I G S POG I T G QVHSNQS PP 764 Torsk-AHR2 714 T F P C G QA SI SHYOG LAG NAMSNQML SNQT P SKQT L SNQT L ANQMLSN - QT L SNQT L SNQT L SNQT L ANQMLS 785 Torsk-AHR2 715 S F P C G QA SI SHYOG LAG NAMSNQML SNQT P SKQT L SNQT L ANQMLSN - QT L SNQT L SNQT L ANQMLS 771 Kliifisk-AHR2 681 AN SC Q QA SI SHYOG L AG NAMSNQT L SNQT L SNQT L SNQT L SNQT L SNQT L SNQT L ANQMLS 771 Kulefisk-AHR2a 655 AF Q C G QA SI G P ASSS QS Q Q Q Q 705 Havbrasme-AHR2 708 L F Q C G QA HM C P QE T P E T Q S Q I 732 Kulefisk-AHR2a 655 AF Q C G QA HM C P QE F P S Q H P R Q I 732 Kulefisk-AHR2c 682 L I Q L S G S C D H R N Q H S D A A A S L C MNWT L P G A C S C G R R L A P T T P N C P T L S H P R VA C P E V D N I G 751 Kulefisk-AHR2c <td>Mus-ARR</td> <td>000 EFFT</td> <td>PTTQNFAP</td> <td> /04</td>	Mus-ARR	000 EFFT	PTTQNFAP	/04
Laks-AHR2b 730 T F G T NMAG S CA QA PIN HIMG S P QG I T G Q V I S N Q P P P 764 Laks-AHR2a 750 T F S T SMS G S CA HAP NN HI G S P QI I A G Q V Q S N Q P P P 774 Torsk-AHR2 714 T F - D P C G Q A S I S H Y Q L A G NAM S N Q M L S N Q T P S K Q T L S N Q T L S N Q T L S N Q T L S N Q T L A N Q M L S N Q T P S K Q T L S N Q T L S N Q T L S N Q T L A N Q M L S N Q T P S K Q T L S N Q T L A N Q M L S N Q T P S K Q T L S N Q T L S N Q T L S N Q T L A N Q M L S N T T S K + MR2 681 A N L S C HQ V S I G P A S S Q S G Q Q Q Q - - C T P N Q T L S N P T L S N Q T L A N Q M L S N T T S K + MR2 708 L F - Q S C Q A - - HM C P Q G T Y R T T Q S Q Q Q - - 705 Havbrasme-AHR2 708 L F - Q S C Q A - HW C P Q G T Y R T T Q P P S Q H P R - Q I - - 705 Kulefisk-AHR2a 655 A F - O S C G R - HW C P Q G T Y R T T Q P P R Q H P R - Q I - - 677 Kulefisk-AHR2a 658 Q L L Q Q L S G C D H G N R N G H S D A - A S L C M N T L - - P G A C S - - G G R R L A P T T P N C P F T L S H P R V A C P E V D N I G 751 Kulefisk-AHR2b 689 - - D A C T L - - A S L C S C A Q V R Q N A K G R - - P P 712 Salmon-AHR2g 723 A F N P A L A G S C A Q V R Q N A K G R - - A C Q Q Q A Q A C R A A R T T P N C P F T S L A Q C R A C R C Q Q	Menneske-AHR	684 EFPYKSEEMDS	/ <mark>P</mark> YTQNFTS	/02
Laks-AHR2a 750 T F STSMSC S C AHAPNNHICS POLIACQVQSNOP 784 Torsk-AHR2 714 T F D P C Q A S I SHYQG LAGNAMSNOM LSNQT P SKQTLSNQTLANQMLSN O T LSNQTLSNQTLSNQTLANQMLS 785 Torsk-AHR2 715 S F E P C Q A LI SHYQG LAGNAMSNOM LSNQT P SKQTLSNQTLANQMLSN O T LSNQTLSNQTLSNQTLANQMLS 785 Torsk-AHR2 715 S F E P C Q A LI SHYQG LAGNAMSNOM LSNQT P SKQTLSNQTLANQMLSN O T LSNQTLSNQTLSNQTLANQMLS 771 Killfisk-AHR2 681 AN LS C HQV S I G P ASS Q S Y G Q A Q Q	Laks-AHR2b	730 TFGTNMAGSCAQAPNNHMGSPQGITGQVHSNQS	· - <mark>PP</mark>	764
Torsk-AHR2 714 T F D P C G Q A S I S HYQ B L A G NAM S NQM L S NQ T P S KQ T L S NQ T L A NQM L S N Q T L S NQ	Laks-AHR2a	750 TESTSMSCSCAHAPNNHICSPQIIACQVQSNQP	<mark>PP</mark>	784
Tomcod-AHR2 715 SFEPCGQALISHYQGLPSNAMSNOTLSNQTLSNGTLPNQTLSNPTLSNQTLANQMLS 701 Killifisk-AHR2 681 ANLSCHQVSIGPASSSQSGYGQAQQ	Torsk-AHR?	714 TEDPCGQASISHYOGLAGNAMSNOMLSN	TPSKQTLSNQTLANOMESNOTESNOTESN	IQTESNOTI ANOMI S 785
Killifisk-AHR2 F13 S1LSCHQVSIGPASSQSGYGQAQQ	Tomood AUD2			
NIMITSK-ARR2 681 AN	FUNCOU-ARKZ		KILSNQIL <mark>M</mark> NQILSN	EILSNQILANQMLS //1
Havbrasme-AH22 708 L F	KIIIITISK-AHR2	681 ANLSCHQVSIGPASSSQSGYGQAQQ		705
Kulefisk-AHR2a 655 A F QS C G M	Havbrasme-AHR2	708 LF QSCGQA HMGCPQGTYRETQSSQI		732
Kulefisk-AHR2c 682 LLIQQLSCSCDHGNRNCHSCDA - AASLCMNWTL - PGAACS - GGRRLAAPTTPNCPFTLSHPRVAACPEVDNI-G751 Kulefisk-AHR2b 689 DACTL DQSIVED - SGLGAFALRQ P-P Salmon-AHR2g 723 AFNPALAGSCAQLRQNQAKGR - QQGLQ ASQILSSPGNSLASYSLRQ Q-M Laks-AHR2d 723 AFNPALAGSCAQLRQNQAKGR - QQGLQ ASQILSSPGNSLASYSLRQ Q-M Salmon-AHR2g 723 AFNPALAGSCAQVRQNQAKGR - QQGLQ ASQILSSPGNSLASYSLRQ Q-M Salmon-AHR2d 733 AFNPSLTGSCAQVRQNQAKGR - QQGLQ ASQILSSPGKGLASYSLRQ Q-M Stør-AHR2 736 QFCQMUVEPCTQNLMGHSQS - TVGS LGLSNHGOPQ P Sebrafisk-AHR2 680 LFRPSLAMQ P P Sebrafisk-AHR2 680 LFRPSLAMQ	Kulefisk-AHR2a	655 AFQSCGRMHVGFPPEPSQHPRQI		677
Kulefisk-AHR2b 689 DAG TL DAG SCAQLRQNQAKGR QGLQ DQS I VED SGLGAFALRQ P P 712 Salmon-AHR2g 723 AFNPALAGSCAQLRQNQAKGR QGLQ ASQILSSPGNSLASYSLRQ Q M 769 Laks-AHR2d 723 AFNPSLTQSCAQVRQNQAKGR QGLQ ASQILSSPGKGLASYSLRQ Q M 769 Stør-AHR2 736 QFGQMLVEPCTQNLMGHSLQQS TVGS Laks-AHR2 CGNLVEPCTQNLMGHSLQQS TVGS Sebrafisk-AHR2 680 LFRPSLAMQ QSQQPNQV NLGLQ G - VVQ ENGIVPCGQRN 1 - P 713	Kulefisk-AHR2c	682 LI LOQUESCONGNENCHSCOAL - AASLCMNWTL	- PGAACS GGRRI AAPTTPNCPETLSE	
Salmon-AHR2g 723 AFNPALAGSCAQLRQNQAKGR QQGLQ	Kulefisk, AUD26			
Samon-Amrzg 123 AFNPALAGSCAQLKQMQAKGR - QQGLQ - ASQILSSPGNSLASYSLRQ - QAM 769 Laks-AHR2 723 AFNPSLTGSCAQVRQNQAKGR - QQGLQ - ASQILSSPGKGLASYSLRQ - QAM 769 Stør-AHR2 736 QFGQMLVEPCTQNLMGHSQQS - TVGS - CASA ASQILSSPGKGLASYSLRQ - ASQILSSPGKGLASYSLRQ - QAM 769 Sebrafisk-AHR2 680 LFRPSLAMQ - QSQQPNQV - NLGLQ - 717	Nulciish-ARKZU			
Laks-AHR2d 723 AFNPSLTGSCAQVRQNOAKGR QQGLQ ASQILSSPGKGLASYSLRQ Q M 769 Stør-AHR2 736 QFGQMLVEPCTQNLMGHSLQQS - TVGS LGLSNHGQPQ L P 773 Sebrafisk-AHR2 680 LFRPSLAMQ QSQQPNQV - NLGLQ	saimon-AHR2g	123 AFNPALAUSUAQLRQNQAKGRQQGLQ	· ASQILSS <mark>PG</mark> NSLASYSLRC	ιQ-Μ 769
Stør-AHR2 736 QFGQMLVEPCTQNLMGHSLQQS-TVGSLGLSNHGQPQLGLSNHGQPQ	Laks-AHR2d	723 AFNPSLTGSCAQVRQNQAKGRQQGLQ	ASQILSS <mark>PG</mark> K <mark>G</mark> LASY <u>S</u> LRC	QQ- <u>Μ</u> 769
Sebrafisk-AHR2 680 LFRPSLAMQQSQQPNQVNLGLQGVVQENGIVPCGQRNL-717	Stør-AHR2	736 QFGQMLVEPCTQNLMGHSLQQSTVGS	L <mark>G</mark> LSNH <mark>G</mark> Q <mark>P</mark> C)I- <mark>P</mark> 773
	Sebrafisk-AHR2	680 LFRPSLAMQQSQQPNQVNLGLQ		
				///

Killifisk-AHR1 Kulefisk-AHR1a Laks-AHR1b Laks-AHR1a Sebrafisk-AHR1b Havbrasme-AHR1 Kulefisk-AHR1b Sebrafisk-AHR1a Stør-AHR1 Mus-AHR Menneske-AHR Laks-AHR2b Laks-AHR2a Torsk-AHR2 Tomcod-AHR2 Killifisk-AHR2 Havbrasme-AHR2 Kulefisk-AHR2a Kulefisk-AHR2c Kulefisk-AHR2b Salmon-AHR2g Laks-AHR2d Stør-AHR2 Sebrafisk-AHR2

Killifisk-AHR1 Kulefisk-AHR1a Laks-AHR1b Laks-AHR1a Sebrafisk-AHR1b Havbrasme-AHR1 Kulefisk-AHR1b Sebrafisk-AHR1a Stør-AHR1 Mus-AHR Menneske-AHR Laks-AHR2b Laks-AHR2a Torsk-AHR2 Tomcod-AHR2 Killifisk-AHR2 Havbrasme-AHR2 Kulefisk-AHR2a Kulefisk-AHR2c Kulefisk-AHR2b Salmon-AHR2g Laks-AHR2d Stør-AHR2 Sebrafisk-AHR2

Killifisk-AHR1 Kulefisk-AHR1a Laks-AHR1b Laks-AHR1a Sebrafisk-AHR1b Havbrasme-AHR1 Kulefisk-AHR1b Sebrafisk-AHR1a Stør-AHR1 Mus-AHR Menneske-AHR Laks-AHR2b Laks-AHR2a Torsk-AHR2 Tomcod-AHR2 Killifisk-AHR2 Havbrasme-AHR2 Kulefisk-AHR2a Kulefisk-AHR2c Kulefisk-AHR2b Salmon-AHR2g Laks-AHR2d Stør-AHR2 Sebrafisk-AHR2

175 ANLINE COT 951 DH ARKSONGTO 955 175 ASSSG ETL NOVHED POXOS Y YDE 185 ATSINS YTL NOVHED POXOS Y YDE 185 ATSINS YTL NOVHED POXOS Y YDE 185 TTEEGO TLL NOVHED POXOS Y YDE 185 ATSINS YTL NOVHED POXOS Y YDE 185 ATSINS YTL NOVHED POXOS Y YDE 186 QUED TAREY DSD 1000 YE STERE FLEE FLEE<	758 STI N <mark>G</mark> MSDA		FFS	N <mark>GST</mark> DF <mark>G</mark>	IAD 779
T7 ASSS 2 ETL MONINE DEPORS Y YOE T T45 ATSKS YTL MONINE DEPORS Y YOE T T45 ATSKS YTL MONINE DEPORS Y YOE T T45 ATSKS YTL MONINE DEPORS Y YOE T T45 TLE TLE MONINE DEPORS Y YOE T T45 TLE MONINE DEPORS Y YOE T YOE T T45 TLE MONINE DEPORS Y YOE T YOE T T45 TLE MONINE DEPORS Y YOE T YOE T T45 TLE MONINE DEPORS Y YOE T YOE T T45 TLE MONINE DEPORS Y YOE T YOE T T45 TLE <t< td=""><td></td><td></td><td></td><td>HSAGKSOWOGYG</td><td> ESE 803</td></t<>				HSAGKSOWOGYG	ESE 803
115 AT SINS VTL Mound Dispose Yes VTD E 116 AT SINS VTL Mound Dispose Yes VTD E 117 AND E VTL Mound Dispose Yes VTD E 117 AND E VTL Mound Dispose Yes VTD E 117 AND E ELG FISTE FILLE FILLE FILLE 117 AND E CONDUCT - VTD E FILLE FILLE 117 AND E - VTD E - VTD E - VTD E FILLE FILE FILLE FILE	773 ASSSSG		FTIN	GVHPDPDWQSSV	YDE 797
13 TLA NBLYSHE2004074 PAE T 699	815 ATSNSS		VTI N		YDD 839
173 0.0 DBD 100/S IL FR ELC PS0/F LKRF ELD PS0/F LKRF 178 0.0 DBD 100/S IL FR ELC PS0/F LKRF ELD PS0/F LKRF 178 0.0 DBD 100/S IL FR ELC PS0/F LKRF ELD PS0/F LKRF 178 0.0 DFTTNIBY A. TRAFTOR DOWN A. 178 0.0 DFTTNIBY A. TRAFTOR DOWN A. 178 NOTLS NOMESNOMESNOMESNOMESNOMESNOMESNOMESNOMES	745 T F <mark>GG</mark> D		TI A N	GLYSNPOWHGYN	FAF 769
See Wiscobistic FMH 684 - OVCETMAEVI DSD LOGVSELFER - ELCP SC FMK RF - ILD 7 685 - OVCETMAEVI - DSD LOGVSELFER - ELCP SC FMK RF - ILD 7 765 - ONGELL - EMSKSVOLDFF - EBC 7 - ONGELL - EMSKSVOLDFF - EBC 7 773 - ONGELL - EMSKSVOLDFF - EBC 7 - ONGELL - EMSKSVOLDFF - EBC 7 773 - ONGELL - ONGELL - EMSKSVOLDFF - EBC 7 - ONGELL - EMSKSVOLDFF - EBC 7 773 - ONGELL - ONGELL - EMSKSVOLDFF - EBC 7 - ONGELL - ONGELL </td <td>674</td> <td></td> <td></td> <td>OSONOL PG</td> <td> 681</td>	674			OSONOL PG	681
534	699				FHN 710
MB_GA VSO HMOGL VY DDN/VS VID 07 765 CNOR LL FISS SVOL GR 0 T 765 CONTRUE LL FISS SVOL GR 0 T 765 CONTRUE LL AND READ STORE GR 0 T 765 CONTRUE LL AND READ STORE GR 0 T 765 CONTRUE LL AND READ STORE GR 0 T 766 CONTRUE LL AND READ STORE GR 0 T 767 CONTRUE LL AND READ STORE GR 0 T 768 CONTRUE NOAME STORE T AND READ STORE T 769 CONTRUE NOAME STORE T CONTRUE AL AND READ STORE T 770 CONTRUE AL AND READ STORE T <	694 QVCGTMAEVI	DSD100V9	S <mark>PLEPP</mark>		
105	689	M	SAVSO		
103	705				
175 OPETTHINGUE A. TRAINERO C. D. SOLONYO. A. T. T. 178 OPETHINGUE A. A. L. BENDEL C. S. SOLANYO. A. B. B. 178 OPETHINGUE A. A. L. BENDEL C. S. SOLANYO. A. B. B. 178 DESTANT. SNOKL.SNOKL.SNOKL.SNIT. ENOTL.STITL.SGSL.G.C. T. TERAA. MMAINNEH C. GSL JOEAL I. Y. A. B. 173 DESTANT.SNOKL.SNOKL.SNOKL.SNOKL.SNIT.L.SSGL.G.C. T. TERAA. MMAINNEH C.GSL JOEAL I. Y. A. B. 173 DELOS SOLL.CAS SVIKEN. Y. V. 77 TRAIN.SNOKL.SSATAJI A. M. Y. E. JONO. L. L.S. B. MAINNE A. SLOP SCOREGEAR I. N. V. 77 173 AND. B. F NOKEL. Y. V. YN A. BLOP SCOREGEAR I. N. V. 77 173 AND. B. F NOKEL. Y. L. MINOLIME COUSSI SISSED F. AV ROE ENVIRUE. B. SNEWTIWW. A. B. 170 GSLARESSATAJI A. M. B. L. LOSCI.L. L.W. MINOLIME COUSSI SISSED F. AV ROE ENVIRUE. B. SNEWTIW Y. MINOL. Y. B. SOLANESSATAJI A. M. B. L. LOSCI.L. C. SOL OSCIE. ACOL L. M. M. MINOLIME COUSSI SISSED F. AV ROE ENVIRUE. SNEWTIW Y. MINOL. Y. B. SOLANESSATAJI A. M. B. L. TOSCIE. M. M. MINOLIME COUSSI SISSED F. AV ROE ENVIRUE. SNEWTIW Y. MINOLY M. SOLANESSATAJI A. M. SOLANESSATAJI A. M. B. L. LOSCI.L. YNEWTID. ENVIRUE. SNEWTIW Y. M. M. B. SSENTY Y. YNEWAL SNEWTIWY. SNEWTIM Y. SNEWTIW Y. M. M. SNEWTIW Y.	703				MCS 723
175 OCCENTINGLE A. A ANNOY C. Construction of the co	765	OFE:			ORNHV A 793
198 NOTL SNAML SNAML SNAML SNAML SNAML SNATT STITLS GSLOR OF TIDRA A MARKAN HE UGS STORA HYV. A B 173 NOTL SNAML SN	785	005		ALADNODE EISVD	QSNIIVA 793
19 NOTESINGUESTIGUESTIGUESTIGUESTICE 1000 ALL 10000 ALL 100	786 NOTI SNOM SNOM SNOM SNHTI PNOTI S				
1/2 NULL SNULMY SNULLS NUMPER NITE IN ULLS IN ILE SUSCEPT SUSCEPTION SUSCEP	786 NOTESNOMESNOMESNOMESNHILPNOTES	TITLSPUSLUPU	LIGGPAA	PMGANGHELQGSTQG	PAVHWIA 856
003 LVC 004 LARAME LODGE LOD	772 NQILSNQMVSNQMLSNQMHSNHILINQILS	TKTESPQSEQPC			PATHVA 842
33 ELG UNIL DATA ANAANUELE GSTVE V.V. V.V. 725 LLOS OT FE FONDATE DESCRIPTION 713 ANG., ERF. NOMER FT ONDATE DESCRIPTION TO 713 ANG., ERF. NOMER FT ONDATE DESCRIPTION TO 710 ODELANRSSATON ANNO. LI ONDALEMA MUDDEMAFCONSIS ISODE FANNEDE DESSMENTING NOMA 710 ODELANRSSATON ANNO. LI ONDALEMA NUDEMAFCONSIS ISODE FANNEDE DESSMENTING NUMA DESSMENTING N	706	LVQ	GSHLGAP	GETGAGRILQSSAPH	MS-SIA 736
b/7 SLILLING SGELE VARSE VLVRN - A LLUS SLI - E BANKELLUS VE - SLIVE SLIVE 713 AKO - EFF - MOMBEL ET OHH - VL FIONO - LEWA - MADELTASLQUKIN - FISSENHAN SLIVE - SSIN TINN - A SLIVE YLVRN - A SLIVE YLVRN - A SLIVE YLVRN - A YLVRN - A SLIVE SLIVE YLVRN - A YLVRN - A YLVRN - A YLVRN - A SLIVE SLIVE YLVRN - A YLVRN -	/33	PLU	QNNLQA <mark>P</mark>	AMAANGQLLQSSVKH	PN-NVV 763
1/2 SHLHB0/SEGLEVATES YLYKH A	6/8	LLQ:	sQI	ELPSNGELLQSIVE-	69/
113 ANGEH+NUMBELET_ONHENG FLOWEL_HASLODY HARMAGE LEGN FLOWEL_HASLODY HARMAGE LEGN 170 OSELANESSATOAL BARMAGE LEGN HOGOLLEWN- MNDOLMEFODOSSI SOSDEFAN GOETINWEL_ESSMINTNIMV	752 SLHLHGDSGGLEVAPSEYLY	RN-A		SLQPSCCWQEEARTP	N/92
170 OSBLANESSATOU ANN GLE IGUOLEMON MINDORME FONDES I SOSDE FAVEGO ETIMMULESSMETTINUY A 170 OSBLANESSATOU ANN GLE IGUOLEMON MINDORME FONDES I SOSDE FAVEGO ETIMMULESSMETTINUY D 170 OSBLANESSATOU ANN GLE IGUOLEMON MINDORME FONDES I SOSDE FAVEGO ETIMMULESSMETTINUY D 170 OSBLANESSATOU ANN GLE IGUOSU IGUNA MINDORME FONDES I SOSDE FAVEGO ETIMMULESSMETINUY D 170 OSBLANESSATOU ANN GLE IGUSU IGUNA MINDORME FONDES I SOSDE FAVEGO ETIMMULESSMETINUY D 170 OSBLANESSATOU ANN GLE IGUSU IGUNA MINDORME FONDESSI SOSDE FAVEGO ETIMMULESSMETINUY D 170 OSBLANESSATOU ANN GLE IGUSU IGUNA MINDORME FONDESSI SOSDE FAVEGO ETIMMULESSMETINU TONORME S 170 OSBLANESSATOU E MINDORME ANT TO MINING GLE IGUNA SISTUDMUNING TO SOLVE SISTEME FONDESSE SOLUCIO IGUNA SISTUDMUNING TO GOLIALAESTVA S 170 OLIXIN - BACTUS Y TINBEADTISHATE GEVITRADYGINAST TUDMUNING TO GOLIALAESTVA S S 170 OLIXIN - BACTUS Y TINBEADTISHATE GEVITRADYGINAST TUDMUNING TO GOLIALAESTVA S S 170 OLIXIN - BACTUS Y TINBEADTISHATE GEVITRADYGINAST TUDMUNING TO GOLIALAESTVA S S 170 OLIXIN - BACTUS Y TINBEADTISHATE GEVITRADYGINAST TUDMUNING TO GOLIALAESTVA S S S 170 OLIXIN - BACTUS Y TINBEADTISHATE GEVITRADYGINAST TUDMUNING TO GOLIALAESTVA S S S S S S S S S S	/13 ANQ GHF NQMPP - PI - QNH	HQMR	I <mark>P</mark> ASLQDKNPV	FSPGNHWSSNSNQV	/58
170 COSILANESSATOVIERANGES 180 SUBTAVE GOTIMALESSATUTION 171 CONNACTOR 200 SUBTAVESSATUTION 171 CONNACTOR 200 SUBTAVESSATUTION 173 CONNACTOR 200 SUBTAVESSATUTION 174 CONNACTOR 200 SUBTAVESSATUTION 175 CONDERNICA FLANT SVDLCTDYRMTDLENVIGSLLEK VOQODESSTSVVDNR 176 SUBSDSCIDSSOK ELITISSEE CADYSMEDISVYELE FEROLINACSSATUTION 176 SUBTAVESSATUTION FLANT SVDLCTDYRMTDLENVIGSLLEK VOQODESSTSVVDNR 177 SUBTAVESSATUTION FEROLINACSSATUTION SE 178 SUBTECT FINODALISHITE EVENTRADYSMEDIS SE 179 SUBTECT FINODALISHITE EVENTRADYSMEDIS SE 170 SULTIN SEC FINODALISHITE EVENTRADYSMEDIS SE 170 SUBTECTSSOURDESSOTTESC FINODALISHITE SE FOSVLOVEN OS T 171 SUBTECTSSOURDESSOTTESC FINODALISHITE SE FOSVLOVEN OS T T 172 FE SUBTESSED VENTTONENCINCALINELINE DMN DMN SUBTESSED T SUBTESSED T T T T T T T T T <	770 QSGLANRSSATQATPAPM-V-LPTQNQ-LG	W <mark>G</mark> -MNDQ <mark>P</mark> MRFQI	NQSSTSQSD <mark>P</mark> FA	AVPGQETMWMPLPSSM	PNINMV A 841
773 ONNM_GER SOND REMOUNDER PLACE-SOLOKSOLM PAOL LINEM - STEPSOWY SISSIVUTON NORMATERIAL STRUCTURE CONTROL STRUCTURE CONTROL STRUCTURE SOLUTION STRUCTURE CONTROL STRUCTURE SOLUTION	770 QSDLANRSSATQVIPAPM-G-LPIQSQLLG	WN-MNDQLMRFQ	DQSSISQSDPF	av <mark>pg</mark> qetmwm <mark>p</mark> l <mark>p</mark> ssm	PNTNMV D 842
718	774 QNNM - GGF SQNQ I RPNPQ - ANMGQPN - PLA	LQ-SQLQKSQLM	PAQQLLN <mark>P</mark> M	- S <mark>S</mark> TEDSQWVTSASNT	NYTQNHQQV <mark>P</mark> MSA 848
780 SL SDSCE DSVQK- FLANT SVDLCTDYRNTDLE NVNGSELL GK- VGQQ DE SEFTVS- S & B 844 SLATNSCLDNSQK- E ETTS - SLE CADYSM DIDSVEPLREEL - FGRC HAAESTVA- S & B 981 GLETANGAN ACTVS-VFNGRADTLSHTTE - GEVTHTOYSMORS B B Status - FB NQGM - AHTO - MOTION SVEFTNUSSSENL GOFGQ GAG STAT S & B 770 GLVTN - GRC - FB NQGM - AHTO - MUTI IDYNTNSVEFTNUSSSENL GOFGQ GAMASSS Y B SS & STATSSENL GOFGQ GAMASSSE - Y B 782 GETTN - GSV - IBNGH - AFERN - ME VSHTYSTER - GSVLNG - VTOVCH QS - 17 Y & S SS & SS & TOVCH - QS - 17 710 GLVTN - ASV - IBNGH - AFERN - ME VSHTYSTER - GSVLNG - VTOVCH - QS - 17 Y & SS & SS & SS & TOVCH - QS - 17 Y & SS &	718 LT <mark>G</mark> NQ <mark>P</mark> HPNTM-T-LPLQS-PLV	Q <mark>G</mark> -TSTQ <mark>P</mark> M <mark>G</mark> FRI	VQNSL <mark>P</mark> QQ <mark>P</mark>	SISQNPQWVPSSNSV	'VDNR776
780 SLQSDSCRDSVQK- FLANT-SVDLCTDYRWTDLRVVHSGRLQK- SGC DSSET VS- S 6 780 SLATSCLDNSQK- FLATSSLECAPSWD DISSVGYLEEEL- FGGC MAASTYA- S 6 790 GLGLTVN- ACTVS-VENDHADTLSHTTE-GEVTHDYSMGDS SGC COGGG CGG CGG CGG CGG CGG CGG CGG CGG					
804 SLATINSCLDINSOK BLTTS-SLEBCADYSMEDIDSVERUEREL EGROBHAAESTVA	780 SL <mark>G</mark> SDSC <mark>P</mark> DSVQKFLA	NT - SVDLCTDYRN	MTDL <mark>P</mark> N∨N G SGL	LGKVGQQ-DGSE	FTVSS 834
199 OLGLITVN	804 SLATNSCLDNSQKPLT	TS-SLEPCADYSN	M <mark>P</mark> DIDSV <mark>G</mark> Y <mark>P</mark> LF	REEL <mark>Fg</mark> rq <mark>q</mark> haae	STVAS 859
840 D.GLITANGANGACTVSYINGRADILSHAID. EVITADYGMASTIVUDVVMMSTVGGOGGHVGGOGGVTAT	798 QL <mark>G</mark> LTVN <mark>G</mark> ACTVS Y <mark>P</mark> NGHADTLSHT	TE - GEVTHTDYSN	M <mark>G</mark> DS	· · · · · · · · · · · · · · · · · · ·	837
770 OLVTN SPC F PROM AF PRIVA MEVSITE YEI FIRE CSV UNE VTEDVCHW OS CS 711 ORTIN ASY I NUGHT SFL BS VEVENTYS IT AAECARAALLING LA POVCHW OS CS CT 713 EX I CTSSSOQLSSSOTTEGE EWKFTTOULEDLIN ONM GVG EERKC 77 726 FE FE SLO DOFE EEKC 77 724 FE SLO DOFE EEKC 77 734 BSLVDEWAA SNIT BSLEOP VT CLGO VE FEN KK 77 734 FE SLUPEWAA SNIT BSLOP VS CLGO VE FEN KK 77 734 FE SLUPEWAA SNIT BNAFVS OI ESSOL NLS NEL FEN KH SNIT BNAFVS OI ESSOL NL	840 QL <mark>G</mark> LTAN <mark>G</mark> AN <mark>G</mark> ACTVS YTN <mark>G</mark> RADTLSHA	TG-GEVTRADYGN	MGASTTVDMVM	₩ <mark>G</mark> TVGG <mark>T</mark> GH <mark>YQ</mark> GQGG	VTAT <mark>P</mark> 910
682 F CITN	770 QLVTNGPCFPNGQMAHT	QT - M <mark>GT</mark> HIIDYNN	MTDNS <mark>G</mark> ∨EFTMN	NSSSS <mark>GNLGQFQG</mark> AMA	.SSSSY 829
111 GRT I N	682 FQTTN <mark>G</mark> SYI <mark>P</mark> N <mark>G</mark> H <mark>P</mark> AF <mark>P</mark>	PN-MEVSHTGYS	T <mark>PHP</mark> <mark>GG</mark> SVLN	N <mark>G</mark> -VT <mark>PDV</mark> CH <mark>Y</mark>	QSL 731
733 M LCTSSSQCLSSSQTTEE P. WKFTTQLEDLIN - DMM - DVGERN - 77 712 FN	711 QRTINASYIPNGHTSFL	PS-VE <mark>VG</mark> HTYSI	TAA <mark>P</mark> CA <mark>P</mark> AALLN	N <mark>G</mark> LTA <mark>PDVC</mark> H <mark>Y</mark>	QSY 763
1712 F N. T. LELEDFLE SLO FC FE FE NO T. 726 F E P. SH # TTSNL OP VS CLO VEND SH T. 734 F E P. SH # TTSNL OP VS CLO VEND SH T. 734 F SLVDØWA SNL P SNEFVS P0 I AC SA F FOSLKTOK - AC WE SA F FOSLKTOK - AC WE 814 F ILVDØWA SNL P SNEFVS P0 I AC SA F FOSLKTOK - AC WE SA F FOSLKTOK - AC WE 817 R VVVA AA SNL P SNEFVS P0 I AC SA F FOSLKTOK - AC WE SA F FOSLKTOK - AC WE 817 R VVVA AA SNL P SNEFVS P0 I AC SA F FOSLKTOK - AC WE SA F FOSLKTOK - AC WE 818 NVVA AA SNL P SNEFVS P0 I AC SA F FOSLKTOK - AC WE SA F FOSLKTOK - AC WE 818 NVVA AA SNL P SNEFVS P0 I AC SA F FOSLKTOK - AF CO WE ENV F FOSVKA 819 OLL P FL B CN FOSVE SNE SNE NN SA F FOSLKTOK - AF CO WE ENV F FOSVKA 793 D FV D SVA DNN PSOOG FAAN - PS SC LOGH FSLOTH - NHAR - AC WE 842 D TLL E FFA ONL SNOP KOVI DN - ASC LOGH FSLOTH - NAANAE (SW E 842 D TLL E FFA ONL SNOP KOVI DN - ASC LOGH FSLOTH - NAANAE (SW E 843 D TLL E FFA ONN - SNOP KOVI DN - ASC LOGH FSLOTH	733 PKLCTSSSQQLSSSQTTEGEPVKFT	TQDLEDLIN	DMN	\ <mark>GVG</mark> E <u>RN</u>	775
726 FE P. S.L.M.TTSNL. DFVS CLO VEN SH 77 724 FE S.W.P.TSSLEDFVT CLO FEN KH 77 734 FE S.W.P.SNLPSNEYSQIESSDLNLSNEL FTACLOGNSA FOSLKIOR - VROW & 814 PILVDAWA S.W.P.HNDFSMEAN SEN - SALFT GNUMUGGA FOTHSNEH - APOW & 817 POVKALA S.W.P.HNDFSMEAN SEN - SALFT GNUMUGGA FOTHSNEH - APOW & 818 PILVDAWA PTE BONDFCL TINSNEN - SALFT GNUMUGGA FOTHSNEH - APOW & 817 POVKALA PTE BONDFCL TINSNEN - SALFT GNUMUGGA FOTHSNEH - APOW & 818 PILVDAWA PTE BONDFCL TINSNEN - SALFT GNUMUGGA FOTHSNEH - APOW & 819 ONE TEST PLK BENSY & TATAY TAGY HEFL BELOK & CLOYF 819 ONE TEST PLK BENSY & TATY TAGY HEFL BELOK & CLOYF FONTHSNEH - APOCL & SALFT BANK NNEH DET TAGY PLW COUNTS FONTHSNEH - APOCL & SALFT BANK NNEH DET TAGY PLW COUNTS FONTHSNEH - APOCL & SALFT BANK NNEH DET TAGY PLW COUNTS FONTHSNEH AN PSYSED S FO	712 FN <u>T</u>	-LELEDFLE	SLC	Q <mark>РСР</mark> Е <mark>ТР</mark> КС	733
724 FE B SM/P TYSLEDVUT CLO LENKH TYSLEDVUT 814 PILVDAWA SM/P SNAFVSPOIESDLNLSNEL FTACLORNSAPFOSLKIOR-VROW B 814 PILVDAWA SNAFVSPOIESDLNLSNEL FTACLORNSAPFOSLKIOR-VROW B 817 PILVDAWA SNAFVSPOIESDLNLSNEL FTACLORNSAPFOSLKIOR-VROW B 817 PIVVAPAA FTE BONDFOLE TINSNEN SALET - GNUWWOGGAPFOTHSNHR-APOW B 818 NVVAPAA PTE BONDFOLE TINSNEN - SALET - GNUWWOGGAPFOTHSNHR-APOW B 737 PEVENDEL PLIPECDFOLE TINSNEN - SALET - GNUWWOGGAPFOTHSNHR-APOW B 738 NUVAPAA PLIPECDFOLE TINSNEN - SALET - GNUWWOGGAPFOTHSNHR-APOW B 739 DFVDSYA PLIPECDFASSTEN - PLIPECVELS SAREKINNLPLOTY - NOW B 739 DFVDSYA DINPSOGE - FAAN PASCLOPH FLOSUNGWIE B 842 DTLETFA ONI - SNOPKOVI - DN PASCLOPH FLOODAGAME B 843 OTLETFA ONI - SNOPKOVI - DN PASCLOPH FLOODAGAME B 849 GNE RODLHKOP CSI PLUVOVI - SNELAOCH - SNELAOCH - LOHSDI - AS-SEISHNKK B 843 DN PLOGO SE PLUVOVI - SNELAOCH - LONS DY LOGOACH PHYSI - NAARAB 843 OTLETFA SNELAO SE PLUVOVI - SNELAOCH - LONS DY LOGOACH PHYSI - NAARAB <td>726 FEP</td> <td>TSNL-DFVS</td> <td>CLC</td> <td>Q<mark>∨P</mark>EN<mark>Q</mark>SH</td> <td> 751</td>	726 FEP	TSNL-DFVS	CLC	Q <mark>∨P</mark> EN <mark>Q</mark> SH	751
794 PSL/DGWA	724 <u>F</u> E <mark>P</mark> S <mark>P</mark> Y <mark>P</mark> T	TSSLEDFVT	CLC	QL <mark>P</mark> EN <mark>Q</mark> KH	750
814 B ILVDAWA SLIPSNEFVSP01AC SAPF03LKT0K-AGW 65 817 PNVVABAB SNIPKVABAB SNIPKVBSKA SALPT-CONVOCEAPFOTTSNIR-ADW 65 818 PNVVABAB PTLPQNDFCLPTNSNEN-SALFT-CNCWVGEAPFOTTSNIR-ADW 65 SNIPKVABAB PTLPQNDFCLPTNSNEN-SALFT-CNCWVGEAPFOTTSNIR-ADW 65 737 POVKNLLP PLIPCUDFASSTSTNI- PILPCLOCUVF PSELSTERNI- PILPCUDFASSTSTNI-	794 PSLVDGWA	SMIPSNAFVS	S <mark>P</mark> QIESSDLNLS	SN <mark>P</mark> L - <mark>P</mark> T <mark>A</mark> CLQ <mark>G</mark> NSA <mark>P</mark>	FQSLKIQR - VRQW 848
857 NVVAPAP SND PHOPSONPANESEN - SALFT - ENCMVOGAPFOTHSNHR - AFGW 90 843 PNVVAPAP PK SHSSVE 3 - TV - TAGY - HPEFLOKGVMF - ENVY 777 PGVKNLLP - PK SHSSVE 3 - TV - TAGY - HPEFLOKGVMF - ENVY FNVVAPAP 789 PGVKNLLP - PK SHSSVE 3 - TV - TAGY - HPEFLOKGVMF - ENVY FNVP - PEFLOKGVMF - ENVY 793 PL PCODYNE - FALVY - PS SARLKNUELOTY - NROLOW 8 FNVP - PEFLOKGVMF - ALVY - PS SARLKNUELOTY - NROLOW 8 793 PL PCODYN - FALVY - PS SCLOGHFALQSONSDRHKS 5W 80 FNVP - PS SCLOGHFALQSONSDRHKS 5W 80 842 DTLLETFA - ONI - SNOPKOVI - LDP - PS SCLOGHFALQSONSDRHKS 5W 80 843 DTLLETFA - ONI - SNOPKOVI - DAND PS SCLOGHFALQTQAQAKLP 80 843 DTLLETFA - ONI - SNOPKOVI - NN PASCLOGHFSLOTLAQQQACMLP 80 843 DTLLETFA - ONI - SSLAQCP - LSN - TSLEOFLTAGK - PCHQ - LDHSDI - AS - EISHDSTSKMK 80 850 - OVQQQQEEAAVP FTOVI - S - SLAQCP - LSN - TSLEOFLTAGK - PCHQ - LDHSDI - AS - EISHDSTSKMK 80 860 FOGLNHKOPESI EVFLUOVI - S - SLAQCP - LSN - TSLEOFLTAGK - PCHQ - LDHSDI - AS - EISHDSTSKMK 80 861 SOLOGY - OK - SOLOGHFSLOTLAGK - PCHQ - LDHSDI - AS - EISHDSTSKKK 80 862 FOGLNHKOPESI EVFLOOVI - S - SLAQCP - LSN - TSLEOFLTAGK - PCHQ - LDHSDI - AS - EISHDSTSKKK 80 863 GOLOGY - OK - STY FH - R - OY - STTC - NSLDYILG LSO - PHTTDYSL - FL PLEFES SKMK 80 <t< td=""><td>814 PILVDAWA</td><td>SLIPSNGFVS</td><td>5<mark>P</mark>QI<u>A</u>C</td><td>SA<mark>P</mark></td><td>FQSLKTQK-A<mark>P</mark>QW 851</td></t<>	814 PILVDAWA	SLIPSNGFVS	5 <mark>P</mark> QI <u>A</u> C	SA <mark>P</mark>	FQSLKTQK-A <mark>P</mark> QW 851
843 NVVA BAR PTL PADFCL #TNSNEN - SALFT - GNYMVGGA FGTHSNHR - AROWS 737 PGVKNLLP PLL PCNDFASSTENI - FIF - APGCLGS PFLETH - NHO - VOW 6 768 PGLVPCDVN - PALNV - VSF - SARLKINNL EGTV - NRO - LGW 7 7793 PLVPCDVN - PALNV - VSF - SARLKINNL EGTV - NRO - LGW 7 7793 PLVPCDVN - PALNV - VSF - SARLKINNL EGTV - NRO - LGW 7 7793 NSVPEDELS - FTVH - PTCVGLS 7793 NSVPEDELS - FAAN - PSCLGGHFSLGTLHQQQQQALL 8 842 DTLLETFA QNI - SNOPKOVI - DPN - PASCLGGHFSLGTLHQQQQQAUL 8 843 DTLLETFA QNI - SNOPKOVI - DPN - PASCLGGHFSLGTLHQQQQQAUL 8 843 DTLLETFA QNI - SNOPKOVI - DPN - PASCLGHFSLGTLHQQQQQAUL 8 843 DTLLETFA QNI - SNOPKOVI - DPN - PASCLGHFSLGTLHQQQQQAUL 8 843 DTLLETFA QNI - SNOPKOVI - DNN - NALEGHTSCHWAQLQ 8 8777 -MSCA HW - YOU - SS - SLAGC P - LSN - TS EOFLTAGK - CHQ - LDHSDI - AS - SEI SHDSSTSKMK 8 886 FOGLNHKOPCESTYFF - QV - P - TTQ - NS DY ILGLSQ - PANTTF SLDAYGI - LN - SPASQDATHCKME 85 911 SDHLEHH - KHY PQV STYFF - QV - S - TTQ - NS DY ILGLSQ - PANTTF SLDAYGI - LN - SPASQDATHCKME 85 931 OCTY OK - GOQU EFAAVSFTYF - QV - S - TTQ - NS DY ILGLSQ - PANTTF SLDAYGI - LN - SPASQDATHCKME 85 <t< td=""><td>857 PNVVAPAP</td><td><u>S</u>NLPHNDFSN</td><td>M<mark>P</mark>AN<mark>P</mark>SENSA</td><td>ALFT<mark>G</mark>NCM<mark>VQGG</mark>A<mark>P</mark></td><td>FQTHSNHR - APQW 908</td></t<>	857 PNVVAPAP	<u>S</u> NLPHNDFSN	M <mark>P</mark> AN <mark>P</mark> SENSA	ALFT <mark>G</mark> NCM <mark>VQGG</mark> A <mark>P</mark>	FQTHSNHR - APQW 908
737 PGVKNLLP PK SHSvSS TV TAGY PL PELKKGVMF E.NYG 764 PGAMD ILP PL PCNDFASSTENI PL PCNDFASSTENI PL PCLOVA PVSF SARLINNLPLGTV NQ vBG 793 PCVVNLPCGVVN PLSF SARLINNLPLGTV PNG LGTV PLSSUGG FAN PSSLGGHFALGSNDRHKSW 793 N N NG VPGUS FTVH PLCVGLS PT 793 N N NG VPGUS FTVH PLCVGLS PT 793 N N NG VPGUS FTVH PLCVGLS PT 793 N N NG VPGUS FTVH PLCCULS PT 842 DTLLETFA QN NG VPGUS FANN PASCLOCHFSLGTHAQQQQAKLP 6 843 DTLLETFA QN SNOP KDV1 DNT PASCLOCHFSLGTHAQQQAKLP 6 843 QNE IRFDL SNOP KDV1 NA SNOP KDV1 NA NQLPKCHLVARUQQQAKLP 6 777 MNSCA SNDP KDV1 SNDP KDV1 NA SSP QDAG LDHSD1 AS SEI SHDSSTSKMK 65 835 SNDVPKOQQQ EEAAVPF	843 PNVVAPAP	PTLPQNDFCI	_ <mark>P</mark> TNSNENSA	ALFT <mark>G</mark> NYM <mark>VQ</mark> GGA <mark>P</mark>	FQTHSNHR - APQW 894
764 GAND IL B. PL PCNDFASSSTENI - PLF - APGC DOSPLETH - NNG - VQ0WF 698 QQLVD ILS PLVPCDVNP - PALNV PVSF - SSARLKNNL PLQTV - NRQ - LQW 7 793 - NGVPCDVN - PALNV PVSF - SSARLKNNL PLQTV - NRQ - LQW 7 784 DHFVDSYA - NGVPCDVN - PALNV PVSC OSFF - SARLKNNL PLQTV - NRQ - LQW 7 784 DHL PTSA - NGVPCDVN - PALNV PVSC OSFF - SARLKNNL PLQTV - NRQ - LQW 7 842 DTLLETFA - ONI - NGVPCDVI - LDFN - PASCL OSFF SLGTLHQQQQQAILP 8 843 DTLLETFA - ONI - SNOFKDVI - LDFN - PASCL OSFF SLGTLHQQQQQAILP 86 843 DTLLETFA - ONI - SNOFKDVI - LDFN - PASCL OSFF SLGTLHQQQQQAIMLP 86 843 DTLLETFA - ONI - SUGPAT - NDPASCL OSFF SLGTLHQQQQQAIMLP 86 843 DTLLETFA - ONI - SUGPAT - NDPASCL OSFF SLGTLHQQQQAIMLP 86 843 DTLLETFA - ONI - SUGPAT - NDPASCL OSFF SLGTLHQQQQAIMLP 86 843 DTLLETFA - ONI - SUGPAT - NDPASCL OSFF SLGTLHQQQQAIMLP 86 843 DTLETFA - NNSCA - NDPASCL OSFF SLGTLHQQQQAIMLP 86 - NASLEGAL 843 DTLTETFA - NNSCA - NDPASCL OSF	737 PGVKNLLP	PKSSHSSVP	STV	ſA <mark>G</mark> YH <mark>P</mark> EF <mark>LQ</mark> K <mark>G</mark> VM	FENY 774
698 QL VD ILS PL VPCGVNP - PLALVU PVSF - SAR KNUPLPLQTY-NRQ-LQEW 7 793 DNN PODLS FTVH - PTECVGLS 97 793 DNN PODLS FTVH - PTECVGLS 97 793 DNN PSQC FAAN - PSSCL OGH FALQSUNDR/HK BW 80 842 DTLLETFA ONI SNOF KDVI DN P ASCL OGH FSLOTLHQQQQAMLP 86 843 DTLLETFA ONI SNOF KDVI PASCL OGH FSLOTLHQQQQAMLP 86 843 DTLLETFA ONI SNOF KDVI PASCL OGH FSLOTLHQQQQAMLP 86 849 ORE IRRDL OOL SE QUTL MM - NOL PKGHHLQANLVQRQQQA (MAP) 849 ONE IRRDL OOL SE QUTL MM - NOL PKGHHLQANLVQRQQQA (MAP) 849 ONE IRRDL OL SE QUTL MM - NOL PKGHLQANLVQQQAQKHQANLVQQA (MAP) 849 ONE IRRDL Y SE SE SE PK VANDALVQANLVQANLVQANLVQANLVQANLVQANLVQANLVQA	764 PGAMDILP	PLIPCNDFA	SSST <mark>P</mark> NI <mark>F</mark>	PIPFA <mark>PG</mark> C <mark>LQG</mark> SPP	LETH-NHQ-VQQW 812
793	698 QQLVDILS	PLVPCGDVN	P-PALNVF	^p ∨sfs <mark>s</mark> arlknnl <mark>p</mark>	LQTY-NRQ-LQEW 745
759 DHF YDSYA DNN SQG FAAN PS SCLQCH FALGSQNSDRHKESW 80 842 DTLL ETFA QNI SNQ FKDVI DNN PASCLQCHFSLQTLHQQQQQMLP 80 843 DTLLETFA QNI SNQ FKDVI PN PASCLQCHFSLQTLAQQQQQMLP 80 843 DTLLETFA QOL SL PQNTL MM NQL PKOHHLQANLVQRMQQLQ 66 777 MNSCA HNV SGFQDAG HLSQ PFANLQQQSESHTQ NAANAG 61 835 VQQQQCEEAAVPFTQVI SS-SL QCP LSN TSL EQFLTAGK PCRQ MHYSI VICAUQQQQEKHTQ NAANAG 61 836 FQBLNHKQPESI PVLVQVI SS-SL QCP LSN TSL EQFLTAGK PCRQ MHYSI VICAUQQQQEKHTG NAANAG 61 836 FQBLNHKQPESI PVLVQVI SS-SL QCP LSN TTQ NSL PQRQ MHYSI VICAUS PSS SKM 52 838 MH-KGHY PQYSTYFP QY QY STTQ NSL PYN NASS DY LGLSQ PHHTP TLDHSDAYS I-LN SSCAUATHCKME 93 830 QQV GLCATVPPSTYFP QY PTTQ NSL PYN NASS DY LGLSQ PHTTP TLDHSDAYS I-LN SSCAUATHCKME 93 840 QQQV GLCATVPPSTYFP QY PTTQ NSL PQ	793	N <mark>G</mark>	∕ <mark>P</mark> D <mark>P</mark> LSF	FTVH <mark>PT</mark> EC <mark>VG</mark> LS	813
842 DTLLETFA - ONI - SNOPKDVI - LDPN PASCLOGHFSLOTLHQQQQQALD 86 843 DTLLETFA - ONI - SNOPKDVI PN PASCLOGHFSLOTLQQQQQAQALD 86 843 OTLLETFA - ONI - SNOPKDVI - NOP KQHILQANLVQRMQQQ 849 QNEIRPL - ONI - SDPQDAS - NOPKQHILQANLVQRMQQQ 8777 - MNSCA - HN - SSPQDAS - LHSG PFANLOGQFSLHTQ - NAANAG 87 835 VQQQQCEEAAVPFTQVI - SSLSQRP - PN - ASLEQILQK PCQ- - MHYSI - VT = EIPHEPSSKK 98 836 HH + KCHYPQVPSTYFP - Q - QY - S - TTQ - NSLDYILGLSQ PHHTTP SLDAYGI - NS ASQADATHCKME 97 830 QCGY - KCHQOQEKVTPTYA - SSLSQRP - TTQ - NSLDYILGLSQ PHHTTP SLDAYGI - N = PASQDATHCKME 97 831 SDHLEHH-KCHYPQVPSTYFP - Q - QY - P - TTQ - NSLDYILGLSQ PHHTTP SLDAYGI - N = PASQDATHCKME 97 830 QCGY - KCAQQQKVTTYA - SST - TELECOLLGLSQ POHSLPSCHAFN - SAQADATHCKME 97 732 VSTT-RE - Y LQTQVPPSRFP - Q - CFTO - SST - ELECOLLGLSQ PGHSLPSCHAFN - SAQASASKLE 97	759 DHFVDSYA	DNI	N <mark>P</mark> SQQ <mark>G</mark> F	FAAN <mark>PS</mark> SC <mark>LQG</mark> HFA	LQSQNSDRHK <mark>P</mark> SW 801
843 DTLLETFA ONI SNOP KDVI PN PASCLOGHFSLOTQQQQQGKMLP 86 849 QNEIRRDL OQL SLPONTL MM NOP KQHHLQANLVQRMQQQ 67 777 -MNSCA HNV SGPQDAG LHSG PFANLOGQFSLHTQ NAANAG 835	842 DTLLETFA	QNISN(2 <mark>P</mark> KDVIL	_D <mark>P</mark> N <mark>PA</mark> SCLQGHFS	LQTLHQQQQQML <mark>P</mark> 887
849 QNE IRRDL QQL SLPQNTL MM MM NQLPKQHHQANLVQRMQQL0 86 777 MNSCA HNV SGPQDAG LHSG PFANLQQFSLHTQ NAANAG 87 835 MNSCA HNV SGPQDAG LHSG PFANLQQFSLHTQ NAANAG 87 835 SGPQDAG LHSG PFANLQQFSLHTQ NAANAG 87 836 GPQLNHKQPCSIEVPLVQVI SSSQPP PEN ASLEQILGVGK PCRQ MEHYSIVT TEIPHESSSKME 97 838 HH KHY PQVPSTYFP Q QY FTQ NSLDYILGLSQ PHHTTPLDAYI SPASQDATHCKME 85 830 QQY CK QQQPKVTPTVSIV SYST SSS HINKNE 86 732 VSTT R YU SSST LELEQLLGLSQ PHHTTPSLDAYGI LN <spasqdathckme 86<="" td=""> 734 QQV SSST LELEQLLGLSQ SQHSLP AVSMARN FN TS AGSAAHSKE 86 776 MQUV SSST LELEQLLGLSQ SQHSLP AVSMARN FN TS AGSAAHSKE 86 776 SSST R LELQLLGLSQ SQHSLP AVSMARN FN TS AGSAAHSKE 86 776<</spasqdathckme>	843 DTLLETFA	QNI SNO	а <mark>р</mark> крут	·- <mark>P</mark> N <mark>PA</mark> SC LQG HFS	LQTQQQQQKMLP 886
777 MNSCA	849 QNE I RRDL	QQL SI	_ <mark>P</mark> QNTL N	ИМ NQ <mark>LP</mark> KQHH	LQANLVQRMQQLQ 889
835VQQQQCEEAAVPFTQVISSLAQCP-LSNTSLEQFLTAGK-PCHQLDHSDI-AS-BEISHDSSTSKMK 85 860 FQGLNHKQPQESIPVPLVQVISSLSQRP-PPNASLEQILGVGK-PCRQMEHYSI-VT-TEIPHEPSPSKME 92 838HH-KQHYPQVPSTYFPQQY-S-TTQNSLDVILGLSQ-PQHTTFLDTYGI-LN-SPASQDATHCKME 95 911 SDHLEHH-KQHYPQVPSTYFPRQY-P-TTQNSLDYILGLSQ-PHHTTPSLDAYGI-LN-SPASQDATHCKME 95 830 QQY-QK-QQQQKKTPTYASYTKO-NSSLEHILGLAG-P-SNLPSLTDYGSEL-THDMTHSKME 96 732 VSTT-RP-YQLQTQVPSRFPQOPTO-SST-LELEQLLGLSQ-PQHSLPSLAYSM-FN-TT-TQDSTHSKLE 75 744 QQV	777MNSCA		<mark>gp</mark> qda <mark>g</mark> L	_HS <mark>G</mark> PFANLQGQFS	LHTQNAANAG 815
835					
860 FOGLNHKOPOESIPVPLVQVISSLSQRP - PPN - ASLEQILGVGK - PCRQ MEHYSI-VT - TEIPHEPSP SKME 92 838HH - KOHYPQVPSTYFPQQY - S-TTQNSLDYILGLSQ - PQHTTPTLDTYGI - LN - SPASODATHCKME 83 911 SDHLEHH - KOHYPQVPSTYFP	835 VQQQQ <mark>Q</mark> EEAAV <mark>P</mark> FTQ <mark>VI</mark> S SL	AQC <mark>P</mark> -LSNTS	EQFL TAGK - PO	HQLDHSDI-AS-	SEISHDSSTSKMK 897
838 HH-KQHYPQVPSTYFP QQY-S-TTQNSLDYILGLSQ-PQHTTPTLDTYGI-LN-SPASQDATHCKME 85 911 SDHLEHH-KQHYPQVPSTYFP QQY-S-TTQNSLDYILGLSQ-PHHTTPSLDAYGI-LN-SPASQDATHCKME 85 911 SQQQP-QV-QK-QQQPKVTPTYYA SSYTKQ-NSSLEHILGLAP-P-SNLPSLTDYGSEL-THDMTHSKME 86 712 VSTT-RP-YQLQTQVPPSFPQCPTO-SST-LELEQLLGLSQ-PQHSLPSLEAYSM-FN-TT-TODSTHSKLE 75 764 QQQV	860 FQ <mark>G</mark> LNHKQ <mark>PQ</mark> ESI <mark>P</mark> V <mark>P</mark> LVQ <mark>VI</mark> SSL	SQRP-PPNASI	EQIL <mark>G</mark> V <mark>G</mark> K-PO	RQ- <u>-</u> -MEHY <u>S</u> I-VT-	TEIPHEPSPSKME 926
911 SDHLEHH-KOHYPOVPSTYFH ROY-PTTQNSLDYILGLSQ.PHHTTPSLDAYGI-LN-SPASQDATNCKME 97 830 QQGY-QK-QQQQPKVTPTYYA YYASYTKQ.NSSLEHILGLAP.P.SNLPSLTDYGSEL-THDMTHSKME 86 732 VSTT-RP-YQLQTQVPPSRPQCPTQ.SSTLELEQLLGLSQ.PQHSLPSLEAYSM-FN.TTTQDSTHSKLE 75 764 QQQNYS	838 HH - K <mark>Q</mark> HY <mark>P</mark> QV <mark>P</mark> STY <mark>FP</mark> Q	QY - <u>S</u> - TTQ NS	DYIL <mark>G</mark> LSQ- <mark>P</mark> O	QHTT <mark>P</mark> TLDTY <mark>G</mark> I-LN-	SPASQDATHCKME 898
830 QQQY - QK - QQQQF KVTP TYYA S YTKQ - N SSLEH ILGLAP - P - SNLFSLTDYGS EL - THDMTHSKME 86 732 VSTT - R - YQLQTQVPPSRFP Q CPTQ - SST - LELEQLUGLSQ - PQHSLPSLEXSM - FN - TT - TQDSTHSKLE 76 764 QQQV	911 SDHLEHH-K <mark>Q</mark> HY <mark>P</mark> QV <mark>P</mark> STY <mark>FH</mark> R	QY - P - TTQ NS	DYIL <mark>G</mark> LSQ- <mark>P</mark> H	HTT <mark>P</mark> SLDAY <mark>G</mark> I-LN-	SPASQDATNCKME 976
732 VSTT-RP-YQLQTQVPPSRFPQCPTQ-SST-LELEQLLGLSQ-PQHSLPSLEAYSM-FN-TT-TQDSTHSKLE 75 764 QQQ	830 QQ <mark>G</mark> Y - Q <u>K</u> - Q <mark>Q</mark> QQ <mark>P</mark> KV <mark>TP</mark> TY <mark>YA</mark> S	YTKQ-NSS	EHIL <mark>G</mark> LA <mark>P</mark> -P-	SNL <mark>P</mark> SLTDY <mark>G</mark> S	EL-THDMTHSKME 889
764 QQQV SVAQ-SST-LELEQLLGLSQ-SQHSLP AYAM-FN-TS-AQSAHSKLE 80 776 D RGM-DIRSLDQAQYIGTVR GAVSMYQCL-PETQSTCMNQVNQVN RGM-DIRSLDQAQYIGTVR 734 GISPQDSMITSQTYT GAVSMYQCL-PETQSTCMNQVNQVN RML-FNPGTSQQQTFLPKFQ 752 GINPQSAIITPQTCVA GAVSMYQCQ-PGPQRTPV D QTQ-YSEIPGSQAFLSKVQ 751 GL-SAMVSQQAYA GAVSMYQCQ-PGPQRTPV D QTQ-YSEIPGSQAFLSKVQ 80 849 PQNQ-QQ-LPPPASTIQNGIMPNGHKLIPDCHSQATETGRVPITGLW P QNPNRLYHR TQ 90 852 PQNQ-QQ-LQHQPPAST MKNGHQFIPDCHSQATETGRVPITGLW P QNYNGMQP P 99 909 PDL-QRQHQP LAHASVAQNSHTLPAGSHSQAFESGR LAGLW A QNYNGMQP P 99 910 QDL-QHHQT LAHASVAQNSHTLPAGSHSQAFESGR LAGLW A QNYNGMQP P 99 911 PQCQQ-Q-LPHAGT PLAGSHSQAFESGR LAGLW A QNYNGMQP P 99 90 90 QDL-QHHQT LAHASVAQNSHTLPAGSHSQAFESGR ASCW A QNYNGMQP P 99 90 75 SAPL-Q RTVTGQNGHQMAHASCOSTCASGTS	732 VSTT-RP-YQLQTQVPPSRFPQ	CPTQ-SSTLE	_EQLL <mark>G</mark> LSQ-PO	QHSL <mark>P</mark> SLEAYSM-FN-	TT-TQDSTHSKLE 796
776	764 QQQV	SVAQ-SSTLE	EQLLGLSQ-SO	QHSL <mark>P</mark> AYAM-FN-	TS-AQ <mark>G</mark> SAHSKLE 809
734 - G I S PO DSMITS QTYYT GAVSMY QCL - PETG STCMNQYNQVN	776 GL N <mark>YS</mark> <mark>G</mark> L		D	R <mark>G</mark> M - D I R	SSLDQQAYIGTVR 800
752 - CI NSO SAMVSPQAYYA CAMSMYQCO - PGPCRTPV D QTQ - YSEI PCSQAFLSKV0 80 751 - CL - NPQSAIITPQTCYA CAVSMYQCO - PEPCHTHV G QMQ - YNPVLPGQQAFLNKF0 80 849 PQNQ - QQ - LPPPASTIQNE IMPNGHKLIPDCHSQATETORVPITCLW - P QNPNRLYHR TO 90 852 PQNQ - QHQ PPAST MKNGHQFIPDCHSQATETORVPITCLW - P QNPNRLYHR TO 90 909 QPDL - QRQHDP LAHASYAONSHTLPACSHSQAFESCR - LAGLW - A QNYNGMOP PP 96 895 QQDL - QHHHQT LPHASVAQNPHTLPACSHSQAFESCR - LAGLW - A QNYNGMOP - PP 96 895 QQDL - QHHHQT LPHASVAQNPHTLPACSHSQAFESCR - LAGLW - A QNYN QP PP 96 775 SAPL - Q QR LPHAGMYQNGHDPMGTAQSOHVGNOTFPHASFC - P SSVSRQKQ ME 82 813 PQSQ HK - LPHAGIMQNGHDPMGTAQSOHVGNOTFPHASFC - P SSVSRQKQ ME 82 814 PQSQ HK LPHAGIMQHELVPACRSQTSDSOTFPHASHW - P RTVTGLNH	734 GI SPQDSMITSQTYYT GAVSM	YQCL-PETQSTC	MNQ∨NQ∨N	RML-FN <mark>P</mark>	GTSQQQTFLPKFQ 792
751 CL NPOSALITPQTCYA GAVSMYQCO - PEPCHTHV G QMQ - YNPVL PGQQAFLNKF0 80 849 PQNQ - QQ - L PPPASTIQNG IMPNGHKI IPDC HSQATETCRVPITCLW - P	752 GI NSQSAMVSPQAYYA GAMSM	YQCQ - PGPQRTP	/	Yss	EIPGSQAFLSKVQ 804
849 PANQ-QQ-LPPPASTIQNEIMPNGHKLIPDCHSQATETORVPITCLWP QNPNRLYHRTO 90 852 PANQ-QQ-LPPPASTMKNGHQFIPDCHSQATETORVPITCLWP QNYNRLYHRTO 90 909 QPDL-QRQHQPLAHASVAQNSHTLPAGSHSQAFETORVPITCLWP QNYNGMNQPPO 90 910 QPDL-QRQHQPLAHASVAQNSHTLPAGSHSQAFESOR-LAGLWA QNYNGMNQPPO 90 815 QDDL-QHHHQTLPHASVAQNSHTLPAGSHSQAFESOR-LAGLWA QNYNGMNQPPP 90 815 QDDL-QHHHQTLPHASVAQNSHTLPAGSHSQAFESOR-LAGLWA QNYN-QPPP 90 813 PQSQ-QHKLPHAGMQNGHDPMETAQSQHVGNOTFPHASFC-P SSVSRQAC	751 GL NPQSAIITPQTCYA GAVSM		/ <mark>G</mark>		VL <mark>PG</mark> QQAFLNK FQ 803
852 PONQ-QHQL PPPASTMKNGHQF I PDC HSQATETORVPLTGLWP	849 PQNQ-QQ-LPPPASTIQNGIMPNGHKLIPD	CHSQATETORVP	I TGLWP	QN <mark>P</mark>	NRLYHR TQ 905
909 QPDL - QRQHQP LAHASVAQNSHTLPAGSHSQAFESQR - LAGLW - A	852 PQNQ-QHQL PPPAST MKNGHQF I PD	CHSOATETORVPI	_ T <mark>GLW P</mark>	QNT	NGLYHQ PQ 904
895 QQDL - QHHHAT LPHASVAQNPHTLPAGSHSQAFESCR - LAGLW - A	909 QPDL - QRQHQP LAHASVAQNSHTI PAG	SHSQAFESOR		QNY	NGMNQP PP 961
775 SAPL - Q	895 QQDL - QHHHQT LPHASVAQNPHTI PAG	SHSQAFESOR	AGLWA		N QP PP 944
813 PGSQ-QHKLPHAGIMONCHELYPACRSQTSDSGTFPHAGHYP RTVTGLNHTG 86 746 QQVRTVTGLNHTG 86 RTVTGLNHTG 86 814 QDTGM	775 SAPL - Q QR LPHAGMVONGHDPMGT	AQSQHVGNOTFP	ASFC P		SRQKQ ME 825
746 QQVPQAGVTQHVHGQMPAHHGLTS GNSILWS NNVPVLTPGQ 76 814 ODTGM 81 802 SLDQ-QQLHHHASDGRQHVGACLNOMPGFGRDPLHGVYTVQN	813 PQSQ-QHKI PHAGIMONGHEI VPA		AGHWP		TGLNH TO 863
814		HHGLTSGI	ISILWS	NNV	PVL TP
802 SLDQ-QQLHHHASDQRQHVGACLNOMPGFORDPLHGVVTVQNAVNGASPFKNTETPNVAYA	814		· · · · · · · · · · · · · · · · ·		
888 SMLH-QQNGHQHNYMGSFYNNQVSDFQTAPQLPIPGLEAQPQ-QNSQAHNYNRAQTISGLYRPQK 96 887 TMLH-QQNGHQHNYMGSFYNNQVSDFQIAPQLPIPGLEAQPQ-QNSQAQNYSRDQTISGQYRLQK 96 890 PQAV-TQNGQLYPTKPQQERLVGVHPTVSYSOTQGLQSIPQISSLLAQSNQFQQCGLGSGGAQ-QISKIYQT96 816 PPGW-QQ-SQPTPQGV-PTSFSGGHQPGFISQVTDFQR-GTINOMMPH-TNGQCGSGGFIPKFSASAIVPQ98	802 SLDQ-QQLHHHASDGROHVGA		HGVVTVON		NVAYA 861
887 TMLH-QQNGHQHNVMGSFYNNQVSDFQIAPQLPIPGLEAQPQ-QNSQAQNYSRDQTISGQYRLQK 94 880 PQAV-TQNGQLYPTKPQQERLVGVHTVSYSOTQGLQSIPQISSLLAQSNQFQQCGLGFGAQ-QISKIYQT95 816 PPGW-QQ-SQPTPQCV-PTSF-SGGHQPGFISQVTDFQR-GTINOMMPH-TNGQGIGSGFIPKFSASAIVPQ95	888 SMLH-QQNGHOHNVMRSF	NNOVSDEDTAD		- ONSOAHNYNRAOTI	SGLYRP OK 950
890 POAV - TQNGQLYPTKPQQERL VGVHPTVSYSOTOGLOSIPQISEL LAQSNOFOOCGLOGGAQ-QISKIYQT 95 816 PPGW-QQ-SQPTPQCV-PTEF SGCHOPGFISOVTOFOR-GTINOM MPH-TNGOGLOSGFICKFSASAIVOO	887 TMLH-QQNGHOHNVMGSF			- ONSQAQNYSRDOTI	SGQYRL OK 949
816 PPGW-QQ-SOPTPQGV-PTSF-SGGHOPGFISOVTOFOR-GTINOM-MPH-TNGOFISSEFIPKESASALVPO	890 POAV - TONGOL YPTKPOOFRI VOVHPTV	SYSOTOGIOSIP			SKIYQT 958
	816 PPGW-QQ-SQPTPQGV-PTSFSGGHQPG	FISOVTOFOR-G	LNQM MPH - 1	INGQGIGSGFLPKESA	SAIYPQ0882

Killifisk-AHR1 Kulefisk-AHR1a Laks-AHR1b Laks-AHR1a Sebrafisk-AHR1 Havbrasme-AHR Kulefisk-AHR1b Sebrafisk-AHR1 Stør-AHR1 Mus-AHR Menneske-AHR Laks-AHR2b Laks-AHR2a Torsk-AHR2 Tomcod-AHR2 Killifisk-AHR2 Havbrasme-AHF Kulefisk-AHR2a Kulefisk-AHR2c Kulefisk-AHR2b Salmon-AHR2g Laks-AHR2d Stør-AHR2 Sebrafisk-AHR2

Killifisk-AHR1 Kulefisk-AHR1a Laks-AHR1b Laks-AHR1a Sebrafisk-AHR1 Havbrasme-AHR Kulefisk-AHR1b Sebrafisk-AHR1 Stør-AHR1 Mus-AHR Menneske-AHR Laks-AHR2b Laks-AHR2a Torsk-AHR2 Tomcod-AHR2 Killifisk-AHR2 Havbrasme-AHF Kulefisk-AHR2a Kulefisk-AHR2c Kulefisk-AHR2b Salmon-AHR2g Laks-AHR2d Stør-AHR2 Sebrafisk-AHR2

Killifisk-AHR1 Kulefisk-AHR1a Laks-AHR1b Laks-AHR1a Sebrafisk-AHR1 Havbrasme-AHR Kulefisk-AHR1b Sebrafisk-AHR1 Stør-AHR1 Mus-AHR Menneske-AHR Laks-AHR2b Laks-AHR2a Torsk-AHR2 Tomcod-AHR2 Killifisk-AHR2 Havbrasme-AHR2 Kulefisk-AHR2a Kulefisk-AHR2c Kulefisk-AHR2b Salmon-AHR2g Laks-AHR2d Stør-AHR2 Sebrafisk-AHR2

b R1 a	898 KGC I LSS SYPGGCVLPNGNGAAPPV 927 NGC I LST SYSGGCALPSLNGAAPPA 899 NGC I LNDTNVAYTESCLLPNVNSGTTSD 977 SGC I LNDTNVAYTESCLLPNVNGGTASD 890 TGFLLNSTSVTYNGSCLVPNGNTVAAPV 797 NGCLLSATNAAY IRTCLMPNGNGVATG -I 810 NGCLLNATNAAY IRTCLMPNGNAVVAA - 801 NKLFI 793 NGY - NETYPEPYS LMDCTOPK 805 S	VKV - A - NSK <mark>P</mark> LPRVPDQQPSSFYL - 9 - VQI - P - GSETLPSLPDPPATGFYL - 9 S - LQP - D - ALQTLPTLPDPQTTGF - 9 S - LHPQL - D - ALQTLPTLPDPQTTGFYL - 1 N - SPH - P - LPEPHPHPPQTTGFYL - 9 D - VDGLSALODPQKSGFFL - 8 N - VDGLSTLQDHCKSGFFL - 8 - VDGLSTLQDHCKSGFP - 8 - 8 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	44 73 47 40 40 46 54 54 34
82	804 NGVLNETYPAELNNINNTOTTT 906 QGG - LANGOPAPSSSCMFENISPPLPNG 905 QGR - LANGOPAPTGSCMFKNVSPPLPNG 962 HRG - LAGPLRTNPSSCMLDKPLHPPAT 945 HRG - LAGPLRTNPSSCMLDKPLHP 826 LGG - PAGSQAAPSSCMFEQHFPSLPAG 864 QGG - LACGQAVSRSSCMFDQHFSSSPAG 787 QGA - LACSRAATQSLCMFEQHFSSSPAG	H	48 72 65 042 019 87 25 48
	862AQQNVSS <mark>GTCMFG</mark> DVAPSSPS- 951 TSA-VVTPPLVSSNSCMFSNTNPHSVPV 950 TSA-VVTSPLVSSNSCMFSSTNPPSVPV 959P-VGSAGLPSTSSCMFENNSSPPM 883 GDF-INNSPHKTSTSCMFMNNAQPSV	RHMLNPSAHQMGSKSSCLYRGLPG 9 KGVCLNTNTALGSLVPSSCQRAMAPLHDQSPSGASCYFGRNSG 1 NGVCLTPNTALGSLVPSSCQRATAPLHDHSPSGASCYFGRNSS 1 NEVQFSSMEHSTPSCL-NIKPSSNQIPLGASCYYGTKPS 1 NGMQYGSADLVSGMSSCQ-GTKGLLTQSPTGASCYFGRGPS 9	06 020 019 019 47
b			
21			
a			
a			
	973 EPVVGTSAVIQDNASTSPLSRPLVA	-KITT <mark>PEG</mark> LLAMQQYLA <mark>G</mark> CS <mark>G</mark> VGQTQI <mark>P</mark> SL <mark>P</mark> VIDSNGIFSL <mark>PP</mark> 1	039
	966 EPVVGTSA I FQDNTG I SFPSRPLVA	- NITTPENLLAMQQYLAGRNRVGQTQIPSLCVVDSNGTFSSPPLVNGTFSSPPL1	043
			099
	888 EL PMGTSALNOFLATIRPL TAAP	- SMAPAEDSCAMHHYLDNNLQTQSSRVSS	39
2	926 EPVVGTSAINQENANISPLTAPP	-STSSSEHTFSMQHYLETHRQTQVNMS-HC9	76
	849 EPVVGTSAISQEDVSISPLSDPS	- T <mark>P</mark> SSTEHAFSIQQYL <mark>G</mark> CHTQTLVS-HC8	97
	907 GVAVPGMAN-VLNPDESTLTCKTTMALG	PEDLLVQQQQYLCFS-DTHTQIDVHPV	60
			078
			071
	948 ETIVGTAVIPQEDNNISPMACQLPLGLPI	PDNIISQQYLSCNTQTQVANRPL	99
h			
21			
а			
	1040	 CNE 1	058
	1044 VNGTESSAPL VNGTMCETDH - NOTNY	CDF 1	071
	1100 DNDLLAIPPL VDGNIYFSDQ- SQLNC	CNF 1	127
	1077 DNDLLAIPPLIDGNIYFSDQ-SQLNC	CNF 1	104
	940 <mark>G</mark> R <mark>G</mark> LFIS <mark>P</mark> ALMK	9	51
20	ATT PLANE OOOL N. VIVET	0	

 97762
 9776
 9776
 950

 822a
 896
 GMQNNYN-MN-IKGANE-THATTELLE
 912

 2c
 961
 GNGGFPFSSM--PNGNAYSENN-THATTELLE
 981

 22g
 961
 GNGGFPFSSM--PNGNAYSENN-THATTELLE
 981

 22g
 1079
 ENISFQFPAL--PNGTTYFSEN-NQTNCCDF
 1106

 1073
 ENMSFQFPPLELPNGTTYFSEN-NQTNCCNF
 1107

 1072
 ENGELPYTAL--PNGTTYFEHSRQANCCDY
 1100

 1R2
 1000
 ETEMFHFPML--TNGTTYFPDN-NQSNCCDY
 1027