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Toxicological evaluation of complex mixtures
is really challenging. Simple mixtures may be
handled easily with well-defined variables that
may be combined differently to obtain the
effect of each variable and possible interac-
tions between them. The composition of the
new mixtures may be determined by means
of statistical experimental design, which is
being used increasingly in mixture research.
However, for practical reasons, this approach
is only possible with a limited number of
variables. With complex mixtures, the com-
mon strategy is to study the mixture as a
whole or to fractionate the mixture (bioassay-
directed fractionation). Mixture fractionation
and recombination may be useful for identifi-
cation of major bioassay-active fractions and
possible interactions (1). Alternatives are spik-
ing complex mixtures with individual com-
pounds (2,3), lumping (4), and the “top 10”
or “pseudo top 10” approaches (5,6). These
approaches make it possible to treat the com-
plex mixtures as simple mixtures. However,
none of these approaches give information
about all the individual compounds in the
complex mixture. In fact, with complex mix-
tures, even a detailed and complete character-
ization may be impossible.

In a recent article we presented a new
approach to correlate chemical fingerprints
of very complex mixtures to mutagenicity
(7). The mixtures were organic extracts of
exhaust particles obtained from a variety of
sources and were assumed to have different
but partly overlapping compositions.
Extracts of exhaust particles contain a variety

of different polycyclic aromatic hydrocarbons
(PAHs), nitro-PAHs, and oxy-PAHs (8).
Many of these are mutagenic and carcino-
genic. In addition, the extracts may contain
saturated hydrocarbons.

In this article we show an example of a
more complete strategy for the toxicological
evaluation of very complex mixtures, demon-
strated with one biological end point.
Organic extracts of exhaust particles are char-
acterized by full-scan GC–MS (gas chro-
matography–mass spectrometry). The
GC–MS chromatograms are complex, as
illustrated in the previous article (7), with sig-
nificant overlap between peaks. Frequent
scanning gives changes in spectra depending
on whether the spectra are obtained from
one, two, or more compounds (Figure 1).
Based on this information, the complex
GC–MS data are resolved into peaks and
spectra for individual compounds using an
automated curve resolution procedure (7,9).
The resolved chromatograms are integrated,
resulting in a predictor matrix. Principal
component analysis (PCA) is used to evaluate
similarities between mixtures (classification).
The data matrix is also used as input to a
multivariate regression model, which corre-
lates the GC–MS data to the mutagenicity
measured in the Ames Salmonella assay (10).
Only the TA98 strain without the addition of
liver enzymes was used in the present exam-
ple. Partial least-squares (PLS) projections to
latent structures (11) is used for the regression
modeling, as it overcomes the problems of
intercorrelated predictor variables and data

matrices where the number of variables
exceeds the number of samples (12,13). The
regression model identifies those peaks that
co-vary with the observed mutagenicity.
These peaks may subsequently be identified
chemically from their spectra. Furthermore,
the regression model can be used to predict
mutagenicity from GC–MS chromatograms
of other organic extracts. This is an attractive
possibility, as bioassays are generally more
resource demanding and require larger
samples than chemical characterization.

Materials and Methods

Organic extracts of exhaust particles. Twenty
different organic extracts of exhaust particles
were selected and assumed to have different but
partially overlapping composition. Samples
were obtained from the combustion of heating
oils and gas in boilers. Dichloromethane
(DCM; Merck, Darmstadt, Germany;
>99.8%) was used as the solvent (7).

Ames Salmonella assay. Prior to muta-
genicity testing, a volume of each of the
DCM extracts was evaporated to dryness
under dry nitrogen and completely dissolved
in dimethylsulfoxide (Merck, Darmstadt,
Germany; >99.8%). The standard plate
incorporation assay described by Maron and
Ames (10) was used for mutagenicity testing.
A volume of 100 µL test solution was added
to each plate. The Salmonella typhimurium
strain TA98 was obtained from B. Ames
(University of California, Berkeley,
California, USA). The mutagenicity testing
was performed without the addition of
metabolizing system. Mutagenicity was
expressed as revertants per milligram of par-
ticulate matter (PM). The values are based on
the slopes of the regression lines of the
dose–response curves from two independent
assays, each at five doses with three parallels at
each dose [details in Eide et al. (7)].

Gas chromatography–mass spectrometry.
A volume of 0.5–1 mL of each DCM extract
was spiked with 3.24 µg d8-naphthalene
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(Cambridge Isotope Laboratories, Woburn,
MA; 99%). The volume of each extract was
then reduced under a gentle stream of nitro-
gen. The samples were analyzed by GC–MS.
A Fisons GC8000 (Fisons Instruments,
Manchester, UK) equipped with a 100-m
Petrocol DH fused silica capillary column
(0.25 mm i.d., 0.5 µm film thickness;
Supelco, Bellefonte, PA, USA) was used for
sample introduction into the mass spectrome-
ter. The GC program began at an initial tem-
perature of 40°C, ramped to a final
temperature of 320°C at 4°C/min, and held
for 20 min. A Fisons MD800 quadrupole
mass spectrometer (Fisons Instruments) oper-
ated in the EI mode (70 eV) was used to
obtain mass spectra. The instrument was
operated at 1.3 scans/sec from 40 to 450 m/z
(i.e., full-scan mode) to obtain structural
information from all important fragments
[details in Eide et al. (7)].

Data matrix and curve resolution. Signals
from compounds eluting before the internal
standard (d8-naphthalene) were not used, as
these were assumed to be nonmutagenic. The
remaining matrices were split into smaller
ones, each one containing only one cluster of
coeluting peaks. Mass numbers containing
only background were deleted using a shape
criterion for the masses. Finally, mass num-
bers with intensity <1% of the maximum
intensity of the peak cluster were deleted. The
whole procedure was automated. The curve
resolution was performed with the recently
developed MS Resolver from Pattern
Recognition Systems (Bergen, Norway) (9).
It is based on a modified version of the
Gentle iteration method (14,15). To match
the resolved spectra to ascertain that the same
compound is represented by the same variable
number in all samples, similarity between
spectra was evaluated for peaks that appeared
within a time interval of 4 min (peak position
of the internal standard varied less than 2 min
between different samples). For each resolved
spectrum, only the 10 most significant inten-
sities are used for the similarity matching.
This ensures that small noise-dominated mass
numbers have no influence on the matching
procedure. A similarity index of 0.8 was used

for the similarity matching (7,9). After this
initial calculation of all possible similarities,
median spectra were constructed from the
spectra found to represent the same compo-
nent. Next, a second matching procedure was
performed between all unmatched spectra
and the median spectra. Finally, a similarity
check was performed among the median
spectra. Components left unmatched after
this procedure appear in only one sample.
These were discarded from further analysis.
The integrated areas of the remaining
resolved chromatograms were calculated,
resulting in a predictor matrix of size 20 ×
472. In the predictor matrix, each row repre-
sents one sample and each column one com-
pound, the latter identified by its mean
retention time. A schematic illustration of the
curve resolution and the data matrix is shown
in our previous article (7). To create the final
predictor matrix X, each resolved peak area
was multiplied by the added amount of inter-
nal standard and divided by the area of the
internal standard and the amount of PM used
in the sample. Each value in the X matrix
represents micrograms compound per milli-
gram particles. The response vector y con-
tains 20 values representing mutagenicity
(revertants per milligram particles). The inter-
nal standard is used only to adjust the con-
centration of the samples in relation to each
other and in relation to the mutagenicity data
[details in Eide et al. (7)]. One internal stan-
dard has been considered sufficient for this
purpose. Deuterated naphthalene was chosen
because it was relatively easy to resolve from
the other peaks in the chromatogram.

Pattern recognition and regression.
Multivariate data analysis and modeling were
performed with Simca-P 8.0 for Windows
(Umetrics, Umeå, Sweden). PCA (16) was

performed on the X matrix for outlier detec-
tion by means of loading plot, and for the
evaluation of similarities between mixtures by
means of score plot (classification).
Multivariate regression was performed with
PLS (11). PLS finds the relationship between
the response vector y (or matrix Y) and the
matrix X (predictor variables) by simultane-
ous projections of both the X and Y spaces to
a plane or hyperplane (12,13). The data were
centered and scaled to unit variance before
the PLS analysis. At first a model with all
variables was calculated. The variables with
the lowest variable importance were elimi-
nated. This procedure was repeated until the
best model was obtained, both with respect to
correlation coefficients (shown as r 2 Y) and
prediction properties (shown as Q 2). The lat-
ter are obtained after cross-validation (17)
and are important to avoid overfit.
Intercorrelations between x-variables were
evaluated by r 2 X. To ascertain that the corre-
lations were not simply due to chance, the
model was validated by performing PLS with
all 472 x-variables after randomizing the val-
ues in the y vector (10 permutations), as
described in our previous article (7).

Results

The total number of different compounds in
the 20 samples is 472 when applying a simi-
larity index of 0.8. The X matrix contains one
row for each of the 20 samples, and one col-
umn for each compound that is identified by
its retention time only. On average, 143 peaks
(ranging from 102 to 170) were resolved from
each sample, as shown in Table 1. This
implies that 70% of the values in the X
matrix are zero. A value of zero in the matrix
means that the compound is not present in
the corresponding sample. Table 1 shows the
mutagenicity of each sample ranging from 83
to 504 revertants per milligram PM.

Figure 2 shows the score plot (t[1] vs.
t[2]), and illustrates that 10 of the samples
(located close to the center of the plot) are
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Figure 1. Illustration of curve resolution of GC–MS
data based on changes in spectra.
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Figure 2. Score plot from PCA illustrating similarities
and dissimilarities among samples.

Table 1. Number of compounds and mutagenicity
of each sample.

No. of Mutagenicity
Sample no. compounds (revertants per mg PM)

1 127 182
2 157 266
3 129 402
4 141 501
5 102 349
6 134 504
7 150 504
8 143 184
9 127 331
10 151 286
11 137 287
12 143 371
13 139 94
14 143 83
15 128 123
16 158 151
17 155 98
18 166 114
19 170 143
20 160 91
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similar in composition. Samples 1, 2, and 8
are similar to each other and different from
the others. Furthermore, samples 16, 19, and
20 constitute a third class with mutual simi-
larities. On the other hand, samples 5, 9, 17,
and 18 are unique in composition. Ideally,
for the purpose of multivariate regression, the
samples should be evenly distributed in the
score plot, approaching the situation obtained
with statistically designed experiments.

Table 2 shows the overall results of the
PLS analyses, starting with all 472 x-variables.
By removing the variables with the lowest
importance, the models are generally
improved. The best model is obtained with
41 variables, resulting in very high correlation
coefficient and prediction properties.
Relatively good models can also be obtained
with as few as nine variables. Simultaneously
with improving the regression models, r 2 X is
increased to 0.62 for the best model, indicat-
ing some intercorrelations between the
remaining predictor variables. These intercor-
relations can be broken only by adding more
samples with different compositions to the
calibration model. The best regression model
was obtained with four PLS components
(latent variables). Adding more PLS compo-
nents only improves the model insignificantly
with regard to fit and may deteriorate the pre-
diction properties of the model (overfit).

Figure 3 shows the observed versus pre-
dicted response values for the 20 samples
obtained by the model with 41 variables. The
regression model can be used to predict
mutagenicity from GC–MS chromatograms
of other samples, provided the samples are
within the model domain. We emphasize,
however, that the regression model should be
improved by expanding the matrix with more
samples that are different from the ones used
in the present work.

Figure 3 reflects differences in 
mutagenicity between the samples. Although
samples 7 and 14, for example, are very dif-
ferent in mutagenicity, they have very simi-
lar composition, as illustrated by the score
plot in Figure 2. However, the difference
may be seeen from other principal 

components (only the first two shown in
Figure 2).

Discussion

This work is the second attempt to combine
curve resolution of complex GC–MS data and
multivariate calibration with a toxicological
parameter as the response. Compared with the
previous study (7), the present data matrix was
based on a larger number of samples that were
slightly less complex than previous samples.
The samples were relatively well distributed
with respect to composition and mutagenicity.
Although the number of samples was rela-
tively low, and a total of 472 different vari-
ables were identified, the regression model
with the most important 41 variables was very
good, as evaluated by correlation coefficient,
prediction properties obtained after cross vali-
dation, and a low number of required PLS
components (latent variables). The good
model is a result of samples with different
composition, different number of variables,
and different mutagenicity. The model may
therefore be used to predict mutagenicity of
other extracts of soot particles from their
GC–MS chromatograms. However, before
prediction, a PCA should be performed, and
the score plot should be used to verify that the
new samples are within the calibration domain
described by the 41 variables. Otherwise,
another regression model, obtained with a
higher number of variables from the calibration
set, should be considered.

The multivariate data analysis gives an
empirical model that identifies the peaks that
co-vary with mutagenicity. An evaluation of
the regression model with 41 variables shows
that some of the x-variables co-vary (shown
by r 2 X), which is expected as the total num-
ber of variables exceeds the number of sam-
ples. This implies that nonmutagenic
compounds may correlate with mutagenic
ones, and as a consequence, also with muta-
genicity. To break these intercorrelations

between x-variables and improve the model,
more samples with different compositions are
required for the calibration model.

Generally, samples to a regression model
can be selected from score plots (10,16).
Ideally, the samples should be evenly distrib-
uted in the score plot, approaching the situa-
tion obtained with statistically designed
mixtures. Because naturally occurring mix-
tures are not statistically designed, a limited
number of mixtures (samples) can be selected
for mutagenicity testing and incorporated
into the regression model from their GC–MS
patterns and score plots.

Compared with bioassay-directed 
fractionation (18) on a column according to
polarity, for example, the pattern recognition
approach may be regarded as a “virtual”
bioassay-directed fractionation. However, it
cannot be done on one sample only. It
requires a number of samples with different
but overlapping composition. In this work,
PLS defines a group of individual compounds
that co-vary with mutagenicity, regardless of
the physical–chemical properties of the com-
pounds. As a consequence, the major contrib-
utors to mutagenicity are contained in one
virtual fraction together with other com-
pounds that co-vary with mutagenicity. The
compounds in this virtual fraction may subse-
quently be identified chemically, as the num-
ber has been decreased significantly. After
identification, they may be evaluated with
respect to their mutagenicity. Those believed
to be mutagenic may be used as variables in
new experiments to identify their contribu-
tion to the overall mutagenicity, as well as
possible interactions. This implies that the
pattern recognition approach also may be
used as the basis for the top-10 or pseudo top
10 approach (5,6). The pattern recognition
approach itself does not give information
about interactions unless the number of mix-
tures (samples) exceeds the total number of
variables, permitting interaction terms to be
included in the regression model. However,
good linear regression models indicate addi-
tivity, and possible interactions may be
insignificant.

This work emphasizes the strategy for
toxicological evaluation of complex mixtures.
Only the Salmonella TA98 strain without the
addition of liver enzymes was used. Thus,
only direct-acting mutagens such as nitro-
PAHs and oxy-PAHs will be detected,
whereas compounds that require metabolic
activation by cytochrome P450 enzymes will
not contribute (8). Consequently, the
response matrix should be expanded, espe-
cially for risk assessment purposes. Other
Salmonella strains should be included, e.g.,
TA100 and strains deficient in nitroreductases,
and the mutagenicity testing should be carried
out both with and without the addition of
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Figure 3. Observed versus predicted mutagenicity
(revertants/mg PM) of 20 samples. Regression
model with 41 variables.

Table 2. Correlation (r 2 ) and prediction (Q2) prop-
erties of 11 different models with different number
of variables.

No. of variables r 2 X r 2 Y Q2

472 0.11 0.72 0.36
114 0.24 0.78 0.61
88 0.32 0.96 0.70
55 0.42 0.93 0.76
46 0.57 0.99 0.81
41 0.62 0.99 0.87
29 0.55 0.92 0.82
22 0.60 0.93 0.86
14 0.68 0.90 0.82
12 0.68 0.89 0.84
9 0.71 0.86 0.80



metabolizing enzymes [this is discussed in
more detail in our previous article (7)].
Furthermore, the application of toxico-
genomics (19), for example, will generate
multiple responses, i.e., a Y matrix with many
response variables. PCA and PLS are most
useful for analysis of X and Y matrixes with
multiple predictor variables and responses,
respectively.

We emphasize that the concept of pattern
recognition also can be used when com-
pounds are properly identified and quanti-
fied, e.g., by GC–MS SIM. However, it
requires much more work. The advantage is
higher sensitivity and accuracy in the quan-
tification. Consequently, compounds present
in very low concentrations may not be
detected by full-scan GC–MS and it cannot
be completely ruled out that some of these
may be extremely mutagenic and contribute
to the overall mutagenicity.

Pattern recognition for regression purposes
can also be used on compounds other than
PAHs and for end points other than muta-
genicity. Figure 4 outlines the complete strategy

for toxicological evaluation of complex mix-
tures based on pattern recognition. Detailed
characterization, or fingerprinting, the latter
after curve resolution and similarity matching,
is used to create the X matrix (predictor vari-
ables). PCA is used for classification purposes.
Toxicity or mutagenicity testing generates data
to the Y matrix (responses). PLS is used for
regression modeling to identify the peaks or
compounds that co-vary with the responses.
The peaks may subsequently be identified from
their pure spectra and may be used in more
detailed studies of impact and possible interac-
tions. Furthermore, new samples should be
evaluated by PCA to ascertain that they are
within the regression domain before toxicity or
mutagenicity is predicted.

We are presently improving the
methodology to use regression models to
predict mutagenicity of new samples and to
convert the pure spectra from each resolved
peak to a format useful for library search for
identification.
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