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ABSTRACT

Investigations were carried out to clarify the timing of hatch-check formation, and the

influence of maternal (egg size and composition), paternal (genetic), and temperature

(environmental) factors on otolith size of young herring larvae.

Three male and three female herring of the Norwegian spring spawning herring stock were

used as parental fish in a 3x3 factorial design, resulting in 9 parental combinations. Eggs from

each of the combinations were incubated at 4, 8, and 12 °C. Larvae were sampled at two

ontogenetic stages; as newly hatched and at the end of the yolk sac (EYS) stage. One group

was also reared with wild zooplankton, and sampled during three weeks after hatching, to

compare back-calculated hatch-check size with observed otolith size of unfed larvae.

The hatch-check was deposited 1 - 2 days after hatching and before onset of exogenous

feeding at 12 °C. Significant maternal and temperature effects were observed on the size of

sagitta and lapillus at hatching, with smaller otoliths at higher temperatures. Larval length had

a similar temperature response as the otoliths while larval dry weight followed an opposite

trend. Otolith and somatic size were poorly correlated, and a large variability in the otolith data

was evident. Temperature differences on the the measured variables were also evident at the

EYS stage while the maternal influence was fainter than at hatching. No sagitta growth

between hatching and the EYS stage was observed at 4 °C although larval standard length

increased.
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INTRODUCTION

There are several large herring stocks that are considered as self containing in the North East

Atlantic. The Norwegian spring spawning herring (NSSH) stock is the largest with a spawning

stock biomass of 5 million metric tons and a total catch of about 1.4 million metric tons in

1996 (Anon 1996). Other stocks such as the Icelandic spring spawning herring, North Sea

autumn spawning herring (NSASH), and several stocks of both autumn and spring spawners in

the Baltic Sea are also of major economical importance (Dragesund et al. 1980, Hulme 1995).

Most of the herring stocks are characterized by long migrations between the spawning, feeding

and wintering areas, and some of the stocks are known to intermingle in some parts of the

year. NSSH and Icelandic spring spawners use the same feeding areas in the Norwegian Sea

(Dragesund et al. 1980), and NSASH and spring spawning herring from the western Baltic Sea

utilize the same feeding area in Skagerrak - Kattegat (Moksness and Fossum 1991). Larvae

from different stocks also co-occur in the same nursery areas. Larvae from both NSSH and

NSASH stocks are found in the same areas along the western coast of Norway (Moksness and

Fossum 1991, Fossum and Moksness 1993).

From the management point of view, it is important to be able to distinguish components of

different stocks when they are utilizing the same areas. Adult herrings of different stocks have

traditionally been separated by mean vertebrae counts and length frequency distribution

(Parsons 1972, Blaxter 1985), but the discrimination power is rather low (Johannessen and

Jørgensen 1991). The gonadosomatic index model has the potential of distinguishing spring

and autumn spawners by maturity stages (McQuinn 1989). Other promising methods for

management involve the use of fish otoliths and scales (Secor et al. 1995).

Teleost fishes have three pairs of otoliths; sagitta, lapillus and asteriscus. Otoliths are

crystalline structures composed of calcium carbonate contained in the endolymphatic sac in the

inner ear of fish. Their primary function is sound transduction (Gauldie 1988). The most

common use of otoliths in management have been to age the fish by counting annulus rings,

but they have also been used to determine nursery areas for young NSASH by measuring

annulus increment width (Parrish and Sharman 1959). The scales of the fish have been used for

the same purpose as the otoliths. Hjort (1914) documented variability in year-class strength of

NSSH by annual rings in scales. Young NSSH with the Barents Sea or the Norwegian coast as
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nursery areas, have been discriminated by the width of the third annulus ring in their scales (de

Barros and Holst 1995).

Larvae and early juvenile fish have until recently been hard to separate into respective stocks

due to lack of proper tools. The discovery of approximately daily primary increments

formations in the otoliths opened for new possibilities (Panella 1971). Larvae and juvenile fish

could now be aged at accuracies in terms of days. Studies by artificial rearing of herring and

other fish larvae have confirmed that rings are formed on a daily basis under normal conditions

(Moksness and Wespestad 1989, Moksness 1992a and 1992b, Hayashi and Kawaguchi 1994,

Ahrenholz et al. 1995), and that increment widths (the distance from one ring to another)

reflects to some degree the growth pattern of the fish (Geffen 1982, Moksness and Wespestad

1989, Moksness 1992a, Moksness et al. 1995).

Three types of microstructural rings can be seen in herring otoliths; yolk sac rings, hatch-

check, and normal rings (Geffen 1982). Yolk sac rings can be present before first feeding, but

they are irregular and difficult to interpret. The first dark, distinct ring is called the hatch-check

and is easily distinguished from others. The timing of the hatch-check formation varies among

species. Ring formation is reported to occur at hatching for largemouth bass (Micropterus

salmoides) and walleye pollock (Theragra chalcogramma) (Miller and Storck 1982,

Nishimura and Yamada 1984, Bailey and Stehr 1988). Other species such as Atlantic

menhaden (Brevoortia tyrannus) and herring does not deposit their first ring before they start

feeding on exogenous food (Lough et al. 1982, Geffen 1982, Maillet and Checkley 1989,

McGurk 1984a, Moksness and Wespestad 1989). However, the first dark, distinct ring is

usually called the hatch-check even though its time of deposition does not necessarily occur at

hatching, and that terminology will be used in this thesis further on. Normal rings are deposited

after the hatch-check, usually on a daily basis (Moksness 1992b).

Previous studies have shown the possibilities of obtaining otolith microstructure information

from adult herring by physical grinding of the otoliths (Zhang et al. 1991, Zhang and Moksness

1993). It is therefore possible to utilize information deposited during the larval stage in otoliths

of adult fish, which might tell us something about their nursery areas.

The size of the hatch check has shown some potential as a tool in fishery management.

Stenevik (1995) has shown that herring larvae of the NSSH stock originating from northern
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spawning grounds had significantly larger hatch-checks than larvae originating from southern

areas, and he suggested that lower incubation temperature caused the larger hatch-check.

Moksness and Fossum (1991) also found that larvae of the NSSH stock had significantly larger

hatch-check than larvae of the NSASH stock. Otolith microstructures are thus suggested to

estimate the origin of larvae and juvenile fish in time and space more accurately than otolith

macrostructures can.

Variations in early life history traits (ELHT) occur at three different levels of organisation

(Miller et al. 1995). First they can vary among populations within species. NSSH have larger

eggs and produce larger offspring than NSASH (Blaxter and Hempel 1963, Blaxter 1985).

There are also variations among individual offspring within a population. Significant maternal

effects within populations on ELHT are reported in capelin (Mallotus villosus), winter

flounder (Pseudopleuronectes americanus) and cod (Gadus morhua) (Chambers et al. 1989,

Buckley et al. 1991, Kjesbu et al. 1991). ELHT also varies between offspring from the same

female over a lifetime and seasonally in batch spawners (Kjesbu 1989, Hinckley 1990,

Solemdal et al. 1992, Miller et al. 1995). The spawning stock of the NSSH is composed of fish

4 - 20 years old (Dragesund et al. 1980), and egg size is known to vary with female size

(Blaxter and Hempel 1963, Kingston 1982). Variations in some of the ELHT are therefore

expected among offspring from different parents, but how these differences will influence on

the otolith size is unknown.

No experiments have so far been conducted to test what factors might influence otolith size at

hatching and hatch-check formation. Temperature is known to influence larval size at hatching

in herring through a general inverse relationship between larval length and incubation

temperature (Blaxter and Hempel 1963, Herra 1986). The direct influence of incubation

temperature on otolith sizes at hatching is, however, not known.

To utilize a technique distinguishing different fish stocks on the basis of hatch-check size,

potential factors that might influence otolith size at hatching have to be investigated. The

effects of three factors that potentially could affect otolith size were therefore examined in this

study; environmental, genetic and qualitative and quantitative aspects of individual eggs. The

environmental factor tested was temperature which is known to vary between stock and

population spawning grounds, and has influence in a wide range of biological processes

(Blaxter and Hempel 1963, Blaxter 1985 and 1992, Stenevik et al. 1996). Genetic influence
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was tested using three males with different size as paternal fish since genetic variations may

produce variations in ELHT. The influence of egg size and chemical composition was tested

using three females of different size as maternal fish since female size varies among and within

populations, and is known to influence egg size and other ELHT (Blaxter and Hempel 1963,

Blaxter 1985, Slotte 1993).

Herring eggs from known parents were incubated under different temperatures (4, 8 and 12

°C), and otolith size (lapillus and sagitta) together with larval standard length and larval dry

weight was measured at hatching and when the yolk was depleted. Only the sizes of the

sagittae and the lapilli were measured since the asterisci are not present at hatching.

The aims of the thesis can then be expressed by the following three hypotheses:

H0 a: Incubation temperature has no effect on otolith size at hatching

H1 a: Incubation temperature has effect on otolith size at hatching

H0 b: There is no paternal effect on otolith size at hatching

H1 b: There is a paternal effect on otolith size at hatching

H0 c: There is no maternal effect on otolith size at hatching

H1 c: There is a maternal effect on otolith size at hatching

Further objectives were to examine the parental and temperature effects on egg size, larval

standard length and dry weight at hatching, together with maternal and temperature influence

on ELHT when the yolk was depleted. It was also an aim to establish the timing of the hatch-

check formation.
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1.  MATERIAL AND METHODS

1.1  Biological material and experimental design

Ripe herring (Clupea harengus L.) of the Norwegian spring spawning herring stock were

brood fish in this experiment. The herring were caught by trawl west of Karmøy (59° 13′ 46″

N. 5° 8′ E.) 31/03/1995 by R/V Håkon Mosby. About one hundred of the fish were

transported alive in a 1 m³ waterfilled tank to Bergen High Technology Centre where the

experiments were carried out. One large, one medium and one small sized herring of each sex

were picked out and used as parental fish in a 3x3-factorial design (table 2.1), resulting in 9

different parental combinations (figure 2.1). Fertilized eggs from each of these combinations

were incubated at 4, 8 and 12 °C.

Table 2.1. Data of parental fish used in the experiment.
Fish Total length (cm) Weight (g) Number of vertebrae Age (year)

Female 1 38 460 58 12
Female 2 35.5 352 57 12
Female 3 32 230 58 6
Male 1 35.5 438 57 12
Male 2 35 342 58 12
Male 3 30 194 56 6

All measurements of the parental fish were done as described in Anon (1995). Weight was

measured after stripping when the gonads were empty in the males and about half empty in the

females. Total length was measured to the nearest 0.5 cm. The fish were aged by counting

annulus otolith rings.

Eggs from each female were stripped onto three plastic sheets to which they adhered in each of

three separate waterfilled trays, one for each male, by applying gentle pressure on the abdomen

and thereby forcing eggs through the genital opening. Sperm from the males were squeezed

into three different Erlenmeyer glasses and diluted with seawater before adding it to the

respective trays. The water was gently stirred to secure proper mixing of sperm. The plastic-

sheets were cleaned for surplus sperm in running seawater ten minutes later. One plastic sheet

from each tray was then transferred to each of the three different temperature rooms for

incubation.
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Female 1

Female 2

Female 3

Male 1 Male 2 Male 3

Combination 1 Combination 2 Combination 3

Combination 4

Combination 7

Combination 5 Combination 6

Combination 8 Combination 9

Figure 2.1. Parental combinations used in the experiment.

1.2  Rearing conditions

The sheets were placed on the bottom of the incubation tanks which were 215x40 cm and had

a depth of 10 cm. The sheets were kept stable on the bottom by placing small stones on the

corners. A blue lid of 3 mm plexi-glass was placed over the tanks (figure 2.2). Seawater was

pumped from 90 meter depth and was adjusted to a flow of 2.5 litre per min. It was filtrated

through a 5 µm cartridge filter. The seawater temperature was adjusted by mixing cold and

heated water in a 0.5 m³ header-tank just above the incubation tank. The water was aerated to

avoid gas supersaturation (Colt 1986).

Two days after fertilisation, 30 eggs from each parental combination in the 12 °C room were

cut out separately from the plastic sheets using a small scissor. Grey eggs with no sign of cell

division were classified as unfertilized and removed when detected. The small pieces of plastic

sheet with individual eggs were then randomly placed in the Nunc-plates containing 24 wells.

The remaining eggs on the plastic-sheets were returned to the incubation tank. The same was

done with eggs from the 8 and 4 °C groups on day 3 and 4 after fertilization respectively.

Each well in the Nunc-plates had a depth of 20 mm, and was 10 mm in diameter (figure 2.2). A

lid was placed over each Nunc-plate, and a 3 mm hole in the lid provided water exchange

which was improved by manually flushing water with a hose over each Nunc plate each

morning and evening during the incubation period. A 330 µm plankton mesh was placed
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between the wells and the lid a few days before hatching was expected in order to prevent the

larvae from escaping. Due to many escaping larvae in the 12 °C group were two layers of

plankton mesh placed between the lid and the wells in the remaining groups. A small stone was

placed on top of each lid to prevent the Nunc-plates from floating.

The Nunc-plates were examined for hatching larvae three times every day (morning, midday

and evening). When eggs became yellow they were classified as dead and removed. The newly

hatched larvae were immediately removed from the wells and fixed individually in 96 %

ethanol in 5 ml plastic-tubes.

The remaining eggs on the plastic-sheets were transferred to 5 litres buckets the day before

hatching was expected to occur. Some of the larvae were transferred to 1 litres jars, and placed

in water bath in the incubation tank. They were not fed. About twenty larvae of combinations 1

and 4 in all three temperature groups in addition to combination 7 in the 4 °C group were

sampled 5, 8, and 15 days after hatching in the 12, 8, and 4 °C temperature groups,

respectively, when 50 % of the larvae were expected to have absorbed  their yolk sac (Blaxter

1956). These larvae are called end of yolk sac (EYS) stage larvae, and represents all three

females and male number 1 (figure 2.1).

Additional 20 larvae incubated in the 12 °C room were reared at 11.4 ± 0.5 °C (± one standard

deviation, Sd) in 500 l green tanks and used as reference material of fed larvae. They were

offered wild-caught zooplankton of 80 - 250 µm size at densities of 2000 ± 555 l-1 and were

sampled five by five at four different ages; 16, 17, 19 and 21 days old. All the fed larvae were

first preserved in liquid nitrogen before they were stored in a freezer at -80 °C until further

analysis. The larvae sampled 17 and 19 days old were transferred to smaller enclosures in the

same tank 5 and 3 days before sampling, respectively. The enclosures were 30x30x45 cm,

made of 65 µm plankton mesh, and had the same plankton densities as the 500 l tank. This was

in co-operation with the experiments of Suneetha Kristogu Baduge´s M. phil. thesis. For

further details see Baduge (1996).
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Figure 2.2. Schematic drawing of an incubation tank, a Nunc-plate and a well with egg. There was also an air-
hose in the header tank used for aeration of the water (not shown here).
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1.3  Abiotic data

Temperature was measured daily (figure 2.3), salinity once a week, and light intensity at the

bottom of the hatch-tank only once, 20 April on mid day since the light bulbs delivered

maximum light intensity then (table 2.2). Oxygen concentration in the sea water was 100 %

saturated due to aeration in the header tank. Apparatus used was WTW Microprocessor

Oxiometer 196 and 921 for temperature measurements, and WTW Microprocessor

Conductivity Meter LF 196 to measure salinity.

The light was automatically regulated to normal light regime for Bergen by a computer

program, Lysstyr 2.00.

Table 2.2. Abiotic data in each temperature group. Values are given as means ± one Sd.
Temperature groups Temperature (°C) Salinity concentration (‰) Light intensity

(µmol m-2 s-1)
4 °C 4.0 ± 0.2 33.4 ±0.1 204.8
8 °C 8.1 ± 0.2 33.4 ±0.1 210.6
12 °C 12.0 ± 0.6 33.4 ±0.1 205.0

There were fairly constant water temperatures except for one 2 °C drop (of unknown reason)

during one day in the 12 °C room (figure 2.3).

Days after fertilization

T
em
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C

)

2

4

6

8

10

12

14

5 10 15 20 25 30 35 40 45 50

Figure 2.3. Water temperature during incubation in the three different temperature groups.
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1.4  Biological measurements

The fertilization success was calculated in each temperature group by cutting a piece of a

plastic sheet and counting numbers of fertilized and unfertilized eggs. A total of 76, 122 and 60

eggs was counted in the 12, 8 and 4 °C groups respectively.

The diameter of 30 eggs from each combination was measured to the nearest 0.02 mm on day

4 and 5 after fertilization inside the respective wells using a dissecting microscope with 60 x

magnification. All the newly hatched and fed larvae were standard length measured to the

nearest 0.04 mm twice; alive just before preservation, and once again prior to otolith removal

several months later (figure 2.4). Live standard length was used on all tests if not otherwise

stated. The EYS stage larvae were only standard length measured after preservation. All length

measurements were conducted by a dissecting microscope type Wild Heerbrugg NFH A 055 at

12 x magnification. One of the newly hatched larvae in the 8 °C group was not standard length

recorded due to an accident during measurement.

                             
Standard length

Figure 2.4. Standard length of a larva, measured from the tip of the snout to the end of the notochord. From
Doyle (1977).

The larval dry weight was recorded to the nearest µg after otolith removal on a Sartorius

Micro M3P. Prior to weighing, the larvae were placed on a Teflon plate and kept in a

warming-cabinet at 60 °C for at least 24 hours. Twelve of the newly hatched larvae in the 12

°C group and two in the 8 °C group were not weighed due to an accident during measurement.

All EYS stage and fed larvae were classified into developmental stages according to Doyle

(1977) and Øiestad (1983). This was not done with the newly hatched larvae in the beginning

since it was assumed that they were all in the 1a stage, but after dissecting otoliths from 53 out

of 181 larvae in the 4 °C group it was discovered that some of them were in the 1b stage. The

number of 1a and 1b larvae in the 4 °C group of the newly hatched larvae does therefore not

include all larvae, but only a subtotal. The numbers of 1b larvae in the 8 and 12 °C groups are

exact numbers as they were all classified.
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1.4.1  Otolith measurements

The otoliths of the newly hatched larvae were dissected out during autumn 1995, and the

otoliths of 20 EYS larvae of combinations 1 and 4 in all three temperature groups, in addition

to combination 7 in the 4 °C room, were dissected out during spring 1996. Four otoliths from

each larva were used, left and right lapilli and sagittae. The two otolith pairs were of similar

size, and were separated by their position, sagittae lying posterior to lapilli (figure 2.5). They

were dissected out using wolfram-needles and a dissecting microscope with 60 x magnification

and a polarizing filter which causes the otoliths to become birefringent (Secor et al. 1992). The

otoliths from each fish were mounted on separate glass slides using clear nail varnish, and left

and right otoliths were positioned separately for later analysis.

               
Figure 2.5. Dorsal view of the vestibular apparatus in a typical teleost. Top of the head is cut away. (From Secor
et al. 1992).

Analysis of the otoliths was carried out during autumn 1995 and winter 1996. A Macintosh-

based program (Oto, version 1.0) developed by Andersen and Moksness (1988) was used to

measure the diameter of the otoliths. In addition to the Macintosh computer with Oto. 1.0

installed, the following equipment was also used (figure 2.6);

-Hamatsu CCD videocamera



16

-Nikon microscope labophot. 2 with 100 x immersion lens and a 5 x inter lens

-Video co-ordinate digitizer HEinc. model 582 A

-Sony triniton colour-screen monitor

Microscope

Camera

Digitizer

Computer Monitor

Figure 2.6. Equipment used in the otolith analysis.

The analyses were carried out with 100 x object magnification on the microscope and 10 x

magnification on the oculars. A marker was placed on the outer edge of the otoliths where its

boundary towards the lighter background easily could be seen, and the largest diameter was

measured by moving the marker across the screen to the opposite edge of the otoliths. The

hatch-check was also measured on the sagitta of the fed larvae. The equipment was calibrated

once a week towards a micrometer in order to achieve the highest precision possible.

All otoliths were classified into five groups and coded one to five;

1: The otolith has one core and is circular.

2: The otolith has one core and is oblong.

3: The otolith has two cores and is oblong.

4: The otolith was destroyed during dissection or mounting.

5: The otolith is made up of two small, disparate primordial granules.

Only those coded 1 were included in the further analysis. Mean otolith diameter of a pair was

calculated and used on all analysis if not otherwise stated. If only one otolith of a pair had code

1, that value was used as mean. If none of a pair of otoliths had code 1 they were excluded

from the further analysis. Both otoliths of 29 sagitta pair and 16 lapillus pair of all 553 larvae

had codes > 1 (appendix table 4).

The otoliths of the newly hatched larvae of combinations 1 and 4 in the 4 °C group were

measured once more during autumn 1996 to calculate variance between two measurements. To

achieve a balanced design only larvae where all four otoliths were coded 1 in both

measurements were included, resulting in 8 larvae from each combination.
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1.4.2  Somatic growth rates

Growth rates of the otoliths and larval length were calculated by the formula

2 1

2 1

s s
t t

−
−

 where 2 1s s−  is the increase in size during the time interval 2 1t t− .

1.5  Statistical methods

Normality of the measured variables was tested by normal probability plot. The data points will

then fall on a straight line if they are normally distributed. The homogeneity of variance was

tested using the Levene´s F test (Brown and Forsythe 1974). Regular ANOVA was still used in

case of significant Levene´s F test if the ratio of largest and smallest variance was less than 10

(Hartley F-max test, Sokal and Rohlf 1995) as recommended by Høisæter (1994), and

nonparametric tests were conducted when the ratio exceeded 10.

Three-way ANOVA, model 1 fixed effects (Zar 1984, Sokal and Rohlf 1995), was applied to

test temperature, maternal and paternal effects on the newly hatched larvae. Two-way

ANOVA, model 1 fixed effects (Zar 1984, Sokal and Rohlf 1995), was used to test the

following: maternal and paternal effects, and maternal and stage effects in the 4 °C group of

the newly hatched larvae, maternal and incubation time effects in all temperature groups of the

newly hatched larvae, maternal and temperature effects of the EYS stage larvae, maternal and

stage effects in the 12 °C group of the EYS stage larvae, and temperature and stage effects

between newly hatched larvae and EYS stage larvae. One-way ANOVA was used to test

maternal effects of the EYS stage larvae in the 4 °C group and to test differences between

hatch-check size and sagitta size at hatching and at the EYS stage on larvae reared at 12 °C. If

one factor of an ANOVA test was non-significant a new ANOVA was performed with that

factor excluded. A nested four-way ANOVA (Sokal and Rohlf 1995) was applied to test the

variance component between mothers, larvae, left and right otolith, and repeated

measurements in the 4 °C group. Student-Newman-Keuls multiple comparisons tests (Zar

1984) were used to determine differences among experimental groups if the ANOVA was

significant. It was also used to calculate estimated mean values of groups within factors of the

ANOVAs.

Due to non-homogenous variance between groups, Mann Whitney U-test (Sokal and Rohlf

1995) was used to test the following factors on larvae standard length: incubation time effect
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on newly hatched larvae in the 8 °C group, temperature effect on the EYS stage larvae and

stage effect on the EYS stage larvae. The p-values were corrected by Bonferronis method by

αadjusted = α/p, where α and αadjusted are significance levels before and after correction

respectively, and p is the number of groups tested against each other (Sokal and Rohlf 1995).

Maternal effect was not tested by Mann Whitney U-tests since it only can test one factor by

time, and the maternal factor was tested previously by ANOVA (ANOVAs advantage is to test

several factors simultaneously and thereby be able to distinguish the different factors relatively

influence).

A t-test for paired comparisons (Sokal and Rohlf 1995) was applied to test differences in larval

standard length of newly hatched larvae measured alive and after being preserved in 96 %

ethanol, and a t-test (unpaired) was used to test differences in size of sagitta and lapillus

diameter at hatching within each temperature group.

Distribution of larval developmental stages both at hatching and at the EYS stage was tested

by Pearsons chi-square test (Sokal and Rohlf 1995).

Principal component analysis (PCA) was applied to present the variance among the different

variables in the data set. PCA extracts the total variance and presents the major and second

major variance component along the x and y axis in form of percentage of total variance. The

different variables were then plotted in a two dimensional plane according to their correlation

with the two major variance components.

A significance level of 0.05 was used in all tests. All statistical tests were performed by using

Statistica 5.0 for Windows.

Descriptive statistics of the ELHT at hatching, at the EYS stage and of the fed larvae are given

in appendix tables 1 - 3, and otolith codes are given in appendix 4. Correlation matrices of the

measured variables are given in appendix tables 5 - 6.
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Additional informations of the following statistical tests can be found in the appendices;

T-test; appendix table 7

Pearsons chi-square tests; appendix table 8

ANOVAs and Mann Whitney U-tests; appendix tables 9 - 23

PCA plots; appendix tables 24 - 26
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2.  RESULTS

2.1  Incubation

The fertilization percentage was high in all three temperature groups, 95%, 96%, and 96% in

the 4, 8, and 12 °C groups respectively.

Almost all embryos originating from mother 3 (combination 7, 8 and 9) died before hatching in

the 12 and 8 °C groups (table 3.1), resulting in only six combinations in those temperature

groups. All tests and figures therefore consist of combinations 1-6 in all temperature groups if

not stated otherwise. Three-way ANOVA was performed as a 3x3x2 design with three

temperatures, three fathers, and two mothers.

All larvae except three hatched during the night between 2000 and 0700. Main hatching in the

Nunc-plates in the three different groups occurred at 11 April, 17 April and 5 May (figure 3.1).

The remaining eggs on the plastic-sheets had main hatching dates somewhat earlier; 10 and 15

April in the 12 and 8 °C groups respectively, and 30 April - 2 May in the 4 °C group.
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Figure 3.1. Hatching frequencies in each of the three temperature groups. Main hatching date in each group
and date of fertilization are given.
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The considerable egg mortality in addition to many larvae that managed to escape from the

wells, resulted in varying numbers of larvae left for analysis (table 3.1). All dead eggs became

yellow, probably due to fungus infection. The hatching percent of fertilized eggs in the Nunc-

plates was 81.1 %, 63.3 % and 58.6 % in the 4, 8 and 12 °C groups respectively.

Table 3.1. Events of eggs and larvae. Larvae were rejected for several reasons; 6 died before sampling, 12 were
crippled (they could not straighten their bodies), 4 were possibly exchanged with others, and 2 were
physiologically damaged. The main source of lost larvae were larvae escaping from the wells right after
hatching. Seven larvae were lost after sampling, and one egg was lost during rearing. Two eggs from each
combination in the 12 °C group were lost due to a Nunc-plate beeing overturned.

Temperature
group

Parental
combination

Dead eggs Unfertilized
eggs

Rejected
larvae

Lost larvae
and eggs

Larvae
left

Sum

4 1 7 0 0 5 18 30
4 2 3 0 0 3 24 30
4 3 5 0 1 4 19 30
4 4 2 0 0 4 24 30
4 5 2 0 0 5 23 30
4 6 3 0 2 1 24 30
4 7 9 0 2 3 17 30
4 8 14 0 4 2 10 30
4 9 5 0 1 2 22 30

8 1 2 1 1 4 22 30
8 2 6 2 0 4 18 30
8 3 2 0 0 4 24 30
8 4 1 1 2 8 18 30
8 5 1 0 1 4 24 30
8 6 2 0 3 6 19 30
8 7 29 1 0 0 0 30
8 8 27 0 3 0 0 30
8 9 27 1 0 0 2* 30

12 1 6 0 2 8 14 30
12 2 3 0 1 12 14 30
12 3 10 0 0 10 10 30
12 4 0 1 1 10 18 30
12 5 2 0 0 13 15 30
12 6 0 1 0 12 17 30
12 7 28 0 0 2 0 30
12 8 26 0 0 2 2* 30
12 9 28 0 0 2 0 30

Sum 250 8 24 130 398 810

* Not included in further analyses.
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2.2  Newly hatched larvae

All larvae in the 12 and 8 °C groups hatched as developmental stage 1a larvae, but 72 %

hatched as stage 1b larvae in the 4 °C group (figure 3.2). Exact numbers of the two stages can

not be obtained since the 53 first larvae examined were not classified in stages. A maternal

effect of developmental status can be seen when all three mothers in the 4 °C group are

compared. There were more larvae of stage 1b originating from mother 2 than originating from

the other females (Pearsons chi-square test, p<0.001).
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Figure 3.2. Stages at hatching in a; all temperature groups, and b; the 4 °C group. Only 128 of 181 larvae in
the 4 °C group were classified in stages.

The newly hatched larvae were longer after being preserved in 96 % ethanol for several months

than they were alive. This was observed in all three temperature groups (table 3.2, figure 3.3).

The largest difference between the two measurements was found in the 4 °C group with a

mean difference of 0.8 mm.

Table 3.2. Results of pairwise t-test of larval standard length alive and after preservation.

Mean length
alive (mm)

sd Mean length
preserved (mm)

sd Difference
(mm)

n P-value

4 °C group 9.90 0.41 10.70 0.52 0.80 181 <0.001
8 °C group 9.48 0.47 10.01 0.53 0.54 124* <0.001
12 °C group 8.64 0.54 9.07 0.68 0.42 88 <0.001

* One larva data excluded due to handling damage.
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Standard length alive (mm)
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Figure 3.3. Standard length of newly hatched larvae alive and after preservation in the three different
temperatures groups. Note that the equation in the 12 °C group with case a excluded (which is lying over 5
standard deviations below mean values of standard length both alive and preserved) is; y = 0.63 + 0.98x, and
the equation in the 8 °C group with case b excluded (which is lying over 5 standard residuals below the
predicted value) is; y = 1.62 + 0.89x.

2.2.1  Temperature and parental effects

All measured early life history traits (ELHT) were significantly influenced by temperature and

maternal effects (ANOVA p < 0.001 and p < 0.05 respectively), but not by paternal effect

(ANOVA p>0.1). There were no interactions between the variables (ANOVA p>0.05).

Sagitta and lapillus diameter responded in the same manner to temperature effect. Both were

largest in the 4 °C group, and decreased with increasing incubation temperature (figure 3.4).

Lapillus was larger than sagitta in the 4 °C group (t-test, p<0.001), while the opposite was the

case in the 12 °C group (t-test, p=0.014). There was no significant difference in the 8 °C group

(figure 3.4, appendix table 7).

Larval length at hatching responded in a similar way as the otoliths to rearing temperature by

decreasing length with increasing incubation temperature (figure 3.4). The diameters of the

eggs followed the same trend, but with no difference in the two highest temperature groups

(ANOVA p=0.834). Larval dry weight, on the other hand, was larger in the two highest

temperature groups than in the 4 °C group (figure 3.4, appendix table 9).
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Figure 3.4. Temperature effect on newly hatched larvae on a; sagitta and lapillus diameter, b; live standard
length, c; dry weight, and d; egg diameter. Means and 95% confidence-intervals are given.

The sagitta and lapillus diameters, the egg diameters, and larval dry weight responded in the

same way to maternal effect. They were significantly larger in the combinations including

mother number 1 than in those including number 2 (ANOVA, p<0.05). The opposite pattern

was seen with larval standard length where offspring from mother 2 were longer than offspring

from mother 1 (ANOVA p<0.001, appendix table 9).

Test of parental factors within the 4 °C group was conducted to see the effect of mother

number 3 compared to mother 1 and 2. There were no significant paternal effects on any of the

variables (ANOVA, p>0.1), and no maternal effects on lapillus diameter (ANOVA, p>0.1,

table 3.3). Sagitta diameter was largest in the combinations including mother number 1, and

smallest in those including mother 3 (ANOVA, p<0.05). However, this trend could not be seen

in the other variables (table 3.3). There was no differences in standard length between offspring

from mother 1 and 3 (ANOVA, p=0.972), but these were significantly smaller than offspring

from mother 2. Larval dry weight was different for all the three mothers with offspring from
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mother 1 as the largest and offspring from mother 2 as the smallest. The egg diameters from

mother 1 and 2 were not different (ANOVA, p=0.756), but they were larger than those of

mother 3 (ANOVA, p<0.05, appendix figure 1).

Table 3.3. Results of one-way ANOVA for the newly hatched larvae within the 4 °C group. Estimated mean
values are given. Mean values with different letters at the same variable are significantly different, and a is
associated with the highest value. There were no significant paternal effects.

Variables Mother 1 Mother 2 Mother 3
Lapillus diameter (µm) 27.48 a 27.39 a 27.09 a
Sagitta diameter (µm) 26.60 a 25.94 b 25.33 c
Standard length (mm) 9.80 b 10.06 a 9.80 b
Dry weight (mg) 0.163 a 0.127 c 0.156 b
Egg diameter (mm) 1.653 a 1.648 a 1.607 b

2.2.2  Stage and incubation time effects

Two-way ANOVA with mother and stage (1a and 1b) as factors was performed on the data of

the 4 °C group to see if the maternal differences found were influenced by differences in

developmetal stages between offspring from different mothers. Offspring of mother 2 were

excluded in the analysis due to very few 1a larvae, which would have caused a highly

unbalanced design if included (figure 3.2). Larval developmental stages had impact on larval

dry weight only where larvae of stage 1a were heavier than larvae of stage 1b (ANOVA,

p<0.01). The other variables were not significantly affected by stage (ANOVA p>0.2, table

3.4), but the sagitta diameter was nearly significantly different (ANOVA, p=0.089). The

maternal effect on the ELHT is not comparable with the results of table 3.3 since 53 of the

larvae were not classified in stages and were thereby excluded from analysis.

Table 3.4. Two-way ANOVA in the 4 °C group of the newly hatched larvae, including mother 1 and 3.
Estimated mean values are given. Mean values with different letters at the same variable are significantly
different, and a is associated with the highest value.

Variables Mother Stage
1 3 1 a 1 b

Lapillus diameter (µm) 27.36 a 27.18 a 26.98 a 27.56 a
Sagitta diameter (µm) 26.62 a 25.49 b 25.67 a 26.33 a
Standard length (mm) 9.76 a 9.69 a 9.67 a 9.78 a
Dry weight (mg) 0.164 a 0.156 b 0.162 a 0.157 b

Two-way ANOVA with mothers and incubation times as factors was performed within each

temperature group to test if the ELHT were influenced by incubation time. The effects of
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incubation time were not the same in all temperature groups (table 3.5). Lapillus diameter and

larval length were somewhat influenced by incubation time (ANOVA, p=0.089 and 0.065

respectively) in the 4 °C group, while sagitta diameter was not affected (ANOVA, p>0.15).

Larval standard length had larger values at longer incubation times in the 8 and 12 °C groups,

while larval dry weight was not influenced in any temperature group (ANOVA, p<0.05, table

3.5). Lapillus diameter was only affected by a maternal factor in the two highest temperature

groups (ANOVA, p<0.05). The sagitta diameter was influenced by a maternal factor

(ANOVA, p<0.05) but not by incubation time (ANOVA, p>0.05) in the 4 °C group, and

influenced by incubation time (ANOVA, p<0.05) but not by a maternal factor (ANOVA,

p>0.05) in the 12 °C group.

Table 3.5. Results of two-way ANOVA for newly hatched larvae in the respective temperature groups.
Estimated mean values are given. Mean values with different letters at the same variable are significantly
different, and a is associated with the highest value.

4 °C group Incubation time (days) Mother
Variables 34 35 36 1 2 3
Lapillus diameter (µm) 27.60 a 27.48 a 26.97 a 27.38 a 27.53 a 27.13 a
Sagitta diameter (µm) 26.32 a 25.86 a 25.70 a 26.59 a 25.94 b 25.33 c
Standard length (mm) 9.84 a 9.87 a 10.00 a 9.80 b 10.06 a 9.98 b
Dry weight (mg) 0.150 a 0.147 a 0.149 a 0.163 a 0.127 c 0.156 b

8 °C group Incubation time (days) Mother
Variables 16 17 18 1 2
Lapillus diameter (µm) 25.42 a 25.63 a 25.65 a 25.88 a 25.33 b
Sagitta diameter (µm) 25.50 a 25.83 a 26.01 a 25.93 a 25.25 a
Standard length (mm)* 8.87 c 9.48 b 9.91 a
Dry weight (mg) 0.157 a 0.153 a 0.152 a 0.174 a 0.135 b

12 °C group Incubation time (days) Mother
Variables 11 12 1 2
Lapillus diameter (µm) 24.58 a 24.97 a 25.08 a 25.45 b
Sagitta diameter (µm) 24.93 b 25.53 a 25.44 a 25.09 a
Standard length (mm) 8.59 b 8.81 a 8.60 b 8.81 a
Dry weight (mg) 0.154 a 0.152 a 0.172 a 0.134 b

* Mann Whitney U-Test due to non-homogenous variance.

2.2.3  Relations between the variables

Principal component analysis was performed in order to group correlated variables. Despite a

small percentage of total variation explained by the two major variance factors, some trends of

the relations between variables can be found in figure 3.5. Two major groups of variables can

be seen in all three temperature groups. Both measurements of larval standard length and to
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some extent incubation day degrees were grouped together. Larval dry weight and the otoliths

tended to cluster in another group which was more correlated to the other variance component

than the first group. The otoliths showed some variations in their relations to the two major

variance components. Egg diameter did not group with any of the other variables. The two

major variance components explained less than 60 % of total variance which implies large

variations in the data material.

Some differences can be seen when all three temperature groups were pooled (figure 3.6).

Larval dry weight did not group together with the otoliths anymore, and incubation day

degrees did not group together with the standard length measurements. However, the otoliths

and the two standard length measurements were well separated and correlated to different

variance components. But again, the percentage of total variance explained by the two factors

was rather low.

2.2.4  Sources of variation in the data material

The sources of variation in the otolith material were investigated by a four-way nested

ANOVA in the 4 °C group where otoliths from 8 offspring from combination 1 and 4 were

used. The estimated variance components were different for lapillus and sagitta (table 3.6). The

variance component of lapilli diameter between mothers was slightly negative and is therefore

interpreted as zero (appendix table 16). Significant variance component among left and right

lapilli was found (p < 0.001), but not among larvae (p = 0.230). There was a significant

variance component of sagittae (p < 0.05) both between mothers, larvae, and left and right

otoliths (table 3.6). Repeated measurements of the otolith diameters did not result in significant

variance components of neither in the lapilli nor the sagittae data.
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Figure 3.5. Principal component analysis of the different variables of the newly hatched larvae in a; the 4 °C
group, b; the 8 °C group, and c; the 12 °C group. L = left, R = right, Sag = sagitta, Lap = lapillus, DW  = larval
dry weight, SLA = standard length alive, SLF = standard length fixated, Egg DM = egg diameter, IDD =
incubation day degrees.
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Figure 3.6. Principal component analysis of the different variables of the newly hatched larvae. All temperature
groups are pooled. L = left, R = right, Sag = sagitta, Lap = lapillus, DW = larval dry weight, SLA = standard
length alive, SLF = standard length fixated, Egg DM = egg diameter, IDD = incubation day degrees.

Table 3.6. Results of a four-way nested ANOVA where two mothers, 8 larvae from each mother, left and right
otolith from each larva and two measurements of each otolith were factors. Only otoliths coded 1 were
included.

P-value Variance component
Lapillus Mother 0.436        0         (0 %)

Larvae 0.208        0.230  (20.3 %)
Otoliths <  0.001        0.855  (75.5 %)
Measurements -        0.047  (4.2 %)

Sagitta Mother 0.038       0.815   (43.9 %)
Larvae 0.017       0.518   (27.9 %)
Otoliths <  0.001       0.469   (25.2 %)
Measurements -       0.056   (3.0 %)

Variations between left and right otolith of a pair are also evident in figure 3.7. However, both

left and right lapilli and sagittae were correlated in all three temperature groups (p<0.01).
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Figure 3.7. The correlation between left and right sagittae and lapilli in a and b; the 4 °C group, c and d; the 8
°C group, and e and f; the 12 °C group. Only otoliths coded 1 are included. Filled points in the 4 °C group
represents data used in the nested four-way ANOVA.
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2.3  The end of the yolk sac (EYS) stage larvae

The development of the starved larvae did not correspond strictly to Blaxter (1956) (Figure

3.8). There were relatively more 1d larvae in the 4 °C group and a trend towards relatively

more 1 c larvae by increasing rearing temperature. There were maternal differences in the

relative number of larvae of the different developmental stages in the 8 °C group (Pearsons chi-

square test p<0.001), while there were no differences in the 4 and 12 °C groups (Pearsons chi-

square tests, p=0.546 and p=0.086 respectively).
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Figure 3.8. Larval developmental stages at sampling in the EYS group in a; all temperature groups, b; the 4 °C
group, c; the 8 °C group, and d; the 12 °C group.

2.3.1  Temperature and maternal effects.

Sagitta diameter was smaller in the 4 °C group than in the two higher temperature groups

(ANOVA, p<0.05, figure 3.9), but it was not influenced by maternal factors (ANOVA,

p=0.663). Lapillus diameter and larval dry weight had a significant temperature-maternal
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interaction (ANOVA, p<0.01 and p<0.001 respectively, appendix figure 2). Lapillus diameter

of offspring from both mother 1 and 2 decreased with increasing rearing temperature

(ANOVA, p<0.01), except for offspring of mother 1 in the two highest temperature groups

(ANOVA, p= 0.147). Larvae originating from mother 1 had larger lapillus diameter than larvae

of mother 2 in the 12 °C group (ANOVA, p<0.05), and vice verca in the 4 °C (ANOVA,

p<0.05). There was no difference in the 8 °C group (ANOVA, p=0.972). The dry weight of

offspring from mother 1 was higher than of offspring from mother 2 in all temperature groups,

but there was a different response to temperature between the two maternal groups (appendix

figure 2). The dry weight of offspring from mother 1 was lowest in the 8 °C, while larval dry

weight of offspring from mother 2 was highest in the same temperature group. Larval length

was larger in the 4 °C group than in the other temperature groups, and offspring from

combinations including mother 1 were larger than larvae from combinations including mother 2

(figure 3.9).

Temperature groups (°C)

S
ta

nd
ar

d 
le

ng
th

 (
m

m
)

11.0

11.4

11.8

12.2

12.6

13.0

4 8 12

a

    Temperature groups (°C)

D
ry

 w
ei

gh
t (

m
g)

0.124

0.128

0.132

0.136

0.140

0.144

0.148

4 8 12

b

Temperature groups (°C)

O
to

lit
h 

di
am

et
er

s 
(µ

m
)

24.5

25.0

25.5

26.0

26.5

27.0

27.5

28.0

28.5

4 8 12

Lapillus
Sagitta

c

Figure 3.9. Temperature effect on the EYS larvae on a; standard length, b; dry weight, and c; sagitta and
lapillus diameter. Means and 95% confidence-intervals are given.
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Test of maternal effects including female 3 was conducted in the 4 °C group by one-way

ANOVA (table 3.7). There was no significant maternal effect on sagitta diameter (p=0.387).

Lapillus diameter was larger in the combinations including mother two and three than in those

including mother one (p<0.05, table 3.7). Offspring from mother 2 had lower dry weight and

smaller standard length than offspring from mother 1 and 3 (ANOVA p<0.001, appendix figure

3).

Table 3.7. Results of one-way ANOVA for larvae at the EYS stage in the 4°C group. Estimated mean values
are given. Mean values with different letters at the same variable are significantly different, and a is associated
with the highest value.

Variables Mother 1 Mother 2 Mother 3
Lapillus diameter (µm) 27.38 b 28.26 a 28.03 a
Sagitta diameter (µm) 26.17 a 25.94 a 25.61 a
Standard length (mm) 12.83 a 12.36 b 13.02 a
Dry weight (mg) 0.147 a 0.119 b 0.149 a

The effect of developmental stages was tested to reveal possible effects ELHT. The 12 °C

group was used since there were similar numbers of 1c and 1d larvae originating from mother

1 and 2. (Pearsons chi-square test, p=0.221, figure 3.8). Lapillus diameter was larger in larvae

of stage 1d than stage 1c (ANOVA, p=0.012), but there were no stage differences in sagitta

diameter (ANOVA, p > 0.10). No stage effect on larval length and dry weight was recorded

(ANOVA, p>0.3, table 3.8), but a maternal effect on lapillus diameter, larval length and dry

weight was evident (ANOVA, p<0.001). They all followed the same pattern with larger values

in offspring from mother 1 than offspring from mother 2 (table 3.8).

Table 3.8. Two-way ANOVA of EYS larvae in the 12 °C group. Estimated mean values are given. Mean values
with different letters at the same variable are significantly different, and a is associated with the highest value.

Variables Stage Mother
1 c 1 d 1 2

Lapillus diameter (µm) 24.75 b 25.75 a 25.78 a 24.73 b
Sagitta diameter (µm) 26.52 a 27.29 a 27.02 a 26.79 a
Standard length (mm)* 11.36 a 11.98 a
Dry weight (mg) 0.134 a 0.132 a 0.153 a 0.113 b

* Mann Whitney U-Test due to non-homogenous variance.

2.3.2  Relations between the variables

Some trends in the principal component analysis can be seen in figure 3.10. Larval standard

length and dry weight tended to group together in one group. The otoliths tended to cluster in
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another group, except for the 4 °C group where sagitta and lapillus diverged. The two groups

were correlated to each variance component.
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Figure 3.10. Principal component analysis of the different variables of the EYS stage larvae in a; the 4 °C
group, b; the 8 °C group, and c; the 12 °C group. L = left, R = right, Sag = sagitta, Lap = lapillus, DW = larval
dry weight, SL = standard length.
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Lapillus and sagitta were grouped separately when all temperature groups were pooled (figure

3.11). Larval dry weight and standard length showed also some divergence, but they were

closer related to the lapili than to the sagittae.
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Figure 3.11. Principal component analysis of the different variables of the EYS stage larvae. All temperature
groups are pooled. L = left, R = right, Sag = sagitta, Lap = lapillus, DW = larval dry weight, SL = standard
length.

2.4  Fed larvae

The sagittae of the fed larvae had a mean diameter of 38.79 ± 8.37µm (± one standard

deviation, Sd), which is much larger than the lapilli mean diameter of 26.05 ± 0.63 µm. The

large value of the standard deviation of sagitta is probably caused by a rapid growth of sagittae

in the sampling interval (figure 3.12). Note that 17 and 19 days old larvae which were

transferred to small cages 5 and 3 days before sampling had relatively smaller standard lengths

than the other larvae.

There were no signs of increment formation in the lapilli. All sagittae, except both from one 17

day old larvae, had a clear hatch-check (figure 3.12), and the mean diameter was 25.61 ± 0.97

µm.

Standard length, dry weight, and left and right sagittae grouped together in the PCA plot and

were well correlated to the major variance component which explained 67.5 % of the total

estimated variance. This factor can be interpreteed as a larval size factor. They were not

correlated to the second major factor (figure 3.13 ). Left and right lapilli, on the other hand,
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were correlated to the second major variance factor, but not to the major factor. Factor 2 can

be seen as a lapillus factor.
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Figure 3.12. Standard length versus otolith diameter at the four sampling occasions, a; sagitta diameter versus
standard length, b; lapillus diameter versus standard length, c; hatch-check diameter versus mean sagitta
diameter.
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2.5  Development from hatching to the EYS stage

The data of the fed larvae was compared with data of the newly hatched and the EYS stage

larvae from the 12 °C group since they had the same incubation history. The hatch-check

diameter of the sagitta lay between the sagitta diameter at the EYS stage and at hatching

(ANOVA, p <0.001 and p = 0.163, respectively, figure 3.14).

Average growth rate of sagitta from hatching to the EYS stage was 0.32 ± 0.28 µm/day. The

back-calculated time for hatch-check formation is then 1.4 days after hatching. Average otolith

growth of sagitta and lapillus from hatching to sampling of the fed larvae was 0.72 ± 0.40 and

0.08 ± 0.04 µm/day respectively.
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Figure 3.14. Otolith sizes of newly hatched and EYS stage larvae at 12 °C (combinations 1 and 4) compared
with observed hatch-check and total otolith size of the fed larvae, a; sagitta data, and b; lapillus data. N at each
point is 20 - 40. Means and 95 % confidence intervals are given. Note break on y-axis for sagitta data. No
hatch-check was found in lapillus of the fed larvae.

Sagitta and lapillus diameter had a different development from hatching to the EYS stage in the

different temperature groups (figure 3.15). The lapillus of the EYS stage larvae followed the

same trend as the newly hatched larvae with decreasing lapillus size with increasing rearing

temperature (ANOVA, p<0.001), and the lapillus of the EYS stage larvae were larger than

they were at hatching (ANOVA, p=0.009, appendix figure 4). The sagitta data revealed a

temperature stage interaction effect (ANOVA, p<0.001). The sagitta diameter of the EYS



38

stage larvae was larger than the sagitta of the newly hatched larvae in the two highest

temperature groups (ANOVA, p<0.01), while there was no difference in the 4 °C group

(ANOVA, p=0.607). There was a decrease in sagitta size of the newly hatched larvae by

increasing temperature, while the sagitta of the EYS stage larvae had an opposite trend with an

increase in size with increasing rearing temperature (figure 3.15).

Temperature groups (°C)

S
ag

itt
a 

di
am

et
er

 (µ
m

)

24.4

24.8

25.2

25.6

26.0

26.4

26.8

27.2

27.6

28.0

28.4

4 8 12

Newly hatched larvae
EYS larvae

a

Temperature groups (°C)

La
pi

llu
s 

di
am

et
er

 (µ
m

)

24.4

24.8

25.2

25.6

26.0

26.4

26.8

27.2

27.6

28.0

28.4

4 8 12

Newly hatched larvae
EYS larvae

b

Figure 3.15. The otolith sizes of newly hatched and EYS stage larvae at different incubation and rearing
temperatures, a; sagitta data, and b; lapillus data. Combinations 1 and 4 are used, and n at each point is 32 -
40. Means and 95 % confidence intervals are given.

However, the growth rate of sagitta diameter, lapillus diameter and larval standard length

increased by increasing rearing temperatures from hatching to the EYS stage (table 3.9). The

large standard deviations implies high individual variability.

Table 3.9. Mean daily growth rates from hatching to the EYS stage of sagitta and lapillus diameter and larvae
standard length. One standard deviation and number of larvae used in the calculations are also given.

Temperature group Sagitta diameter (µm) Lapillus diameter (µm) Standard length (mm)
4 °C - 0.01 ± 0.08 , n=39 0.03 ± 0.09 , n=39 0.17 ± 0.04 , n=39
8 °C 0.11 ± 0.16 , n=40 0.06 ± 0.13 , n=40 0.19 ± 0.03 , n=40
12 °C 0.33 ± 0.28 , n=39 0.08 ± 0.23 , n=38 0.59 ± 0.21 , n=40
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3.  DISCUSSION

3.1  Discussion of material and methods

Three males and three females of small, medium and large size of the Norwegian spring

spawning herring (NSSH) stock were used as parental fish in this experiment, and the offspring

of each of the nine combinations were incubated at 4, 8 and 12 °C. Individual egg size and its

larval and otolith sizes were measured. This data material had its strengths and limitations.

The large temperature range covers a similar range in temperatures that eggs and larvae of the

NSSH and North Sea autumn spawning herring (NSASH) experiences in nature (Blaxter

1985), and far more than the temperature range observed on the different spawning grounds of

the NSSH (Johannessen et al. 1995, Stenevik 1995). Thus, the differences in early life history

traits (ELHT) between the NSSH and NSASH stocks and within the NSSH stock caused by

temperature will not be larger than those found in this study.

The possible influence of maternal effect should be well covered due to relatively large

differences in size and age among the females. The two oldest females had most likely spawned

several times while the youngest one had probably spawned a few or no times before this study

(Dragesund et al. 1980). An effect of old and repeat spawners compared to young and recruit

spawner could therefore also be included in the maternal effect in addition to egg size and

chemical composition caused of nutritional and size differences among the females. However,

none of these effects could be separated from each other and the maternal effect should be

considered as unknown combinations of these underlying effects.

Genetic differences between and within oceanic herring stocks, determined by allele

frequencies, are low (Jørstad et al. 1991). Paternal influence on the ELHT is expected to be

low compared to maternal differences since the latter are related to physiological and

nutritional conditions while the former are not. Large genetic variability between the larvae in

this study was unlikely due to low number of paternal fish. A better design for analysing

genetic effects on ELHT would have been to use males from different local fjord populations

which are known to be more genetically different (Jørstad et al. 1991). This was not possible

due to technical limitations. A more rigorous testing of paternal (genetic) effects would have

required larger numbers of paternal fish.
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3.1.1  Loss of eggs and larvae

There was almost 100 % mortality of eggs originating from mother 3 at the two highest

incubation temperatures, while this was not the case in the 4 °C group. Eggs from mother 1

and 2 showed no temperature dependent egg mortality. It is noteworthy that eggs from female

3 incubated at 4 °C was significantly smaller than eggs from female 1 and 2. Herring eggs are

known to increase in size just prior to spawning due to hydration (Polder 1961). The smaller

size of the eggs from female 3 can be a result of the smaller and younger fish spawning later

than the others (Lambert 1987), and the eggs of female 3 could possibly not have been

completely ripe when the gonads were stripped. Studies have shown that under-ripening of fish

eggs can reduce egg and larval viability (Bromage 1996). The high incubation temperatures of

8 and 12 °C could also have a stressing effect which the eggs did not tolerate, while an

incubation temperature of 4 °C, which is only 1.5 - 2 °C lower than what they normally

experience in nature (Johannessen et al. 1995), did not have that effect. However, the smaller

eggs of female 3 than those of female 1 and 2 can also be explained by the female size which is

known to be positively correlated with egg size (Kingston 1982, Blaxter 1985, Hay 1985).

Female 3 was the smallest and the youngest of the females (aged 6 years) while the other two

were aged 12 years. It has been suggested by several authors that young female spawners in a

stock produce less viable larvae than older ones (Blaxter and Hempel 1963, Kingston 1980),

and studies on cod have shown that females spawning for their first time produce eggs with

reduced viability compared to females who have spawned in previous years (Solemdal et al.

1995). All the eggs that died became yellow after a while, possibly due to fungus infection.

Whether the eggs died of the fungus or became fungus infected after death is not known, but it

is not unreasonable that all eggs were infected and that it was fatal only for the least viable.

Thus, eggs from female 3 may have been less resistant to environmental stress either due to

incomplete ripening or due to a maternal effect of a recruit spawning female.

A considerable amount of the larvae in the 12 °C group managed to escape from the wells

before sampling. This problem was reduced in the two other temperature groups by one more

layer of plankton mesh between the lids and the Nunc-plates. There is a theoretical possibility

that larvae could get a wrong identity code by swimming over to another well. This seems

unlikely because two larvae were never observed in the same well and no larvae were found in

a well in which the larvae had not yet hatched or had hatched earlier. A consequence of larvae
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escaping from the wells before sampling was reduced sample sizes and thereby an unbalanced

design due to unequal numbers of larvae left in the 9 different combinations within each

temperature group. The ratio of the largest to the smallest sample size was 2.4 which is less

than the recommended upper limit of 4 when analysing data by ANOVA (Høisæter 1994). Any

consequences of reduced sample sizes should therefore be minimal.

3.1.2  Abiotic factors

The temperature in the different groups was fairly constant with small deviations. The

temperature varied most in the 12 °C group, but it was always in the range of ± 1°C, except

once when it dropped almost 2 °C to 10.1 °C during one night. The eggs and larvae of the

three temperature groups have therefore experienced a real temperature difference.

A possible problem when rearing marine organisms at high temperatures is that nitrogen

supersaturation may cause gas bubbles in eggs and larvae, which is highly lethal (Colt 1986).

This problem was avoided by aerating the water in the header tank, and no symptoms of

nitrogen supersaturation were detected.

Oxygen concentrations inside the wells were not measured, and it is possible that the eggs

experienced low oxygen concentration because of limited water exchange through the 3 mm

hole in the lid. Low oxygen concentration is known to induce early hatching of Atlantic halibut

(Hippoglossus hippoglossus) eggs (Helvik and Walther 1993), but the incubation periods of

the eggs in the Nunc-plates were in accordance with those reported of Blaxter (1956). No sign

of low oxygen concentrations inside the wells was therefore evident. However, the hatching in

the buckets containing the eggs on the plastic-sheet occurred earlier than the hatching in the

Nunc-plates. Physiological stress due to transferring the plastic sheets from the incubation

tanks to the waterfilled buckets or declining oxygen concentrations in the buckets may have

caused this earlier hatching (McGurk 1984b, Helvik and Walther 1993).

The light cycle in the laboratory simulated natural light cycle in Bergen. The day length

increased during the experimental period. The 4 °C group experienced therefore longer day

lengths from hatching to the end of the yolk sac (EYS) stage than the 12 °C group since

incubation time was inversely related to incubation temperature. The growth rate of juvenile

fish increases by extended photo-periods (Stefanson et al. 1989, Imsland et al. 1995), but the
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effects on larval growth rates are not known. It is therefore not unlikely that increasing day

length can have affected the larvae in some way.

3.1.3  Measurements

All larvae were standard length recorded at hatching. A problem dealing with young fish larvae

is their fragility. They die quickly of any damage, and this can influence the accuracy and

precision of the standard length data since fish larvae are known to shrink during the death

processes (McGurk 1995). This phenomenon was taken into account and larvae which died

prior to and during the length measurement were excluded from further analysis.

Underestimation of standard length at hatching caused by death shrinkage should therefore be

minimal.

Almost all larvae hatched at night between 2000 and 0700. Some of them could be several hours

old before sampling if they had hatched early at night. This may have caused an overestimation

of standard length and otoliths size at hatching since they could continue to grow for nearly

half a day before sampling. Larvae standard length can increase 0.3 mm and sagitta and lapillus

diameter can increase 0.33 and 0.11 µm respectively by that time at 12 °C. Selective escape

from the wells by larvae that hatched early at night due to increasing activity by age might have

counteracted this effect (Yin and Blaxter 1987). The length measurement and preservation of

the larvae took longer time on days where large numbers of larvae had hatched during the

night, so the time from hatching to the larvae were fixed was prolonged. However, the time

used for measuring the larvae decreased with time due to increased experience. The possible

overestimation of larval length and otoliths size is therefore largest in the 12 °C group and

smallest in the 4 °C group since the growth rates were directly related to temperature. Larval

standard length and otoliths size differences between the highest and lowest temperature

groups may therefore have been underestimated.

Sampling of the EYS stage larvae was done according to Blaxter (1956). However, differences

in ontogeny were present since not all larvae in the two highest temperature groups had

depleted their yolk when they were sampled. A close follow-up of larval development should

have been performed in order to sample the larvae when most were in stage 1d. Effects of later

sampling of the EYS stage larvae in the two highest temperature groups would probably have
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been larger otoliths and larval standard lengths at sampling, and thereby not so large

differences between the temperature groups.

The larval standard length was longer after preservation than when measured on live larvae.

This is most likely not a measuring artifact since the equipment was the same during both

measurements. Other works on herring larvae by Geffen (1982) and Moksness (1992a) reports

length shrinkage up to 10% when preserved in 96% ethanol. But Radtke (1989), working with

cod larvae, found no shrinkage when the larvae were preserved alive, but up to 40% length

shrinkage due to the death processes. Large shrinkage of larvae preserved in ethanol may

therefore be caused by rigor mortis before preservation and not necessarily by the preservation

medium itself. An increase in length of herring larvae after fixation is also reported by Folkvord

et al. (1996). A likely explanation of this phenomenon is hard to find, but relaxation of

muscular tension due to the ethanol might make the larvae longer.

The larval dry weight was measured on all larvae after they had been dried in a warming

cabinet. Some of the larvae were lying in contact with room-temperated air for a couple of

minutes between removal from the warming cabinet and weighing. This may have caused an

overestimation of the dry weight since the larvae could absorb humidity from the air (Bergeron

1991). That problem could have been avoided by keeping the larvae in a desiccator. However,

the overestimate can not have been large since it took only a few minutes from the first to the

last larva was measured.

The otoliths were removed prior to weighing of the larvae and that may have biased the results

because some of the tissue around the otoliths could follow during dissection (Secor et al.

1992). This error has probably been minimal since the tissue pieces were very small.

Otolith dissection and mounting was time consuming and difficult due to the small sizes of the

otoliths. The otolith diameter could have been underestimated if the otolith was mounted

obliquely in relation to the glass slide. This was avoided by mounting the otoliths in as little

varnish as possible to prevent them from floating up in the varnish (Secor et al. 1992), and

remount otoliths which were not lying horizontally. By lying the otoliths as horizontal as

possible, together with regular calibration of the equipment used to measure the otolith

diameters, high precision should be achieved. A high precision was also indicated by the
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minimal differences between the two independent measurements of the same otoliths in the 4

°C group.

Otolith radius was not chosen as a measure of otolith size, although this is the most used

method in other studies (Moksness and Fossum 1991, Campana 1992), due to difficulties in

determining the exact position of the centre of the core in such small otoliths. This problem

was avoided by consequently measuring the longest diameter of the otoliths. The diameters

were measured by placing the marker at the outer edge of the otoliths because a clear

boundary between the otoliths and the background could be seen. However, this has probably

overestimated the otolith diameters because the light microscope causes a small shadow at the

outer edge of the otoliths. The boundary of this shadow was hard to see towards the otoliths,

but easy to see towards the lighter background. Total otolith diameter consists therefore of the

otolith diameter plus the small shadow at each side. This overestimation is believed to have a

negligible influence on the results since all otoliths were measured the same way, and the

dimension of the shadow could not have been larger than 0.1 µm. However, it should be taken

into account when comparing these results with other results (Campana and Moksness 1991).

Not all otoliths were circular, and some were highly asymmetrical. More than one core is a

common problem when measuring otolith size of young larvae (Neilson et al. 1985). A

measure of the longest diameter of these otoliths would not give a representative value, and a

classification system was therefore used. Three of these classification codes were easy to

define; the otolith is oblong and has two cores, the otolith was destroyed during dissection or

mounting, and the otolith is made up of two small, disparate primordial granules. The two last

codes had to be decided in a subjective manner. The boundary between a circular and an

oblong otolith could be hard to decide. However, relatively few otoliths were classified oblong

so these have probably not caused major impact on the results. A consequence of excluding the

asymmetrical otoliths is reduces variability in the data material. This has directly influence of

the results of the ANOVAs by reduced unexplained variance components which causes larger

F-values (Zar 1984, Sokal and Rohlf 1995). Some of the nearly non-significantly ANOVA

tests could therefore become non-significantly if all otoliths were included in the analyses.

The time for the hatch-check formation may have been underestimated. The fed larvae were

incubated at 12 °C but reared at 11.4 °C. They have therefore experienced slightly lower

otolith growth than they would at 12 °C since sagittae growth from hatching to the EYS stage



45

was directly related to rearing temperature. However, this effect is believed to be minimal since

the mean temperature difference was only 0.6 °C.

3.2  Discussion of results

3.2.1  Paternal effects

Neither otolith size nor other measured ELHT were influenced by different fathers, which

implies no detectable genetic effects. This is in line with previous genetic studies which have

found low genetic variation among and within oceanic herring stocks (Jørstad et al. 1991).

This finding reduces the sources of factors that might influence on the ELHT to maternal and

environmental factors. However, as discussed in section 4.1, low genetic influence on the

ELHT was expected. Larger genetic differences can however be found between different local

populations. The negligible genetic influence from the males suggests that the maternal

influence found in this study is not a result of genetic differences among the females.

3.2.2  Maternal effects

Maternal effects were present on most of the variables at hatching, but only on larval length

and dry weight at the EYS stage. Significant variations in egg weight and larval weight at

hatching among offspring from different individual herring were also observed by Kingston

(1982). Blaxter and Hempel (1963) found considerable variability in egg size within spawning

groups of herring, which was partly linked to the differences in size of the mothers. Maternal

influence on ELHT and eggs and larvae viability are also reported in other species such as cod

(Kjesbu et al. 1991, Solemdal et al. 1992 and 1995), capelin (Chambers et al. 1989) and

winter flounder (Buckley et al. 1991). Some of the maternal differences found in this study

could have been camouflaged by ontogenetic effects since offspring from female 2 were more

advanced developed than the offspring from the other females. However, a test of differences

between the 1a and 1b stage larva revealed only differences in larval dry weight. The stage

differences among the larvae at the EYS stage at sampling had no significant effects on the

measured variables, except for lapillus diameter. The maternal differences found at hatching

and at the EYS stage are therefore not a result of differences in ontogenesis, although a minor

influence can not be ruled out. However, significant effects of different incubation time within
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the highest temperature groups were found. One day differences in incubation time compose

proportionately more at high than low incubation temperatures since incubation time is

inversely related to temperature. Varying incubation time will therefore have its largest impact

at high temperatures. The maternal differences found can thencs be partly caused by the

different incubation time of offspring from different females.

Maternal influence on the otolith size has both advantages and disadvantages for management.

Offspring from different stocks are likely to be separated on the basis of the maternal

differences, but environmental differences experienced by the stocks may also interfere and

make maternal differences less suitable as criterion for stock belongings. Larger maternal

differences than what was found here can be expected among NSSH and NSASH. The spring

spawning herring has considerably larger eggs than the autumn spawning herring (Blaxter and

Hempel 1963, Blaxter 1985), and this is also reflected in larval size at hatching. The spring

spawned larvae have a higher dry weight at hatching than autumn spawned larvae, 180 - 200

µg and 100 - 120 µg, respectively, in addition to larger standard length (Blaxter and Hempel

1963). Otolith size is probably also reflected in these size differences. Larger hatch-check size

of wild caught NSSH larvae than of NSASH larvae is reported (Moksness and Fossum 1991,

Fossum and Moksness 1993), but other varying factors as temperature and prey density might

also contributes to these differences. The magnitude of the maternal influence on otolith size is

important to know before otoliths can be used for stock identification. Studies on maternal

differences on otolith size between NSSH and NSASH are therefore highly recommended.

3.2.3  Temperature effects

The significantly larger egg size in the 4 °C group is hard to explain. Fish eggs will reach a

stable volume within a few hours after fertilization (Fyhn 1992). Different time of measurement

between the temperature groups should therefore not influence the result. Some kind of

temperature-dependent physiological response is a more likely explanation. The biological

consequence of larger egg diameter in the 4 °C group are probably minimal since the amount

of yolk and its chemical composition of an egg must be equal regardless of incubation

temperature.

The duration of the embryological stage and the degree of embryological development in the

eggs were inversely related to incubation temperature. This was also reflected in other
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measured variables of the newly hatched larvae such as sagitta and lapillus diameter and larval

length. Similar results with further developed larvae with lower temperatures have also been

reported by Fossum (1980) who found that 27 % of the herring larvae incubated at 5.5 °C

hatched as 1b larvae, and Blaxter and Hempel (1961) who found that German coastal herring

larvae hatched at lower temperatures (range 5 - 14 °C) tended to be longer but have less yolk

sac. The herring larvae incubated at lower temperatures undergo more of their development in

the eggs before hatching than larvae incubated at higher temperatures. Comparable results have

also been obtained from experiments with Atlantic silverside (Menidia menidia) and capelin

(Bengtson et al. 1987, Chambers et al. 1989). Luczynski et al. (1984) observed similar results

when incubating eggs of Coregonus albula L. at different temperatures. They explained the

phenomenon by a more efficient utilization of the yolk reserves, and the transfer of the

hatching event to later stage of ontogeny due to change in synchronisation between hatching

and embryogonesis. However, winter flounder and walleye pollock have shown the opposite

trend with larger yolk volume and standard length at hatching when they were incubated at low

temperatures compared to high temperatures (Buckley et al. 1990, Canino 1994). Hatching is

therefore not an exact measure of a specific stage in larval development since its relatively

timing is temperature dependent.

Both sagitta and lapillus diameter were inversely related to incubation temperature at hatching

and at the EYS stage, except for sagitta diameter at the EYS stage which followed an opposite

trend. Scare information exist of the influence of incubation temperature on otolith size.

Chniook salmon (Oncorhynchus tshawytscha) and rainbow trout (Salmo gairdneri) had largest

otoliths size at intermediate temperatures (Neilson et al. 1985). Thus, the tend found in this

study by largest otoliths at lowest incubation temperature is probably not a general trend for all

fish species. Correlations between otoliths diameter and other ELHT are generally weak and

non-significantly even if larval standard length also was inversely related to temperature. This

may imply that the otoliths responded differently to incubation temperature than the other

ELHT.

The fact that sagitta diameter did not increase in size between hatching and the EYS stage in

the 4 °C group, while larval standard length increased, is hard to explain. Moksness (1992a)

found larger otoliths in fast-growing larvae at the same length. This is in contrast to others

who have reported larger otoliths at a given larval length in starved and slow growing larvae

compared to fast growing larvae (Mosegaard et al. 1988, Secor and Dean 1989, Moksness
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1992b, Moksness et al. 1995). Mosegaard and Titus (1987) suggested that the rate of a

metabolic process governs the rate of otolith growth and not the somatic growth rate, and that

the apparent coupling found between fish growth rate and otolith growth rate is coincidental

since both have a similar response at temperatures below those for maximum somatic growth

rate. However, this model cant explain the otolith growth rate found in this study since the

lowest otolith growth rate was found at the lowest temperature groups.

A possible explanation of the large sagittal otoliths at high temperatures is polymorphic crystal

formation. Four crystalline morphs occur in fish otoliths; aragonite, vaterite, calcite and

carbonate monohydrate (Gauldie 1993). Aragonite is the most common morph, and is found in

herring otoliths (Carlstrøm 1963). In an experimental study on chinook salmon reared at

different temperatures in the range 8 - 16 °C in steps of 2 °C, Gauldie (1986) observed an

increasing replacement of aragonite by vaterite in the sagitta at higher temperatures in some of

the otoliths. In several cases only one otolith of a pair had the vaterite morph. He speculated

that the morph change was under genetic control and overridden by temperature, or due to a

metabolic stress that changed the production of amino acids which was sufficient to induce a

morph change. The temperature dependent otolith sizes found in this study could also be an

effect of different crystalline morphs. However, an analysis of crystalline structure of the

otoliths was beyond the scope of this thesis. The apparent minimal sagittal growth at 4 °C thus

remains unclear.

3.2.4  Hatch-check formation and implications in the field

The hatch-check was calculated to be formed about 1.4 days after hatching at 12 °C. This is

about 3 days before complete yolk absorption, and before the onset of exogenous feeding

which starts a few days before or at the time of complete yolk absorption (Fossum 1980, Yin

and Blaxter 1987, Heath et al. 1989). The hatch-check size is then not affected by initial food

availability and thus somatic growth rate, which can cause large differences in subsequent

larval sizes (Folkvord et al. 1996). However, larvae reared in mesocosms with high initial prey

densities had significantly larger hatch-check size than larvae with low initial prey densities

(pers. comm. Dr. scient. Arild Folkvord, Department of Fisheries and Marine Biology,

University of Bergen). This implies deposition of the hatch-check after initiation of exogenous

feeding. The timing of the hatch-check formation found in this study is also in contrast to most

other studies on herring larvae which concluded that it is deposited after or at the time of
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complete yolk absorption. McGurk (1984a) incubated eggs at 7 °C, reared them at 12 °C and

observed the first ring by day 6 posthatch. Similar results were obtained by Geffen (1982)

rearing larvae in laboratory and large enclosures in the sea. Larvae reared in the laboratory at

10 °C began initial ring deposition on average 4.5 days after hatching (Lough et al. 1982), and

larvae reared in mesocosms deposited their first ring 10 days after hatching at 7 °C (Moksness

1992b). Some of the differences in timing of hatch-check formation between this and other

studies can be a result of temperature effects. Campana et al. (1987) found the hatch-check to

be formed at or within several days of hatch when incubating eggs at 10 - 12 °C, about the

same temperature as in this study. High temperature might therefore have an effect of

promoting hatch-check formation earlier in the ontogenesis. An optimal design of this thesis

would have been to rear larvae in all three temperature groups beyond the EYS stage to

examine if the timing of the hatch-check formation is temperature dependent. This could not be

done due to technical limitations.

The exact timing of the hatch-check formation and the age at which larva starts deposition of

regular rings are also important parameters when back-calculating hatch dates. The age of the

larvae is then calculated by counting daily rings and adding the expected numbers of days

before the hatch-check formation occur (Campana and Jones 1992). Previous studies on

herring larvae have added 10 days to estimated larval age to compensate for the yolk sac stage

(Moksness and Fossum 1992, Fossum and Moksness 1993). This seems much in light of the

results of this study. Further experimental studies examining the exact timing of the hatch-

check formation are therefore recommended.

No rings were observed in the lapilli of the fed larvae. Lapillus growth stagnates in herring

larvae by the time they start feeding on exogenous food (Campana et al. 1987, Bolz and Burns

1996). The lack of rings seen can be a result of resolution limitations of the light microscope

(Campana et al. 1987). An electron microscope could reveal rings that are too small to be seen

under a light microscope, but such a procedure is rather expensive and time consuming. The

use of lapillus has therefore limited value as a tool in management.

The sizes of both sagittae and lapilli at hatching showed large variations even when the most

asymmetrical otoliths were excluded from analysis. Otoliths arise by fusion of primary

granules, the first calcified structures to appear during development, and they grow by

deposition of calcium carbonate and protein matrix (Gauldie and Nelson 1990, Neilson et al.
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1985). Otolith core formation was studied in rainbow trout and chinook salmon by dissecting

embryos from the eggs in addition to dissecting the otoliths from larvae at hatching and various

ages up to 50 days old (Neilson et al. 1985). The numbers and positions of the primordials

were variable, even within the progeny of the same female, which caused large differences in

size and shape of the otoliths at hatching. However, the relative variability was reduced as the

otoliths grew larger. Clemmensen and Doan (1996) examined lapillus radius of cod larvae and

found that otolith sizes were very much affected by the size of the core which showed high

individual variability, even between left and right otoliths of a pair. Such large variation of the

otolith core limits the use of the hatch-check as a stock identification criterion and have

implications for the use of the otolith radius as a growth indicator in early larvae. Otolith radius

have been used as a measure of somatic growth rate (Moksness and Wespestad 1989,

Campana 1990, Campana and Jones 1992, Moksness and Fossum 1992), but the large

variability of the otolith cores may bias the results, especially for young larvae where the core

region proportionately composes a large part of the total otolith size. The problem can be

avoided by using the total otolith radius minus the hatch-check as a growth indicator.

The maximum differences in mean otolith diameter at hatching between temperature groups

found in this experiment was only 1.1 µm. The largest difference due to maternal effect was

1.3 µm. This is much smaller than the mean hatch-check radius differences of 1.5 - 2.3 µm (3 -

4.6 µm in diameter) found between larvae of autumn and spring spawning herring (Moksness

and Fossum 1991, Fossum and Moksness 1993). The NSSH spawns in March - April at sea

temperature of 5 - 7 °C (Moksness and Fossum 1992, Johannessen et al. 1995), while the

NSASH spawns in August - January at sea temperature of 9 - 13 °C (Blaxter 1985). Thus,

temperature alone can not explain the differences in hatch-check size between autumn and

spring spawned herring larvae. A more plausible explanation is somatic size differences at

hatching. The smaller hatch-check size of the autumn spawned larvae can probably be

explained by the smaller size of the larvae, but several factors can be responsible for the small

somatic size at hatching. Eggs are incubated at higher temperatures and their development is

therefore accelerated so the hatching occurs at earlier developmental stages. The smaller size

of the eggs of the NSASH means that less yolk is available for growth. It is likely to assume

that temperature plays a minor role in explaining the differences in size at hatching between

NSSH and NSASH larvae since larvae reared at 12 °C in this experiment still were larger than

the normal values of the autumn spawned larvae at hatching (Blaxter and Hempel 1963).
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Maternal influences by egg size and composition is more likely to play a major role, and

temperature will probably act to strengthen the differences. However, Stenevik (1995) found

significantly larger hatch-check size in larvae originating from northern spawning grounds at

Møre than in larvae originating from southern spawning grounds at Karmøy even if they

belonged to the same stock, the NSSH stock. Temperature differences between the two

spawning grounds cant alone explain this since largest differences is about 3 °C (Blaxter 1985,

Stenevik 1995). A maternal effect might also be partly responsible for this observed difference.

Slotte (1993) examined the population structure of the NSSH in 1992, one year before

Stenevik did his work, and found that proportionally more young herring (4-6 years old)

utilized the southern spawning grounds than those at Møre which were dominated by larger,

mainly 9 years old herring from the 1983 year class. The hatch-check size differences found

can thus be a result of higher proportion recruit spawners on the southern spawning grounds.

A follow up of this experiment with larger numbers of parental fish collected at both southern

and northern spawning grounds could elucidate the influence of repeat and recruit spawners on

otolith and hatch-check size.

The most commonly methods used to determine stock identity such as genetic allele

frequencies and morphometric and meristic characters all have the disadvantages of requiring

large sample sizes and not beeing able to determine stock identity for single fish since they rely

on frequencies. Otolith microstructure has the potential of discriminating single individuals into

respective stocks. NSSH larvae always had daily increment size over 1.4 µm and NSASH

herring larvae always had daily increment size below 1.4 µm in the area 30-60 µm from the

nucleus in a study of Moksness and Fossum (1991). However, the hatch-check size of the

same larvae showed considerable overlap between the two populations even though their

means were significantly different. The hatch-check size was uniquely diagnostic of origin only

in a few cases. This study also indicates large variations of otolith size shortly after hatching.

Hence it seems that the hatch-check alone does not have the needed property to decide

whether a single fish belongs to the NSSH or the NSASH stock, but it might be used as a

supplementary to other methods.

3.2.5  Conclusions

Significant differences in otolith size at hatching were found between offspring from different

temperature groups and females, but not between offspring from different males. H0 a
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(incubation temperature has no effect on otolith size at hatching) and H0 c (there is no

maternal effect on otolith size at hatching) are therefore rejected while H0 b (there is no

paternal effect on otolith size at hatching) is not rejected.

Otolith size is poorly correlated to somatic size in young herring larvae, and no increase of

sagitta diameter from hatching to the EYS stage at 4 °C was observed although larval length

increased. Otolith size is therefore not a reliable indicator of initial somatic growth in young

herring larvae at low temperatures.

The hatch-check is deposited 1 - 2 days after hatching and before onset of exogenous feeding

in herring larvae reared at 12 °C. Large variations in otolith size at hatching limit the use of the

hatch-check size as a criterion for stock identification and thereby as a reliable tool in fisheries

management.
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5.  APPENDIX

5.1  Figures
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Figure 1. Maternal effects on newly hatched larvae in the 4 °C group on a; live standard length, b; dry weight,
c; egg diameter, and d; sagitta and lapillus diameter. Means and 95% confidence-intervals are given.
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Figure 2. Plots of two-way interaction in two-way ANOVA of temperature and maternal effects of the EYS
stage larvae. A= mean lapillus diameter, p interaction <0.01. B= mean larval dry weight, p interaction < 0.001.
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Figure 3. Maternal effect on the EYS larvae in the 4 °C group on a; standard length, b; dry weight and c;
lapillus and sagitta diameter. Means and 95% confidence intervals are given.
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Figure 4. Plot of two-way interaction in two-way ANOVA of temperature and stage effects (at hatching and at
the EYS stage) on mean sagitta diameter. P interaction <0.001.
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5.2  Tables

Table 1. Descriptive statistics of the measured ELHT at hatching.
Sagitta diameter (µm) Lapillus diameter (µm)

Mean n Min Max Sd Mean n Min Max Sd

12 °C Mother 1 25.28 35 21.80 29.20 1.52 25.08 37 22.75 28.40 1.01
group Mother 2 25.06 48 22.70 27.10 1.01 24.45 49 22.55 26.50 0.95

8 °C Mother 1 25.89 59 21.95 27.80 1.17 25.88 63 22.40 29.45 1.20
group Mother 2 25.75 57 23.90 27.65 0.89 25.33 58 23.40 28.20 0.99

4 °C Mother 1 26.59 58 23.65 29.30 1.29 27.41 60 19.60 30.75 1.79
group Mother 2 25.94 65 20.25 28.95 1.43 27.38 68 23.10 29.85 1.33

Mother 3 25.33 44 22.50 32.60 1.79 27.03 47 24.60 29.60 1.32

Table 1 continued.
Egg diameter (mm) Standard length alive (mm) Dry weight (mg)

Mean n Min Max Sd Mean n Min Max Sd Mean n Min Max Sd

12 °C Mother 1 1.588 38 1.500 1.710 0.053 8.51 38 7.36 9.27 0.49 0.172 30 0.120 0.186 0.012
group Mother 2 1.555 50 1.435 1.725 0.062 8.75 50 5.34 9.38 0.56 0.134 46 0.115 0.173 0.008

8 °C Mother 1 1.582 64 1.484 1.790 0.063 9.385 64 8.37 10.18 0.41 0.172 63 0.125 0.188 0.010
group Mother 2 1.565 61 1.468 1.855 0.072 9.57 61 6.60 10.28 0.51 0.135 60 0.118 0.145 0.006

4 °C Mother 1 1.653 61 1.486 1.871 0.092 9.80 61 7.16 10.59 0.54 0.163 61 0.135 0.180 0.008
group Mother 2 1.648 71 1.500 1.839 0.080 10.06 71 8.97 10.69 0.28 0.127 71 0.112 0.166 0.008

Mother 3 1.607 49 1.468 1.887 0.102 9.80 49 9.07 10.38 0.30 0.156 49 0.140 0.173 0.007
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Table 2. Descriptive statistics on measured ELHT at the EYS stage.
Sagitta diameter (µm) Lapillus diameter (µm)

Mean n Min Max Sd Mean n Min Max Sd

12 °C Mother 1 26.96 20 25.25 30.50 1.34 25.56 20 23.60 27.40 1.07
group Mother 2 26.62 19 22.30 29.15 1.47 24.73 19 21.10 27.05 1.22

8 °C Mother 1 26.60 20 24.70 29.00 1.45 26.09 20 24.20 27.70 0.84
group Mother 2 26.84 20 23.50 29.50 1.38 26.10 20 22.80 28.40 1.16

4 °C Mother 1 26.17 20 23.75 28.05 1.22 27.38 19 24.85 29.20 1.18
group Mother 2 25.94 19 23.75 28.20 1.23 28.26 19 25.30 30.85 1.32

Mother 3 25.61 20 23.15 27.10 1.38 28.09 19 27.15 29.75 0.71

Table 2 continued.
Standard length alive (mm) Dry weight (mg)

Mean n Min Max Sd Mean n Min Max Sd

12 °C Mother 1 12.29 20 11.39 12.71 0.33 0.153 19 0.139 0.162 0.007
group Mother 2 10.84 19 9.08 11.96 0.81 0.114 19 0.087 0.126 0.010

8 °C Mother 1 12.06 20 11.30 12.71 0.37 0.141 20 0.124 0.156 0.007
group Mother 2 12.22 20 11.30 12.62 0.28 0.126 20 0.117 0.136 0.006

4 °C Mother 1 12.83 20 11.55 13.53 0.50 0.147 20 0.131 0.158 0.007
group Mother 2 12.36 20 11.88 13.04 0.23 0.119 20 0.112 0.129 0.005

Mother 3 13.02 20 12.62 13.28 0.19 0.149 20 0.134 0.235 0.021
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Table 3. Descriptive statistics on measured ELHT of  the fed larvae.
Sagitta diameter (µm) Lapillus diameter (µm) Hatch-check diameter (µm)

Age Mean n Min Max Sd Mean n Min Max Sd Mean n Min Max Sd

21 days 50.18 5 44.10 55.5 5.00 26.10 5 25.45 26.80 0.53 25.69 5 24.50 26.40 0.73
19 days 36.69 5 33.00 39.65 2.87 25.54 4 24.80 26.55 0.86 26.17 5 24.50 27.70 1.21
17 days 32.73 5 28.45 37.65 3.92 26.07 5 25.55 27.00 0.57 25.23 4 24.80 25.50 0.32
16 days 36.54 5 25.40 42.60 7.58 26.40 5 25.80 26.90 0.44 25.27 5 23.50 26.80  1.21

Table 3 continuing.
Standard length alive (mm) Dry weight (mg)

Age Mean n Min Max Sd Mean n Min Max Sd

21 days 18.10 5 17.67 18.67 0.40 0.394 5 0.347 0.464 0.044
19 days 14.25 5 14.00 14.92 0.39 0.217 5 0.187 0.243 0.021
17 days 13.75 5 12.62 15.08 1.10 0.168 5 0.114 0.267 0.075
16 days 14.89 5 12.92 16.31 1.67 0.218 4 0.057 0.374 0.174
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Table 4. Distribution of otolith codes within each temperature group of the larvae at hatching, at the EYS stage
and of the fed larvae.

S = times when one single otolith of a pair compose the mean value
M = times when both otoliths of a pair have code >1, and mean value are therefore missing
D = times when both otoliths of a pair have code 1
1 = the otolith has one core and is circular
2 = the otolith has one core and is oblong
3 = the otolith has two cores and is oblong
4 = the otolith was destroyed during dissection or mounting
5 = the otolith is made up of two small, disparate primordial granules

A. Codes of sagitta.
Stage Group Left otolith code Right otolith code

1 2 3 4 5 1 2 3 4 5 S M D

12 °C 71 7 8 1 1 64 3 17 3 1 36 5 47
Newly hatched 8 °C 95 2 27 1 0 89 6 26 4 0 57 9 59
larvae 4 °C 126 6 42 3 4 133 5 40 2 1 89 14 78

Sum 292 15 77 5 5 286 14 83 9 2 182 28 184

12 °C 35 1 1 2 0 33 1 4 1 0 10 0 29
EYS larvae 8 °C 29 5 6 0 0 31 1 8 0 0 20 0 20

4 °C 51 6 3 0 0 48 4 6 2 0 20 1 39
Sum 115 12 10 2 0 112 6 18 3 0 50 1 88

Fed larvae 17 1 1 1 0 20 0 0 0 0 3 0 17

B. Codes of lapillus.
Stage Group Left otolith code Right otolith code

1 2 3 4 5 1 2 3 4 5 S M D

12 °C 69 0 16 3 0 71 1 11 5 0 34 2 52
Newly hatched 8 °C 106 1 15 3 0 109 1 13 2 0 31 4 90
larvae 4 °C 149 5 25 2 0 142 5 28 6 0 65 6 110

Sum 324 6 56 8 0 322 7 52 13 0 130 12 252

12 °C 31 2 3 3 0 35 2 2 0 0 10 0 29
EYS larvae 8 °C 36 3 1 0 0 37 2 1 0 0 7 0 33

4 °C 50 3 7 0 0 52 3 4 1 0 15 3 42
Sum 117 8 11 3 0 124 7 7 1 0 32 3 104

Fed larvae 17 0 0 3 0 18 0 1 1 0 3 1 16
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Table 5. Spearman rank order correlation matrices within each temperature group at hatching and at the EYS
stage. Data of offspring from female number 3 are excluded. The first value within each correlation is the
Spearman rank order correlation coefficient, the second is the p-value and the third is the number of data used.

A. Correlations at hatching.
Sagitta

diameter (µm)
Standard

length (mm)
Dry weight

(mg)
Incubation
day degrees

Egg diameter
(mm)

0.356 - 0.149 0.149 0.024 0.085
12 °C p = 0.001 p = 0.171 p = 0.204 p = 0.829 p = 0.436

n = 81 n = 86 n = 74 n = 86 n = 86

0.368 - 0.140 0.194 0.018 0.024
Lapillus diameter (µm) 8 °C p < 0.001 p = 0.126 p = 0.034 p = 0.841 p = 0.791

n = 112 n = 121 n = 119 n = 121 n = 121

0.195 - 0.054 0.051 - 0.076 - 0.086
4 °C p = 0.033 p = 0.543 p = 0.568 p = 0.393 p = 0.335

n =119 n =128 n =128 n =128 n =128

0.176 0.050 0.351 0.016
12 °C p = 0.111 p = 0.679 p = 0.001 p = 0.887

n = 83 n = 71 n = 83 n = 83

0.188 0.079 0.111 0.182
Sagitta diameter (µm) 8 °C p = 0.043 p = 0.404 p = 0.234 p = 0.051

n = 116 n = 114 n = 116 n = 116

- 0.003 0.161 - 0.141 - 0.027
4 °C p = 0.972 p = 0.076 p = 0.119 p = 0.764

n =123 n =123 n =123 n =123

- 0.333 0.380 - 0.144
12 °C p = 0.003 p < 0.001 p = 0.181

n = 76 n = 88 n = 88

- 0.235 0.690 0.048
Standard length (mm) 8 °C p = 0.009 p < 0.001 p = 0.596

n = 123 n = 125 n = 125

- 0.316 0.410 - 0.036
4 °C p < 0.001 p < 0.001 p = 0.678

n =132 n =132 n =132

- 0.155 0.187
12 °C p = 0.182 p = 0.105

n = 76 n = 76

- 0.265 0.147
Dry weight (mg) 8 °C p = 0.003 p = 0.104

n = 123 n = 123

- 0.334 - 0.003
4 °C p < 0.001 p = 0.969

n =132 n =132

0.070
12 °C p = 0.517

n = 88

0.036
Incubation day degrees 8 °C p = 0.687

n = 125

0.144
4 °C p = 0.101

n = 132
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B. Correlations at the EYS stage.
Sagitta diameter (µm) Standard length (mm) Dry weight (mg)

0.329 0.359 0.261
12 °C p = 0.041 p = 0.025 p = 0.114

n = 39 n = 39 n = 38

0.475 0.246 0.055
Lapillus diameter (µm) 8 °C p = 0.002 p = 0.126 p = 0.738

n = 40 n = 40 n = 40

0.313 - 0.082 - 0.265
4 °C p = 0.059 p = 0.625 p = 0.108

n = 37 n = 38 n = 38

0.186 - 0.008
12 °C p = 0.258 p = 0.959

n = 39 n = 38

0.221 0.147
Sagitta diameter (µm) 8 °C p = 0.170 p = 0.365

n = 40 n = 40

0.093 0.093
4 °C p = 0.573 p = 0.573

n = 39 n = 39

0.712
12 °C p < 0.001

n = 38

- 0.031
Standard length (mm) 8 °C p = 0.847

n = 40

0.601
4 °C p < 0.001

n = 40

Table 6. Correlation matrix of ELHT of the fed larvae. N in each case is 18. The first value is the correlation
coefficient, and the second is the p-value.

Lapillus diameter (µm) Standard length (mm) Dry weight (mg)

Sagitta diameter (µm) 0.170 0.945 0.932
p=0.500 p<0.001 p<0.001

Lapillus diameter (µm) 0.199 0.224
p=0.429 p=0.371

Standard length (mm) 0.948
p<0.001
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Table 7. Results of t-tests between mean sagitta and mean lapillus diameter of the larvae at hatching within
each temperature group. Lap = lapillus, sag = sagitta.

Mean sag. diameter N lap. Mean lap. diameter N sag. T-value Df. P-value
4 °C group 26.25 123 27.39 128 6.113 249 < 0.001
8 °C group 25.82 116 25.62 121 - 1.409 235 0.160
12 °C group 25.15 86 24.72 83 - 2.476 167 0.014

Table 8. Pearson chi-square summary tables

A. Distribution of stage 1a and 1b at hatching in the 4 °C group of offspring from mother 1, 2 and 3.
Stage 1a Stage 1b Totals Chi-square Df P-value

Mother 1 23 28 51 17.802 2 < 0.001
Mother 2 3 42 45
Mother 3 11 21 32
Totals 37 91 128

B. Distribution of stage 1c and 1d at the EYS stage in the 4 °C group of offspring from mother 1, 2 and 3.
Stage 1c Stage 1d Totals Chi-square df P-value

Mother 1 3 17 20 1.294 4 0.524
Mother 2 1 19 20
Mother 3 3 17 20
Totals 7 53 60

C. Distribution of stage 1b, 1c and 1d at the EYS stage in the 8 °C group of offspring from mother 1 and 2.
Stage 1b Stage 1c Stage 1d Totals Chi-square df P-value

Mother 1 5 12 3 20 25.944 2 < 0.001
Mother 2 0 1 19 20
Totals 5 13 22 40

D. Distribution of stage 1b, 1c and 1d at the EYS stage in the 12 °C group of offspring from mother 1 and 2.
Stage 1b Stage 1c Stage 1d Totals Chi-square df P-value

Mother 1 0 14 6 20 4.900 2 0.086
Mother 2 3 8 8 19
Totals 3 22 14 39

F. Distribution of stage 1c and 1d at the EYS stage in the 12 °C group of offspring from mother 1 and 2.
Stage 1c Stage 1d Totals Chi-square df P-value

Mother 1 14 6 20 1.496 1 0.221
Mother 2 8 8 16
Totals 22 14 36
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Table 9. Results of two-way ANOVA with temperature ( 4, 8 and 12 °C) and mother (mother 1 and 2) as
factors on the different ELHT at hatching. Estimated mean values are given. Mean values with different letters
at the same variable are significantly different, and a is associated with the highest value. There were no
significant paternal effects in the three-way ANOVAs so two-way ANOVAs were performed with the paternal
factor excluded.
Variables Temperature groups Mothers

4 °C 8 °C 12 °C 1 2
Lapillus diameter (µm) 27.39 a 25.61 b 24.76 c 26.12 a 25.72 b
Sagitta diameter (µm) 26.27 a 25.82 b 25.17 c 25.92 a 25.58 b
Standard length (mm) 9.93 a 9.48 b 8.63 c 9.23 b 9.46 a
Dry weight (mg) 0.145 b 0.154 a 0.153 a 0.169 a 0.132 b
Egg diameter (mm) 1.650 a 1.574 b 1.572 b 1.608 a 1.589 b

Table 10. Results of three-way ANOVA with mother (mother 1 and 2), father (father 1, 2 and 3) and
temperature (4, 8 and 12 °C ) as factors tested on the different ELHT of the newly hatched larvae, and its
respective Levene´s test for homogenity of variance between the groups. At significant Levene´s tests, a Hartley
F-max was performed and the results of the ANOVA test were still used if Hartley F-max was below 10. If one
factor was non-significant, a new two-way ANOVA was performed with that factor excluded.

A. Lapillus diameter.
Three-way ANOVA Levene´s test

Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
1: Maternal 1 15.201 317 1.613 9.422 0.002 17, 317 1.515 0.087
2: Paternal 2 0.885 317 1.613 0.548 0.578
3. Temperature 2 199.629 317 1.613 123.730 <0.001
1 2 2 4.613 317 1.613 2.859 0.059
1 3 2 2.559 317 1.613 1.586 0.206
2 3 4 1.463 317 1.613 0.907 0.460
1 2 3 4 1.739 317 1.613 1.078 0.368

Two-way ANOVA Levene´s test
Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
1: Maternal 1 13.253 329 1.628 8.143 0.004 5, 329 2.591 0.026
2: Temperature 2 196.266 329 1.628 120.592 <0.001
1 2 2 3.110 329 1.628 1.911 0.150 Hartley F-max: 3.530

B. Sagitta diameter.
Three-way ANOVA Levene´s test

Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
1: Maternal 1 9.824 304 1.494 6.575 0.011 17, 304 1.604 0.062
2: Paternal 2 3.403 304 1.494 2.278 0.104
3: Temperature 2 28.543 304 1.494 19.104 <0.001
1 2 2 1.699 304 1.494 1.137 0.322
1 3 2 2.828 304 1.494 1.893 0.152
2 3 4 1.378 304 1.494 0.922 0.451
1 2 3 4 0.642 304 1.494 0.430 0.787

Two-way ANOVA Levene´s test
Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
1: Maternal 1 9.037 316 1.500 6.024 0.015 5, 316 1.940 0.087
2: Temperature 2 29.263 316 1.500 19.507 <0.001
1 2 2 2.205 316 1.500 1.470 0.232
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C. Dry weight.
Three-way ANOVA Levene´s test

Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
1: Maternal 1 0.102 313 <0.001 1419.87 <0.001 17, 313 1.429 0.121
2: Paternal 2 <0.001 313 <0.001 0.110 0.895
3: Temperature 2 0.003 313 <0.001 41.217 <0.001
1 2 2 <0.001 313 <0.001 0.196 0.822
1 3 2 <0.001 313 <0.001 0.199 0.819
2 3 4 <0.001 313 <0.001 0.401 0.808
1 2 3 4 <0.001 313 <0.001 0.706 0.588

Two-way ANOVA Levene´s test
Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
1: Maternal 1 0.106 325 <0.001 1505.42 <0.001 5, 325 1.365 0.237
2: Temperature 2 0.003 325 <0.001 40.969 <0.001
1 2 2 <0.001 325 <0.001 0.123 0.884

D. Standard length.
Three-way ANOVA Levene´s test

Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
1: Maternal 1 4.357 327 0.216 20.143 <0.001 17, 327 1.100 0.352
2: Paternal 2 0.012 327 0.216 0.058 0.944
3: Temperature 2 43.054 327 0.216 199.052 <0.001
1 2 2 0.099 327 0.216 0.456 0.634
1 3 2 0.030 327 0.216 0.141 0.869
2 3 4 0.177 327 0.216 0.818 0.514
1 2 3 4 0.363 327 0.216 1.679 0.154

Two-way ANOVA Levene´s test
Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
1: Maternal 1 4.265 339 0.216 19.774 <0.001 5, 339 2.022 0.075
2: Temperature 2 44.251 339 0.216 205.152 <0.001
1 2 2 0.044 339 0.216 0.204 0.816

E. Egg diameter.
Three-way ANOVA Levene´s test

Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
1: Maternal 1 0.028 327 0.005 5.231 0.022 17, 327 2.119 0.006
2: Paternal 2 0.002 327 0.005 0.397 0.673
3: Temperature 2 0.244 327 0.005 44.978 <0.001
1 2 2 0.003 327 0.005 0.615 0.541
1 3 2 0.004 327 0.005 0.701 0.497
2 3 4 0.007 327 0.005 1.308 0.267
1 2 3 4 0.001 327 0.005 0.134 0.970

Two-way ANOVA Levene´s test
Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
1: Maternal 1 0.028 339 0.005 5.179 0.023 5, 339 5.252 <0.001
2: Temperature 2 0.242 339 0.005 45.292 <0.001
1 2 2 0.005 339 0.005 0.904 0.406 Hartley F-max: 2.971
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Table 11. Results of two-way ANOVA with mother (mother 1, 2 and 3) and father (father 1, 2 and 3) as factors
tested on the different ELHT of the newly hatched larvae in the 4 °C group, and its respective Levene´s test for
homogenity of variance between the groups. At significant Levene´s tests, a Hartley F-max was performed and
the results of the ANOVA test was still used if Hartley F-max was below 10. If one factor was non-significant, a
new one-way ANOVA was performed with that factor excluded.

A. Lapillus diameter.
Two-way ANOVA Levene´s test

Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
1: Maternal 2 1.919 166 2.221 0.864 0.423 8, 166 0.537 0.828
2: Paternal 2 1.211 166 2.221 0.545 0.581
1 2 4 4.398 166 2.221 1.980 0.100

B. Sagitta diameter.
Two-way ANOVA Levene´s test

Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
1: Maternal 2 20.425 158 2.183 9.356 <0.001 8, 158 0.698 0.693
2: Paternal 2 2.578 158 2.183 1.181 0.310
1 2 4 2.601 158 2.183 1.191 0.317

One-way ANOVA Levene´s test
Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
Maternal 2 20.083 164 2.212 9.079 <0.001 2, 164 1.430 0.242

C; Dry weight.
Two-way ANOVA Levene´s

Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
1: Maternal 2 0.025 172 <0.001 423.594 <0.001 8, 172 1.295 0.249
2: Paternal 2 <0.001 172 <0.001 1.205 0.302
1 2 4 <0.001 172 <0.001 1.351 0.253

One-way ANOVA Levene´s
Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
Maternal 2 0.025 178 <0.001 426.180 <0.001 2, 178 0.869 0.421

D. Standard length.
Two-way ANOVA Levene´s

Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
1: Maternal 2 1.363 172 0.154 8.875 <0.001 8, 172 1.170 0.320
2: Paternal 2 0.135 172 0.154 0.876 0.418
1 2 4 0.128 172 0.154 0.833 0.506

One-way ANOVA Levene´s
Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
Maternal 2 1.449 178 0.152 9.502 <0.001 2, 178 4.612 0.011

Hartley F-max: 3.877

E. Egg diameter.
Two-way ANOVA Levene´s

Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
1: Maternal 2 0.033 172 0.008 3.919 0.022 8, 172 0.658 0.728
2: Paternal 2 0.004 172 0.008 0.533 0.588
1 2 4 0.001 172 0.008 0.177 0.950

One-way ANOVA Levene´s
Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
Maternal 2 0.034 178 0.008 4.191 0.017 2, 178 2.151 0.119
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Table 12. Results of two-way ANOVA with stage (1 a and 1 b) and mother (mother 1 and 3) as factors tested on
the different ELHT of the newly hatched larvae in the 4 °C group, and its respective Levene´s test for
homogenity of variance between the groups. At significant Levene´s tests, a Hartley F-max was performed and
the results of the ANOVA test was still used if Hartley F-max was below 10. If one factor was non-significant, a
new one-way ANOVA was performed with that factor excluded.

A. Lapillus diameter.
Two-way ANOVA Levene´s

Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
1: Maternal 1 0.627 78 2.432 0.258 0.613 3, 78 0.893 0.449
2: Stage 1 5.771 78 2.432 2.373 0.128
1 2 1 4.763 78 2.432 1.958 0.166

B. Sagitta diameter.
Two-way ANOVA Levene´s

Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
1: Maternal 1 25.329 72 2.428 10.430 0.002 3, 72 0.996 0.399
2: Stage 1 7.550 72 2.428 3.109 0.082
1 2 1 1.145 72 2.428 0.472 0.494

One-way ANOVA Levene´s
Factor Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
Maternal 1 22.756 74 2.466 9.228 0.003 1, 74 1.102 0.297

C. Dry weight.
Two-way ANOVA Levene´s

Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
1: Maternal 1 < 0.001 80 < 0.001 16.240 < 0.001 3, 80 0.719 0.543
2: Stage 1 < 0.001 80 < 0.001 7.644 0.007
1 2 1 < 0.001 80 < 0.001 0.022 0.882

D. Standard length.
Two-way ANOVA Levene´s

Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
1: Maternal 1 0.097 80 0.201 0.483 0.489 3, 80 1.347 0.265
2: Stage 1 0.212 80 0.201 1.058 0.307
1 2 1 0.044 80 0.201 0.220 0.640
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Table 13. Results of two-way ANOVA with incubation time (34, 35 and 36 days) and mother (mother 1, 2 and
3) as factors tested on the different ELHT of the newly hatched larvae in the 4 °C group, and its respective
Levene´s test for homogenity of variance between the groups. At significant Levene´s tests, a Hartley F-max
was performed and the results of the ANOVA test was still used if Hartley F-max was below 10. If one factor
was non-significant, a new one-way ANOVA was performed with that factor excluded.

A. Lapillus diameter.
Two-way ANOVA Levene´s

Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
1: Maternal 2 1.666 127 1.784 0.934 0.396 8, 127 0.934 0.487
2: Incubation time 2 4.392 127 1.784 2.463 0.089
1 2 4 1.378 127 1.784 0.773 0.545

B. Sagitta diameter.
Two-way ANOVA Levene´s

Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
1: Maternal 2 12.776 121 1.901 6.720 0.002 8, 121 0.339 0.949
2: Incubation time 2 3.652 121 1.901 1.921 0.151
1 2 4 1.682 121 1.901 0.885 0.475

One-way ANOVA Levene´s test
Factor Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
Maternal 2 20.083 164 2.212 9.079 < 0.001 2, 164 1.430 0.242

C. Dry weight.
Two-way ANOVA Levene´s test

Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
1: Maternal 2 0.016 133 < 0.001 277.475 < 0.001 8, 133 0.735 0.660
2: Incubation time 2 < 0.001 133 < 0.001 1.019 0.364
1 2 4 < 0.001 133 < 0.001 0.693 0.598

One-way ANOVA Levene´s test
Factor Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
Maternal 2 0.025 178 < 0.001 426.180 < 0.001 2, 178 0.869 0.421

D. Standard length.
Two-way ANOVA Levene´s test

Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
1: Maternal 2 0.552 133 0.100 5.511 0.005 8, 133 1.171 0.100
2: Incubation time 2 0.279 133 0.100 2.783 0.065
1 2 4 0.067 133 0.100 0.666 0.617

One-way ANOVA Levene´s test
Factor Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
Maternal 2 1.449 178 0.152 9.502 < 0.001 2, 178 4.612 0.011

Hartley F-max: 3.877
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Table 14. Results of two-way ANOVA with incubation time (16, 17 and 18 days) and mother (mother 1 and 2)
as factors tested on the different ELHT of the newly hatched larvae in the 8 °C group, and its respective
Levene´s test for homogenity of variance between the groups. At significant Levene´s tests, a Hartley F-max
was performed and the results of the ANOVA test was still used if Hartley F-max was below 10. If one factor
was non-significant, a new one-way ANOVA was performed with that factor excluded. Larval standard length
was analysed by Mann Whitney U-test due to non-homogenous variance (Hartley F-max > 10).

A. Lapillus diameter.
Two-way ANOVA Levene´s test

Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
1: Maternal 1 6.412 114 1.265 5.069 0.026 5, 114 1.927 0.095
2: Incubation time 2 0.319 114 1.265 0.252 0.778
1 2 2 0.016 114 1.265 0.013 0.987

One-way ANOVA Levene´s test
Factor Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
Maternal 1 9.238 119 1.226 7.536 0.007 1, 119 0.812 0.369

B. Sagitta diameter.
Two-way ANOVA Levene´s test

Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
1: Maternal 1 1.404 109 1.097 1.280 0.260 5, 109 1.776 0.124
2: Incubation time 2 1.078 109 1.097 0.982 0.378
1 2 2 0.560 109 1.097 0.510 0.602

C. Dry weight.
Two-way ANOVA Levene´s test

Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
1: Maternal 1 0.028 116 < 0.001 443.442 < 0.001 5, 116 1.414 0.224
2: Incubation time 2 < 0.001 116 < 0.001 2.361 0.099
1 2 2 < 0.001 116 < 0.001 0.706 0.496

One-way ANOVA Levene´s test
Factor Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
Maternal 1 0.043 121 < 0.001 675.491 < 0.001 1, 121 3.483 0.064

D. Mann Whitney U-test among incubation days on standard length of newly hatched larvae.
Group 1 Group 2 Rank sum 1 Rank sum 2 Z N 1 N 2 Critical p-level P-level
16 days 17 days 360 4791 -5.292 19 82 0.017 < 0.001
16 days 18 days 191.5 711.5 -5.484 19 23 0.017 < 0.001
17 days 18 days 3640 1925 -5.470 82 23 0.017 < 0.001
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Table 15. Results of two-way ANOVA with incubation time (11 and 12 days) and mother (mother 1 and 2) as
factors tested on the different ELHT of the newly hatched larvae in the 12 °C group, and its respective Levene´s
test for homogenity of variance between the groups. At significant Levene´s tests, a Hartley F-max was
performed and the results of the ANOVA test was still used if Hartley F-max was below 10. If one factor was
non-significant, a new one-way ANOVA was performed with that factor excluded.

A. Lapillus diameter.
Two-way ANOVA Levene´s test

Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
1: Maternal 1 8.703 76 0.998 8.723 0.004 3, 76 0.578 0.631
2: Incubation time 1 2.839 76 0.998 2.846 0.096
1 2 1 1.203 76 0.998 1.206 0.276

One-way ANOVA Levene´s test
Factor Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
Maternal 1 8.532 84 0.960 8.892 0.004 1, 84 0.196 0.659

B. Sagitta diameter.
Two-way ANOVA Levene´s test

Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
1: Maternal 1 2.395 73 1.417 1.690 0.198 3, 73 1.377 0.256
2: Incubation time 1 6.808 73 1.417 4.806 0.032
1 2 1 0.091 73 1.417 0.064 0.801

One-way ANOVA Levene´s test
Factor Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
Incubation time 1 7.036 75 1.413 4.980 0.029 1, 75 0.163 0.688

C. Dry weight.
Two-way ANOVA Levene´s test

Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
1: Maternal 1 0.024 70 < 0.001 247.097 < 0.001 3, 70 1.406 0.248
2: Incubation time 1 < 0.001 70 < 0.001 1.256 0.266
1 2 1 < 0.001 70 < 0.001 1.589 0.212

One-way ANOVA Levene´s test
Factor Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
Maternal 1 0.026 74 < 0.001 262.070 < 0.001 1, 74 0.978 0.326

D. Standard length.
Two-way ANOVA Levene´s test

Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
1: Maternal 1 0.867 78 0.125 6.950 0.010 3, 78 4.055 0.010
2: Incubation time 1 0.933 78 0.125 7.476 0.001
1 2 1 0.065 78 0.125 0.524 0.471 Hartley F-max: 4.486
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Table 16. Results of four-way nested ANOVA in the 4 °C group of the newly hatched larvae with two mothers,
8 larvae from each mother, left and right otolith from each pair, and two measurements of each otolith as
factors.

A. Lapillus diameter.
Factors Df. effect Ms.effect Df. error Ms.error F-value P-value Variance components
Mother 1 1.72 14 2.68 0.64 0.44  0       (0 %)
Larvae 14 2.28 16 1.76 1.52 0.21  0.23  (20.3 %)
Otolith 16 1.76 32 0.05 37.35 0  0.85  (75.5 %)
Measurements 32 0.05 0 0 - -  0.05  (4.2 %)

B. Sagitta diameter.
Factors Df. effect Ms.effect Df. error Ms.error F-value P-value Variance components
Mother 1 16.10 14 3.06 5.25 0.04  0.814  (43.9 %)
Larvae 14 3.06 16 0.99 3.08 0.02  0.518  (27.9 %)
Otolith 16 0.99 32 0.06 17.83 0  0.469  (25.2 %)
Measurements 32 0.06 0 0 - -  0.06    (3.0 %)

Table 17. Results of two-way ANOVA with temperature (4, 8 and 12 °C) and mother (mother 1 and 2) as
factors on the different ELHT at the EYS stage. Estimated mean values are given. Mean values with different
letters at the same variable are significantly different, and a is associated with the highest value.
Variables Temperature groups Mothers

4 °C 8 °C 12 °C 1 2
Lapillus diameter (µm)** 27.82 26.09 25.14 26.34 26.36
Sagitta diameter (µm) 26.05 b 26.72 a 26.80 a 26.58 a 26.47 a
Standard length (mm)* 12.60 a 12.14 b 11.57 b
Dry weight (mg)** 0.133 0.134 0.134 0.147 0.120
* Mann Whitney U-Test between temperature groups due to non-homogenous variance.
** Significant maternal-temperature interaction effect.
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Table 18. Results of two-way ANOVA with mother (mother 1 and 2) and temperature (4, 8 and 12 °C) as
factors tested on the different ELHT of the EYS stage larvae, and its respective Levene´s test for homogenity of
variance between the groups. At significant Levene´s tests, a Hartley F-max was performed and the results of
the ANOVA test was still used if Hartley F-max was below 10. If one factor was non-significant, a new one-
way ANOVA was performed with that factor excluded. Larval standard length was analysed by Mann Whitney
U-test due to non-homogenous variance (Hartley F-max > 10).

A. Lapillus diameter.
Two-way ANOVA Levene´s test

Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
1: Maternal 1 0.014 111 1.297 0.011 0.917 5, 111 0.706 0.620
2: Temperature 2 70.846 111 1.297 54.608 < 0.001
1 2 2 7.035 111 1.297 5.422 0.006

B. Sagitta diameter.
Two-way ANOVA Levene´s test

Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
1: Maternal 1 0.323 112 1.692 0.191 0.663 5, 112 0.061 0.997
2: Temperature 2 6.503 112 1.629 3.843 0.024
1 2 2 0.926 112 1.692 0.547 0.580

One-way ANOVA Levene´s test
Factor Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
Temperature 2 6.499 115 1.667 3.900 0.023 2, 115 0.446 0.956

C. Dry weight.
Two-way ANOVA Levene´s test

Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
1: Maternal 1 0.022 112 < 0.001 433.282 < 0.001 5, 112 1.530 0.186
2: Temperature 2 < 0.001 112 < 0.001 0.078 0.924
1 2 2 0.001 112 < 0.001 28.834 < 0.001

D. Mann Whitney U-test among temperature groups and mothers on standard length of EYS stage larvae.
Group 1 Group 2 Rank sum 1 Rank sum 2 Z N 1 N 2 Critical p-level P-level

4 °C 8 °C 2077 1163 -4.397 40 40 0.017 < 0.001
4 °C 12 °C 2128.5 1031.5 -5.182 40 39 0.017 < 0.001
8 °C 12 °C 1840.5 1319.5 -2.358 40 39 0.017 0.018
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Table 19. Results of one-way ANOVA with mother (mother 1, 2 and 3) as factor tested on the different ELHT
of the EYS stage larvae in the 4 °C group, and its respective Levene´s test for homogenity of variance between
the groups. At significant Levene´s tests, a Hartley F-max was performed and the results of the ANOVA test
was still used if Hartley F-max was below 10.

A. Lapillus diameter.
One-way ANOVA Levene´s test

Factor Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
Maternal 2 3.969 54 1.214 3.269 0.046 2, 54 3.134 0.052

B. Sagitta diameter.
One-way ANOVA Levene´s test

Factor Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
Maternal 2 1.574 56 1.631 0.965 0.387 2, 56 0.511 0.603

C. Dry weight.
One-way ANOVA Levene´s test

Factor Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
Maternal 2 0.006 57 < 0.001 33.074 < 0.001 2, 57 1.259 0.292

D. Standard length.
One-way ANOVA Levene´s test

Factor Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
Maternal 2 2.310 57 0.114 20.270 < 0.001 2, 57 4.632 0.014

Hartley F-max: 6.762

Table 20. Results of two-way ANOVA with stage (1c and 1d) and mother (mother 1 and 2) as factors tested on
the different ELHT of the EYS stage larvae in the 12 °C group, and its respective Levene´s test for homogenity
of variance between the groups. At significant Levene´s tests, a Hartley F-max was performed and the results of
the ANOVA test was still used if Hartley F-max was below 10. If one factor was non-significant, a new one-
way ANOVA was performed with that factor excluded. Larvae standard length was analysed by Mann Whitney
U-test due to non-homogenous variance (Hartley F-max > 10).

A. Lapillus diameter.
Two-way ANOVA Levene´s test

Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
1: Stage 1 8.185 32 1.194 6.856 0.013 3, 32 0.630 0.601
2: Maternal 1 9.117 32 1.194 7.637 0.009
1 2 1 0.127 32 1.194 0.106 0.747

B. Sagitta diameter.
Two-way ANOVA Levene´s test

Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
1: Stage 1 4.928 32 1.919 2.567 0.119 3, 32 0.716 0.550
2: Maternal 1 0.437 32 1.919 0.227 0.637
1 2 1 1.797 32 1.919 0.936 0.340
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C. Dry weight.
Two-way ANOVA Levene´s test

Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
1: Stage 1 < 0.001 31 < 0.001 0.754 0.392 3, 31 0.939 0.434
2: Maternal 1 0.013 31 < 0.001 179.735 < 0.001
1 2 1 < 0.001 31 < 0.001 1.487 0.232

One-way ANOVA Levene´s test
Factor Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
Maternal 1 0.014 33 < 0.001 189.561 < 0.001 1, 33 1.217 0.278

D. Mann Whitney U-test among stage in the 12 °C group on standard length of EYS larvae.
Group 1 Group 2 Rank sum 1 Rank sum 2 Z N 1 N 2 Critical p-level P-level
Stage 1c Stage 1d 385.5 281.5 -0.730 22 14 0.05 0.465

Table 21. Results of one-way ANOVA with stage as factor on sagitta size (at hatching and at the EYS stage at
12 °C, and hatch-check size of the fed larvae).

One-way ANOVA Levene´s test
Factor Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
Stage 2 26.614 86 1.849 14.397 < 0.001 2, 86 1.149 0.321

Table 22. Results of two-way ANOVA with temperature (4, 8 and 12 °C) and stage (at hatching and at the EYS
stage) as factors on sagitta and lapillus diameter. Estimated mean values are given. Mean values with different
letters at the same variable are significantly different, and a is associated with the highest value.
Variables Temperature groups Stage

4 °C 8 °C 12 °C Hatching EYS
Sagitta diameter (µm)* 26.13 26.20 25.94 25.66 26.53
Lapillus diameter (µm) 27.72 a 25.81 b 24.93 c 25.956 b 26.36 a
* Significant temperature-stage interaction effect.

Table 23. Results of two-way ANOVA with stage (at hatching and at the EYS stage) and mother (mother 1 and
2) as factors tested on the otolith diameters, and it respective Levene´s test for homogenity of variance between
the groups.

A. Lapillus diameter.
Two-way ANOVA Levene´s test

Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
1: Stage 1 9.236 221 1.357 6.804 0.010 5, 221 1.183 0.319
2: Maternal 2 152.817 221 1.357 112.573 < 0.001
1 2 2 0.680 221 1.357 0.501 0.607

B. Sagitta diameter.
Two-way ANOVA Levene´s test

Factors Df effect Ms effect Df error Ms error F-value P-value Df F-value P-value
1: Stage 1 42.117 220 1.659 25.385 < 0.001 5, 220 0.717 0.611
2: Maternal 2 1.258 220 1.659 0.758 0.470
1 2 2 16.774 220 1.659 10.110 < 0.001
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Table 24. Factor loadings of principal component analyses of different variables of the newly hatched larvae performed with varimax normalized rotation.
4 °C group, n=51 8 °C group, n=52 12 °C group, n=30 All groups pooled, n=133

Variable Factor 1 Factor 2 Factor 1 Factor 2 Factor 1 Factor 2 Factor 1 Factor 2
Left lapillus -0.108 0.518 -0.116 0.853 0.217 -0.524 0.718 0.295
Right lapillus -0.014 0.751 -0.195 0.703 0.622 -0.532 0.782 0.265
Left sagitta 0.124 0.774 0.352 0.760 0.765 -0.070 0.768 -0.063
Right sagitta -0.162 0.695 0.443 0.579 0.773 -0.284 0.743 -0.017
Egg diameter 0.019 -0.354 0.242 0.295 0.092 0.051 0.281 0.494
Standard length alive 0.943 0.048 0.932 -0.016 0.443 0.750 0.470 0.775
Standard length fixated 0.946 0.018 0.878 0.033 0.144 0.782 0.487 0.751
Larval dry weight -0.218 0.282 -0.293 0.419 0.318 -0.634 0.324 -0.600
Incubation day degrees 0.570 -0.188 0.747 -0.059 0.620 0.019 -0.041 0.491
Eigenvalues 2.381 1.992 2.826 2.302 2.745 1.813 3.628 1.462

Table 25. Factor loadings of principal component analyses of different variables of the EYS stage larvae performed with varimax normalized rotation.
4 °C group, n=17 8 °C group, n=17 12 °C group, n=22 All groups pooled, n=56

Variable Factor 1 Factor 2 Factor 1 Factor 2 Factor 1 Factor 2 Factor 1 Factor 2
Left lapillus 0.735 0.390 0.885 0.009 0.741 0.266 0.773 0.391
Right lapillus 0.665 0.312 0.697 -0.420 0.791 0.199 0.764 0.325
Left sagitta 0.130 0.858 0.834 -0.177 0.816 -0.126 -0.080 0.860
Right sagitta 0.042 0.821 0.764 0.498 0.846 0.058 0.081 0.812
Standard length -0.675 0.009 0.126 0.927 0.075 0.897 0.828 -0.202
Larval dry weight -0.873 0.080 -0.044 0.101 0.110 0.934 0.533 -0.225
Eigenvalues 2.572 1.316 2.571 1.328 2.809 1.583 1.290 1.624
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Table 26. Factor loadings of principal component analysis of different variables of the fed larvae performed
with varimax normalized rotation.
Variable Factor 1 Factor 2
Left lapillus -0.066 0.873
Right lapillus 0.124 0.850
Left sagitta 0.954 0.180
Right sagitta 0.968 -0.050
Standard length alive 0.978 -0.046
Standard length frozen 0.955 0.027
Larval dry weight 0.961 0.067
Eigenvalues 4.677 1.516


