
Department of Mathematics
University of Bergen

Master Thesis in Applied and

Computational Mathematics

Supervised Continuous
Max-flow for Segmentation of

Images with Intensity
Inhomogeneities

Junjie Guo

supervised by
Prof.Xue-Cheng Tai

May 26, 2016

Acknowledgements

The thesis represents two years of hard work away from home. In these two
years I have met many remarkable people, mathematic wise and personal, to
whom I would like to express my deep gratitude.

I would like to thank my supervisor, Professor Xue-Cheng Tai, for guiding
my way with good mathematical ideas, and for encouraging me to go further.

I would like to thank my friend, Shi Yan, for his support given, for his
prompt answers to all my puzzles, and for his constructive suggestions on my
writing of the thesis.

I would also like to thank Associate Professor Wei Wang at the depart-
ment of chemistry for his support and guidance in life, and also for revising
the thesis.

I am mostly grateful for all the support and encouragement received from
my parents through the years. I thank them for their altruistic love and
financial support.

Junjie Guo

Bergen, May 2016

III

Abstract

In this thesis we propose a regional adaptive active contour model for seg-
menting images with intensity inhomogeneities effectively. This model in-
cludes a regularization term, a global energy term and a local energy term.
The regularization term is used to control the length of the border of the
characteristic function. At the early stage, the global term which is larger
than the local term can give us a good initial segmentation of the image
quickly. In the later phase of the process, the local energy term dominat-
ing the whole function energy can localize the precise position of the object
of interest in image with intensity inhomogeneities. An algorithm based on
supervised continuous max-flow method is developed to solve this problem
robustly and validly. A large number of experiments are presented to show
how this proposed method behaves on different images.

V

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Image processing basics . 3

2.1.1 Digital images . 3
2.1.2 Mathematical operations used in digital image processing 7
2.1.3 Image segmentation . 9

2.2 Optimisation theory . 10
2.2.1 Gateaux differential . 10
2.2.2 Unconstrained optimization 10
2.2.3 Constrained optimization 13

3 Max-flow and min-cut 16
3.1 Min-cut . 16
3.2 Max-flow . 17
3.3 Max-flow min-cut theorem . 18
3.4 Continuous max-flow and min-cut 19
3.5 Supervised continuous max-flow and min-cut 21

4 Segmentation models 24
4.1 Chan-Vese segmentation model 24

4.1.1 Chan-Vese segmentation model without priori gi-
ven information . 24

4.1.2 Chan-Vese segmentation model with priori given infor-
mation . 28

4.2 Local region-based Chan-Vese model 29
4.3 Regional adaptive active contour model 30

5 The proposed method 31
5.1 Minimising w.r.t. u . 32
5.2 Minimising w.r.t. c . 36

VI

Contents VII

5.3 Updating d . 37
5.4 Updating λ and µ . 37
5.5 The main steps of the algorithm 38
5.6 Implementation issues . 39

5.6.1 Approximating the derivative 39
5.6.2 Approximating the divergence 40
5.6.3 Approximating the integral 40
5.6.4 Smoothing the two indicator functions 41

6 Experimental results 42
6.1 Number of max-flow iterations 42
6.2 Trials on some images . 44

7 Summary and conclusion 53

Chapter 1

Introduction

Image processing is a special kind of signal processing in which the input is
an image or a series of images and the output is an image or features related
with the image. The purpose of image processing is to get an enhanced image
or to extract meaningful information from the image by performing suitable
operations on it. Nowadays, image processing has become a rapidly growing
technology, which benefits from the development of computer. It forms core
research area within industry, meteorology, law enforcement, defence and so
on. For example we can found image processing being applied in inspecting
products missed in a factory, predicting weather conditions, recognizing the
face of criminals automatically and developing unmanned planes.

For many image analysis problems, the first step to deal with the research
image is to separate the object of interest from its background in order to
make the problem easier. Thus image segmentation has always been a fun-
damental task in image processing and its result has a great influence on
the rest of the process. Because of the complexity and importance of image
segmentation, an increasing number of researches have been done in the last
decade. Image segmentation process is usually needed in fields such as ma-
chine vision, medical imaging, object detection, traffic control problem and
many others. For example, so as to automatically recognize the face of crim-
inal, we need to isolate the face in the given image and compare the result
with the face which we have stored in our database.

The active contour model [1] which has been proven successful in solving
image segmentation problems in recent years can be divided into edge-based
model [2] and region-based model [3]. The active contour model based on
edge which use gradient of image is not able to segment the target with blur
edges or uneven gray correctly. The area based active contour model which
ignores edges completely can work well for those images in which edges can
not be found by the gradient information. One of the most famous models is

1

2

the Chan-Vese (CV) model [4] which can optimally fits a two-phase piecewise
constant model to a given image. The CV model is an effective method for
segmenting images made of two regions with distinct mean of pixel intensity.
We should note that the CV model is based on the assumption that the
intensities of each region are uniform. However, most of the images from
the complex real word can not hold this assumption, which holds back its
applications.

To solve the problem caused by the intensity inhomogeneities, Shigang
Liu and Yali Peng [5] proposed a new region based active contour model,
named local region-based Chan-Vese (LRCV) model. By considering the
local information, LRCV model can segment an image with intensity inho-
mogeneity effectively. However, to some extent this model is sensitive to the
initial contour, which limits its practical applications.

In order to improve the robustness to initialization, a new model named
regional adaptive active contour (RAAC) model is presented in [6] by Xing
Hui, Yali Peng, et all. In this model, they considered to combine the local
intensity information and the global intensity information. At the beginning,
the global energy term overwhelming gives us a rough but good and quick
initial segmentation. In the later stage of evolution, the exact location of
the object of interest can be detected by the local energy term which is
dominating the whole function energy.

For solving the RAAC model, the traditional level set method [7] is used
in [6]. However, we find that one sub-problem can be formulated as a con-
tinuous min-cut problem. The purpose of this work is to use the supervised
continuous max-flow method to solve this sub-problem and define the global
weight function and the local weight function in LRCV model specifically.

The rest of this thesis is organised as follows: In chapter 2 we recall some
basic knowledge about image processing and optimisation theory. Then, we
explain the supervised continuous max-flow method in chapter 3. Chapter 4
details several segmentation models. The short discussion on implementation
is given in chapter 5 followed by a variety of results in chapter 6.

Chapter 2

Preliminaries

In this chapter we review some basic knowledge which establish the founda-
tion for the remainder of this thesis. In the first section, the definition of
digital image and some image processing tools are recalled before introduc-
ing the segmentation task. The second section about optimisation theory
includes three parts: introduction of Gateaux differential, unconstrained op-
timization and constrained optimization.

2.1 Image processing basics

2.1.1 Digital images

An image can be represented by a two-dimensional function, f(x, y), where x
and y are spatial coordinates, and the value of f(x, y) at any pair of coordi-
nates (x, y) is called the intensity or gray level of the image at that location.
We call the image where the coordinates x, y and the function value of f are
all finite, discrete quantities a digital image[8].

There are many ways to acquire images [8], essentially, the objective is
to generate digital images from sensed data which is a continuous voltage
waveform. So we can create a digital image after converting the continuous
sensed data into digital form. This task can be completed by two processes:
sampling and quantization. Sampling is to digitize the coordinate values
while quantization is to digitize the amplitude values.

Suppose that the continuous image is sampled into a 2-D array, f(x, y),
consisting of M rows and N columns, where (x, y) are discrete coordinates.
For notational clarity and convenience, we use integer values for these discrete
coordinates [8]: x = 0, 1, 2, . . . ,M−1 and y = 0, 1, 2, . . . , N−1. For example,
f(0, 0) denotes the value of the digital image at the origin and f(1, 0) is the

3

4 2.1. Image processing basics

value of the next coordinate along the first column. The number of the
rows and the columns is related to fidelity of the digital image. The larger
the number is, the smaller the difference between the digital image and the
original image is. The spatial domain is defined by the section of the real
plane spanned by the coordinates of an image. We refer to x and y as spatial
variables or spatial coordinates.

There are three basic ways [8] to describe f(x, y). one way is to represent
it as a plot of function with two axes determining spatial location and the
third axis being the values of f as a function of the two spatial variables x
and y. Sometimes, the images are too detailed and hard for us to interpret
from its plot. Showing f(x, y) as it would appear on a monitor or photograph
is the second way to represent f(x, y). Here the intensity of each point is
proportional to the value of f at that point. The third representation is just
to display the intensity values as an matrix. The representation of an M×N
numerical array by the third way can be written as [8]

f(x, y) =

f(0, 0) f(0, 1) . . . f(0, N − 1)
f(1, 0) f(1, 1) . . . f(1, N − 1)

...
...

...
f(M − 1, 0) f(M − 1, 1) . . . f(M − 1, N − 1)

 (2.1)

This kind of representation can be used for processing and algorithm devel-
opment. we call each element of the matrix above an image element, picture
element, pixel, or pel. Conventionally, the origin of a digital image is at the
top left, with the positive x-axis extending downward and the positive y-axis
extending to the right. This is based on the fact that many image displays
sweep an image starting at the top left and moving to the right one row at a
time. Another more important reason is that the first element of a matrix is
at the top left of the array, so putting the origin of the digital image at that
location makes sense mathematically.

Sometimes, it is useful to express sampling and quantization in more
formal mathematical terms. Let Z and R denote the set of integers and the
set of real numbers, respectively. The process of sampling can be regarded as
partitioning the xy-plane into a grid where the coordinates of the center of
each cell is a pair of elements from the Cartesian product Z2 [8], which is the
set of all orded pairs of elements (zi, zj), with zi and zj being integers from
Z. Hence, if (x, y) are chosen from Z2 and f is a function that assigns an
intensity value to each distinct pair of coordinates (x, y), we can call f(x, y)
a digital image.

Digitising the function values, quantisation, is done by picking equally
spaced values along intensity scale and assigning one of these to each point

2.1. Image processing basics 5

depending on whose sensed value is closest to discrete quantity [8]. Due to
storage and quantizing hardware considerations, we chose an integer power
of 2: 2k as the number of intensity levels. We call an image with 2k inten-
sity levels a k-bit image. For example, an image with 256 possible discrete
intensity values is called an 8-bit image. Such an image has intensity levels
that lie in the interval [0,255]. Sometimes, we normalise the intensity to the
interval [0,1] just by dividing the original discrete number by 255. Here, 0
represents black and 1 represents white. The range of values spanned by gray
scale is referred to informally as the dynamic range. The dynamic range of an
imaging system is defined as the ratio of the maximum measurable intensity
to the minimum detectable intensity level in the system.

Now we use an example to show how a digital image is expressed by a
matrix. Here, we regard the part which has the same size with the white

y

x

Figure 2.1: An digital image in x-y plane

part in the center as one pixel. The corresponding 2-D array of figure 2.1 is
following:

f(x, y) =

0 0 0 0 0
0 0.5 0.5 0.5 0
0 0.5 1 0.5 0
0 0.5 0.5 0.5 0
0 0 0 0 0

 (2.2)

6 2.1. Image processing basics

(a) (b)

Figure 2.2: The image with homogeneous intensity and its corresponding
gray scale 3-D plot.

(a) (b)

Figure 2.3: The image with inhomogeneous intensity and its corresponding
gray scale 3-D plot.

Images with homogeneous intensity

A homogeneous intensity image has a good property which is that the varia-
tion of the intensity in same part of the image is low. The difference between
the intensities of two pixels in the same region is small no matter how far
these two pixels is. The plot with higher values in figure 2.2(b) represents
the starfish in figure 2.2(a) and the part left corresponds to its surroundings.
As we can see from the figure 2.2(b), the plot inside the starfish and the plot
outside the starfish seem to be two flat plains.

Images with inhomogeneous intensity

For images with inhomogeneous intensity, the variation of the intensity inside
at least one region is very high, which is shown in figure 2.3. Even though
two pixels are in the same region, their difference could be very large if they
are far away from each other. From figure 2.3(b), we can see that the vessel
looks like a bumpy mountain ridge.

2.1. Image processing basics 7

2.1.2 Mathematical operations used in digital image
processing

Arithmetic operations

Even though an digital image is represented by a matrix, there are many sit-
uations in which arithmetic operations should be performed. The arithmetic
operations are carried out between corresponding pixel pairs. For example
[8], we consider the following 2× 2 images:[

a11 a12

a21 a22

]
and

[
b11 b12

b21 b22

]
The array product of these two images is given by[

a11 a12

a21 a22

]
·
[
b11 b12

b21 b22

]
=

[
a11b11 a12b12

a21b21 a22b22

]
On the other hand, the matrix product is[

a11 a12

a21 a22

]
×
[
b11 b12

b21 b22

]
=

[
a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

]
In image segmentation, array operations play a very important role. For
example, if our goal is to extract regions of interest from an image, we can
just multiply the image with a binary mask image which consists of ones in
the regions which we are interested in and zeros in the remaining parts of
the image. Array operations are also applied in other areas including: noise
reduction and shading correction. We assume array operations throughout
this thesis, unless stated otherwise. When we refer to dividing an image
by another, we mean that the division is between corresponding pixel pairs;
when we refer to raising an image to a power, we mean that each individual
pixel is raised to that power, and so on.

Spatial filtering

Spatial filtering can be used in a broad spectrum of applications. In fact,
we borrow the name filter from frequency domain processing, where filtering
refers to accepting or rejecting certain frequency components [8]. However
spatial filters are more versatile, because they can be used for nonlinear
filtering, something we cannot do in the frequency domain.

A spatial filter consists of (1) a neighborhood, and (2) a predefined opera-
tion that is operated on the image pixels encompassed by the neighborhood.

8 2.1. Image processing basics

We can get the new filtered image by moving the center of the spatial filter of
the neighborhood from pixel to pixel in the input image and doing the prede-
fined operation to generate the result at the coordinate of the neighborhood
center. If the predefined operation is linear, we call the filter a linear spatial
filter. Here, we only talk about linear filtering.

Correlation and convolution are two closed related concepts in linear spa-
tial filtering. Correlation is the process of moving a filter mask over the input
image and computing the sum of products at each location. Convolution is
the same except that the filter is rotated by 180◦.

Correlation of a filter w(x, y) of size m×n with an image f(x, y), denoted
as g(x, y) is given by:

g(x, y) =
a∑

s=−a

b∑
t=−b

w(s, t)f(x+ s, y + t)

where m = 2a + 1, n = 2b + 1, and x and y are varied so that each pixel in
w visits every pixel in f . In a similar manner, the convolution of the w(x, y)
and f(x, y) is given by:

k(x, y) =
a∑

s=−a

b∑
t=−b

w(s, t)f(x− s, y − t)

Sine every element of w must visit every pixel in f , the input image has to
be padded.

Smoothing images and sharping images are two common applications of
linear spatial filtering. A smoothing filter can also be called an averaging
filter, since it computes the wighted average of the pixels in its neighbor-
hood. When all the coefficients of the mask are all the same, the result from
the averaging filter is the standard average. If we want to give more impor-
tance to the middle pixel, we can construct a filter with bigger number in the
center and smaller number in other positions. The uses of smoothing filters
range from blurring to getting the local intensity information. The purpose
of sharpening image is to highlight transitions in intensity. Because averag-
ing is analogous to integration, it is logical to know that sharping can be
accomplished by spatial differentiation. In fact, the strength of the response
of a derivative operator can reflect the degree of intensity discontinuity of the
image. The bigger the differentiation of the intensity is, the quicker the in-
tensity transition is. Thus, differentiation filters can enhance edges and other
discontinuities and deemphasize areas with slowly varying intensities. Image
sharpening can be used in many tasks such as electronic printing, medical
imaging and industrial inspection.

2.1. Image processing basics 9

2.1.3 Image segmentation

In this part, we will introduce the purpose of this thesis which is image
segmentation. Segmentation is one of the most difficult tasks in image pro-
cessing and it is also a very important basis for image analysis. The accuracy
of the segmentation result determines the eventual result of image analysis
procedures. So we should put more attention on this mission. Image seg-
mentation is to divide an image into its constituent regions or objects. How
the subdivision of this image is carried out is based on the problem being
solved. Let R denotes the whole spatial region. The image segmentation [8]
can be viewed as a process that splits the whole region R into n subregions,
R1, R2, . . . , Rn such that

(i)
⋃n
i=1Ri = R.

(ii) Ri is a connected set, i = 1, 2, . . . , n.

(iii) Ri ∩Rj = ∅ for all i and j, i 6= j.

(iv) Q(Ri) = TRUE for i = 1, 2, . . . , n.

(v) Q(Ri ∪Rj) = FALSE for any adjacent regions Ri and Rj.

Where Q(Rk) is a logical predicate defined over the points in set Rk, ∅
is the null set, and the symbols ∪,∩ represent set union and intersection
respectively.

Condition (i) says that all the subregions can join together to become the
whole region. Condition (ii) indicates that all the pixels in one same subre-
gion must be connected in some predefined criteria. Condition (iii) means
that the subregions can not have common part with each other. Condition
(iv) requires that pixels in the segmented region must satisfy the properties
predefined by the logical predicate Q. At last, condition (v) means that the
pixels belonging to two adjacent regions can not be the same in the sense of
predicate (Q).

How to segment the image depends on how to define the logical pred-
icate. Basically, most of the segmentation algorithm are based on either
discontinuity or similarity of intensity values. The first approach based on
the discontinuity is to partition image by finding the edges which always have
abrupt changes of intensity values. The second method based on similarity
of intensity values divides the image into regions where some sort of measure
is similar within each region. For example, one can use the average intensity
value as a measure to find regions with similar grayscale or the standard
deviation to find regions with similar texture [9].

10 2.2. Optimisation theory

2.2 Optimisation theory

Because any maximisation problem can be transformed to a minimisation
problem, in the following part, we only discuss the definitions and theorems
of minimisation problem for convenience.

2.2.1 Gateaux differential

The definition of derivative of a function of real variable is familiar to us .
This kind of derivative measures the sensitivity to change of function value
which is determined by another quantity [10].

Definition 2.2.1. The derivative of f : Rn → R with respect to x is the
function ∇f(x) and is defined as

∇f(x) = lim
h→0

f(x+ h)− f(x)

h

However, there are lots of cases where the function f(x) is a function
of a function. Then the definition of the derivative in the elementary cal-
culus cannot be used. The Gateaux differential [11] is used to generalize
the concept of directional derivative in differential calculus. The definition
of Gateaux differential is very similar with the definition of derivative in
elementary calculus.

Definition 2.2.2. We say that f ′(x) is the Gateaux differential of f(x) if
for all d ∈ C the directional derivative of f at x in the direction d is

f ′(x; d) = lim
h→0

f(x+ hd)− f(x)

h
= 〈f ′(x), d〉

where 〈·, ·〉 is a proper inner product on the function space and C is a set
from a general function space.

2.2.2 Unconstrained optimization

Unconstrained minimization problem considers the problem of minimizing
an objective function that depends on real variables with no restrictions on
their values. Its mathematical model can be formulated as

min
x∈Rn

f(x). (2.3)

where n ≥ 1 and f : Rn → R is a smooth function.

2.2. Optimisation theory 11

Main optimality conditions

Proposition 2.2.1. (Necessary Optimality Conditions) Let x∗ be an uncon-
strained local minimum of f : Rn → R, and assume that f is continuously
differentiable in an open set S containing x∗. Then

∇f(x∗) = 0. (First Oder Necessary condition)

If in addition f is twice continuously differentiable within S, then its second
order derivative ∇2f(x∗) is positive semidefinite:

∇2f(x∗) ≥ 0. (Second Oder Necessary condition)

Proposition 2.2.2. (Second Order Sufficient Optimality Conditions) Let
f : Rn → R be twice continuously differentiable in an open set S. Suppose
that a vector x∗ ∈ S satisfies the conditions

∇f(x∗) = 0, ∇2f(x∗) : positive definite.

Then, x∗ is a strict unconstrained local minimum of f . In particular, there
exist scalars γ > 0 and ε > 0 such that

f(x) ≥ f(x∗) +
γ

2
‖x− x∗‖2 , ∀x with ‖x− x∗‖ ≤ ε.

According to the necessary optimality condition and the sufficient op-
timality condition [12], a straightforward way to solve the unconstrained
problem (2.3) can be concluded as following: First, find all the possible local
minimum points by using the first order necessary condition (∇f(x∗) = 0);
Then filter out those that do not satisfy the second order necessary condition
(∇2f is positive semidefinite); Thirdly, check all those remaining candidates
if they satisfy the second order sufficient condition(∇2f is positive definite)
to make sure that they are strict local minimum; Finally, chose the one which
has the smallest function value among all the local minimums as the global
minimum. However, to find the global minimum for most of the practical
problems by using this way requires too much time and effort.

Since any local minimiser is a global minimizer for convex function [13],
the minimisation problem with a convex function as the cost function is much
easier to be solved.

Gradient method

According to discussion above, searching for points where ∇f(x) = 0 is a
natural idea for finding the minimum of a convex functional. However, not

12 2.2. Optimisation theory

all convex functional can be solved analytically. Actually speaking, most of
the practical problems are impossible to find the analytical solution. Gradient
method [12] is a very fundamental and useful approach to finding the estimate
solution.

Gradient method is based on an important idea, called iterative descent.
Suppose the function that we are dealing with is f : Rn → R. The itera-
tive descent works as follows: We start at an initial point x0 and generate
sequence xk, such that the function value of f decreases after each iteration,

f(xk+1) < f(xk), k = 0, 1, . . . , (2.4)

In doing so, we successively improve our current estimate result. Hopefully,
the sequence generated by the description above will converge to the mini-
mum.

The difference among algorithms based on the iterative descent lies in how
to update every point in each iteration. In gradient method, the sequence is
constructed by the following formula:

xk+1 = xk − εk∇f(xk) (2.5)

where εk is the step length. The reason why this method can promise
f(xk+1) < f(xk) can be explained by its Taylor expansion shown below:

The first order Taylor series expansion around x gives us that

f(xk+1) = f(xk) +∇f(xk)′(xk+1 − xk) + o
(∥∥xk+1 − xk

∥∥)
= f(xk)− εk

∥∥∇f(xk)
∥∥2

+ o
(
εk
∥∥∇f(xk)

∥∥)
So we get

f(xk+1) = f(xk)− εk
∥∥∇f(xk)

∥∥2
+ o

(
εk
)

When εk is near zero, the term εk
∥∥∇f(xk)

∥∥2
overwhelms o(εk). Obviously,

the term εk
∥∥∇f(xk)

∥∥2
is positive and f(xk+1) is smaller than f(xk).

We can expand this method into a more general optimisation problem:

min
x∈C

f(x)

where f : C → R. When C is a subset of a function space, we have to use
the Gateaux differential. So similarly as above the minimising sequence is
constructed according to

xk+1 = xk − εkf ′(xk),

where f ′(x; d) = 〈f ′(x), d〉 , ∀d ∈ C.

2.2. Optimisation theory 13

2.2.3 Constrained optimization

In this section, we talk about the constrained optimization problem

minimize f(x) s.t x ∈ X,

where X is a nonempty and convex subset of Rn and f : Rn → R is a con-
tinuously differentiable function over X. We can see that the unconstrained
problem is just a special case of constrained problem when X = Rn. Usually,
the convex set is constructed by equations and inequalities. In this section,
we only focus on a special type where the set X consists of only equations.

The form of the equality constrained optimisation problem is shown as
following:

minimize f(x) s.t hi(x) = 0 for i = 1, . . . ,m,

where f : Rn → R, hi : Rn → R are continuously differentiable functions.
For notational convenience, we can write the constraints in a more compact
form

h(x) = 0.

where
hT = (h1, . . . , hm).

There is one important function called Lagrangian function in the constrained
optimization problem. The definition of this function L : Rn+m → R is
following

L(x, λ) = f(x) + λTh(x).

where λT = (λ1, . . . , λm) is a vector.

Main optimality conditions

Proposition 2.2.3. (Necessary Optimality Conditions) if x∗ is the local min-
imum of f subject to h(x) = 0, and the gradients of the constraints ∇h1(x),
. . . ,∇hm(x) are linearly independent. Then we can find a unique vector
λ∗ = (λ∗1, . . . , λ

∗
m) called a Lagrange multiplier, such that

∇xL(x∗, λ∗) = 0.

If f and h are twice continuously differentiable, we have

y′∇2
xxL(x∗, λ∗)y ≥ 0, for all y ∈ V (x∗)

where V (x∗) is the subspace of the first feasible variations

V (x∗) = {y | ∇hi(x∗)′y = 0, i = 1, . . . ,m}.

14 2.2. Optimisation theory

Proposition 2.2.4. (Sufficient Optimality Conditions) We assume that f
and h are twice continuously differentiable, and let x∗ ∈ Rn and λ∗ ∈ Rm

satisfy
∇xL(x∗, λ∗) = 0, ∇λL(x∗, λ∗) = 0

y′∇2
xxL(x∗, λ∗)y > 0, for all y 6= 0 with ∇h(x∗)′ = 0

Then we can say that x∗ is a strict local minimum of f subject to h(x) = 0.

The optimality conditions above shows that the gradient of the cost
function ∇f(x∗) is a linear combination of the gradients of the constraints
∇hi(x∗). If ∇f(x∗) is not a linear combination of ∇hi(x∗), at least one pro-
jection of ∇f(x∗) along the tangent line of the intersection of hi(x) = 0 is
nonzero. Thus the cost function f can be increased in one direction without
violating any of the constraints. This is a contradiction with the fact that
x∗ is the local minimum. So ∇f(x∗) must belong to the subspace spanned
by the constraints gradients. Like the case in unconstrained problem, the
analytical solution for some problems can be found by making use of these
optimality conditions [12].

Augmented Lagrangian method

As we said in the unconstrained problem, there are some problems which
can not be solved analytically. Here, we introduce one method: Augmented
Lagrange method [12]. The idea behind this method is to transform the
constrained problem into an unconstrained problem by eliminating some or
all of the constraints. We can fulfill this purpose by adding to the cost
function a penalty term that prescribes a high cost to infeasible points.

At the central position of this method is the augmented Lagrangian func-
tion Lc : Rn × Rm → R given by

Lc(x, λ, c) = f(x) + λTh(x) +
c

2
‖h(x)‖2

Where c > 0 is called penalty parameter. The reason why minimizing
Lc(x, λ) can solve the constrained problem is based on two facts: one is that
x∗ is a strict local minimum of the augmented Lagrangian Lc(x, λ

∗) when
c is large enough. This suggests that we can find a good approximation to
x∗ by minimizing the unconstrained function Lc(x, λ), when λ is close to λ∗.
The second fact is that because of the high cost for the infeasible points,
the unconstrained minimum of Lc(x, λ) should be nearly feasible. We also
expect that Lc(x, λ) ≈ f(x) near the feasible set. Thus we expect that we
can get a good approximation to x∗ by finding the minimum of Lc(x, λ), if c
is big enough.

2.2. Optimisation theory 15

This method includes solving a sequence of problems as

minimize Lck(x, λk),

where 0 < ck < ck+1 and ck → ∞. The global minimum of each problem in
the sequence of problems above converges to a local minimum of the original
constrained problem. In each iteration, ck is increased and λk is updated by

λk+1 = λk + ckh(xk). (2.6)

The reason can be explained by the following observation:

∇xLa(x
k, λk, ck) = ∇f(xk) + (λk + ckh(xk))T∇h(xk) ≈ 0

and
∇xLa(x

∗, λ∗) = ∇f(x∗) + λ∗T∇h(x∗) = 0

The Lagrangian multiplier approximation λk is updated by (2.6) to approach
λ∗ at the same time when xk converge to x∗.

The Augmented Lagrangian method is reliable and always converges to
at least one local minimum. When the cost function is convex, we can get
the global minimum by penalty function method.

Chapter 3

Max-flow and min-cut

Min-cut of a graph is to search for a cut that is minimal in some sense. Some
energy minimisation problem can be transformed into a min-cut problem.
Thus some optimization problem can be solved by the min-cut method. Ac-
cording to the theorem of min-cut and max-flow, we can solve the min-cut
problem by maximising its corresponding flows instead. In this chapter, the
definition of these two kinds of problems,their connection between each other
are explained before introducing the continuous max-flow method and the
supervised continuous max-flow method.

3.1 Min-cut

A graph consists of a set of vertices V and a set of edges E [9]. In order
to correspond with our image processing context, we also need two terminal
vertices: the source s and the sink t. Each pixel in the image is regarded as
a vertice in the graph and each pixel is linked with its neighbours by spatial
edges en, as well as to both terminal vertices by the two terminal edges es
and et(see figure 3.1(a)). Our purpose is to divide all the pixels in the image
into two disjoint groups. The group which has the pixels connecting with the
sources is called foreground, and the left pixels form the background group.
Then the min-cut problem can be thought of as cutting off all the spatial
edges between pixels belonging to different groups and also removing one of
the terminal edges from each pixel so that it either is connected with s or
connected with t (see figure 3.1(b)).

Now the whole set V has been partitioned into two subset: one is the
foreground subset Vs containing the terminal vertex s and the foreground
pixels, the other one is the background subset Vt containing the vertices left.
This cut partitioning the set into two parts is called an s− t cut. Here, each

16

3.2. Max-flow 17

(a) (b)

Figure 3.1: Figure showing a graph and containing 9 pixels, two terminal
vertices and spatial and terminal edges. 3.1a is the whole part of the network.
In 3.1b the 9 pixels are partitioned into two parts by cutting off some of the
edges. The edges which are removed from the 3.1a are missing in 3.1b.

edge e ∈ E has a non-negative cost C(e) ≥ 0. The mathematical model of
the min-cut problem is formulated by the following:

min
Est⊂E

∑
e∈Est

C(e),where Est = {e ∈ E | e = (v1, v2), v1 ∈ Vs, v2 ∈ Vt} ,

Our task is to determine where we should make the cut to minimize the sum
of the costs of the edges that are cut from the edge set E.

3.2 Max-flow

We can also look at this graph by a closely related way, which is thinking of
the graph as a network, where each edge is reckoned as a pipe. Calculating
the maximum amount of water that can flow through these pipes from the
source s to the sink t is our purpose. Like the case in the min-cut problem,
there are some constraints that must be fulfilled on those pipes: the flow p
through a pipe can not be bigger than the pipe’s capacity, and the amount
of the water flowing into a vertex should be equal to the amount of the water
flowing out of the vertex. Its mathematical formulation is shown as following:

• Source flows capacity:

0 ≤ ps(v) ≤ Cs(v), (3.1)

where ps(v) and Cs(v) are shorthand for p(es(v)) and C(es(v)) respec-
tively.

18 3.3. Max-flow min-cut theorem

• Sink flows capacity:

0 ≤ pt(v) ≤ Ct(v), (3.2)

where pt(v) is the abbreviation of p(et(v)) and Ct(v) is shorthand for
C(et(v)).

• Spatial flows capacity:

|p(en)| ≤ C(en), (3.3)

The flows through the spatial edges linking pixels can have two direc-
tions. If the flow in the pipe en = (v1, v2) goes from v1 to v2, the value
of the flow is positive. On the contrary, it is negative if the flow goes
from the opposite direction. Thus here we use the absolute value in
the inequality above.

• flows conservation:∑
w∈N4(v)

p((v, w))− ps(v) + pt(v) = 0, (3.4)

where N4(v) stands for the 4-connectivity neighbourhood of pixel v.

Thus the max-flow problem is to maximize the amount of flow from source
s to sink t while satisfying the above constraints:

max
ps

∑
v∈V \{s,t}

ps(v), subject to (3.1), (3.2), (3.3) and (3.4). (3.5)

3.3 Max-flow min-cut theorem

Theorem 3.3.1. For any network the maximal flow value from source s to
t is equal to the minimal cut capacity of all cuts separating s and t.

This theorem [14] indicates that the cost function value of the min-cut
problem is identical with the max-flow problem. Thus when our task is to cal-
culate the minimum of an energy function by cutting some edges from some
graph, we can solve this problem by maximising its corresponding network
instead. From our experience, the algorithm developed under the max-flow
circumstance is much more easier and faster than those founded under the
min-cut circumstance.

3.4. Continuous max-flow and min-cut 19

3.4 Continuous max-flow and min-cut

We can also formulate the max-flow and min-cut problem in the continuous
setting [15] which can help us to develop mathematical algorithm. Now the
vertices except the source s and sink t in the domain Ω are continuous set of
points. The continuous version of constraints on flows are as following:

ps(x) ≤ Cs(x), ∀x ∈ Ω; (3.6)

pt(x) ≤ Ct(x), ∀x ∈ Ω; (3.7)

|p(x)| ≤ C(x), ∀x ∈ Ω; (3.8)

divp(x)− ps(s) + pt(x) = 0, a.e. x ∈ Ω; (3.9)

p(x) · v = 0, on ∂Ω; (3.10)

where a.e. means ”for almost every” and v is the outward normal vector
to the boundary ∂Ω. Constraints (3.6) and (3.7) are changed a little bit.
Because ps and pt are directed, the positiveness of the flows are not needed.
Thus the capacity Cs(x) and Ct(x) are not necessary to be positive. The
continuous max-flow mathematical model which also is called the primal
model is formulates as:

sup
ps,pt,p

∫
Ω

ps(x) dx, subject to constraints (3.6) through (3.10). (3.11)

Because there is an equality constraint (3.9), we can reduce the number of
constraints by introducing the Lagrangian multipliers. Here the number of
the equality constraints are infinite, so the Lagrangian multiplier u should
be a function. Then the Lagrangian function of the primal model is :

L(ps, pt, p, u) =

∫
Ω

ps(x)dx+

∫
Ω

u(x)(divp(x)− ps(x) + pt(x))dx

=

∫
Ω

[(1− u(x))ps(x) + u(x)pt(x) + u(x)divp(x)] dx

Now the task of the problem (3.11) has become finding the saddle point of L
subject to (3.6), (3.7), (3.8) and (3.10). Because the Lagrangian function L
is linear in all variables and we have convex constraints on flows, according
to the minimax theorem [11], we can find the saddle point by solving the
following model:

min
u

sup
ps,pt,p

{∫
Ω

[(1− u(x))ps(x) + u(x)pt(x) + u(x)divp(x)]dx

}
(3.12)

s.t. ps(x) ≤ Cs(x), pt ≤ Ct(x), |p(x)| ≤ C(x) ∀x ∈ Ω.

20 3.4. Continuous max-flow and min-cut

This is called the primal-dual problem which has the same solution with the
primal model. The primal-dual model (3.12) can be rearranged as

min
u

{
sup
|p(x)|
≤C(x)

∫
Ω

u(x)divp(x) dx+ sup
ps(x)
≤Cs(x)

∫
Ω

ps(x)(1− u(x)) dx

+ sup
pt(x)
≤Ct(x)

∫
Ω

pt(x)u(x) dx

}
. (3.13)

First let us see the first part of (3.13). The divergence theorem gives us that∫
Ω

u(x)divp(x) dx =

∫
Ω

div(p(x)u(x)) dx−
∫

Ω

p(x) · ∇u(x) dx

=

∫
∂Ω

(p(x)u(x)) · v ds−
∫

Ω

p(x) · ∇u(x) dx. (3.14)

Because of the constraint (3.10) on the boundary, we get∫
Ω

u(x)divp(x) dx = −
∫

Ω

p(x) · ∇u(x) dx. (3.15)

It is obvious that

−
∫

Ω

p(x) · ∇u(x) dx ≤
∫

Ω

|p(x)||∇u(x)| dx ≤
∫

Ω

C(x)|∇u(x)| dx.

When p(x)→ −C(x), the supremum is attained as

sup
|p(x)|
≤C(x)

∫
Ω

u(x)divp(x) dx =

∫
Ω

C(x)|∇u(x)| dx. (3.16)

We should note that u(x) ∈ [0, 1]. if not, the energy of the last two terms
is infinity. Since we have proven that the energy of the first term is be non-
negative, the sum of the energy of the two terms left in (3.13) being infinite
will lead the energy of (3.13) to being infinite. However this can not be the
case for the reason that we have proven that there exists at least one saddle
point. Now we know that u(x) and 1 − u(x) are all positive. It is easy to
prove that

sup
ps(x)
≤Cs(x)

∫
Ω

ps(x)(1− u(x)) dx + sup
pt(x)
≤Ct(x)

∫
Ω

pt(x)u(x) dx

=

∫
Ω

(1− u(x))Cs(x) dx+

∫
Ω

u(x)Ct(x) dx (3.17)

3.5. Supervised continuous max-flow and min-cut 21

By adding (3.16) to (3.17), the primal-dual model (3.12) can be written as

min
u∈[0,1]

{∫
Ω

[(1− u(x))Cs(x) + u(x)Ct(x) + C(x)|∇u(x)|] dx
}
. (3.18)

This model is called dual model which is equivalent to the primal model
(3.11) and the primal-dual model (3.12). And the dual model can also be
called the continuous min-cut model. We can simplify this model by only
remaining the part depending on u as

min
u∈[0,1]

{∫
Ω

[u(x)(Ct(x)− Cs(x)) + C(x)|∇u(x)|] dx
}
. (3.19)

3.5 Supervised continuous max-flow and min-

cut

Some priori information can help us with solving the problem. Here, the
priori given information is that some pixels in the image have been labeled in
advance, as foreground or background. We denote the priori given foreground
by Ωf while denoting the priori given background by Ωb.

Two indicator functions [15] which characterize these two priori given
regions are given as

uf (x) =

{
1 x ∈ Ωf

0 x 6= Ωf
, ub(x) =

{
0 x ∈ Ωb

1 x 6= Ωb
(3.20)

We regard the supervised max-flow model as a problem of flow cost. For
the source flow ps(x), the flow costs nothing when x ∈ Ωb; otherwise, it costs
ps(x). Since ub(Ωb) = 0 and ub(Ω\Ωb) = 1, the total cost from source flows
is
∫

Ω
ub(x)ps(x). For the sink flow pt(x), as a flow passes a known foreground

pixel, it is valued as −pt(x) where its negative sign means it reduces the cost;
otherwise, it is valued as zero. Likewise, since uf (Ωf) = 1 and uf (Ω\Ωf) = 0,
the total cost from sink flows is −

∫
Ω
uf (x)pt(x).

In view of the continuous max-flow model (3.11), the supervised contin-
uous max-flow is formulated as

sup
ps,pt,p

∫
Ω

ub(x)ps(x) dx−
∫

Ω

uf (x)pt(x) dx (3.21)

subject to the flow constraints (3.6) through (3.10). If there is no priori
information given in advance, we have uf = 0 and ub = 1, ∀x ∈ Ω. Then, the
problem (3.21) become the continuous max-flow model. Thus the continuous

22 3.5. Supervised continuous max-flow and min-cut

max-flow primal model is a special case of the supervised continuous max-
flow primal model.

Like the continuous max-flow model, the equivalent constraints can be
removed by introducing the Lagrangian multiplier u(x). Then the equivalent
primal-dual model of (3.21) is obtained as

min
u

sup
ps,pt,p

∫
Ω

(ub(x)− u(x))ps(x) dx+

∫
Ω

(u(x)− uf (x))pt dx+∫
Ω

u(x)divp(x) dx (3.22)

s.t. ps(x) ≤ Cs(x), pt ≤ Ct(x), |p(x)| ≤ C(x) ∀x ∈ Ω

which can be rearranged as

min
u

{
sup
|p(x)|
≤C(x)

∫
Ω

u(x)divp(x) dx+ sup
ps(x)
≤Cs(x)

∫
Ω

ps(x)(ub(x)− u(x)) dx

+ sup
pt(x)
≤Ct(x)

∫
Ω

pt(x)(u(x)− uf (x)) dx

}
. (3.23)

Since there exists at least a saddle point for (3.23), the energy of the function
(3.23) cannot be infinite. So there is a constraint hiding behind this function
which is that

uf (x) ≤ u(x) ≤ ub(x), x ∈ Ω. (3.24)

So now, ub(x)− u(x) and u(x)− uf (x) are all positive. By maximizing over
all flows ps, pt and p(x), we get the dual model

min
u

∫
Ω

(ub(x)− u(x))Cs(x) dx+

∫
Ω

(u(x)− uf (x))Ct(x) dx

+

∫
Ω

C(x)|∇u(x)| dx (3.25)

. s.t. uf (x) ≤ u(x) ≤ ub(x) ∀x ∈ Ω.

which is equivalent to the primal supervised model (3.21) and the primal-
dual supervised model (3.22). Because we have uf (Ωf) = ub(Ωf) = 1 and
uf (Ωb) = ub(Ωb) = 0, the inequality constraints in (3.25) gives us that
u(Ωf) = 1 and u(Ωb) = 0. So the priori given information which Ωf is
labeled as foreground and Ωb is labeled as background still is guaranteed in
(3.25).

When no priori information is given, uf (x) = 0 and ub(x) = 1, the super-
vised dual model (3.25) coincides with the non-supervised dual model (3.18).

3.5. Supervised continuous max-flow and min-cut 23

Thus the non-supervised continuous max-flow dual model is a special case of
supervised continuous max-flow dual model.

Since ub(x) and uf (x) are given, after removing those parts which does
not depend on u in (3.25), The dual model can be shortened as

min
u

∫
Ω

u(x)(Ct(x)− Cs(x)) dx+

∫
Ω

C(x)|∇u(x)| dx (3.26)

s.t. uf (x) ≤ u(x) ≤ ub(x) ∀x ∈ Ω.

Comparing (3.19) with (3.26), we can see that the only difference between
the non-supervised continuous max-flow dual model and the supervised con-
tinuous max-flow dual model is the constraint on u(x). In fact this difference
comes from the given information which forces u(x) in foreground to be 1
and u(x) in background to be 0.

Chapter 4

Segmentation models

While many image segmentation models rely heavily on edge detection, one
popular and well-known model inspired by the Mumford-shah model[16],
which is named Chan-Vese model [4], ignores edges completely. This model
is based on intensity homogeneity of images, however, the intensity inho-
mogeneities exists in many real word images especially in medical images.
In order to segment this kind of images, a local region-based Chan–Vese
model[5] is proposed . But the sensitivity to the initialization input limits its
application. Thus Xing Hui and Peng Yali present a regional adaptive active
contour model [6] which is the combination of the original Chan-Vese model
and the local region-based chan-vese model. In this chapter, first we intro-
duce the Chan-Vese model. Then the local-region based chan-vese model is
presented before deriving the regional adaptive active contour model.

4.1 Chan-Vese segmentation model

In this section, we introduce the Chan-Vese segmentation model and the
supervised Chan-Vese model which involves in the priori given information.

4.1.1 Chan-Vese segmentation model without priori
gi-
ven information

The Chan-Vese model is used to divide the digital image into two parts;
background and foreground, where the foreground contains the object of
interest in the image. Here we only give the formulation of this model for
grey scale images as in [9] [17]. The Chan-Vese segmentation model is in fact

24

4.1. Chan-Vese segmentation model 25

minimising the following functional:

ECV (u, c) = J(u) +
λ

2

{
〈1− u, (I − c0)2〉+ 〈u, (I − c1)2〉

}
(4.1)

with respect to u and c. The variable u is the characteristic function of the
region Σ representing the foreground while c1 is the average grey value inside
Σ and c0 is the average grey value outside Σ. The weight λ is a positive
number and J(u) =

∫
Ω
|∇u(x)| is the total variation of u.

We can explain why this model works by a simple case where the image
includes two approximately constant parts Ω0 and Ω1 with different grey
values. The energy of the Chan-Vese model is dominated by the last two
parts which is called fitting term. Minimizing the fitting term can give us
a region Σ which equals the region Ω1 representing the object of interest.
Because u(x) = 1 for x ∈ Σ and u(x) = 0 for x ∈ Ω\Σ, for the simplicity of
the following discussion, we rewrite the the fitting terms as

T0 + T1 =

∫
Ω\Σ

(I − c0)2 dx+

∫
Σ

(I − c1)2 dx (4.2)

Then, when Σ is inside Ω1 as in figure 4.1(a), c1 is equal to the grey value
inside Ω1 and c0 is not equal to the grey value inside Ω1 or to the grey value
in Ω0. So T1 ≈ 0 and T0 > 0. If Ω1 ∈ Σ as in figure 4.1(b), c1 lies between the
grey value in Ω0 and in Ω1 and co is equal to the grey value in Ω0. Thus T0 ≈ 0
and T1 > 0. In the third case as shown in figure 4.1(c), the region Σ has
connection with both Ω0 and Ω1. Then c0 and c1 are both between the grey
value inside Ω0 and Ω1 which results in both terms T1 and T0 being positive.
Finally, when contour line C of the region Σ matches with the boundary of
the region Ω1 as shown in the figure 4.1(d), c1 and c0 will be equal to the the
grey value inside Ω1 and the grey value inside Ω0 respectively. Then both
terms T0 and T1 are close to 0 and the minimum of the energy function is
obtained.

Total variation

The total variation of u ∈ L1(Ω) in [18] and [19] is defined as following:

J(u) = sup

{∫
Ω

u div(ξ) dx | ξ ∈ C1
c (Ω,Rn), ||ξ||∞ ≤ 1

}
, (4.3)

where Ω ∈ Rn is a bounded open domain, the function u : Ω → R is ab-
solutely integrable and ξ is one time continuously differentiable function
with compact support. A function u is said to be of bounded variation,
if J(u) <∞.

26 4.1. Chan-Vese segmentation model

(a) T0 > 0, T1 ≈ 0 (b) T0 ≈ 0, T1 > 0

(c) T0 > 0, T1 > 0 (d) T0 ≈ 0, T1 ≈ 0

Figure 4.1: Figure showing four different cases with the respect to the posi-
tion of the region Σ (region inside the black line) relative to Ω1 (the lightning-
shaped region).

The product rule for differentiation gives us∫
Ω

udiv(ξ) dx =

∫
Ω

div(ξu) dx−
∫

Ω

ξ · ∇u dx (4.4)

According to the divergence theorem, we get the following∫
Ω

udiv(ξ) dx =

∫
∂Ω

(ξu) · v dS −
∫

Ω

ξ · ∇u dx (4.5)

where v is the outward unit normal vector along ∂Ω. Since ξ is a function
with support, the first term on the right hand of (4.5) becomes zero. Then
we have∫

Ω

udiv(ξ) dx = −
∫

Ω

ξ · ∇u dx ≤
∫

Ω

|ξ · ∇u| dx ≤
∫

Ω

|ξ||∇u| dx (4.6)

where the last step comes from Cauchy-Schwarz inequality. From the defini-
tion of the total variation, we know that ||ξ||∞ ≤ 1. Then we get∫

Ω

udiv(ξ) dx ≤
∫

Ω

|∇u| dx (4.7)

The supremum J(u) =
∫

Ω
|∇u| dx can be attained if we let ξ → −∇u

|∇u| .

4.1. Chan-Vese segmentation model 27

In Chan-Vese model, u represents the characteristic function of Σ ⊂ Ω,
then we have∫

Ω

udiv(ξ) dx =

∫
Σ

div(ξ) dx =

∫
∂Σ

ξ · v dS ≤
∫
∂Σ

|ξ · v| dS (4.8)

By using the Cauchy-Schwarz inequality, we get the following∫
Ω

udiv(ξ) dx ≤
∫
∂Σ

|ξ||v| dS ≤ |∂Σ|. (4.9)

when we set ξ = v on ∂Σ,
∫

Ω
udiv(ξ) dx =

∫
∂Σ
ξ · v dS =

∫
∂Σ
|ξ||v| dS = |∂Σ|

and J(u) = |∂Σ| can be obtained. Thus, the first term is used to control the
length of the border of the region Σ.

The truncation lemma

However, the function u in the model (4.1) is required to be a binary func-
tion. This fact indicates that the model (4.1) is a non-convex optimisation
problem which is hard to be solved by the theory introduced in chapter 2.
Nevertheless, Chan, Esedoglu and Nikolova [20] have proven that the prob-
lem with fixed c can be solved globally by relaxing the constraint on u to
allow u ∈ K where

K = {u ∈ BV (Ω) | 0 ≤ u(x) ≤ 1 ∀x ∈ Ω}. (4.10)

The energy function ECV can be rewritten as

J(u) +
λ

2
〈1, (I − c2

0)〉+
λ

2
{〈−u, (I − c2

0)〉+ 〈u, (I − c2
1)〉}. (4.11)

When c is fixed, minimizing ECV with respect to u is equivalent to minimi-
sation of the following functional

ẼCV (u) = J(u) +
λ

2
{〈−u, (I − c2

0)〉+ 〈u, (I − c2
1)〉} = J(u) +

λ

2
〈g, u〉, (4.12)

where g = (I − c1)2 − (I − c0)2. Next we state the lemma and prove it as
done in [17]:

Lemma 4.1.1 (The Truncation Lemma I). If u∗ = arginf
u∈K

ẼCV (u), then ut∗ =

arginf
u∈{0,1}

ẼCV (u) for almost all t ∈ [0, 1] where ut∗(x) is defined as

ut∗(x) =

{
1 if u∗(x) > t,
0 otherwise

∀x ∈ Ω.

28 4.1. Chan-Vese segmentation model

Proof. Because of the coarea formula, J(u∗) =
∫ 1

0
J(ut∗) dt and the layer cake

representation, 〈g, u∗〉 =
∫ 1

0
〈g, ut∗〉, we have ẼCV (u∗) =

∫ 1

0
ẼCV (ut∗) dt. After

putting ẼCV (u∗) and ẼCV (ut∗) on one side, we get∫ 1

0

(ẼCV (ut∗)− ẼCV (u∗)) dt = 0 (4.13)

Since u∗ is the minimum value, ẼCV (ut∗) ≥ ẼCV (u∗). It is easy to observe

that ẼCV (u∗) = ẼCV (ut∗) for almost all t. If not, the formulation (4.13)

can not hold. Thus ut∗ = arginf
u∈K

ẼCV (u) and ut∗ ∈ {0, 1} is the minimum of

ẼCV(u)
u∈{0,1}

.

4.1.2 Chan-Vese segmentation model with priori given
information

If regions Ωf and Ωb are labeled as foreground and background respectively
in advance, the Chan-vese model become

ECV (u, c) = J(u) +
λ

2

{
〈1− u, (I − c0)2〉+ 〈u, (I − c1)2〉

}
s.t. uf (x) ≤ u ≤ ub (4.14)

where the definition of ub(x) and uf (x) can be found in (3.20). The charac-
teristic function u belongs to the following space

B = {u ∈ {0, 1} | uf (x) ≤ u(x) ≤ ub(x) ∀x ∈ Ω}. (4.15)

which makes the problem (4.14) become a non-convex problem. Next we
prove that when c is fixed, this problem can be solved by relaxing the con-
straint on u to allow u ∈ G where

G = {u ∈ BV (Ω) | uf (x) ≤ u(x) ≤ ub(x) ∀x ∈ Ω}. (4.16)

After loosing the constraint on u, the problem becomes a convex problem
which is easy to be solved. Like the case in non-supervised Chan-vese model,
the minimisation of ECV over G is equivalent to the minimisation of ẼCV
over G.

Lemma 4.1.2 (The Truncation Lemma II). If u∗ = arginf
u∈G

ẼCV (u) then ut∗ =

arginf
u∈B

ẼCV (u) for almost all t ∈ [0, 1] where ut∗(x) is defined as

ut∗(x) =

{
1 if u∗(x) > t,
0 otherwise

∀x ∈ Ω.

4.2. Local region-based Chan-Vese model 29

Proof. We can use the same way as the Lemma 4.1.1 to prove that ẼCV (u∗) =

ẼCV (ut∗) for almost all t. Thus we have that ut∗ = arginf
u∈G

ẼCV (u). After the

thresholding, the given background and the given foreground still remain
what they are set in advance, thus ut∗ ∈ B and it solves arginf

u∈B
ẼCV (u).

4.2 Local region-based Chan-Vese model

In this section, we present the Local region-based Chan-Vese model [5] which
considers the image local characteristics. Before introducing the LRCV
model, we define the local mean intensity d = [d0, d1] as

d0(x) =

∫
Ω
gk(x− y)I(y)(1− u(x)) dy∫
Ω
gk(x− y)(1− u(x)) dy

d1(x) =

∫
Ω
gk(x− y)I(y)u(x) dy∫
Ω
gk(x− y)u(x) dy

(4.17)

where gk is a Gaussian kernel function with size k, I is the image which we
are dealing with and u(x) is the characteristic function of region Σ.

In fact, the CV model segments an image by adding pixels closer to fore-
ground to foreground and pixels closer to background to background. The
difference between the intensity of one pixel and the global mean intensity
measure the distance between the pixel and the foreground and the distance
between the pixel and the background . However, in an image with inhomoge-
neous intensity, the further one region is from one pixel, the less relationship
the region has with the pixel. Thus, using the difference between one pixel
and the local mean intensity to measure the distance between the pixel and
foreground and between the pixel and the background is much more accurate
than using the global mean intensity. Then we should replace the global mean
intensity c = [c0, c1] in CV model by the local mean intensity d = [d0, d1] and
the energy functional of the local region-based Chan-Vese model is obtained
as following

ELRCV (u, c) = J(u) +
µ

2

{
〈1− u, (I − d0)2〉+ 〈u, (I − d1)2〉

}
, (4.18)

where J(u) plays the same role here as in the CV model to control the length
of the region Σ and µ is the wight of the fitting term like the weight λ in
CV model. Because of the localization property of the kernel function gk,
the influence of the value of I(y) decreases and approaches zero as the point
y goes away from point x. The value of d = [d0, d1] is determined by the
intensity values in the small neighborhood around point x. If we choose

30 4.3. Regional adaptive active contour model

the Gaussian kernel function as an averaging filter with infinity window size,
[d0, d1] becomes the global mean intensity c = [c0, c1] in the Chan-Vese model.
Then the LRCV model degenerates to the CV model.

4.3 Regional adaptive active contour model

However, the local region based Chan-Vese model is sensitive with the ini-
tialization for the reason that this model only considers the local intensity
information. In order to overcome this practical disadvantage, Xing Hui,
Peng Yali [6], proposed a new model including the regularization term, the
local energy term and the global energy term:

ERAAC(c, d, u) = J(u) +
λ(k)

2

{
〈1− u, (I − c0)2〉+ 〈u, (I − c1)2〉

}
+
µ(k)

2

{
〈1− u, (I − d0)2〉+ 〈u, (I − d1)2〉

}
(4.19)

where c = [c0, c1] and d = [d0, d1] are the same as in the Chan-Vese model
and the Local region-based Chan-Vese model respectively and k means the
iteration number. Here, the weight function λ(k) is a non-increasing function
while the weight function µ(k) is a non-decrasing function.

At the beginning of the evolution, the global term much bigger than
the local term yields a good initial segmentation of the image quickly by
utilizing the advantages of the Chan-Vese mode: the fast convergence and
non-sensitivity to the initialization. In the later stage of the process, the local
energy term overwhelming the global term can locate the object of interest
precisely.

Chapter 5

The proposed method

In this chapter, the supervised continuous max-flow method is proposed to
solve the regional adaptive active contour model numerically. We largely
follow the discussion in [9]. For the sake of notation simplicity we only
construct the mathematical algorithm for the grey scale images, but the
algorithm can be extended to colour images easily.

Because of the given priori information which is that we have labeled
one region Ωf as foreground and one region Ωb as background, the regional
adaptive active contour model should be revised as

ERAAC(c, d, u) = J(u) +
λ(k)

2

{
〈1− u, (I − c0)2〉+ 〈u, (I − c1)2〉

}
+
µ(k)

2

{
〈1− u, (I − d0)2〉+ 〈u, (I − d1)2〉

}
s.t. uf (x) ≤ u(x) ≤ ub(x) ∀x ∈ Ω.

The idea of minimising the revised RAAC model is that we minimise
the energy function with respect to one variable at one time after fixing the

(a) (b)

Figure 5.1: a is the original figure. The region inside the green line in b is
the region Ωf while the region Ωb is the part inside the red line.

31

32 5.1. Minimising w.r.t. u

others. In the first part, we minimise the energy function with the respect to
the characteristic function u while keeping c and d fixed. Then after fixing u
and d, we minimize with the respect to c. At the last step, we just update d
by its definition to minimise the cost function in the revised RAAC model.

5.1 Minimising w.r.t. u

We rearrange the regional adaptive contour model as the following

ERAAC(c, d, u) = J(u) +
λ(k)

2

{
〈1− u, (I − c0)2〉+ 〈u, (I − c1)2〉

}
+
µ(k)

2

{
〈1− u, (I − d0)2〉+ 〈u, (I − d1)2〉

}
= J(u) +

〈
u,
λ(k)

2
(I − c1)2 +

µ(k)

2
(I − d1)2

〉
+

〈
1− u, λ(k)

2
(I − c0)2 +

µ(k)

2
(I − d0)2

〉
s.t. uf (x) ≤ u(x) ≤ ub(x) ∀x ∈ Ω. (5.1)

The difference between (5.1) and (4.14) is only the weight of the fitting term
and the quadratic terms. However, the quadratic terms in and (4.14) and
(5.1) are only numbers when keeping c = [c0, c1] and d = [d0, d1] fixed.
Thus these two problems with fixing c and d can be regarded as one kind of
problems. In chapter 4, we have proven that this kind of problems can be
solved by relaxing the constraint on u from u(x) ∈ B to u ∈ G and truncating
the solution by almost every number t between 0 and 1. By deleting those
terms in (5.1) which does not depend on u, we get

ẼRAAC(c, d, u) = J(u) +

〈
u,
λ(k)

2
(I − c1)2 +

µ(k)

2
(I − d1)2

〉
−
〈
u,
λ(k)

2
(I − c0)2 +

µ(k)

2
(I − d0)2

〉
Now the formula for updating u is following

uk+1 = argmin
u∈G

ẼRAAC(u, ck, dk). (5.2)

If we put C(x) = 1, Cs(x) = λ(k)
2

(I−c0)2 + µ(k)
2

(I−d0)2 and Ct(x) = λ(k)
2

(I−
c1)2+ µ(k)

2
(I−d1)2, minimizing ẼRAAC over set G become the min-cut problem

(3.26). The constant C(x), which we call α from now on, measures the

5.1. Minimising w.r.t. u 33

importance of the region having a short boundary. From the expressions of
Cs and Ct, we can see that Cs shows how big the difference between the pixel
and the background is and Ct is the other way around. Here, when measuring
the difference between the pixel and background or foreground, we should
take both the global intensity information and local intensity information
into account. When Cs is larger than Ct, it means that this pixel is closer
to the foreground than the background, then we should label this pixel as
foreground. On the contrary, the pixel with a smaller Cs should be labeled
as the background.

Now the problem (3.26) is equivalent to another problem (3.21). Thus

we can construct an algorithm for (3.21) to minimise ẼRAAC with respect to
u. The problem (3.21) is a constraint optimization problem with equality
constraints and inequality constraints. Thus we can use the augmented La-
grangian method to solve this problem. The augmented Lagrangian function
is following

La(ps, pt, p, u) =

∫
Ω

ub(x)ps(x)− uf (x)pt(x) dx+

∫
Ω

u(divp− ps + pt) dx

− γ

2
‖divp− ps + pt‖2 (5.3)

where γ is a positive number. When updating ps, pt and p, we also need
to fulfill the inequality constraints (3.6), (3.7) and (3.8). Here we have four
variables: p, ps, pt and u. Thus we need to use the so-called alternating
directions method of multipliers [15] which is that we optimise the function
with one variable at a time while keeping the others fixed and repeat steps
until convergence:

1. Optimising p by fixing the others:

pk+1 = argmax
‖p‖∞≤α

La(p
k
s , p

k
t , p, u

k). (5.4)

where α representing C(x) is a constant. We can ignore the first integral
of (5.3) which is independent of p. The last two terms can be rewritten
as following:

uk(divp− pks + pkt) dx−
γ

2
(divp− pks + pkt)

2

= −γ
2

(
(divp− pks + pkt)

2 − 2uk

γ
(divp− pks + pkt)

)
= −γ

2

(
(divp− pks + pkt −

uk

γ
)2 −

(
uk

γ

)2
)

34 5.1. Minimising w.r.t. u

where the last step comes from completing the square. The term
(
uk

γ

)2

does not depend on p ,thus can be removed. Then the problem (5.4) is
equivalent to the following

pk+1 = argmax
‖p‖∞≤α

− γ

2

∥∥divp−Mk
∥∥2

= argmin
‖p‖∞≤α

γ

2

∥∥divp−Mk
∥∥2

(5.5)

where Mk = pks − pkt + uk

γ
. The exact solution to this problem can

not be found because of the divergence term. However we can use the
gradient descent method to find the numerical solution. Because p in
G(p) =

∫
Ω
γ
2
(divp−Mk)2 dx) is a function, the Gateaux derivative w.r.t.

p should be found. According to the definition of Gateaux derivative,
we have

G′(p; d) = lim
h→0

G(p+ hd)−G(p)

h

= lim
h→0

γ

2h

∫
Ω

[
(divp+ hdivd−Mk)2 − (divp−Mk)2

]
dx

Because of the fact that a2 − b2 = (a − b)(a + b), the equation above
becomes the following

G′(p; d) = lim
h→0

γ

2h

∫
Ω

hdivd(2divp+ hdivd− 2Mk) dx

= lim
h→0

γ

2

∫
Ω

divd(2divp+ hdivd− 2Mk) dx

= γ

∫
Ω

divd(divp−Mk) dx.

The product rule for differentiation gives us

divd(divp−Mk) = div(d(divp−Mk))− d · ∇(divp−Mk),

hence

G′(p; d) = γ

∫
Ω

div(d(divp−Mk)) dx− γ
∫

Ω

d · ∇(divp−Mk) dx

After using the divergence theorem to the first term on the right hand,
we get

G′(p; d) = γ

∫
∂Ω

d(divp−Mk) · v dS − γ
∫

Ω

d · ∇(divp−Mk) dx (5.6)

5.1. Minimising w.r.t. u 35

where v is the outward unit normal vector along ∂Ω. The first term on
the right hand in (5.6) becomes zero after we impose (divp−Mk)·v = 0
on ∂Ω. Because G′(p; d) = 〈G′(p), d〉, the Gateaux derivative G′(p) is
obtained as −γ∇(divp −Mk). The gradient method with step size ε
gives us the approximate solution as following

pk+1 = pk − εG′(pk) = pk + γ̃∇(divpk −Mk) (5.7)

where γ̃ = εγ. Besides, a procedure of projection on pk+1 to a specified
convex set is required in order to satisfy the inequality constraint (3.8).
Then the final formula for updating p is following

pk+1 = projα(pk + γ̃∇(divpk −Mk)) (5.8)

where projα is the projection onto the convex set Sa = {q | ‖q‖∞ ≤ α}.

2. Optimising ps by fixing other variables:

pk+1
s = argmax

ps(x)≤Cs(x)

La(ps, p
k
t , p

k+1, uk). (5.9)

From E.q. (5.3), we can see that flows ps(x) are independent of each
other, thus we can maximise (5.3) by maximising at each point. Be-
cause the constraint on ps is concave, the exact maximum can be found
by just setting the derivative of la.s = ubps + u(divpk+1 − ps + pkt) −
γ
2
(divpk+1 − ps + pkt)

2 w.r.t ps to be zero:

p∗s(x) = argmax
ps(x)

la.s

↔ ub − uk + γ(divpk+1 − p∗s + pkt) = 0

↔ p∗s =
ub
γ

+ divpk+1 + pkt −
uk

γ
.

Besides we also need to fulfill the inequality constraint on ps(x), so

we choose the smaller value between divpk+1 + pkt − uk

γ
and Cs as the

optimal solution. In order to make the notation short, we define Nk =
divpk+1 + pkt − uk

γ
. Then the formula for updating ps is given by

pk+1
s = min

{
ub
γ

+Nk, Cs

}
. (5.10)

3. Optimising pt by fixing other variables:

pk+1
t = argmax

pt(x)≤Ct(x)

La(p
k+1
s , pt, p

k+1, uk). (5.11)

36 5.2. Minimising w.r.t. c

Like ps, pt does not depend on each other and the integrand is concave
w.r.t pt. We can use the same approach as ps to find the maximum:

p∗t (x) = argmax
pt(x)

la.t

↔ −uf + uk − γ(divpk+1 − pk+1
s + p∗t) = 0

↔ p∗t = −divpk+1 + pk+1
s +

uk − uf
γ

where la.t = −ufpk+1
s +u(divpk+1−pk+1

s +pt)− γ
2
(divpk+1−pk+1

s +pt)
2.

Here we define Ok = −divpk+1 + pk+1
s +

uk−uf
γ

. After imposing Ok in

the concave set pt(x) ≤ Ct(x), we get the updating formula for pt as

pk+1
t = min

{
Ok, Ct

}
(5.12)

4. According to the augmented Lagrangian method, the Lagrange multi-
plier u is updated by one step of gradient descent:

uk+1 = uk − γ(divpk+1 − pk+1
s + pk+1

t). (5.13)

where γ is the time step which we choose to keep fixed.

Before moving forward to next step, several loops are needed to make sure
that u converges.

5.2 Minimising w.r.t. c

Now, after getting the new characteristic function u, we minimise with re-
spect to c:

ck+1 = argmin
c∈R2

ERAAC(uk+1, c, dk). (5.14)

Because problem (5.14) is a quadratic optimisation problem, the solution can
be found by setting the gradient of ERAAC w.r.t. c equal to zero. First we
set the gradient of ERAAC w.r.t. c0 equal to zero:

∂ERAAC
∂c0

(uk+1, ck+1
0 , ck1, d

k) = 0

↔ λ(k)

2

〈
(1− uk+1),−(I − ck+1

0)
〉

= 0

↔
〈
1− uk+1, I

〉
=
〈
1− uk+1, ck+1

0

〉
↔ ck+1

0 =

〈
1− uk+1, I

〉
〈1− uk+1, 1〉

(5.15)

5.3. Updating d 37

The eq. (5.15) means that ck+1
0 is the mean intensity value outside the region

Σ. Similarly we get

∂ERAAC
∂c1

(uk+1, ck+1
0 , ck+1

1 , dk) = 0

↔ λ(k)

2

〈
uk+1,−(I − ck+1

1)
〉

= 0

↔
〈
uk+1, I

〉
=
〈
uk+1, ck+1

0

〉
↔ ck+1

0 =

〈
uk+1, I

〉
〈uk+1, 1〉

(5.16)

From (5.16) we can see that ck+1
1 is the mean intensity value inside the region

Σ. Then (5.15) and (5.16) can be summarized as
ck+1

0 (x) =

∫
Ω
I(y)(1− uk+1(x)) dy∫
Ω

(1− uk+1(x)) dy

ck+1
1 (x) =

∫
Ω
I(y)uk+1(x) dy∫
Ω
uk+1(x) dy

(5.17)

5.3 Updating d

After keeping the new u and c fixed, we use the definition of the local mean
intensity to update d:

dk+1
0 (x) =

∫
Ω
gk(x− y)I(y)(1− uk+1(x)) dy∫
Ω
gk(x− y)(1− uk+1(x)) dy

dk+1
1 (x) =

∫
Ω
gk(x− y)I(y)uk+1(x) dy∫
Ω
gk(x− y)uk+1(x) dy

(5.18)

After updating u, in fact, not all pixels’ local mean intensity will be changed.
If the characteristic function u changes in the Gaussian mask of one pixel, d
of this pixel will change, if not, d of this pixel remains the same as the last
iteration. Thus we can conclude that d only varies near the boundary of the
region Σ during the process.

5.4 Updating λ and µ

According to the regional adaptive active contour model [6], the weight of
the global fitting term should decrease with the increasing of the iteration

38 5.5. The main steps of the algorithm

number. By fixing the decreasing step tλ, we get the following mathematical
formula:

λ(k + 1) = λ(k)− tλ, k = 0, 1, . . . , (5.19)

where λ(0) = T and λ(k) can not be smaller than L which is a non-negative
number.

On the contrary, µ as the weight of the local fitting term should be in-
creased and can not be larger than a threshold. Here we also keep the
increasing step tµ fixed:

µ(k + 1) = µ(k) + tµ, k = 0, 1, . . . , (5.20)

where µ(0) = 0 and all µ should be less than a predefined threshold U .

5.5 The main steps of the algorithm

The main steps can be summarised as following:

1. Let the average intensity in Ωf be c1 and the average intensity in Ωb

be c0. Initialize the characteristic function by the following rule:

Db = (I − c0)2 and Df = (I − c1)2

u(x) =

{
1 if Db(x) ≥ Df (x)
0 otherwise

∀x ∈ Ω.

.

2. Computing c(x) and d(x) by their definition. Let Cs(x) = λ
2
(I − c0)2 +

µ
2
(I − d0)2 and Ct(x) = λ

2
(I − c1)2 + µ

2
(I − d1)2. Set the initial spatial

flow p(x) = 0, the initial source flow ps(x) = min{Cs(x), Ct(x)} and
the initial sink flow pt(x) = ps(x).

3. Update p(x), ps(x), pt and u(x) according to (5.8), (5.10), (5.12) and
(5.13) respectively.

4. Check whether u(x) converges (For fixed c(x) and d(x) fixed). If con-
verge, go to the next step, otherwise return to step 3.

5. Check whether u(x) converges (For changing c(x) and d(x)). If con-
verge, stop, otherwise move forward to next step.

6. Update c(x) and d(x) according to (5.17) and (5.18) respectively. Use
(5.19) to decrease λ(x) and (5.20) to increase µ(x). Let Cs(x) =
Cs(x) = λ

2
(I − c0)2 + µ

2
(I − d0)2 and Ct(x) = λ

2
(I − c1)2 + µ

2
(I − d1)2.

Return to step 3.

5.6. Implementation issues 39

5.6 Implementation issues

Before implementing the algorithm constructed under continuous circum-
stance in MATLAB, We need to discretize the operators applied in the al-
gorithm. There is no need to discuss the basic mathematical operators such
as addition, subtraction, multiplication and division which are done element-
wise. However, we need to specify how to discretize the derivative, the di-
vergence and the integral to make sure that they can function correctly in
MATLAB code.

5.6.1 Approximating the derivative

Before discretising the derivative, it is logical to look at the formal definition
of the derivative:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
, (5.21)

When h is positive, this definition leads us to the formula:

f ′(xk) ≈ f ′+(xk) =
f(xk+1)− f(xk)

xk+1 − xk
, (5.22)

which is also called the forward-difference approximation [21]. when h in
(5.21) is negative, we get the backward-difference approximation:

f ′(xk) ≈ f ′−(xk) =
f(xk−1)− f(xk)

xk−1 − xk
=
f(xk)− f(xk−1)

xk − xk−1

. (5.23)

Even though there are other forms of derivative approximation such as central
differences, here only these two ways are used. In digital images the discrete
point xk is the image pixel and there are two directions of the derivative
denoting by x1 and x2. Then, by setting the distance between two pixels as
one, the partial derivatives are given as

Ix1+ (i, j) = I(i+ 1, j)− I(i, j) and Ix2+ (i, j) = I(i, j + 1)− I(i, j)

or

Ix1− (i, j) = I(i, j)− I(i− 1, j) and Ix2− (i, j) = I(i, j)− I(i, j − 1).

Observe that, we can not avoid making use of the pixels outside the image
when calculating the derivative for all image pixels no matter which kind
of difference is used. For forward difference, we can define I(m + 1, j) =
I(m, j), I(i, n + 1) = I(i, n) or I(m + 1, n) = 0, I(i, n + 1) = 0. For back-
ward differences some of the choices are I(0, j) = I(1, j), I(i, 0) = I(i, 1) or
I(0, j) = 0, I(i, 0) = 0. In real case, you can use any of the choices listed
above or other ways to define those pixels which are needed. No matter what
kind of way you are using, the final result will not be changed too much.

40 5.6. Implementation issues

5.6.2 Approximating the divergence

The generalized definition of the divergence for a vector F (F1, F2, . . . , Fn) is

div(F) = ∇ · F =
∂F1

∂x1

+
∂F2

∂x2

+ · · ·+ ∂Fn
∂xn

. (5.24)

In the digital image case, the flow p only have two dimensions which means
that n = 2. So the divergence of the flow in image P (P1, P2) should be
defined as

div(P) = ∇ · P =
∂P1

∂x1

+
∂P2

∂x2

(5.25)

where P1 and P2 denotes the flow along the direction x1 and the direction x2

respectively. From (5.25), we can see that the divergence of the flow through
one pixel in image I is the sum of the gradients in two directions. Because we
have described how to approximate the gradient in section 5.6.1, it is easy to
get the approximation of divergence. If the forward-difference approximation
is used, the divergence of the pixel I(i, j) is following

div(P (i, j)) = P1(i+ 1, j) + P2(i, j + 1)− P1(i, j)− P2(i, j).

where P (i, j) is the two-dimension flow through pixel I(i, j). Similarly, we
can use the backward-difference to derive the approximation of divergence as

div(P (i, j)) = P1(i, j) + P2(i, j)− P1(i− 1, j)− P2(i, j − 1).

From the formulation of the divergence calculated by the backward-difference
approximation, we can see that the practical meaning of the divergence of a
flow is the amount of water flowing outside the corresponding pixel.

5.6.3 Approximating the integral

In this section, we spend a little bit time on computing the values of integral.
One most popular method is trapezoidal rule [22] in which we break up the
interval [a,b] into n subintervals of width h and set x0 = a, xn = b:

h =
b− a
n

.

Then on each subinterval, we approximate the function f(x) with a straight
line which has the same value as the original function at the two endpoints.
The reason why we call this method as trapezoidal method is that each object

5.6. Implementation issues 41

on the subinterval [xk, xk+1] is trapezoidal. The area of the trapezoidal in
interval [xk, xk+1] is following

Ak =
h

2
(f(xk) + f(xk+1)).

Now, we use the sum of all the area of all trapezoidal to estimate the integral:∫ b

a

f(x) dx ≈
n−1∑
k=0

h

2
(fk + fk+1) =

h

2
(f0 + 2f1 + · · ·+ 2fn−1 + fn),

where fk is short for f(xk). In our case, the interval length is set as one
and the nodes xk are image pixels. Because the number of pixels is quite
large, multiplying f0 and fn with 2 does not change the result too much. For
simplification, the general trapezoidal rule can be changed as∫ b

a

f(x) dx ≈ h(f0 + f1 + · · ·+ fn−1 + fn). (5.26)

Similarly, we can approximate the two-dimensional integral by the following∫
Ω

I(x1, x2) dx ≈
m∑
i=1

n∑
j=1

I(i, j). (5.27)

5.6.4 Smoothing the two indicator functions

We understand these two indicator functions (3.20) from the perspective of
probability. Here, uf represents the probability of one region to be foreground
and 1− ub represents the probability of the region to be background. Since
Ωf is foreground and Ωb is background, uf = 1 in Ωf and 1− ub = 1 in Ωb.

Since each region in an image is continuous, when one region, Ωf , is
regarded as foreground, then the surrounding area has certain probability to
be foreground. The probability of the surrounding area to be foreground will
decrease with the distance away from the region, Ωf . This also applies to
Ωb, and it is logical to smooth these two indicator functions. In this thesis,
uf is smoothed out by using a convolution with a Gaussian function G(x):

usf (x) = G(x) ? uf (x).

Likewise, the function, 1− ub, is handled in the same fashion:

usb(x) = 1−G(x) ? (1− ub(x)) = G(x) ? ub(x).

Chapter 6

Experimental results

We have applied our method on several different kinds of images and will
dispaly some of the results in this section. The weights function for updating
λ and µ are chosen differently for different images while γ = 0.3, γ̃ = 0.16,
ε = 1 and the Gaussian filter used for getting the local information and the
Gaussian filter for smoothing those two indicator functions are fixed with
n = 21, σ = 5 and n = 7, σ = 1 respectively where n is the window size
and σ is the standard deviation. The value of λ controls the influence of
the global information while the value of µ controls influence of the local
information. As λ is decreasing and µ is increasing, the influence from the
local information dominates the whole segmentation process. Moreover, the
importance of the shortness of the boundary of the region Σ is inversely
proportional to the sum of λ and µ. When λ + µ is large, J(u) will not
contribute much to the energy function and thus allow the length of the
boundary of Σ to be relatively large. On the contrary, if λ + µ is relatively
small, we will get the region Σ with a relatively short boundary. In order to
control the length of the contour of the foreground Σ, the parameter µ which
does not decrease during the process should be less than a threshold.

In the algorithm, there are two loops: outer loop and inner loop. The
inner loop uses the max-flow method to minimize the energy function with
fixed c and d w.r.t. u. So we divide this chapter into two parts: the first
section talks about the choice of the max-flow iteration number; the second
part is our test results of the Region adaptive active contour model.

6.1 Number of max-flow iterations

As Kvile points out in [9], there is no point in actually minimising w.r.t. u.
Experiments on different images show that the result will be almost the same

42

6.1. Number of max-flow iterations 43

ninner Time nouter
1 6.2 111
2 3.2 56
3 3.41 55
5 2.7 42
15 2.9 32
25 3.5 31
50 5.1 33
80 7.2 32
100 8.2 32

Table 6.1: Computing time in seconds and number of outer iterations needed
for different number of maximum inner iterations on supervised continuous
max-flow.

regardless of the maximum number of iterations. However, the algorithm
with different max-flow iterations number needs different computing time.
From now on, we represent the maximum inner iteration number and the
outer loop number by ninner and nouter.

One of the experiments was done on the image with intensity inhomo-
geneities in figure 5.1(a). Here we make the ninner change and add a stopping
criteria in case of convergence of u. From table 6.1, we see that ninner be-
ing 5 gave the shortest computation time. As ninner is decreased, nouter will
increase. On the contrary, as we increase the ninner, nouter will decrease.

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

100

Iteration number

N
um

be
r

of
 in

ne
r

ite
ra

tio
ns

 n
ee

de
d

Figure 6.1: Number of iterations until convergence of u for each outer itera-
tion

44 6.2. Trials on some images

Since there are two processes in the outer loop involving convolution which
is very time-consuming, increasing the outer loop number nouter will up the
time of the whole process substantially. Thus the inner iteration number
ninner should not be too small. On the other hand, ninner should not be too
large. From figure (6.1), we see that it is in the beginning and the mid-term
that a large number of iterations are needed to minimise w.r.t. u, but at
this point it is not possible to get a good segmentation anyhow, because the
weights λ and µ are still changing and the capacities on flows which control
the inner loop are entirely wrong. Therefore, using a large ninner to make u
converge is pointless. At the later stage when λ and µ are stable, only few
iterations are needed to minimise w.r.t. u. Like the case in figure (5.1(a)),
experiments on other images show that choosing 5 for the maximum number
of inner loop iterations can give us good results within a relatively short time.

6.2 Trials on some images

At first, we state that in the original image the region inside the green line is
the given foreground and the given background is inside the red line. Figure
6.2 illustrates how the maximum value of µ affects the segmentation result.
In the RAAC model, the decease step tλ and the increase step tµ are chosen as
1 and 2 separately and L is set as 1. The result in 6.2(b) is obviously wrong,
because the CV model only considering the global intensity information can
just divide the initial images into two parts: one is brighter and the other one
is darker. The accurate position of the object of interest cannot be found.
Even though the result in figure 6.2(c) is not good enough, the contour line
C is moving towards the boundary of the right part because the local force
is working. With the increasing of U , the result is getting better and better.
When U reaches 50, the contour line of u matches the boundary of the object
of interest perfectly.

The largest value of the local weight µ should be large enough, otherwise
u will converge too quickly because of the influence from the global force.
This fact can be observed in figure 6.3. In RAAC model, we set tλ = 1,
tµ = 2 and L = 1. From figure 6.3(c) and 6.3(d), we can see that there is no
big difference between the results from the RAAC model and the CV model
in 6.3(b), the reason is that the global force is so strong that the local force
does not affect the whole process too much. However, there are some details
changed because of the local term. The contour lines in results from RAAC
model stick with the boundary of the vessel more tightly especially at the end
of the right part and the part below. Like the last case, as we increase U , the
contour line will approach the true boundary of the object of interest. Thus

6.2. Trials on some images 45

(a) (b) (c)

(d) (e) (f)

Figure 6.2: First row: Initial image,the result from CV model and the result
from RAAC model with T = 10, U = 10. Second row: Results from RAAC
model with T = 10, U = 20,T = 10, U = 30 and T = 10, U = 50

the choice of U should be made carefully, otherwise the contour line will stop
at the wrong place. Because the intensity of one pixel is much closer to their
local information than their global information, 〈1−u, (I−d0)2〉+〈u, (I−d1)2〉
is much smaller than 〈1− u, (I − c0)2〉+ 〈u, (I − c1)2〉. Thus the final weight
of the local force U should be much greater than the initial weight of the
global force.

The highest value of µ should not be too big, otherwise, some small
regions will be included in the contour line. There are two reasons behind
this: one is that strong local force can detect weak edges; the other one is
that when the weight of the fitting term is large, the length of the contour line
C is allowed to be relatively large. As 6.4(b) shows, some small regions with
weak edges are detected by RAAC model. When the value of U is decreased,
the RAAC model can find the whole vessel without including those vague
vessels from the background. Other parameters used in RAAC model are
T = 20, tλ = 1, tµ = 8 and L = 0.

The value of the increase step tµ needs to be chosen carefully. If tµ
is too small, the global term which dominating the whole energy function
will make u converge too early. The contour lines in 6.5(b) and 6.5(c) only
cover one part of the vessel. After increasing tµ to be 10, the contour line

46 6.2. Trials on some images

(a) (b) (c)

(d) (e) (f)

Figure 6.3: First row: Initial image, the result from CV model and the result
from RAAC model with T = 10, U = 50. Second row: Result from RAAC
model with T = 10, U = 100, T = 10, U = 150 and T = 10, U = 200.

(a) (b) (c)

Figure 6.4: From left to right: The initial image, the result from RAAC with
U = 460 and the result from RAAC model with U = 360.

6.2. Trials on some images 47

(a) (b)

(c) (d)

Figure 6.5: From left to right: The initial image, the result from the RAAC
model with tµ = 0.5, 5, 10.

matches with the boundary of the vessel. Other parameters are following:
T = 20, tλ = 1, L = 2 and U = 330.

Next, we use an example to show the advantage of our RAAC model and
point out the disadvantage of CV model and LRCV model. As we can see
from figure 6.6(b), many edges can not be detected because CV model only
considers the global information. The result in figure 6.6(c) is much better
because of the local property of the LRCV model. However, this model only
considering the local information is sensitive to the initial position of u. It
is very likely that the contour line of u converges at a local minimum. The
new model named RAAC inherits the advantages of the CV model which
are that the speed of convergence is quick and the sensitivity to initialization
is not high and the advantage of the LRCV model which is that the local
information can localize the accurate location of the object of interest. In
figure 6.6(d) and figure 6.6(e), both results are much better than the results

48 6.2. Trials on some images

(a) (b) (c) (d) (e)

Figure 6.6: From left to right: The initial image, result from the CV model
with λ = 20 and result from the LRCV model with µ = 120. The second
row: The result from the RAAC model with L = 0 and the result from the
RAAC model with L = 2.

from CV model and LRCV model. Here the parameters are T = 20, tλ = 1,
tµ = 2. The only difference between figure 6.6(d) and figure 6.6(e) is the
value of L. Sometimes we need to set L as a positive number to keep certain
global property. If L = 0, when the weight of the global term become L, the
RAAC model without global property is very likely to converge at a wrong
position.

The object of interest in all the images which we have dealt with is one
connected region. Now we pay our attention to a special case in which the
object of interest includes three separated parts. Figure 6.7(b) shows the
result from CV model. Notice that the CV model only divided the original
image into two parts: one is brighter and the other one is darker. Hence the
result is not segmented rightly. In figure 6.7(c), the LRCV model detects
almost all the edges including some weak edges in the image. However,
because of its sensitivity to the initialization, the contour line gets stuck at
a local minimum during the process. Besides, no matter how adjusting the
inputs in CV model and LRCV model, we can not still get a good result.
After we chose the right parameters for our RAAC model, it is easy to get
a perfect result shown in figure 6.7(d). Thus the number of parts which the
object of interest includes in the image does not influence the performance
of our RAAC model. What is important here is that we need to find the
right parameters used in RAAC model. We use this example to show how
the value of T can affect the result of the RAAC model. When T is too big,
at the early stage of the process the contour line will stop at the position
shown in figure 6.8 because of the large influence from the global term. After
decreasing T to 25, we get the right result in 6.7(d).

6.2. Trials on some images 49

(a) (b)

(c) (d)

Figure 6.7: The first row: The initial image and the result from CV model
with λ = 20. The second row: the result from LRCV model with µ = 120 and
the result from RAAC model with L = 0, tλ = 1, tµ = 3 and T = 20, U = 120.

Figure 6.8: The result from the RAAC model with T = 50

50 6.2. Trials on some images

(a) (b) (c)

(d) (e) (f)

Figure 6.9: The first row: Initial image, the result from the CV model and
the result from the LRCV model. The second row: From left to right: the
result from RAAC model with tλ = 7, 5, 1.

The decrease step tλ should not be too big, because if λ decreases too
quickly, the energy function dominated by the local force will act like LRCV
model. In 6.9(d) and 6.9(e), the contour lines have some small circles which
are caused from the local property of the local term. After we set a proper tλ
in order to take full advantage of the global property from the global term,
the RAAC model gives a better result shown in 6.9(f). The weight in CV and
LRCV model is 20 and 42 respectively. Other parameters in RAAC model
are T = 25, tµ = 3, L = 0 and U = 42.

The next example is provided to show that the proposed model is stable
with respect to priori given information. The parameters used in this example
are L = 0, tλ = 1, T = 25, tµ = 3, U = 120. The image which we want to
segment here is a brain image. Our goal is to segment the white matter from
the image. As we can see from figure 6.10, the segmentation results from
quite different given information are almost the same. At the beginning
of the segmentation process, the global force which is not sensitive to the
initialization from the RAAC model dominates the evolution of the contour
line, so the difference from the different given information will be removed
in the beginning of the process. In our experience, as long as we label given
foreground and given background rightly, the result of the RAAC model is
quite good.

At last, we apply our proposed method on one brain image and one finger

6.2. Trials on some images 51

(a) (b)

(c) (d)

(e) (f)

Figure 6.10: The first column are the images with different priori given in-
formation, the second column are the corresponding segmentation results.

52 6.2. Trials on some images

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.11: First column: The initial images with given priori given infor-
mation. Second column: Corresponding segmentation results of CV. Third
column: Corresponding segmentation results of LRCV. Fourth column: Cor-
responding segmentation results of RAAC.

image to show the advantages of this method. For the brain image, the weight
of the fitting term in CV model and in LRCV model is 17 and 52 respectively,
parameters in RAAC model are L = 0, tλ = 1, T = 25, tµ = 3, U = 52. For
the finger image, we use 25, 50 as the weight of the fitting term in CV and
LRCV respectively and chose L = 3, tλ = 1, T = 25, tµ = 3, U = 85 for the
RAAC model. As shown in the second column of figure 6.11, the results are
too rough without detecting some weak edges. In the third column of figure
6.11, even though LRCV model can find some weak edges, the contour line
is stuck in a wrong postion which results in lots of false edges. We can see
from the fourth column of figure 6.11 that the RAAC model completes the
segmentation mission perfectly.

Chapter 7

Summary and conclusion

In this work a new model called regional adaptive active contour model is
proposed for segmentation of images with intensity inhomogeneities. This
model is a combination of Chan-Vese model and Local region-based Chan-
Vese model. At the beginning of the segmentation process, the global force
gives us a rough but good initial segmentation quickly. In the later phase
of the evolution, the local force can localize the exact position of the ob-
ject. This model success in inheriting the advantage of the CV model: non-
sensitivity to the initialization and the advantage of the LRCV model: the
ability to locate the edges in images with intensity inhomogeneities.

This model is reformulated as RAAC model with priori given information
which is marking one region as foreground and one region as background man-
ually. Then the energy function was minimized with one variable at a time.
Minimization of the characteristic function of the foreground u is achieved
by regarding this problem as a min-cut problem which can be solved by the
supervised continuous max-flow method. At the later stage of the process,
only several iterations were needed for convergence of u. For minimization
with respect to the global average intensity information c and the local av-
erage intensity information, we can just use their definitions to update them
after getting new u in each iteration.

We have tested our method on several images with intensity inhomo-
geneities and showed that the RAAC model gives better results than CV
model and LRCV model. This model proved to be not sensitive to the loca-
tions of the given foreground and the given background. The difficult part of
our method is finding the right functions for controlling the updates of the
global weight and the local weight. In this thesis, we just choose two linear
functions with function values in non-negative intervals as those two weight
functions. We have stated several rules which are used to choose the slopes
and the intervals of weight functions, however, there is no mathematical proof

53

54

supporting those rules, all of them come from the practical experience. The
future work could be to find a more effective way of updating the weights
instead of renewing these two weights according to two pre-defined functions
during the iterations.

Bibliography

[1] Michael Kass, Andrew Witkin, and Demetri Terzopoulos. Snakes: Ac-
tive contour models. International journal of computer vision, 1(4):321–
331, 1988.

[2] Stanley Osher and James A Sethian. Fronts propagating with curvature-
dependent speed: algorithms based on hamilton-jacobi formulations.
Journal of computational physics, 79(1):12–49, 1988.

[3] Rémi Ronfard. Region-based strategies for active contour models. In-
ternational journal of computer vision, 13(2):229–251, 1994.

[4] Tony F Chan and Luminita A Vese. Active contours without edges.
Image processing, IEEE transactions on, 10(2):266–277, 2001.

[5] Shigang Liu and Yali Peng. A local region-based chan–vese model for
image segmentation. Pattern Recognition, 45(7):2769–2779, 2012.

[6] LIU Shigang et al XING Hui, PENG Yali. Regional adaptive active
contour model for image segmentation. Computer Engineering and Ap-
plications, 51(9), 2015.

[7] Stanley Osher Ronald Fedkiw and S Osher. Level set methods and
dynamic implicit surfaces. Surfaces, 44:77, 2002.

[8] RC Gonzalez and RE Woods. Digital image processing: Pearson prentice
hall. Upper Saddle River, NJ, 2008.

[9] Mari Aurlien Kvile. Continuous max-flow for image segmentation with
shape priors. 2014.

[10] Robert Alexander Adams. Calculus: Single Variable. Pearson Addison
Wesley, 2006.

55

56 Bibliography

[11] Ivar Ekeland and Roger Témam. Convex analysis and Variational prob-
lems. Classics in Applied Mathematics, Society for Industrial and Ap-
plied Mathematics, 1999.

[12] Dimitri P Bertsekas. Nonlinear programming. 1999.

[13] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer
Science & Business Media, 2006.

[14] LR Ford and DR Fulkerson. Flows in networks, a rand corporation
research study, 1962.

[15] Jing Yuan, Egil Bae, and Xue-Cheng Tai. A study on continuous max-
flow and min-cut approaches. In Computer Vision and Pattern Recogni-
tion (CVPR), 2010 IEEE Conference on, pages 2217–2224. IEEE, 2010.

[16] David Mumford and Jayant Shah. Optimal approximations by piecewise
smooth functions and associated variational problems. Communications
on pure and applied mathematics, 42(5):577–685, 1989.

[17] Niels Chr Overgaard, Ketut Fundana, and Anders Heyden. Pose invari-
ant shape prior segmentation using continuous cuts and gradient descent
on lie groups. In Scale Space and Variational Methods in Computer Vi-
sion, pages 684–695. Springer, 2009.

[18] Tony F Chan and Jianhong Jackie Shen. Image processing and analysis:
variational, PDE, wavelet, and stochastic methods. Siam, 2005.

[19] E Giusti. Minimal surfaces and functions of bounded variation. Num-
ber 80. Springer Science & Business Media, 1984.

[20] Tony F Chan, Selim Esedoglu, and Mila Nikolova. Algorithms for finding
global minimizers of image segmentation and denoising models. SIAM
journal on applied mathematics, 66(5):1632–1648, 2006.

[21] Arieh Iserles. A first course in the numerical analysis of differential
equations. Number 44. Cambridge University Press, 2009.

[22] Kendall E Atkinson. An introduction to numerical analysis. John Wiley
& Sons, 2008.

