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Abstract 
 

Studies on the distribution of microbial sulfate reduction, and its impact on the global carbon and 

sulfur cycle, have mostly been conducted in shallow and deep-marine sediments. Little is therefore 

known about the ecological impact that sulfate reducing bacteria have on element cycling in 

ecosystems that is associated with the nutrient rich hydrothermal sediments. The chemical 

disequilibrium created by the mixing of hydrothermal fluids and seawater, nourish a diversity of 

primary producers that provide nutrients for the anaerobic heterotrophic community. Diffuse venting 

areas, such as the barite field on the eastern flank of the hydrothermal mound at Loki`s Castle, are 

promising target sites for exploring the impact of biogenic processes as temperatures are within the 

biological window. This study aims to characterize the distribution of sulfate reducing bacteria at this 

diffuse venting area by integrating direct measurement of sulfate reduction rates with geochemical 

analyses of pore fluids and microbiological methods. The spatial distribution of the fluid compositions 

and flow patterns seems to determine the distribution of the metabolically functional groups in the 

barite field, and functions as a geochemical constraint on the chemoautotrophic primary production. 

Hence, the divergent fluid pattern and energy supply determines the organic carbon production, which 

in turn determines the distribution of the heterotrophic community. This is reflected in the distribution 

of sulfate reduction, where sulfate reduction rates varied between 6-132 pmol/cm3 d in substrate-poor 

parts of the mound to 110 nmol/cm3 d in substrate-rich sediments. Sulfate reduction rate were also 

measured in a barite chimney, which was associated with effluent that was characterized by elevated 

concentrations of methane and H2. The geochemical measurements show a high correlation between 

the hydrothermal fluid signature, organic carbon production and the distribution of the mesophilic 

heterotrophic sulfate reducing bacteria. The diffuse venting area displays temperatures that vary 

between 7.8 °C in the sediments with low activity, to ~20 °C in the chimney effluent. This provides 

habitable conditions for mesophilic and psychrotolerant members of Desulfobacterales, 

Desulfarculales and Desulfuromonadales order, which were all affiliated with the Deltaproteobacteria 

phylum. One psychrophilic sulfate reducing bacteria, Desulfofaba gelida, was detected in sediments 

that were associated with the lowest rates. The variable CH4 and H2 concentration between areas with 

high flow rate and low flow rate give strong indications for an additional deep sub-surface sulfate 

reduction zone, where anaerobic oxidation of methane coupled with sulfate reducing bacteria are an 

important sulfate sink, in addition to H2 consumption by chemoautotrophic sulfate reducers and/or 

methanogens at more elevated temperatures.   
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1. Introduction  

 
For decades, deep-sea sediments were assumed to be almost biologically inert due to their low energy 

flux, distance from the euphotic zone, high pressure and low temperature. Even so, drilling programs 

during the last decades have shown a highly diverse microbial community throughout the whole 

sediment column (e.g. D`Hondt et al, 2002; Jørgensen and D`Hondt, 2006; Jørgensen and Boetius, 

2007; Robador et al, 2015), that accounts for about 55-85 % of the prokaryotic biomass, and 30% of 

the total living biomass (D`Hondt et al, 2002; Jørgensen and D`Hondt, 2006). However, the lack of 

liable substrates limits the metabolic rates and the prokaryotic density in the deep sediments. Research 

has shown that these organisms, living in an energy-depleted environment, experience substrate levels 

that barely sustain minimum metabolic requirements, and may therefore be dormant or dead 

(Jørgensen and D`Hondt, 2006). These conditions contrast the sediment conditions on the continental 

shelf, where the proximity to the euphotic zone causes high energy fluxes and carbon supply from 

primary production. The energy flux leads to increasing activity within the diverse population of 

microorganisms and the subsequent consumption of a variety of electron acceptors during 

remineralization of organic carbon. In these areas, the oxygen is consumed in the top mm to cm of the 

sediments, making most of the sediment column anoxic. For this reason, anoxic respiration by the 

reduction of sulfate dominates the continental shelf and coastal areas. However, while microbial 

communities in both deep-sea sediments and epi-continental ocean areas depend on photosynthetic 

primary production, deep-sea hydrothermal vent systems represent biological “hot-spots” where the 

food web is more or less independent from the surface activity. The reduced fluids emanating through 

conduits create a contrast in redox conditions between the vent field and the surroundings that forms a 

chemical disequilibrium, which is utilized by chemoautotrophic primary producers. This chemical 

disequilibrium links the lithosphere to the biosphere and transforms a desert-like environment to an 

oasis of life with its own food web. 

Accordingly, high concentrations of reduced components in hydrothermal fluids from the sediment-

influenced Lokis Castle Vent Field (LCVF) on the Mohns-Knipovich Ridge, Norwegian Sea 

(Pedersen et al, 2010; Baumberger, 2011), nourish a diversity of primary producers that provide 

nutrients for the anaerobic heterotrophic community (e.g. Govenar, 2012). Moreover, low-temperature 

diffuse venting areas (≤110 °C) in hydrothermal systems, such as the barite field on the eastern flank 

of the hydrothermal mound at Loki`s Castle, are promising target sites for exploring the impact of 

biogenic processes as temperatures are within the biological window. Here, the seawater mixing 

provides the subsurface community with sulfate, which creates a metastable disequilibrium that can 

sustain microbial sulfate reduction. The utilization of sulfate by autotrophic or heterotrophic 

microorganisms plays a major role in both the sulfur and carbon cycle in these habitats (McCollom 

&Shock, 1997), as microbial sulfate reducers can be responsible for up to 80% of carbon oxidation in 
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modern marine systems (Canfield et al. 1993). In addition, microbial sulfate reduction may represent 

one of the oldest metabolisms on Earth, and evidence from the ancient rock record suggests early 

microbial activity in analogous hydrothermal settings (e.g. Shen et al., 2001; Ueno et al., 2008; 

Roerdink et al, 2012, 2013). Thus, understanding the roles and distribution of microbial sulfate 

reducers in these hydrothermal environments is essential for our understanding and quantification of 

sulfur and carbon cycles in the ancient and modern deep sea.   

Yet, only a few studies have been conducted on the measurement of in situ metabolic rates and the 

distribution of microbial sulfate reduction in hydrothermal systems (e.g. Jørgensen et al, 1992; 

Elsgaard et al., 1994a, b; Weber and Jørgensen, 2002; Kallmeyer and Boetius, 2004; Frank et al, 

2013). This can be attributed to the challenges with recreating artificial hydrothermal contitions and 

difficulties with sampling (Frank, et al 2013). However, previous studies of the LCVF have shown 

indications of microbially induced sulfate reduction (Jaeschke et al, 2012; Eickmann et al, 2014; Steen 

et al, 2016) in sediments and chimneys in the active barite field. This thesis will be the first to directly 

quantify the rates of microbial sulfate reduction and the distribution of sulfate reducing 

microorganisms in the Loki`s Castle Vent Field. The main objectives of this thesis are to:  

 Determine the lateral and vertical distribution and activity of sulfate reducers  

 Determine the influence of electron donors (hydrogen, methane, organic carbon) on the 

distribution  and activity of sulfate reducers  

 Determine the phylogeny of the sulfate reducers. 

Samples were obtained by gravity coring and using the Ægir 6000 remotely operated vehicle (ROV) 

during the Centre for Geobiology summer cruises of 2014 and 2015 on the R/V G. O. Sars. Gravity 

core GS14-GC14 was sampled by Desiree Roerdink during the cruise in 2014. Geochemical analyses 

pH and alkalinity were conducted by Ingunn H. Thorseth, Desiree Roerdink and Ingeborg Økland, 

respectively, while dissolved methane was measured by Tamara Baumberger. 

 

 
 

 

 

 

 



 
 

3 
 

2. Background 
 

2.1. Dissimilatory sulfate reduction 
Dissimilatory sulfate reduction (DSR) is one of the most prevalent metabolic pathways in anoxic 

marine sediments, and serves as a major sink for marine sulfur and organic carbon (Knoblauch et al, 

1999; Kasten and Jørgensen, 2006; Bowles et al, 2014). Members of some deeply branched 

phylogenetic groups perform this pathway in both prokaryotic domains, which reflects the antiquity of 

the metabolic pathway (Shen and Buick, 2003). The archaeal sulfate reducers comprise of two 

lineages, while five belong to the bacterial domain (Muyzers and Stam, 2008). The archaeal sulfate 

reducers belong to the Archaeaoglobus genus in the Euryarchaean phylum and the Thermocladium 

and Caldivirga genus in the Crenarchaeota phylum. All archaeal sulfate reducers are 

thermophilic/hyperthermophilic, where some can grow at 105°C (Stetter, 1996; Rabus et al, 2004; 

Kasten and Jørgensen, 2006). Thermophiles and hyperthermophiles are also found amongst three 

bacterial lineages, including Nitrospirae (Thermodesulfovibrio genus), Thermodesulfobacteria 

(Thermodesulfobacterium genus) and Thermodesulfobiaceae (Muyzer and Stam, 2008). However, 

since the majority (95%) of the ocean is below 4 °C (Sawicka et al, 2012), most taxa from the bacterial 

domain are mesophilic/psychrotolerant and reside in marine sediments (Isaksen and Jørgensen, 1996; 

Konhauser, 2007). All of them use SO4
2- as the primary electron acceptor, and either organic carbon or 

H2 as electron donor (e.g. Madigan et al, 2013) according to the simplified formula: 

1) 2CH3COO- + SO4
2- + H2O  2 HCO3

- + H2S + OH- 

Or 

2) 4H2 + SO4
2-  2OH- + H2S + 2H2O 

While all sulfate reducing bacteria (SRB) can utilize H2 as an electron donor (Madigan et al, 2013), 

their ability to degrade organic carbon differs. Hence, SRB are divided into two groups; those that 

degrade organic carbon completely to CO2 (complete oxidizers) and those that degrade organic carbon 

incompletely to acetate (incomplete oxidizers) (e.g. Konhauser, 2007; Muyzer and Stam, 2008; 

Madigan et al, 2013). Most marine SRB degrade acetate to CO2 and depend on fermenters to degrade 

the organic carbon to short-chained carbon molecules (e.g. Madigan et al, 2013). 

The importance and ubiquity of the SRB in the marine sediments are mostly attributed to the 

abundance of sulfate in the oceans (~29 mM), along with their metabolic flexibility (e.g. Plugge et al, 

2011). The range of different electron acceptors they can utilize varies amongst the different groups, 

where some SRB can substitute sulfate with iron, nitrate and uranium (VI) if necessary (Konhauser, 

2007, Muyzers and Stam, 2008). Some sulfate reducers, like Desulfobacter postgatei, and some 

Desulfovibrio strains, have demonstrated the ability to survive 3 to 20 hours of oxygen exposure in 

well-aerated biotopes (Jonkers et al, 2003). One species, Desulfovibrio oxyclinae, can even grow 
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using oxygen as an electron acceptor (Hansen, 1994; Jonkers et al, 2003, Rabus et al, 2004). Since 

organic matter produced from primary production in the euphotic zone is their primary nutrient source, 

the distribution of sulfate reducers in marine sediments are commonly regulated by sedimentation 

rates and burial fluxes of organic matter (Konhauser, 2007; D`Hondt et al, 2009; Bowles et al, 2014), 

which are controlled by water depth and distance from land (fig. 1). Consequently, the deep-sea 

biosphere has a very low nutrient and energy flux (Jørgensen, 2012) since most of the organic matter 

needed for DSR is remineralized during the upper 100-200 m of the water column (Sarmiento and 

Gruber, 2006).  Despite this, DSR is still one of the most dominating metabolism controlling organic 

carbon remineralization. In addition, some sulfate reducing bacteria have been shown to form 

consortia with anaerobic methane oxidizing archaea (ANME) in the transition zone between sulfate 

reduction and methane production in marine sediments and cold seeps (e.g. Knittel and Boetius, 2009; 

de Beer et al, 2006; Plugge et al, 2011). The methane consuming archaea belong to three distinct 

groups of Euryarchaeota (ANME-1, 2 and 3) that are phylogenetically affiliated with some 

methanogens related to the orders Methanosarcinales and Methanomicrobiales (e.g. Knittel and 

Boetius, 2009). The ANME mediate the anaerobic oxidation of methane (AOM) in the marine 

sediments with the aid of sulfate where the reaction can be be written as: 

3) CH4 + SO4
2-  HS- + HCO3

- + H2O 

ANME always co-occurs with SRB where AOM occurs (Orphan et al, 2002; Martin et al, 2008; 

Brazelton et al, 2006). The SRB belong to the Deltaproteobacteria lineages that include 

Desulfosarcina/Desulfococcus where ANME-1 and ANME-2 are often associated with group in the 

Desulfobacterales order.  
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Figure 1. Distribution of SRR in marine habitats. The red areas represents high activity zones and are characterized by high 

sedimentation rates and high supply of marine and terrigenic organic carbon. Open ocean areas display lower sedimentation 

rate and lower organic carbon flux to the deep-marine sediments, hence, lower SRR (Bowles et al, 2014). 

 

2.2. Remineralization and geochemical zonation 

 

The geochemical composition of the seawater results from a balance between external inputs and 

removal rates, where microbial respiration plays an important role as a source and sink for carbon 

compounds. Yearly, 4040 Tmol carbon is fixed in marine biomass, whereas only 190 Tmol organic 

carbon is deposited on the sea floor. 82 % is precipitated in shallow areas like continental shelves, and 

16% is deposited on the continental slope (Kasten and Jørgensen, 2006; Wallmann and Aloisi, 2013). 

The most labile (e.g. easily degraded) organic matter transported from the euphotic zone is re-oxidized 

in the first hundred meters of the water column, leaving the refractory carbon compounds as 

precipitates on the seafloor (Sarmiento and Gruber, 2006; Konhauser, 2007). This renders aerobic 

microbial communities in deep-sea sediments with a larger fraction of recalcitrant (stable) carbon 

compounds, which hampers their respiration rates in the sediment-water interface, and causes oxygen 

to penetrate deeper into the sediment (e.g.  D`Hondt et al, 2002; Sarmiento and Gruber, 2006; Orcutt 

et al, 2011; Bowles et al, 2014). The efficiency of the aerobic remineralization process in the water 

column leaves the oligotrophic deep ocean sediments almost biologically inert compare to habitats in 

contact with the primary production in the euphotic zone (e.g. Burdige, 2002; Sarmiento and Gruber, 
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2006; Bowles et al, 2014). Consequentially, the low accumulation rates (<0.001 g C cm-2 yr-1), and 

low sedimentation rates in the deep ocean (0.01 mm y-1) makes the precipitated organic matter 

exposed to oxygen over a longer time until the most labile compounds are degraded (Konhauser, 2007 

and fig. 2). In these areas the aerobic respiration accounts for >90% of the remineralization in the 

subsurface sediments, displacing the anaerobic respiration >1.5 mbsfl. In contrast, shallow areas gain 

25-50% of the primary production as deposits on the sea floor (Jørgensen, 2006), with a higher 

fraction of the labile carbon accessible to the anaerobic microbes. The high sedimentation rates in the 

shallow areas bury the organic carbon, shield it from the oxygen, and decrease the vertical distribution 

of terminal electron acceptors (TEA) in the pelagic sediments. Thus, oxygen only extends mm`s to 

cm`s into the sediment column. Therefore, anaerobic respiration accounts for a significant amount of 

the remineralization in coastal areas and continental margins (e.g. Sarmiento and Gruber, 2006; 

Bowles et al, 2014).   

In the subsurface sediments, where oxygen is depleted, a cascade of potential electron acceptors is 

consumed according to the thermodynamically favorability, which creates a distinct zonation of 

microbial activity. The different heterotrophic communities continues to remineralize the organic 

matter aided by fermenters (fig. 2 and table 1). As mentioned above, the organic matter that is still 

preserved in the anoxic sediments represent the residual pool that was not consumed by aerobic 

respiration, which is why fermenters have to degrade the carbon to make it available for the other 

TEA`s (Sarmiento and Gruber, 2006; Konhauser, 2007). In addition, the metabolic rates are 

significantly lower due to subsequently lower redox potential (e.g. D`hondt et al, 2002; Jørgensen and 

Boetius, 2007). When O2 is depleted from the sediments, NO3
- is the electron acceptor with the highest 

redox potential, followed by MnIV, FeIII, SO4
2- and CO2 (table 1 and fig.3) (e.g. Sarmiento and 

Gruber, 2006; Jørgensen, 2006; Konhauser, 2007; Canfield and Thamdrup, 2009).  

NO3
-   is a product of aerobic microbial oxidation of NH4

+, where the rate of nitrate produced is 

dependent of the (i) depth of the oxic layer, (ii) amount of organic matter and (iii) rate of 

denitrification (Konhauser, 2007). The energy gain from this denitrification pathway is close to oxic 

remineralization and, like aerobe respirers, denitrifiers are capable of degrading organic carbon 

completely to CO2, making this one of the most important respiratory processes on the continental 

slope and rise.  

The denitrification zone is underlain by the manganese zone.  Here, manganese oxide becomes 

unstable and the most energetically favorable electron acceptor. These two zones may overlap, in 

which case the Mn2+ diffuses upwards and reduces nitrate to N2. In some cases, NH4
+ can react with 

MnO2 to produce N2 and significantly affect the nitrification-denitrification process (Konhauser, 

2007). The Mn-oxides scarcity in the sediments limits its importance in the remineralization process 

(<10%), and in some settings it is insignificant (Sarmiento and Gruber, 2006; Konhauser, 2007).  
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The iron reduction zone is, like the manganese reduction zone, limited in comparison to the more 

volatile TEA`s (O2, NO3
-). Iron is immobile in oxic environments and is therefore scarce in the 

sediments far away from any potential source (continents, hydrothermal systems). The iron in the 

sediments is present in the form of iron hydroxides and is easy to reduce. The product of iron 

reduction also plays an important role in the sulfur cycle, where it acts as a sink for sulfide. The 

production of sulfide by sulfate reduction takes place in highly reduced environment where sulfate is 

the most energetic TEA and is, due to the abundance of dissolved sulfate in the ocean (~29 mM), one 

of the most important respiratory processes in marine sediments and strongly linked to carbon and iron 

cycles. According to Bowles et al (2014), 11.3 Tmoles  of sulfate are reduced per year in the global 

oceans, where the highest rates can be found in shallow, epicontinental ocean areas, and the lowest 

rates in nutrient poor deep-sea sediments (fig.1) (See also table. 6.3.1 in Sarmiento and Gruber, 2006). 

It is estimated that only 7% of the sulfate reduction takes place below 2000 mbsfl (Kasten and 

Jørgensen, 2006). Considering the C:S stoichiometric ratio of 2:1 (Eq. 1), 11.3 Tmol sulfate should 

oxidize 22.6 Tmole organic carbon globally per year. Despite its relative insignificance in the vast 

regions of the deep sea, DSR is estimated to account for a large amount of the remineralization of 

organic carbon globally, with estimates ranging from 30 to 80% of the total annual remineralization 

flux (Canfield et al, 1993; Kasten and Jørgensen, 2006; Bowles et al, 2014). SRB therefore affect the 

carbon cycle significantly through remineralization in the the largest carbon reservoir on the planet. 

When sulfate is depleted, CO2 becomes the most energetically favorable TEA. Methane is produced 

by methanogenic archaea that couple CO2 with H2 or acetate if the temperature conditions are suitable 

(Reeburgh, 2007). Since there is no subsequent electron donor after CO2, the methanogenic zone can 

continue until the carbon is unavailable.  
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Figure 2. Overview of ocean depth (A) and sedimentation thickness (B). The sediment thickness increase close to the 

sediment source on the continental shelf’s, while the sediments supply to the open oceans are scarce (Orcutt et al, 2011) 
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Figure 3. Simplified cartoon over the different geochemical zones based on respiration processes (Canfield and Thamdrup, 

2009). 
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Table 1. Change in free energy during remineralization of organic matter by different respiratory processes down the 

sediment column (Sarmiento and Gruber, 2006). 

Zone  Reactions  Free energy change 

(kJ mol-1) 

Aerobic respiration CH2O + O2  CO2 + H2O -473 

Denitrification  5CH2O + 4NO3
-  2N2 + 4HCO3

- + CO2 + 3H2O  -452 

Manganese reduction CH2O + 3CO2 + H2O + 2MnO2  2 Mn2+ + 

4HCO3
- 

-388 

Iron reduction CH2O + 7CO2 + 4Fe(OH)3  4Fe2+ + 8 HCO3
- + 

3 H2O 

-187 

Sulfate reduction 2CH2O + SO4
2-  H2S + 2HCO3

- -82 

Methanogenesis  CH2O  CO2
 + CH4 -71  

 

 

2.3. Hydrothermal systems 

In contrast to the surrounding marine environments, deep-sea hydrothermal vents are characterized by 

flourishing life that is sustained by the steep redox and temperature gradients generated by the reduced 

hydrothermal fluids. The fluids often represent modified seawater that is depleted in Mg, sulfate and 

alkalinity and enriched in metals, such as Fe, Cu and Zn (German and Seyfried, 2014). This 

composition is the result of chemical reactions occurring during their movement through the oceanic 

basement, generated by conductive cooling of the crust, and contributes to the chemical alteration of 

the seafloor (Alt, 1995).  The oceanic crust can roughly be divided into 3 main layers (fig. 4), as 

recognized from seismic surveys, ophiolites and direct sampling from the oceanic basement (Alt, 

1995). The top layer comprises a porous volcanic section that mainly consists of pillow lava, breccia 

and lava flows, and is 0.1 – 1 km thick. Below this volcanic section, a higher density, less permeable 

sheeted dike section occurs that functioned as feeders to the overlaying volcanic section. A several km 

thick layer of gabbro (Alt, 1995) underlies the sheeted dike section. Important physical parameters 

such as permeability, porosity, temperature and pressure changes through each section due to 

consecutive chemical reactions, and an increase in temperature with depth.  

The hydrothermal circulation system can be categorized into three different zones (fig. 5): the 

recharge zone, reaction zone and discharge zone.  During the movement of fluids through these zones, 

seawater is modified through processes including, water-rock reactions, phase separation and 

magmatic degassing (e.g. German and Seyfried, 2014). The recharge zone is located off-axis from the 

spreading ridge, and is part of the general circulation of seawater in the volcanic section. The 

circulation taking place in the volcanic section can be divided into open and restricted circulation. The 
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open circulation initiates the chemical alteration of the seawater, where oxidation of basaltic glass, 

olivine, plagioclase and primary sulfide minerals occurs (Alt, 1995; Tivey, 2007; German and 

Seyfried, 2014). The weathering causes the formation of celadonite and nontronite that fixate the alkali 

metals K, Rb, Cs and B (Alt, 1995, Von Dam, 1995). As the modified fluid descend, OH- reacts with 

Mg and precipitates as smectite and chlorite, a process that consumes Mg in exchange for Na+, Ca+ 

and H+ (Tivey, 2007). This reaction takes place in the lower volcanic section at elevated temperatures 

(≤ 200 °C). The fluid that reaches the sheeted dikes section has obtained a more reducing character, 

and is depleted in Mg and alkalis. When the temperature increases above 150 °C, seawater sulfate 

reacts with Ca to form anhydrite. This reaction consumes all the Ca from the fluids in addition to ca 

1/3 of the sulfate (Alt, 1995; Tivey, 2007; German and Seyfried, 2014). In addition, smectite formation 

lowers the pH and causes the leaching of alkalis. At temperatures above 250 °C, sulfate can be reduced 

abiotically through reactions with pyrrhotite, which leads to a small increase in δ34S for the sulfide 

(Alt, 1995; German and Seyfried, 2014).  

The fluid composition in the reaction zone differs somewhat from the original seawater composition 

with lower pH, Mg-depletion, and reduced compounds. It is assumed that the hydrothermal fluids get 

their chemical signature in this section, which occurs in the base of the sheeted dike section (German 

and Seyfried, 2014). The hot fluid contribute to leaching of S, Zn, Fe, Mn from the lower sheeted 

dikes, in addition to contribution of magmatic volatiles like H2, CO2, H2O, CH4 and 3He (Alt, 1995, 

Tivey, 2007). Other chemical changes to the rock include Ca, K, Rb and Ti-depletion. The fluid 

temperature at this depth can exceed 400 °C, which creates physical conditions close to the critical 

point of water. When reaching the critical point, water density and viscosity decrease, and the limit of 

thermal expansion and heat capacity is reached. This creates enough buoyancy to displace the 

overlaying seawater and transported fluids through the crust at ca. 0.7 – 5 m s-1 (Alt, 1995). At this 

point the Fe and Mn are enriched relative to Cl. Cl is generally very conservative in hydrothermal 

systems and is not gained or lost during the circulation (e.g. Elderfield and Schultz, 1996; German and 

Seyfried, 2014). 

The section where fluids starts to rise is called the discharge zone (Alt, 1995), and can roughly be 

divided into focused and diffuse up-flow zones, depending on the degree of channelling of the fluids. 

Focused up-flow zones often leads to the formation of black smoker vent systems and massive sulfide 

deposits. The fluids in these channelled flows will be enriched in Li, K, Rb, Cs, SiO2, Fe, H2S, CO2, 

He, H2 and CH4 (e.g. Kelly et al, 2002). At temperatures over 300 °C, the fluid is hot enough to 

transport dissolved components like silica, Ca2+ and SO4
2- (>150 °C) and Ba that precipitate when 

entering the surface. The first minerals to precipitate is silica and barite, creating a barrier between the 

fluid and seawater. This lead to precipitation of sulfides and anhydrite as the insulation provides 

progressively hotter fluids to precipitate ZnS and Fe (Hannington et al, 1995). When the fluids are 

sufficiently insulated to penetrate the seafloor without mixing with the seawater, black smokers are 
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formed. The fluid represents an end-member composition and can reach temperatures of  >300 °C. 

This allows for transportation of metals and sulfides, and precipitation of anhydrite when reacted with 

seawater. In contrast to the focused flow, the diffuse flow is not isolated from the surrounding 

environment, and will eventually mix with down welling seawater in the subsurface (Alt, 1995). 

Subsurface mixing with cold seawater causes precipitation of sulfides and dissolved metals. When 

entering the surface, these fluids have a temperature of <10-50 °C and are too cold to sustain dissolved 

metals, but they are enriched in gases like CH4 and the remaining sulfide (Hannington et al, 1995). Fe-

oxide and Mn-oxide can in some settings precipitate as crusts along fractures on the surface, although 

they are commonly scavenged by sulfide deeper into the mound. Thus, the low-temperature diffuse 

flow is the product of complex subsurface processes that include; seawater-hydrothermal fluid mixing, 

conductive cooling, various redox reactions, and mineral precipitation (Nakamura and Takai, 2014). 

Habitable temperatures together with a mixture of oxidized and reducing fluids can turn the inert 

seafloor into a flourishing ecosystem that is often characterized by the endemic character of 

specialized organisms (Schander et al, 2010; Tarasov et al, 2005). 

 

 

Figure 4. Schematic profile of the oceanic crust (weblink 1). Under the sediment, a volcanic layer consist of basaltic pillow 

lava, breccia and massive flows, which are ca. 0.1-1 km thick. This is followed by a sequence of sheeted dikes at ca 1 km. The 

lowermost sequence consist of several kilometres of gabbro. The average thickness of the oceanic crust is 7 km, depending on 

the tectonic regime (Alt, 1995). 
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Figure 5. Schematic overview of the hydrothermal system (Tivey, 2007). Recharge zone is situate off-axis, where Mg, Ca and 

most of the sulfate are consumed.  Reduced metals and sulfur are enriched in the reaction zone, along with 3He, CO2, CH4, 

and H2 from magma leaching. Hot water with low density ascent to the surface in the discharge zone, where precipitation of 

metals occur when mixed with seawater close to the surface. 
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3. Geological settings  
 

Hydrothermal vent systems were long considered to be restricted to fast spreading ridges associated 

with high heat and magma supply (Pedersen et al, 2010). However, after the discovery of the Trans-

Atlantic Geotraverse (TAG) vent field on the Mid-Atlantic Ridge, it was clear that hydrothermal vent 

fields were more prevalent in slow and ultra-slow spreading ridges than expected. The section of the 

Mid-Atlantic Ridge north of 66 °N, the Arctic Mid-Ocean Ridge (AMOR), is one of the slowest 

spreading ridges on the planet (< 20 mm yr-1). The AMOR extents from the shelf of Iceland to the 

Laptev Sea in Siberia and is subdivided into 6 sections: the Kolbeinsey Ridge, Mohns Ridge, the 

Knipovich Ridge, The Molly Ridge, the Lena Trough and the Gakkel Ridge (Pedersen et al, 2010) 

(fig. 6). These sections show large variations in morphology, with magmatically robust spreading 

ridges and shallow vent sites south of Jan Mayen, and gradually deeper and magmatically starved 

sections north of Jan Mayen. The Iceland hotspot influences the southern part of AMOR with 

increased supply of magma, leading to shallowing of the ridge and faster spreading rates than further 

north (~20 mm yr-1). The AMOR starts to deepen north of Jan Mayen, where it transitions into the 550 

km long Mohns Ridge in the Norwegian-Greenland Sea. The spreading rates at this section is ~15 mm 

yr-1 and is characterized by an average crustal thickness of 4.0 ±0.5 km, that is well below the global 

average for oceanic crust (Klingelhøfer et al, 2000). The topography displays morphological traits 

typical of ultra-slow spreading ridges, where the tectonics surpass the magma supply. In general, ultra-

slow spreading ridges display a rough topography created by large listric faults that form deep 

fractures that bound the deep axial valleys and a negative depth profile (Kelley et al, 2002; Bruvoll et 

al, 2009). The Jan Mayen hot spot influences the Mohns Ridge in the southern end, which shows 

increasing thinning of the crust along with increasing depth towards the north. Accordingly, the 

deepest part (~3400 mbsl) is situated in the north where the Mohns Ridge transitions into the 

Knipovich Ridge (Pedersen et al, 2010). This part also hosts the Lokis Castle vent field (LCVF) which 

is situated ~2400 mbsl on a 30 km long axial volcanic ridge (AVR) that rises 1300 m above the axial 

valley floor (Pedersen et al, 2010)( fig. 7). 
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Figure 6. Overview of the AMOR. The ridge is an extension of the MAR that start at the north coast of Iceland and continue 

through the Norwegian-Greenland sea and through the Eurasian basin to the Laptev sea outside Siberia. Mohns ridge starts 

just east of Jan Mayen and ends at the Mohns-Knipovich transition. 

The vent field was discovered during H2DEEP-08 expedition with the R/V G.O. Sars (Pedersen et al, 

2010), and is situated west of the distal parts of the Bear Island Fan at 73°30N and 8°E. The 

composition of the 317 °C black smoker fluid is characterized by high concentrations of CO2 (23.8 

mM), CH4 (13.5 mM), H2 (4.9 mM), NH4
+ (1.6-4.1 mM) and H2S (2.6-4.7 mM). The vent field is 

basalt hosted but displays a CH4/H2 ratio and NH4
+ concentrations consistent with a sedimentary 

influence, which originates from the Bear Island Fan sediments that enrich the fluids with bicarbonate, 

methane and ammonia (Pedersen et al, 2010). LCVF consists of two vent sites that are coupled by two 

coalescing hydrothermal mounds. The mounds are 20-30 m high and 150-200 m across (Eickmann et 

al, 2014). Associated with the eastern mound is an active diffuse venting area containing multiple 

dead and active barite chimneys (BaSO4) up to 1 m tall. Microbial mats cover the active chimneys and 

barite crust in the sediments that occur along lines, which probably reflects the flow rate and pattern of 

the fluid flow (Eickmann et al, 2014). The fluid composition and temperature (~20 °C) of the active 

chimneys reveals that the fluids are diluted hydrothermal fluid with a seawater/hydrothermal fluid 

mixing ratio of 10 % end-member fluid and 90 % seawater. (Eickmann et al, 2014; Steen et al, 2016).  
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Figure 7. Bathymetric picture over the axial volcanic ridge that host LCVF (A). LCVF is associated with a rift close to the 

top of the AVR (B) (Pedersen et al, 2010). 
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Figure 8. Overview barite field (A). The barite chimneys seems to align along fractures where the fluids are more focused. 

The sampling site (B) for GS15-AGR09-PC2 display slower flow rate and precipitated barite crust in the sediments. 
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4. Materials and methods  
4.1. Sample locations  

Bear island fan, 73° 34.533 N 08° 30.5265 E, 2562 mbsl: Gravity core (GS15-GC1) was sampled as a 

background from the distal parts of the Bear island fan. The gravity core was 410 cm long and 

contained light brown silt/clay in the upper part, and greyish sediments towards the bottom of the core.  

Sulfide mound, 73°34.019 N, 8°09.535 E, 2350 mbsl: Push core 1 (GS15-AGR08-PC1) was 31 cm 

long and contained reduced, coarse porous sediments with a rusty layer on top.  

Barite field, 73°33. 981 N, 08°09. 740 E, ~2340 mbsl: Push core 2 (GS15-AGR09-PC2) was sampled 

from the surface sediments in the barite field, and contained coarse-grained sediments mixed with 

precipitated barite with a distinct sulfidic smell. Fluid effluent from a barite chimney was obtained by 

a biosyringe (GS15-AGR09-BS), in addition to the Barite chimney (GS15-AGR09-R1) that was 

collected with Ægir 6000 from one of the diffuse venting chimneys. The chimney was characterized 

by a white brownish color with a strong sulfidic smell. In addition, a 2.07 m long gravity core (GS14-

GC14) was sampled from the center of the barite field in 2014, which contained a mixture of fine-

grained marine sediments and coarse-grained barite and sulfidic sediments. Temperature of the vent 

fluid was measured to be ~20 °C while the sediments were measured to be 7.8 °C. 

4.2. Pore fluid sampling and analysis 

Pore fluids were extracted from the sediments using 0.2 µm Rhizon filters. For the barite chimney, 

fluids were sampled with the ROV using the biosyringe sampler. All fluid samples were analyzed for 

pH, alkalinity and nutrients (NO3
-, NO2

-, NH4
+, PO4

3-, DIC and H2S) on board. Aliquots for later ICP-

OES analysis of cations were acidified to 2% HNO3 using concentrated nitric acid, and stored in acid-

cleaned bottles at 4°C. A small amount of zinc acetate was added to the aliquots for IC analyses (SO4
2-, 

Br-, Cl-) to avoid oxidation of dissolved sulfide, and samples were stored at 4°C. Fluids were analyzed 

for anions using a Metrohm ion chromatograph and Thermo iCap™ 7000 inductively-coupled plasma 

optical emission spectrometer at the University of Bergen.  

 

4.3. Sulfate reduction rates measurement 

4.3.1. Sample preparation 

Two duplicates with 4 cm3 of sediments each, were sampled from ten horizons in the GS15-GC1, at 

50, 100, 150, 200, 250, 300, 340, 360, 380 and 390 cm, respectively, with a 5 mL syringe. Additional 

two controls (A and B) were sampled at 250 and 390 cm for subtracting natural background noise and 

radioactivity transferred during the distillation. Same procedure was conducted on the GS15-AGR08-

PC1, where two duplicates with 2 cm3 each of sediments for SRR measurement were sampled from 5, 

10, 15 and 20 cm with a 5 ml syringe, in addition to control A and B at 5 cm. Two sub-samples (A and 
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B) were samples from GS15-AGR09-PC2, in addition to one control (control B) and 1 cm3 for 

porosity measurement. The barite was crushed in a sterilized mortar before the slurry was transferred 

to a clean 50 mL Falcon tube by a spoon sterilized by a gas burner. A 2 ml syringe were used to 

sample 1 cm3 of sediments for porosity measurement in GS15-GC1 and GS15-AGR09-PC2, while 0.5 

cm3 of sediments were sampled for GS15-AGR09-PC1.  For porosity measurement of the barite 

chimney, 2 x 1 cm3 of slurry was transferred to two centrifuge vials and frozen at -20 °C.  

4.3.2. Onboard incubation 

The samples were brought to the onboard lab for incubation short after sampling. The carrier-free 

35SO4
2-- tracer was diluted 1:1 with ultrapure sterile anaerobic water before incubation. The sediments 

were then injected with 10 μL of diluted 35SO4
2- -solution (~185 kBq pr. sample) by a Hamilton 

syringe, before they were placed in a N2 containing plastic bag. Sub-samples from GS15-AGR08-PC1 

and GS15-GC1 were incubated at 4 °C for 24 hours, while AGR09-PC2 was incubated at 4 °C for 20 

hours (see table 1). Control A for all samples were transferred to a 50 mL Falcon tube with 5 mL 20% 

Zinc Acetate without tracer fluid and frozen, while control B was added tracer fluid and 5 mL 20 % 

Zinc Acetate before it was stored at -20 °C without incubation. For the sample from the barite 

chimney, 2.5 mL slurry was added to 2 x 8 exetainers, where two exetainers were used as a control, 7 

duplicates for incubation at 4 0C and 7 duplicates for incubation at ~20 °C. To add fluid that was lost 

during preparation of the slurry, 1 ml of fluid collected and filtered from each push core in the barite 

field was added to the samples together with 10 µl 35S-tracer. Each exetainer was flushed with N2 gas 

for 4 minutes before they were overpressured by filling for 10 s. and 30 hours incubation. After 

incubation, the samples were transferred to a 50 mL Falcon tube containing 5 mL 20% ZnAc and 

stored at -20 °C.  
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Table 2. Sample overview, incubation time and incubation temperature. 

Overview SRR samples GS15    

      

# Core / Dive Sample ID Location Inc. Time 
Inc. 
Temp 

1 GS15-GC1 50 cm A Bear Island Fan 24hrs 4.0 

2 GS15-GC1 50 cm B Bear Island Fan 24hrs 4.0 

3 GS15-GC1 100 cm A Bear Island Fan 24hrs 4.0 

4 GS15-GC1 100 cm B Bear Island Fan 24hrs 4.0 

5 GS15-GC1 150 cm A Bear Island Fan 24hrs 4.0 

6 GS15-GC1 150 cm B Bear Island Fan 24hrs 4.0 

7 GS15-GC1 200 cm A Bear Island Fan 24hrs 4.0 

8 GS15-GC1 200 cm B Bear Island Fan 24hrs 4.0 

9 GS15-GC1 250 cm A Bear Island Fan 24hrs 4.0 

10 GS15-GC1 250 cm B Bear Island Fan 24hrs 4.0 

11 GS15-GC1 250 cm CONTROL A Bear Island Fan 24hrs 4.0 

12 GS15-GC1 250 cm CONTROL B Bear Island Fan 24hrs 4.0 

13 GS15-GC1 300 cm A Bear Island Fan 24hrs 4.0 

14 GS15-GC1 300 cm B Bear Island Fan 24hrs 4.0 

15 GS15-GC1 340 cm A Bear Island Fan 24hrs 4.0 

16 GS15-GC1 340 cm B Bear Island Fan 24hrs 4.0 

17 GS15-GC1 360 cm A Bear Island Fan 24hrs 4.0 

18 GS15-GC1 360 cm B Bear Island Fan 24hrs 4.0 

19 GS15-GC1 380 cm A Bear Island Fan 24hrs 4.0 

20 GS15-GC1 380 cm B Bear Island Fan 24hrs 4.0 

21 GS15-GC1 390 cm A Bear Island Fan 24hrs 4.0 

22 GS15-GC1 390 cm B Bear Island Fan 24hrs 4.0 

23 GS15-GC1 390 cm CONTROL A Bear Island Fan 24hrs 4.0 

24 GS15-GC1 390 cm CONTROL B Bear Island Fan 24hrs 4.0 

25 GS15-AGR8-PC1 5 cm A 
Sulfide mound 
LCVF 24hrs 4.0 

26 GS15-AGR8-PC1 5 cm B 
Sulfide mound 
LCVF 24hrs 4.0 

27 GS15-AGR8-PC1 10 cm A 
Sulfide mound 
LCVF 24hrs 4.0 

28 GS15-AGR8-PC1 10 cm B 
Sulfide mound 
LCVF 24hrs 4.0 

29 GS15-AGR8-PC1 15 cm A 
Sulfide mound 
LCVF 24hrs 4.0 

30 GS15-AGR8-PC1 15 cm B 
Sulfide mound 
LCVF 24hrs 4.0 

31 GS15-AGR8-PC1 20 cm A 
Sulfide mound 
LCVF 24hrs 4.0 

32 GS15-AGR8-PC1 20 cm B 
Sulfide mound 
LCVF 24hrs 4.0 

33 GS15-AGR8-PC1 5 cm CONTROL A 
Sulfide mound 
LCVF 24hrs 4.0 

34 GS15-AGR8-PC1 5 cm CONTROL B 
Sulfide mound 
LCVF 24hrs 4.0 

35 GS15-AGR9-PC2 Sample A Barite field LCVF 20hrs 4.0 

36 GS15-AGR9-PC2 Sample B Barite field LCVF 20hrs 4.0 
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37 GS15-AGR9-R1 Sample A (4°C) 
Barite chimney 
LCVF 30hrs 4.0 

38 GS15-AGR9-R1 Sample B (4°C) 
Barite chimney 
LCVF 30hrs 4.0 

39 GS15-AGR9-R1 Sample C (4°C) 
Barite chimney 
LCVF 30hrs 4.0 

40 GS15-AGR9-R1 Sample D (4°C) 
Barite chimney 
LCVF 30hrs 4.0 

41 GS15-AGR9-R1 Sample E (4°C) 
Barite chimney 
LCVF 30hrs 4.0 

42 GS15-AGR9-R1 Sample F (4°C) 
Barite chimney 
LCVF 30hrs 4.0 

43 GS15-AGR9-R1 Sample G (4°C) 
Barite chimney 
LCVF 30hrs 4.0 

44 GS15-AGR9-R1 CONTROL A  
Barite chimney 
LCVF 30hrs 4.0 

45 GS15-AGR9-R1 CONTROL B 
Barite chimney 
LCVF 30hrs 4.0 

46 GS15-AGR9-R1 Sample A (20°C) 
Barite chimney 
LCVF 30hrs 20.0 

47 GS15-AGR9-R1 Sample B (20°C) 
Barite chimney 
LCVF 30hrs 20.0 

48 GS15-AGR9-R1 Sample C (20°C) 
Barite chimney 
LCVF 30hrs 20.0 

49 GS15-AGR9-R1 Sample D (20°C) 
Barite chimney 
LCVF 30hrs 20.0 

50 GS15-AGR9-R1 Sample E (20°C) 
Barite chimney 
LCVF 30hrs 20.0 

51 GS15-AGR9-R1 Sample F (20°C) 
Barite chimney 
LCVF 30hrs 20.0 

52 GS15-AGR9-R1 Sample G (20°C) 
Barite chimney 
LCVF 30hrs 20.0 

 

 

4.3.3. Lab-based analyses 

 

4.3.3.1. Reagents preparation 

On land, the single step cold chromium distillation method, as described in Kallmeyer et al. (2004), 

was used to retrieve the radioactive reduced sulfur species from the sediments. Before the distillation, 

oxidized chromium had to be reduced by reactions with reduced zinc. Before the chromium reduction, 

the zinc pellets were flushed in a reaction flask with 2N HCl under a N2 atmosphere for 10 minutes. 

The acid was then disposed of with a 50 mL syringe while maintaining anoxic condition. The oxidized 

chromium solution was added to the reaction flask where chromium was reduced by the zinc pellets 

and changed color from dark green to clear blue, before stored in the fridge at 4 °C. The redox reaction 

can be written as: 

Cr3+Cl3 + Zn + HCl  Cr2+Cl2 + Zn2+Cl2 + H2 
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4.3.3.2. Distillation process 

The sediment samples were then thawed before being centrifuged at 2500 rpm for 5 min. 100 μL 

supernatant was then pipetted into a counting vial with 5 mL ZnAc. Residual supernatant was disposed 

of. 15 mL dimethyl sulfoxide (DMSO) and two drops of anti-foam was added to the sediments in the 

falcon tube before poured into 3-neck round-bottom glass flasks containing a magnetic stirrer. Citrate 

buffer was prepared in a citrate trap before it was mounted to the distillation setup. 5 mL 20% Zinc 

acetate along with one drop of anti-foam was added to a tube and connected to the citrate trap (fig. 9). 

The reaction flasks were then connected to the distillation setup and degassed with nitrogen for 10 

minutes before adding 8 mL 6N HCl with a 50 mL syringe through the one-way valve. The magnetic 

stirrers were set to 750 rpm before adding 16 mL chromium solution. Distillation lasted for 2 hours for 

every samples. After the distillation, scintillation fluid was poured into the Zn-trap two times and 

poured into a counting vial. Scintillation fluid was also added to the counting vials containing the 

supernatant. The radioactivity was counted with PerkinElmer TriCarb® Liquid Scintillation Counter 

and the reduction rates were calculated with the following equation from Kallmeyer et al (2004):                                                                    

    (Eq. 1)                                        

  SRR = ([SO4
2-]pf x Φsed x 1.06 x ( aTRIS/aTOT)) x (1/t) 

Moreover, SRR for the barite slurry was calculated by a modified equation:  

(Eq. 2) 

 SRR = (1.06 x ([SO4
2-]pf x Φslurry x Vslurry + [SO4

2-]vf  x Vvf )x ( aTRIS/aTOT)) x (1/tinc x Vslurry )  

 

 

Where [SO4
2- ]pf

  and [SO4
2-]vf  is the amount of sulfate in the pore fluid and vent fluid in nmol/cm3. A is 

the activity (cpm-counts per minute) of the total reduced inorganic sulfur (TRIS) and of the 

supernatant + TRIS (TOT) after the incubation is ceased. Φ is the porosity of slurry and sediments. 

Vslurry and Vvf is the volume of slurry and vent fluid. t is incubation time in days and 1.06 is the 

fractionation factor between 35S and 32S. The units for this calculation is nmol/cm3*d 
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Figure 9. Schematic overview of the distillation setup (Kallmeyer et al. 2004) 

4.4. TIC/TOC 
30-50 mg sediments were obtained with a spoon from the same horizons as the the SRR samples, in 

addition to sampling from every 10 cm in GS15-GC1 and GS14-GC1. The sediments were transferred 

to glass vials prior to drying at 105 °C for 3 days. The dried samples were crushed before placed in the 

furnace for additional drying. The sediments were transferred to ceramic boats that was fed into the 

analyzer, where total inorganic carbon and total carbon of the sample was measured. The organic 

carbon content was measured by subtracting the measured amount of inorganic carbon from the 

amount of total carbon in g/kg by multi EA® software. Samples was measured in the the Analytikjena 

multi EA® 4000. 

4.5. DNA extraction and PCR 
Total genomic DNA was extracted from sediment with FastDNATM SPINKit for Soil according to the 

protocol supplied with the kit. Samples were thawed before 500 mg of sediments were added to two 

lysing matrix E tube duplicates along with 978 μL sodium phosphate buffer and vortexed for 15 sec.  

Additional 122 μL MT buffer was added before vortexing for 15 s. Both duplicates were then 
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centrifuged at 14000x g for 5 min. to separate the DNA-containing supernatant from the sediments. 

The supernatant was transferred to a clean 2 mL micro centrifuge tube and added 250 μL protein 

precipitation solution before the solution was shaken 10 times and incubated at room temperature for 

10 minutes. After incubation, the solution was centrifuged at 14000x g for 5 minutes before 800 μL 

supernatant and binding matrix were mixed in a 15 mL falcon. The solution was shaken gently before 

placed on a rocker for 5 minutes, allowing the DNA to bind with the matrix. The solution was mixed 

by pipetting up and down a few times before transferring 800 μL solution to SPINTM FILTER tube and 

centrifuged at 14000 x g for 2 minutes before emptying the catch tube. This was repeated until the 15 

mL falcon tube was empty. The filter was discarded and 500 μL SEWS-M (ethanol) were supplied to 

the SPINtm FILTER tube and shaken gently before centrifuged at 14000 x g for 5 minutes. The catch 

tube was emptied and centrifuged again at 14000x g for 5 minutes until the residual ethanol was 

removed. The SPINTM FILTER was transferred to a clean 2 mL catch tube and air-dried for 5 minutes 

in room temperature with the lid open. At the end, 100 μL DES was added to the SPINTM FILTER 

tube and shaken gently by finger flicking before centrifuged at 14000x g for 2 minutes.  

Total genomic DNA was applied in a two-step PCR for amplification of the 16s rRNA gene.  The 

gene was amplified with the 805R (GACTACHVGGGTATCTAATCC) reverse primer and 519F 

(CAGCMGCCGCGGTAA) forward primer. DNA from each horizon was PCR amplified in triplicate 

using the above mentioned primer combination. A master mix was made of The HotStar plus that 

contained polymerase, buffer and nucleotides together with 0.125 μL forward primer and 0.125 μL 

reverse primer. The PCR cycles was melting for 5 min at 95 °C, 30 rounds x 94 °C at 30 sec, 56 °C for 

30 sec, 72 °C for 90 sec and 72 °C for 7 min until it cooled to 4 °C. Before purification of the 

amplicons, the AMPure® XP bead well and the amplicons was vortexed before mixing 50 μL of 

AMPure® XP magnetic beads with 75 μL PCR products (beads:DNA ratio = 0.7:1). The mixture was 

vortexed for 10 s. followed by 5 min incubation before the bead mix was placed on a plate of magnets 

for 5 min to separate the double-helix from the solution. The remaining clear solution was discarded 

before 500 μL of 70% ethanol was dispensed into the micro tube that was still on the magnets. The 

ethanol was removed after 1 minute of incubation, which was repeated on time before the micro tubes 

was removed from the magnet plate. After 5 min. of air drying, 25 μL of elution buffer was added to 

the micro tube for 25 s. of vortexing before the bead mix was placed on the magnet plate for 5 

minutes. The cleared solution was transferred from the micro tubes to a clean tube without disturbing 

the beads. The purified DNA concentration was measured in Quantus™ fluorometer and evaluated in 

gel electrophoresis to ensure the correct amplicon length 

 

For the second amplification, a maximum amount of 10 ng/μl of PCR products 
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from the first PCR were used as template and a specific primer containing  a MID sequence of 44 bp 

was used for each reaction to lable each isolated DNA. This was performed according to the first 

round, using seven cycles. The purification of the PCR products from the second amplification were 

performed as described above before the concentration was measured by Quantus™ fluorometer. The 

sample were then stored at -20 deg. Before sequencing by IonTorrent, the samples were additionally 

diluted to 40 pM.  

5. Results  
 

5.1. Background sediments 

 

5.1.1. Pore fluid geochemistry 

All the data from GS15-GC1 are listed in table 1 in appendix 1.  The concentration of O2, NO3, PO4
3- 

and NH4
+ are shown in figure 10A, while the sulfate and dissolved metals, Mn and Fe, are shown in 

figure 10B and 10C, respectively. Oxygen and nitrate display highest concentration in the upper 

section of the core, where the concentration of oxygen range from 259 μM at the sediment-water 

interface to 1.5 μM at 90 cm. The decline in nitrate concentration follow the oxygen depletion and is 

depleted at 105 cm. This part of the core (85-105 cm) marks the shift from the domination of oxidized 

compounds to anoxic condition with an increase of reduced compounds. NH4
+ also appear at 105 cm 

and increase constantly towards the bottom of the core, while PO4
3- display stable concentrations all 

the way towards the bottom of the core. Dissolved Mn starts to appear at 85 cm and increase down-

core to 315 cm, where the concentration peaks out at 6918 ppb. This concentration is high compare to 

other metal rich deep-sea sediments (e.g. Løwemark et al, 2013; Sørensen et al, 2004), but consistent 

with concentrations reported from other sediment cores that were obtained from this area (e.g. 

Jørgensen et al, 2012). Iron enrichment occurs first at 375 cm with 865 ppb, but starts to drop 

immediately to 631 ppb in the last sediment horizon at 385 cm. The core display high sulfate levels 

throughout the core, with concentrations comparable to seawater values in the upper 185 cm. The 

concentration declines somewhat in the lower section where it end up at 27.8 mM.  

5.1.2. Sulfate reduction rates 

No measurable levels of sulfate reduction rates were detected in GS15-GC1  

5.1.3. Organic and inorganic carbon 

The TOC measurement shows two distinct spikes with an organic carbon load of 8.9 g/Kg at 40 cm 

and 390 cm (fig.11). Between these concentration peaks, the values drop to 0.2 g/Kg before it 

stabilizes at 0.9 g/Kg between 100 and 340 cm. This section also seems to have an inverse correlation 

with the dissolved manganese concentration. The DIC and alkalinity data coincides with the 

geochemical zones, where DIC (2-3.5 mM), alkalinity and NH4
+ increase concomitantly after NO3

- 

and O2 depletion (fig.10D). pH is stable during the whole core and lies close to seawater values. 
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Figure 10. The geochemical analyse of the pore fluid in GS15-GC1 show stable concentration of PO4
3- throughout the core, 

while O2 and NO3
- are depleted in the upper 105 cm. The depletion of NO3

- is followed by a constant increase of NH4
+ 

towards the bottom of the core (A). The sulfate concentration fluctuate through most of the core, but display a net decrease 

towards the bottom (B).  Mn is the dominant metal in GS15-GC1, while Fe is displace to the lower section of the core (C). 

Alkalinity and DIC (mM) showed an increase in concentration in the upper section of the core before is flattens out. pH 

seems to be stable through the core (D).  
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Figure 11. TOC concentration in gram per kilogram sediments in GS15-GC1. The concentrations range between 8.9 g/Kg  at 

40 cm to 0.27 g/Kg at 90 cm. 

 

5.1.4. Composition of the microbial community 

55 phylum, 103 class, 196 orders, 249 family, 364 genera and 21 species was sequenced, where the 

bacteria domain dominated the microbial community in all horizons, except at 350 cm where archaea 

represented 58% of the community. Proteobacteria and Chloroflexi was the dominant phylum 

throughout the whole core, while the dominant class was Alphaproteobacteria followed by 

Gammaproteobacteria and Deltaproteobacteria. Sulfate reducers were detected at in GS15-GC1, where 

the majority were clustered at 190-250 cm, ranging from ~0.5% at 190 cm to 1.2 % at 220 cm and 0.6 

%  of all OTU`s at 250 cm. The highest relative abundance of sulfate reducers where found at the 

bottom of the core with 1.6 %. All sulfate reducers were from the Deltaproteobacteria class that was 

affiliated with Desulfobacterales order. The only sulfate reducing genus that was detected was SEEP-
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SRB1, which belong to Desulfobacteraceae and ranged from 0.4% at 190 cm to 1.25% at 220 cm and 

0.4 to 1.5 % at 380 and 390 cm. 
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Figure 12. Relative abundance of Deltaproteobacteria (A) and Desulfobacterales (B) in GS15-GC1, which was the only 

identified prokaryote known to reduce sulfate.  
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5.2. The inactive sulfide mound 

 

5.2.1. Pore fluid geochemistry  

In push core GS15-AGR08-PC1, oxygen levels declined sharply the first 1 cm of the core, leaving 

only 0.5 μM of oxygen in the upper horizon. Anoxic conditions and elevated levels of dissolved iron 

and nitrate characterized the rest of the core (fig.13A). The Mn concentration is low throughout the 

entire core, with 188 ppb Mn in the top layer, decreasing to 56 ppb at 13 cm before increasing again to 

175 ppb at the bottom of the core (19 cm). Iron is the dominating dissolved metal in the pore fluid, as 

opposed to the background core where Mn dominates (fig.13B). The Fe values range from 3044 ppb at 

the top and 888 ppb at the bottom, and displays generally more fluctuations than Mn. Nitrate decreases 

within the first centimetre of the core, with a starting concentration of 14.59 μM in the top horizon. 

The concentration decreases to 5.81 μM at 13 cm depth before it rises again to 12.51 μM towards the 

bottom at 19 cm. The nitrate concentration seems to have a week inverse correlation with Fe in the 

lower half of the core, where Fe decreases and nitrate increases. NH4
+ levels, however, are quite 

constant over the first 12 cm (1.78 to 2.18 μM). Below 13 cm depth, ammonia concentrations decrease 

to 0.53 μM at the bottom. NH4
+ concentrations show a weak inverse correlation with both nitrate and 

dissolved Mn. Sulfate concentration decrease the upper 7 cm of the core, from 30.9 mM to 29.7 mM, 

which is similar to seawater concentrations (fig.13C).   

5.2.2. Sulfate reduction rates 

The push core form the inactive sulfide mound, GS15-AGR08-PC1, showed no detectable sulfate 

reduction rates, even though the core was anoxic. 

 

5.2.3. Organic and inorganic carbon 

TOC concentrations in the push core display a sharp decrease in the upper 10 cm, where it range from 

4.5 g/Kg at 1.5 cm to 1.2 g/Kg at 10 cm, until TOC concentration falls below measurable quantities in 

the lower half of the core. This sharp decline in organic carbon does not covary with the DIC and 

alkalinity concentrations, which exhibit generally constant and low values (below 2 mM) throughout 

the core. Nevertheless, both DIC and alkalinity levels seem to increase after 13 cm, which correspond 

with the trend shown in both ferrous iron and nitrate levels. 
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Figure 13. The measurement of pore water chemistry shows anoxic conditions throughout the whole core with nitrate as the 

dominant species (A). Fe is the most abundant metal in the core, which contrasts the background sediments where Mn 

dominated (B).   
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Figure 14. Results from TOC calculations in GS15-AGR09-PC1. TOC values decline sharply from 4.5 to 0 g/Kg at 20 cm. 

  

5.2.4. Microbial community 

GS15-AGR09-PC1 also contained sulfate reducing bacteria, where all belong to Deltaproteobacteria 

class (fig. 15A). The sulfate reducers were affiliated with Desulfarculales and Desulfobacterales order. 

The relative abundance ranged from 0.3 to 3.6 % at 25 cm for the Desulfarculales and 0.6 % at 0 cm to 

4.3 % of all OTU`s at 18 cm for Desulfobacterales (fig.15B). There were only a few hits at higher 

level, were two sulfate reducers were identified at family level. Both belonged to the 

Desulfobacterales order, where Desulfobacteraceae was the most prevalent with 0.4 to 2.7% of all 

OTU`s. No sulfate reducers at genus level or species level were identified. 
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Figure 15. All sulfate reducers belonged to Deltaproteobacteria class. Desulfobacterales and Desulfarculales was the only 

sulfate reducers identified at order level. 
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5.3. Surface sediments from the barite field 

 

5.3.1. Pore fluid geochemistry  

The GS15-AGR09-PC2 was sampled in an area of diffuse venting from a fracture covered with barite 

crust that was associated with bacterial mats. The sample contained coarse hydrothermal sediments 

mixed with precipitated barite and abundant tubeworms. The core displayed an anoxic character with 

depletion of both NO3
- and O2 and high concentrations of sulfide and NH4

+, with 2555 μM and 1255 

µM, respectively. Moreover, the methane concentration was the second highest measured (0.185 µM) 

of all samples (Table 3), while Sulfate levels were the lowest measured from the barite field with 21.5 

mM. Fe was absent, but relative high concentrations of Mn was detected with 1002 ppb.  

5.3.2. Sulfate reduction rates 

The anoxic character is further supported by detection of microbial sulfate reduction (fig. 17A). Rates 

were measured from two duplicates (A and B), where average rate was calculated. Rates in A was 89. 

95 nmol/cm3 d  and 130 nmol/cm3 d in duplicate B. the average rate from the two duplicates (A and B) 

yielded 110 (±20.46)nmol/cm3 day, which was the highest rate measured from the barite field . 

5.3.3. Organic and inorganic carbon 

The push core also exhibits the highest concentration of DIC and TOC (fig. 17B and D, respectively) 

with 4.94 mM and 6 g/Kg, respectively. TOC was still lower than the highest value from the 

background core (9 g/Kg) (fig. 17C). The pH was close to seawater levels with 7.78. 

5.3.4. Composition of the microbial community 

The sequencing of the 16S rRNA PCR amplicons were used to study the distribution of taxa within 

four depths in GS15-AGR09-PC2. All horizons were dominated by Bacteria, which varied from 81.7 

to 95.5% of the detected domain. Proteobacteria was the dominant phylum in all horizon and mostly 

represented by Gammaproteobacteria (28.8-31.6%) and Epsilonproteobacteria (20.8- 32.4%). 

Deltaproteobacteria was of minor importance in all horizon. Both phylum from the archaean domain 

were found in the subsamples, but at lower density than the bacteria domain. The deepest horizon, 

however, display an increase in archaean community, which contained groups affiliated the 

Crenarchaeota phylum, which represented all of the archaean taxa with 18.2 % of detected OTU`s. 

Archaeans that was affiliated to ANME-1 represented 0.1% at 8 cm and 0.3% at 10 cm. No sulfate 

reducing archaean was found. Desulfobacterales order was the most prevalent bacteria among the 

sulfate reducing community (fig. 16B). The group belong to the Deltaproteobacteria class, and ranged 

from 2.7% at the top section to 9.3% at the lowest section, where it was the only detectable SRB (fig. 

16B). Members of the Desulfarculales and Desulfuromonadales order was also present, but at low 
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density (fig. 16B).  Desulfocapsa and Desulfococcus was the most prevalent genus in all of the 

horizons, with highest relative abundance at the lowest horizon with 4.5 % of the detected OTU`s 
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Figure 16. The results from the DNA sequencing in GS15-AGR09-PC2 show that Desulfobacterales was the most prevalent 

order in all sampled horizon.  
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5.4. Active barite chimney from the barite field 

 

5.4.1. Pore fluid geochemistry 

Although pore fluids could not be directly extracted from the barite chimney, a biosyringe (GS15-

AGR09-BS) was sample taken from a microbial mat on a nearby barite chimney is assumed to be 

representative of the chimney fluids (table 3). The fluid contained H2 (16 nM), and elevated 

concentrations of CH4 (105.4 μM). This was the only sample in which H2 was detected, and was the 

sample that contained the highest concentration of methane relative to the other samples from the 

barite field. Both Mg and sulfate concentrations are similar to seawater levels with 1217 ppm and 29 

mM, respectively. Furthermore, H2S was absent from the barite effluent, which was also characterized 

by lower levels of NH4
+ (150.45 µM) compare to GS15-AGR09-PC2.  

5.4.2. Sulfate reduction rates 

The slurry from the barite chimney, GS15-AGR09-R1, was incubated in 7 duplicates at 4 and 20 °C, 

from which an average sulfate reduction rate was calculated (fig. 17A). The resulting reduction rates 

showed a higher rate for the duplicates incubated at 20 °C than 4 °C, with an average value of 50 and 

32 nmol/cm3 d, respectively. 

5.4.3. Organic and inorganic carbon 

TOC values falls below that of GS15-AGR09-PC2 at 1.4 g/Kg, but show DIC concentrations and pH 

at 2.22 µM and 7.48, respectively, which is close to seawater values (fig. 17C).  
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5.4.4. Composition of the microbial community 

The microbial community structure of GS15-AGR09-R1 are dominated by bacteria with 80.3% of the 

OUT`s, while archaea represents 9.5 % of the domain. The prokaryotic composition differ somewhat 

from GS15-AGR09-PC2 by higher relative density of Euryarchaeota (8.9%) and generally higher 

density of Bacteroidetes (18.3%). Proteobacteria was still the most prevalent Phylum, in which 

Deltaproteobacteria was the dominating class in the chimney (16.2 %). The highest relative abundance 

of ANME-1 (8.7 %) compared to GS15-AGR09-PC2 also characterized this sample. The sulfate 

reducing community was represented by Desulfobacterales, Desulfarculales and Desulfuromonadales. 

Desulfobacterales was also the dominant sulfate reducer (4.6%), followed by Desulfarculales and 

desulfuromonadales (0.5 and 0.4 %, respectively) (fig. 18A and B). 
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Figure 17. Sulfate reduction rates measurements for GS15-AGR09-PC2 and GS15-AGR09-R1 (A). TOC concentration from 

the barite chimney was sampled from the barite slurry, while DIC was obtained from the biosyringe sample. 
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Table 3. Fluid composition in the surface sediments (GS15-AGR09-PC2) and in the biosyringe (GS15-AGR09-BS). All 

samples were obtained from the barite field. aFluid used for 35SO4
2- incubation of the barite slurry. The fluid was obtained 

from the top water from GS15-AGR09-PC2.  

 

Sample H2  

(nM) 

CH4 

(µM) 

pH SO4
2- 

(mM) 

H2S 

(µM) 

NH4
+ 

(µM) 

GS15-AGR09-

PC2 

nd 0.185  7.78 21.5  

 

2555  1255  

GS15-AGR09-

BS 

16 nM 105,4  7.48 29  

 

nd 150.45 

Incubation 

mediuma 

nd nd nd 27.7  

 

nd nd 

       

Sample Mg 

(ppm) 

Mn 

(ppb) 

Fe 

(ppb) 

DIC 

(mM) 

Ba 

(ppb) 

NO3
- 

(µM) 

GS15-AGR09-

PC2 

1032 1002 0 4.94 

 

68 0 

GS15-AGR09-

BS 

1217 22 0 2.22 36 12.87 
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Figure 18. ANME-1 represented 8.7 % of the microbial community in the barite chimney (A), while Desulfobacterales was 

also the most prevalent sulfate reducer in GS15-AGR09-R1. 

 

 

 

5.5. Sediments from barite field 

 

5.5.1. Pore fluid geochemistry 

 

The gravity core, GS14-GC14,  was also characterized by highly fluctuating concentrations of sulfide 

and methane (fig. 21B and C). The sulfide concentration is highest at the lower section of the core with 

55.40 µM at 198 cm, and show a net decrease towards the surface until the sulfide is depleted at 35 

cm. The methane was measured at only seven horizons and show therefore a lower resolution than the 

sulfide measurement. However, the methane concentrations show the same trend, with values ranging 
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from 1.29 nM at 90 cm to 13.09 nM at 200 cm. These values are significantly lower than in GS15-

AGR09-R1 and GS15-AGR09-PC2, but it seems that there is a net increase towards the lower section 

as with the sulfide. The core also contained seawater levels of sulfate through the whole core, with 

concentrations that lies between 28.02 to 28.52 mM, but show some tendencies to decline the last 15 

cm of the core (fig. 21A).  

Iron was depleted through most of the core except for a small enrichment 0.12 ppb at 50 cm. The 

manganese, however, was more abundant through the core and varied between 0.7 and 0.20 ppb, with 

a nett increase toward the bottom of the core (fig. 20B). Nitrate was only measured in the top 5 cm of 

the core, with 2.16 μM (fig. 20A). The depletion of nitrate occur concomitantly with a slight increase 

in ammonia concentration from 29.46 µM at 5 cm to 77.22 µM at 40 cm (fig. 22). The concentration is 

generally low throughout the core with stable values below 80 µM. PO4
3- concentration also seems to 

display low variation in the sediments, with values that stays around 0.3 to 0.7 µM before a sudden 

increase at 102 cm to 1.16 µM (fig. 20A). 

5.5.2. Sulfate reduction rates 

Microbial sulfate reduction was also observed in the gravity core GS14-GC14 (fig. 19A), but at lower 

rates than in GS15-AGR09-R1 and GS15-AGR09-PC2 (fig. 14A). The activity was detected in the 

upper 120 cm, with highest rates at 90 and 30 cm (132 pmol/cm3 d and 123 pmol/cm3 d, respectively). 

The microbial sulfate reduction disappear after 120 cm. 

5.5.3. Organic and inorganic carbon 

TOC concentrations are generally lower than measured in GS15-AGR09-PC2 and GS15-AGR08-PC1, 

but are comparable to the TOC concentration in GS15-AGR09-R1. The TOC concentration decrease 

from 2.3 g/Kg in the upper horizon until I stabilizes at 30 cm. The values stays above 1 g/Kg down to 

80 cm, before it is depleted below detectable concentrations from 130 cm. The same pattern can be 

seen in the DIC concentration, alkalinity and pH, with stable concentrations and no nett increase. The 

DIC levels never exceed 2 mM, which is below seawater concentration that normally lies around 2 

mM. The pH varies between 7.45 and 7.68, but display no nett change through the core.  
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Figure 19. Sulfate reduction rates (A) and TOC concentrations (B) in GS14-GC14. 
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Figure 20. Nitrate was quickly consumed in the upper 5-6 cm of the core (A), while PO4
3- levels was relative stable 

throughout the whole core. The concentrations are slightly elevated at 100 cm but decrease again down to 180 cm (B). Fe 

was more or less depleted in GS14-GC14, while Mn was present at relatively low concentrations (B). DIC, alkalinity and PH 

showed stable levels through the whole core (C). 
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Figure 21. Sulfate concentrations were comparable to seawater concentrations through most of the core (A), while methane 

(B) and sulfide concentrations(C) fluctuated. Methane concentration was the lowes that were measured amongst the samples 

from the barite field.   
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Figure 22. NH4
+ concentration in GS14-GC14 was also quite stable through most of the core. 
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5.5.4. Composition of the microbial community 

Bacteria was the dominant domain with the highest relative distribution at 90 cm with 96% of the 

detected OTU`s. All horizons were dominated by Proteobacteria, which was affiliated to 

Gammaproteobacteria, Deltaproteobacteria, betaproteobacteria and Epsilonproteobacteria (fig. 23A). 

The distribution of the Deltaproteobacteria range between 7.5 % at 60 cm to 13.5 % at 90 cm. Two 

orders that contain sulfate reducers were detected, where Desulfobacterales was the most prevalent 

with 8.6% at 90 cm. There were no hits for sulfate reducers at 30 cm despite the observed microbial 

sulfate reduction. Desulfobacterales was also found at 60 cm with 0.07% of the OTU`s. 

Desulfuromonadales was the dominant sulfate reducer in the lower section at 200 cm with 0.6 % of the 

OTU`s (fig. 23B). Only one sulfate reducer was detected at species level and one at genus level. The 

psychrophilic Desulfofaba gelida is affiliated with the Desulfobacterales order and represented 

0.003% of all OTU`s, while SEEP-SRB1 was the most prevalent sulfate reducers at the 90 cm horizon 

with 0.08% of all OTU`s in that sample. 
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Figure 23. The distribution of the most prevalent classes (A) in the GS14-GC14, where Gemmatimonadetes and 

Gammaproteobacteria are the most abundant. Desulfobacterales are the most dominating sulfate reducer in the gravity core. 
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6. Discussion 
 

6.1. Geochemistry of hydrothermal and non-hydrothermal sediments 

 

6.1.1. Geochemistry of the background sediments 

The background sediments that are associated with the LCVF, represented here by GS15-GC1, display 

geochemical features common for deep marine sediments. A deep-marine zonation signature with 

increased vertical distribution of the different geochemical zones characterizes the background 

sediments, which is in agreement with the general trend in low productivity areas (e.g. Canfield, 1991; 

Jørgensen, 2006; Bowles et al, 2014). Four geochemical redox zones can be recognized based on the 

classification criteria defined by Canfield and Thamdrup (2009), which include an oxic, nitrogenous, 

manganous and ferruginous zone. The oxic boundary is marked by the enrichment of dissolved Mn at 

85 cm that co-occurs with the production of NH4
+ (fig. 10). A characteristic feature of this core is the 

vertical distribution of the manganous zone that spans from 85 cm to the bottom of the core at 390 cm. 

The maximum concentration reaches 125 μM at 315 cm, which is equivalent to values reported from 

other metal rich deep-sea sediments (e.g. Sørensen et al, 2004), but slightly lower than observed in 

gravity cores closer to the vent field (Jørgensen et al, 2012). This deviates from the push core, GS15-

AGR08-PC1, where iron is the dominant metal (fig. 13B). The primary source of Mn in arctic deep-

marine sediments are continental weathering and/or riverine inputs (Løwemark et al, 2013). On the 

shelves, manganese undergoes repeated cycles of re-oxidation and reduction caused by the high 

organic carbon content in the sediments before it is exported to the deep-sea basins by scavenging 

processes in the waster column and subsequent deposition as Mn-(oxyhydr)oxides (see Løwemark et 

al, 2013). However, ~90% of the Mn introduced to the global oceans has a hydrothermal origin 

(Elderfield and Schultz, 1996; Glasby, 2006), which point to the possible influence of LCVF on the 

geochemistry in the background sediments, considering that The black smoker fluid from LCVF is 

characterized by the enrichment Mn relative to Fe. Additionally, Mn-oxides can also act as a sink for 

reduced iron as a result of the higher electron affinity of Mn and the relative stability of some of the 

iron oxides Mn can therefore hamper the enrichment of reduced Fe in sediments with high 

concentrations of Mn-oxides (Burdige, 1993; Haese, 2006). This can potentially contribute to the low 

concentration of Fe in the upper 400 cm of the background sediments. However, the key determining 

factor of the iron depletion can probably be attributed to the distance from potential sources. Coastal 

areas are usually the main sink for iron, which render the deep-marine sediments depleted in iron 

(Canfield et al, 1993; Haese, 2006).   

The sediments in the sampling site are a part of the Bear Island Fan that consists of transported and 

reworked sediments from the Barents shelf, that were supplied through melting plumes and debris 

flows during glacial activity. Sediments with higher organic carbon content where transiently supplied 
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to the fan (Laberg and Vorren, 1995; 1996) which explains the variable TOC values that range from 2 

to 9 g/kg (fig. 11). These values are considered high compared to other deep-sea sediments, but are 

still lower than more productive areas along the coast (Jørgensen et al, 2012). Similar values have also 

been observed in the gravity cores that were obtained by Jørgensen et al (2012). Arctic oceans are 

generally characterized by relative high organic matter input of terrestrial carbon (Vogt and Knies, 

2008), which is less reactive than organic matter derived from marine primary production (e.g. 

Hedges, 1992) and can cause a higher degree of accumulation in arctic marine sediments. The 

recalcitrant nature of the carbon leads to a decrease in microbial activity, which causes the increase in 

vertical distribution of the geochemical zones in deep-marine sediments. 

6.1.2. Geochemistry of the barite field 

The chemical signature of hydrothermal fluids originates from the physical and chemical processes 

occurring during the fluids residence time in the reaction zone and discharge zone (e.g. Alt, 1995; 

Baumberger, 2011), where phase separation (i.e. boiling of fluids) and water-rock interaction with 

host-rocks and sediments are the most important processes. Sediments from the Bear Island Fan that 

underlie the axial volcanic ridge that hosts LCVF, also contribute to enrichment of organic and 

inorganic carbon in the vent fluid (Welhan, 1988). The modified fluids display increased 

concentrations of CH4 and NH4
+ (Baumberger, 2011), which generates a larger diversity of catabolic 

energy sources. The supply of dissolved carbonate and NH4
+ to the hydrothermal fluids buffers the 

solution and causes the pH to increase (Baumberger, 2011). The pH in the end-member fluid (EM) at 

LCVF is around 5.6-5.8, which is similar to other sediment-influenced systems (e.g. Von Damm, 

1995; Tivey et al, 2007; Frank et al, 2011, Baumberger, 2011). Increased pH also affects the metal 

composition in the solution by decreasing the solubility of sulfides, because at high pH most sulfide is 

present as S2- that can combine with metal ions to form insoluble sulfides. Furthermore, both Mn and 

Fe are scavenged from the solution and precipitated as metal sulfides (Baumberger 2011; Tivey et al, 

2007; Hannington et al, 1995), but since dissolved Mn is more stable than Fe, the original Fe/Mn ratio 

changes in favour of Mn when introduced to more alkaline solutions (Burdige, 1993; Elderfield and 

Schultz; 1996; Jørgensen, 2006; Glasby, 2006). Hence, the Mn and Fe EM concentrations range from 

62.2-65 and 8.7-19.6 μM, respectively (Baumberger et al, 2011). Consequently, the estimated Fe/Mn 

ratio of ~ 0.6 is lower than reported from other sites, which often ranges between 1 and 5 (Von Damm, 

1995). Mn and Fe are totally absent in GS15-AGR09-BS, while small concentrations of dissolved Mn 

are detected in GS15-AGR09-PC2 and GS14-GC14 (Table 3, fig. 20B). The consumption can be 

further enhanced by the production of sulfide by sulfate reduction that increases the H2S/Fe ratio, 

causing further precipitation of manganese and specially iron sulfides. Thus, Mn is often enriched 

relative to Fe in sediment influenced vent fields (Tivey et al, 2007).  

The hydrothermal fluid is further modified when mixed with seawater in the active barite field. The 

percolating fluids undergo complex subsurface processes that include both biotic and abiotic reactions 
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in sediments with divergent permeability that causes a heterogeneous distribution of fluid composition 

and flow pattern (Weber and Jørgensen, 2002; Proskurowski et al, 2008; Eickmann et al, 2014; 

Nakamura and Takai, 2014; Steen et al, 2016). The modification of the fluid is featured in all samples 

obtained from the barite field. The variable chemical composition of GS15-AGR09-PC2, GS15-

AGR09-BS (bio syringe), GS14-GC14 and GS15-AGR09-R1 (Barite chimney) reflects the subsurface 

consumption and production of the different chemical constituents. The fluids show a seawater (SW) 

to hydrothermal fluid (HF) ratio (SW:HF) of  9:1 relative to the EM. This mixing ratio is calculated by 

comparing the Mg concentration in the diffuse fluid with that of seawater. EM fluid is usually depleted 

in Mg by reactions in the recharge zone (see introduction), which means that any enrichment of Mg is 

supplied by seawater entrainment. The near-seawater concentration of Mg in the diffusing effluent can 

thus only be explained by the mixture of seawater in the mound, in which case the ratio between the 

fluid and seawater is equal to the Mg ratio between the diffuse fluid and seawater. The mixing ratio 

explains the Mg content (see table 4), but fails to explain the sulfide, sulfate and the variable Ca 

concentrations (e.g. Eickmann et al, 2014). The sulfate and sulfide are explained by subsurface 

microbial sulfate reduction (see next section), while the Ca concentration can be explained by the 

influence of other modifying processes. The EM fluid at LCVF is enriched in Ca compared to 

seawater values (table 4), which can be caused by dissolution of carbonates in the underlain 

sediments,. The Ca in GS15-AGR09-BS is probably affected by seawater during sampling and 

displays seawater values of both Ca and Mg in an otherwise evolved fluid. However, the depletion of 

Ca relative to seawater in GS14-GC14 suggest that there is reactions consuming Ca in the mound. 

Bicarbonate or metals are potential candidates. Additionally, crust are formed by the precipitation of 

metal sulfides and different types of carbonates, which will inflict further changes in the permeability 

and heterogeneity of the sediment structure. This can be one probable cause of the difference in 

geochemistry of the pore fluid between the samples. 

Despite the high seawater influence, the sediments show reducing conditions with anoxic conditions 

close to the surface. The most probable cause is oxygen consumption by abiotic reactions with reduced 

compounds or microbial activity close to the surface. These processes have been shown to consume O2 

in diffuse fluids above 8-12 ° C in hydrothermal sediments (Corliss et al, 1979; Johnson et al., 1988; 

Proskurowski et al, 2008), and explain why hydrothermal mounds with high seawater influence are 

anoxic. The detection of a nitrogenous zone in the upper 5-6 cm of the GS14-GC14, a steep TOC 

gradient in the top section and a shallow anoxic zone in GS15-AGR09-PC2 bolster the assumption of 

heterotrophic contribution to the consumption of oxygen in the surface. The TOC concentration in the 

active hydrothermal sediments shows concentrations equivalent to the background sediments, but the 

occurrence of DSR close to the surface suggests that the organic matter associated with the surface 

hydrothermal sediments (e.g. GS15-AGR09-PC2) probably consists of carbon that is more liable and 

thus promote faster consumption of oxygen. Nevertheless, these values are low compared to other vent 
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sites and other productive areas and may cause the system to be substrate limited, which hampers the 

activity of the heterotrophic community (see below). 

The distribution of the organic matter seems to correlate with the fluid composition in the barite field. 

The most evolved fluid contains the highest amount of electron donors for the chemoautotrophic 

community, which in turn facilitates production of organic matter. This is demonstrated by the relative 

high concentration of electron donors in GS15-AGR09-BS, which consist of fluids that were sampled 

from a barite chimney covered in thick layers of microbial mats. The distribution of microbial mats are 

thus strong indicators of available nutrients and marks the flow pattern of the most evolved fluids (fig. 

8A). The most evolved fluid is also associated with chimney formation, which is often associated with 

areas of higher flow rates (Eickmann et al, 2014). Combined with the enrichment of 34S and 18O in the 

inner part of the barite chimneys compared to the outer part, chimney effluent function as a window to 

the inner part of the mound, and reveals the possibility of subsurface microbial induced fractionation 

of oxygen and sulfur (Eickmann et al, 2014).  The chimney effluent (represented by the GS15-

AGR09-BS) displayed elevated concentrations of CH4 (105.4 μM) and H2 (16 nM) compared to 

GS15-AGR09-PC2 (0.1853 µM and no H2) and GS14-GC14 (between 1 and 13 nmol), which suggests 

that CH4 and H2 are consumed subsurface, implying microbial consumption of the reduced fluids. The 

GS14-GC14 displays seawater levels of sulfate through the whole core, which is a necessary 

component in anaerobic oxidation of methane (AOM). The seawater signature implies low flow rates 

of the hydrothermal fluids in that area, which causes longer residence time for the CH4 and H2
 in the 

sediments. The difference in residence time and CH4 and H2 concentration between high flow rate 

areas and low flow rate areas underscores the spatial heterogeneity of the processes that affects the 

chemical composition of the hydrothermal fluid, and show that areas with longer residence time have 

lower concentrations of CH4 and H2. Hence, the geochemical data gives a strong indication for a 

subsurface sink of CH4 and H2 in the sediments. 

 

Table 4. Chemical composition from the surface samples where A) is obtained from Eickmann et al (2014) for comparative 

purposes, while B) is from this study. The chemical composition from GS14-GC14 fluid are listed in… 

A Na 

(mM) 

K 

(mM) 

Ca 

(mM) 

SO4
2- 

(mM) 

H2S 

(mM) 

NH4 

(mM) 

Mg 

(mM) 

Ba 

(μM) 

EM-fluid 397 34.5 28.1 0.7 3.59 5.4 0.0 40.5 

GS09-ROV7-BS 442 11.9 11.5 24.1 0.1 0.6 46.9 5.1 

GS09-ROV8-BS 440 11.8 11.4 24.8 0.1 0.6 46.8 1.7 

GS09-CTD 7-2 445 9.6 10.1 29.2 0.0 0.0 51.6 0.0 

GS09-CTD 8-4 440 9.5 10.2 29.2 0.0 0.0 51.6 0.1 

Chemical composition of GS15-AGR09-PC2, GS15-AGR09-BS 
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B         

GS15-AGR09-PC2 444.1 14.19 11.90 21.52 2.55 1.255 42.46 0.5 

GS15-AGR09-BS 454.8 10.43 10.03 28.97 nd 0.150 50.07 0.2 

 

Figure 24. The general mixing ratio between seawater and end-member fluid based on calculations with Mg and Ca 

concentrations in GS14-GC14 and CTD data obtained from Eickmann et al (2014). 

 

6.2. Distribution of SRB in the barite field 
As shown in the last section, the energy availability in the vent area is considerably higher than the 

surrounding seafloor and is the likely cause of the flourishing primary production in the barite field. 

The spatial distribution of fluid compositions and flow patterns seems to determine the distribution of 

the metabolically functional groups in the barite field (fig. 25) (Amend et al, 2011; Dahle et al, 2015; 

Steen et al, 2016), and functions as a geochemical constraint on the chemoautotrophic primary 

production. Hence, the divergent fluid pattern and energy supply determines the organic carbon 

production, which in turn determines the distribution of the heterotrophic community (fig. 26 and 27). 

Accordingly, the sample which yielded the highest sulfate reduction rates at ~110 (± 21.5) nmol/cm3 d, 
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GS15-AGR09-PC2, was associated with a lower mixing ratio (SW:HF ~ 8:2) and the highest carbon 

load (fig. 27). This sample contained the highest relative abundance of sulfate reducing bacteria (9.1% 

of all OTU`s at 11 cm depth), in which Desulfobacterales was the dominant phyla in all 4 horizons. 

The mesophilic Desulfocapsa was the most prevalent genus. This contrasts with the activity of the 

SRB community in GS14-GC14, which displays slow sulfate reduction rates (between 6 and 132 

pmol/cm3 d), low carbon load and low temperatures (7.8 °C 20 cm into the sediment). This was also 

the only core with positive hits for a psychrophilic sulfate reducer, represented by Desulfofaba gelida. 

Few psychrophilic sulfate reducers are known, but rate measurements from sediments that were 

sampled in Hornsund, Svalbard, show equivalent rates as the temperate sediments further south, which 

indicate adaption to the low temperature (Sageman et al, 1998). In fact, a psychrophilic sulfate 

reducer, Desulfofaba gelida, was isolated from these sediments (Knoblauch et al, 1999). D. gelida was 

detected at 90 cm, which co-occur with the highest rates. However, it got only 84 positive hits out of 

22004 (0.003% of the prokaryote community) and has probably no significant effect on the rates. 

Additionally, the relative abundance of sulfate reducers in GS14-GC14 was the lowest of all samples. 

Desulfobacterales was the only detectable order with 0.08% of the OTU`s, which is a lower relative 

abundance of SRB than in GS15-GC1, where Desulfobacterales represented 1.3 % of all OTU`s. The 

low rates in GS14-GC14 are thus probably not from incubation artefacts but generally poor growth 

conditions for the sulfate reducers.  

The barite slurry also contained low TOC concentrations that were comparable to values in GS14-

GC14 (~1.5 g/Kg), but displayed sulfate reduction rates that were 2-3 orders of magnitude higher than 

in GS14-GC14 (32-50 nmol/cm3 d and 6-132 pmol/cm3 d, respectively). The rates does not correspond 

to the TOC concentrations, but the activity does reflect an environment ideal for sulfate reducing 

bacteria. However, the relative abundance of sulfate reducers were much higher than in GS14-GC14, 

where the sulfate reducing community represented 5.5 % of all the OTU`s. The presence of H2 in 

fluids sampled close to the barite chimney (GS15-AGR09-BS) suggest that this pathway could have 

function as a substrate for autotrophic sulfate reduction in the barite chimney. The addition of CH4 and 

H2 could accordingly support better growth condition in the chimneys and compensate for the lack of 

availability of organic carbon. This assumption is bolstered by the high relative abundance of ANME-

1, 8.7% of the detected OUT`s, which is higher than SRB (fig.18A). This suggests that anaerobic 

oxidation of methane could occur in the inner part of the chimney (e.g. Steen et al, 2016). However, 

no known sulfate reducing associates were detected in the barite slurry, which can imply that the 

ANME-1 that was present was free-living. This finding has previously been observed from cold seeps 

(Orphan et al, 2002; Roalkvam et al, 2011) and from previous studies from the barite field (Steen et 

al, 2016). It is also possible that the detected ANME-1 members forms consortia with uncultivated 

SRB lineages that could be novel syntrophs (Teske et al, 2002, Pernthaler et al, 2008), in which case 

they would not be detected. ANME-1 are usually associated with sulfate reducers affiliated to the 
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Desulfobacterales order (Knittel and Boetius, 2009), which ~83% of the sulfate reducers in the barite 

slurry (GS15-AGR09-R1). However, SEEP-SRB1 groups, which is known to form consortia with 

ANME-1 (Knittel and Boetius, 2009; Roalkvam et al, 2011), were absence from the Barite. The 

reduction rates in the three samples correlate well with microbial density, which in turn seems to be 

controlled by nutrient supply in form of organic matter and the additional supply of H2 and CH4 in the 

barite chimney.  

 

 

 

 

6.3. Comparing LCVF with equivalent sites 

 

6.3.1. Rate differences 

Previous rate measurements in hydrothermal systems have been restricted to only a few sites, namely; 

Guaymas Basin vent field, Gulf of California (Weber and Jørgensen, 2002; Kallmeyer and Boetius, 

2004; Elsgaard et al, 1994a); Middle Valley vent field, Juan de Fuca Ridge (Frank et al, 2013) and 

Lake Tanganyika, East Africa (Elsgaard et al, 1994b). The latter is the only fresh water vent field and 

is exposed to lower concentrations of sulfate. Nevertheless, the Lake Tanganyika vent field exhibits 

substrate availability equivalent to that of estuarine environments, which normally experience high 

supply of organic carbon (Elsgaard et al, 1994b). The rate measurements in these sediments showed a 

rate optimum at lower temperatures than Middle Valley and Guaymas basin vent fields, with 34-45 °C 

for the mesophilic community, and 56-65 °C for the thermophilic community (Elsgaard et al, 1994b, 

Kallmeyer and Boetius, 2004; Frank et al, 2013). A wide range of sulfate reduction rates were also 

reported from Middle Valley and Guaymas Basin, where Middle Valley demonstrated SRR from 16 to 

2700 nM/cm3 d, while significantly higher rates were measured in Guaymas Basin. The highest rates 

recorded in marine sediments stem from the Guaymas Basin vent field with 6700 nmol/cm3 d 

(Kallmeyer and Boetius, 2004), which is ~60 times higher than in GS15-AGR09-PC2. Both vent field 

are covered by sediments, where Guaymas basin is characterized by especially high sedimentation 

rates (> 1 mm/yr) and 200 times more organic carbon than Middle Valley (Frank et al, 2013). 

Moreover, the sediments that are associated with the Guaymas basin vent field are supplied with 

additional substrates that are carried by the ascending vent fluid. These fluids supports the 

thermophilic and hyperthermophilic sulfate reducers with thermogenic decomposed organic carbon 

from below. The spatial distribution of the mesophilic community, however, close to the surface, is 

constrained by the distribution of primary production on the surface (e.g. Beggiatoa matts), which is 

mostly controlled by the substrate supply from ascending fluids (i.e. H2S and CH4) (Weber and 
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Jørgensen, 2002). The samples from Middle Valley were gathered from sulfide deposits where 

thermophilic and hyperthermophilic SRB dominated. The SRR showed an optimum reduction rate at 

ca. 90 °C, which deviate from all other sampling sites, which showed optimum between 40 and 70 °C 

(Frank et al, 2013).  

6.3.2. Effect of temperature on sulfate reduction rates 

The variation in SRR between these sites and LCVF demonstrates the effect of substrate supply and 

temperature on the microbial activity. The importance of temperature has been demonstrated with 

several studies from permanently cold sediments (e.g. Jørgensen et al, 1992; Isaksen and Jørgensen, 

1996; Sageman et al, 1998), which show that most SRB display increasing rates at higher temperature 

than the in situ temperature. In fact, the lowest optimum temperature for a sulfate reducer is measured 

to be 21 °C and is obtained from Antarctic sediments with in situ temperatures of ca. -1 °C (Jørgensen 

et al, 1992; Isaksen and Jørgensen, 1996). Most SRB are thus adapted to higher temperatures than 

found in deep-marine sediments (Isaksen and Jørgensen, 1996). Thus, hydrothermal sediments with 

steep temperature gradients creates in situ temperature that coincide with the temperature optimum for 

any given SRB community, which promote higher rates (Isaksen and Jørgensen, 1996). LCVF have 

less steep temperature gradients and are more influenced by the surrounding seawater conditions, 

which is one possible reason for the observed rate differences between Guaymas basin, Middle Valley 

and LCVF. In fact, sulfate reduction rates have been demonstrated to increase 4- to 10-fold from in 

situ temperature to the optimum temperature (Sageman et al, 1998). The incubation temperature at 4 

°C for GS14-GC14 and GS15-AGR09-PC2 are therefore way below the optimum temperature for the 

mesophilic community which usually lies around 30-40 °C (Isaksen and Jørgensen, 1996) and does 

probably not reflect the in situ SRR. Thus, a wider range of incubation temperatures for this project 

would probably result in higher reduction rates, and more importantly, a better knowledge of the in 

situ temperature would have demonstrated the in situ SRR from LCVF. The barite slurry, however, 

was the only sample incubated at ambient temperature (assuming effluent temperature of 20 °C), 

which is closer to optimum temperatures for mesophilic SRB. The sulfate reduction rates increased 

accordingly from 32 nmol/cm3 d to 50 nmol/cm3 d, which highlight the temperature sensitivity of 

dissimilatory sulfate reduction. However, the slurry was incubated with fluids collected from the top 

of the GS15-AGR09-PC2 push core (c.f. the artificial vent fluid used by Frank et al, 2013), which is 

assumed to reflect the approximate seawater composition in the barite field (with elevated H2S and 

decrease SO4
2- relative to ambient seawater, Table 3). However, this may not represent the exact in 

situ conditions of the barite chimney environment. How this affects the rates is uncertain, but the 

chimney effluent carried extra potential substrates that could support higher rates. These substrates 

were not present in the incubation medium and could therefore result in lower than in situ rates.   
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6.3.3. Effect of substrate availability on sulfate reduction rates 

The substrate supply differs greatly between LCVF, Middle Valley and the Guaymas Basin vent field. 

The measured SRR in non-hydrothermal sediments associated with the Guaymas Basin vent field 

showed rates up to 11.8 nmol/cm3 d in sub-samples obtained from near the surface and that were 

incubated at 3 °C (Elsgaard et al, 1994a). This is slightly higher than other deep-sea sediments, which 

exhibit rates around 0.2-2 nmol/cm3 d (Elsgaard et al, 1994a), and is probably caused by the transport 

of high amount of organic matter to the seafloor and influence from the primary production in this 

vent field (Elsgaard et al, 1994a). The Guaymas Basin has generally more nutrient supply from the 

water column than LCVF as shown by the absence of sulfate reduction in GS15-GC1, which receive 

the same amount of organic carbon supply from the photic zone as LCVF.  The precipitation of 

organic carbon from the euphotic zone is therefore not important in the LCVF. Primary production are 

the main supplier of organic matter to the mesophilic community in both LCVF and Guaymas Basin, 

where the highest rates are associated with highly productive areas at both sites (Elsgaard et al, 

1994a; Weber and Jørgensen, 2002). The rates measured in LCVF are lower than reported from arctic 

sediments sampled in Hornsund, Svalbard, with an in situ temperature of -1.7° (Sageman et al, 1996) 

and SRR at 240 nmol/cm3 d, which is twice as high as measured in GS15-AGR09-PC2, and 3-5 orders 

of magnitude higher than measured GS14-GC14. However, the Svalbard sampling area was 

characterized by a higher nutrient supply, which underscores the importance on substrates for SRR. 

The difference in SRR between these sites are likely caused by a combination of temperature and 

nutrient supply, where the barite field shows lower carbon load and less steep temperature gradients 

than in the sediments of these other sites.  However, temperature and substrate availability are 

probably more favourable in the interior of the barite field, where methane and hydrogen are potential 

candidates as electron donors and less seawater influence cause the temperature to be higher.  
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Figure 25. The GS14-GC14 show a strong correlation between prokaryotic density and fluid composition. The resolution of 

the methane concentration is quite poor due to only seven sampling points. The concentration may be more similar to the 

sulfide concentrations, which fluctuate more. 

 

. 
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Figure 26. Correlating SRR and TOC in GS14-GC14. It is suggested that the organic carbon in the top sediments are the 

main substrates for SRB. AOM could occur, but no ANME was detected. 



 
 

63 
 

 
Figure 27. Correlating TOC concentrations and SRR. Reduction rates for GS14-GC14 was significant lower than for the 

surface sediments and contained lower concentrations of organic carbon. 

6.4. The potential for an additional deep sulfate reduction zone 
While the distribution of the sulfate reducers at the surface seems to be controlled by the quality and 

abundance of the organic carbon, isotopic and geochemical measurements of the more evolved fluids 

emanating through the barite chimney reveals the possibility of an additional sulfate reduction zone 

occurring at greater depths (e.g. Eickmann et al, 2014; Steen et al, 2016). A sulfate reduction zone 

independent of the primary production at the surface is possible due to the continuous supply of H2 

and CH4 from below, and can sustain SRB as long as the temperature conditions are within the 

biological window. As sulfate is always an important constituent of diffuse fluids in mixing zones 

(Nakamura and Takai, 2014), the key determining factor is temperature and substrate availability.  

 

6.4.1. Anaerobic oxidation of methane (AOM) 

 

Despite the the thermodynamic potential for the reaction to proceed, the stability of methane and the 

sluggish reaction kinetics exclude any abiotic sink in the mound. This makes microbially mediated 

oxidation of the methane the most plausible cause of the methane depletion (Reysenbach and Shock, 

2002; Kasten and Jørgensen, 2006; Widdel et al, 2006). As anaerobic oxidation always co-occurs with 

sulfate reduction (Orphan et al, 2002; Martin et al, 2008; Brazelton et al, 2006) , the disappearance of 

methane in the mound is assumed to be associated with sulfate reduction and should therefore function 

as a sulfate sink. The elevated levels of EM fluid in the chimney effluent (GS15-AGR09-BS) 

0,001

0,01

0,1

1

10

100

1000

0 1 2 3 4 5 6 7

SRR
(nmol/cm3 d)

TOC
(g/kg)

GS15-AGR09-PC2 GS15-AGR09-R1 GS14-GC14-30

GS14-GC14-60 GS14-GC14-90 GS14-GC14-120



 
 

64 
 

compared to the sediment samples confirms that the fluid emanating through the barite orifice is less 

influenced by seawater and represent the more reducing conditions that are found deeper into the 

mound (Eickmann et al, 2014). This fluid also carries sulfate enriched in 34S, in which the 

fractionation is attributed to microbial fractionation of sulfate. The isotopic signature of the fluid is 

reflected in the interior of the barite chimney, which shows more positive δ34S and Δ33S than seawater 

(Eickmann et al, 2014). Combined, these observations give strong indications for a deep subsurface 

sulfate reduction zone.  

The key determining factor that controls the distribution of ANME is the partial pressure of CH4 (e.g. 

Girguis et al, 2003; Valentine and Reeburgh, 2007; Knittel and Boetius, 2009). AOM rates tend to 

decrease significantly, when methane concentrations decrease below 0.5 mM (Knittel and Boetius, 

2009), which can explain the low density of ANME in GS15-AGR09-PC2 and absence in GS14-

GC14. However, previous studies on the distribution of AOM in diffuse venting hydrothermal 

sediments are scarce (Proskurowski et al, 2008). Only a few sites have been studied, including the 

sediments at Guaymas Basin vent field in the Gulf of California and Lost City hydrothermal field on 

the mid-Atlantic Ridge (e.g. Teske et al, 2002; Brazelton et al, 2006; Proskurowski et al, 2008; Holler 

et al, 2011; Merkel et al, 2013). These studies confirm the possibility of methanotrophy in 

hydrothermal settings, with some studies demonstrating increased activity at temperatures in excess of 

30 °C (Schouten et al, 2002; Holler et al, 2011; Merkel et al, 2013). In fact, laboratory studies show 

optimum condition at 30-60 °C (Kallmeyer and Boetius, 2004). These results also support the 

assumption that AOM could be of biochemical relevance in habitats of elevated temperatures like the 

interior of the barite field where the mixing ratio is lower and partial pressure of methane is higher 

(Holler et al, 2011; Merkel et al, 2013; Dahle et al, 2015). Nevertheless, the temperature is only of 

minor importance for the ΔG of the reaction (Nauhaus et al, 2002), which suggests that the ANME 

that inhabit the system are thermophilic. The temperature, mixing ratio (fig. 24) and low methane 

concentrations indicate that GS14-GC14 is sampled from parts of the barite field with low flow rate.  

Furthermore, microbial communities are shaped by their chemical surroundings, where the change in 

chemical composition of a system is accompanied by a change in free-energy of a reaction (McCollom 

and Schock, 1997). In hydrothermal sediments with seawater mixing, the dilution of the vent fluid by 

seawater modifies the chemical composition of the vent fluid and changes the energy landscape of the 

system. The mixing ratio between seawater and hydrothermal fluid in the sediments is therefore 

important in constraining the distribution of functional groups in hydrothermal sediment (e.g. Holden 

et al, 2012; Dahle et al, 2015). The microbial community can thus be modelled by taking into account 

the standard free energy of a reaction (ΔG°), and the change in free energy (ΔG) of the reactions with 

changing chemical composition of the fluid during mixing (McCollom and Schock, 1997): 

3) ΔG = ΔG° + RT ln Q 
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Thermodynamic models of the LCVF suggest that this vent field represents an extremity in terms of its 

energetic potential for hosting anaerobic methane oxidizers (Dahle et al., 2015; Steen et al, 2016), 

which contrasts studies on other basalt hosted systems where AOM were anemic. This difference in 

energy availability of AOM in LCVF is attributed to the sediment influence from the Bear Island Fan 

(Dahle et al, 2015). Microbial community models based on modelled energy availabilities from 

chemical compound suggest that around a dilution factor of approximately 9:1 between seawater and 

hydrothermal fluids (SW:HF), there is a transition from growth conditions favourable for anaerobic 

methane oxidizers to those favourable for aerobic sulfide and methane oxidizers (Dahle et al., 2015).  

Consequentially, parts of the mound with lower mixing ratios (i.e. less seawater influence) favour 

metabolism based on reductive reactions (i.e. reduction of sulfate and CO2), which include 

methanogenesis and sulfate reduction, while seawater-dominated parts of the hydrothermal system, 

where there is an abundance of electron acceptors, will favour aerobe oxidation of H2S, CH4 etc. 

(McCollom and Schock, 1997). The transition from oxidative reactions to reductive reactions in 

LCVF, is therefore assumed to take place at the 9:1 mixing ratio (Dahle et al, 2015). This mixing ratio 

generally marks the shift form oxidized conditions with high seawater influence, to reducing 

conditions with a more EM signature and increasing temperatures. The geochemistry and 

thermodynamic models strongly suggest that AOM occurs in the mound at more reducing condition 

and are possibly the dominant sulfate sink in the mound (Dahle et al, 2015). The difference between 

GS14-GC14 and the chimney fluid effluent, which represents the part of the mound with high flow 

rate, indicates that fluid with long residence time are more depleted in both methane and hydrogen. 

We attribute this depletion to microbial sulfate reduction in the deep subsurface. The sulfate 

penetration depth is difficult to determine, but hydrothermal mixing zones contain sulfate at all 

habitable temperatures (Nakamura and Takai, 2014), which means that temperature constrains the 

spatial distribution of sulfate reduction. The depth probably varies, where areas with high flow rates 

can accommodate AOM up to the surface. However, the occurrence of AOM is also affected by other 

interenvironmental differences, including pH, salinity and pressure, differences in thermodynamics 

and kinetics may affect the energy output in either way (Valentine and Reeburgh, 2007).     

 

Table 4. Metabolic reactions for chemolithoautotrophy. Compiled and modified from Nakamura and Takai, 2014. aStandard-

state Gibbs free energy at 2 °C and ~250 atm 

Energy metabolism Overall chemical reaction ΔGr° (kJ)a 

Hydrogenotrophic 

methanogenesis 

H2 + 1/4CO2  1/4CH4 + 1/2H2O -49.2 

Hydrogenotrophic 

sulfate reduction 

H2 + 1/4SO4
2- + 1/2H+  1/4H2S + H2O -74.9 
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Anoxic methanotrophy 

(AOM) 

CH4 + SO4
2- HCO3

- + HS- + H2O -30.1 

 

6.4.2. H2 consumption 

Studies from several sites have shown greater H2 loss with longer subsurface residence time, which 

suggests that there is an additional abiotic or biotic sink in the mound (e.g. Wankel et al, 2011). Any 

abiotic reactions involving H2 are potentially very exergonic, but due to the sluggish nature of the 

reaction, the oxidation of H2 in hydrothermal sediments often proceeds with the aid of enzyme 

catalysts (Reysenbach and Schock, 2002). Consequentially, most of the H2 consumption is caused by 

microbial activity in the hydrothermal mound. The consumption can be coupled to sulfate, iron, Mn 

and nitrate, but also to methanogenesis (Proskurowski et al, 2008; Holden et al, 2012). The latter has 

been suggested based on isotope data, but not yet directly measured (Wankel et al, 2011). Several 

types of bacteria and archaea are able to accommodate oxidation of H2, in which methanogenic 

archaea and chemoautotrophic sulfate reducing bacteria are the most important metabolisms (Schwartz 

and Friedrich, 2006). Microbially mediated methanogenesis is a strictly archaeal trait which involves 

the oxidation of H2 with CO2 (see table 4) to form methane. Some of these groups are also associated 

with extremophiles, like methanopyrus, that are capable of growth at 122 °C (Madigan et al, 2013), 

which is the current upper limit for life and considerable higher than any observed AOM (e.g. Merkel 

et al, 2013). Several autotrophic sulfur reducers also display hyperthermophilic capabilities where the 

hydrogen consuming archaea, Pyrolobus Fumarii, have been grown at 113 °C (Bløchl et al, 1997; 

Jaenicke and Sterner, 2006). The robustness of both methanogens and sulfate reducers has been 

observed in previous studies in Guaymas Basin vent field, where SRR have been measured at 

temperatures of up to 102 °C (Jørgensen et al, 1992; Stetter 1996; Elsgaard et al, 1994a). However, 

while the latter example was heterotrophs, several hydrogen consuming sulfate reducers have been 

obtained from hydrothermal field. Two obligate H2-oxidizing, sulfate-reducing archaea, Ignicoccus 

islandicus and Ignicoccus pacificus, affiliated with the Crenarchaeota phylum, were enriched from hot 

marine sediments and from the orifice of a deep-sea vent, respectively (Huber et al., 2000). In 

addition, hydrogen consuming bacteria have also been detected from hydrothermal systems (Alain et 

al, 2010; Alazard et al, 2003).  

Consequentially, at some point the temperature exceeds viable conditions for ANME and will be 

replaced by the thermophilic and hyperthermophilic SRB and methanogens. This means that the H2 

consumption is probably situated deeper than the AOM zone, which is probably situated closer to the 

surface or along conduits with higher fluid flow. However, the role of sulfate as a H2 sink depends on 

the penetration depth and at what the temperature it is depleted. In sediments with abundance of CO2, 

H2 and sulfate, the key determining factor of which one that prevails in a given system is the sulfate 

concentration (Schwartz and Friedrich, 2006). Autotrophic sulfate reduction is normally the most 
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thermodynamically favourable (table 4), which is demonstrated by studies in marine sediments where 

methane concentrations do not start to increase until the sulfate concentration is below 1 mM (Sivan et 

al, 2007). This is attributed to the higher substrate affinities and energy yield of autotrophic DSR. The 

battle for the hydrogen between SRB and methanogens will in most cases shift towards the SRB, due 

to the difference in energy yield. The higher hydrogen affinity of chemoautotrophic sulfate reducers 

would favour sulfate reducers over methanogens. Thus, in any system containing sulfate, the SRB will 

outcompete and inhibit the growth of methanogens (Kristjansson and Schønheit, 1983; Schwartz and 

Friedrich, 2006). However, which of them that prevails are dependent of the complex relationship 

between the reactants and products. The redox conditions deeper into the barite field at LCVF are 

difficult to assess due to both abiotic and biotic consumption of hydrogen, methane and sulfate. It 

requires a substantial amount of seawater mixing to lower the vent fluid temperature down to the 

biological window (Reysenbach and Schock, 2002), which would cause the sulfate levels to increase 

and sulfate reduction would be favoured as a H2 sink. Moreover, energy modelling by Dahle et al 

(2015) demonstrates the increasing dominance of methanotrophy above a SW:HF mixing ratio of  9:1, 

which means that AOM could be the dominant sulfate sink in the subsurface. How this affects the 

sulfate concentration is difficult to assess, but in a system low on sulfate, methanogenesis could be the 

preferred H2 sink. Nevertheless, hydrogen consumption by methanogens and sulfate reducers seems to 

increase in dominance with increasing temperature. The battle between these two metabolic pathways 

can also be affected by the high methane concentration in the solution that may hamper the methane 

formation. If so, chemoautotrophic sulfate reduction becomes the dominant hydrogen sink.  
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Figure 28. Simplified model modified from Eickmann et al, 2014. (1) Undiluted hydrothermal fluid rich in reduced 

compounds. (2) Hydrothermal fluid is mixed with seawater with the subsequent consumption of H2 and CH4.  Heterotrophic 

sulfate reduction (yellow) occur close to the surface preferently where the highest primary production takes place. When the 

liable carbon is consumed, methanotrophy (green) takes over. Since SRB and methanogens (blue) are more tolerant to heat 

the consumption of H2 occur below methanotrophy where there is too hot for ANME.  
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7. Conclusion  
 

The results obtained in this study provide constraints on the distribution of microbial sulfate reduction 

in diffuse venting sediments at Loki`s Castle Vent Field, by integrating direct measurement of sulfate 

reduction rates, geochemical measurements from the pore fluids and analyses of the microbial 

community. 

 The distribution of sulfate reducing community seems to be constrained by the flow pattern 

and fluid composition. The highest sulfate reduction rates were measured close to the surface 

in an area of high primary production. The rates in less active areas showed lower relative 

density and lower reduction rates. 

 The main electron donor on the surface seems to be organic carbon that is supplied by primary 

producers. H2 and CH4 can also function as a substrate in areas with evolved fluids in the 

chimney effluent.  

 The consumption of CH4 and H2 in the subsurface is attributed to a deep sulfate reduction 

zone, where AOM is the primary sulfate sink in the mound. Both methanogens and 

autotrophic sulfate reducers could mediate the hydrogen consumption, but the presence of 

sulfate at all viable temperatures, along with the high methane concentration favours 

autotrophic sulfate reducers as the main hydrogen sink.  

 Desulfobacterales was the dominant sulfate reducing order in all samples, followed by 

Desulfuromonadales and Desulfarculales. All belong to Deltaproteobacteria class. No 

thermophilic sulfate reducers were found, but GS14-GC14 contained SEEP-SRB1 and 

Desulfofaba gelida, a known psychrophilic sulfate reducer affiliated with Desulfobacterales. 
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8. Future work 
 

While this study managed to measure and constrain the distribution of microbial sulfate reduction on 

the surface, several improvement of the methods can be done. First of all, the incubation temperature 

for the sediment samples probably didn’t represent the in situ conditions, which means that the in situ 

rate is probably higher than measured. Performing incubations at more temperatures can give a better 

impression of the optimum rates of the sulfate reducing community and the in situ rates. The chimney 

effluent contained higher concentrations of possible substrates for sulfate reduction bacteria (CH4, H2), 

which probably affected the growth rate and respiration rates. Incubation of the barite slurries in fluid 

more similar to the effluent will give a better constraint on the in situ rates. In addition, the prokaryotic 

density in the sediments and chimney measurement of the abundance of functional genes (dsrB) can 

give a better idea of the activity of the sulfate reducers.   

Additional investigation is needed to characterize the putative deep sulfate reduction zone in the barite 

field.  Isotope measurements of the methane in the effluent can give insight into what processes are 

consuming hydrogen, whether it is methanogenesis or autotrophic sulfate reduction.  
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Appendix 1 
All data are compiled in Google Doc and can be obtained by following the link.  

https://docs.google.com/spreadsheets/u/0/  

https://docs.google.com/spreadsheets/u/0/

