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Identification and molecular characterization
of a new ovarian cancer susceptibility locus
at 17q21.31
Jennifer Permuth-Wey, Kate Lawrenson, Howard C. Shen et al.w

Epithelial ovarian cancer (EOC) has a heritable component that remains to be fully char-

acterized. Most identified common susceptibility variants lie in non-protein-coding sequen-

ces. We hypothesized that variants in the 30 untranslated region at putative microRNA

(miRNA)-binding sites represent functional targets that influence EOC susceptibility. Here,

we evaluate the association between 767 miRNA-related single-nucleotide polymorphisms

(miRSNPs) and EOC risk in 18,174 EOC cases and 26,134 controls from 43 studies genotyped

through the Collaborative Oncological Gene–environment Study. We identify several

miRSNPs associated with invasive serous EOC risk (odds ratio¼ 1.12, P¼ 10� 8) mapping to

an inversion polymorphism at 17q21.31. Additional genotyping of non-miRSNPs at 17q21.31

reveals stronger signals outside the inversion (P¼ 10� 10). Variation at 17q21.31 is associated

with neurological diseases, and our collaboration is the first to report an association with EOC

susceptibility. An integrated molecular analysis in this region provides evidence for ARH-

GAP27 and PLEKHM1 as candidate EOC susceptibility genes.

wA full list of authors and their affiliations appears at the end of the paper.
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G
enome-wide association studies (GWAS) have identified
hundreds of genetic variants conferring low penetrance
susceptibility to cancer1. More than 90% of these

variants lie in non protein-encoding sequences including non-
coding RNAs and regions containing regulatory elements (that is,
enhancers, promoters, untranslated regions (UTRs))1. The
emerging hypothesis is that common variants within non-
coding regulatory regions influence expression of target genes,
thereby conferring disease susceptibility1.

MicroRNAs (miRNAs) are short non-coding RNAs that regulate
gene expression post-transcriptionally by binding primarily to the
30UTR of target messenger RNA (mRNA), causing translational
inhibition and/or mRNA degradation2–4. MiRNAs have been
shown to have a key role in the development of epithelial ovarian
cancer (EOC)2. We5,6 and others7 have found evidence that various
miRNA-related single-nucleotide polymorphisms (miRSNPs) are
associated with EOC risk, suggesting they may be key disruptors of
gene function and contributors to disease susceptibility8,9. However,
studies of miRSNPs that affect miRNA–mRNA binding have been
restricted by small sample sizes, and therefore have limited
statistical power to identify associations at genome-wide levels of
significance7–9. Large-scale studies and more systematic approaches
are warranted to fully evaluate the role of miRSNPs and their
contribution to disease susceptibility.

Here, we use the in silico algorithms, TargetScan10,11 and
Pictar12,13 to predict miRNA:mRNA-binding regions involving
genes and miRNAs relevant to EOC, and align identified regions
with SNPs in the Single Nucleotide Polymorphism database
(dbSNP) (Methods). We then genotype 1,003 miRSNPs (or
tagging SNPs with r240.80) in 18,174 EOC cases and 26,134
controls from 43 studies from the Ovarian Cancer Association
Consortium (OCAC) (Supplementary Table S1). Genotyping was
performed on a custom Illumina Infinium iSelect array designed
as part of the Collaborative Oncological Gene–environment
Study (COGS), an international effort that evaluated 211,155
SNPs and their association with ovarian, breast and prostate
cancer risk. Our investigation uncovers 17q21.31 as a new
susceptibility locus for EOC, and we provide insights into
candidate genes and possible functional mechanisms underlying
disease development at this locus.

Results
Association analyses. Seven hundred and sixty-seven of the 1,003
miRSNPs passed genotype quality control (QC) and were eval-
uated for association with invasive EOC risk; most of the
miRSNPs that failed QC were monomorphic (see Methods).
Primary analysis of 14,533 invasive EOC cases and 23,491 con-
trols of European ancestry revealed four strongly correlated SNPs
(r2¼ 0.99; rs1052587, rs17574361, rs4640231 and rs916793) that
mapped to 17q21.31 and were associated with increased risk (per
allele odds ratio (OR)¼ 1.10, 95% confidence interval (CI) 1.06–
1.13) at a genome-wide level of significance (10� 7); no other
miRSNPs had associations stronger than Po10� 4 (Supplemen-
tary Fig. S1). The most significant association was for rs1052587
(P¼ 1.9� 10� 7), and effects varied by histological subtype, with
the strongest effect observed for invasive serous EOC cases
(OR¼ 1.12, P¼ 4.6� 10� 8) (Table 1). No heterogeneity in ORs
was observed across study sites (Supplementary Fig. S2).

Rs1052587, rs17574361 and rs4640231 reside in the 30UTR of
microtubule-associated protein tau (MAPT), KAT8 regulatory
NSL complex subunit 1 (KANSL1/KIAA1267) and corticotrophin-
releasing hormone receptor 1 (CRHR1) genes, at putative binding
sites for miR-34a, miR-130a and miR-34c, respectively. The fourth
SNP, rs916793, is perfectly correlated with rs4640231 and lies in a
non-coding RNA, MAPT-antisense 1. 17q21.31 contains a B900-
kb inversion polymorphism14 (ch 17: 43,624,578–44,525,051 MB,
human genome build 37), and all three miRSNPs and the tagSNP
are located within the inversion (Fig. 1).

Chromosomes with the non-inverted or inverted segments of
17q21.31, respectively, known as haplotype 1 (H1) and haplotype
2 (H2), represent two distinct lineages that diverged B3 million
years ago and have not undergone any recombination event14.
The four susceptibility alleles identified here reside on the
H2 haplotype that is reported to be rare in Africans and
East Asians, but is common (frequency 420%) and
exhibits strong linkage disequilibrium (LD) among Europeans14,
consistent with our findings. The H2 haplotype has a frequency of
22% among European women in our primary analysis (Table 1)
but only 3.2 and 0.3% among Africans (151 invasive cases, 200
controls) and Asians (716 invasive cases, 1573 controls),
respectively.

Table 1 | Tests of association by histological subtype for directly genotyped and imputed SNPs at 17q21.31 most strongly
associated with invasive epithelial ovarian cancer risk among Europeans.

SNP
Major4minor allele Coordinate* MAF Subtype

Number of cases
(versus 23,491 controls)

Per-allele
OR (95% CI)w P-value

rs1052587z 44102604 0.22 All invasives 14,533 1.10 (1.06–1.13) 1.9� 10� 7

(T4C) Serous 8,371 1.12 (1.08–1.17) 4.6� 10�8

Endometrioid 2,068 1.11 (1.04–1.19) 5.2� 10� 3

Clear cell 1,025 0.98 (0.88–1.09) 0.68
Mucinous 944 1.07 (0.96–1.20) 0.22

rs12942666y 43499839 0.22 All invasives 14,533 1.11 (1.07–1.15) 3.3� 10� 8

(A4G) Serous 8,371 1.15 (1.11–1.20) 1.0� 10�9

Endometrioid 2,068 1.10 (1.02–1.18) 0.04
Clear Cell 1,025 1.04 (0.92–1.14) 0.61
Mucinous 944 1.04 (0.92–1.16) 0.55

rs2960000|| 43534353 0.18 All invasives 14,533 1.12 (1.08–1.16) 4.2� 10�9

(T4C) Serous 8,371 1.16 (1.12–1.20) 3.3� 10� 10

Endometrioid 2,068 1.12 (1.03–1.20) 0.01
Clear cell 1,025 1.05 (0.93–1.16) 0.44
Mucinous 944 1.03 (0.90–1.15) 0.65

Abbreviations: CI, confidence interval; MAF, minor allele frequency in controls; OR, odds ratio.
*Genome build NCBI B37/human genome build 19 assembly.
wOR and 95% CI per copy of the minor allele, with adjustment for the first five eigenvalues from principal components analysis.
zrs1052587 is the most statistically significant miRNA-binding site SNP among all invasives and serous; it resides in a putative miRNA-binding site between microtubule-associated protein tau (MAPT) and miR-
34a-5p (chr 1:9134225-9134425).
yrs12942666 is a SNP at 17q21.31 that was directly genotyped as part of COGS; it is in strong linkage disequilibrium (r2¼0.99) with two other 17q21.31 SNPs that were directly genotyped but had less optimal
clustering: rs2077606 (P¼ 3.9� 10� 10 for the serous subtype) and rs17631303 (P¼4.7� 10� 10 for the serous subtype).
||rs2960000 represents the most statistically significant SNP at 17q21.31 (among all invasives) that was imputed from the 1000 genome Project reference panel with an R-squared quality metric of 95% or
greater (http://www.1000genomes.org/page.php).
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To increase genomic coverage at this locus, we evaluated an
additional 142 non-miRSNPs at 17q21.31 that were also
genotyped as a part of COGS in the same series of OCAC cases
and controls. We also imputed genotypes using data from the
1000 Genomes Project15. These approaches identified a second
cluster of strongly correlated SNPs (r240.90) in a distinct region
proximal to the inversion (centred at chromosome 17: 43.5 MB,
human genome build 37) that was more significantly associated
with the risk of all invasive EOCs (P¼ 10� 9) and invasive serous
EOC specifically (P¼ 10� 10) than the cluster of identified
miRSNPs (Fig. 1). Association results and annotation for SNPs
in this second cluster are shown in Supplementary Table S2; this
cluster includes three directly genotyped SNPs (rs2077606,
rs17631303 and rs12942666), with the strongest association
observed for rs2077606 among all invasive cases (OR¼ 1.12,
95% CI: 1.08–1.16, P¼ 7.8� 10� 9) and invasive serous cases
(OR¼ 1.15, 95% CI: 1.12–1.19, P¼ 3.9� 10� 10). These
SNPs were chosen for genotyping in COGS because they had
shown evidence of association as modifiers of EOC risk in
BRCA1 gene mutation carriers by the Consortium of Investigators
of Modifiers of BRCA1/2 (CIMBA)16. Several imputed SNPs in
strong LD (r240.90) were more strongly associated with
risk than their highly correlated genotyped SNPs (Supple-
mentary Table S2). This risk-associated region at 17q21.31 is
distinct from a previously reported ovarian cancer susceptibility
locus at 17q21 (ref. 17); neither the genotyped nor the imputed
SNPs we report here are strongly correlated (maximum r2¼ 0.01)

with SNPs from the 17q21 locus (spanning 46.2–46.5 MB,
build 37).

Genotype clustering was poor for rs2077606, but clustering was
good for its correlated SNP, rs12942666 (r2¼ 0.99) and so results
for this SNP are presented instead (Supplementary Fig. S3;
Table 1). Subgroup analysis revealed marginal evidence of
association for rs12942666 with endometrioid (P¼ 0.04), but
not mucinous or clear cell EOC subtypes (Table 1), and results
were consistent across studies (Supplementary Fig. S4).
Rs12942666 is correlated with the top-ranked miRSNP,
rs1052587 (r2¼ 0.76) (Fig. 1). To evaluate whether associations
observed for rs12942666 and rs1052587 represented independent
signals, stepwise logistic regression was used; only rs12942666 was
retained in the model. This suggests that the cluster which
includes rs12942666 is driving the association with EOC risk that
was initially identified through the candidate miRSNPs.

Functional and molecular analyses. To evaluate functional evi-
dence for candidate genes, risk-associated SNPs, and regulatory
regions at 17q21.31, we examined a 1-MB region centred on
rs12942666 using a combination of locus-specific and genome-
wide assays and in silico analyses of publicly available data sets,
including The Cancer Genome Atlas (TCGA) Project18 (see
Methods). Rs12942666 and many of its correlated SNPs lie within
introns of Rho GTPase activating protein 27 (ARHGAP27) or its
neighbouring gene, pleckstrin homology domain containing
family M (with RUN domain) member 1 (PLEKHM1) (Supple-
mentary Table S2). There are another 15 known protein-coding
genes within the region: KIF18B, C1QL1, DCAKD, NMT1,
PLCD3, ABCB4, HEXIM1, HEXIM2, FMNL1, C17orf46,
MAP3K14, C17orf69, CRHR1, IMP5 and MAPT (Fig. 2a).

To evaluate the likelihood that one or more genes within this
region represent target susceptibility gene(s), we first analysed
expression, copy number variation and methylation involving
these genes in EOC tissues and cell lines (Fig. 2b–g; Supple-
mentary Tables S3 and S4). Most genes showed significantly
higher expression (Po10� 4) in EOC cell lines versus normal
ovarian cancer precursor tissues (OCPTs); ARHGAP27 showed
the most pronounced difference in gene expression between
cancer and normal cells (P¼ 10� 16) (Fig. 2b and Supplementary
Table S3). For nine genes, we also found overexpression in
primary high-grade serous (HGS) EOC tumours versus normal
ovarian tissue in at least one of two publicly available data sets,
TCGA series of 568 tumours18and/or the Gene Expression
Omnibus series GSE18520 data set consisting of 53 tumors19

(Fig. 2c and Supplementary Table S3). Analysis of DNA copy
number variation in TCGA revealed frequent loss of
heterozygosity in this region rather than copy number gains
(Supplementary Fig. 5a–b; Supplementary Methods). We
observed significant hypomethylation (Po0.01) in ovarian
tumours compared to normal tissues for DCAKD, PLCD3,
ACBD4, FMNL1 and PLEKHM1 (Fig. 2d and Supplementary
Table S4), which is consistent with the overexpression observed
for DCAKD, PLCD3 and FMNL1. Taken together, these data
suggest that the mechanism underlying overexpression may be
epigenetic rather than based on copy number alterations.

We evaluated associations between genotypes for the top risk
SNP rs12942666 (or a tagSNP) and expression of all genes in the
region (expression quantitative trait locus (eQTL) analysis) in
normal OCPTs, lymphoblastoid cell lines and primary ovarian
tumours from TCGA. The only significant eQTL association
observed (Po0.05) in normal OCPTs was for ARHGAP27
(P¼ 0.04) (Fig. 2e; Supplementary Table S3). Because
rs12942666 was not genotyped in tissues analysed in TCGA, we
used data for its correlated SNP rs2077606 (r2¼ 0.99) to evaluate
eQTLs in tumour tissues. Rs2077606 genotypes were strongly
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Figure 1 | Regional association plot for genotyped and imputed SNPs at

17q21.31. The middle portion of the plot contains the region of the inversion

polymorphism (ch 17: 43,624,578–44,525,051, hg build 37), with the four

blue dots representing the candidate miRSNPs (rs4640231, rs1052587 and

rs17574361) and the tagSNP, rs916793. rs1052587 in the 30UTR of MAPT

has the strongest signal (P¼4.6� 10� 8) among the miRSNPs. The cluster

on the left side of the plot (around 43.5 MB) contains highly correlated

SNPs (r2¼0.99), including three directly genotyped intronic SNPs,

rs2077606 and rs17631303 in PLEKHM1 (P¼ 3.9� 10� 10 and

P¼4.7� 10� 10, respectively), and rs12942666 in ARHGAP27

(P¼ 1.0� 10� 9). The LD between each plotted SNP and the top-ranked

SNP in the region with the best clustering, rs12942666, is depicted by the

colour scheme; the deeper the colour red, the stronger the correlation

between the plotted SNP and rs12942666. The top miRSNP, rs1052587,

is moderately correlated (r2¼0.76) with rs2077606, rs17631303 and

rs12942666 in our study population (n¼ 8,371 invasive serous cases and

n¼ 23,491 controls, of European ancestry).
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associated with PLEKHM1 expression in primary HGS-EOCs
(P¼ 1� 10� 4) (Fig. 2f; Supplementary Table S3). We also detec-
ted associations between rs12942666 (and rs2077606) genotypes
and methylation for PLEKHM1 and CRHR1 in primary ovarian
tumours (P¼ 0.020 and 0.001, respectively) using methylation
quantitative trait locus analyses (Fig. 2g; Supplementary Table
S4). Finally, the Catalogue of Somatic Mutations in Cancer

database20 showed that nine genes in the region, including
PLEKHM1, have functionally significant mutations in cancer,
although for most genes mutations were not reported in ovarian
carcinomas (Supplementary Table S3).

Taken together, these data suggest that several genes at the
17q21.31 locus may have a role in EOC development. The risk-
associated SNPs we identified fall within non-coding DNA,

* * * * *
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suggesting the functional SNP(s) may be located within an
enhancer, insulator or other regulatory element that regulates
expression of one of the candidate genes we evaluated. One
hypothesis emerging from these molecular analyses is that
rs12942666 (or a correlated SNP) mediates regulation of
PLEKHM1, a gene implicated in osteopetrosis and endocy-
tosis21 and/or ARHGAP27, a gene that may promote carcino-
genesis through dysregulation of Rho/Rac/Cdc42-like GTPases22.
To identify the most likely candidate for being the causal variant
at 17q21.31, we compared the difference between log-likelihoods
generated from un-nested logistic regression models for
rs12942666 and each of 198 SNPs in a 1-MB region featured in
Supplementary Table 2. As expected, the log-likelihoods were
very similar due to the strong LD; no SNPs emerged as having a
likelihood ratio 420 for being the causal variant.

To explore the possible functional significance of rs12942666
and strongly correlated variants (r240.80), we then generated a
map of regulatory elements around rs12942666 using
ENCyclopedia of DNA Elements (ENCODE) data and formal-
dehyde-assisted isolation of regulatory elements sequencing
analysis of OCPTs (Supplementary Methods). We observed no
evidence of putative regulatory elements coinciding with
rs12942666 or correlated SNPs (Fig. 3a). A map of regulatory
elements in the entire 1-MB region can be seen in Supplementary
Fig. 5c–f. We subsequently used in silico tools (ANNOVAR23,
SNPinfo24 and SNPnexus25) to evaluate the putative function of
possible causal SNPs (Supplementary Methods). Of 50 SNPs with
possible functional roles, more than 30 reside in putative
transcription factor binding sites (TFBS) within or near
PLEKHM1 or ARHGAP27; 12 SNPs may affect methylation or
miRNA binding, and two are non-synonymous coding variants
predicted to be of no functional significance (Supplementary
Table S2).

As most of the top-ranked 17q21.31 SNPs with putative
functions (including two of the top directly genotyped SNPs,
rs2077606 and rs17631303) are predicted to lie in TFBS
(Supplementary Table S2), we used the in silico tool, JASPAR26,
to further examine TFBS coinciding with these SNPs. Two SNPs
scored high in this analysis (Supplementary Table S5); the first,
rs12946900, lies in a GAGGAA motif and canonical binding site
for SPIB, an Ets family member27. Ets factors have been
implicated in the development of ovarian cancer and other
malignancies28, but little evidence supports a specific role for
SPIB in EOC aetiology. The second hit was for rs2077606, which

lies in an E-box motif CACCTG at the canonical binding site for
ZEB1 (chr. 10p11.2), a zinc-finger E-box binding transcription
factor that represses E-cadherin29,30 and contributes to epithelial–
mesenchymal transition in EOCs31.

We analysed expression of SPIB and ZEB1 in primary ovarian
cancers using TCGA data; we found no significant difference in
SPIB expression in tumours compared with normal tissues
(Fig. 3bi). In contrast, ZEB1 expression was significantly lower in
primary HGS-EOCs compared with normal tissues (P¼ 0.005)
(Fig. 3bii). We validated this finding using qPCR analysis in 123
EOC and OCPT cell lines (P¼ 8.8� 10� 4) (Fig. 3biii). As
rs2077606 lies within an intron of PLEKHM1, this gene is a
candidate target for ZEB1 binding at this site. Our eQTL analysis
also suggests ARHGAP27 is a strong candidate ZEB1 target at this
locus; ARHGAP27 expression is highest in OCPT cell lines
carrying the minor allele of rs2077606 (P¼ 0.034) (Fig. 3ci).
Although we observed no eQTL associations between rs2077606
and ZEB1 expression in lymphoblastoid cell lines (Fig. 3cii), we
found evidence of eQTL between rs2077606 and ZEB1 expression
in HGS-EOCs (P¼ 0.045) (Fig. 3ciii). ZEB1 binding at the site of
the common allele is predicted to repress gene expression whereas
loss of ZEB1 binding conferred by the minor allele may enable
expression of ARHGAP27, consistent with the eQTL association
in OCPTs (Fig. 3ci). Although these data support a repressor role
for ZEB1 in EOC development and suggest ARHGAP27 may be a
functional target of rs2077606 (or a correlated SNP) in OCPTs
through trans-regulatory interactions with ZEB1, it is important
to investigate additional hypotheses as we continue to narrow
down the list of target susceptibility genes, SNPs, and regulatory
mechanisms that contribute to EOC susceptibility at this locus.

Discussion
The present study represents the largest, most comprehensive
investigation of the association between putative miRSNPs in the
30UTR and cancer risk. This and the systematic follow-up to
evaluate associations with EOC risk for non-miRSNPs in the
region identified 17q21.31 as a new susceptibility locus for EOC.
Although the miRSNPs identified here may have some biological
significance, our findings suggest that other types of variants in
non-coding DNA, especially non-miRSNPs at the 17q21.31 locus,
are stronger contributors to EOC risk. It is possible, however, that
highly significant miRSNPs exist that were not identified in our
study because (a) they were not pre-selected for evaluation (that

Figure 2 | Expression and methylation analyses at the 17q21.31 ovarian cancer susceptibility locus. (a) Genomic map and LD structure. The location and

approximate size of 17 known protein-coding genes (grey) and one microRNA (blue) in the region are shown relative to the location of rs12942666. Orange

indicates the location of the inversion polymorphism, and green indicates the region outside the inversion. (b) Gene expression (EOC and normal cell lines).

Gene expression analysis in epithelial ovarian cancer (EOC) cell lines (T; n¼ 51) compared with normal ovarian surface epithelial cells (OSECs) and

fallopian tube secretory epithelial cells (FTSECs) (N; n¼ 73) (*Po0.05, **Po0.01, ***Po0.001). (c) Gene expression (primary EOCs and normal tissue).

Boxplots of The Cancer Genome Atlas (TCGA) Affymetrix U133A-array-based gene expression in primary high-grade serous ovarian tumours (T; n¼ 568)

and normal fallopian tube tissues (N; n¼ 8). Where data were not available in TCGA, gene expression data from the Gene Expression Omnibus series

GSE18520 data set containing 53 high-grade serous tumours and 10 normal ovarian tissues are shown (indicated by a red asterisk). (d) Methylation

(primary tumours and normal tissue). Methylation analysis of 106 high-grade serous ovarian tumours compared with normal ovarian tissues (n¼ 7).

Methylation data were generated for CpG site(s) associated with each gene using the Illumina 450 methylation array. Pairwise analysis of methylation for

an individual CpG for each gene is based on the CpG with most significant inverse relationship to gene expression (that is, cis negative), for a subset of 43

tumours having available gene expression data. Statistically significant cis-negative probes are indicated by a red open circle. (e) eQTL analysis (OSECs/

FTSECs). eQTL analysis comparing expression of each gene to genotype for the most statistically significant SNP at 17q21.31 (rs12942666), for 73 normal

OSEC/FTSEC lines. Data are presented as box plots comparing expression levels in cases carrying rare homozygotes/heterozygotes, with cases

homozygous for the common allele. (f) eQTL analysis (primary EOCs). eQTL analysis comparing expression of each gene by genotype using level 3 gene

expression profiling data from Agilent 244K custom arrays and level 2 genotype data from the Illumina 1M-Duo BeadChip for 568 high-grade serous

ovarian cancer patients from TCGA. In all panels *Po0.05, **Po0.01, *** Po0.001. Grey X’s indicate data not available. Here, genotype data for

rs2077606 is used (rather than rs12942666) because rs12942666 was not genotyped in the TCGA data set. (g) Methylation quantitative trait locus

(mQTL) analysis (primary EOCs). mQTL analysis showing methylation status in 227 high-grade serous EOCs relative to rs12942666 genotype.
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is, they do not reside in a binding site involving miRNAs or genes
with known relevance to EOC, or they reside in regions other
than the 30UTR3,4) and/or (b) they were very rare and could not

be designed or detected with our genotyping platform and sample
size, respectively. Despite these limitations, the homogeneity
between studies of varying designs and populations in the OCAC
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Figure 3 | The non-coding landscape and eQTL associations for the rs2077606 susceptibility SNP at 17q21.31. (a) Analysis of the chromatin landscape

at ARHGAP27 and PLEKHM1 in normal ovarian surface epithelial and fallopian tube secretory epithelial cells (OSECs/FTSECs) by formaldehyde-assisted

isolation of regulatory elements sequencing (FAIRE-seq). Alignment with ENCODE FAIRE-seq tracks (shown) and ChIP-seq tracks (not shown) from non-

EOC-related cell lines reveals open chromatin peaks corresponding to (a) promoters (b) CTCF insulator binding sites and (c) H3K4me3 signals, suggestive

of a dynamic regulatory region. An H3K4me3 signal at a coding ARHGAP27 mRNA variant (c) located between the genes is highly pronounced in OSEC/

FTSEC, suggesting tissue-specific expression and function. Several of the top-ranking SNPs fall within TFBS (Supplementary Table S2). rs12942666 did not

coincide with TFBS, but tightly linked SNPs, rs12946900 and rs2077606 fell within predicted binding sites for SPIB and ZEB1, respectively. (b) We analysed

the expression of SPIB and ZEB1 in primary high-grade serous tumours from TCGA and found (i) no significant change in SPIB expression but (ii) significant

downregulation of ZEB1 in tumours compared with normal tissues. (iii) QPCR analysis of ZEB1 expression in 73 OCPT and 50 EOC cell lines supported the

finding that ZEB1 expression is lower in cancer cell lines compared with normal precursor tissues. (c) eQTL analysis in OSECs/FTSECs for different alleles of

rs2077606. (i) There was a significant eQTL for ARHGAP27, with the minor (A) allele being associated with increased ARHGAP27 expression. (ii) There

was no evidence of an association between rs2077606 genotypes and ARHGAP27 expression in lymphoblastoid cell lines, suggesting this association may

be tissue-specific. (iii) We observed a borderline significant eQTL association between ZEB1 mRNA and rs2077606 in tumours from TCGA, with the minor

risk allele also associated with lower expression.
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and the genome-wide levels of statistical significance imply that
all detected associations are robust. Furthermore, molecular
correlative analyses of genes within the region suggest that cis-
acting genetic variants influencing non-coding DNA regulatory
elements, miRNAs and/or methylation underlie disease
susceptibility at the 17q21.31 locus. Finally, these studies point
to a subset of candidate genes (that is, PLEKHM1, ARHGAP27)
and a transcription factor (that is, ZEB1) that may influence EOC
initiation and development.

This novel locus is one of eleven loci now identified that
contains common genetic variants conferring low penetrance
susceptibility to EOC in the general population17,32–34. Genetic
variants at several of these loci influence risks of more than one
cancer type, suggesting that several cancers may share common
mechanisms. For example, alleles at 5p15.33 and 19p13.1 are
associated with estrogen-receptor-negative breast cancer and
serous EOC susceptibility32,35, and variants at 8q24 are associated
with risk of EOC and other cancers17,36. Genetic variation at
17q21.31 is also associated with frontotemporal dementia–
spectrum disorders, Parkinson’s disease, developmental delay
and alopecia37–42. Through COGS, the CIMBA also recently
identified 17q21.31 variants that modify EOC risk in BRCA1 and
BRCA2 carriers (Po10� 8 in BRCA1/2 combined)16. In parti-
cular, rs17631303, which is perfectly correlated with rs2077606
and rs12942666, was among the top-ranking SNPs detected by
CIMBA16. Consistent with our findings, CIMBA also provide
data that suggest EOC risk is associated with altered expression of
one or more genes in the 17q21.31 region16. Thus, results from
this large-scale collaboration support a role for this locus in both
BRCA1/2- and non-BRCA1/2-mediated EOC development.
Before these findings can be integrated with variants from other
confirmed loci and non-genetic factors to predict women at
greatest risk of developing EOC and provide options for medical
management of these risks, continued efforts will be needed to
fine map the 17q21.31 region and to fully characterize the
functional and mechanistic effects of potential causal SNPs in
disease aetiology and development.

Methods
Study population. Forty-three individual OCAC studies contributed samples and
data to the COGS initiative. Nine of the 43 participating studies were case-only
(GRR, HSK, LAX, ORE, PVD, RMH, SOC, SRO, UKR); cases from these studies
were pooled with case–control studies from the same geographic region. The two
national Australian case–control studies were combined into a single study to
create 34 case–control sets. Details regarding the 43 participating OCAC studies are
summarized in Supplementary Table S1. Briefly, cases were women diagnosed with
histologically confirmed primary EOC (invasive or low malignant potential), fal-
lopian tube cancer or primary peritoneal cancer ascertained from population- and
hospital-based studies and cancer registries. The majority of OCAC cases (490%)
do not have a family history of ovarian or breast cancer in a first-degree relative,
and most have not been tested for BRCA1/2 mutations as a part of their parent
study. Controls were women without a current or prior history of ovarian cancer
with at least one ovary intact at the reference date. All studies had data on disease
status, age at diagnosis/interview, self-reported racial group and histologic subtype.
Most studies frequency-matched cases and controls on age group and race.

Selection of candidate genes and SNPs. To increase the likelihood of identifying
miRSNPs with biological relevance to EOC, we reviewed published literature and
consulted public databases to generate two lists of candidate genes: (1) 55 miRNAs
reported to be deregulated in EOC tumours compared with normal tissue in at least
one study43–46, and (2) 665 genes implicated in the pathogenesis of EOC through
gene expression analyses47,48, somatic mutations49, or genetic association
studies50,51. Many genes were identified through the Gene Prospector database51, a
web-based application that selects and prioritizes potential disease-related genes
using a highly curated, up-to-date database of genetic association studies.

Using each candidate gene list as input, we identified putative sites of
miRNA:mRNA binding with the computational prediction algorithms TargetScan
version 5.1 (refs 10,11) and PicTar12,13 (Supplementary Methods). Each algorithm
generated start and end coordinates for regions of miRNA binding, and database
SNP52 version 129 was mined to identify SNPs falling within the designated
binding regions. Of 3,246 unique miRSNPs that were identified, 1,102 obtained

adequate design scores using Illumina’s Assay Design Tool. The majority
(n¼ 1,085, 98.5%) of the 1,102 SNPs resided in predicted sites of miRNA binding
(and therefore represent miRSNPs), while the remainder (n¼ 17) are tagSNPs
(r240.80) for miRSNPs that were not designable or had poor-to-moderate design
scores. Ninety-nine of the 1102 SNPs failed during custom assay development,
leaving a total of 1,003 SNPs that were designed and genotyped.

Genotyping and QC. The candidate miRSNPs selected for the current investiga-
tion were genotyped using a custom Illumina Infinium iSelect Array as part of the
international COGS, an effort to evaluate 211,155 genetic variants for association
with the risk of ovarian, breast and prostate cancer. Samples and data were
included from several consortia, including OCAC, the Breast Cancer Association
Consortium, the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA)
and the Prostate Cancer Association Group to Investigate Cancer-Associated
Alterations in the Genome (PRACTICAL). Although one of the primary goals of
COGS was to replicate and fine-map findings from pooled GWAS from each
consortia, this effort also aimed to genotype candidate SNPs of interest (such as the
miRSNPs). The genotyping and QC process has been described recently in our
report of OCAC’s pooled GWAS findings34. Briefly, COGS genotyping was
conducted at six centres, two of which were used for OCAC samples: McGill
University and Génome Québec Innovation Centre (Montréal, Canada)
(n¼ 19,806) and Mayo Clinic Medical Genomics Facility (n¼ 27,824). Each
96-well plate contained 250 ng genomic DNA (or 500 ng whole genome-amplified
DNA). Raw intensity data files were sent to the COGS data coordination
centre at the University of Cambridge for genotype calling and QC using the
GenCall algorithm.

Sample QC. One thousand two hundred and seventy-three OCAC samples
were genotyped in duplicate. Genotypes were discordant for greater than 40 per
cent of SNPs for 22 pairs. For the remaining 1,251 pairs, concordance was greater
than 99.6 per cent. In addition, we identified 245 pairs of samples that
were unexpected genotypic duplicates. Of these, 137 were phenotypic duplicates
and judged to be from the same individual. We used identity-by-state to
identify 618 pairs of first-degree relatives. Samples were excluded according to the
following criteria: (1) 1,133 samples with a conversion rate (the proportion of
SNPs successfully called per sample) of less than 95 per cent; (2) 169 samples
with heterozygosity 45 s.d’s from the intercontinental ancestry-specific mean
heterozygosity; (3) 65 samples with ambiguous sex; (4) 269 samples with the
lowest call rate from a first-degree relative pair; (5) 1,686 samples that were
either duplicate samples that were non-concordant for genotype or genotypic
duplicates that were not concordant for phenotype. A total of 44,308 eligible
subjects including 18,174 cases and 26,134 controls were available for analysis.

SNP QC. The process of SNP selection by the participating consortia has been
summarized previously34. In total, 211,155 SNP assays were successfully designed,
including 23,239 SNPs nominated by OCAC. Overall, 94.5% of OCAC-nominated
SNPs passed QC. SNPs were excluded if: (1) the call rate was o95% with
MAF45% or o99% with MAFo5% (n¼ 5,201); (2) they were monomorphic
upon clustering (n¼ 2,587); (3) P-values of HWE in controls were o10� 7

(n¼ 2,914); (4) there was greater than 2% discordance in duplicate pairs (n¼ 22);
(5) no genotypes were called (n¼ 1,311). Of 1,003 candidate miRSNPs genotyped,
767 passed QC criteria and were available for analysis; the majority of miRSNPs
that were excluded were monomorphic (n¼ 158, 67%). Genotype intensity cluster
plots were visually inspected for the most strongly associated SNPs.

Population stratification. HapMap DNA samples for European (CEU, n¼ 60),
African (YRI, n¼ 53) and Asian (JPTþCHB, n¼ 88) populations were also
genotyped using the COGS iSelect. We used the program LAMP53 to estimate
intercontinental ancestry based on the HapMap (release no. 23) genotype
frequency data for these three populations. Eligible subjects with 490 per cent.
European ancestry were defined as European (n¼ 39,773) and those with greater
than 80 per cent. Asian or African ancestry were defined as Asian (n¼ 2,382) or
African, respectively (n¼ 387). All other subjects were defined as being of mixed
ancestry (n¼ 1,766). We then used a set of 37,000 unlinked markers to perform
principal components analysis within each major population subgroup. To enable
this analysis on very large sample sizes, we used an in-house program written in
Cþ þ using the Intel MKL libraries for eigenvectors (available at http://
ccge.medschl.cam.ac.uk/software/).

Tests of association. We used unconditional logistic regression treating the
number of minor alleles carried as an ordinal variable (log-additive model) to
evaluate the association between each SNP and EOC risk. Separate analyses were
carried out for each ancestry group. The model for European subjects was adjusted
for population substructure by including the first five eigenvalues from the prin-
cipal components analysis. African- and Asian ancestry-specific estimates were
obtained after adjustment for the first two components representing each respective
ancestry. Due to the heterogeneous nature of EOC, subgroup analysis was con-
ducted to estimate genotype-specific ORs for serous carcinomas (the most pre-
dominant histologic subtype) and the three other main histological subtypes of
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EOC: endometrioid, mucinous and clear cell. Separate analyses were also carried
out for each study site, and site-specific ORs were combined using a fixed-effect
meta-analysis. The I2 test of heterogeneity was estimated to quantify the proportion
of total variation due to heterogeneity across studies, and the heterogeneity of ORs
between studies was tested with Cochran’s Q statistic. The R statistical package
‘r-meta’ was used to generate forest plots. Statistical analysis was conducted in
PLINK54.

Imputation of genotypes at 17q21.31. To increase genomic coverage, we imputed
genotype data for the 17q21.31 region (chr17: 40,099,001–44,900,000, human
genome build 37) with IMPUTE2.2 (ref. 55) using phase 1 haplotype data from the
January 2012 release of the 1,000 genome project data15. For each imputed
genotype the expected number of minor alleles carried was estimated (as weights).
IMPUTE provides estimated allele dosage for SNPs that were not genotyped and
for samples with missing data for directly genotyped SNPs. Imputation accuracy
was estimated using an r2 quality metric. We excluded imputed SNPs from analysis
where the estimated accuracy of imputation was low (r2o0.3).

Functional studies and in silico analysis of publicly available data sets. We
performed the following assays for each gene in the 1-MB region centred on the
most significant SNP at the 17q21.31 locus (see Supplementary Methods): gene
expression analysis in EOC cell lines (n¼ 51) compared with normal cell lines from
OCPTs56, including ovarian surface epithelial cells and fallopian tube secretory
epithelial cells (n¼ 73) and CpG island methylation analysis in HGS ovarian
cancer (HGS-EOC) tissues (n¼ 106) and normal tissues (n¼ 7). Genes in the
region were also evaluated in silico by mining publicly available molecular
data generated for primary EOCs and other cancer types, including TCGA
analysis of 568 HGS EOCs18, the Gene Expression Omnibus series GSE18520
data set of 53 HGS EOCs19 and the Catalogue Of Somatic Mutations in Cancer
database20.

We used these data to (1) compare gene expression between (a) EOC cell lines
and normal cell lines and (b) tumour tissue and normal tissue from TCGA, (2) to
compare gene methylation status in HGS-EOCs and normal tissue, (3) to conduct
gene eQTL analyses to evaluate genotype–gene expression associations in normal
OCPTs, lymphoblastoid cells and HGS-EOCs and (4) to conduct methylation
quantitative trait locus analyses in HGS-EOCs to evaluate genotype–gene
methylation associations. Data from ENCODE57 were used to evaluate the overlap
between regulatory elements in non-coding regions and risk-associated SNPs.
ENCODE describes regulatory DNA elements (for example, enhancers, insulators
and promotors) and non-coding RNAs (for example, miRNAs, long non-coding
and piwi-interacting RNAs) that may be targets for susceptibility alleles. However,
ENCODE does not include data for EOC-associated tissues, and activity of such
regulatory elements often varies in a tissue-specific manner57,58. Therefore, we
profiled the spectrum of non-coding regulatory elements in ovarian surface
epithelial cells and fallopian tube secretory epithelial cells using a combination of
formaldehyde-assisted isolation of regulatory elements sequencing and RNA
sequencing (Supplementary Methods).
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