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Preface 

This dissertation was submitted in fulfilment of the requirements for the degree Doctor of 

Philosophiae (PhD) at the Department of Biology (BIO), University of Bergen (UiB). The 

research presented in this thesis has an industrial multidisciplinary character including both 

biology and physics, with a focus on fish welfare. To accomplish a PhD of such a 

multidisciplinary character has been challenging and has involved a heavy workload.

The apparent increase in my knowledge is documented through four included peer reviewed 

and published papers (see List of papers) where I am 2nd author in the two first and 1st author 

in the two last papers. Moreover, several additional experiments were performed during my 

PhD study, both published and accepted publications (Roth et al. 2010, Grimsbø et al. 2011,

Roth et al. 2012, Roth and Grimsbø 2016). The knowledge gained from the Farwell project 

and my PhD study was important input in a report (Slinde et al. 2013) where I was one of the 

contributors, especially regarding electrical stunning. Knowledge from his report was later 

implemented in the Norwegian Food Safety Authorities’ recommendation for slaughter of fish 

(Mattilsynet 2014).

During my PhD study I have also contributed to unpublished experiments related to 

measurements of stress in fish, not included in this thesis, where oxygen consumption (cod 

and haddock), electrical impedance of swimming cod, and blood parameters were measured. 

I have participated in EEG and ECG experiments on eels and swimming cod in addition to a 

large scale slaughtering experiment on rainbow trout, unpublished, and not presented in this 

thesis which also have been important for my scientific knowledge development.

The experiments described in paper I were planned within the Farewell project research 

group, which included myself. In addition to the planning of the experiment, I also 

contributed in carrying out the experiments’, especially the cooling procedure of the second 

experiment described in the paper and finally the writing process. In paper II my main 

contribution was the increased understanding of the stunning signals’ electrical characteristics 

and electrical measurements. In this publication I also have participated in the planning and 

writing process. The experiment in paper II has given me an increased knowledge about EEG 

and ECG, which was one of the goals for my research fellow position in the Farewell project. 
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Since I am the first author in paper III, I am also the main contributor from planning to 

writing, including the experimental setup. As being the first author in paper IV, the 

responsibility for the analyzing and writing process is mine. My main contribution to the 

experimental setup was the electrical arrangement including the filter unit. It is, however,

important to note that the idea of the filtered signal concept occurred as a result of a 

unpublished large-scale rainbow trout slaughtering experiment I participated in, organized 

within the Farewell project.   
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Abstract

Improved animal welfare during industrial slaughtering of fish is the aim of the scientific 

work presented in this thesis.  The thesis is based on four publications that cover different 

stages of an automated industrial slaughtering line for fish. The publications are presented in a

similar order to those on a slaughtering line. 

The results from paper I are relevant for all types of pre-chilling of fish before slaughtering 

and reveal the physiological effects of live chilling in Atlantic salmon (Salmo salar). Chilling 

of fish is commonly used in the industry, both during transportation and processing of the fish 

in the slaughtering house. 

The publication is based on two experiments where the first experiment included fish (mean 

weight 840 g) acclimatized to a water temperature of either 16, 8, or 4°C and which were

directly transferred horizontally or vertically (9 combinations) to temperatures of 16, 8, 4, or 

0°C using a dip net. In the second experiment, fish (mean weight 916 g) acclimatized to 16°C

were exposed to four temperature-drop regimes (no physical handling): 16–4°C (over 5 h), 

16–4°C (over 1 h), 16–0°C (over 5 h), and 16–0°C (over 1 h). Physical transfers in the first 

trial, i.e., temperature drops, resulted in immediate (1 h) increases in blood lactate 

concentrations at all three temperatures, but levels were significantly reduced and close to 

pretransfer levels after 6 h. Horizontal transfers, i.e. 16–16°C, 8–8°C, and 4–4°C, resulted in 

similar increases and were not significantly different from the groups exposed to temperature 

drops. The most severe vertical transfer (16-0°C) resulted in a swift loss of equilibrium and 

eventually death. In experiment No.2, temperature drops from 16 to 4°C and from 16 to 0°C

over a period of one or 5 h, without physically handling the fish, resulted in no significant 

increases in any of the measured parameters 1 h post-transfer, except in the 16–0°C (1 h) 

group. The latter experienced a significant increase in blood sodium, glucose, lactate and 

cortisol levels compared to all other groups. The results suggest that salmon are capable of

tolerating relatively steep temperature drops without any significant negative effects on blood 

stress parameters and that physical stress from gentle handling overrides the effect of thermal 

insults, which is important for the slaughtering procedure.
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The overall objective of the study in paper II was to find the optimal configurations for 

industrial percussive and electrical stunning by evaluating the methods under laboratory 

conditions. In an automated slaughtering line electrical and percussive stunning are common 

methods used to ensure unconsciousness, which is critical for fish welfare, before bleed out. 

The work described in this publication defines the settings, especially voltage and air 

pressure, needed for efficiently rendering the fish unconscious and also to verify the effect of 

the stunning machines.   

Evidence of unconsciousness and insensibility of Atlantic salmon was provided on the 

electroencephalogram (EEG) by the appearance of slow waves and spikes, followed by a

strong depression in electrical activity. This phenomenon was observed in 17 salmon after 

percussive stunning using an air pressure of 8.1 to 10 bars, whilst 8 fish were considered

conscious at pressures below 8.1 bars, although some were seemingly unconscious in

behavior. Consequences were a haemorrhage in the brain cavity in 15 out of 17 fish, broken 

upper or lower jaws in 9 fish and eye burst in 8 fish. 

A general epileptiform insult (unconscious and insensible) was obtained by delivering a 

voltage, consisting of a direct current (DC) coupled with 100 Hz alternating current (AC) with 

a peak value of 112 volt (V), head to body, for approximately 0.5 s. The total duration of the 

insult was 62±44 s (mean±SD; n=25) which was followed by minimal brain activity in 19 

fish. The heart rate was 20±7 beats/min prior to stunning. After stunning, the

electrocardiogram (ECG) revealed fibrillation for 22±15 s and became irregular and showed 

extrasystolae (ventrical contraction) afterwards. Exposing the salmon for 5 s with electricity 

followed by a gill cut resulted in 1 out of 3 fish temporarily recovering after 3 min. 

Haemorrhages were not observed in the fillets. Average current for head to body electrical dry 

stunning was 668 milliampere (mA) root mean square (RMS) with an average stunning 

voltage of 107.9 Vrms. Electrical head to body stunning can be recommended when using 

coupled AC and DC current of 668 mArms and 107 Vrms. The salmon can be stunned in 

approximately 0.5 s. However, the experiment concluded that a correct bleeding procedure

should be developed. For percussive stunning it was concluded that if sufficient force is used 

the fish will be rendered unconscious and insensible, however this resulted in damage to the 

carcass, whereas a combined AC and DC signal is recommended for dry electrical head to 

body stunning.
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The objective of paper III was to verify the optimal AC frequency range to be used during 

industrial electro stunning, i.e. electronarcosis, of Atlantic salmon by investigating the 

electrical impedance spectra of the combined fish and electro stunning device entity. This is 

an important task since the frequency of the electrical signals is crucial to the electro stunner’s 

effect. 

The electrical impedance and associated phase shift was measured in the frequency range 40

Hz to 1.0 MHz for individual fish (n = 11) placed in a regular electrical stunner. The results of 

the experiment showed that the average overall impedance of the combined fish and electrical 

stunning device increases with frequency from 40 to 60 Hz before leveling out in the range 

from 60 to 800 Hz. Thereafter the impedance decreases to a negligible value at 1 MHz.

Measurements on impedance and phase angle showed that the highest average electrical 

impedance appeared at 100 Hz. Furthermore, there were individual peak impedance variations 

between 70 and 100 Hz. In all fish measured, the impedance at 900 Hz was observed to be 

lower than that at adjacent frequencies. 

Due to average measured impedance values and the expected influence of the alpha 

dispersions on the cell surface, as reported in previous research, it was concluded that the 

optimal AC frequency range for electro stunning of the Atlantic salmon brain is 70 to 100 Hz. 

The aim of paper IV was to understand the importance of electrical signal frequency spectrum

on stunning, recovery and inflicting injuries. Hemorrhaging in the filet, caused by broken 

backbones, has been a quality problem for the industry when electro stunning is used to 

render the fish unconsciousness. The paper also shows the effect of chilling during bleed out. 

In this article Atlantic salmon were exposed for 5 seconds to either 217 Vrms, 50 Hz, AC or 

107 Vrms coupled AC+DC at 200Hz, with and without a high frequency spectrum. Post stun 

the fish were placed back into water, either at ambient seawater temperature (10.4 °C) or cold 

water (-1.3 °C), to investigate recovery or mortality. The results showed that a high frequency 

spectrum, but low amplitude prevented the muscles from contracting and causing spinal 

injuries and hemorrhaging, for all individuals. Injury rates of 14 and 18% was observed when 

using electrical signals containing only low frequencies of 200 Hz AC+DC and 50 Hz, AC. 

The high frequency spectrum also reduced the stimulation of the brain as fish recovered faster 
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with no mortality. Adding a cold shock post stunning delayed or prevented recovery of all 

groups within the time span required to kill the fish by exsanguination.

Papers III and IV will potentially have relevance for other disciplines, such as medicine, 

where electroshock and electronarcosis are used.   

Samandrag (Norwegian)

Temaet i denne avhandlinga er å forbetre dei automatiserte slakteprosedyrane av oppdrettsfisk

brukt i industrien med omsyn på dyrevelferd og matkvalitet. Dette var også det overordna 

målet for det NFR finansierte «Farewell» prosjektet, som stipendiatstillinga mi i industriell 

biologi var ein del av.  

Denne PhD-avhandlinga er basert på detaljerte studiar der ein bruker instrumentering og 

måleteknikk for å optimalisere dyrevelferd. Arbeidet avhandlinga byggjer på kombinerer difor 

både biologi og fysikk, med hovudfokus på industriell biologi. Moderne industriell slakting av 

fisk er ein svært automatisert prosess med høg produksjonskapasitet. Ei slik produksjonslinje 

for  slakting er vist i figur 1. 

Publikasjonane denne avhandlinga bygger på fyljer som vedlegg, merka som I, II, III og IV.

Dei tek føre seg ulike delar av slakteprosessen ut frå ei vinkling mot både biologi og fysikk, 

der målemetodar for dyrevelferd er i fokus. Sjølve avhandlinga knyt saman desse fire 

publikasjonane og gir ei samla oppsummering og konklusjon av arbeidet. Rekkefylja 

publikasjonane er presentert i tilsvarer rekkefylja prosessane førekjem i ei automatisert 

slaktelinje. Difor er publikasjon I, som omhandlar levandekjøling av fisk, presentert først. 

Denne publikasjonen er relevant både for kjøling under transport og i samband med 

prosessering av fisken, då særleg bruk av RSV tankar før slakting. Konklusjonen til denne 

publikasjonen er at laksen toler vesentleg raskare nedkjøling enn tidlegare antatt, noko som er 

eit særs viktig resultat for at industrien.  

Den andre publikasjonen (paper II) tek føre seg elektrobedøving og bruk av slagmaskin, det 

vart her brukt måling av hjerneaktivitet (EEG) og hjerteaktivitet (EKG) for å verifisere og 
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optimalisere dei ulike metodane. Publikasjonen konkluderer med kva som er optimale 

parameter å gjere fisken bevisstlaus både ved bruk av elektrobedøving og slagmaskin. Det er 

viktig å merke seg at denne publikasjonen også viser at berre bruk av visuelle observasjonar 

av fisken sin bevisstheit ikkje er tilstrekkeleg, men at det er òg naudsynt å bruke EEG. 

I publikasjon III vert meir den teoretiske bakgrunnen vurdert og bekrefta for kva som er den 

optimale frekvens ved elektrobedøving ut frå måling av elektrisk impedans av fisken plassert i 

eit vanleg oppsett for elektrobedøving. I forsøket som publikasjonen byggjer på viste det seg 

at det er samsvar mellom målt maksimal impedans og optimal frekvens for elektrobedøving 

av fisk. 

Den siste publikasjonen (paper IV) presenterer løysinga på skadeproblemet med påfyljande 

kvalitetsfeil på grunn av kraftige muskelkontraksjonar som kan oppstå ved bruk av 

elektrobedøving. Det vart i denne publikasjonen konkludert med at overharmoniske 

frekvenskomponentar, vist som eit frekvensspekter, i det elektriske signalet brukt til 

elektrobedøving forhindrar skade som følje av muskelkontraksjonar. Noko overraskande viste 

det seg òg at ved å fjerne dei overharmoniske frekvenskomponentane i det elektriske signalet 

frå elektrobedøvaren vakna ikkje fisken opp att, men døde.  Publikasjonen viser også at bruk 

av kjøling under utbløding vil sikre at fisken ikkje vaknar opp att etter elektrobedøvinga.

Resultata vist i publikasjon III og IV vil kunne ha relevans også for andre fagfelt der 

elektrobedøving eller elektrosjokk vert brukt.
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1. Introduction

The overall aim of the Norwegian Research Council (NFR) and FHF financed Farewell 

project, which my research fellow position has been a part of, is to improve the slaughter 

procedures of farmed fish with respect to fish welfare and food quality. The aim of my PhD 

study was therefore to contribute to and establish gentle and efficient procedures to put fish to 

death, based on detailed studies on stress responses and on physical instrumentation, thus 

combining scientific evidence from both biology and physics, with a primary focus on 

biological significance.

Modern industrial slaughtering of fish is a highly automated process with a high production 

capacity. The different machinery in a typical slaughtering production line is shown in 

Figure 1.

Figure 1. Automated industrial slaughtering line for fish, schematic presentation. The separate frame shows the 

principle of electro stunning of fish. 
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Well boats are commonly used for transportation of salmonids between aquaculture farms and 

the slaughtering facility. The fish will be stored in waiting cages or pumped directly from the 

well boat into the factory (Merkin et al. 2010). If the fish are pumped directly into the factory,

it is common that the well boat has a capacity for refrigerated sea water (RSW) so that the fish 

are cooled during transportation. If waiting cages are used it is common to chill the fish before 

slaughtering either in a separate RSW tank or by using cold water in the facing/swim to death 

apparatus. Paper I has a focus on live chilling of salmon and will be relevant to any 

procedures where the fish body temperature is decreased prior to slaughtering. However,

some slaughter houses do not practicing live chilling of the fish prior to slaughter.

Prior to gill cutting and bleed out the fish are electrically or percussively stunned, or in some 

cases both. The electrical stunning procedure is done by placing the fish between a steel 

conveyer belt and an electrode, also called a shoe or finger, with an electrical potential 

difference that makes the fish unconscious. Percussive stunning is done by machine where a 

piston driven by compressed air hits the fish head so that the fish becomes unconscious. After 

the fish are unconscious knifes cut the gills so that bleed out starts.  After gill cut the fish are 

be transferred to the RSW tank where bleed out occurs. It is crucial for the animal welfare that 

the fish are unconscious during bleed out, and it is unacceptable that the fish are bleeding out 

in a conscious state. The fish will then be processed when bleed out is completed and it is 

crucial that the fish are dead and not processed alive. 

1.1. Legislation for commercial slaughter of farmed fish

The Norwegian law of animal protection (Anon 1974), which defines animal protection at 

slaughterhouses, is the basis for the Norwegian directive for animal welfare. In the Norwegian 

directive for animal welfare that concerns slaughter of mammals and poultry (Anon 1995) it is 

stated that: “Animals shall be spared any avoidable stress, pain and suffering during 

unloading, herding, positioning, restraining, stunning, and killing.” In the EC directive for 

protection of animals at slaughter (Council Directive no 93/119, 1993) a similar expression 

occurs: “Animals shall be spared any avoidable excitement, pain or suffering during 

movement, lairaging, restraint, stunning, slaughter or killing”. 

The regulations for slaughtering of farmed fish in Norway are defined by the Norwegian 

directives on slaughter of farmed fish (Anon 2001). It is stated in the directive that: “Farmed 
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fish shall, if it is necessary to prevent injuries, be stunned prior to exsanguination. Stunning is 

allowed only with the use of methods approved by the Director of Fisheries.” However, the 

directive for slaughter of fish expresses greater concern about physical injuries, related to the 

struggle that might occur which affect quality rather than fish welfare. These approaches to 

the fish slaughtering process are not in accordance with the future demand for fish welfare. 

However, new recommendations and directives for welfare and slaughter of farmed species, 

fish included, are coming up in Europe. In Norway new recommendations and directives for 

fish slaughter also demand changes in slaughtering procedures. There are many indications 

that legislation for slaughtering of fish in the future will become equal to regulations for 

poultry and mammals. A stunning procedure equivalent to poultry and mammals requires that 

the fish must be stunned unconscious immediately, i.e. within < 1sec., and remain 

unconscious until death occurs (EFSA 2009).

1.2. Fish welfare challenges under application of different sedation, stunning and 

killing methods

With respect to both animal welfare and quality it is important to avoid a stressful situation 

for fish during slaughtering (Digre 2011). Therefore, a proper stunning procedure is required 

to render the fish unconscious before slaughtering. This will also be recognized as a human 

slathering procedure (van de Vis 2003) and also in accordance with best practice. However,

the ongoing debate regarding whether the fish are able to feel pain (Nordgreen 2009,

Braithwaite 2010, Rose 2014) is out of scope for this thesis. 

For stunning of fish, especially Atlantic salmon, several stunning methods have been used 

commercially in the last decades. The most common method of stunning Atlantic salmon 

prior to exsanguination has been live chilling with or without use of CO2, or additional 

stunning methods (Erikson et al. 2006, Roth et al. 2006, Erikson 2008). However. use of CO2,

even at small concentrations generates stress responses in salmon (Erikson 2011, Foss et al.

2015). Live chilling is a common procedure via pre-chilling of the fish in bins with ice slurry 

and water prior to gill cutting. The live cooling of fish normally takes place in large RSW

tanks. Such tanks can have different structures, but normally the fish are brought forward

through the tank automatically. RSW tanks were originally used as bleed out tanks before it

turned out that it was efficient to cool the fish before bleeding.
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By cooling the fish live the time it takes from killing the fish until it goes into rigor mortis is 

extended (Skjervold et al. 2001), which is beneficial for processing and product quality in the 

market. Live cooling has also been used as a procedure to calm or sedate the fish before 

slaughtering. 

Within the live chilling procedure it is common practice not to expose the live fish to 

temperatures lower than 0.5 º C. It is common to use ice slurry to kill aquarium fish adapted 

to higher water temperatures, and this is also common practice for commercial species in 

southern Europe (Lines and Spence 2012). However, little information exists on how 

hypothermia affects the fish prior to stunning, which therefore became the main focus of 

paper I. 

The relevant literature and articles on the subject of cooling of fish often has little focus on the 

basic physical principle in relation to cooling and heat transfer. It is reasonable to assume that 

a basic understanding of heat transfer is important in order to evaluate the different details of

the various methods. It is, however not possible within the framework of this thesis to provide

a complete model for heat transport in fish, but I will try to present some important principles

related to the topic. 

To simplify the understanding of heat transfer, consider the fish as a solid physical object or 

body. The heat transfer or cooling occurs at the surface of the fish. A larger fish, due to its

larger fish. Since volume and weight are 

dependent on each other, a larger fish has a smaller surface to weight ratio than a smaller fish 

er unit weight. The weight is therefore crucial to the fish’s heat 

capacity or latent heat per unit surface. Since the surface determines the heat transfer and the 

latent heat is dependent on the weight it is reasonable to assume that a small fish will cool 

down faster in cold water than a big one, which gives the smaller one a shorter time for

adaptation and acclimatization. The expected difference in time for cooling of a small fish 

versus a large is a reasonable explanation for the difference in mortality versus fish size 

described by Skuladottir et al. (1990) and mentioned in paper I. 

In this context it is important to take into consideration that a living animal has a blood 

system which also contributes to the temperature exchange. The influence of the blood flow 

on heat exchange is included in Pennes (1948) analyses of the relationship between arterial 

and body temperature via a model that describes the actual heat in a living animal. The gill 
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and blood system’s influence on the temperature exchange are conspicuously shown by 

Stevens and Sutterlin (1976). Since the gill area is dependent on the fish mass, it can be 

described as an exponential function of the fish weight (Graham 2006).

Because most teleosts, except tuna, do not have a mechanism to maintain an independent 

body temperature they are described as poikilotherms. Poikilotherm fish, including

salmonoids, are dependent on the surrounding water temperature and the physical principle of 

heat transfer. These are the main temperature regulation mechanisms, and not metabolism. 

Rapid changes in environmental temperature cause physiological responses, alter the 

behavior, and can even cause death (Donaldson et al. 2008). A release of primary stress 

hormones in fish are shown to be a response to cold shock (Tanck et al. 2000. Muscle 

stiffening (cold shortening) prevents the fish from expressing behavioral signs such as panic

during chilling. It is unclear whether arctic species lose consciousness during live chilling. 

Some experiments show that live chilling in combination with CO2 are insufficient in order to 

obtain unconsciousness in the animal (Roth et al. 2006; Erikson et al. 2006). However, initial 

experiments done early in the Farewell project showed that by slowly increasing the content 

of CO2 in the water it was possibly to use CO2 to sedate and even make Atlantic cod (Gadus

morhua) unconscious without any observable panic reaction, but the same effect was not 

observed for salmon. 

Other stunning methods used in the fish slaughtering industry today are percussive and 

electrical stunning, which are investigated in paper II. In both the fish slaughtering industry 

and in regular fisheries, percussive stunning is a well established method. Electrical stunning 

procedures in the fishery industry have become more common and the principle is equivalent 

to electronarcosis or electroshock, also named electroconvulsive therapy (ECT), that is used 

in human medicine. The effect of electro stunning is related to the electrical impedance in the 

fish, as shown in paper III. A major side effect of electrical stunning as used in the 

slaughtering industry is internal bleeding and carcass damage, and is especially evident in

salmon (Roth et al., 2003, 2004). This is discussed in paper IV. Other species, such as 

Atlantic cod and rainbow trout (Oncorhynchus mykiss), are less susceptible to injuries 

compared to salmon (Olsen 2006). Both methods are proven to be efficient and have the 

ability to almost immediately render the animal (Robb et al., 2000; Robb and Roth, 2003, 

Lambooij et al. 2002a,b, 2004 and 2006a,b, Roth et al. 2007). For salmon it was, prior to the 
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Farewell Project, unclear if permanent loss of unconsciousness was caused by efficient 

stunning in combination with bleed out (Roth 2006). Previous experiments (Lambooij et al.

2006a,b) showed that exposing the fish to a thermal insult during bleed out is a suitable 

method to secure permanent insensibility in electric stunned African catfish. For gill cutting 

machines, which are highly dependent on the fish position in the machine, the error in the 

procedures appears to be unacceptable (Roth 2006). 

At the starting point for the Farewell project and thereby also my PhD work the aquaculture 

industry was still operating on a non-evidential background in several fields, such as 

slaughtering of fish. The intention of my work was to improve the slaughtering procedures, 

clarify and hopefully contribute to solving some of the challenges related to acceptable fish 

welfare during slaughtering, in the context of the biology and physics fields.

1.3. Stress in fish and blood parameters

The word stress has a wide and diffuse use in everyday language, but in a scientific context

there is a need for a clearer definition. A possible definition of stress is a condition which 

extends the animals adaptive responses or disturbs the normal functioning and is a result of 

the environment, such as density and feeding, or is produced by other factors (Engelmann et 

al. 2004), also described by Selye (1936) as the “general adaptation syndrome”. However,

both in artificial conditions and in a natural environment fish are exposed to stressors but the 

responses are often impossible to generalize. The most obvious responses to a stressor are

changes in the animal’s behavior. Depending on the stressors, the return to a pre-stress 

condition takes minutes to weeks and tends to occur fastest for behavior that is important to

the animals’ survival (Iwama et al. 2006). Behavioral stress responses might be due to pain 

perception, aversion or fear, which prove the fishes awareness of itself in the environment

(Braithwaite and Boulcott 2007).

The fish physiological stress responses are normally categorized into primary, secondary and 

tertiary responses. Metabolic, hematological, hydromineral, and structural changes related to 

stress are categorized as primary and secondary responses (Barton and Iwama 1991). The 

tertiary stress response is more a long term response occurring when the fish is not able to 

adapt or acclimate to the stressor and is of less interest in a slaughter setup. 
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The primary stress response is the immediate or initial response to a stressor with release of 

stress hormones such as catecholamine, cortisol and adrenocorticotrophic hormone (ACTH).

It is often difficult to measure the hormones released by a primary stress response because

there is a risk that the sampling procedure itself triggers a stress response. Primary 

physiological stress responses are therefore often determined by measuring blood plasma 

cortisol, which has a slower response than, for instance, adrenaline (Iwama et al. 2006).

Metabolic, hematological, and hydromineral changes in the fish as a result of stressors are

important for the secondary stress responses. The changes that occur as secondary stress 

responses are detectable by measuring alterations in the blood chemistry. Alterations in the 

blood chemistry that can be observed include changed levels of glucose, lactate, sodium 

(Na+), potassium (K+), chloride (Cl-), calcium ions (Ca2
+), bicarbonate (HCO3), oxygen partial 

pressure (pO2), carbon dioxide partial pressure (pCO2), lactic acid, Hematocrit (Hct), and 

clotting time (ACT) (Barton and Iwama 1991, Ashley 2007). It is also possible to observe 

changes in oxygen consumption during the acclimatization to stressors. The fish will also 

increase its blood flow and an increase in heart rate will be detectable as a response to 

stressors (Schreck 1982).

The physiological responses from rapid changes in temperature such as cold shock affect the 

membranes in the gill directly or indirectly by the release of stress hormones and are 

detectable by blood analyses (Tanck et al. 2000, Rørvik et al. 2001), and are described in 

paper I. 

1.4. Heart rate in fish

Fish have a simplified heart and a circulatory system compared to mammals, where the blood 

is pumped to the gills for oxygenation and purification, then directly out to the body. 

Compared to the human heart, which has four chambers, a fish heart has only one atrium and 

one ventricle. However, like all other vertebrates the fish heart consists of special muscle 

tissue called cardiac muscle tissue. Since a muscle, like the heart, contracts as a result of a 

depolarization caused by an electrical signal it is possible to measure the muscle activity 

electrically, which is described as Electrocardiography (ECG). The cardiac muscle tissues
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contract as a result of depolarization in the tissue itself, often called pacemaker cells. Factors 

that affect the regulation of the heart rate are primarily the autonomic nervous system and the 

temperature (Evans and Claiborne 2006). For human hearts it is possible to investigate the 

electrical depolarization signal using a standardized ECG setup consisting of several 

(normally 12) electrodes. For fish the same standardized setup does not exist but it is common 

to use a two electrode setup. Depending on electrode placement the ECG signal of a fish heart 

is not unlike a human heart, even though the heart has a simpler anatomy. An example of

ECG signal from salmon is shown on Figure 2.

Figure 2. ECG example from experiment with percussion stunning of Atlantic salmon (paper II) shows a P-QRS-

T complex similar to what found in humans.

For teleosts, such as salmon and cod, the P deflection represents the atrial depolarization, the 

QRS complex shows the ventricular depolarization and T deflection the ventricular and atrial 

repolarization. This P-QRS-T complex is similar to that found in humans. There are

differences, however, especially since the T deflection has different characteristics. Compared

to what is normal for humans the T deflection on fish is abnormal. The ECG recordings in 

paper II often had a similar shape to the QRS complex, but was smaller. The P deflection in 

fish has a tendency to be less marked than common in ECG of the human heart, which is 

expected due to the anatomical atrium design of the fish. In fish the atrium has a smaller 

muscle mass than the ventricle and lacks a cardiac valve to prevent blood from flowing back 

into the terminal veins (Evans and Claiborne 2006). The differences in the fishes P-QRS-T

complex indicate a possible different depolarization of the heart muscle compared to humans,

which is not unexpected due to the anatomical differences. If a P-QRS-T complex measured 

on a human had the same characteristics as a normal fish, it would have indicated an error in 

signal transfer between the sinoatrial node (SA node) and the rest of the heart, like the 
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atrioventricular node (AV node). For instance, a different frequency (Hz) in the P deflection 

compared with the QRS complex (Figure 3), indicates a blockade in the signal from the SA 

node to the rest of the cardiac muscle tissue (Hampton 2009). If the depolarization signals

from the SA node are blocked, other tissue in the heart will generate its own depolarization 

signal, but often with a lower frequency, which contracts the ventricular chamber.  

Figure 3. ECG from swimming cod with abnormal T deflections and small P deflections (arrows) with an

independent frequency of the QRS complex, which indicates a signal blockade in the depolarization sequence

In the recorded ECG signal reported in paper II and in an unpublished experiment done on 

cod the T deflection, which is the repolarization, often had an abnormal form compared to a

human ECG. Since the ventricle is a relatively large part of the fish heart it is possible to

explain the abnormal T deflection in fish ECG, compared with human ECG, as a result of the

repolarization of a big muscle mass. However, as Figure 3 shows there is within the T 

deflection (which normally is a repolarization) a new depolarization. Since the initial atrial 

depolarization in Figure 3 is blocked, it is reasonable to assume that the abnormal T deflection 

is caused by the influence of a change in the hearts’ depolarization sequence on the

repolarization of the ventricles muscular tissue. Since the abnormal T deflection occurs 

frequently it is possible that fish has a major difference in the tissues that generate the 

depolarization signal compared to those in humans, which is also in accordance wih earlier 

research (Evans and Claiborne 2006). An increase in the T deflection is also observed, which

is assumed to be controlled by the parasympathetic nerve system (Makiguchi 2009) and

which makes it difficult to determine the origin of the abnormal T depletion. The lack of a 

standard protocol for electrode placement in fish makes it difficult to compare ECG in fish 

and human.
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The detection of the R deflection depends on the method used for measurements of the ECG 

signals. Traditionally, the ECG signal is measured by using electrodes and a bioamplifier 

connected to an analog-to-digital (ADC) converter which makes the signal available to a

computer. Electrode arrangements where the electrodes are wired to a bioamplifier easily

disturb the animals’ behavior. Maintaining natural behavior is especially difficult for 

swimming fish when attaching electrodes. An alternative to a regular bioamplifier and 

electrodes is to use an acoustic transmitter constructed for registration of the R deflection and 

transmission of a ping signal as shown in Figure 4.

Figure 4. Example of ECG measurements of swimming cod with acoustic ECG transducer shows a “ping” for 

each R deflection.

It is relatively easy to detect the heart rhythm since the R deflection is distinctive also in the 

fish P-QRS-T complex. By using the time difference between each R deflection it is possible 

to calculate heart rate. It turns out that the fish heart rhythm has an irregular tendency (Figure 

4). Compared to the human heart this tendency for an irregular heartbeat also corresponds 

with previous mentioned differences in the P-QRS-T, especially the shape of the T deflection. 

Even with the evident differences in anatomy and possibly also the depolarization of the heart 

between fish and human, it is expected that the factors that control the heartbeat are the same. 

It is therefore expected that a change in heartbeat will be a result of an acute stress situation

but also at different level of unconsciousness (Zahl 2011).

Since cardiac tissue has the ability to generate depolarization, the detection of ECG in a 

slaughtering procedure does not necessarily prove if the fish is conscious or not – the 

heartbeat is often detectable even after the fish is brain dead. Regardless, if the fish brain does

receive sufficient oxygen supply it will cause unconsciousness and eventually brain death, 

therefore the blood supply is crucial. Electro stunning often causes disturbance in the heart 

rhythm such as fibrillations (Figure 4 and paper II), and even cardiac arrest. A cutoff of the 

blood supply to the brain after an initial stunning will ensure that the fish remain unconscious 

until death has occurred, which makes monitoring of ECG an important tool for fish welfare 

during slaughtering.
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1.5. Consciousness and brain activity

As a consequence of the regulation earlier described (Anon 1995 and Council Directive no.

93/119, 1993), it is important to ensure that animal suffering, pain and unpleasant excitement

is avoided during slaughtering. The key to a humane slaughtering procedure is therefore to 

ensure that the animal does not have the ability to feel or have any awareness during 

slaughtering, which is the purpose of stunning. In the stunning procedure before slaughtering,

the fish will lose awareness of its surroundings and of its own body and in the state of

unconsciousness be unaroused and unresponsive. Determining if the fish is in a state of

unconsciousness is crucial for evaluation of slaughtering methods and fish welfare. The most

common way in the fish industry for evaluation of consciousness is the eye roll method

(Kestin et al. 2002). The eye roll protocol is based on behavioral observation and describes 

the consciousness in a value from 0-2. Since the effect of anaesthetization is loss of 

consciousness it is also relevant to compare the effectiveness of stunning in fish slaughtering 

with protocols for evaluation of stages in anesthesia. Adapted from previous work, Zahl 

(2011) presents four stages and planes (that is, sublevels), of anesthesia in fish and thereby 

describes the different levels of consciousness. The different stages are described as follows:

I. Light sedation

II. Excitatory stage

III.

1. Light anaesthesia

2. Surgical anaesthesia

3. Deep anaesthesia

IV. Impending death

Each stage is defined by both visually observable and other parameters. Since electro stunning 

is equivalent to electronarcosis the comparison between levels of anaesthesia and 

consciousness in stunned animals is highly relevant. It is not necessarily possible to describe 

other stunning methods, such as percussive stunning, as anaesthesia but it is still possible to 

use the same evaluation method for consciousness.
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1.5.1. Visual observations of consciousness 

The easiest way to determine fish consciousness is to observe its behavior. If the behavioral

responses to stimuli is considered to be normal, there is no question about whether the fish is

fully conscious. The parameters that are visually observable in the first of the previous 

described stages, light sedation, is defined as disoriented behavior, reduced activity and 

slightly reduced responsiveness. In the excitatory stage the observable behavior of the fish is 

excited, has increased activity, normal or exaggerated responsiveness, irregular or increased 

respiration and struggles to maintain balance. It is not possible to describe the fish as 

unconscious in any of these two first stages. Compared to the eye roll method these two first 

stages will be described as “0”. However, methods that cause light sedation will increase 

animal welfare if used as pre sedation before stunning. 

In stage III Zahl (2011) describes three planes or sublevels named light, surgical, and deep 

anaesthesia, which may all be described as different levels of stunning. The first sublevel, 

light anaesthesia, is characterized by normal or decreased respiration, although the fish reacts

to strong tactile stimuli which possibly make this an insufficient stunning level. In both the 

second and third sublevel, surgical and deep anaesthesia, the fish has no responsiveness and 

thereby has a sufficient stunning level. The difference between the two last subgroups is

respiration, which in surgical anaesthesia is described as shallow and for deep anaesthesia is 

nearly absent.

The behavior in all the three planes or sublevels of stage III is described as anaesthetized. In 

contrast to the levels in stage III, stage IV, impending death, the behavior is described as 

moribund, stopped respiration, and the fish has no responsiveness. 

The activity for all the sublevels of stage III together with stage IV is described as arrested 

and the fish has lost equilibrium, which is compatible with value 1 and 2 in the eye roll

method (Kestin et al. 2002). Therefore, both swimming activity and equilibrium are important 

parameters in evaluation of consciousness. The eye roll method for evaluation of 

consciousness involves the vestibulo-ocular reflex (VOR) which use the heads velocity 

information to stabilize the vision (Raphan and Cohen 2002). Since the eye roll method is 

normally used in an enlightened environment and actually is an evaluation of gaze and image 

stability there will be an influence from other eye movement responses such as the optokinetic 
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response (OKR) (Ebenholtz 2001) which supplements the fishes VOR (Huang and Neuhauss 

2008). However, all visual observation methods involving a motor response, like the eye roll 

method and which depend on the response from the oculomotor system, do not necessarily 

represent the fishes awareness of the surroundings and of its own body. The only way to 

ensure that the fish is unconscious is to measure the electrical activity of the brain. However, 

accurate electrical measurements of brain activity are difficult without working in a 

laboratory, so visual observations methods, like the eye roll method are still an important tool 

for field evaluation of fish consciousness.

1.5.2. EEG

Electroencephalography (EEG) is commonly used to measure the electrical activity in the 

brain. The registration of the brains electrical activity, so called brain waves, are

measurements of electrical potential differences and frequencies. Different electrical 

potentials in the brain are well documented (Empson 1986) and led to recordings of EEG 

signals.

The concept of EEG is based not only on analyses of frequency spectra and amplitude of the 

signals, but also the shape and behavior of the signal. Main classification of the electrical 

activity frequency spectra recorded on the EEG is defined into delta (0 -4 Hz), theta (4-7 Hz), 

alpha (8-13 Hz) and beta (> 13 Hz) frequency bands. The beta frequency bands are normally

defined as up to 30 Hz, although it is possibly to classify the beta2 frequency band as high as 

50 Hz (Rampil 1998). There are also other classifications in addition to the main classification 

of the frequency components in the EEG signal but they have little relevance for 

consciousness in fish, so frequencies below 30 Hz are the main frequencies of interest. By

evaluating the alpha and beta rhythms it is possibly to determine the animal’s consciousness

(Kooi et al. 1978). However, it is assumed that during a general epileptiform insult, such as

described in paper II, the animal is unconscious (Bilgili 1999).

For analyses of the different frequency components in the EEG signal it is possible to use 

either hardware or software solutions. A common way of analyzing the strength of different 

frequency components in a signal is the Fast Fourier transform (FFT), which transforms the 

EEG signal from the time domain into the frequency domain (Figure 5).
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Figure 5. Section of FFT analyses (Hanning window) where the analyzed EEG signals’ stronger part

corresponds with what are common frequencies. From the experiment shown in paper 2.

The FFT analysis normally gives the relative signal strength of the different signal

components in decibels (dB). In Figure 5 it is important to notice the peak at frequency ranges 

representing alpha and beta waves. For lower frequencies it is difficult to determine the 

different frequency components since parts of the spectrum probably have some origin in 

noise. For recording of EEG signals it is common to use a bio-amplifier with both a high and 

a low-pass filter which are adjustable and thereby make it possible to eliminate irrelevant 

frequencies and noise.

Noise is a common problem since the EEG signal is generally weak and since the bio-

amplifier will amplify the whole signal including the noise. Muscle activity is often the origin 

of the noise in the recorded EEG signal. As shown in Figure 6, ECG is often a source of noise 

in the fish’s EEG signals. 
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Figure 6. The EEC signal (blue) is influenced by the ECG (grey) signals Q-deflection. From the experiment in 

paper II where the EEG signal was measured on cerebral cortex.

Muscle activity from the movement of the gills is a particular noise source in measurement of 

brain activity since the muscles that move the gill covers are situated close to the brain, which 

makes the placement of the electrodes crucial.

In humans, electrical differences in the brain are normally measured through the skull by 

electrodes mounted on the skin. For registration of EEG in humans it is a common procedure 

to use a multiple electrode setup (Jasper 1958) that allows measurements of electrical activity 

in different parts of the brain. A multiple electrode setup it is not necessarily easy to use on

animals because the brain often is smaller than in humans. A simplified electrode setup is

therefore used in EEG where the animal’s total brain electrical potential difference is 

measured. It is also possible to perform cortical EEG measurements where the electrical 

potentials are measured directly on the cerebral cortex, also called electrocorticography 

(ECoG). For registration of electrical brain activity in animals the method of measurement 

directly on cerebral cortex is a common procedure, especially where it is necessary to detect 

signals from brains of smaller sizes (Dezaa and Eidelberg 1967). The EEG signal recorded by 

measuring directly on the brain surface will also have difference characteristics compared to 

those recorded on the skull (Empson 1986). A small animal brain, such as in fish, will give a 
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weak signal and thereby an unfavourable signal to noise ratio. Direct measurement of the 

EEG signal on the cerebral cortex will obviously give a stronger signal than measurement 

outside the skull and thereby increase the signal to noise ratio. 

Modern EEG recording are normally based on digitalization of the signal. It is therefore 

crucial to use an analog-to-digital (A/D) converter with sufficient resolution within the actual 

range of the amplified EEG signal as delivered by the bio-amplifier. To avoid drifting of the 

signal the bio-amplifier has a function that keeps the amplified signal centered and thereby 

prevents cutoff of the signal in both the amplifier and the A/D converter. 

The accuracy of the FFT analyses is dependent on the quality of the digitized recordings of 

the EEG signal. Since a digitized signal consists of separated measurements placed in the time 

domain it is not only the resolution, range, and noise that define the signals quality but also 

the sampling rate. To recreate the EEG signal from the recorded measurements a sufficient 

sampling rate, called the sampling frequency (fS), is needed. A recorded signal that is sampled 

with too low a frequency will possibly have a different frequency than the original signals

frequency (f), which is called aliasing (McClellan et al. 2003). To avoid aliasing in the 

digitalized signal the minimum fS is defined by the Nyquist sampling theorem (Bentley 1995),

which says that the sampling frequency should be at least twice the original signal bandwidth.

The earlier described frequency range suitable for EEG measurements indicates that a 

relatively moderate sampling rate is sufficient to avoid aliasing in the recorded signal. Even 

though the EEG signals themselves have a relatively low frequency content there is a 

possibility of high frequency noise. With aliasing, the noise will easily end up in the same 

frequency range as the EEG signal and hence alters the dB strength of the different EEG 

frequency components. By avoiding aliasing it is possible to identify the noise from the EEG 

signal by a FFT analyses. Because of the possibility for aliasing it is recommended to use a fS

that is significantly higher than two times the highest component in the EEG signal of interest.

Since all the papers presented in this thesis are about fish welfare related to evaluation of the 

slaughter process, consciousness in fish is important. Besides the frequency spectrum the 

EEG measurement characterization also contributes to the definitions of the consciousness in 

fish. In a state of unconsciousness, the EEG signals will always have an abnormal or an 

epileptic form (Bilgili 1999). Especially after electro stunning these abnormalities are caused 

by a rapid and intense depolarization of the nerve cells in the brain, which again are causing a
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general epileptiform, as shown in paper II, Figure 5. These abnormal and epileptic EEG 

signals are defined as a tonic phase followed by a clonic phase. In the tonic phase the EEG 

signal increases in amplitude and goes into a decrease in frequency in the clonic phase. The 

abnormal EEG activity is then followed by an exhaustion phase (Lambooij, 2004) or a strong 

depression of electrical activity which possibly ends up in an isoelectric line. Both abnormal 

and lack of electric activity indicate unconsciousness. 

When the animal is out of the tonic/clonic phase it is important to evaluate the level of 

consciousness, for instance by evaluation of event-related potentials (ERPs) caused by 

noxious stimuli. Since evaluation of EEG is necessary because of the possible insufficiency in 

visual observations, such as the eye roll method, it is important to use a relevant method for 

evaluation of ERPs. An auditory event exposure for evaluation of consciousness in fish is not 

an accurate solution because auditory evoked potentials (AEPs) are generated in the same 

anatomic structures as the VOR. In a situation where the fish has lost VOR the probability for 

occurrence of AEPs is small. Likewise, loss of eye reflexes, such as pupilla light reflex or 

OKR/VOR, will reduce the probability for a visually evoked potential (VEPs). The most 

relevant sign for evaluation of consciousness and pain during slaughtering of fish are ERPs 

induced by noxious stimuli. Figure 7 shows an example on a sampled EEG signal with ERPs.

Figure 7. Recorded EEG after electro stunning with three noxious stimuli induced event-related potentials, 

160ms/div. x-axis and voltage on y-axis. The fish has an increasing tendency of consciousness during the insults

and the last event-related potential has a similar shape as found in humans where the N1-P2(N100-P200)

complex and P3(P300) are possible to recognize.

The event that causes ERPs like the one shown in Figure 7 may be an expected painful 

stimulus, such as the one used in paper II. The different parts of the ERP are normally denoted 

with N or P, depending on the electrical potential, and are named with the time tag in 

millisecond (ms) from when the event occurred. The N1 and P2 following each other are 

often denoted as the N1/P2 complex. Together with the N1/P2 complex, the P3 (also called 

P300), is an important part of the ERP. The P3 component in the ERP signal is especially 
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important in evaluation of consciousness (Heinke and Koelsch 2005, Kotchoubey 2005). It is 

important to notice that the different ERP components have wide time intervals even though 

they are named with a time tag related to the origin of the event. Hence an ERP component 

such as P300 will still carry the same name even if the components occurrence in time are 

different from what the time tag indicates. Since this thesis is about fish it is the ERP signals

interpretation that is important, not the exact concurrence time. The important interpretations

of the EEG signal are, like the ERPs shown in Figure 7, to determine whether the fish recover 

from unconsciousness with increasing and normalized ERPs, or remain unconscious. If the 

fish remains unconscious, it is expected to observe decreased electric activity, that is little, 

none, or irregular ERPs, which ends up in an isoelectric line. (Blume et al. 2011).

1.6. Nervous system

As previously mentioned the purpose of electro stunning is to stimulate the whole brain by 

electric current. The concept of electro stunning uses the same principle as electronarcosis or 

electroshocks (EST) which are based on electrical stimulation of nerve cells and has a rather 

long history of use in both animals and humans (Geddes 1965, Kneeland and Warren 2002).

For example, the frog experiment Galvani carried out in 1791 is one of the best known 

experiments of electrical stimulations of nerves (Kipnis 1987, Piccolino 1997). Electrical 

stimulation of nerves related to muscles is also known as functional neuromuscular 

stimulation (FNS) where nerve membranes depolarize and generate an action potential

(Peckham 1981, Solomonow 1984a, b). A nerve cell or neuron consists of dendrites, axon and 

the cell body called soma. Figure 8 shows a schematic drawing of a typical nerve cell, not 

unlike the one described by Retzius in 1892.

Figure 8. Schematic drawing of a nerve cell with cell body (soma) surrounded with outgrowths, which are the

dendrites and axon.
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The depolarization, causing the action potential, has its origin in the dendrites and the cell 

membrane of the soma. When the depolarization causes a sufficient voltage difference 

between the outside and the inside of the cell membrane an action potential will be generated 

in the axon hillock, which is located in the passage from the soma to the axon. The action 

potential will then propagate along the axon by depolarization and end up in the axon terminal

where it will be transmitted over the synapse to the dendrites in the next neuron or to a 

muscle. The propagation velocity of the action potential is dependent on the myelination

(Schwann cells) around the axon (Shrager 1988). In a myelinated axon the fibers only have 

active membranes at the nodes of Ranvier, which are exposed and influence the propagation 

velocity (Rattay and Aberham 1993).

Even though electrical synapses exist, the most common transmission mechanism is by 

chemical substances first discovered by Otto Loewi and called neurotransmitters (Friedman 

1971, Zigmond 1999). These substances are released into the gap between two adjacent cells,

and will then cause a depolarization of the receiving cell membrane. If the receiving 

membrane is a muscle cell, the depolarization will cause the muscle to contract. Chemical 

substances also influence the interaction and responses of the different parts of the nerve 

system (Hökfelt et al. 2000). However, electrical signals are important for normal 

neurological activities and are highly dependent on the ion channels in the nerve cell 

membrane. In a polarized state the ion channels or pumps maintain the ion balance and the 

electrical potential difference, which ranges from approximately -50mV to -70mV, between 

the inside and outside of the cell. By depolarization this changes to approximately +40mV as 

a peak value of the action potential (Rattay 1990). The Hodgkin–Huxley (HH) model 

describes the initiation and propagation of action potentials including the underlying ionic 

mechanisms in a cell membrane in unmyelinated squid giant axon (Hodgkin et al. 1952, 

Hodgkin and Huxley 1952a-d, Rattay 1990, Martinek et al. 2008). Models of the action 

potential propagation along the axon are possible by using a network with a basis in models 

for electric telegraphy, like the one developed by Lord Kelvin (Thomson 1855, Rattay 1990). 

By using the network model it is possible to simplify the cell membrane into circuit elements

where the ion channels are described as voltage sources (Cole 1962). By using an extremely 

simplified model where the ion channels are eliminated it is possible to describe the cell 

membrane as an electric impedance network, which is relevant for electro stunning.
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Dependent on the animals’ acclimatization temperature, reduction in the environmental 

temperature may influence the nerve system. In extreme situations the nerve transmission may 

fail and are therefore called cold block (Boyd and Harold 1933). Not only cold block but also 

cold death, as described in paper I, is an optional result of an extreme temperature drop. Other 

factors may also influence the temperature tolerance, such as anaesthetics, oxygen and 

exhaustion (Fryer and Ogilvie 1973). Changes in temperature will also influence the action 

potentials propagation along the nerve fiber (Hodgkin 1937a, b, Rattay 1990). The alterations 

in the nerves electrical resistance caused by changes in temperature influence the simplified 

nerve cell model described in paper III (Hummon and Boyd 1935). Changes in temperature 

also have the potential to affect the myelination of the nerves, which will alter the actions 

potentials propagation (Blaurock et al.1985).

1.7. Electricity and electrical parameters

The well-known basis for Ohm’s Law (Ohm, 1827) is the assumption of the linear electrical 

relationship between the potential difference measured in volt (V), electrical current (I) and

electrical resistance (R), which is valid for metal but not for biological materials. By changing 

the potential difference applied to biological materials the electrical resistance will also 

change; this is valid for both alternating current (AC) and direct current (DC).

However, electrical impedance (Z) represents the electrical resistance under alternating 

current conditions and is a function of both R and reactance (X). The 

impedance is a complex number, which is possible to describe in either rectangular or polar 

form, where R is a real number and X represents the imaginary part (Boylestad 2003). Like

the impedance, R is also this real numbers represents the electrical 

resistance during DC conditions. The frequency-dependent reactance can possibly be either a

capacitance (C) or an inductance (L), depending on its placement on the imaginary axis, 

which is defined by the impedance phase angle . In the International System of Units (SI 

unit) the inductances are normally circuit elements like coils and are measured in Henry (H),

commonly expressed in milliHenry (mH). The SI unit for measurement of capacitance is farad

(BIPM 2006) or microf The name of a circuit element with a capacitive 

characteristic is a capacitor and is in principle constructed as shown in Figure 9.
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Figure 9. Schematic drawing of a plate capacitor where the capacitance is defined by the size and distance 

between the electrodes, including the material (dielectric) between them. 

The measured value of capacitance 

material between the electrodes and the area of them, as defined by equation 1. For a parallel-

plate capacitor the capacitance per unit area (CA) is described as:  

d
CA

0
,                                                         Eq. 1

where represents the relative dielectric constant of the medium, which is temperature-

dependent. The permittivity of free space is represented by 0 (8.85 x 10-12 farad) and the 

distance between the parallel-plates is represented by d.

The concept for definition and measurements of capacitance is also true for biological 

impedances (Schwan 1963, Foster and Lukaski 1996). The relevance of capacitance to the 

impedance cell membrane model, described in paper III, identifies the capacitive part of the 

cell membrane to be the dielectric shown in Figure 9. The cell membrane contribution to the 

capacitance will then be determined by the area and thickness of the membranes and the 

membrane materials electrical properties (Rattay 1990).

A capacitor will under DC conditions act as a non-conductor, provided that the applied 

voltages are not causing a dielectric breakdown, as described in paper III. During switching

on and off of the DC current, the capacitor will act as a current source that gets loaded and 

unloaded at switch on and off, respectively. Especially the contact surface between the 

electrode and the fish has a capacitive characteristic, which is in accordance with the 

Helmholtz model (Ohm 1982, Brad and Faulkner, 2001). Therefore the will be a capacitance 

between the fish surface and electrode like shown in Figure 1, paper III. It is important to 

notice that in AC conditions a phase shift will occur between the voltage and current during 

the influence of capacitances and opposite phase shift are caused by inductances (Floyd 

2001).
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The principles for electrical resistance are similar to those of capacitance but are dependent on 

the material’s

capacitive part) is normally highly dependent on the voltage (Šel et al. 2005). According to 

this voltage dependency the impedance will be lower at high voltage, but still keeping a 

similar developing trend curve for the impedance spectrum at low and high voltages.

Conductance (G) is the inverse of the electrical resistance and the inverse of impedance is 

admittance (Y), which both are measured in Siemens (S). The term Siemens per meter (S/m) 

or millisiemens per centimeter (mS/cm) is used in definitions of a materials specific electrical 

resistance or . During AC conditions the conductivity will decrease with 

increasing frequency and it is possible to make computerized models over the electrical 

currents distribution in the different body tissues (Nadeem et al. 2003, Seoane et al. 2007).

Both conductance and admittance are given by multiplying the conductivity by the 

conductors’ area and dividing on its length. A fish may be regarded as a conductor (Grimsbø 

2007), but due to geometry and different body tissues that vary in conductivity, a calculation 

of its overall conductance or admittance is difficult. It is however important to realize that a 

fish placed in an electro stunning machine is in principal a conductor where it is possible to 

regard the different body or tissue parts as elements of an electrical circuit with specific 

electrical properties.   

Electrical current is measured in ampere (A) and is used for both DC and AC. For AC 

conditions it is possibly to use different terms for both voltage and current measurements

depending on which part of the signal characteristic of interest. The expression peak-to-peak 

value and peak-value describe, respectively, the voltage or current alternating signals value 

from peak to peak or the absolute value of the peak value. The commonly used expression for 

voltage and current measurements related to electro stunning is root mean square (RMS), 

which gives a uniform measurement independent of the signal form. By using RMS values,

which represents an integral of the signal, it is easier to compare stunning signals of different 

types. It is however important to notice that not all measurement equipment that claim to 

measure RMS has the capacity to do so, especially if the measured signal is different from a

50 Hz sinusoidal. Measurement equipment that handles RMS measurements of non-sinusoidal 

signals with frequencies different from 50 Hz are normally described as “true RMS” and such 

equipment is needed for measurement of the stunning signal. Since many electro stunning 
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machines do not deliver a sinusoidal stunning signal but, like the Stansas machine used in 

paper II and IV, consists of both a DC and AC component it is important to use measurement 

equipment with an adequate design. It has been observed that measurement of stunning 

current consisting of both AC and DC represents a challenge for ordinary measurement 

equipment since they often are constructed for either AC or DC measurements, not for 

combined or coupled signals. In measurements of electro stunning signals, it is important to 

recognize and define the stunning signal. For instance, the commonly used expression pulsed 

DC (pDC) (Roth 2003, Nordgreen 2008) is actually an AC signal with a square wave form. 

Only when the pDC signal consists of only one pulse is it possible to measure it with the 

instrument in DC mode.

For comparison of signal strength the dimensionless logarithmic unit decibel (dB) is often 

used, with there is a defined reference level. For easily comprehension of the concept of dB it 

is convenient to start with the formulae used for comparison between signal power (P):

refP
PdB 10log10 Eq.2

Since the power is dependent on voltage and electrical resistance it is obvious that by using 

RMS values it is possibly to rearrange equation 2 into (Boylestad 2003):

refRMS

RMS

Z
Z

V
VdB

ref

1010 log10log20 Eq.3

Evaluation of signal strength related to impedance and frequency are relevant for electro

stunning since the voltage level during stunning of fish is approximately constant.

It has turned out that there is a limited frequency range, approximately 50Hz to 1kHz, that is 

optimal for electro stunning (Roth 2003). Therefore, frequency is a key parameter for

obtaining efficient brain stimulation during electro stunning. The electro stunning dependency 

of electric frequency is caused by its influence on the nerves at cellular level, which are also 

known from other scientific fields (Gilad 2007). It turns out that, dependent on the nerve 

diameter, higher frequencies have a blocking effect on the action potentials (Solomonow 

1984a, Rattay 1990). It is also shown that lower frequencies of about 100 Hz, as described in 

paper III, give the optimum stunning effect (Roth 2003). A correlation between increasing 

effect of electro stunning and the electrical stimulation frequency is in accordance with 
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general nerve stimulation where the effect increases up to a certain level (Solomonow 1984a,

b, Rattay 1990). The relationship between effect of electro stunning and electrical nerve 

stimulation has been a source for quality trouble in the fishery industry since a stunning signal 

that gives an efficient stun also gives heavy muscle contractions thereby causing quality 

problems such asbroken backbone and blood spots in the filet (Robb et al. 2003).

Optimization of electro stunning equipment will therefore often be a compromise between the 

effect of electro stunning and quality issues. However, it is crucial to identify the stunning 

frequency spectrum as described in paper IV.     

Amplitude versus time is a common graphical presentation of a measured electrical signal, 

which is a presentation of the signal in the time domain. A graphical presentation of an

electrical signal in the time domain gives a clear description of the signal form but not the 

frequency. It is however possibly to calculate the frequency of a clean and simple signal, like 

those of a sinusoidal form, by counting the cycles pr. second but that is hardly an option if the 

signal consists of a frequency spectrum as in Figure 10.

Figure 10. Time-domain plot AC part of stunning signal from a Stansas stunning machine. The signal consists 

of different frequencies including spikes, which also contributes to the frequency spectrum.  

By using the FFT it is possible to transform the measured signal from the time-domain to the 

frequency-domain (Bergland 1969). The FFT is a computerized algorithm to easily calculate 

the discrete Fourier transform (DFT) of the non-continuous digitalized sampled signal that the 

measurements represent. By using the FFT it is possible to get the frequency spectrum of the 

sampled signal.

As part of the FFT analysis it is common to use an additional algorithm called “time-domain 

window” or just “window”. This window algorithm works as a window into the sampled 

measurements where the FFT is used and is crucial for the accuracy, often described as 

frequency leakage (Schoukens et al. 1991, Zhang et al. 2001). It is therefore important to note 
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that not all measurement equipment with a built in option for frequency spectrum analysis and 

does not give a frequency spectrum of sufficient quality, especially with irregular or noisy 

signals. There are several different algorithms used as time-domain windows, which have

different characteristics and influences on the calculated frequency spectrum (Harris 1978).

However, the Hann window algorithm is commonly used and is also the default option in the 

FFT software package delivered with the programming language used in paper IV. By using a

filter arrangement of capacitors and eventually coils, as in Figure 1 in paper IV, it is possible

to alter a frequency spectrum’s characteristic, as shown in Figures 2 and 3 in paper IV. 

2. Objectives

The aims of this thesis and the published papers I –IV were to increase the knowledge about 

fish welfare during industrial slaughtering, as well as to quantify welfare parameters by

different measurement methods. The specific aims were to:

Investigate the maximum acceptable temperature drop for salmon before slaughtering 

without compromising fish welfare, by measuring the physiological responses of live 

chilling

Evaluate and verify the effects of percussive and electrical stunning on the fish’s

consciousness by measuring its EEG and ECG responses

Verify the optimal AC frequency for electrical stunning by measuring electrical 

impedance

Increase the understanding of the impact of electrical frequency on quality issues such 

as broken backbones and hemorrhages.

Quantify the welfare related effects of chilling as a method for preventing recovery 

during bleed out of slaughtered fish
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3. Results and discussion

The experiments described in paper I – IV investigate fish welfare during commercial 

slaughtering of salmon. In general, the results in paper I are relevant for live chilling as often 

used before stunning and slaughtering. The results in paper II-IV are about the stunning 

procedures, where both paper II and IV include the recovery of consciousness in fish.

3.1. Sedation by temperature drops

One goal of live chilling prior to slaughtering is to calm down (sedate) the fish before 

stunning and bleeding. Perhaps the most important effect for slaughterhouses practicing live 

chilling is to achieve better quality, provided by less activity, and less impact damage, lower

lactate production, smaller pH drop, longer durability, less fillet gaping, and to gain more time 

to fillet the fish before rigor mortis (Skjervold et al. 2002). However, cold shock or rapid 

temperature drops close to the fish tolerance limits can trigger strong stress responses and 

mortality (Donaldson et al. 2008). Therefore, the results from the experiments with live

cooling of salmon in paper I are important and show that transfer from high to low 

temperature does not increase the level of stress per se in relation to crowding and handling 

stress itself, unless the temperature jump is too large or the end temperature is too low. 

The experiments described by paper I show the physiological responses in fish to temperature

drop, but do not clarify the state of consciousness during cooling. However, the results from 

paper IV show the importance of low temperature for prevention of recovery from an

unconscious state caused by electro stunning. Since it is considered unclear whether arctic 

species lose consciousness during live chilling, the findings in paper IV are important and

prove the ability of low temperature to maintain fish unconscious. The effect of cooling 

shown in paper IV is beyond what is possible to explain by cold stiffening of the musculature.

The effect of the ice-slurry proves that the temperature drop clearly has an effect on the state 

of consciousness, which is also reasonable as related to the temperatures’ general influence on 

conduction of nerve signals (Boyd and Harold 1933, Rattay 1990).
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In the process of chilling prior to slaughtering the cooling represented by the gills and blood 

flow gives a rapid decrease in temperature and an increase in quality and possibly welfare 

(Skjervold et al. 2001, 1999). However, Skjervold et al. (2002) also described that the heat 

flux over the fish surface is a main contributor to the heat transfer from fish to water. 

It is however interesting to notice that the temperature model for fish, developed by Kitagawa 

and Kimura (2006), describe three factors that determine the temperature as a function of 

time, that is, exchange with the ambient water temperature, blood flow, and metabolic heat 

production. Therefore it seems adequate to regard the fish as a control system as shown in 

Figure 11.

Figure 11. Simplified schematically drawing of a control system representing the processes which control the 

fish temperature. In a control system there will be a control matrix u(t), a transfer function x(t) and y(t) will 

then represent the output variable (Balchen et al. 2004). 

The heat flux over the fish surface is represented by control variable u1(t) (Figure 11). The 

control variable u2(t) represents the heat transfer over the gills and internal heat transport 

caused by the blood flow. Finally, the fish metabolism is represented by control variable u3(t), 

but has only theoretical interest since the salmon is a poikilotherm.

The control system model is also useful in a fish welfare perspective since it clearly shows the 

input variables which determine the fish’s temperature. Under normal slaughtering procedures 

the fish will be rendered unconscious before the gill cut is be done, which rules out u2(t).

After the gill cut, u1(t) will represent the dominant factor in u(t) when the fish ends up in the 

cold water in the bleed out tanks. In the cooling experiment in paper IV no gill cut was 

performed, which represents an eventual worst case scenario when a failure has occurred 

during the slaughtering and the fish will not bleed out before processing starts. The lack of 

bleed out will, on the other hand cause an efficient cooling, since both u1(t) and u2(t) are intact

and gives an efficient contribution to u(t), and ensures, as shown in paper IV, that the fish do

not end up being processed in a conscious state.
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The results from paper I are important for fish welfare during slaughtering, since live chilling 

of the fish prior to stunning is a common procedure in the fishery industry. In a situation 

where the fish are pre-chilled before slaughtering both u1(t) and u2(t) will contribute to the 

change in the fish body temperature. The results from paper I show that the temperature slope, 

which is the result of u(t), is an important parameter causing the physiological responses in 

the fish. The results in Figure 1, paper I, shows that it is not necessarily the change in 

temperature that causes a fatal stress situation for the fish but the temperature change versus 

time. For both temperature drops from 16 to 0°C over five hours and from 16 to 4°C over one 

hour the measured physiological stress responses were acceptable. Since the temperature flux 

over the surface is the main contributor to the temperature change (Skjervold et al. 2002), a 

small fish will have a steeper temperature slope than a bigger one. The fact that the fish used 

in the experiment, described in paper I, were salmon of smaller than average size at 

slaughtering ensured that the actual body temperature drop more quickly that fish with similar

temperature changes at a commercial fishery slaughterhouse. However, the results in Table 1 

in paper I show that physical strain overrides the potential stress caused by temperature drops. 

3.2. Electro and percussive stunning

The aim of the stunning procedure is to render the animal unconscious before slaughtering. 

The concept for percussive stunning investigated in paper II is a piston, driven by compressed 

air, that hits the fish head as described in Figure 1, paper II. The results from the percussive 

stunning experiment show the importance of using sufficient air pressure. In the part of the 

experiment where lower air pressure was applied, the fish where not exposed to a sufficient 

percussive stunning. The use of higher pressure ensured the quality of the perceived stun, but 

gave unacceptable damages to the visual impression of food quality. Good animal welfare 

during slaughtering will give a high quality score for the final product and it is therefore

interesting to observe that a failure in the visual impression of food quality can be regarded as 

a quality score for animal welfare during percussive stunning, but which is not acceptable for 

the market.

Different aspects of electro stunning are investigated in paper II-IV, where different power 

sources and voltage levels were used. The description of the electrical stunning signal,

presented in paper I, is important for the understanding of the signal characteristics which
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include both an AC and a DC component. The characterization of the stunning signal in paper 

II contributed, together with the results from other unpublished experiments , to the premises 

for the experiment described in paper IV.

3.2.1. ECG

After both percussive and electro stunning fibrillation were observed in the ECG signal post 

stun, but not for all of the fish. For both stunning procedures the heart rate showed a 

decreasing trend versus time post stun. It is however interesting to observe the difference in 

heart rate post stun for the two different stunning methods, that is, percussive and electro 

stunning (paper II). For percussive stunning the heart rate seems to be higher post stun than 

for electro stunning, even though the heart rate before stunning was lower for percussive 

stunning. The difference in heart rate post stun was probably caused by the fact that head to 

body electrical stunning not only exposes the brain to electrical current but also the 

pacemaker tissue in the hart and the nervous system. The percussive stunning will only 

influence the brain and render the heart muscle and its pacemaker tissue unharmed and a 

possible release of catecholamine increases the heartbeat. However, a cardiac arrest will 

terminate the oxygen supply to the brain but also prevent efficient bleed out after gill cut.   

3.2.2. EEG

The observation of VOR absence but still simultaneous EEG response to noxious stimuli in 

paper II clearly proves the importance of EEG for verification of consciousness. The VOR 

procedure for determination of consciousness in paper IV is however regarded as sufficient

when the experimental setup earlier has been verified by EEG in paper II.

The measured EEG and response to noxious stimuli reveals clearly the different effects 

between high and low air pressure used in the percussive stunning procedure. The measured 

EEG results from paper II proves that a 107V stunning signal delivered by the Stansas 01# 

machine gives a sufficient stunning result, which again gives a decreased power consumption 

compared to higher voltages. However, the evaluation of stunning duration found
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approximately 0.5 sec. to be sufficient. This is an important result from paper II, even though 

there is a need for a correct bleeding procedure.     

3.2.3. Impedance versus effect of electro stunning

The results in paper III focus on electrical impedance measurements in fish and their impact 

on the optimal frequency for electro stunning. It is important to note the relatively flat area of 

the impedance curve with a top in the average value at 100Hz (Figure 2 in paper III), which 

corresponds to frequencies recommended for use in electro stunning (see references in paper 

III).

Different tissue types in the fish have different electrical properties, which make it difficult to 

calculate the electrical currents flowing through the fish in general and through the specific 

parts of the head and the brain. The measurements done in paper III give an impedance 

spectrum which represents the total impedance of tissue and stunning system. By doing an

extreme simplification of the fish electrical properties it is possible to describe the whole 

system as in Figure 12. 

Figure 12. Principle drawing of an electrical stunning system. The fish, including the stunning machine,

simplified into two electrical resistors, R1 and R2, one capacitor C and an inductance L.

Paper III describes an increasing tendency of the electrical impedance in the fish from low

(40Hz) frequency towards higher frequencies (100Hz). An increase in electrical impedance 

with increasing frequency will normally be described as an inductance, like L in the 

simplified system in Figure 12. However, the phase shift shown in paper III does not indicate

any inductance in the system. The sources of the inductance are, according to Cole (1962),

expected to be the ion channels in the cell membranes. The capacitance (C in Figure 12)

represents the origin of the decrease in impedance from 100Hz towards higher frequencies
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(paper III) which is common for biological tissue. Figure 12 also includes two resistors, R1 

and R2 placed in series and parallel with C and L, which represent the linear electrical 

resistance.

Since the action potential in a nerve cell is trigged by the voltage difference over the cell 

membrane, it is assumed that the maximum electrical resistance of the system will give the 

most efficient stun. According to the results shown in paper III the optimal frequency for 

electro stunning is within the relatively flat top area of the impedance spectra, with the 

optimum at 100Hz. It is also interesting to observe that the fundamental frequency used in 

paper II is within the frequency range where the relatively flat area in the impedance spectrum

occurs, as shown in paper III.

To regard the fish and the stunning apparatus as one electrical system is a new approach to 

electrical stunning. This new approach gives a better understanding and an opportunity to 

optimize the electro stunning procedure in a different way than previously.

3.2.4. Effect of frequency spectrum

In addition to the previously mentioned effects that cooling has on awakening, the results in 

paper IV contribute to a clarification of cause and effect relationship between damages related 

to electro stunning. 

When the commercial Stansas electro stunning machine entered the marked it quickly 

received a reputation for giving less damage than other electro stunning apparatus. The 

assumption was that the combination of AC and DC electrical current used in the Stansas 

machine prevented injuries. Therefore, a comprehensive unpublished experiment was 

performed where the aim was to clarify the optimal combination between AC and DC 

electrical current for electro stunning. In this experiment different settings with different 

combinations between AC and DC were tested by using a Stansas stunning machine, but none 

of the settings gave a significant increase in damages. Since there was no increase in damages, 

regardless of the different AC/DC combinations used, it was suspected that the stunning 

signal from the Stansas machine contained an additional electrical component that prevented 

damages. 
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An attempt to clarify the content of the electrical stunning signal from the Stansas machine 

was performed by using high frequency sampling of the signal and analysis of its frequency 

spectrum, using Fast Fourier transformation which showed that the signal contained a high 

frequency component that possibly prevented damages.

The concept of using high frequency signals for blocking the action potential (Figure 13) is

earlier described by both using simulations and practical experiments (Rattay 1990). 

Figure 13. Principle drawing of a myelinated nerve where high frequencies signal is used for blocking the 

action potential.

An action potential in a nerve will propagate along the call membrane of the nerve and finally 

trigger a muscle contraction. By using a high frequency signal it is possible to block the 

propagation of the action potential (Solomonow 1984a, b). The myelin works as insulation of

the nerve, but will also increase the capacitance between the extracellular and intracellular 

fluids. The minimum frequency for blocking the action potential depend on the capacitance 

between intracellular and extracellular fluids. The capacitance will again depend on the 

diameter of the nerve, that is, the area of the surface and the electrical property of the cell 

membrane (Rattay 1990). In fish the nerves are more myelinated than in mammals and will 

influence the propagation of the action potentials, including the minimum blocking frequency.

Based on this knowledge a rather simple experiment, described in paper IV, was carried out to 

verify if it was the higher frequency component in the electro stunning signal from the Stansas 

machine that prevented damage. In this experiment a filter was used to remove the high 

frequency part in the signal from the Stansas machine. It was then possible to compare fillet 

damages between fish stunned with and without high frequency components in the electrical 
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stunning signal and thereby verify the effect. As described in paper IV fillet damages occurred 

when the high frequency part of the signal were removed. 

However, it also turned out that the filtered signal gave longer recovery time and higher 

mortality rate than the unfiltered signal. It is possible that the filtered signal caused permanent 

damages on the fish nerve system compared to the signal that contained a high frequency 

component. This finding might be relevant even within human medicine where electroshock

or ECT is used since many of the negative side effects (Weiner 1984, Dybedal et al. 2014) are 

similar to those related to electro stunning of fish. It is possible that an electrical signal with a 

high frequency spectrum will reduce the negative side effects in ECT.

4. Conclusions

The findings in paper I are particularly important for fish welfare prior to slaughtering and 

shows that salmon are capable of tolerating relatively steep temperature drops. The findings 

are relevant both for live chilling under transportation and prior to slaughtering. Fish welfare 

is not affect by short duration exposures to temperatures drops from 16° to 4°C over 1 hour or 

from 16° to 0°C over 5 hours. Paper I shows that negative effects on blood stress parameters 

caused by physical stress from handling overrides the effect of thermal insults.

It is important to note that in the experiment described in paper II the fish has no response on 

VOR but still has detectable brain activity in the measured EEG signal, which means that the 

animal is possibly only paralyzed. For verification of consciousness it is therefore necessary 

to use EEG to determine the fish's brain activity. For percussive stunning the conclusion is 

that if sufficient air pressure (8.1 to 10 bar) is used to operate the percussive stunner the 

energy in the impact will render the fish unconscious and insensible and eventually die of 

cerebral hemorrhage.

The conclusion for electrical stunning is that a combined AC and DC supply for dry electrical 

head to body stunning for a minimum of 0.5 sececonds using a current of 668 mArms and 

voltage of approximately 107 Vrms will lead to all fish being stunned unconscious. Upon 

exsanguination the fish did not die unconsciously after a 5 seccond electro stun pulse and 
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methods to prolong the unconscious conditions until death occurs should be sought or

alternatively percussive stunning used, as is commercially practiced.

Paper III shows the importance of electrical impedances in electro stunning and is an

interesting tool to find the optimal stunning frequency. The results from paper III demonstrate 

the importance of using AC frequencies in the range below that includi -

dispersions, which in turn cause high electrical impedance during electro stunning of fish. 

This ensures efficient release of action potentials in the central nervous system, which is 

essential for rendering the fish unconscious. The measured electrical impedance indicated that 

the frequency range from 50Hz to approximately 1kHz is acceptable for electro stunning. The 

highest impedance measurements with low variance are found in the range from 60 to 800Hz, 

which cause electrical signals within the range well suited for electro stunning. However, in 

order to generate an electrical current flow giving sufficient stimulation to the brain of the 

Atlantic salmon, it is concluded that the optimal frequency range for electro stunning of 

Atlantic salmon is 70-100 Hz, with an average peak optimum at 100 Hz.

For the work presented in paper IV the conclusion is that a high-frequency spectrum at low 

dB reduces the risk for spinal injuries, while the fundamental frequency of the signal is within 

a frequency range where stunning is efficient. The proportion of fish that fully recovered or 

died was significantly influenced by frequency spectrum and temperature. A thermal shock

post stunning can ensure that the fish remains unconscious until killed.



51

5. References

Anon (1974). Dyrevernloven (Law of animal protection). 1974 12-20 nr. 73 § 24 c. 

Anon (1995). Forskrift om dyrevern i slakterier (Directive of animal protection at 

slaughter).1995-08-28 nr. 775.

Anon (2001). Kvalitetsforskrift for fisk og fiskevarer (Directive on quality of fish and fish 

products). 2001-08-12 § 9-4.

Ashley, P. J. (2007). Fish welfare: Current issues in aquaculture. Applied Animal Behaviour 

Science, 104(3-4), 199-235.

Balchen, J. G., Andersen, T., Foss, B. A. (2004). Reguleringsteknikk. Institutt for 

kybernetikk, NTNU-trykk, Trondheim.

Barton, B. A. and Iwama, G. K. (1991). Physiological changes in fish from stress in 

aquaculture with emphasis on the response and effects of corticosteroids. Annual Review of 

Fish Diseases, 1, 3-26.

Bentley, J. P. (1995). Principles of Measurement System 3rd ed. Prentice Hal, Pearson 

Education Asia (Pte) Ltd. ISBN 0-23779-3.

Bergland, G. D. (1969). A guided tour of the fast Fourier transform. IEEE Spectrum. NY. 

USA, 6(7), 41-52.

Biligili, S. F. (1999). Recent Advantages in Electrical Stunning. Poultry Science, 78(2), 282-

286.

BIPM. (2006). The International System of Units (SI) 8th ed. International Bureau of Weights 

and Measures. Paris. France.   

Blaurock, A. E. Chandross R. J. and Bear R. S. (1985). Surprising thermal transition in fish 

myelin. Biochimica et Biophysica Acta., 817, 367-374.

Blume, W. T., Holloway, G. M., Kaibara, M., Young, G. B. (2011). Blume’s Atlas of 

Pediatric and Adult Electroencephalography. Lippincott Williams & Wilkins, a Wolters

Kluwer business. Philadelphia, PA, USA, ISBN- 13: 978-1-60547-605-6.



52

Boyd, T. E. and Harold, N. (1933). Studies on cold block in nerve: I. Block With and Without 

Freezing. American journal of physiology, 107(1), 76-84.

Boylestad, R. L. (2003). Introductory circuit analysis. 10th ed. Prentice Hall Ltd. New Jersey.

ISBN 013097417x.

Brad, A. J. and Faulkner, L. R. (2001). Electrocemical methods, fundamentals and 

applications. 2nd ed. Jhon Wiley & sons, INC. ISBN 0-471-04372-9.

Braithwaite, V. A. and Boulcott, P. (2007). Pain perception, aversion and fear in fish. 

DISEASES OF AQUATIC ORGANISMS. Dis Aquat Org., 75, 131–138

Braithwaite V. (2010). Do fish feel pain? Oxford University Press Inc. ISBN 978-0-955120-0.

Cole, K. S. (1962). The advance of electrical models for cells and axons. Biophys J., 2(2 Pt 

2), 101-119.

Council directive 93/119/EC of 22 December (1993), on the protection of animals at the time 

of slaughter or killing. Official Journal of the European Communities, No L 340, 21-34.

Dezaa, L. and Eidelberg, E. (1967). Development of cortical electrical activity in the rat.

Experimental Neurology, 17(4), 425-438.

Digre, H. (2011). Slaugther Methods and Processing of Farmed Atlantic Cod (Gadus 

morhua); Welfare Aspects and Flesh quality. Doctoral thases at NTNU. ISBN 978-82-2687-5.

Donaldson, M. R., Cooke, S. J., Patterson, D. A., Macdonald, J. S. (2008). Cold shock and 

fish. J. Fish Biol., 73, 1491–1530.

Dybedal, G. S., Tanum, L., Sundet, K., Gaarden, T. L., Bjølseth, T. M. (2014). Cognitive 

Side-effects of Electroconvulsive Therapy in Elderly Depressed Patients. The Clinical 

neuropsychologist, 28(7), 1071-1090.

Ebenholtz, S. M. (2001). Oculomotor systems and perception Cambridge. University Press, 

NY, USA. pp 74.  ISBN 978-0-521-80459-2.

EFSA (2009). Species-specific welfare aspects of the main systems of stunning and killing of 

farmed Atlantic salmon: Scientific opinion of Panel on Animal Health and Welfare. The 

EFSA Journal, 1012, 2-77.



53

Empson, J. A. C. (1986). Human Brainwaves, The Psychological Significance of the 

Electroencephalogram. The Macmillan Press LTD UK/ Stockton Press NY USA. ISBN 0-

333-41354-7.

Engelmann, M., Landgraf, R., Wotjak, C. T. (2004). The hypothalamic–neurohypophysial 

system regulates the hypothalamic–pituitary–adrenal axis under stress: An old concept 

revisited. Frontiers in Neuroendocrinology, 25, 132–149.

Erikson, U. (2008). Live Chilling and Carbon Dioxide Sedation at Slaugther of Farmed 

Atlantic Salmon: A Description of a Number of Commercial Case Studies. Journal of Applied 

Aquaculture, 20(1), 38-61.

Erikson, U. (2011). Assessment of different stunning methods and recovery of farmed 

Atlantic salmon: isoeugenol, nitrogen, and three levels of carbon dioxide. Welf 20, 365–375.

Erikson, U., Hultmann, L., Steen, J. E. (2006). Live chilling of Atlantic salmon (Salmo salar)

combined with mild carbon dioxide anaesthesia: I. Establishing a method for large-scale 

processing of farmed fish. Aquaculture, 252, 183-198.

Evans, D. H, Claiborne, J. B. (2006). The Physiology of fishes, 3rd ed. CRC Taylor & 

FranFrancis, Boca Raton, London, New York. ISBN 0-8493-2022-4.

Floyd, T. L. (2001). Electronics fundamentals: circuits, devices, and applicatons, 5th ed.

Prentice-Hall Inc. New Jersey. USA.

Foss, A., Grimsbø, E., Mangor Jensen, A., Roth, B. (2015). Levendekjøling med CO2 effekt 

av vannkvalitet på stressresponsen hos oppdrettslaks. Sluttrapport, Marine Harvest ASA.

Foster, K. R., Lukaski, H. C., (1996). Whole-body impedance what does it measure? Am. J. 

Clin. Nutr., 64,388S-396S.

Friedman, A. H. (1971). Circumstances Influencing Otto Loewi's Discovery of Chemical 

Transmission in the Nervous System. Pflügers Archiv, 325(1), 85-86.

Fryer, J. N. and Ogilvie, D. M. (1973). Temperature selection response of atlantic salmon, 

Salmo Salar, and rainbow trout, Salmo Gairdneri, after exposure to pentobarbital. Comp. 

Gen. Pharmac., 5(2), 111-116.



54

Geddes, L. A. (1965). Electronarcosis. Medical and Biological Engineering and Computing,

3(1), 11-26.

Gilad, O., Horesh, L., Holder, D. S. (2007). Design of electrodes and current limits for low-

frequency electrical impedance tomography of the brain. Med. Bio. Eng. Comp., 45, 621–633.

Graham, J. B. (2006). Aquatic and Aerial Respiration. In: The Physiology of Fishes. 3th ed.

Evans D. H. and Claibone J. B. (Eds). Taylor & Francis Group, LLC. FL. USA. pp. 85-117.

Grimsbø, E. (2007). Instrumentation of swim tunnels and conductivity measurement of fish. 

University of Bergen. Norway.

Grimsbø, E., Roth, B., Nortvedt, R. (2011). Electro stunning of Atlantic salmon (Salmo salar

L.): Factors that affect the stunning current. HSA Centenary International Symposium: Recent 

Advances in the Welfare of Livestock at Slaughter, 2011-06-30 - 2011-07-01.

Hampton, J. R. (2009). EKG – let at se. English original edition: The ECG made easy, 5th ed. 

1997. 1. utgave, 8. opplag. Munksgaard Danmark, Kjøbenhavn.

Harris, F. J. (1978). On the Use of Windows for Harmonic Analysis with the Discrete Fourier 

Transform. Proceedings of the IEEE., 66(1), 51-83.

Heinke, W. and Koelsch, S. (2005). The effects of anesthetics on brain activity and cognitive 

function. Current Opinion in Anaesthesiology. Lippincott Williams & Wilkins., 18, 625-632.

Hodgkin, A. L. (1937a). Evidence for electrical transmission in nerve. PART I. Journal of 

physiology., 90(2), 183-210.

Hodgkin, A. L. (1937b). Evidence for electrical transmission in nerve. PART II. J. Physiol.,

90(2), 211-232.

Hodgkin, A. L. and Huxley, A. F. (1952a). Currents carried by sodium and potassium ions 

through the membrane of the giant axon of Loligo. J. Physiol., 116(4), 449–472.

Hodgkin, A. L. and Huxley, A. F. (1952b). The components of membrane conductance in the 

giant axon of Loligo. J. Physiol., 116(4), 473–496. 

Hodgkin, A. L. and Huxley, A. F. (1952c). The dual effect of membrane potential on sodium 

conductance in the giant axon of Loligo. J. Physiol., 116(4), 497–506.



55

Hodgkin, A. L. and Huxley, A. F. (1952d). A quantitative description of membrane current 

and its application to conduction and excitation in nerve. J. Physiol., 117(4), 500-544.

Hodgkin, A. L., Huxley, A. F., Katz, B. (1952). Measurement of current-voltage relations in 

the membrane of the giant axon of Loligo. J. Physiol., 116(4), 424–448.

Hökfelt, T., Broberger, C., Xu, Z-Q. D., Sergeyev, V., Ubink, R., Diez, M. (2000).

Neuropeptides - an overview. Neuropharmacology., 39(8), 1337-1356.

Huang, Y-Y. and Neuhauss, S. C. F. (2008). The optokinetic response in zebrafish and its 

applications. Frontiers in Bioscience, 13, 1899-1916.

Hummon, I. F. and Boyd, T. E. (1935). Changes in electrical resistance of nerve during block 

by cold and by heat. American journal of physiology, 114(1), 85.

Iwama, G. K., Afonso, L. O. B., Vijayan, M. M. (2006). Stresses in Fishes. In: The 

Physiology of Fishes 3th ed. Evans D. H. and Claibone J. B. (Eds). Taylor & Francis Group, 

LLC. FL. USA. pp. 319-342.

Jasper, H. H. (1958). Report of the committee on methods of clinical examination in 

electroencephalography: 1957. Electroencephalography and Clinical Neurophysiology., 10(2), 

370-375.

Kestin, S. C., Van de Vis, J. W., Robb, D. H. F. (2002). Protocol for assessing brain function 

in fish and the effectiveness of methods used to stun and kill them. The Veterinary Record.,

150, 302-307.

Kipnis, N. (1987). Luigi Galvani and the Debate on Animal Electricity, 1791-1800. Annals of 

Science., 44, 107-142.

Kitagawa, T. and Kimura, S. (2006). An Alternative Heat-Budget Model Relevant to Heat 

Transfer in Fishes and Its Practical Use for Detecting Their Physiological Thermoregulation. 

Zoological Science, 23(12), 1065-1071.

Kneeland, T. W. and Warren, C. A. B. (2002). Pushbutton psychiatry: A History of 

Electroshock in America. Praeger Publishers. CT. USA. 



56

Kooi, K. A., Tucker, R. P., Marshall, R. E. (1978). Fundamentals of electroencephalography. 

Harper Collins Publishers.

Kotchoubey, B. (2005). Event-related potentials measures of consciousness two equations 

with three unknowns. Progress in Brain Research, 150, 427-444.

Lambooij, B., Kloosterboer, K., Gerritzen, M. A., Andre, G., Veldman, M., Van De Vis, H., 

(2006a). Electrical stunning followed by decapitation or chilling of African catfish (Clarias 

gariepinus): assessment of behavioural and neural parameters and product quality. 

Aquaculture Research, 37, 61-70.

Lambooij, E., Kloosterboer, R. J., Gerritzen, M. A., van de Vis, J. W., (2006b). Assessment of 

electrical stunning in fresh water of African catfish (Clarias gariepinus) and chilling in ice 

water for loss of consciousness and sensibility. Aquaculture, 254, 388-395.

Lambooij, E., Kloosterboer, R. J., Gerritzen, M. A., Van de Vis, J. W., (2004). Head-only 

stunning and bleeding of African catfish (Clarias gariepinus). Animal Welfare, 13, 71-76.

Lambooij, E., Pilarczyk, M., Bialowas, H., van den Boogaart, J. G. M., van de Vis, J. W., 

(2007). Electrical and percussive stunning of the common carp (Cyprinus carpio L.): 

Neurological and behavioural assessment. Aquacultural Engineering, 37, 171-179.

Lambooij, E., van de Vis, J. W., Kloosterboer, R. J., and Pieterse, C., (2002). Evaluation of 

captive needle stunning of farmed eel (Anguilla anguilla, L.): suitability for humane 

slaughter. Aquaculture, 212, 141-148.

Lambooij, E., Van de Vis, J. W., Kuhlmann, H., Munkner, W., Oehlenschlager, J., 

Kloosterboer, R. J., Pieterse, C., (2002b). A feasable method for humane slaughter of eel 

(Anguilla Anguilla L.): electrical stunning in fresh water prior to gutting. Aquaculture 

Research, 33, 643-652.

Lines, J. A. and Spence J., (2012). Safeguarding the welfare of farmed fish at harvest. Fish 

Physiol Biochem 38, 153–162.

Makiguchi, Y., Nagata, S., Kojima, T., Ichimura, M., Konno, Y., Murata, H., Ueda, H. 

(2009). Cardiac arrest during gamete release in chum salmon regulated by the 

parasympathetic nerve system. PLoS ONE, 4(6), e5993.



57

Martinek, J., Stickler , Reichel, Rattay. (2008). Simulating Hodgkin-Huxley-like Excitation 

using Comsol Multiphysics. Excerpt from the Proceedings of the COMSOL Conference 

Hannover.

Mattilsynet. (2014). Veiledning om krav til god fiskevelferd ved slakteri for akvakulturdyr.

Norwegian Food Safety Authority.

McClellan, J. M., Schafer, R. W., Yoder, M. A. (2003). Signal Processing First, International 

Edition. Pearson Education International. Inc. NJ. USA. ISBN 0-13-120265-0.

Merkin, G. V., Roth, B., Gjerstad, C., Dahl-Paulsen, E., Nortvedt, R., (2010). Effect of pre-

slaughter procedures on stress responses and some quality parameters in sea-farmed rainbow 

trout (Oncorhynchus mykiss). Aquaculture, 309, 231-235.

Nadeem, M., Thorlin, T., Gandhi, O. P., Persson M., (2003). Computation of Electric and 

Magnetic Stimulation in Human Head Using the 3-D Impedance Method. Biomed. Eng., 

50(7), 900-907.

Nordgreen, A. H., Slinde, E., Møller, D., Roth, B., (2008). Effect of Various Electric Field 

Strengths and Current Durations on Stunning and Spinal Injuries of Atlantic Herring. Journal 

of Aquatic Animal Health, 20, 110–115.

Nordgreen, J. (2009). Nociception and pain in teleost fish. Thesis for the degree of 

Philosophiae Doctor (PhD). Norwegian School of Veterinarian Science, Department of Food 

Safety and Infection Biology Section of Pharamacology and Toxicology. Oslo, Norway.

Ohm, G. S., (1827). Die galvanische Kette, matematisch bearbeitet. T. H. Riemann. Berlin.

Ohm, O-J., Breivik, K., Hammer, E., (1982). Pulse Width Dependent Increase in the 

Pacemaker Automatic Interval. Pacing and Clinical Electrophysiology. 5(3), 329–340.

Olsen, H., (2006). Effekt av ulike bedøvelses- og slaktetemperaturregimer på korttidsstress og 

kvalitet hos oppdrettstorsk (Gadus morhua), vurdert ved kvalitetsindeksmetoden (QIM). 

[Eng.transl.: Effects from different anaesthetics and slaughtering temperature regimes on 

immediate stress responses and quality in farmed cod (Gadus morhua), evaluated by the 

Quality Index Method (QIM)], Master thesis, Dep. of Biology, UiB.

Peckham, P. H. (1981). Functional neuromuscular stimulation. Phys. Technol., 12, 114-121.



58

Pennes, H. H. (1948). Analysis of tissue and arterial blood temperatures in the resting human 

forearm. J. Appl. Physiol., 1, 93–122.

Piccolino, M. (1997). Luigi Galvani and animal electricity: two centuries after the foundation 

of electrophysiology. Trends in Neurosciences, 20(10), 443-448.

Rampil, I. J. (1998). A Primer for EEG Signal Processing in Anesthesia. Anesthesiology. 

American Society of Anesthesiologies, Inc., 89(4), 980-1002.

Raphan, T. and Cohen, B. (2002). The vestibulo-ocular reflex in three dimensions.

Experimental Brain Research, 145(1), 1-27.

Rattay, F. (1990). Electrical nerve stimulations, theory, experiments and applications.

Springer-Verlag. Wien, New York. ISBN-3-211-82247-X.

Rattay, F. and Aberham, M. (1993). Modeling Axon Membranes for Functional Electrical 

Stimulation. Biomed. Eng., 40(12), 1201-1209.

Retzius, G. (1892). Ueber den Typus der sympathtischen Ganglienzellen der hoheren 

Wirbelthiere. in:  Schäfer E. A. 1893 The nerve cell considered as the basis of nurology, 16(1-

2), 134-169.

Robb, D. H. F., Wotton, S. B., McKinstry, J. L., Sorensen, N. K., Kestin, S. C. (2000).

Commercial slaughter methods used on Atlantis salmon: determination of the onset of brain 

failure by electroencephalography. Vet. Rec., 147, 298-303.

Robb, D. H. F., Phillips, A. J., Kestin, S. C. (2003). Evaluation of methods for determining 

the prevalence of blood spots in smoked Atlantic salmon and the effect of exsanguination 

method on prevalence of blood spots. Aquaculture, 217, 125-138.

Robb, D. H. F., Roth, B. (2003). Brain activity of Atlantic salmon (Salmo salar) following 

electrical stunning using various field strengths and pulse durations. Aquaculture, 216, 363-

369.

Rose, J. D., Arlinghaus, R., Cooke, S. J., Diggles, B. K., Sawynok, W., Stevens, E. D., 

Wynne, C. D. L. (2014). Can fish really feel pain? Fish and Fisheries, 15(1), 97-133.



59

Roth, B. (2003). Electrical Stunning of Atlantic salmon (Salmo salar). Dr.scient. thesis, 

Department of Fisheries and Martine Biology, University of Bergen, Norway.

Roth, B., Slinde, E., Imsland, A., Moeller, D. (2003). Effect of electric field strength and 

current duration on stunning and injuries in market-sized Atlantic salmon held in seawater. N. 

Am. J. Aquacult., 65, 8-13.

Roth, B., Moeller, D., Slinde, E. (2004). Ability of electric field strength, frequency and 

current duration to stun farmed Atlantic salmon (Salmo salar) and pollock (Pollachius virens)

and relations to observed injuries using sinusoidal and squarewave AC. N. Am. J. Aquacult.,

65, 208-216.

Roth B, Slinde E, and Robb D. H. F. (2006) . Field evaluation of live chilling with CO2 on

stunning Atlantic salmon (Salmo salar) and the subsequent effect on quality. Aquaculture 

research, 37, 799-804.

Roth, B., Slinde, E., Robb, D. H. F. (2007). Percussive stunning of Atlantic salmon (Salmo 

salar) and the relation between force and stunning. Aquacultural Engineering, 36(2), 192–

197.

Roth, B., Nortvedt, R., Slinde, E., Foss A., Grimsbø, E., Stien, L. H. (2010). Electrical 

stimulation of Atlantic salmon muscle and the effect on flesh quality. Aquaculture, 301, 85-

90.

Roth, B., Grimsbø, E., Slinde E., Foss, A., Stien, L. H., Nortvedt, R., (2012). Crowding, 

pumping and stunning of Atlantic salmon, the subsequent effect on pH and rigor mortis. 

Aquaculture, 326-329, 178-180.

Roth, B. and Grimsbø, E. (2016). Electrical stunning of Edible crabs (Cancer pagurus) -

From single experiments to commercial practice. Animal Welfare. Acsepted article.

Rørvik, K-A., Skjervold P. O., Fjæra, S. O., Mørkøre, T., Steien, S. H. (2001). Body 

temperature and seawater adaptation in farmed Atlantic salmon and rainbow trout during 

prolonged chilling. Journal of Fish Biology, 59, 330-337.

Schoukens, J., Pintelon, R., Van Hamme, H.. (1991). The interpolated fast Fourier transform: 

A comparative study,” IEEE Trans. Instrum. Meas., 41, 226–232.



60

Schreck, C. B. (1982). Stress and rearing of salmonids. Aquaculture., 28(1-2), 241-249.

Schwan, H. P. (1963). Determination Of Biological Impedances. In: Physical Techniques in 

Biological Research (ed. by William L. Nastuk), Academic Press, New York and London.

(2005). Sequential 

Finite Element Model of Tissue Electropermeabilization. Biomed. Eng., 52(5), 816-827.

Selye, H. (1936). A syndrome produced by diverse nocuous agents, Nature., 138, 32.

Seoane, F., Lu, M., Persson, M., Lindecrantz, K. (2007). Electrical Bioimpedance Cerebral 

Monitoring. A Study of the Current Density Distribution and Impedance Sensitivity Maps on 

a 3D Realistic Head Model. Proceed. of the 3rd Int. IEEE EMBS Conf. on Neur. Eng., Kohala 

Coast, Hawaii.

Shrager, P. (1988). Ionic channels and signal conduction in single remyelinating frog nerve 

fibres. Journal of Phys., 404, 695-712.

Skjervold, P. O., Fjæra, S. O., Østby, P. B. (1999). Rigor in Atlantic salmon as affected by 

crowding stress prior to chilling before slaughter. Aquaculture, 175, 93–101.

Skjervold, P. O., Fjæra, S. O., Østby, P. B., Einen, O. (2001). Live-chilling and crowding 

stress before slaughter of Atlantic Salmon (Salmo salar). Aquaculture, 192, 265–280.

Skjervold, P. O., Fjæra, S. O., Snipen, L. (2002). Predicting live-chilling dynamics of Atlantic 

salmon (Salmo salar). Aquaculture, 209, 185–195.

Skuladottir, G. V., Schioth, H. B., Gudmundsdottir, E., Richards, B., Gardarsson, F., Jonsson,

L. (1990). Fatty-acid composition of muscle, heart and liver lipids in Atlantic salmon, Salmo 

salar, at extremely low environmental-temperature. Aquaculture, 85, 71–80.

Slinde, E., Grimsbø, E., Kristiansen T. S. (2013). Slakting av oppdrettsfisk: Svar på spørsmål

fra Mattilsynet knyttet til fikevelferd i slakteprosessen. Havforskningsinstituttet, Rapport 

nr.15-2013.

Solomonow, M. (1984a). External control of the neuromuscular system. IEEE-Trans. Biomed. 

Eng., 12(BME-31), 752-763.



61

Solomonow, M. (1984b). Restoration of movement by electrical stimulation. Orthopedics,

7(2), 245-250.

Stevens, E. D., Sutterlin, A. M. (1976). Heat transfer between fish and ambient water. J Exp 

Biol., 65, 131–145.

Tanck, M. W. T., Booms, G. H. R., Eding, E. H., Bonga, S. E. W., Komen, J. (2000). Cold 

shocks: a stressor for common carp. Journal of Fish Bio., 57, 881-894.

Thomson, W. (1855). On the Theory of the Electric Telegraph. Proceedings of the Royal 

Society of London, 7, 382-399.

Van De Vis, H., Kerstin, S., Robb, D., Oehlenschäger, J., Lambooij, E., Werner, M., 

Kuhlmann, H., Kloosterboer, K., Tejada, M., Huidobro, A., Otterå, H., Roth, B., Sørensen, N. 

K., Akse, L., Byrne, H., Nesvadba, P. (2003). Is humane slaughter of fish possible for 

industry? Aquaculture Research, 34, 211-220

Weiner, R. D. (1984). Does electroconvulsive therapy cause brain damage? Behavioral and 

Brain Sciences, 7(01), 1-22.

Zahl, I. H. (2011). Anaesthesia of farmed fish with special emphasis on Atlantic cod (Gadus 

morhua) and Atlantic halibut (Hippoglossus hippoglossus). Dissertation for the degree of 

Philosophiae Doctor (PhD). University of Bergen. 

Zhang, F. S., Geng, Z. X., Yuan, W. (2001). The algorithm of interpolating windowed FFT 

for harmonic analysis of power system,” IEEE Trans. Power Del., 16(2), 160–164.

Zigmond, M. J. (1999). Otto Loewi and the demonstration of chemical neurotransmission. 

Brain Research Bulletin, 50(5/6), 347–348.



62

6. Papers I - IV



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




