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Abstract

In this study, we developed a mathematical model for 2D microbial EOR technology. It consists of an average

pressure formulation of two-phase flow and component advection-diffusion reactive transport models. An IFT

reduction mechanism has been used to couple porous media flow and transport phenomenon. A cell centered

control volume and backward Euler methods were applied to discretize the flow and transport equations. An

iterative linearization technique is implemented in Matlab to solve the resulting system of non-linear algebraic

equations. Numerical experiments were conducted on two-phase flow, advection-diffusion transport and the

coupled microbial EOR models for different mobility and capillary pressure parameterizations. Moreover,

we have proposed a new microbial EOR optimization model to maximize the sweep efficiency by controlling

the slug size injection strategy. In this thesis, we have also proposed a new optimization algorithm based

on gradient accent and iterative linearization methods to handle the microbial EOR optimization model

numerically. A number of illustrative numerical experiments have been done to analyse the effect of slug size

and cost of microbial concentration.

Keywords: two-phase flow, advection-diffusion transport, microbial EOR, slug size injection strategy and

microbial EOR optimization.
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Chapter 1

General Introduction

Since 1856, researchers from science and engineering disciplines started exploring and investigating fluid flow

and transport in subsurface reservoirs and to use the information acquired to forecast, manage and control the

process as it takes place in a system ([1–15] to list a few). This kind of study often involves building simulation

models that can mimic actual fluid flow behaviours within reservoirs. The models should represent porous

medium (the reservoir), with all appropriate physics, reservoir properties and geology as closely as possible.

In reservoir mathematics, multi-phase flow models embrace the properties of the reservoir domain and motion

of multiple fluids (ranging from immiscible/incompressible to miscible/compressible fluids) through the voids

of a porous media [1]. In this sort of fluid transport, fluids flow together, allowing distinct interface between

phases due to phase pressure differences.

Multi-phase flow in porous media are widely applicable in real life phenomenon, such as ground water

contamination, CO2 sequestration, nuclear waste management and enhanced oil recovery (EOR) [1, 2, 4–

6, 9, 11, 16–25]. Since the world’s energy consumption has risen tremendously, crude fuels remain in the

market as a key supply of energy source. Thus, simulation of fluid dynamics in subsurface reservoir has been

received an increasing interest in industries as well as academia ([4–6, 11, 15, 17, 23–25] to name a few) and

it is also the interest of this thesis, particularly microbial EOR.

Fluid dynamics in oil petroleum reservoir is governed by non-linear and complex systems of partial differential

equations (PDEs). As a consequence, it is difficult and quite challenging to give a qualitative solution analysis

unless one can make strong assumptions, which indeed cannot describe the physical phenomena and lead

to invalid forecast for fluid flow problems. This enforces to weaken the assumptions in order to have a

comparable realistic mathematical flow models. Moreover, the need to explore the effect of adding microbes

to an oil reservoir for enhancing the recovery has a significant additional complexity on the governing

mathematical model. Thus, numerical methods should be employed to understand, analyse and forecast

multi-phase flow and mass transport in porous media.
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This thesis aims to investigate the effect of microbial activities on residual oil by reduction of interfacial ten-

sion (IFT) mechanism. This is often done by setting a mathematical reservoir model consisting of two-phase

flow (the oil phase and water phase, for which the flow is governed by the Darcy’s law and mass conservation

for each phase) and the transport mechanism of microbes (it has been modelled by the advection–diffusion

equations). The flow and transport equations are coupled by introducing microbes effect on the capillary

pressure and relative permeabilities (see the developments in Chapter 6) which would give a complete and

coupled mathematical model (we call it microbial EOR model) to govern fluid flow and transport of microbes

in porous media. This mathematical model is used to simulate the contribution of microbes on recovery of

oil by capillary pressure reduction mechanism.

In addition to microbial EOR simulation, this thesis has shown the interaction between slug size injection,

microbial EOR model and well production performance by proposing a new mathematical model that controls

the injection size of water and microbial concentration. This part aims to investigate the effect of slug size

injection over the residual oil. The resulting model is an optimization model that controls the injection

volumetric rate and searches a way to maximize the profit from the oil recovery processes.

In general, the resulting mathematical models are non-linear and fully coupled systems which lead to the use

of numerical methods and simulation mechanism providing better correlation between the physical model,

the mathematical model and the numerical model. As a result, we have employed a cell center finite

volume and backward Euler discretization in space and time respectively followed by iterative linearization

to simulate two-phase flow, microbial transport and microbial EOR models. Furthermore, we adopt this

iterative linearization solver and gradient accent optimization method in order to solve and analyse the

effect of injection slug size on the performance of oil production.

This thesis is organised as follows;

† Chapter 2 introduces basic notions and concepts of multi-phase flow in porous media. Moreover, it

discusses existing EOR methods, particularly it gives a detail discussion on microbial EOR method.

Literature review on mathematical models that govern two-phase flow and transport phenomena with

the corresponding numerical methods have been introduced in this chapter.

† A Darcy–type mathematical model is given in Chapter 3 that presents a two dimensional average

pressure formulation of incompressible two-phase flow. An advection-diffusion reactive component

transport models are also discussed in this chapter. The growth, deposition and reaction terms of

microbial concentration are also introduced.

† The mathematical models discussed in Chapter 3 are discretized in Chapter 4 by the help of cell

centered finite volume method. Moreover, a two point flux approximation is used to obtain harmonic

average approximate value of boundary rock permeability at each control volume. Furthermore, an

average and upwind streaming methods are formulated to obtain an approximate value of boundary

relative permeabilities at each control volume.
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† In Chapter 5, numerical modeling and implementation validation test are discussed and analysed for

two-phase flow models with different fluid parameterizations and a simple transport model through

comparing the numerical solutions with the manufactured analytical solutions.

† In Chapter 6, an IFT mathematical model is developed and used to couple the two-phase flow and mi-

crobial transport models. An iterative linearization method is adapted to solve the resulting microbial

EOR model. Furthermore, a numerical convergence and Matlab code implementation validation test

of a method is discussed along with an analytical solution.

† Chapter 7 introduces a preliminary introduction for maximum principles of variational calculus and

discrete optimal control problems. The developments of implicit and explicit necessary conditions for

discrete optimal control problems are also discussed briefly.

† In Chapter 8, we have integrated an injection/production wells with a microbial EOR model. An

optimization model is also proposed to determine the slug injection policy in order to maximize the

production of oil. Furthermore, a benefit based comparison study between traditional injection pro-

cesses and the predicted optimal injection processes has been discussed.

† The thesis culminates with conclusion in Chapter 9. It also suggests future works.
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Chapter 2

Background and Literature Review

This chapter begins with basic concepts, definitions, terminologies and properties of multiple fluids flow in

porous media. Then a comparison type study on well known enhanced oil recovery methods is discussed.

Moreover, literatures on mathematical models of two-phase flow and convective-dispersive transport with

corresponding numerical methods are reviewed.

2.1 Flow in Porous Media

Most of subsurface formation comprises of a solid matrix with an interconnected void space for which fluids

are allowed to flow through it. Subsurface void spaces might be filled with multiple fluids that are either able

to flow or are trapped within rock skeletons, and commonly referred to as multi-phase flow in porous media,

represent fluid dynamics of great complexity involving a wide range of physical phenomena. A subsurface

formation is mainly characterized by its porosity which is a ratio of the void space to the Representative

Elementary Volume, (REV). Other properties of the medium (e.g., permeability, tensile strength, electrical

conductivity) can sometimes be derived from the respective properties of its constituents (solid matrix and

fluid), the medium porosity and pores structure [26], but such a derivation is usually complex. In general,

the rock formations are typically heterogeneous at all length scales in between and phenomena at all length

scales can have a profound impact on flow, making flow in subsurface reservoirs a true multi-scale problem.

In any phenomenon that involves a porous material, one must deal with the complex pore structure of the

medium and how it affects the distribution, flow, displacement of one or more fluids, or dispersion (i.e.,

mixing) of one fluid in another.

Fluids with different properties are found within sedimentary rocks that have sufficient interconnected void

space to store and transmit these fluids. The hydrocarbons typically carried in rock zones that are a few

tens of meters thick but extend several kilometres in the lateral directions [1]. In this case, the use of REV

is employed in mathematical modeling processes instead of concerned with how fluid moves around and in

10



the pore network. Based on macroscopic scale or REV, fluid flow and microbial transport in representative

porous domain (volume, V) are governed by mass conservation principle and given as
Change

of mass

in V

 =


Mass

entered

into V

−


Mass

leave

from V

+


Source

or Sink

iside V


where the source/sink term will account for production/consumption of mass within the volume.

In general, flow and transport phenomena in porous media, fractured rock as well as industrial synthetic

porous materials arise in many diverse fields of science and technology, ranging from agricultural, biomed-

ical, construction, ceramic, chemical, and petroleum engineering, to food and soil sciences, and powder

technology.

2.1.1 Basic Definitions

In the processes of developing a flow model in subsurface systems, it is important to realize that fluid flows

are governed in large part by (absolute) permeability, K, of the medium which is a measure of a single fluid

flow conductivity in the porous medium and the porosity of a reservoir φ, which is a measure of its void

space given as a dimensionless ratio

φ =
volume of void

REV
.

Rock permeability and porosity have a complicated connection, but Kozeny-Carman equation is used to

interpret their relationship [26] as follows

K =
1

8τ S̃2

φ3

(1− φ)2
,

where S̃ is a ratio of the internal rock surface area to the volume of the rock, whereas τ is the tortuosity

which is a ratio of the length of a pore to the distance between its endpoints.

The Kozeny-Carman equation does serve to acquire estimates of scalar permeability, or porosity, which

might be suitable for homogeneous medium. However, most fluids can flows easily through sandstone in each

direction, due to this K is usually designed as a tensor. If a rock formation like sandstone transmit fluids

readily, then they are called permeable. Moreover, the medium is called an isotropic, if K is independent

of direction. Conversely, when K changes value depending on the direction being considered, then the

medium is referred to as anisotropic. Furthermore, if K depends on special location then the system is

called heterogeneous whereas it is known to be homogeneous medium. On the other side, a subsurface region

might be completely occupied by the solid matrix which refuses fluid flow in the region is referred to as

impermeable.
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2.1.2 Saturation and Relative Permeability

In literature, ([5, 27, 28] to list few) effective saturation has been used for parametrization purpose. The

effective saturation can be defined mathematically as

Θ =
wc − wres

c

wmax
c − wres

c

,

where wc = φSw is water content and Sw is water saturation which is the ratio of water volume to void

volume.

In multi-phase flow, the pore space is filled with more than one fluid; in this case there is a blocking of path

ways and space of one by another. This property of fluid leads to relative permeabilities which is taken to

be an empirical function of the wetting phase saturation (water saturation in our case) and assumed to be

direction independent. Decrease in saturation of one phase results in a decreased permeability of the phase.

This decreased permeability is called effective permeability of the phase and is expressed as the ability of the

reservoir rock to transmit a fluid as related to its ability to transmit another fluid in the same circumstance

[27, 28]. Mathematically:

Keff = KKrα.

In the system of multi-phase flow, the sum of relative permeabilities is always less than or equal to 1. That

is, ∑
α

Krα ≤ 1.

2.1.3 Capillary Force and Inter-facial Tension

On molecular level adhesive forces attract fluid molecules to the solid surface and cohesive force attracts

molecules of a fluid to another fluid. At the fluid-fluid interface these forces are not at equilibrium leading to

a kind of curved interface and this interface is well defined if the fluids in the reservoir are immiscible [19].

Since the cohesion between fluid molecules at one side of the interface is different from that of the other side,

the interface is characterized by some surface energy (surface tension for liquid-gas fluids and interfacial

tension for liquid-liquid fluids), which is a measure of the forces that must be overcome to change its shape.

One consequence of the existence of the surface/interfacial tension is the difference in the equilibrium fluids

pressures separated by a curved interface, due to unbalanced tangential forces at the dividing surface. The

pressure drop across the interface is denoted in this context as the capillary pressure which is connected with

interfacial tension and the mean curvature radius rc by Laplace equation:

Pc =
2σow
rc

where σow is oil-water IFT force. From Laplace equation, we can observe that the capillary force is higher

in magnitude for smaller void space. In other words, the wetting phase will retreat to smaller pores during

drainage process of saturated medium. Based on this, macroscopic capillary force increases while the wetting
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phase saturation decrease in REV. This capillary force usually parameterized as an algebraic function of water

saturation [1, 28] which relates the pressure difference of the two fluids, thus,

Pc(Sw) = Po − Pw,

where Pc ≥ 0 around the interface. The interaction with the cohesive/adhesive forces leads to a specific

Figure 2.1.1: Contact angle From [7]

contact angle θ, between the solid surface and fluid-fluid interface which depends on the properties of fluids.

Most of the time, a fluid has been classified as a wetting phase fluid when the contact angle θ ≤ 90o and the

other treated as non-wetting fluid [1, 19]. In Figure 2.1.1, one can consider the water as a wetting fluid and

oil as non-wetting fluid.

2.2 EOR: Enhanced Oil Recovery

The world’s energy consumption has risen tremendously since 1930’s for which fossil fuel such as oil has been

used as a primary source of energy to meet the rising demand. As a result, Enhanced Oil Recovery (EOR)

methods are used in the oil industry to increase the ultimate recovery of crude oil after primary and secondary

productions. The residual oil is retained in the pore space due to viscous and capillary forces commonly

influenced by interfacial tension, wettability and permeability. EOR is aimed to alter these parameters in

beneficial ways [29–31, 63].

Mobility ratio and capillary number have been used in analysis of the expected oil production from the

application of different EOR mechanisms. In [33] the mobility ratio is given by,

M =
λD
λd
,

where λD and λd are mobilities of the displacing and displaced fluids respectively. The case M < 1 tells us

the mobility of the displacing fluid is smaller than that of the displaced fluid which implies that the displaced

fluid can be mobilized. On the other hand, the Capillary number Nc, is defined as (see [34])

Nc =
µq

σ
,

where q is Darcy velocity, µ is the viscosity of displacing fluid and σ is fluid-fluid interfacial tension. A low

interfacial tension σ, results in weak capillary forces which is of great importance for displacement and gives

high Nc. In other word, high Nc lowers the residual oil saturation.
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In the following subsequent Sections, we will review well known EOR techniques being used to recover the

residual oil from subsurface and can be categorized as physicochemical and biological approaches.

2.2.1 Physicochemical Methods

In this subsection most commonly used physical and chemical EOR are discussed. Though there are several

EOR technologies which have been known to recover the residual oil, we have mentioned few of them in this

study. The type of EOR method that used for a specific reservoir mainly depends on the properties of the

reservoir and fluid.

For instance, thermal EOR methods are generally applicable to heavy, viscous crude reservoirs [29]. The

method introduces heat energy to the reservoir through steam flooding, steam stimulation, and in-situ

combustion. The increase in heat reduces the surface tension, increases the permeability of the oil and

improves the reservoir seepage conditions [35]. The heated oil may also vaporise and then condense, forming

improved oil. This approach however, requires substantial investment in special equipment. Due to the heat

effect on the reservoir, this method may cause severe damage to the underground well structure as well as it

may pose safety risks in the larger production process and as a consequence, the method is not widely used,

though it contributes approximately 2 million oil barrels per day [29].

Chemical EOR methods lived their best times in 1980s and most of them are applicable in sandstone reservoirs

[30]. This method is still applied in China these days as a main EOR technique. Injection of various chemicals,

usually as dilute solutions, have been used to aid mobility and the reduction of surface/interfacial tension.

Chemical processes includes surfactant-polymer injection, and caustic flooding. Polymer flooding improves

the vertical and real sweep efficiency as a consequence of improving the water/oil mobility ratio [36]. On

the other hand, caustic flooding will result in the production of soap that may lower the IFT enough to

increase production if the oil reservoir has naturally occurring organic acids [36]. However, this type of

chemical reaction would take place in a poor reservoir so it will also produce oil pollution and the capacity

for water absorption would be damaged. Most wells cannot achieve a satisfactory result using this method,

making it counterproductive, with the negative effects outweighing the benefits. For instance, this method

faces significant challenges in light oil reservoirs. One of the reasons is the availability, or lack of, compatible

chemicals in high temperature and high salinity environments [29].

Gas flooding such as miscible hydrocarbon displacement, carbon dioxide injection, and inert gas injection

have been the most widely used recovery methods of light, condensate and volatile oil reservoirs [30]. The

main idea is to use a miscible gas that reduces the IFT between water and oil, hence improving the displace-

ment of oil in deep, high-pressure. It is believed that in light oil reservoirs, N2 flooding can reach miscible

conditions. However, immiscible N2 injection has also been used for pressure maintenance, cycling of con-

densate reservoirs, and as a drive gas for miscible slugs [31]. In general, gas injection is an EOR method most

frequently applied in carbonate formations when compared to chemical and thermal EOR methods.

All methods discussed above involve the injection of large amounts of rather expensive fluids into oil bearing
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reservoir formations. Moreover, the methods are task challenging since most of them involves a significant

change in the reservoir condition and others even cause a permanent damage to the reservoir.

2.2.2 Biological Methods

The challenge to increase oil recovery from reservoirs is a driving force behind the efforts to come up with

alternative recovery processes like microbial EOR which is the interest of this study. Microbial EOR was

fist proposed by Beckman in 1926 [37], and it has done a little work up to 1940s. Afterwards, ZoBell in 1947

described and patented processes by which bacterial products such as gases, acids, solvents, surface-active

agents, and cell biomass, release oil from sandpack columns in laboratory tests [37]. Since, 1950s works

came out with great advances of looking at how microbes can benefit the recovery of oil from petroleum

reservoir and many of the laboratory studies have been promising. However, the occurrence of biological,

chemical, and physical processes in the reservoir are not fully understood. As consequence, results from field

applications are oscillating between success and failure [8, 38].

In most cases, microbial EOR methods have been applied in either in situ/tradational or ex situ processes.

The in situ is done based on the production of bio-products by either injection of specially selected microbes

(i.e., microbes that are capable of living and breading in harsh reservoir environment) with appropriate

nutrients into the reservoir or stimulating indigenous microbes through nutrient injection. If the reservoir

environment is favorable for exogenous microbes, then it is of great importance in which the concerned

body might be free to choose the right microbe to hit his/her own interest in the processes, but microbe

transportation is not an easy task in addition to computation of nutrition with indigenous microbes. Lazare

et al [37], reported the basic nature and existence of indigenous microbes in oil reservoir. This motivates

injection of nutrients to the reservoir in order to stimulate the indigenous microbes. But, the existing

indigenous microbes may not give the desired outcome. Moreover, the sulphate reducing bacteria may

overgrow due to the injection of nutrients, which are a source of hydrogen sulfide, H2S [8]. The alternative

approach is introduction of ex situ produced bio-products [39, 40] into the reservoir. This is done where

the reservoir environment is not suitable for exogenous microbes and the existence as well as functionality

of bio-products from indigenous microbes are in question. Though it is the simplest and well accepted in

field scale operations [8, 41], cost of bio-reactor operations and purification push it to the bottom corner

[8, 38].

In general, microbial EOR process aims to get bio-products (like, surfactant and polymers to name few) which

have an important role in altering the properties of the reservoir and leads to a significant improvement in

oil recovery in several ways such as reduction of IFT and viscosity of oil-water phases to list few (See Table

2.1, to get a summarized products of microbes and their effects on the system [8, 37–41]). One of the crucial

activity of microbes in oil reservoir is their ability of stickiness to all surfaces leads to clogging/plugging for

which the flow divert to another direction, helps to displace immobilized oils [8, 37, 38, 41].

Both an indigenous and exogenous micro-organisms are subject to physical (i.e., temperature, pressure,

pore size), chemical (like acidity, salinity and oxidation potential) and biological (i.e., growth, decay, and
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Bio-

products

Surfactant polymers Gases Biomass Solvents Acid

Effects Interfacial

tension re-

duction and

Emulsifica-

tion

Mobility

Control and

plugging

Reservoir

pressuriza-

tion and

Viscosity

Reduction

Altering wet-

tability and

reduction of

oil viscosity

Oil

dis-

solv-

ing

degradation

of rock and

reduction of

oil viscosity

Table 2.1: Bio-products of microbes and their effects

attachement/detachement) factors. Besides these factors the survival of microbes originates from their

ability to form spore which can resist high temperature and acidity. Moreover, micro-organisms are complex

in their way of responding to the surrounding environment. The cells change physiological state to have

maximum chances of survival which may lead to the change in substrate consumption, growth, and metabolite

production significantly.

2.2.2.1 Physical and Chemical Challenge of Microbial EOR Processes

Microbes may be able to grow and function well up to 100◦C [42]. However, oil reservoir temperature

may rise up to 150◦C, which can disrupt the microbe’s enzyme function due to denaturation around the

catalyzing sites. In addition to temperature, reservoir pressure also has its own effect on growth and activities

of microbes [15, 42]. Though, we use the general term microbe in previous Sections, bacterium are mainly

applied when we come to microbial oil recovery due to their small size. However, Bacillus strain rod measures

6 µm which might be in the same order of magnitude as pore size. In 2008 Marshal [42] reported that bacteria

penetration through the reservoir is guaranteed for pore diameter of 6-10 µm, but it must be above 2 µm.

If this is not the case, microbes may not be transported to the target zone. Even if we assume that the pore

spaces are relatively large, losses of injectivity may occur due to well-bore plugging. According to Magot

et al., [15], a reservoir with high pressure allows gases to mix with fluids for which the reservoir may have

strong acidic components. In [15], it is reported that the acidity determines microbial surface charge which

affects the transport of microbes as well. Moreover, transport of bacteria influenced by its physiology. For

instance, a bacteria with hydrophobic surface tends to stick together and transported in flocs, whereas the

hydrophilic bacteria often get suspended and transported alone along with the fluid [11].

Though the fundamental mechanisms of controlling microbial transport, growth and deposition are well

understood in laboratory experiments, the results are often not directly relevant to processes occurring in

subsurface and engineered systems [16]. The inherent physical, chemical and biological heterogeneity of these

systems presents a highly complex environment to mimic [16].
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2.3 Literature Review on Multi-phase Flow and Transport Mod-

els

The study of fluid dynamics in porous media dates back to 1850s. Multiple fluids flow in geological reservoir

encounter many fluid and rock properties that could influence the motion of fluids. Due to the absence

of uniformity in factors that determine the flow, the corresponding mathematical models that govern the

flow always results in non-linear and possibly discontinuous form of partial differential equations. People

have been using conservation laws and Darcy’s law to model multi-phase flow in porous media followed by

manipulation and combination of those balance equations into modified forms, with concomitant introduction

of ancillary functions that we will refer to as the fractional flow such as, global pressure [1, 7, 9, 14, 19, 20, 43–

46], and average pressure formulation [1, 5, 25, 47]. The global pressure or total velocity approach treats

the multi-phase flow problem as a total fluid flow of a single mixed fluid, and then describes the individual

phases as fractions of the total flow whereas the average pressure formulation considers the average of the

two pressures and the wetting phase saturation as primary variables, but it introduces the capillary pressure

as a function of wetting saturation in pressure as well as saturation equation. These mathematical models

have been used to forecast fluid distributions in porous reservoir. Moreover, there might be components that

could be transported along with fluids which are not considered in the above mathematical settings. These

components (if any) might potentially affect the flow behaviour significantly.

According to [16, 17], there have been considerable ongoing efforts aimed at understanding the transport,

deposition behavior, growth of microbes in porous media and their effect on oil recovery since 1920s. Since

then, mathematical models have been developed and used to simulate the activities and propagations of

microbes in porous reservoir, for example [17, 21, 23, 24, 48]. Reactive convective-dispersive transport

equations usually coupled with microbial aspects such as net growth, nutrient consumption and metabolite

production processes, see Section 3.2. To the best of author’s knowledge, previous studies didn’t address

all of the consequences of microbial growth. For instance, clogging, wettability alteration, nutrient and

metabolite adsorption and salinity effect on mobility of phase are not properly investigated.

Multi-phase fluids flow models should be coupled with component transport models to simulate the effect of

microbes on the distribution of fluids and reservoir. For instance, reduction of IFT and viscosity reduction

mechanisms are reported in [4, 5, 11, 17, 25] to investigate the effect of microbial activities on residual

oil. The resulting coupled equations (flow equations and transport equations) have been used to simulate

microbial EOR processes.

Since the governing equations for microbial EOR processes are highly nonlinear and complex, efficient nu-

merical and stable schemes have to be employed to forecast an approximate information about the physical

phenomenon within the reservoir. In 1962, Peaceman et al., [10] presented a finite-difference method for

predicting oil displacement and they noticed that the proposed method suffers instability when applied to

immiscible, multi-phase flow in porous media. According to Kukreti et al.,, [18] finite element method was

introduced by Lewis and his co-authors in 1974 to treat two-phase immiscible flow in porous medium. On-
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wards, considerable developments have been established on finite element methods for multi-phase flow in

porous media (for example, see [18, 49]) but, each approach has its own limitation when we come to stability.

Kumar et al., [50] in 2013 have reported a convergence result on a mixed finite element discretization for up-

scaled reactive flows in porous medium. The convergence results are discussed by considering a semi-discrete

form (discrete in time and continuous weak variational form in space) and fully discrete form in separate

sheet. Moreover, they have presented an illustrative example of a numerical convergence result of the method

as well. In [51] a theoretical convergence analysis and error estimation for finite element discretization of

precipitation-dissolution transport equations in porous medium has been discussed in the same fashion as

[50]. In general, a unifying and concrete documentation of finite element methods for general elliptic as well

as transient problems can be found in [1, 52–54].

Both the finite difference and finite element methods are unable to meet the local conservative property.

For this reason finite volume methods have got an attention for numerical simulation of various types of

conservation laws for which the flux is of importance [12, 19, 55–57]. Apart from finite difference, both finite

element and finite volume methods are suited for heterogeneous media [56]. Besides, we refer to see [14] for

a conservative mixed finite element discretization for two-phase flow in porous medium.

On the other hand, temporal discretization has become a topic of great interest in academia and industry.

In hydrology applications, researches (for instance, [19, 20]) have been using fully implicit schemes predomi-

nantly. However, it doesn’t mean that fully implicit scheme is designed only for hydrology applications. For

instance, [4] have applied implicit scheme to simulate microbial transport in oil reservoir.

The petroleum engineering literature contrasts with the hydrology literature with the predominant approach

being explicit or semi-implicit and IMPES (implicit pressure, explicit saturation) scheme has been frequently

used in most applications [1, 43, 57]. This scheme has been favored because it decouples the pressure

and saturation equations, thus reducing the computational effort required for their solution. However, it

exhibits unacceptable oscillatory solutions unless one can control the time step appropriately and there is

no convergence theory on the title. On the other hand, the fully implicit method is unconditionally stable

but it converges locally and is computationally expensive. We recommend to see [58] for a comparison study

between implicit and IMPES methods.

Development of a robust iterative methods for two phase flow in porous media got attention in recent years.

For example, Radu et al., [12] have proposed an iterative linearization method for a finite volume based

discretization of two-phase flow models. Moreover, they have shown that the proposed method converges

at leat linearly. A survey of iterative methods (Newton, Picard, and L–method) for Rechards’ equation

has been done in [13]. In the paper it is shown that the mixed methods (i.e., Newton/Picard, L/Newton)

are robust but first order. On the other side, the Newton method is quadratic convergent. But, locally

convergent and even failure of Newton’s method can occur (See the example in [13]). A convergent analysis

for three of the methods is also discussed and convergence of L–method is verified.
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Chapter 3

Flow and Transport Models

This chapter discusses about the development of mathematical models that govern multiple fluids flow and

component concentrations transport in subsurface porous media. The combination of these dynamic models

have been used to simulate microbial EOR mechanisms. In this thesis, we have adopted an average/mean-

value pressure formulation and thus, average pressure, wetting phase saturation and component concentra-

tions are dependent variables of interest in microbial EOR simulation.

3.1 Two-phase Flow Reservoir Modeling

The continuum approach has been assumed to be a valid approximation for physical processes in subsurface,

when the mean free path length of fluid molecules is much smaller than the physical domain of interest, i.e.,

the length of the void space [19]. However, this study considers a macroscopic level model, where each point

in the continuum is assigned average values over elementary volumes of quantities on the microscopic level.

This approach does not need exact description of the microscopic configuration (like a mathematical modeling

approach at microscopic level) [7], rather only measurable statistical properties of the porous medium and

fluids are required. Further we assume that the diameter of the void space must be small enough, so that the

fluid flow is controlled by adhesive forces at fluid solid interface and cohesive forces at fluid-fluid interface

which separates cases like a network of pipes from the definitions of a porous medium [3, 19].

Since a French Engineer Henry Darcy developed a relationship between the fluid velocity relative to the

solid and the pressure head gradient, flow in porous media has been extensively studied [1, 5, 9, 12, 13, 18–

20, 43, 45, 46, 50, 51]. In this Section we try to come up with a mathematical model which describes the

flow of multiple fluids in porous reservoir. To save time and space, we do not attempt to derive Darcy’s

differential equation and transport of fluids in porous media starting from ground level, rather, we reviewed

these equations and get used of them for the required purpose. Moreover, we consider a two-phase flow

in which the effect of gravity is negligible. Considering the above assumptions, multi-phase flow in porous
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medium could be described in deferential form as an extension of Darcy’s law for single phase flow which

could be read as follows

qα = −KrαK

µα
∇Pα in Ω, (3.1.1)

where Ω is a porous domain, α = {o, w}, K [m2] is absolute permeability, Krα [-] is relative permeability of

phase α, Pα [Pa] is pressure of phase α and qα [m.s−1] stands for Darcy’s velocity of fluid α and µα [Pa.s]

is viscosity of phase α.

The Darcy’s equation (3.1.1) must be supplemented with phase mass balance equation,

φρα
∂Sα
∂t

+∇ · (ραqα) = Fα in Ω (3.1.2)

where φ [-] is porosity, Sα [-] is saturation of phase α, ρα [Kg/m3] is density of fluid α and Fα stands for

source or sink term. To simplify things in equation (3.1.2), we assume incompressible flow and the pore

volume is filled with only two fluids, thus, ∑
α

Sα = 1. (3.1.3)

The pressure difference at the interface of phases commonly related with the static capillary pressure as in

equation (3.1.4)

Po − Pw = Pc(Sw), (3.1.4)

where, the indices o and w stands for oil and water phases respectively. However, there are assumptions in

which the two fluids may not reach equilibrium [45, 59, 61] and interested reader can see the references there

in. Nevertheless, combining the above four equations (3.1.1)–(3.1.4) with appropriate boundary and initial

conditions describe multi-phase flow in porous media and read as

φ∂(ραSα)
∂t +∇ · (ραuα) = Fα in Ω,

qα = −KrαKµα
∇Pα in Ω,∑

α Sα = 1,

Po − Pw = Pc(Sw),

Boundar Conditions on ∂Ω,

Initial Conditions in Ω,

(3.1.5)

where ∂Ω is the boundary of a porous domain, Ω. The system of equations in (3.1.5) can be rewritten as

phase flow equations in the following way

φ∂So∂t +∇ · (−KroKµo
∇Po) = Fo

ρo
in Ω,

φ∂Sw∂t +∇ · (−KrwKµw
∇Pw) = Fw

ρw
in Ω,

Sw = 1− So,
Po − Pw = Pc(Sw),

Boundar Conditions on ∂Ω,

Initial Conditions in Ω.

(3.1.6)
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We add the phase equations in (3.1.6) to eliminate the nonwetting/oil saturation term to yield,

−∇ ·K(Kroµo ∇Po + Krw
µw
∇Pw) = Fo

ρo
+ Fw

ρ in Ω

φ∂Sw∂t +∇ · (−KrwKµw
∇Pw) = Fw

ρw
in Ω,

Po − Pw = Pc(Sw),

Boundary Conditions on ∂Ω,

Initial Conditions in Ω.

(3.1.7)

To know how the pressure and saturation behaves, we can couple or decouple the first two equations in the

system above (3.1.7) as alternative formulation. In order to couple the system, researchers have been using

different pressure formulations, among these global pressure and mean-value formulations are commonly

used as reviewed in section 2.3. In this investigation, we will use mean-value pressure formulation.

3.1.1 Mean-value Formulation

The mean-value formulation considers the average of the two fluid pressures and is written as

Pav =
1

2
(Po + Pw). (3.1.8)

Combining equation (3.1.4) and (3.1.8) gives the following relations{
Po = Pav + 1

2Pc(Sw),

Pw = Pav − 1
2Pc(Sw).

(3.1.9)

Now we can substitute (3.1.9) into (3.1.7) to obtain the following fully coupled pressure-saturation equation,

which describes the flow of two fluids
−∇ ·K(λt∇Pav + 1

2λd∇Pc(Sw)) = Ft in Ω,

φ∂Sw∂t −∇ · (λw∇(Pav − 1
2Pc(Sw))) = Fw

ρw
in Ω,

Boundary Conditions on ∂Ω,

Initial Conditions in Ω.

(3.1.10)

where Ft stands for total source/sink term, λt = Kro
µo

+ Krw
µw

is commonly named as total mobility, whereas

λd = Kro
µo
− Krw

µw
and λw = Krw

µw
. In the case of microbial EOR simulation by bio-clogging mecha-

nism, the change in porosity and absolute permeability should be taken into account in the flow equation

(3.1.10).

Dirichlet and Neuman type boundary conditions are the two commonly arising boundary conditions of flow

and transport in porous media, which are described in the following subsections.

3.1.1.1 Boundary and Initial Conditions

A two phase flow mathematical model developed so far is not complete unless necessary boundary and

initial conditions are specified. The two commonly used boundary condition are the Dirichlet and Neumann

22



boundary conditions. In this case, the first type will give unique solution whereas the later type will give

us a unique solution upto constant unless it is supported by initial conditions. To impose the boundary

conditions in the system (3.1.10), we denote ∂Ω for the external boundary of the porous medium domain,

Ω, under consideration. When the average pressure and water phase saturation are specified as a known

function of position, the boundary condition reads,{
Pav = g1(x, y) on ∂Ω, ∂Pav

∂~n = h1(x, y) on ∂Ω,

Sw = g2(x, y) on ∂Ω, ∂Sw
∂~n = h2(x, y) on ∂Ω,

(3.1.11)

where ~n stands for a unit normal vector pointing outward to the boundary.

Incorporating the boundary conditions (3.1.11) and appropriate initial reservoir information into system

(3.1.10) would give complete multi-phase flow problem. The resulting two-phase flow problem is non-linear

and very difficult to give qualitative profile. However, one can solve them using non-linear solvers/iterative

linearization schemes once discretization in space and temporal variables are done, see chapter 4.

3.2 Reactive Transport Models

Transport of micro-organisms, nutrients and metabolites/bio-surfactant through porous media governs many

phenomena in subsurface system. In porous medium, microorganisms may be found suspended in water phase

or attached to the porous skeleton. In this thesis, we assume the density of the microorganism is less than that

of water and hence sedimentation of micro-organisms is negligible. In EOR, the term microorganisms are used

frequently, however, we only consider one family of bacteria for this particular study. Moreover, we assume

the nutrients and metabolites are not adsorbed by the solid body. The three components in water and/or

oil phase (if any) are subjected to convective-dispersive transport due to fluids motion [17, 21, 22, 48, 60]

and generally described as follows,∑
j

∂φSjCij
∂t

+
∑
j

∇ · (qjCij − φ∇(DiSjCij)) = Qi +Ri, in Ω (3.2.1)

where Sj is saturation of phase j, Cij is concentration of component i in phase j, Di dispersion coefficient

for component i, qj is velocity of phase j, Qi and Ri stand for source/sink and reaction term for component

i respectively.

The reservoir comprises the pore volume, φ and the porous matrix (1 − φ). We assume the pore volume

consists of three phases, namely, water, oil and biofilm. In most papers, the bio-film saturation is denoted

by σ, but we replace it by ψ to ignore the confusion with IFT. In [24] the concentration of bacteria in biofilm

was modelled as conservation of mass in separate equation. On the other hand, [22, 23] have applied one

of an empirical approach, Langmuir isotherm partitioning expression [62] which introduces the maximum

adsorption capacity of the surface in homogeneous aquifer. To simplify things, we assume the biofilm consists

of only the attached bacteria and the bacteria can only be adsorbed from the water phase to enter the biofilm.

Thus, we assume that the water phase concentration of bacteria determines the amount of bacteria attached
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to the pore walls and can be stated as follows,

ab =
L1CmaxCbw
1 + L2Cbw

, (3.2.2)

where ab [Kg/m2] is the mass of bacteria adsorbed per unit area, L1 and L2 are Langmuir constants related

to the bonding energy, Cmax is the maximum adsorbed concentration when all active surface sites are

occupied.

It is clear that the amount of bacteria that adsorbed depends on the pore wall area available. The contact

area between pore walls and the water phase is assumed to reflect the area available for adsorption and thus

the efficient surface area Sarea is the specific surface area scaled with the water phase saturation, which can

be described mathematically as,

Sarea =
S̃

φ

Sw
SmaxW

, (3.2.3)

where S̃ is the ratio of surface area to volume of porous rock which ranges between 105 − 106 m2/m3

[15].

Combining (3.2.2) and (3.2.3) gives the amount of bacteria adsorbing to the pore walls as a function of water

phase concentration of bacteria,

ψρb = Sarea · ab, (3.2.4)

where ψρb is the concentration of adsorbed bacteria and Cbw is the concentration of suspended bacteria after

apparent equilibrium has been reached. It shows that the slope of the increasing part of the curve equals

SmaxL1 and that the curve finally reaches Smax. When L2Cbw < 1, the Langmuir equation may be linearized

to obtain a linear relationship:

ψρb = SareaL1Cbw. (3.2.5)

The bio-film formation behavior of microbes leads to a porosity change, which is usually measured as

φ = φ0 − ψ,

where φ0 describes an initial porosity distribution of a reservoir. This porosity change usually results in a

reduction of absolute permeability, and related as follows

K = K0

(
φ

φ0

)c
where c is a real scalar constant and K0 is initial rock permeability.

One can insert the developments above into the flow as well as transport equations in appropriate way to

consider a bio-clogging mechanism for microbial EOR processes.
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3.2.1 Relation Between Growth, Consumption and Production

Though the Monod expression is empirical regarding with microbial growth, it has been used widely to

describe the relation between the bacterial growth rate and substrate [4, 16, 17, 21–23, 48]. And thus, the

Monod type growth rate for one limiting substrate is given as

Gb = Gmax
Cs

Ks + Cs
, (3.2.6)

where Ks is half-saturation constant, Gmax maximum growth rate, and Cs is the limiting substrate concen-

tration in the water phase. In practice, bacterial decay occurs, but we assume, that the growth rate covers

the net growth rate.

If we further assume the growth inhibition does not occur, the corresponding reaction/source term Rb is

expressed as

Rb = YsbGbCb, (3.2.7)

where Ysb is the yield of bacteria on substrate.

It is convenient to assume that metabolite/bio-surfactant production occurs in both the planktonic (unattached)

and sessile (attached) phases of bacteria. An empirical equation is used to calculate metabolite production

rate as growth rate of bacteria. The source term for metabolite equation can be stated as

Rm = YsmCbGb. (3.2.8)

As can be seen above microbial growth and metabolite production are granted by substrates consumption

which is given by

Rs = −Rb −Rm. (3.2.9)

In other words, equation (3.2.9) describes the reaction term after the injected substrate contributed to the

growth of bacteria and production of bio-surfactant.

We recommend to see [21, 22, 48] in order to have more insight into the empirical relations discussed above.

These relations could be incorporated into the convective-dispersive transport equation (3.2.1) to describe

the microbial EOR processes, at least partly.
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Chapter 4

Numerical Modeling

Dynamical system of equations like the governing equations developed for multi-phase flow and transport

models so far are challenging to address by qualitative approaches. As a consequence, numerical techniques

have been used frequently to obtain approximate information, though most of these equations have their

solutions in the infinite dimensional horizon. For instance, people from applied mathematics, control science

and engineering basically have been using the three numerical methods namely, finite difference (for example,

[4, 6, 10, 11, 55]), finite/control volume (see, [5, 6, 12, 25, 55]) and finite element (see, [1, 13, 18, 47, 49–54])

to obtain approximate solution for partial differential equations (PDEs) arising from practical problems.

Among these we adapt the finite volume method to have an approximate information for two-phase flow

and component transport equations in this particular study. The method of finite volume subdivides the

spatial domain into small pieces but finite control volumes. For 2D two-phase flow problems, the control

volumes can be figured out by setting finite points in the domain followed by connecting them through non-

intersecting strait lines. Then one can possibly choose the center of the control volume as grid/node points

and the approach is called cell-centred finite volume. As can be seen in Figure 4.0.1, the discretization in

this thesis is established on structured rectangular mesh in space as well as time. Basically, the cell-centered

finite volume associates the unknowns with the center of the control volume. For non-complex geometrise,

structured grids are computationally efficient and accurate than unstructured grids. Moreover, for the same

number of grid points, structured meshes require less memory to store than unstructured meshes, because

of the simpler connectivity.

4.1 Midpoint Rule and Temporal Discretization

If we use the end points of the sub-intervals in either x or y direction to approximate the integral, we run

the risk that the values at the end points do not accurately represent the average value of the function on

the control volume. A point which is more likely to be close to the average would be the midpoint of each

control volume. Consider a function f defined on a 2D domain. The 2D midpoint rule begins by dividing the
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Figure 4.0.1: Cell-centered finite volume regular mesh

given region into a set of little rectangular sub-domains (control volume), each with length x and width y

as in Figure 4.0.1. The approximate integral of f over each control volume Ωi = [xi− 1
2
, xi+ 1

2
]× [yi− 1

2
, yi+ 1

2
],

using the help of midpoint rule is given by;∫
Ωi

fdA = f(◦)4 x4 y

In this thesis, we use forward and backward Euler method for temporal discretization of saturation and

concentration equations respectively. The forward Euler method approximates the given system of ODE

explicitly at the current time step n+ 1 as follows

yn+1 = yn + tf(tn, y
n),

where t is the step length. On the other hand, the backward Euler method reads as,

yn+1 = yn + tf(tn+1, y
n+1),

where t is the step size for time discretization. Both backward as well as forward Euler methods converge

linearly.

The explicit approach controls the time step to ensure convergence of the method. This is not the case for

fully implicit methods, but the accuracy of the solution is of course depending on the magnitude of the time

step.
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4.2 Multi-point Flux Approximation (MPFA)

Since we are using a cell-center finite volume method with quadrilateral grids, it can be seen that there

are four fluxes entering/leaving the approximate equation over each control volume, see Figure 4.2.1. The

method constructs an expression for the pressure gradient using linear approximations inside the control

volume and also uses two entities, the control volume and an interaction region for calculating the fluxes.

Figure 4.2.1: Cell-center finite volume discretization.

Consider the following Poison equation:

−∇ · (K(x, y)∇P ) = f(x, y), (4.2.1)

where K(x, y) and f(x, y) are absolute permeability and source term respectively.

Let q = −K∇P , then equation (4.2.1) can be rewritten as,

∇ · q = f(x, y). (4.2.2)

Since we are dealing with two dimensional domain of interest, equation(4.2.2) can be restated as;

∂qx
∂x

+
∂qy
∂y

= f(x, y), (4.2.3)

where qx and qy stand for Darcy’s velocities along the x and y directions respectively.

Now let us define the control volume Ωk = [xi− 1
2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
] k = 1, 2, · · · ,nx2, and the points

(xi, yj) for i, j = 1, 2, . . . ,nx being node points which are the center points of the control volumes. Further,

the walls/boundaries of a control volume on the east and the west are given by E = xi− 1
2
× [yj− 1

2
, yj+ 1

2
]

and W = xi+ 1
2
× [yj− 1

2
, yj− 1

2
] respectively and similarly on the south and the north we have the walls

S = [xi− 1
2
, xi+ 1

2
] × yj− 1

2
and N = [xi− 1

2
, xi+ 1

2
] × yj+ 1

2
respectively. We can integrate equation (4.2.2) over

each control volume as; ∫
Ωk

5 · qdA =

∫
Ωk

f(x, y)dA. (4.2.4)
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By using Gauss divergence theorem, the above volume integral equation (4.2.4) can be reformulated as

follows, ∫
∂Ωk

q · ~ndS =

∫
Ωk

f(x, y)dA, (4.2.5)

where ~n is a unit normal vector pointing outward to the boundary ∂Ωk = E ∪W ∪ S ∪N. Thus, equation

(4.2.5) can be rewritten as linear combination of surface integrals as follows;∫
E

q · [−1, 0]dS +

∫
W

q · [1, 0]dS +

∫
S

q · [0,−1]dS +

∫
N

q · [0, 1]dS =

∫
Ωk

f(x, y)dA (4.2.6)

Now equation (4.2.6) can be approximated by midpoint rule to give

[qx(xi+ 1
2
, yj)− qx(xi− 1

2
, yj)]4 y + [qy(xi, yj+ 1

2
)− qy(xi, yj− 1

2
)]4 x = f(xi, yj)4 y4 x. (4.2.7)

But, we know that q = −K∇P , which implies qx = −K ∂P
∂x and qy = −K ∂P

∂y . We used these relations to

approximate the fluxes at the boundary of the control volume provided that the fluxes are continuous across

the volume. Thus, we have

qx
K

= −∂P
∂x

and
qy
K

= −∂P
∂y

. (4.2.8)

Now let us integrate equation (4.2.8) from xi to xi+1 and yj to yj+1 respectively to approximate qx(xi+ 1
2
, yj)

and qy(xi, yj+ 1
2
); ∫ xi+1

xi

qx
K
dx =

∫ xi+1

xi

−∂P
∂x

dx and ,

∫ yi+1

yi

qy
K

=

∫ yi+1

yi

−∂P
∂y

. (4.2.9)

Since the fluxes qx and qy are constants with respect to x and y respectively inside control volumes, integration

of equation (4.2.9) can give the following expression

qx(xi+ 1
2
, y)

∫ xi+1

xi

1

K(x, y)
dx = −[P (xi+1, y)− P (xi, y)],

qy(x, yj+ 1
2
)

∫ yj+1

yj

1

K(x, y)
dy = −[P (x, yj+1 − P (x, yj)]. (4.2.10)

To have the fluxes as a pressure difference, we need to approximate
∫ xi+1

xi
1

K(x,y)dx. Since, we are integrating

over two neighbouring cells/control volumes, it can be rewritten as follows;∫ xi+1

xi

1

K(x, y)
dx =

∫ x
i+1

2

xi

1

K(x, y)
dx+

∫ xi+1

x
i+1

2

1

K(x, y)
dx. (4.2.11)

Now let us assume that the absolute permeability is constant in a specific control volume. Then, we can

introduce the following notion;
1

K(xi,yj)
= 2

∫ xi+1
2

xi
1

K(x,y)
dx

4x ,

1
K(xi+1,yj)

= 2

∫ xi+1
x
i+1

2

1
K(x,y)

dx

4x .

(4.2.12)

Substitute the results in (4.2.12) into equation (4.2.11) to approximate the integral as;∫ xi+1

xi

1

K(x, y)
dx =

4x
2K(xi, yj)

+
4x

2K(xi+1, yj)
. (4.2.13)
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Similarly, we have, ∫ yj+1

yj

1

K(x, y)
dy =

4y
2K(xi, yj)

+
4y

2K(xi, yj+1)
. (4.2.14)

The approximate values (4.2.13) and (4.2.14) can be substituted into equation (4.2.10) to approximate the

flux at boundaries of the control volume as follows
qx(xi+ 1

2
, yj) = − [P (xi+1,yj)−P (xi,yj)]

4x
2K(xi,yj)

+ 4x
2K(xi+1,yj)

qy(xi, yj+ 1
2
) = − [P (xi,yj+1)−P (xi,yj)]

4y
2K(xi,yj)

+ 4y
2K(xi,yj+1)

(4.2.15)

Which then can be substituted into equation (4.2.7) to obtain:

[− [P (xi+1, yj)− P (xi, yj)]
4x

2K(xi,yj)
+ 4x

2K(xi+1,yj)

− (− [P (xi, yj)− P (xi−1, yj)]
4x

2K(xi,yj)
+ 4x

2K(xi−1,yj)

]4 y), (4.2.16)

+[− [P (xi, yj+1)− P (xi, yj)]
4y

2K(xi,yj)
+ 4y

2K(xi,yj+1)

− (− [P (xi, yj)− P (xi, yj−1)]
4y

2K(xi,yj)
+ 4y

2K(xi,yj−1)

]4 x = f(xi, yj)4 y4 x.

In this thesis, we consider a uniform mesh (equidistant grid; 4xi = 4yj). Now let us set

ai,j =
1

( 1
2K(xi,yj)

+ 1
2K(xi−1,yj)

)
and αi,j =

1
1

2K(xi,yj)
+ 1

2K(xi,yj−1)

, (4.2.17)

in equation (4.2.16) to get:

−ai+1,j [P (xi+1, yj)− P (xi, yj)] + ai,j [P (xi, yj)− P (xi−1, yj)],

−αi,j+1[P (xi, yj+1)− P (xi, yj)] + αi,j [P (xi, yj)− P (xi, yj−1)] = f(xi, yj)4x2. (4.2.18)

Thus, we have a system of nx2 linear equations with (nx + 2)2 − 4 unknown. In order to obtain a unique

solution, we need to impose boundary conditions in the discrete system. Since this study considers only

the two commonly used boundary conditions, we will discretize these boundary conditions in the following

Subsection.

4.2.1 Discretization of Boundary Conditions

Though it is known that finite volume methods are promising and simple to implement, imposing boundary

conditions into the discrete system (4.2.18) is not an easy task. In particular, the Dirichlet boundary

condition is difficult for cell-centered finite volume method, whereas the Neumann boundary condition is

also challenging for vertex centered finite volume approach. In following subsequent sections, we will see

the treatment of discrete boundary unknowns with the boundary values such as: Dirichlet and Neumann

boundary values.

4.2.1.1 Dirichlet Boundary Condition

The Dirichlet boundary condition has been imposed on the discrete system by adding ghost cells at the

most exterior boundaries of the domain. Let us do this for 1D and it is straightforward for 2D problem.
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Figure 4.2.2: 1D cell-centered finite volume Discretization for boundary conditions.

Consider the following 1D mesh, Figure 4.2.2. Now let us see how to impose the Dirichlet boundary condition

P |x 1
2

= g on the discrete equation;

−P (x2)− P (x1)

4x
+
P (x1)− P (x0)

4x
= f(x1)4x. (4.2.19)

Note that equation (4.2.19) is a finite volume approximation of ∂2P
∂x2 = f(x) in Ω1 and P (x0) is indeed out

of the domain and ultimately we need to discard this term from the equation. Let us define the linear

interpolation from the centre of cell Ω0 to the centre of cell Ω1. Conveniently this line passes through x 1
2
,

so this is how the Dirichlet conditions enter into the system of discrete equations, and since we are using a

uniform mesh discretization approach, the interpolation could be given by,

g(x 1
2
) =

P (x0) + P (x1)

2
. (4.2.20)

Rearranging equation (4.2.20) will give us P (x0) = 2g(x 1
2
)−P (x1) and one can substitute this relation into

equation (4.2.19) to obtain

−P (x2)− P (x1)

4
+
P (x1)− (2g(x 1

2
)− P (x1))

4
= 4xf(x1). (4.2.21)

The above discretized equation (4.2.21) can be further simplified to give

−P (x2)

4x
+

3P (x1)

4x
= f(x1)4x+

2g(x 1
2
)

4x
. (4.2.22)

The above discussion incorporates the left Dirichlet boundary condition into the system. The right hand side

Dirichlet boundary condition can also be imposed in similar fashion as discussed above and will yield

−P (xn−1)

4x
+

3P (xn)

4x
= f(xn)4x+

2g(xn+ 1
2
)

4x
. (4.2.23)

Equations (4.2.22) and (4.2.23) can work fine for any fixed value yj which helps to impose the left and right

Dirichelet boundary condition into the discrete system for 2D problem and can be stated as follows −
P (x2,yj)
4x +

3P (x1,yj)
4x = hf(x1, yj) +

2g(x 1
2
,yj)

4x ,

−P (xn−1,yj)
4x +

3P (xn,yj)
4x = f(xn, yj)4x+

2g(x
n+1

2
,yj)

4x

(4.2.24)

Similarly, the south and north boundary conditions can be incorporated into the system as above without

additional effort and can be given as −P (xi,y2)
4x + 3P (xi,y1)

4x = f(xi, y1)4x+
2g(xi,y 1

2
)

4x ,

−P (xi,yn−1)
4x + 3P (xi,yn)

4x = f(xi, yn)4x+
2g(xi,yn+1

2
)

4x .
(4.2.25)
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Equation (4.2.24) and (4.2.25) can be possibly incorporated into the discrete system (4.2.18) to give the com-

plete system of equations. A technique discussed above is a higher order boundary condition discretization.

Besides, Thomas [55] suggested first order simple approach to handle Dirichlet boundary condition which

simply assigns the Dirichlet boundary values to the most exterior boundary unknowns as follows{
P (x0, yj) = P (x 1

1
, yj), P (xn+1, yj) = P (xn+ 1

2
, yj)

P (xi, y0) = P (xi, y 1
2
), P (xi, yn+1) = P (xi, yn+ 1

2
)

,

and this study employs this technique, to simplify the computational complexity.

4.2.1.2 Neumann Boundary Condition

Without loss of generality let us consider homogeneous Neumann boundary condition, i.e., no flux boundary

condition, which can be described mathematically as follows

q · ~n = 0. (4.2.26)

In rectangular 2D domain, equation (4.2.26) can be rewritten as
∂K(x 1

2
,y)Pav(x 1

2
,y)

∂y = 0,
∂K(x

n+1
2
,y)Pav(x

n+1
2
,y)

∂y = 0,
∂K(x,y 1

2
)Pav(x,y 1

2
)

∂x = 0,
∂K(x,y

n+1
2

)Pav(x,y
n+1

2
)

∂y = 0.
(4.2.27)

Setting the permeabilities at the ghost cells as{
K(x0, y) = K(x1, y), K(xn, y) = K(xn+1, y)

K(x, y0) = K(x, y1), K(x, yn) = K(x, yn+1)
,

which can be discarded from equation (4.2.27), and discretizing each of equations in (4.2.27) using central

finite difference yields,{
Pav(x1, y) = Pav(x0, y) and Pav(xn+1, y) = Pav(xn, y),

Pav(x, y1) = Pav(x, y0) and Pav(x, yn) = Pav(x, yn+1).
(4.2.28)

Substituting the above expression (4.2.28) into the system of linear equations (4.2.18) to give a complete

discretization of conservation equation with Neumann boundary conditions.

4.2.2 Finite volume Discretization of Flow Problem

In Chapter 3, a mathematical model for two phase flow with average pressure formulation is discussed. In this

Section we will discretize the pressure and saturation equations one by one in separate sheet using previously

discussed cell-centered finite volume method as a tool. For instance, one can discretize the pressure gradients

in the same way as discussed in Section 4.2 and the saturation equation is discretized in the same way in

space and applying Euler forward method for temporal discretization.
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4.2.2.1 Pressure Equation

The pressure equation can be recalled from equation (3.1.10) as

−∇ ·K(λt∇Pav +
1

2
λd∇Pc(Sw) = Ft. (4.2.29)

The cell-centered flux approximation could be used to discretize equation (4.2.29) as discussed in Section 4.2

over the control volume Ωk as follows

−
∫

Ωk

∇ · (Kλt∇Pav)dA− 1

2

∫
Ωk

∇ · (Kλd∇Pc(Sw))dA =

∫
Ωk

FtdA. (4.2.30)

Here again the Gauss-divergence theorem can be applied to equation (4.2.30) to obtain

−
∫
∂Ωk

(Kλt∇Pav) · ~ndA− 1

2

∫
∂Ωk

(Kλd∇Pc(Sw)) · ~ndA =

∫
Ωk

FtdA. (4.2.31)

Let us make a notations on differences to have a readable presentation as follows{
∆+
x χ = χ(i+ 1, j)− χ(i, j)

∆−x χ = χ(i, j)− χ(i− 1, j)

and similarly we can have the differences in y direction as follows{
∆+
y χ = χ(i, j + 1)− χ(i, j)

∆−x χ = χ(i, j)− χ(i, j − 1)

where χ can be the average pressure, saturation or capillary pressure. As we have discussed above, the mid-

point rule and a kind of central difference approach is employed in equation (4.2.31) to obtain the following

discrete approximation

−(Ki+ 1
2 ,j
λt(S

n+1
i+ 1

2 ,j
)∆+

x P
n+1
av −Ki− 1

2 ,j
λt(S

n+1
i− 1

2 ,j
)∆−x P

n+1
av )

−(Ki,j+ 1
2
λt(S

n+1
i,j+ 1

2

)∆+
y P

n+1
av −Ki,j− 1

2
λt(S

n+1
i,j− 1

2

)∆−y P
n+1
av ) (4.2.32)

=
1

2
(Ki+ 1

2 ,j
λd(S

n+1
i+ 1

2 ,j
)∆+

x P
n+1
c −Ki− 1

2 ,j
λd(S

n+1
i− 1

2 ,j
)∆−x P

n+1
c )

+
1

2
(Ki,j+ 1

2
λd(S

n+1
i,j+ 1

2

)∆+
y P

n+1
c −Ki,j− 1

2
λd(S

n+1
i,j− 1

2

)∆−y P
n+1
c ) + Ft(i, j)∆x

2,

where S = Sw is used throughout this chapter to make the presentation clear and readable.

Here again the number of unknowns are greater than that of the number of equations. To have a unique

solution for the above system of algebraic equation (4.2.32), one can impose boundary conditions and move

them to the right hand side of the equation. Moreover, the permeability of the medium, K, at the boundaries

(i + 1
2 , j) and (i, j + 1

2 ) is approximated by harmonically averaging over two adjacent control volumes as

discussed in Section 4.2 which can be recalled as

K(i+
1

2
, j) =

1
1
2 ( ∆xi
K(i,j) + ∆xi+1

K(i+1,j) )
and K(i, j +

1

2
) =

1
1
2 ( ∆yi
K(i,j) + ∆yi+1

K(i,j+1) )
respectively.

However, since this thesis is restricted to uniform grid, the above relations can be simplified to give

K(i+
1

2
, j) =

1
4x
2 ( 1

K(i,j) + 1
K(i+1,j) )

and K(i, j +
1

2
) =

1
4y
2 ( 1

K(i,j) + 1
K(i,j+1) )

.
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The relative permeabilities at the boundaries of a control volume have been approximated by taking an arith-

metic average over the two adjacent control volumes which can be stated mathematically as follows{
λt(Si+ 1

2 ,j
) =

λt(Si+1,j)+λt(Si,j)
2

λt(Si,j+ 1
2
) =

λt(Si,j+1)+λt(Si,j)
2 .

(4.2.33)

However, arithmetic averaging has not been applied in most cases because of its instability condition. As a

result, it is much popular to employ an upstream approximation which could be stated as,

λt(Si+ 1
2 ,j

) =

{
λt(Si+1,j) if Pav(i, j) < Pav(i+ 1, j)

λt(Si,j) if Pav(i, j) ≥ Pav(i+ 1, j)
(4.2.34)

and

λt(Si,j+ 1
2
) =

{
λt(Si,j+1) if Pav(i, j) < Pav(i, j + 1)

λt(Si,j) if Pav(i, j) ≥ Pav(i, j + 1)
(4.2.35)

The arithmetic averaging approach is quite simple to implement and employed into the flux equations. On

the other hand, the upstreaming approach can be implemented by determining the direction of flow by

choosing the upstream cell for the calculations of relative permeabilities, which is a physical property that

moves with the flow [55, 57]. Pressure based upstream weighting scheme is easy to implement as well.

However, it violates the important flux continuity property across the interfaces between control volumes

[57].

Since we are applying an iterative semi-implicit scheme, the mobilities and capillary pressure in equation

(4.2.32) are calculated from the previous time step saturation, whereas the average pressure is calculated at

the current time step. Thus, equation (4.2.32) can be rewritten as follows

−(Ki+ 1
2 ,j
λt(S

n+1,k

i+ 1
2 ,j

)∆+
x P

n+1,k+1
av −Ki− 1

2 ,j
λt(S

n+1,k

i− 1
2 ,j

)∆−x P
n+1,k+1
av )

−(Ki,j+ 1
2
λt(S

n+1,k

i,j+ 1
2

)∆+
y P

n+1,k+1
av −Ki,j− 1

2
λt(S

n+1
i,j− 1

2

)∆−y P
n+1,k+1
av ) (4.2.36)

=
1

2
(Ki+ 1

2 ,j
λd(S

n+1,k

i+ 1
2 ,j

)∆+
x P

n+1,k
c −Ki− 1

2 ,j
λd(S

n+1,k

i− 1
2 ,j

)∆−x P
n+1,k
c )

+
1

2
(Ki,j+ 1

2
λd(S

n+1,k

i,j+ 1
2

)∆+
y P

n+1,k
c −Ki,j− 1

2
λd(S

n+1,k

i,j− 1
2

)∆−y P
n+1,k
c ) + Ft(i, j)∆x

2,

where k is the inner loop index. Equation (4.2.36) can be linearized and solved for the average pressure by

assuming the value of Sn+1,k is known.

4.2.2.2 The Saturation Equation

The approach used to discretize the average pressure equation in subsubsection 4.2.2.1 can be used directly

to discretize the saturation equation in space for which it can be reduced to an ODE,

φ
∂S

∂t
= ∇ · (λw∇(Pav −

1

2
Pc)) +

fw
ρw
. (4.2.37)

Now we can discretize equation (4.2.37) in time using explicit/forward-Euler method to have;

φ
Sn+1 − Sn

4t
−∇ · (λn+1

w ∇(Pn+1
av − 1

2
Pn+1
c )) =

fnw
ρw
, (4.2.38)
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where Sn, is previous time step saturation of water, λnw, and Pnc are water relative permeability and the

capillary pressure at current time step respectively whereas Sn+1 and Pn+1
av stand for current saturation and

average pressure values respectively.

A cell-centered finite volume approach can be applied once more to discretize equation (4.2.38) in spatial

variables which then can be given as

φSn+1 − Sn

4t
∆x2 = Ki+ 1

2 ,j
λt(S

n+1
i+ 1

2 ,j
)∆+

x P
n+1
av

−Ki− 1
2 ,j
λt(S

n+1
i− 1

2 ,j
)∆−x P

n+1
av +Ki,j+ 1

2
λt(S

n+1
i,j+ 1

2

)∆+
y P

n+1
av

−Ki,j− 1
2
λt(S

n+1
i,j− 1

2

)∆−y P
n+1
av − 1

2
Ki+ 1

2 ,j
λd(S

n+1
i+ 1

2 ,j
)∆+

x P
n
c (4.2.39)

+Ki− 1
2 ,j
λd(S

n+1
i,j− 1

2

)∆+
x P

n+1
c − 1

2
Ki,j+ 1

2
λd(S

n+1
i,j+ 1

2

)∆+
y P

n+1
c

+Ki,j− 1
2
λd(S

n+1
i,j− 1

2

)∆−y P
n+1
c ) + Ft(i, j)∆x

2.

The discretized version of the water phase saturation equation (4.2.39) can be modeled in semi-implicit way

by introducing an inner loop index k as we did for an average pressure equation,

φ
Sn+1,k+1 − Sn+1,k

4t
∆x2 = Ki+ 1

2 ,j
λt(S

n+1,k

i+ 1
2 ,j

)∆+
x P

n+1,k+1
av

−Ki− 1
2 ,j
λt(S

n+1,k

i− 1
2 ,j

)∆−x P
n+1,k+1
av +Ki,j+ 1

2
λt(S

n+1,k

i,j+ 1
2

)∆+
y P

n+1,k+1
av (4.2.40)
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2
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2

)∆−y P
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av − 1

2
Ki+ 1
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λd(S
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2 ,j

)∆+
x P
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c

+Ki− 1
2 ,j
λd(S
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i,j− 1
2

)∆−x P
n+1,k
c − 1

2
Ki,j+ 1

2
λd(S

n+1,k

i,j+ 1
2

)∆−y P
n+1,k
c

+Ki,j− 1
2
λd(S

n+1,k

i,j− 1
2

)∆−y P
n+1,k
c ) + Ft(i, j)∆x

2.

The combination of the above discretized equations (4.2.36) and (4.2.40) with appropriate boundary and

initial conditions are enough to have an approximate solution for two-phase incompressible and immiscible

flow models. However, since the part of this thesis is aimed to have a simulation for microbial EOR process,

we need to have a numerical model for component transport equations and the following discussion is devoted

to this subject.

4.2.3 Finite Volume Discretization for Transport Equation

Once we obtained the solutions for average pressure and water phase saturation at the new time step, we

can proceed to compute the microbial concentration C, using backward Euler method for temporal variables

followed by control volume discretization in spatial variables. Though we have developed a general multi-

component transport model in section 3.2, it is convenient to deal with single component transport equation

for discretization purpose and the same procedure can be employed to other components. Let us consider

only the microbial component which can have an expression of the form,

φ
∂(SC)

∂t
+∇ · (qwC −D∇(φSC)) = Q, (4.2.41)
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where S is water saturation, φ is porosity D is dispersion coefficient and Q stands for reaction/source or

sink term.

An implicit Euler method is used to approximate the temporal derivative in equation (4.2.41) to give

φ
Sn+1Cn+1 − SnCn

∆t
+∇ · (qwCn+1 −D∇(φSn+1Cn+1)) = Qn. (4.2.42)

Similarly, we can apply a control volume method to discretize equation (4.2.42) in space which could be

started with integrating it over a control volume Ωk as∫
Ωk

φ
Sn+1Cn+1 − SnCn

∆t
dA+

∫
Ωk

∇ · (qwCn+1 −D∇(φSn+1Cn+1))dA+

∫
Ωk

QndA = 0. (4.2.43)

Applying the Gauss-divergence theorem will give us,∫
Ωk

φ
Sn+1Cn+1 − SnCn

∆t
dA+

∫
∂Ωk

(qwC
n+1 −D∇(φSn+1Cn+1)) · −→n dS =

∫
Ωk

QndA. (4.2.44)

The integral equation (4.2.44), can be approximated by employing the midpoint rule (see section 4.2) to

obtain

φ
Sn+1
i,j Cn+1

i,j − Sni,jCni,j
∆t

∆x2 +

(−D∂(φSn+1Cn+1)

∂x
+ qwC

n+1)i+ 1
2 ,j

∆y − (qwC
n+1 −D∂(φSn+1Cn+1)

∂x
)i− 1

2 ,j
∆y + (4.2.45)

(uwC
n+1 −D∂(φSn+1Cn+1)

∂y
)i,j+ 1

2
∆x− (qwC

n+1 −D∂(φSn+1Cn+1)

∂y
)i,j− 1

2
∆x = Qij∆x

2.

Approximating the space derivatives in equation (4.2.45) by a central finite difference approach and averaging

of bacteria concentration over the nodes of the adjacent control volumes for the convective term gives the

following discrete system

φ
Sn+1
ij Cn+1

ij − SnijCn

∆t
∆x2 + (qw,i+ 1

2 ,j

Cn+1
i+1,j + Cn+1

i,j

2
−Dφ

Sn+1
i+1,jC

n+1
i+1,j − S

n+1
i,j Cn+1

i,j

∆x
)∆y −

(qw,i− 1
2 ,j

Cn+1
i,j + Cn+1

i−1,j

2
−Dφ
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i,j Cn+1
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∂y
)∆x = Qij∆x

2.

After some mathematical rearrangement, equation (4.2.46) can be rewritten as

βi−1,jC
n+1
i−1,j + ai,jC

n+1
i,j + αi+1,jC

n+1
i+1,j + αi,j+1C

n+1
i,j+1 + βi,j−1 = fi,j , (4.2.47)

where ai,j = φSn+1
i,j (∆x2

∆t + 4D) + ∆y
2 (qw(Sn+1

i+ 1
2 ,j
, Cn

i− 1
2 ,j

) − qw(Sn+1
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2 ,j
, Cn

i− 1
2 ,j

)) + ∆x
2 (qw(Sn+1
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2
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2 −DφS
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2 −DφS
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i,j+1, and βi,j−1 = −DφSn+1

i,j−1 − qw(Sn+1
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2

, Cn
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2

)∆x
2

One can introduce the inner loop index k, in equation (4.2.47) to linearize the flux at Cn+1,k as we did for

pressure and saturation equations. Moreover, we can impose given boundary conditions appropriately as
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we did in Section 4.2.1. The resulting system of equations could be coupled with pressure and saturation

equations (see chapter 6 for coupling processes of the flow and transport equation) and solved for the

microbial concentration Cn+1 at the new time step and can be ready to be used in the flow equation for the

next time step.
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Chapter 5

Numerical Results and Convergence

Analysis

In Chapter 4, we have developed 2D cell-centered finite volume models from continuous two-phase flow

and convictive-dispersive reactive transport models. This chapter aims to investigate the accuracy and

convergence of the discretized flow and transport models to the corresponding continuous models. We

have manufactured twice continuously differentiable analytical solutions to perform a validation test for our

discretization scheme and Matlab code implementation of two-phase flow and advection-diffusion reactive

transport equations.

5.1 Discrete L2 Error Estimation

In order to validate our numerical model, as well as analyzing the numerical convergence of the method

used to solve the model, we should compare the computed numerical solution with the analytical solution

for different fluid parametrization and grid resolution of space and time. To compare the numerical solution

with the analytical one, we require some form of measure for the difference between them, in the form of a

norm. The simplest measure can be with respect to Euclidean norms, either L2(Ω) or infinity norm, L∞.

For any square integrable function f , these norms are defined as

‖f‖L2 =

(∫
Ω

f2

) 1
2

(5.1.1)

and,

‖f‖∞ = max
Ω
|f |. (5.1.2)

In our specific case f can be an average pressure Pav, water saturation, Sw or microbial concentration C.

Thus, the distance between the numerical solution to the constructed analytical solution can be measured
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in the same way as defined above and given by

E = ‖fan,j − fnu,j‖ =

(∫
Ω

(fan,j − fnu,j)
2dA

) 1
2

, (5.1.3)

where fan,j and fnu,j stand respectively for analytical and numerical solutions for j = Pav, Sw, C.

In the course of discretization of two phase flow and transport equations, we have divided the domain

of interest Ω, (in this particular chapter we considered Ω = [0, 1] × [0, 1] into sub-domains which we call

cells/control volumes, and made an integration over each cell as seen in chapter 4. A similar thing has been

done here, for which we arrive at

E2 = ‖fan,j − fnu,j‖ =

(∑
i

∫
Ωi

(fan,j − fnu,j)
2dA

) 1
2

. (5.1.4)

To determine the convergence order of numerical methods, the above square L2 error E2 can be related to

the temporal step size as follows,

E2 = k2(4t)2p, (5.1.5)

where p is the convergence rate and k a real constant. Thus, the i-th and (i+ 1)-th error can be related to

the rate of convergence as follows:

E2
i = k2(4t)2p and E2

i+1 = k2(
4t
2

)2p. (5.1.6)

Taking the quotient will give us the reduction of the error

Ei
Ei+1

=
k2(4t)2P

k2(4t2 )2p
. (5.1.7)

Taking log2 both sides will give the rate of convergence p as follows,

p = log2(
Ei
Ei+1

).

This relation is used to obtain rate of convergence in numerical methods. For example, we use it in the

following subsequent test cases to validate our Matlab code implementation and to determine the convergence

of numerical solutions to the exact solutions.

5.2 Matlab Code Implementation Validation for Different Fluid

Parameterizations

In this section, we will see three different test case models defined on a rectangular domain, Ω = [0, 1]× [0, 1]

to validate and analyse the convergence of numerical solutions to exact solutions of two-phase flow problem.

Moreover, we have discussed a validation test case for transport model. We have employed an iterative

linearization method [12] on the discretized models of these test cases to conclude and analyse the convergence

of the numerical models to the continuous models of flow equations. The flow as well as transport test case
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models are designed by choosing possible solutions followed by constructing source terms and boundary

conditions. To ease the construction of the source terms, we consider unit magnitude for rock as well as fluid

parameters, (i.e., ρw = ρo = µw = µo = φ = K = 1) throughout this chapter.

5.2.1 Linear Relative Permeabilities and Quadratic Capillary Pressure

It seems natural to consider a linear relative permeabilities and concave quadratic capillary pressure param-

eterizations as a constitutive relation for two-phase flow in porous media. If the water saturation is high,

these parameterizations might give us high relative permeabilities and capillary force as compared to the

well known parameterizations like van Genuchten parametrization. Nevertheless, these parameterizations

are modeled as a function of the wetting phase saturation as follows,
Pc(Sw) = 1− S2

w,

Kro(Sw) = 1− Sw,
Krw(Sw) = Sw.

See Figure 5.2.1 for the curves of these parameterizations. One can easily observe that the capillary pressure
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Figure 5.2.1: Concave Capillary Pressure (left) and phase relative permeabilities (right).

is monotonically decreasing as the water phase saturation increases. On the other hand, the relative perme-

ability of water is directly proportional to the water phase saturation whereas the non-wetting phase relative

permeability is inversely related with water phase saturation. Furthermore, Pc(0) = Kro(0) = Krw(1) = 1,

and Pc(1) = Kro(1) = Krw(0) = 0. All of these properties make the above parametrization physically

acceptable.

5.2.2 Van Genuchten Parameterizations

In the study of two phase flow in porous medium, the van Genuchten parametrization has been widely used

to relate static capillary pressure and relative permeabilities to the wetting fluid saturation, see [1, 19, 28].

Since this study considers the water saturation as a wetting phase, relative permeabilities and capillary
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pressure of the system are related with water phase saturation, and can be given as:

Pc(Sw) =
(
S
− 1

M
w − 1

) 1
N

,

Kro(Sw) =
√

1− Sw
(

1− S
1
M
w

)2M

, (5.2.1)

Krw(Sw) =
√
Sw

(
1−

(
1− S

1
M
w

)M
)2

,

where M is pore volume distributions of the porous domain and can be related to N as M = 1
N . Curves for the

van Genuchten parameterizations are depicted in Figure 5.2.2. The capillary pressure and the non-wetting

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

Saturation (S)

C
ap

ill
ar

y 
P

re
ss

ur
e,

 P
c

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

water saturation (S)

re
la

tiv
e 

pe
rm

ea
bi

lit
ie

s

 

 
Krw
Kro

Figure 5.2.2: Capillary Pressure (left) and Relative permeabilities (right) of van Genuchten parametrization.

relative permeability are decreasing functions, while the wetting phase relative permeability increases as the

wetting saturation increases.

5.2.3 Matlab Code Implementation Validation Test for two-phase Flow with

Constant Mobilities and Quadratic Capillary Force

This test case is relatively simple and may not represent a realistic physical problem. It considers a concave

capillary pressure and constant relative permeabilities for two-phase flow problem (3.1.10) with Dirichlet

boundary condition. Now we recall equation (3.1.10) as follows
−∇ ·K(λt∇Pav + 1

2λd∇Pc(Sw)) = Ft in Ω

φ∂(Sw)
∂t −∇ · (λw∇Pav − 1

2Pc(Sw)) = Fw
ρw

in Ω

Pav = P0 on ∂Ω

Sw = S0
w on ∂Ω

(5.2.2)

where the right hand sides of the first two equations, Ft and Fw, can be constructed from the chosen analytical

solutions for average pressure and saturation of water{
Pav = x(1− x)y(1− y)

Sw = x(1− x)y(1− y) + 0.5
(5.2.3)
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In this test example, we consider λt = 1 and λd = − 1
2 provided that λn = 1

4 and λw = 3
4 . Thus, the flow

equation can be reduced to

−∇ ·K(∇Pav −
1

4
∇Pc(Sw)) = Ft in Ω

∂Sw
∂t
−∇ · 3

4
(∇Pav −

1

2
∇Pc(Sw)) = Fw in Ω (5.2.4)

Pav = 0 on ∂Ω

S = 0.5 on ∂Ω.

To construct the source terms from the chosen exact solutions (5.2.3), one can differentiate the given solutions

and capillary pressure with respect to x and y to obtain

∇Pav =

[
t(1− 2x)y(1− y)

t(1− 2y)x(1− x)

]
and

[
∂2Pav

∂x2

∂2Pav

∂y2

]
=

[
−2ty(1− y)

−2tx(1− x)

]
(5.2.5)

∇Pc = −2

[
t(1− 2x)y(1− y)S

t(1− 2y)x(1− x)S

]
and

[
∂2Pc
∂x2

∂2Pc
∂y2

]
=

[
(4ty(1− y)S − 2(t(1− 2x)y(1− y)))2

4tx(1− x)S − 2(t(1− 2y)x(1− x)))2

]
,

and substituting these derivatives (5.2.5) into the flow equation (5.2.2) will give us the following source terms

for average pressure and wetting phase saturation

Ft = −4Pav +
1

4
4Pc,

Fw =
∂Sw
∂t
− 3

4
4Pav +

3

8
4Pc(Sw),

where 4Pav = ∂2Pav

∂x2 + ∂2Pav

∂y2 and 4Pc = ∂2Pc
∂x2 + ∂2Pc

∂y2 . Thus, we have a continuous two-phase flow model

defined over a rectangular reservoir domain Ω.

The discretization scheme discussed in subsection 4.2.2 and iterative linearization solver are applied to obtain

average pressure and wetting phase saturation profiles as depicted in Figure 5.2.3 and Figure 5.2.4, with an

L2 norm errors of pressure and saturation as, eP = 3.5263e-05 and eS = 2.1266e-05, respectively. These

errors are found for (1.6e+03)-number of elements/control volumes and (1.6e+03)-number of time steps.

However, the results obtained above doesn’t tell us about the convergence of the numerical model, which is

the objective of this particular chapter. To see the convergence of the numerical solution to the chosen exact

solution, we have refined the number of cells and time step by a factor of 2 starting from small number of

cells and step size.

For instance, we have started with 25-number of cells and 300-number of time step. The data in Table 5.1

are obtained by resolution of the starting number of cells and step size. As can be seen in Table 5.1, the

numerical model converges quadratically to the constructed continuous model. Figure 5.2.5 is an error plot

against number of elements/control volumes, which indeed verifies the quadratic convergence of the method

and the corresponding Matlab code implementation.
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Figure 5.2.3: Approximate (left) and exact (right) average pressure solutions for constant mobilities and

quadratic capillary pressure.

No. step No. cells App. Error

for Pav

App. Error

for Sw

E
Pav
i

E
Pav
i+1

E
Sw
i

E
Sw
i+1

rate for

Pav

rate for

Sw

250 25 0.0029 0.0015 - - - -

500 100 6.3439e-04 3.5543e-04 4.5713 4.2202 2.1926 2.0773

1e+03 400 1.4675e-04 8.6279e-05 4.3229 4.1195 2.1120 2.0425

2e+03 1.6e+04 3.5255e-05 2.1210e-05 4.1625 4.0678 2.0575 2.0242

4e+03 6.4e+03 8.6377e-06 5.2553e-06 4.0815 4.0359 2.0291 2.0129

Table 5.1: Error analysis for two-phase flow problem with constant mobilities and quadratic capillarity force.

5.2.4 Matlab Code Implementation Validation Test for Two-phase Flow Prob-

lem with Linear Relative Permeabilities and Quadratic Capillary Pres-

sure

This test case advances the discussed test case above in subsection 5.2.3 by considering a linear relative

permeabilities (i.e., Krw = Sw, and Kro = 1− Sw). Here again we consider the flow equation with Dirichlet

boundary conditions. Using these relative permeabilities and capillary pressure, we will construct the source

terms for average pressure and water phase saturation equations. In order to construct the source terms,

one need to find first and second order derivatives of the exact pressure, mobilities and capillary pressure
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Figure 5.2.4: Approximate (left) and exact (right) water phase saturation solutions for constant mobilities

and quadratic capillary pressure.
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Figure 5.2.5: Error plot for constant mobilities and quadratic capillary pressure.

with respect to x and y as follows

∇Pav =

(
t(1− 2x)y(1− y)

t(1− 2y)x(1− x)

)
and ∇Krw =

(
t(1− 2x)y(1− y)

t(1− 2y)x(1− x)

)

∇Kro = −

(
t(1− 2x)y(1− y)

t(1− 2y)x(1− x)

)
and ∇Pc = −2

(
t(1− 2x)y(1− y)S

t(1− 2y)x(1− x)S

)
(5.2.6)(

∂2Pav

∂x2

∂2Pav

∂y2

)
=

(
−2ty(1− y)

−2tx(1− x)

)
and

(
∂2Pc
∂x2

∂2Pc
∂y2

)
=

(
(4ty(1− y)S − 2(t(1− 2x)y(1− y)))2

4tx(1− x)S − 2(t(1− 2y)x(1− x)))2

)
,

where the derivatives above are obtained from properly manufactured exact solutions of the average pressure

and wetting phase saturation, which are given as

Pav = tx(1− x)y(1− y)

Sw = tx(1− x)y(1− y) + 0.5. (5.2.7)
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Substituting the above gradients (5.2.6) into the flow equation (5.2.2) appropriately and rearranging will give

us the source terms for average pressure and water phase saturation equations. We have solved the resulting

two phase flow problem by iterative linearization method for (1.6e+03)-number of cells and (2e+03)-number

of step size, to obtain an approximate average pressure and water phase saturation distribution as given in

Figure 5.2.6 and Figure 5.2.7 respectively. The visualization in Figure 5.2.6 and Figure 5.2.7 respectively
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Figure 5.2.6: Approximate average pressure solution (left) and exact average pressure solution (right) for

linear relative permeabilities and quadratic capillary pressure.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  

 
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  

 0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.5

0.51

0.52

0.53

0.54

0.55

0.56

Figure 5.2.7: Approximate (left) and exact (right) saturation profile for linear relative permeabilities and

quadratic capillary pressure.

reflects closely the same cell pressure and saturation profile. Even though the visualization as well as the L2

error (L2 norm for pressure eP = 4.2760e-05 and saturation eS = 3.2259e-05) for this particular simulation

looks fine and acceptable to say that the approximated numerical solution is close to the representative exact
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cell solutions, it doesn’t tell us about the convergence of the numerical solution to exact solution. To validate

the implementation, we have to look at the convergence rates by refining the time and space domains. The

obtained results are reported in Table 5.2 for average pressure and water phase saturation numerical solutions

for different space and time resolutions. As can be seen in Table 5.2 below, the errors for the implemented

iterative linearization method gets smaller as the time and the control volume get smaller. From Table 5.2,

No. step No. cells App. Error

for Pav

App. Error

for Sw

E
Pav
i

E
Pav
i+1

E
Sw
i

E
Sw
i+1

rate for

Pav

rate for

Sw

400 25 3.5e-03 2.4-03 - - - -

800 100 7.6411e-04 5.5829e-04 4.5805 4.2988 - -

1.6e+03 400 1.7758e-04 1.3226e-04 4.3029 4.2212 - -

3.2e+03 1.6e+04 4.2758e-05 3.2098e-05 4.1531 4.1205 - -

7.2e+03 6.4e+03 1.0488e-05 7.9051e-06 4.0768 4.0604 - -

Table 5.2: Error analysis for two-phase flow problem with linear mobilities and quadratic capillarity force.

we observe that the numerical solution of average pressure and water phase saturation converges to the exact

solutions quadratically. Moreover, Figure 5.2.8 shows the error plot vs number of control volumes. Thus, we

can conclude that the numerical solution of the designed flow problem is converging to the exact solution as

the control volume and time step go to zero from the right.
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Figure 5.2.8: Error Plot of average pressure and water phase saturation for two phase flow problem with

linear relative permeabilities and quadratic capillary pressure parameterizations.

5.2.5 Code Validation Test for Two-phase Flow Problem with van Genuchten

Parametrization

In this case, we have considered the Van Genuchten type parametrization for capillary pressure and mobilities.

From subsection 5.2.2, we can recall the van Genuchten parameterizations as,

Pc(Sw) =
√
S−2
w − 1

Kro(Sw) =
√

1− Sw
(

1− S
1
M
w

)2M

(5.2.8)

Krw(Sw) =
√
Sw

(
1−

(
1− S

1
M
w

)M
)2

.
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For this particular validation test, we have chosen N = 2 which helps us to reduce (5.2.8) to

Pc(Sw) =
√
S−2
w − 1

Kro(Sw) =
√

1− Sw
(
1− S2

w

)
(5.2.9)

Krw(Sw) =
√
Sw

(
1−

√
(1− S2

w)
)2

.

Here again we established exact solutions for the average pressure and water phase saturation equation

(5.2.2) to be the same as previously used, thus{
Pav = tx(1− x)y(1− y) + 0.2

Sw = tx(1− x)y(1− y) + 0.5
(5.2.10)

Since the given fluid parameterizations and solutions (5.2.10) are continuously differentiable, we can obtain

the first and second derivatives of each as follow,

∇Pav = (t(1− 2x)y(1− y), t(1− 2y)x(1− x))

∇Sw = (t(1− 2x)y(1− y), t(1− 2y)x(1− x))

∇Pc(Sw) = (
−t(1− 2x)y(1− y)

S3
w

√
S−2
w − 1

,
−t(1− 2y)x(1− x)

S3
w

√
S−2
w − 1

) (5.2.11)

∇Kro(Sw) =

(
t(2x− 1)y(1− y)( 1−S2

2
√

1−S + 2S
√

1− S)

t(2y − 1)x(1− x)( 1−S2

2
√

1−S + 2S
√

1− S)

)

∇Krw(Sw) =

 t(1− 2x)y(1− y)(
2S1.5(1−

√
(1−S2))√

1−S2
+ (1−

√
1−S2)2

2
√
S

)

t(1− 2y)x(1− x)(
2S1.5(1−

√
(1−S2))√

1−S2
+ (1−

√
1−S2)2

2
√
S

)

 .

And the second order derivatives of the capillary pressure and the average pressure can be obtained as(
∂2Pav

∂x2

∂2Pav

∂y2

)
=

(
−2y(1− y)

−2x(1− x)

)
(5.2.12)

(
∂2Pc(Sw)
∂2x

∂2Pc(Sw)
∂2y

)
=

(
3(t(1−2x)y(1−y))2

S.4
√
S.−2−1

− (t(1−2x)y(1−y))2

S6(S−2−1)1.5 + 2ty(1−y)

S3
√
S−2−1

3(t(1−2y)x(1−x))2

S.4
√
S.−2−1

− (t(1−2y)x(1−x))2

S6(S−2−1)1.5 + 2tx(1−x)

S3
√
S−2−1

)
.

Now we can collect the above gradients together and substitute into equation (5.2.2), to obtain the source

terms for pressure and situation equations as follows{
−Ft = ∇λt∇Pav + λt∇ · Pav + 1

2 (∇λd∇Pc + λd∇ · Pc)
Fs = ∂Sw

∂t −∇Krw∇Pav +Krw∇ · Pav + 1
2 (∇Krw∇Pc +Krw∇ · Pc)

(5.2.13)

Moreover, one can obtain the boundary conditions for average pressure and saturation equation from the

given exact solution.

Now we can apply our discretization scheme on the resulting two phase flow model followed by an iterative

linearization solver to have a numerical solution at hand. For instance, we have solved this flow problem for

(1.6e + 03)-number of elements and (1.6e + 03)-number of time step to obtain average pressure and water

49



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  

 
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  

 0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.2

0.21

0.22

0.23

0.24

0.25

0.26

Figure 5.2.9: Approximate average pressure (left) and exact pressure (right) solutions for van Genuchten

parametrization.
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Figure 5.2.10: Approximate wetting saturation (left) and exact wetting saturation (right) solutions for van

Genuchten parametrization.

phase saturation distributions as depicted in Figure 5.2.9 and Figure 5.2.10 respectively. The discrete L2

error norm for this simulation reads, eP = 2.2266e-05 and eS = 2.7915e-05. Here again, the obtained

numerical solutions are found to be promising compared to the representative exact solutions of average

pressure as well as wetting phase saturation equations. But, we need to do numerical experiments on the

resulting two-phase flow problem for different number of control volumes and step size in order to study

the convergence of the numerical model. Table 5.3, shows the decreasing behavior of discrete L2 average

pressure and water phase saturation errors by a rate of 2 as the cell area and step size decreases by a factor

of 2. In general, we can conclude that the numerical flow model converges quadratically to the constructed

continuous model.

Moreover, L2 error plot in Figure 5.2.11 for average pressure and saturation has strengthen the analysis in

Table 5.3.
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No. Steps No. cells App. Error

for Pav

App. Error

for Sw

E
Pav
i

E
Pav
i+1

E
Sw
i

E
Sw
i+1

rate for

Pav

rate of Sw

300 25 1.7e-03 1.9e-03 - - - -

600 100 3.8272e-04 4.5228e-04 4.4419 4.2009 2.1512 2.0707

1.2e+03 400 9.1426e-05 1.1050e-04 4.1861 4.0930 2.0656 2.0332

2.4e+03 1.6e+03 2.2322e-05 2.7795e-05 4.0958 3.9755 2.0341 1.9911

4.8e+03 6.4e+03 5.5359e-06 7.4612e-06 4.0322 3.7253 2.0116 1.8974

Table 5.3: Error analysis for two-phase flow with van Genuchten parametrization.
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Figure 5.2.11: Error plot for two-phase flow problem with van Genuchten parameterizations.

5.2.6 Analytic Solution validation Test Case for Transport Model

In this part, we will see the convergence behaviour of convective-dispersive transport model. We define the

transport model over a rectangular domain Ω = [0, 1] × [0, 1] and t ∈ [0, 1]. In the simple case the water

flux (Darcy’s velocity of water), the water saturation, porosity, and the dispersion-diffusion coefficient are

set to be one. Moreover, we consider a single component transport equation. As a consequence, the general

transport model (4.2.41) simplifies to give,

∂C

∂t
+∇ · (C −∇C) = Q. (5.2.14)

Here again we choose C = tx(1− x)y(1− y) being the exact solution to the transport equation (5.2.14). We

can construct the source term, in the same fashion as we have done for the flow equation. To find the source

term Q, let us start by differentiating the given exact solution with respect to t, x and y to have

∇C =

(
t(1− 2x)y(1− y)

t(1− 2y)x(1− x)

)
and

(
∂2C
∂x2

∂2C
∂y2

)
=

(
−2ty(1− y)

−2tx(1− x)

)
. (5.2.15)

Substituting these derivative results (5.2.15) into the transport model (5.2.14) will give us the source term,

which results in a component transport equation with homogeneous boundary condition. This transport

equation can be discretized implicitly as discussed in Section 4.2.3. Now the resulting algebraic system can

be solved using linear solvers. For instance, we have solved this particular simple example for 1600-number

of cells and 80-number of step size to obtain the result as shown in Figure 5.2.12 with discrete L2 error of
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Figure 5.2.12: Comparative plot of approximate (left) and exact (right) solutions for transport model

microbial concentration, eC = 3.6642e-05. We have studied the convergence of the numerical solution to

the exact solution of the transport model above (5.2.14), by refining the cells and the temporal domain and

obtain the results as reported in Table 5.4.

No. step size No. of cells App. Error for C
ECi
ECi+1

rate

5 25 0.0123 - -

10 100 0.0027 4.5556 2.1876

20 400 6.2292e-04 4.3344 2.1158

40 1600 1.4961e-04 4.1636 2.0578

80 6400 3.6642e-05 4.0830 2.0296

160 2.56e+04 9.0657e-06 4.0418 2.0150

Table 5.4: Error analysis for transport model.

As can be seen in Table 5.4, the numerical solution converges quadratically to the exact solution. Further,

we plot the error against number of cells/control volumes in Figure 5.2.13.
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Figure 5.2.13: Error plot for component transport models.

The three test cases discussed above verify that our discretization scheme and Matlab implementation

are valid and acceptable to simulate two-phase (two dimensional) flow equations. Moreover, the last test
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case validates the implementation of convective-dispersive transport equation. In general, the illustrative

examples considered in this thesis can be used to validate that our implementation is able to simulate

two-phase flow and advection-diffusion reactive transport models. However, we observe that the iterative

linearization scheme was affected by non-linearities and parameterizations.
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Chapter 6

Mathematical Models for Microbial

EOR Processes

In the early life of an oil reservoir, the fluid pressures are high and oil as well as water can flow to the

wellbore naturally. When reservoir pressure declines, field operators often inject water into the reservoir,

to maintain pressure and sweep oil to wellbores and commonly referred to as secondary oil recovery. Due

to capillary forces, the reservoir rocks hold large amounts of residual oil, after secondary recovery. People

from oil industry employ tertiary recovery or EOR methods to mobilize the residual oil. Most common EOR

methods include surfactant flooding, polymer flooding, CO2 flooding, thermal recovery and microbial EOR,

see section 2.2 for more details.

One of the microbial EOR strategy injects live microorganism and nutrient solutions into the reservoir so

that microbes and their metabolic products help to mobilize the residual oil. If favorable bacteria already

reside in the reservoir, it is feasible to inject nutrients only. The growth of microbes lead to production of

bio-surfactant that reduce oil-water interfacial tension (IFT) and hence weaken capillary pressure (which is

proportional to the oil-water IFT) that holds the residual oil in porous matrix. In the following section 6.1,

we will investigate one of the most promising mechanisms of microbial EOR, i.e., reduction of IFT.

6.1 Capillary Pressure, Residual Oil and Relative Permeabilities

Reduction of oil-water IFT and selective plugging by bacterial presence are believed to have the greatest

impact on oil recovery [4] and see the references there in. This section devotes to the possible reduction of

IFT due to the activity of bio-surfactant on the interface between oil and water. In [4, 11], bio-surfactant

concentration has been used to model oil-water IFT. However, it is also natural to correlate oil-water IFT

and microbial concentration directly to avoid actual bio-surfactant production in the transport model. In

[63], two separate experimental results are reported for the possible reduction of IFT. The first shows a
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Figure 6.1.1: IFT vs microbial concentration.

drop of IFT from 35 to 0.17 mN/m, while the second shows a drop from 38 to 0.06 mN/m, due to bacterial

activities. Based on these results Kai et al., [5] have suggested a simple, exponential relationship between

microbial concentration C and IFT, σ as

σ(C) = (σ0 − σmin)e−βC + σmin, (6.1.1)

where σ0 is the initial(maximum) IFT, σmin is possible minimum value of IFT, β is a constant coefficient

determined by the effects of microbial activity.

The relation between oil-water IFT and microbial concentration above (6.1.1) assumes an immediate effect,

which is not physically true. To handle this drawback, we have considered a time aspect in the relation

(6.1.1) which retards the reduction processes for a while and given as follows

σ(C) = (σ0 − σmin)e−
β1C

β2

C+β3 + σmin, (6.1.2)

where β1, β2 and β3 are microbial concentration and activity dependent positive real parameters. Specially,

β1 is very sensitive with the effect of microbial concentration on the reservoir. In other words, if the microbial

concentration is too little with high effect to the reservoir system, β1 should hold a high magnitude to cope

up the model. Figure 6.1.1 depicts a curve for the proposed oil-water IFT vs microbial concentration for

β1 = 0.025, β2 = 3 and β3 = 0.05.

Oil reservoir environment is full of many factors that affect the growth and transport of microbes. Thus, the

microbes may not get adjusted to the reservoir environment and start to produce bio-surfactant within short

period of time. For instance, an experiment result in [63] shows that microbial activities take time to have

an effect on the reduction of IFT. The proposed model above considers this delay of time implicitly. The

growth of microbes reduce oil-water IFT. Though there is scarcity of experimental data on microbial EOR

processes, the proposed IFT model (6.1.2) is similar to the report in Nielsen et al., [11] of Figure 9.

In subsection 2.1.3, we have learnt the relation between capillary force and oil-water IFT for which lowering
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the IFT gives a weak capillary force. Based on this relation, we will incorporate the effect of microbial

concentration for the capillary pressure reduction and improvement of fluid mobilities.

6.1.1 Effect of Microbial Concentration on Capillary Pressure and Relative

Permeabilities

In Section 6.1, we have proposed oil-water IFT as a function of microbial concentration. In this section, we

will couple the reduction of IFT to the capillary pressure and relative permeabilities. Following Islam [17],

the van Genuchten capillary pressure can be related to oil-water IFT model (6.1.2) as follows

Pc(Sw, C) = Pc(Sw)
σ(C)

σ0
, (6.1.3)

where Pc(Sw) = (S
− 1
M

w − 1)
1
N , M = 1

N is a model dependant van Genuchten parameter.

This modified capillary pressure becomes the original van Genuchten capillary pressure when the microbial

concentration is close to zero, which is possibly the maximum capillary force. On the other hand, this

capillary force decreases as the microbial concentration increases.

It is reported in [4, 17, 64] that the reduction of oil-water IFT motivates phase relative permeabilities. In

other words, microbial concentration affects the relative permeabilities through the reduction of oil-water

IFT. Moreover, it has been suggested that relative permeability curves become affine curves as oil-water IFT

considered to be negligible. Based on this information, the relative permeability curves could be related to

the oil-water IFT curve in the following manner,{
Krw(Sw, C) = Krw(Sw) + [Sw −Krw(Sw)]σ0−σ(C)

σ0

Kro(Sw, C) = Kro(Sw) + [1− Sw −Kro(Sw)]σ0−σ(C)
σ0

(6.1.4)

where σ0 is initial IFT (maximum IFT).

From the relation (6.1.4), one notices that the designed relative permeability curves are close to affine line as

oil-water IFT is close to zero and keeps the original van Genuchten parametrization of relative permeability

curves, when the microbial concentration is sufficiently small.

In this thesis, the modified capillary pressure and relative permeability curves are used to couple the two-

phase flow and transport equations. This coupled reservoir model can be used to simulate the effect of

microbial activity on the reservoir system such as residual oil.

6.1.2 Effect of Microbial activity on Residual Oil

After a water-flooding, crude oil remains trapped in the reservoir due to fluid-fluid capillary force. Microbial

EOR is one of the most promising enhanced oil recovery mechanisms used to mobilize the residual oil after

a secondary recovery of water-flooding, which is achieved by lowering the capillary force. Shen et al., [64]
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have done a surfactant flooding experiment and data fitting on the relation between IFT and residual oil

as,

Sor =
σ(Cs)

3
2

Aσ(Cs)
3
2 +B

, (6.1.5)

where, A and B are constants and Cs is surfactant concentration.

We have adapted the correlation above (6.1.5), for our particular case by replacing the surfactant concen-

tration with microbial concentration. From the correlation (6.1.5), we observe that the residual oil start to

mobilize when the IFT lies between 0 and 1. In other words, the residual oil remains trapped within the

skeleton of the reservoir matrix for σ ≥ 1, and start to displaced for σ < 1.
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Figure 6.1.2: Residual oil vs oil-water IFT (left) and Residual oil vs microbial concentration (left).

6.2 Coupling Flow and Transport Equations

In Section 6.1, we introduced the effect of microbial concentration into the capillary pressure and phase

relative permeabilities. These relations have been used to couple the two-phase flow with transport equations.

The resulting coupled reservoir model can be stated as follows,

−∇ ·K(λt(Sw, C)∇Pav + 1
2λd(Sw, C)∇Pc(Sw, C) = Ft in Ω

φ∂(Sw)
∂t −∇ · (λw(Sw, C)∇Pav + 1

2Pc(Sw, C)) = Fw
ρw

in Ω

φ∂(SC)
∂t +∇ · (qwC −D∇(φSC)) = Q in Ω

Dirichlet BC on ∂Ω

Neumann BC on ∂Ω

Initial Conditions in Ω

(6.2.1)

System of equations in (6.2.1) have been used to simulate microbial activities on residual oil recovery in which

the substrate/nutrient concentration is assumed to be sufficiently enough for microbial growth. Moreover,

the mathematical model (6.2.1) is designed by considering a direct relationship between IFT and microbial

concentration which removes the bio-surfactant production dynamics.
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In Chapter 4, the pressure and microbial transport equations were discretized implicitly, whereas the satu-

ration equation was discretized explicitly. The same discretization scheme is used to discretize the coupled

reservoir system (6.2.1). The resulting discretized algebraic systems without boundary conditions can be

rewritten as follows,
−∇ ·K(λt(S

n+1
w , Cn+1)∇Pn+1

av + 1
2λd(S

n+1
w , Cn)∇Pc(Sn+1

w , Cn+1) = Fnt in Ω

φ
Sn+1
w −Snw
4t −∇ · (λw(Sn+1

w , Cn+1)∇Pn+1
av + 1

2Pc(S
n+1
w , Cn+1)) =

Fnw
ρw

in Ω

φ
Sn+1
w Cn+1−SnwC

n

4t +∇ · (qw(Sn+1
w , Cn+1)Cn+1 −D∇(φSn+1

w Cn+1)) = Qn in Ω.

(6.2.2)

The three equations in system (6.2.2) are coupled non-linear equations. We adopted an iterative linearization

scheme to solve the system (6.2.2), for which the convergence of the method is studied for two-phase flow

equations [12]. To have an iterative/semi-implicit linearization scheme, the discretization scheme (6.2.2) can

be modified as
−∇ ·K(λt(S

n+1,i
w , Cn+1,i)∇Pn+1,i+1

av + 1
2λd(S

n+1,i
w , Cn+1,i)∇Pc(Sn+1,i

w , Cn+1,i)) = Fnt in Ω

φ
Sn+1,i+1
w −Snw
4t −∇ · (λw(Sn+1,i

w , Cn+1,i)∇Pn+1,i+1
av + 1

2Pc(S
n+1,i
w , Cn+1,i)) =

Fnw
ρw

in Ω

φ
Sn+1,i+1
w Cn+1,i+1−SnwC

n

4t −∇ · (D∇(φSn+1,i+1
w Cn+1,i+1)

− qw(Sn+1,i+1
w , Cn+1,i, Pn+1,i+1

av )Cn+1,i+1) = Qn in Ω.

(6.2.3)

The discretized equations (6.2.3) could be solved using iterative linearization scheme, which is summarized

in Table 6.1

Step Description

1 Given Sn
w, and Cn. Let Sn+1,0

w = Sn
w, and Cn+1,0 = Cn

2 Solve the pressure equation for the new time step {n+ 1, i+ 1}, using the previous saturation, Sn+1,i
w and

concentration, Cn+1,i profile

3 Solve the saturation equation using the pressure evaluated at the current iteration step Pn+1,i+1
av , but the

capillary pressure and relative permeabilities are evaluated at the previous iteration, Sn+1,i
w and Cn+1,i

4 Take the pressure and saturation profiles found at the new iteration step, {n+1, i+1} and solve the microbial

concentration equation for {n+ 1, i+ 1}
5 Iterate for i until ‖Pn+1,i+1

av − Pn+1,i
av ‖ ≤ ε, ‖Sn+1,i+1

w − Sn+1,i
w ‖ ≤ ε and ‖Cn+1,i+1 − Cn+1,i‖ ≤ ε and

take Pn+1
av = Pn+1,i+1

av , Sn+1
w = Sn+1,i+1

w and Cn+1 = Cn+1,i+1

6 Set n = n+ 1 and go to Step 2, and repeat the above Steps up to the final time of the system

Table 6.1: Iterative linearization algorithm.

6.2.1 The Coupled Model Validation Test Case with an Analytical Solutions

In Chapter 5, we have studied numerical convergence of different two-phase flow and transport models

separately. Here, we have coupled the flow problem and microbial transport models by introducing microbial

concentration to the van Genuchten capillary pressure. In this Section, we will study and examine numerical

convergence of the resulting coupled microbial EOR model. The dimensionless parameters used in this

validation test are listed in Table 6.2. Here again, we have manufactured analytical solutions as we have

done in Chapter 5, but modified van Genuchten parametrization. To construct the source terms, one can

follow the same procedure as discussed in Chapter 5. Now we can differentiate the given parameters to
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Parameter value Parameter value

Ω [0, 1]× [0, 1] t [0, 0.5]

K 1 φ 1

µo 1 µw 1

ρo 1 ρw 1

σ0 1 σmin 0.06

β1 1 β2 1

β3 1-C D 1

Table 6.2: Parameters used to validate the coupled model.

obtain the following result,

∇Pav =

[
t(1− 2x)y(1− y)

t(1− 2y)x(1− x)

]
and ∇Sw =

[
t(1− 2x)y(1− y)

t(1− 2y)x(1− x)

]

∇Pc(Sw, C) =

 −t(1−2x)y(1−y)

S3
w

√
S−2
w −1

σ(c, t)− αt2(1− 2x)y(1− y)σ(C, t)
√
S−2
w − 1

−t(1−2y)x(1−x)

S3
w

√
S−2
w −1

)σ(C, t)− αt2(1− 2y)x(1− x)σ(C, t)
√
S−2
w − 1

 (6.2.4)

∇C =

[
t(1− 2x)y(1− y)

t(1− 2y)x(1− x)

]
and ∇Kro(Sw) =

[
t(2x− 1)y(1− y)( 1−S2

2
√

1−S + 2S
√

1− S)

t(2y − 1)x(1− x)( 1−S2

2
√

1−S + 2S
√

1− S)

]

∇Krw(Sw) =

 t(1− 2x)y(1− y)(
2S1.5(1−

√
(1−S2))√

1−S2
+ (1−

√
1−S2)2

2
√
S

)

t(1− 2y)x(1− x)(
2S1.5(1−

√
(1−S2))√

1−S2
+ (1−

√
1−S2)2

2
√
S

)

 .
Further, we need second order derivatives of capillary pressure, water phase saturation, microbial concen-

tration and average pressure which can be obtained as[
∂2Pav
∂x2

∂2Pav
∂y2

]
=

[
−2y(1− y)

−2x(1− x)

]
,

[
∂2Sw
∂x2

∂2Sw
∂y2

]
=

[
−2y(1− y)

−2x(1− x)

]
and

[
∂2C
∂x2

∂2C
∂y2

]
=

[
−2y(1− y)

−2x(1− x)

]
∂2Pc
∂x2

= (
3(t(1− 2x)y(1− y))2

S4
√
S−2 − 1

− (t(1− 2x)y(1− y))2

S6(S−2 − 1)1.5
+

2ty(1− y)

S3
√
S−2 − 1

)σ (6.2.5)

+
2αt3((1− 2x)y(1− y))2

S3
w

√
S−2
w − 1

σ + σ(2αt2y(1− y) + (αt2(1− 2x)y(1− y))2)
√
S−2
w − 1

∂2Pc
∂y2

= (
3(t(1− 2y)x(1− x))2

S4
√
S−2 − 1

− (t(1− 2y)x(1− x))2

S6(S−2 − 1)1.5
+

2tx(1− x)

S3
√
S−2 − 1

)σ

+
2αt3((1− 2y)x(1− x))2

S3
w

√
S−2
w − 1

σ + σ(2αt2y(1− y) + (αt2(1− 2x)y(1− y))2)
√
S−2
w − 1.

Substituting the results from (6.2.4) and (6.2.5) into the coupled microbial EOR system (6.2.1) will give us

source terms for average pressure, water phase saturation and microbial transport equations. The resulting

mathematical model can be solved following the algorithm described in Table 6.1. For instance, we have

solved this coupled mathematical model for (2.5e+3)-number of control volumes and (2.6e+3)-number of

iterations in time and obtain the results for average pressure, water saturation and microbial concentration

as depicted in Figure 6.2.1, 6.2.2 and 6.2.3 respectively.

We did a numerical experiment by refining the number of control volumes and number of time steps to

obtain results as listed in Table 6.3 for average pressure and water phase saturation profile and Table 6.4
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Figure 6.2.1: Approximate (left) and exact (right) average pressure solutions for the coupled system.
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Figure 6.2.2: Approximate (left) and exact (right) water phase saturation profiles for the coupled system.
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Figure 6.2.3: Approximate (left) and exact (right) microbial concentration solutions for the coupled system.
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Figure 6.2.4: Error plot for the coupled system of the oil reservoir.

for microbial concentration. From Tables 6.3 and 6.4, one can learn that numerical solutions of average

pressure, water phase saturation and microbial concentration converges quadratically to the respective exact

solutions as the mesh size goes to zero.

No. Steps No. ele-

ments

App. Error,

Pav

App. Error,

Sw

E
Pav
i

E
Pav
i+1

E
Sw
i

E
Sw
i+1

rate Pav rate Sw

125 25 3.8945e-04 6.3651e-04 - - -

250 100 9.4043e-05 1.6502e-04 4.1412 3.8572 2.0500 1.9476

500 4003 2.3688e-05 4.0792e-05 3.9701 4.0454 1.9892 2.0163

1000 1600 5.9390e-06 1.0143e-05 3.9886 4.0217 1.9959 2.0078

2000 6400 1.4948e-06 2.5478e-06 3.9731 3.9811 1.9903 1.9932

Table 6.3: Error analysis the coupled reservoir system of pressure and saturation.

No. steps No. elements App. Error, Pav
ECi
ECi+1

rate C

125 25 0.0015 - -

250 100 3.3380e-04 4.4937 2.1679

500 4003 7.9218e-05 4.2137 2.0751

1000 1600 1.9594e-05 4.0430 2.0154

2000 6400 5.1069e-06 3.8368 1.9399

Table 6.4: Error analysis the coupled reservoir system of Microbial concentration.

The convergence rates reported in Tables 6.3 and 6.4 are verified in the error plot as depicted in Figure 6.2.4.

The above numerical results could be considered as a showcase to validate our discretization scheme and

Matlab code implementation.
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Chapter 7

Optimal Control Theory

Developments of this chapter are based on the Book [6] and studies maximum principles of constrained

optimal control policies. Thus, the results will be used to have an approximate information in order to

control the microbial injection strategy of microbial EOR processes. PDE constrained optimal control

problem has been addressed in either optimize then discretize or discretize then optimize. Computational

results for both approaches are essentially the same for sufficiently small time step 4t, and the proper finite

differences of the differential equations.

Often it is preferable to follow discretize then optimization procedure for PDE constrained optimization

formulations rather than optimization then discretization approach. those of enhanced oil recovery. Thus,

we go further for discretize then optimization approach to develop maximum principles for PDE constrained

optimization problems. As a consequence, this chapter introduces properties and preliminary concepts of

discrete optimal control problems.

7.1 Extremal of Functionals and The Fundamental Theorem of

Variational Calculus

First of all, let us develop the first order variation of a functional:

J =

∫ tf

0

F (z(t), ż(t), t)dt. (7.1.1)

Assume that the functional F and the function z are well behaved, i.e., z(t) ∈ C1[0, tf ] and F is once

continuously differentiable with respect to z and ż.

Now let us define the increment of the functional J as follows,

4J =

∫ tf

0

[F (z + δz, ż + δż, t)− F (z(t), ż(t), t)]dt. (7.1.2)
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Then, we can have the first order Tylor’s expansion of F (z + δz, ż + δż, t) around the origin by truncating

the higher order terms,

F (z + δz, ż + δż, t) = F (z, ż, t) +
∂F

∂z
δz +

∂F

∂ż
δż. (7.1.3)

Rearranging (7.1.3) would give the increment of the functional as follows;

δJ =

∫ tf

0

[
∂F

∂z
δz +

∂F

∂ż
δż]dt. (7.1.4)

The increment functional (7.1.4) is linear with respect to δz and δz and referred to as the first variation of

the functional J .

Definition 7.1.1 i. A functional J attains a relative minimum at z∗ if

4J = J(z)− J(z∗) ≥ 0 (7.1.5)

for all z ∈ Ω such that ‖z − z∗‖ < ε, where, ε is small positive real number.

ii. Similarly, a functional J is said to have a relative maximum at z∗ if,

4J = J(z)− J(z∗) ≤ 0 (7.1.6)

for all z ∈ Ω, provided that there exists a small positive number ε such that ‖z − z∗‖ < ε.

The functional J is said to have an absolute or global maximizer z∗, if inequality (7.1.5) is satisfied for

arbitrarily large ε. On the other hand, the functional J is said to have an absolute or global maximum at z∗,

if z∗ satisfies inequality (7.1.6) for large ε. The functional J is said to have global maximizer or minimizer,

if the functional J is strictly convex and at least once continuously differentiable.

Theorem 7.1.2 [6] (Fundamental Theorem of Variational Calculus): If z∗ is a minimizer/maximizer of a

functional J , it is necessary that the first variation of J must vanish on z, i.e.,

δJ(z∗, δz) = 0, (7.1.7)

for all δz such that z + δz ∈ Ω.

7.2 Optimal Control Problem Formulation

In this chapter we will see investigations to determine the control policy that extremize (maximize/minimize)

a specific performance criterion, subject to the constraints imposed by physical nature of the problem.

Researchers in applied science, [6, 66] have been using Pontryagin maximum principle [65], to handle these

kind of optimization problems.

Optimal control policies arises in diverse field of studies like reservoir (EOR process) and control (transporta-

tion problem) engineering/mathematics to list few. The controls associated with EOR processes are physical

state histories of the injected fluids. In other word, EOR process is concerned with the determination of
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injection policies that lead to a maximum production of oil with minimum cost of injected fluids, subject to

differential equations that describe the flow dynamics. In this particular study, the constraint set consists

of conservation models needed to specify the dynamic state of the process given by microbial distributions,

and fluid saturations. The conservation equation in its general form can be written as:

ż = f(z,∇z,∇2z, v), (7.2.1)

where z is a state vector, v is a vector of controls that enter the problem over the volumetric domain,

∇ is the gradient operator that describes the convective flow effects, ∇2 is the Laplacian operator that

describes the dispersion or diffusion effects, and f defines for the set of nonlinear functions that represents

the conservation relation. In our case z could be a combination of pressure, saturation and component

bacteria concentrations.

Initial and boundary constraints should also be specified, and can be given by,

g(z,∇z, u) = 0 on ∂Ω (7.2.2)

z = z0, at t = 0,

where u is a vector of controls that enter into the system through the boundary of the system domain.

A performance functional is considered to be in the class of algebraic functionals in which its general form

can be described as,

J =

∫ tf

0

F1(z(∂Ω), u(t))dt+

∫ tf

0

∫
Ω

F2(z(Ω, t), v(Ω, t), t)dAdt, (7.2.3)

where F1-represents the boundary contribution to the performance equation, whereas, F2-represents the

contribution through the volume domain.

Summing up the above equations in (7.2.1), (7.2.2) and (7.2.3) will give the following optimal control prob-

lem;

max

∫ tf

0

F1(z(∂Ω), u(t))dt+

∫ tf

0

∫
Ω

F2(z(Ω, t), v(Ω, t), t)dAdt

S.t. ż = f(z,∇z,∇2z, v) (7.2.4)

g(z,∇z, u) = 0 on ∂Ω

z = z0, at t = 0.

The aim of this thesis is to determine, the control variables u and v that maximizes the objective function

and satisfies the constraint conditions. To solve problem (7.2.4), one can apply either discretize then optimize

(direct method) or optimize then discretize (indirect method). This thesis applies discretize then optimize

approach. Thus, we need to study the discrete maximum principle. The discrete maximum principle would

be equivalent to continuous maximum principle for small time step, see [6].
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7.3 Discrete Maximum Principle

As can be seen in chapter 4, the flow and transport models can be approximated as a set of non-linear

discrete algebraic equations by the help of finite volume methods. These algebraic systems could result in

either explicit or implicit form depending on the temporal discretization. The explicit form can be given

as,

zn+1 = f(zn, un) (7.3.1)

and the implicit form,

f(zn+1, zn, un) = 0, (7.3.2)

where zn+1 are state variables evaluated at the new time level and un are the control variables evaluated at

the old time level n.

The discrete performance function can be given as,

J =

N−1∑
n=0

F (zn, un, vn). (7.3.3)

Thus, we can have either explicit optimal control problem

max

N−1∑
n=0

F (zn, un, vn)

S.t. zn+1 = f(zn, un), (7.3.4)

or implicit optimal control problem,

max

N−1∑
n=0

F (zn, un, vn)

S.t. f(zn+1, zn, un) = 0. (7.3.5)

The necessary conditions for extremal of both (either explicit or implicit) discrete optimal control problems

can be proposed using the discrete maximum principle of Pontryagin [65]. The Pontryagin maximum principle

reduces the optimal control problem (7.3.4) and (7.3.5) into state, costate and optimal control models. The

state models are equivalent to the discretized reservoir model whereas the costate model are used to obtain

the costate functions. See the following consecutive subsections for further information and how to develop

state, costate and control models. Though we considered the boundary and volumetric controls above, the

interest of this thesis will end up without the contributions from the boundary controls.

7.3.1 Necessary Conditions for Explicit Discretization

This section discusses finding on admissible sequence of controls so that it maximizes/minimizes the explicit

optimal control problem (7.3.4). In order to obtain the required controls, we need to have at least the
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necessary conditions for the control vectors be a maximizer or minimizer of the given optimization problem.

To do so, let us form the augmented performance function which includes the constraint equations and can

be given as,

JA =

N−1∑
n=0

{
F (zn, un)− λn+1(zn+1 − f(zn, un))

}
, (7.3.6)

where λn+1 are the costate variables.

One can easily notice that the augmented performance function (7.3.6) is equivalent to the objective function

of problem (7.3.4), when the state constraints are satisfied. In other word, the augmented performance

function (7.3.6) has the same extremal (i.e., maximum or minimum) as the performance function (7.3.4),

when the constraint set of problem (7.3.4) is satisfied.

The Hamiltonian of problem (7.3.4) can be defined as

Hn = F (zn, un)− λn+1f(zn, un). (7.3.7)

Thus, the augmented performance function (7.3.6) can be rewritten as

JA =

N−1∑
n=0

Hn − λn+1zn+1 (7.3.8)

and the first variation of JA is given as,

δJA =

N−1∑
n=0

∂Hn

∂zn
δzn −

N−1∑
n=0

λn+1δzn+1 +

N−1∑
n=0

∂Hn

∂un
δun +

N−1∑
n=0

[
∂Hn

∂λn+1
− zn+1]δλn+1. (7.3.9)

To have the new costate variable λn, the variations δzn+1 and δzn can be related as follows,

−
N−1∑
n=0

λn+1δzn+1 = −
N∑
n=1

λnδzn. (7.3.10)

Rearranging the right hand side of equation (7.3.10), and substituting the result into (7.3.9) will give,

δJA = λ0δz0 +

N−1∑
n=0

[
∂Hn

∂zn
− λn]δzn +

N−1∑
n=0

∂Hn

∂un
δun +

N−1∑
n=0

[
∂Hn

∂λn+1
− zn+1]δλn+1 − λNδzN (7.3.11)

Fundamental Theorem of variational calculus states that for z(t) to be the minimizer/maximizer of the

functional JA, it is necessary to have,

δJA = 0. (7.3.12)

If the control and state variables are unbounded, the variations δz, δλ and δu are free and unconstrained.

The necessary conditions for an extremal of explicit control problem (7.3.4) are therefore,

• State Model: since the variation δλn+1 is free,

∂Hn

∂λn+1
− zn+1 = 0 (7.3.13)
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• Costate Model: since the state variation δzn is free,

∂Hn

∂zn
− λn = 0 (7.3.14)

• Transversality Condition: since the state variations δzN and δz0 are independent, we have

Final transversality:λN · δzN = 0 (7.3.15)

and

Initial transversality:λ0 · δz0 = 0 (7.3.16)

• Optimal Control: If the control is on the constraint boundary of the admissible set U, then the

necessary condition for a maximum is,

N−1∑
n=0

∂Hn

∂un

T

δun ≤ 0 (7.3.17)

and the condition for a minimum is
N−1∑
n=0

∂Hn

∂un

T

δun ≥ 0. (7.3.18)

When the control variable does not lie on the boundary of the admissible set U then δun is considered

to be a free variation, and therefore,
∂Hn

∂un
= 0. (7.3.19)

7.3.2 Necessary Conditions for Implicit Discretization

An implicit discretization of the form (7.3.2) has been arising so frequently in numerical simulation of real life

applications. For instance, we have developed an implicit form for average pressure, water phase saturation

and component transport equations, see chapter 4. To have an optimal admissible sequence of controls

u ∈ U , we need to develop the necessary conditions for extremal of the functional:

J =

N−1∑
n=0

F (zn, un), (7.3.20)

subject to the implicit flow constraint (7.3.2). To develop the maximum principle for such optimization

problem, we form the augmented performance functional,

JA =

N−1∑
n=0

{
Fn(zn, un) + λT

n+1fn(zn+1, zn, un)

}
. (7.3.21)

Then the first variation of JA, i.e., δJA = 0, gives the necessary condition for an extremal of the function

JA, if the control variable u is unconstrained, whereas if u is constrained and lies on the boundary of the

constraint, the necessary condition for u to be a maximum is δJA ≤ 0.
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For the sake of clarity and ease the manipulation, let us define the Hamiltonian for the augmented perfor-

mance functional as

Hn(zn+1, zn, λn+1, un) = Fn(zn, un) + λT
n+1fn(zn+1, zn, un). (7.3.22)

Then, the augmented functional (7.3.21) can be rewritten as

JA =

N−1∑
n=0

Hn(zn+1, zn, λn+1, un). (7.3.23)

Thus, the first order variation of (7.3.23) is given as

δJA =

N−1∑
n=0

(
∂Hn

∂zn+1
)Tδzn+1 +

N−1∑
n=0

(
∂Hn

∂zn
)Tδzn +

N−1∑
n=0

(
∂Hn

∂λn+1
)Tδλn+1 +

N−1∑
n=0

(
∂Hn

∂un
)Tδun (7.3.24)

Now to come up with consistent state indexing in the variation above, we need to rewrite the sum

N−1∑
n=0

(
∂Hn

∂zn+1
)Tδzn+1,

in other but, equivalent way as

N−1∑
n=0

(
∂Hn

∂zn+1
)Tδzn+1 = (

∂HN−1

∂zN
)TδzN − (

∂H−1

∂z0
)Tδz0 +

N−1∑
n=0

(
∂Hn−1

∂zn
)Tδzn. (7.3.25)

We have substituted the expression (7.3.25) into the augmented variational form (7.3.24) to obtain

δJA = (
∂HN−1

∂zN
)TδzN − (

∂H−1

∂z0
)Tδz0 +

N−1∑
n=0

(
∂Hn−1

∂zn
)Tδzn +

N−1∑
n=0

(
∂Hn

∂zn
)Tδzn +

N−1∑
n=0

(
∂Hn

∂λn+1
)Tδλn+1 +

N−1∑
n=0

(
∂Hn

∂un
)Tδun. (7.3.26)

The sequence un defined inside the admissible control set Uadm is said to be a local maximizer, it is necessary

that the first variation of the augmented performance function attains zero at each un, i.e., δJA = 0, and the

Pontrygian’s maximum principle states that if un maximizes the performance function, it has to maximizes

the Hamiltonian function Hn, which defines the following models,

• State Model: since the variation δλn+1 is free,

∂Hn

∂λn+1
= 0
 f(zn+1, zn) = 0 (7.3.27)

• Costate Model: since, the state variation δzn is free,

∂Hn

∂zn
+
∂Hn−1

∂zn
= 0 (7.3.28)
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• Transversality Condition: Since the state variations δzN and δz0 are independent, we have

Final transversality:(
∂HN−1

∂zN
)TδzN = 0 (7.3.29)

and

Initial transversality:(
∂H−1

∂z0
)Tδz0 = 0. (7.3.30)

• Optimal Control: If the control is on the constraint boundary of the admissible set U, then the

necessary condition for a maximum is

N−1∑
n=0

∂Hn

∂un

T

δun ≤ 0 (7.3.31)

and the condition for a minimum is
N−1∑
n=0

∂Hn

∂un

T

δun ≥ 0. (7.3.32)

When the control variable does not lie on the boundary of the admissible set U then δun is considered

to be a free variation and therefore,
∂Hn

∂un
= 0. (7.3.33)

Though we have seen the maximum principles for explicit and implicit discrete optimal control problems

separately, we may integrate these results in Chapter 8 to optimize a microbial EOR processes for which,

we adopt an iterative linearization method and gradient accent (classical optimization method) optimization

approach to address the discretized optimization problem.
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Chapter 8

Economic Mathematical Modeling for

2D Microbial EOR

The main task regarding slug injection design is investigating a way to mobilize the residual oil as much as

possible. Though a high injection concentration has been the basis for slug design in most microbial EOR

processes, it is reported in [11] that slug size has negligible effect on oil recovery. Since oil reservoir is full of

factors that affect the activity of microbes, slug injection strategy needs detail investigations in laboratory

experiments and simulation models. To the best of the author’s knowledge, there is no literature to suggest

the best slug injection strategies for microbial EOR processes. The course of this chapter aims to investigate

a mathematical model that determines the best possible way of injection policies to lower the residual oil

while maximizing oil production via reduction of IFT mechanism. Though we concentrate on IFT reduction

mechanism, microbial EOR processes have many mechanisms (like selective plugging by bacteria and their

metabolites, viscosity reduction by gas production or degradation of long-chain saturated hydrocarbons to

name a few) that contribute for residual oil recovery.

8.1 Mathematical Model for Production-Injection Wells

Since oil reservoir fields are considered to be large enough in size, we can consider wells as a source or

sink models instead of boundary models. In Chapter 3, we have formulated a two-phase Darcy’s flow and

advection-dispersion reactive transport models. Moreover, we have coupled these flow and transport models

to predict the activity of microbial concentration in oil reservoir environment. In this section, we will

introduce mathematical models for production and injection wells being used as source/sink terms to the

microbial EOR process model. Microbial EOR process has been performed by injecting water, microbial

concentration and nutrients through injection wells and the growth of microbes produce bio-surfactant that

helps to mobilize residual oil. Let us assume, we have I-number of injection wells and P -number of production
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wells. Thus, the total injection and production volumetric flow rates can be described as:

Qin,T
w =

∑
I

Qin,I
w , and Qin,T

c =
∑
I

Qin,I
c ,

Qout,T
w =

∑
I

Qout,I
w , and Qout,T

o =
∑
P

Qout,P
o , (8.1.1)

where Qout
o , Qout

w and Qout
c stand for outflow volumetric rates of oil, water and microbial concentration

respectively whereas Qin
w , and Qin

c stands for inflow volumetric rates of water and microbial concentration

respectively. Furthermore, we assume that each well located at the node/grid points of control volumes.

This makes the well model coincide with the discrete microbial EOR equations.

8.1.1 Performance of Production Wells

A well allows a fluid to be injected into oil reservoir and conversely, it has been used to extract fluids from

subsurface. Wells have been drilled either vertically or horizontally. Without loss of generality let us consider

vertically drilled wells for this particular study. For such wells, fluids flow radially in the formation [1]. To

the best of the author’s knowledge mathematical representation of wells determines the well as a separate

structure and not part of the reservoir models. The vertical flow performance could be used to describe

the relation between the bottom-hole pressure of a well and surface production rate. We can assume that a

volumetric flow rate is proportional to the difference between the phase reservoir pressure, P cell
α , in the grid

cell and the bottom-hole pressure, Pb, in the well as follows

Qout
α = PI(P cell

α − Pb), (8.1.2)

where PI is production performance index.

To obtain a mathematical model for PI, we have done dimension reduction only on the control volume where

the production well is located by assuming fluids flow horizontally and radially. Based on this assumption

the Darcy’s law for two-phase flow in differential form becomes

qα = −KKrα

µα

dPα
dr

. (8.1.3)

But, the volumetric flow rate has been modeled as

Qout
α

2πrh
= qα, (8.1.4)

where r is radius and h is piezometric hight.

Combining equations (8.1.3) and (8.1.4) give us the following relation

Qout
α

2πrh
= −KKrα

µα

dPα
dr

. (8.1.5)

Now we can integrate equation (8.1.5) as follows∫ rcell

rw

Qout
α

2πrh
dr = −

∫ P cell
α

Pb

K
Krα

µα
dPα, (8.1.6)
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where rw is wellbore radius, rcell ' 0.14
√
4x2 +4y2 for isotropic medium [67], and P cell

α is phase pressure

at the grid cell where the associated well is installed.

After integrating equation (8.1.6), we have the following relation,

Qout
α

2πh
ln

(
rcell

rw

)
= −KKrα

µα

(
P cell
α − Pb

)
. (8.1.7)

Rearranging equation (8.1.7), will give us the following performance index, PI

Qout
α

P cell
α − Pb

= −K Krα2πh

µα ln
(
rcell
rw

) . (8.1.8)

Since we are developing model for production wells, we don’t like dragging minus signs around all the time,

the performance index is almost always defined as,

Qout
α

P cell
α − Pb

= K
Krα2πh

µα ln
(
rcell
rw

) (8.1.9)

The performance mathematical model of production well (8.1.9) is developed using phase pressure. However,

we have used average pressure formulation for reservoir models in previous chapters. To be consistent with

the formulated microbial EOR process model, we should rewrite the mathematical well performance model

in terms of average pressure, Pav, as follows
Qout

o = K 2πhKro
µα ln( rcellrw

)
(Pav + 1

2Pc(Sw, C)− Pb),

Qout
w = K 2πhKrw

µα ln( rcellrw
)
(Pav − 1

2Pc(Sw, C)− Pb),

Qout
c = CQout

w .

(8.1.10)

Here again the average pressure, capillary pressure and relative permeabilities are evaluated at the node/grid

point of a control volume for which the associated well is located. The compatibility of formulation (8.1.10)

with the formulated microbial EOR mathematical model makes the well performance model more interesting

for further investigation and easily inserted into the flow model as a source or sink terms.

8.2 Introducing Wells to the Coupled Microbial EOR Model

In previous sections, we were dealing with mathematical models for production wells and microbial EOR

processes in separate sheet. Since the aim of this thesis is to increase sweep efficiency via controlling the

injection strategy, we need to integrate the microbial EOR system with these well models.

Let us recall the coupled reservoir model as follows without boundary conditions to make the presentation

clear and understandable
−∇ ·K(λt(Sw, C)∇Pav + 1

2λd(Sw, C)∇Pc(Sw, C)) = Ft in Ω,

φ∂(Sw)
∂t −∇ · (λw(Sw, C)∇Pav + 1

2Pc(Sw, C)) = Fw
ρw

in Ω,

φ∂(SC)
∂t +∇ · (−D∇(φSC) + qwC) = Q in Ω.

(8.2.1)
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Here, Ft = Fw
ρw

+ Fo
ρo

, where, Fw is a source/sink term associated with water phase saturation. Similarly,

Fo is source/sink term for non-wetting phase saturation and Q represents source/sink term for microbial

concentration.

Based on the developments above, we have two slug injection variables, volumetric inflow rates of water

and microbial concentration, and three outgoing variables namely water, microbial concentration and oil. In

this thesis, the injection variables are considered to be control/input variables in order to control the supply

of microbes and water for which we hope to mobilize the residual oil efficiently. On the other hand, the

volumetric production rates are determined by state/reservoir variables. As a result, the coupled microbial

EOR system (8.2.1) can be modified to give
−∇ ·K(λt(Sw, C)∇Pav + 1

2λd(Sw, C)∇Pc(Sw, C)) = −
∑
P (Qout,P

o +Qout,P
w ) +

∑
I Q

in,I
w in Ω,

φ∂(Sw)
∂t −∇ · (λw(Sw, C)∇Pav + 1

2Pc(Sw, C)) = −
∑
P Q

out,P
w +

∑
I Q

in,I
w in Ω,

φ∂(SC)
∂t +∇ · (qwC −D∇(φSC)) =

∑
I Q

in,I
w Qin,I

c +
∑
P CQ

out,P
w in Ω,

(8.2.2)

where Q’s are as in Section 8.1. Here, one can consider wellbore pressure as a control variable. However,

we assume that the wellbore pressure can be adjusted so that the well potential is maximum. Moreover, it

is assumed that the initial and boundary conditions of the described mathematical model above (8.2.2) are

known. In general, boundary conditions are determined from the reservoir geometry and the distribution of

injection and production wells. We consider injection and production wells are installed inside the reservoir

domain. The above developments represent constraint sets that has to be satisfied while we are in search of

cost efficient injection strategies.

8.2.1 Numerical Simulation for the Integrated Models of Wells and Microbial

EOR

In subsection 6.2.1, we have shown a validation test for the coupled flow and transport reservoir model by

introducing a simple IFT model in the van Genutchen capillary pressure parametrization. In this section,

we will see the effect of injected microbial concentration on the residual oil by IFT reduction mechanism.

Without loss of generality, we consider one injection well and one production well for this particular simu-

lation. In this thesis, we assume that the microbes are injected with water simultaneously. Moreover, we

used the modified van Genutchen parameterizations given in Section 6.1.1 for which the effect of microbial

growth on the reduction of IFT has been fully described.

Table 8.1 summarizes fluid and rock properties being used to simulate the integrated microbia EOR processes.

Note that the parameters listed in Table 8.1 are academic and may not be physical.

8.2.1.1 The Effect of Pure Water Injection

Assume the reservoir pressure is not able to drive fluids to the wellbore and the initial reservoir comprises

40% crude oil and 60% water with no microbial concentration. Here we inject water to maintain the
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Parameter value Parameter value

Ω [0, 1]× [0, 1] Pb 0.3

t [0, 1] rcell
rw

1

K 1 h 1
2π

µo 1 µw 1

ρo 1 ρw 1

σ0 0.40 Pe 1

σmin 0.06 β3 0.05

β1 0.5 β2 3

D 1 φ 1

Table 8.1: Parameters used to simulate the coupled model reservoir.
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Figure 8.2.1: Initial Water injection strategy.

reservoir pressure and the injection strategy follows as shown in Figure 8.2.1. This injection strategy gives

the final time reservoir profile as shown in Figure 8.2.2. Here, the injected water plays an important role to

displace the trapped oil nearby the injection well. However, when we go far away from the injection well,

the injected water has little contribution in displacing the the trapped oil. This suggests that design of

production/injection wells installation is crucial in order to drive out the residual oils.

8.2.1.2 The Effect of Water and Microbes Injection

We used the results in Figure 8.2.2 as reservoir initial condition to see the effect of microbial activity after

water flooding. In this test case, we introduce microbes into the reservoir by injecting water and microbial

concentration simultaneously. Figure 8.2.3 describes the initial injection strategy of water and microbial

concentration. Based on this injection policy, we have obtained a final time reservoir condition as shown in

Figure 8.2.4 for average pressure, water, oil and microbial concentration distributions. As shown in Figure

8.2.4, the microbial concentration profile is very low inside the reservoir. This might be caused by either

the parameters used for this simulation didn’t allow the microbes growth or the water velocity is high to
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Figure 8.2.2: Final Reservoir Profile for water injection.
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Figure 8.2.3: Injection policy for water (left) and microbial concentration (right).

transport microbes and drive out through production well without functioning. Moreover, the residual oil

profile in Figure 8.2.4 is slightly reduced as compared to the residual oil distribution in Figure 8.2.2, which

means the injected microbes had a little contribution to the reservoir system in this simulation. This may also

affect the optimization process significantly. Because, the IFT and relative permeabilities remain unchanged

with this negligible microbial concentration.
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Figure 8.2.4: Final time reservoir condition for water and microbial concentration injection.

8.3 Slug Size Injection Strategy

Slug injection policies have been playing an important role to mobilize the residual oil via reduction of

capillary forces. Since the injection mechanism includes different slug size, composition and component mass

fraction of concentrations, it is difficult and most challenging to optimize microbial EOR processes. We

aim to design injection policies that minimizes the residual oil and cost of injected fluids while maximizing

production yields. Though small costs have their own effect in optimization process, cost of water is assumed

to be negligible and thus, zero. Thus, the cost functional for which we need to care about can be described

as follows,

J = cost of produced oil + cost of produced microbila concentration concentration

− cost of mass fraction of injected concentration. (8.3.1)

The cost function (8.3.1) can be rewritten in mathematical language as follows,

J =
∑
P

∫ T

0

(OcQ
out,P
o + CcCQ

out,P
w )dt−

∑
I

∫ T

0

CcinQ
in,I
c Qin,I

w , (8.3.2)

where Oc, Cc, and Ccin are costs associated with produced oil, produced microbial concentration, and injected

microbes respectively in Norwegian Kroner (NOK).
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Non-dimensional form of cost functional (8.3.2) can be obtained as

J =
∑
P

∫ T

0

(Qout,P
o +RcCQwout,P)dt−

∑
I

∫ T

0

RcinQ
in,I
c Qin,I

w , (8.3.3)

where Rc and Rcin are cost ratios. The performance functional (8.3.3) determines the maximum potential

of microbial effect to mobilize the trapped oil while maximizing the profit. We are in search of injection

policies that lowers the residual oil, provided that these injection policies and reservoir variables have to

satisfy the reservoir model (8.2.2). The discussion above gives us continuous economic model for efficient

microbial EOR processes. In the maximization formulation (8.3.3), the cost of microbes is measured with

NOK/Kg whereas the cost of oil is measured with NOK/m3.

The resulting microbial EOR optimization model is not amenable to analytical solutions. As a consequence, it

must be treated numerically. Since we are following discretization then optimization methods, the formulated

optimal control strategy will be discretized in the same fashion as we discussed in Chapter 4. Then iterative

linearization followed by optimization methods will be applied.

8.4 Numerical Optimization Methods and Results

Due to the inclusion of specifications, varying parameters, uncertainties, limited resources and history de-

pendent property of real life problems, mathematical models from engineering and applied science disciplines

arise with high degree of complexity. Moreover, adding economical aspects further increase the difficulty

of the simulation models. Thus, they become complex and challenging to solve. For instance, the above

formulated microbial EOR is highly nonlinear and impossible to give qualitative analysis. As a consequence,

numerical optimization methods should be used for the formulated optimization problem to predict the op-

timal injection variables. There are plenty of numerical optimization methods to handle problems ranging

from unconstrained linear optimization problem to chance constrained optimal control formulations. Among

these deterministic methods are popular and accepted specially for smooth optimization problems. For in-

stance, we will combine an iterative linearization method for two-phase flow problems and gradient/steepest

accent method for standard non-linear optimization to solve the formulated optimization model of microbial

EOR processes.

8.4.1 Maximum Principle and Solution Algorithm

We have discretized flow and transport equations in Chapter 4, but we have continuous performance function

in this chapter. To be consistent with the discretized version of flow and transport equations, we can also

discretize the performance functional using midpoint rule for numerical integration. Since some terms in the

objective functional as well as source/sink terms assumed to be located on the grid points of the cell, we do

not need to integrate them with respect to space. The objective functional (8.3.3) is discretized in time to
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give the following discrete performance model

Jdis =
∑
P

nf∑
n=0

[Qout,P
o,n +Rc(CQ)out,P

w,n ]4t−4t
∑
I

nf∑
n=0

RcinQ
in,I
c,nQ

in,I
w,n, (8.4.1)

where nf is the number of iterations in time.

Now we have discrete optimal control formulation for microbial EOR processes which can be rewritten as

follows,

max
∑
P

nf∑
i=0

[Qout,P
o,n +Rc(CQ)out,P

w,n ]4t−4t
∑
I

nf∑
i=0

RcinQ
in,I
c,nQ

in,I
w,n

s.t.,

{
equation 8.2.2

Boundary & initial conditions
(8.4.2)

Here, we consider that the average pressure, saturation and transport equations in the constraint set of

problem (8.4.2) are discretized in space as discussed in Chapter 4. To make the presentation clear and easily

understandable, let us label the performance function, the pressure, saturation and transport equations with,

Fn = F (Pnav, S
n
w, C

n, unc , u
n
w), fnp = fp(P

n+1
av , Pnav, S

n+1
w , Snw, C

n+1, Cn, unc , u
n
w),

fns = fns (Pn+1
av , Pnav, S

n+1
w , Snw, C

n+1, Cn, unc , u
n
w) and fnc = fc(P

n+1
av , Pnav, S

n+1
w , Snw, C

n+1, Cn, unc , u
n
w) respec-

tively, where unc and unw are control variables for microbial concentration and water volumetric inflow rate.

First let us construct the Hamiltonian function of problem (8.4.2) as defined in [6, 68]

Hn = Fn + sλn+1fns + cλn+1fnc . (8.4.3)

Moreover, the Lagrangian of optimization problem in (8.4.2) can be defined as,

Ln = Hn + µfnp , (8.4.4)

where µ is a row vector of Lagrange multiplier, whereas sλn+1 and cλn+1 are co-reservoir functions associated

with saturation and microbial transport equations respectively. Note that the multiplication of Lagrange

multipliers as well as costate variables with reservoir constraints are done componentwise.

The state/reservoir as well as costate/co-reservoir models of the resulting economic model of microbial EOR

process can be formulated in the same fashion as discussed in Chapter 7. However, here we have additional

mixed algebraic constraint which arises from the average pressure formulation. Now we can differentiate

the Lagrangian (8.4.4) with respect to reservoir variables to develop co-reservoir model that contributes in

a shadow to maximize the performance functional (8.4.1) and is stated as follows

∂Ln

∂Snw
+
∂Ln−1

∂Snw
= 0 and

∂Ln

∂Cn
+
∂Ln−1

∂Cn
= 0. (8.4.5)

Similarly, the reservoir model should be satisfied and can be extracted by differentiating the Lagrangian

(8.4.4) with respect to the co-reservoir variables

∂Ln

∂sλn+1
= 0 and

∂Ln

∂cλn+1
= 0. (8.4.6)
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Finally, the Lagrange multipliers should satisfy the complementarity slackness condition, which can be

obtained as follows

µfnp = 0, for µ ∈ R. (8.4.7)

The candidate control variables is said to be a local maximizer of the performance functional, the necessary

conditions (8.4.5)– (8.4.7) have to be satisfied at the candidate value.

Based on the above developments of necessary conditions, we will suggest a numerical method that searches

a local maximizer for the optimization problem (8.4.2).

8.4.1.1 Description of Solution Algorithm

In this section, we will develop a new mathematical algorithm that searches a local maximum for economic

problem (8.4.2) using the necessary conditions (8.4.5)–(8.4.7).

The proposed algorithm starts with solving the slack complementarity condition that is

µfp(P
n+1,i+1
av , Pn+1,i

av , Sn+1,i+1
w , Sn+1,i

w , Cn+1,i+1, Cn+1,i, un+1,i
c , unw) = 0, for µ ∈ R. (8.4.8)

Let us assume the variables with exponent {n + 1, i} are known, then equation (8.4.8) results in bilinear

systems of equations. If either µ or Pn+1,i+1
av is known, the bilinear system (8.4.8) becomes linear. If this linear

system is solvable, the bilinear system is solvable [69]. Since the coefficient matrix of the pressure equation

is linearly independent by construction, equation (8.4.8) is solvable for any fixed Lagrange multipliers. Note

that, equation (8.4.8) becomes freely solvable when µ = 0.

Now solve the complementarity slackness condition (8.4.8) using non-linear solver to obtain the average

pressure and Lagrange multipliers at the new time step. Fix the Lagrange multiplier and combine the

resulting linear system average pressure equations with reservoir models in (8.4.5) as follows,

∂Ln

∂sλn+1
= 0,

∂Ln

∂cλn+1
= 0 and µn+1,∗fn,ip = 0 (8.4.9)

for n = 1 : nf , where µn+1,∗ is known.

Solve equation (8.4.9) using iterative linearization method as we have done in previous numerical experiments.

Now using the information of average pressure, water phase saturation and microbial concentration, we are

able to solve the co-reservoir model for sλn and pλn,

∂Ln

∂Snw
+
∂Ln−1

∂Snw
= 0,

∂Ln

∂Cn
+
∂Ln−1

∂Cn
= 0 (8.4.10)

for n = nf : −1 : 1.

Once we obtained the necessary solution for a given injection variables, we can correct the injection policy

such that the new control vector is able to maximize the performance functional. This is done by finding an
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accent direction, that is in the direction of the gradient of Ln with respect to the injection variables. And

we can correct the injection policy using the following simple gradient accent formula

unk+1 = unk + αOuL
n, (8.4.11)

where α is a positive real number which determines how far we should go to get close to the optimal injection

value, and can be obtained by either direct or backtracking method. In this study we have used backtracking

method to search for possibly best α.

Take unk+1 as a new guess and repeat the above procedures until a pre-specified condition is satisfied. That

is,

|Jnk+1 − Jnk | < ε, (8.4.12)

where ε is tolerance error.

8.4.2 Optimization Results and Sensitivity Analysis

The proposed optimization model is non-concave in both reservoir and control variables. In this case the

maximum principle conditions (8.4.5) – (8.4.7) may not be sufficient and the discussed algorithmic opti-

mization approach may result in local optimal injection policies. In general, without concavity formulation,

stationary points (points that satisfy the maximum principle conditions) may not be optimal solutions for

the corresponding optimization problem and the set of all stationary points may not be connected [70, 71].

Moreover, the existence of mixed type constraints further increase the complexity of the solution processes.

Thus, the proposed optimization method searches an optimal way to inject microbes and water in order

to improve sweep efficiency and performance functional locally, if there is no further simplification on the

proposed microbial EOR optimization model.

Let us use initial injection policy of water as described in 8.2.1.2 and reservoir parameters as listed in Table

8.1 to evaluate the performance of the optimization algorithm discussed in subsubsection 8.4.1.1. Note that

the cost of microbes are not considered for these particular simulations. Thus, we can apply the algorithm

proposed in subsubsection 8.4.1.1 to obtain an optimal injection profiles, final time reservoir conditions and

functional performance profiles for the following three cases for numerical optimization experiments with

different cost of microbes and initial slug size.

For instance, let us start with a 25NOK/Kg cost of microbes, 1000NOk/m3 cost of produced oil and initial

injection profiles as given in subsubsection 8.2.1.2. We have applied the proposed optimization algorithm

on the resulting microbial EOR optimization problem to obtain an optimal water and microbial injection

strategy and the finial reservoir conditions as depicted in Figure 8.4.1 and Figure 8.4.2 respectively. The final

time reservoir condition in Figure 8.4.2 shows that the suggested optimal injection policy performs better to

mobilize the residual oil as compared to the results in subsubsection 8.2.1.2, where they obtained from the

classical injection policy. Moreover, the microbes distribution all over the reservoir is higher as compared to

the distribution obtained from subsubsection 8.2.1.2. Particularly, we observe that the microbes are densely

distributed around the injection well with this optimal injection of water and microbial concentration. Beside
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Figure 8.4.1: Optimal Injection Policy.
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Figure 8.4.2: Final Reservoir Condition with injection strategy of Figure 8.4.1.

of the obtained optimal injection profiles and reservoir conditions, we have got a performance status at each

optimization iteration as depicted in Figure 8.4.3 for which it is considered to be a major output of this

optimization processes. The final value of the performance functional (where we have obtained it from the

optimal injection strategy of water and microbial concentration) is improved by 10.10% as compared to the

initial performance value, where it is found with initial injection profiles.

The above Figures 8.4.1 and 8.4.2 were produced by assuming the cost of microbes as 25NOK/Kg and oil

costs 1000NOK/m3. Now let us consider a zero cost with larger initial slug size of microbial concentration

throughout the operating time as compared to initial injection given in Figure 8.2.3. But, we assume the cost

of produced oil stays the same as before. Thus, the discrete optimization model of microbial EOR (8.4.2)
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Figure 8.4.3: Performance functional.

could be reduced to

max
∑
P

nf∑
i=0

Qout,P
o,i 4t

S.t.,

{
equation 8.2.2

Boundary & initial conditions.
(8.4.13)

In problem (8.4.13), the control variables appear only in the constraint equations. Let us consider an

initial constant slug size of 0.9Kg/m3 throughout the operating time. Moreover, let us keep initial water

injection and all fluid and rock parameters as before. We have solved problem (8.4.13) using the algorithm in

subsubsection 8.4.1.1 and it converges to a local optimal injection policy within two optimization iterations

giving a performance value of 4.021 which is a 2.57% improvement as compared to a performance value

found with initial injection strategies. The corresponding optimal injection strategy is given as in Figure

8.4.4. The optimal injection trajectory of microbial concentration in Figure 8.4.4 is almost similar to the

optimal injection policy for microbial concentration in Figure 8.4.1 except at the half way of operating time.

Even if the model is free to choose a lager slug size of microbial concentration, the optimization gradient

direction forces to have a small slug size in most of the operating time. However, the total slug size for zero

cost is higher than that of the total slug size as obtained from Figure 8.4.1. Moreover, from Figure 8.4.4 we

can observe that optimally controlled water injection profile is higher than the optimal injection of water

in Figure 8.4.1. This shows water injection profile is also influenced by the cost of microbes. We have also

obtained a reservoir profile for an injection profile of Figure 8.4.4 and the final time water, oil and microbial

concentration distributions are given in Figure 8.4.5. Even though the total injection policies of a zero cost

slug size is higher than slug size of a total injection policy in Figure 8.2.3, the final time reservoir condition

of Figure 8.4.5 is identically similar to Figure 8.4.2.

The third test case considers a higher cost of microbes (i.e., 100 NOK/Kg) and the same initial injection

strategies as the first test case has used. We have solved the resulting optimization problem for given

parameters in Table 8.1 to obtain an optimal injection policy as depicted in Figure 8.4.6
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Figure 8.4.4: Optimal injection policy with zero cost of microbes
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Figure 8.4.5: Final time fluids distribution for Injection 8.4.4
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Figure 8.4.6: Optimal water (left) and microbial concentration (right) injection profiles corresponding to the

highest cost of microbes
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Figure 8.4.7: Performance functional for high cost of microbes

Figure 8.4.6 is identical to Figure 8.4.1 almost everywhere. But, we can observe from Figure 8.4.6 that

the optimization searcher tries to lower the slug injection due to the high cost of microbes. Moreover, we

have obtained a similar reservoir condition as we have obtained in previous test cases and the performance

functional related to this high cost of microbes is given in Figure 8.4.7. We observe that the oil industry

will get a profit improvement of 41.84% using the optimal injection policy instead of the initial injection

strategy.

In the three cases above, the distribution of microbial concentration over the specified reservoir medium is

higher than the distribution obtained from the initial slug injection which is given in Figure 8.2.4. However,

the microbial concentration distribution is still very low implying the microbial growth is very limited. As

a consequence, IFT and capillary force might be remain unchanged (i.e., the IFT might keep its maximum

value specially for fluids that are not near to an injection well) for the IFT parameters given in Table
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Figure 8.4.8: Effect of microbial concentration cost on performance functional.

8.1.

The cost of microbial concentration has no effect on the final time reservoir profile. However, it has a little

effect on the optimal injection policy and higher effect on the performance functional as expected. We

have produced a figure that describes the effect of microbial cost on the improvement of the performance

functional and shown in Figure 8.4.8. As we have seen in Figure 8.4.8, the improvement is higher for higher

cost slug injection and the optimizer had a small improvement for a zero cost slug injection. In general, the

optimization results obtained above are performing better as compared to the performance obtained from

initial injection policies. Thus, this thesis can be seen as a good start for future investigation on microbial

EOR optimization design.
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Chapter 9

Conclusion and Future Work

Microbial EOR technology is environment friendly residual oil recovery method as compared to other oil

enhancing methods. Now a days, laboratory experiments and mathematical simulations of microbial EOR

process have got an attention in academia and industry in order to understand, manege and forecast the

processes takes place in oil reservoirs.

This thesis presents an average pressure formulation of two phase flow equations coupled to reactive transport

model. These equations were discretized by a cell centered finite volume method in space and implicit Euler

method in temporal variable. The resulting non-linear system of algebraic equations are solved using an

iterative linearization method. We have done a number of numerical experiments to validate and analyse

the convergence of our Matlab code implementation for 2D two-phase flow problems with different fluid

parameterizations and advection-diffusion transport models. All reported numerical results in Chapter 5

agree to validate our discretization scheme and Matlab code implementation of fluid flow and transport

phenomenon in porous media.

This study has investigated an IFT reduction mechanism of microbial EOR process. We have developed a

new constitutive relation between IFT and microbial concentration for which it is used to couple the flow and

transport models. The resulting coupled system of equations are referred to as a microbial EOR model which

is used to study the fluid dynamics and the effect of microbes on the residual. The work of this thesis adopted

an iterative linearization two-phase flow solver for this complex microbial EOR mathematical model. Even

though the convergence of the method is not verified theoretically, a Matlab code validation test and conver-

gence analysis of the proposed method for microbial EOR model was reported in Chapter 6. The discussed

numerical result verifies the validation and the convergence of our Matlab code implementation.

Further, we have proposed a new optimization model to investigate the effect of slug size injection strategy

for microbial EOR technology. The designed optimization model has bilinear formulations with respect to

control variables in the objective as well as constraint set. Moreover, this optimization problem is also highly
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non-linear with respect to reservoir variables. These all and the dynamic nature of the designed optimiza-

tion model make the solution processes challenging. Nevertheless, we have proposed a new deterministic

optimization method that combines an iterative linearization and gradient accent methods to treat it nu-

merically. Furthermore, we have implemented the proposed method in Matlab and tested it for different

fully coupled microbial EOR optimization models. The obtained optimization results perform better on the

economics of microbial EOR technology as compared to the traditional slug injection policy. A performance

improvement of 2.57% upto 41.84% were reported in Chapter 8. The performance functional and injection

profile were sensitive for the cost of microbes, whereas the final reservoir conditions were not sensitive to

microbial cost.

The numerical simulations of this thesis are performed on microbial EOR models that comprise two-phase

flow and a single component (i.e., microbial concentration) advection-diffusion reactive transport models.

This is seen as a first step in the direction of microbial EOR optimization simulations. The future works have

to consider the dynamics of other components like nutrient and bio-surfactant distributions. The future work

will further consider other microbial EOR mechanisms such as, viscosity reduction, degradation of rocks,

bio-clogging and wettability alteration to name a few.

Even though we have got a significant improvement in microbial EOR based on the proposed local opti-

mization simulation, proposing a global convergent, efficient and stable optimization method is of a great

importance to see the effect of the slug injection policy for the proposed microbial EOR optimization model.

Moreover, the model itself needs to be enrich in economic aspects by weaken the assumptions used in this the-

sis. For example, water transport and treatment costs are not considered in this thesis. It is also important

if the future work integrates wells installation design to our microbial EOR optimization model.

In general, the microbial EOR technology is not well understood. Thus, it is the author’s wish to study

further on the simulation of microbial EOR optimization calibrated by laboratory/field experiments in order

to understand and optimize microbial EOR good enough.
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Appendices

Symbols

Symbols Units Description

φ [-] porosity

K m2 absolute Permeability

τ [-] tortuosity

M [-] Mobility ratio

λD 1/Pa.s displacing fluid mobility

λd 1/Pa.s displaced fluid mobility

S̃ [1/m] ratio of surface area to volume of a rock

Θ [-] effective water content

wc [-] water content

Sα [-] saturation of phase α

λα 1/Pa.s phase mobilities

Pc Pa capillary pressure

rc m curvature radius

σ [N/m] fluid-fluid interfacial tesnsion

β1, β2, β3 [-] interfacial tension model parameters

Pα Pa phase pressure

Pav Pa average pressure

qα m/s Darcy’s velocity of phase alpha

µα Pa.s phase viscosity

ρα Kg/m3 phase densities

Cij Kg/m3 component i concentration in phase j

Di m2/day component i diffusion coefficient

Ks [-] half saturation constant

Sor [-] residual oil

Qin m3/s volumetric inflow rate

Qout m3/s volumetric outflow rate

92



rw m well radius

rcell m approximate cell radius

PI m3/Pa.s well performance index

Pb Pa wellbore pressure

h m hydraulic head

ab Kg/m2 the amount of bacteria attached to the pore walls

Gmax [-] maximum microbial growth rate

Oc NOK/m3 cost of oil per meter cube

Cin NOK/Kg cost of microbes per kilogram

ñ [-] unit normal vector pointing outward the boundary

x m Position in x direction

y m Position in y direction

4x m cell length

4y m cell width

t [s] operating time

Abbreviations

UoB University of Bergen

IMPES Implicit Pressure Explicit Saturation

EOR Enhanced Oil Recovery

REV Representative Elementary Volume

IFT Interfacial Tension

PDEs Partial Differential Equations

ODE Ordinary Differential Equation

MPFA Multi Point Flux Approximation

1D one dimensional

2D two dimensional

PI Performance Index

Matlab Matrix Laboratory
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