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Abstract

Background: Vitamin D is required to maintain a healthy cardiovascular system, but

it is unknown whether variation in vitamin D status in the general population is

physiologically relevant to development of cardiovascular diseases (CVDs).

Aim: To study vitamin D status and investigate the associations of vitamin D status

with atherosclerosis progression, all-cause and CVD mortality.

Methods: Observational data from patients in Western-Norway with suspected 

coronary artery disease were used (n=4116). Vitamin D status was assessed by the 

measurement of plasma 25-hydroxyvitamin D (25OHD) concentrations, 

atherosclerosis progression by repeat coronary angiography and survival data

obtained from national registries.

Results: Mean 25OHD most strongly associated with seasonality, adiposity and cod 

liver oil consumption. Seasonal variation in 25OHD differed by age. During winter 

and summer ~50% and ~80% of the participants were vitamin D sufficient,

respectively. When modelling baseline values, cosinor models most accurately 

predicted follow-up values for patients with repeated measurements of 25OHD.

Baseline concentrations of 25OHD were not associated with atherosclerosis 

progression after ~1 year of follow-up, but were inversely associated with a higher

risk of all-cause and cardiovascular mortality after ~12 years of follow-up. Despite a

linear tendency, non-linearity was observed in the relationship with all-cause 

mortality, with higher risk among individuals with 25OHD concentrations below 42.5

nmol/l and above 100 nmol/l in comparison to those between 42.5 – 100 nmol/l.

Conclusions: Seasonal variation has a strong influence on vitamin D status and

researchers should consider cosinor models when adjusting for seasonality. A high 

frequency of insufficiency during winter indicates inadequate dietary intakes despite 

a high frequency of cod liver oil use in this population. Vitamin D status was

inversely associated with a higher risk of all-cause and CVD mortality, but not
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associated with subclinical progression of atherosclerosis. The relationship with all-

cause mortality was J-shaped, with increased risk also among a smaller segment of 

participants with high 25OHD concentrations.
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1. Introduction

Nutrients are required by all organisms to perform the functions that constitute life.

Except for a few notable exceptions, humans acquire nutrients from foods.

Macronutrients, which include carbohydrates, fats and proteins, constitute the bulk in 

foods and provide energy and building material for almost every function in the body. 

Micronutrients, which are the vitamins, minerals and trace elements, are obtained in

much smaller quantities and are essential to more specific functions in the body.

In the past, researchers discovered consequences of severe micronutrient 

deficiencies that caused clinical diseases like xerophthalmia, rickets, scurvy and

beriberi. Today, they are attempting to discover consequences of milder deficiencies. 

Mildly deficient persons usually do not develop characteristic symptoms that are 

easily recognisable, but rather tend to develop certain diseases more often or at an 

earlier stage in life than sufficient persons. To identify subtle differences in disease 

risk, researchers must be able to distinguish mild deficiency from sufficiency by the 

help of biomarkers that accurately reflect micronutrient status. They also need to 

follow a large group of people over many years, as people vary in their requirement 

of micronutrients to sustain physiological functions.

In this thesis, we provide sequential overviews of vitamin D and

cardiovascular disease. This is followed by a historical flashback on their relationship 

and an overview of our current understanding of how vitamin D may influence 

cardiovascular disease. We also describe and discuss the methodology and results of 

three observational studies with overlapping study populations that used the 

biomarker 25-hydroxyvitamin D to reflect vitamin D status. The studies focus on 

potential determinants of the biomarker, the longitudinal relationships of the 

biomarker with atherosclerosis progression and all-cause and cardiovascular 

mortality, as well as a methodological issue with the use of this biomarker in 

observational research related to seasonal variation in sun exposure.
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1.1 Vitamin D

1.1.1 History

Some diseases manifest with very characteristic symptoms, such as the bowing of 

extremities in the children on the figure below (Figure 1). Due to its characteristic 

manifestation in humans, this symptom and the underlying disease may be traced

more easily back in time through historical records.

Figure 1. Three children with rickets.

Bowing of the arms or legs depended on whether the infant was crawling or walking. 

Image acquired: Wellcome Library, London. http://wellcomeimages.org. Image entitled: “L0014375 

Three children with rickets; anon.. Friends' Relief Mission, Vienna XII, n.d.Photograph circa 1920 –

1930”. Copyright: Creative Commons Attribution only licence CC BY 4.0.
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According to a historical review, this symptom is mentioned in records which 

date back to antiquity [1]. It was later described as “rickets” in several records from 

Europe between 1645 and 1668 and as a cause of death in the “Annual Bill of 

Mortality of the City of London” in 1634 [1]. In addition to the descriptions of rickets 

in historical records, it has also been confirmed in excavated remains of children of 

the prominent Italian renaissance family Medici from 1547-1602 [2].

Although unable to explain the cause of rickets in the 17th to 19th century, 

records from different parts of the world describe different remedies [1]. The records 

include the proposed or demonstrated efficiency of eating animal or fish liver, as well 

as physical activity, fresh air and sunlight. In 1918, Mellanby demonstrated that 

rickets was, similar to scurvy and beri beri, a disease caused by deficiency of a factor 

in food, and named it anti-rachitic accessory factor [3]. However, he concluded that 

this factor most likely was fat soluble factor A, know referred to as vitamin A, which

had been shown to cure xerophthalmia, a destructive dryness of the eyes. Meanwhile,

convincing observations had been made of geographical and seasonal patterns in the 

prevalence of rickets [1] and the curative effect of natural and artificial ultraviolet B

(UVB) exposure (Figure 2) demonstrated [4]. The common denominator behind the 

curative effects of physical activity and fresh air had been identified. A series of 

human studies in hospital wards in Vienna between 1919 and 1922 clearly provided 

evidence for the separate effects of natural and artificial sunlight and cod liver oil in 

alleviating symptoms of rickets [5].

In 1922, McCollum was able to oxidize the property of cod liver oil that cured 

xerophthalmia without removing its anti-rachitic properties, thereby illustrating the 

existence of a separate calcium-depositing vitamin, the fourth micronutrient 

discovered by that time [6]. Investigating the link between the anti-rachitic properties 

of this vitamin, named vitamin D, and the anti-rachitic properties of sunlight, several 

groups demonstrated that certain foods, such as liver and linseed oil, could also cure 

rickets if exposed to UVB radiation [7]. The technology to fortify foods with vitamin 

D was thereby available and contributed to reduce the prevalence of vitamin D 

deficiency before the structure was known.
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Figure 2. Treatment or prevention of rickets in children with artificial ultraviolet B radiation.

To the best of the author’s knowledge, this image originates from the Chicago Nursery and Half-

Orphan Asylum (1925). Neither information on copyright status nor the identity of the owner or 

uploader was available.

1.1.2 Dietary intake and absorption

Vitamin D is acquired from dietary sources in two structural forms that only differ in 

side chain structure [8]. Ergocalciferol or vitamin D2 is produced by yeast and

mushrooms from the fungal precursor ergosterol when exposed to UVB light while 

cholecalciferol or vitamin D3 is produced in the skin of animal species from the 

precursor 7-dehydrocholesterol when exposed to UVB light [9]. Both forms are 

metabolised in the same way and yield vitamin D activity.

The content of cholecalciferol in animal meat is low in comparison to the 

content in fatty fish meat and lean fish liver. This is the result of animal plankton 

synthesis of cholecalciferol and the subsequent accumulation up the marine food 
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chain. In Norway, fish and fish products contribute to 40% and 17% of the dietary 

intake of vitamin D, respectively, while the mandatory fortification of butter and 

margarine contribute with 30% [10]. Lesser sources are one type of skimmed milk

added vitamin D (4%), eggs (4%) and cakes containing eggs and butter (6%). 

Dietary sources of ergocalciferol are few, with variable amounts in mushrooms, 

baker’s yeast and animal products, but may contribute significantly to vitamin D 

status in countries with a low intake of cholecalciferol [11]. The most significant 

contribution comes from dietary supplements. In North America, ergocalciferol has

been the preferred constituent in preparations for prescriptions and both forms used in 

multivitamins [12]. However, a case against the potency of ergocalciferol has been 

ongoing since the 1930s and this form is today considered inferior to cholecalciferol 

[12]. Consequently, the industry is transitioning to produce products with 

cholecalciferol.

Absorption of dietary calciferols primarily follows dietary fats in the small 

intestine; including incorporation into lipid-containing micelles and diffusion into 

enterocytes [8]. Overall, approximately 80% of calciferols are absorbed in healthy 

subjects, although the rate of absorption may differ between individuals and be 

completely or severely diminished by intestinal fat malabsorption [13]. Although a 

fraction of absorbed vitamin D is transported directly to the liver through the portal 

vein, the majority is packed into chylomicrons and transported via the lymphatic to

the circulatory system within hours after a single administration of calciferol [8, 13, 

14]. Calciferols are transferred into peripheral tissue together with triglycerides when 

chylomicrons undergo lipolysis, which is predominantly in tissue that has a high 

expression of lipoprotein lipase, such as adipose tissue and muscle [8]. Vitamin D 

remaining in the cholesterol-rich chylomicron remnant is subsequently taken up by 

the liver.
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1.1.3 Sunlight exposure and skin synthesis

The major site of cutaneous synthesis of vitamin D is the epidermis, where the 

precursor 7-dehydrocholesterol is converted to cholecalciferol upon exposure to UVB

light within a wavelength of 290-315 nm [15]. The amount of UVB available for skin 

synthesis is determined by the solar zenith angle, which again is determined by

latitude, seasonality and time of day. In a northern country like Norway, the UVB

intensity is negligible in the dark season from approximately October through March

[16]. During the summer in Bergen in Norway, sunlight for vitamin D production is

available from approximately ten in the morning until six in the afternoon, with a 

narrower interval during early fall and late autumn [17]. Utilisation of available UVB

in the bright season is reduced by skin melanin pigmentation and sunscreen use,

which absorb or block UVB rays, respectively, and thereby prevent it from 

penetrating the skin. Utilisation is also reduced in older adults due to an age-

dependent reduction in the availability of 7-dehydrocholesterol in the skin [15].

When UVB photons are absorbed by 7-dehydrocholesterol in the epidermal 

plasma membrane, it transforms to an unstable pre-vitamin that may further isomerise 

to cholecalciferol [18]. Synthesised cholecalciferol moves to the extracellular space 

and is transported into the dermal capillary bed due to affinity to vitamin D binding 

protein (DBP) [18, 19]. This protein is the primary and dominant carrier of the 

lipophilic calciferols and their subsequent metabolites in plasma, with albumin as the 

second minor carrier [20]. Upon skin synthesis, plasma concentrations of 

cholecalciferol reach a maximum after 12-24 hours [19]. While dietary 

cholecalciferol may be radioactively labelled, it is not possible to distinguish 

synthesised from endogenously present cholecalciferol. A review of different studies

estimated that a full body exposure to one minimal erythema dose (the amount of UV 

radiation that results in slight redness of the skin) is equivalent to a dietary intake of 

250 μg cholecalciferol [21]. Exposure of ~5% of the body to half the minimal 

erythema dose or a full body exposure for a few minutes has been estimated to be

equivalent to ~10 μg vitamin D from dietary sources [22, 23].
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1.1.4 Metabolism

Storage
Approximately 65% of body vitamin D is in the form of cholecalciferol, of which 

75% is stored in adipose tissue [24, 25]. Extrapolations from subcutaneous adipose 

tissue biopsies estimate the total body fat mass of cholecalciferol to 1583 

international units (IU) per kilo in morbidly obese subjects [26] and 2812 IU/kg in 

normal weight subjects, where 40 IU is equivalent to 1 μg [27]. The latter

corresponded to a total body calciferol content of 81 000 IU. This was increased to 

197 000 IU after a dietary intake of 660 000 IU over 12 weeks, resulting in a 17%

storage [27]. Although the functional bioefficacy of cholecalciferol stored in adipose 

tissue is not well known, a study in rats indicate that only small amounts are released 

during isocaloric conditions [28]. The release may increase in concert with the 

mobilisation of triacylglycerols during fasting. 

Conversion to 25-hydroxyvitamin D
With limited storage capacity and a half-life in plasma of only a few days [28], a

potential loss of acquired calciferols is prevented by the rapid up-take of calciferols

by the liver and subsequent hydroxylation at the carbon-25 position (C-25). The

major hydroxylating enzyme in the liver is the microsomal cytochrome P450

(CYP2R1) [29]. The resulting metabolite is 25-hydroxyvitamin D (25OHD), also 

named calcidiol or calcifediol [30, 31]. Other enzymes may also contribute to 

calciferol hydroxylation [32] and explain why there are few reported cases of 25OHD

deficiency due to inborn errors in metabolism [33-35].

Calcidiol is an inactive metabolite with a very strong affinity to DBP, resulting 

in a plasma half-life of approximately 30 days [36]. Approximately 35% of total body 

vitamin D is in the form of calcidiol which is distributed evenly in adipose tissue

(35%), serum (30%), muscle (20%) and other tissues (15%) [24]. Serum

concentrations of 25OHD are sensitive to changes in dietary intake [37] and UVB
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exposure [38], and is currently the preferred biomarker of vitamin D status in clinical 

care and research.

Conversion to 1,25-dihydroxyvitamin D
In the kidneys, calcitriol bound to DBP is filtrated through the glomerulus and 

reabsorbed together with DBP in the proximal tubule by receptor mediated 

endocytosis [39]. The receptor responsible is megalin, a member of the low-density 

lipoprotein receptor superfamily [40]. Megalin is supported by the coreceptor cubilin 

[41]. In the proximal tubular cell, the active form of vitamin D is produced by an 

additional hydroxylation of 25OHD at the C-1 position, resulting in the formation of 

1,25-dihydroxyvitamin D (1,25OH2D, also called calcitriol) [42-47]. The 

hydroxylation is catalysed by the enzyme -hydroxylase which is coded by the 

CYP271B gene [48-50]. This enzyme is distributed in many tissues, but the primary 

site in the body for CYP27B1 expression and responsible for the circulating 

concentrations of calcitriol is the proximal convoluted tubule of the kidneys [51].

Extrarenal synthesis of calcitriol normally does not influence plasma calcitriol 

concentrations, with the exception of macrophage synthesis during sarcoidosis that

may result in severely elevated plasma concentrations [52].

Catabolism
In a five-step oxidation pathway, calcitriol is catabolised to calcitroic acid, a

truncated water soluble molecule excreted through the bile [53]. The first step, and 

perhaps several other steps also [54], are catalysed by the enzyme 25-hydroxyvitamin 

D-24-hydroxylase (CYP24A1) [55]. This enzyme also catabolises the much more 

abundant 25OHD, but has a stronger affinity to calcitriol [56]. The enzyme has a high

concentration in the kidney mitochondria [57], but is also expressed in most cells 

where vitamin D has activity, which may indicate a regulatory role on cellular level 

[58]. In addition, CYP24A1 also performs a 23-hydroxylation as the first step in a 

second catabolising pathway of calcitriol which results in the formation of 
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1,25OH2D3-26-23-lactone [59, 60]. The physiological role of CYP24A1 is illustrated 

in humans with mutations causing reduced enzyme activity. These individuals display 

chronic or transient hypercalcaemia which may lead to soft-tissue calcifications and 

chronic kidney disease [61, 62]. CYP24A1 deficient mice display hypercalcaemia, 

nephrocalcinosis and a lethality of 50% [63].

1.1.5 The vitamin D receptor

The vitamin D receptor
Calcitriol mediates vitamin D activity by acting as a high-affinity ligand for the 

vitamin D receptor (VDR) [64] and is therefore a prerequisite for vitamin D activity 

in a given cell. VDR is a member of a class of evolutionary conserved proteins

known as the superfamily of nuclear receptors [65]. This family was originally 

referred to as “orphans” receptors, because their respective activators were unknown

at the time of their discovery. About half of the 48 human receptors have so far been

“adopted” by specific ligands, including vitamins, hormones and fatty acids, while 

the remaining half do not have traditional ligands [66]. The physiological effects

induced by the different receptors are diverse, but they all mediate their activity by 

regulating the transcription of genes.

Dimerisation with retinoid-X-receptor
Nuclear receptors may function as monomers or as part of a homodimer or

heterodimer with another identical or different receptor, respectively. VDR functions

as part of a heterodimer with the retinoid-X-receptor (RXR) [67]. RXR is a common 

partner for other nuclear receptors, including the retinoic acid receptor (RAR) which 

ligand is vitamin A, the thyroid receptor which ligand is thyroid hormone, and

peroxisome proliferator-activated receptors (PPARs) which ligands are fatty acids

[68]. The marine omega-3 fatty acid docoshexanoic acids (DHA) is a direct ligand for 

RXR [66]. RXR has three isoforms with a wide distribution in different tissues, in 
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[69]. They are similar and assumed to 

have overlapping ligands and gene targets, but differ in amino-terminal domains,

which could indicate individual differences [69]. The VDR-RXR heterodimer can 

only be activated by calcitriol ligand binding to VDR and not by ligand binding to 

RXR, referred to as a partnership where VDR is nonpermissive and RXR is silent 

[66].

Structure of vitamin D responsive elements (VDREs)
In order to regulate transcription, nuclear receptors interact with responsive elements

(REs) on DNA. REs are specific nucleotide sequences and also referred to as binding 

sites. The receptors share binding affinity to variations of a specific sequence of six 

nucleotides, known as a core binding motif. The hexameric sequence is RGKTSA 

and the variation encapsulated by the fact that R can be either adenine or guanine,

G=guanine, K=either guanine or thymine, T=thymine, S=either cytosine or guanine 

and A=adenine [70]. While monomeric receptors bind to a single hexamer of the 

motif, dimers require a repetition of the hexamer in order for both receptors to 

interact with the DNA. Homodimers bind palindromic sequences (i.e. 

AGGTCACTGGA) while RXR-heterodimers bind tandem repeats separated by

nucleotides [66]. RXR-heterodimers share a strong affinity to the direct repeat of 

AGGTCA, however, affinity is further dictated by the number of intermittent 

nucleotides. The VDR-RXR heterodimer has strongest affinity to this variation of the 

core binding motif when the tandem repeats are separated by three intermittent

nucleotides [71]. PPARs [72], the thyroid receptor, and RAR have the strongest 

affinity to the direct repeat of AGGTCA when separated by one, four and five 

intermittent nucleotides, respectively [71]. This simplistic system of affinity due to 

single nucleotide spacing has been conserved throughout evolution.
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The cistrome of VDR
The number of potential binding sites for nuclear receptors is dictated by the length of 

the human genome and the occurrence of the core binding motif. An in silico screen 

of the ~3 billion bases which constitute the human genome [73, 74] would identify 

approximately 50 000 -100 000 potential binding sites for the average nuclear

receptor [70]. However, as DNA is packed in nucleosome and chromatin, the 

availability of binding sites is drastically reduced in vivo. As the density of chromatin 

is dynamic and constantly changing, so is also the number of  binding sites [66].

The distribution of binding sites available in vivo at a given moment in time is 

referred to as the cistrome and may be assessed by combining chromatin 

immunoprecipitation with DNA sequencing (ChIP-seq) [75]. In one in vitro study of 

osteoblasts, the number of sites bound by VDR increased from 1325 to 8241 upon 

stimulation with calcitriol [76] and in another study in lymphoblastoids increased

from 623 to 2776 sites [77]. The cistrome may further increase as a result of disease 

activity, as demonstrated in human hepatic cells stimulated with both calcitriol and a 

pro-fibrotic cytokine, in which the cistrome increased from 6281 to 24984 [78].

Hence, the cistrome is ever changing and results from studies may vary depending on

whether it was performed in vivo or in vitro, the type of tissue or cell, the exposure to 

vitamin D, as well as the definition of differentially expressed genes.

Corepressors and coactivators of VDR
Both VDR and RXR reside in the nucleus and are believed to interact with binding 

sites upon ligand activation or remain bound to single binding sites in the absence or 

presence of ligands [79]. For instance, of the 7250 de novo sites bound by VDR upon 

calcitriol stimulation of osteoblasts, 6000 sites were already pre-bound by RXR prior 

to calcitriol stimulation and VDR binding [76]. In the absence of a ligand, the 

heterodimer or RXR is believed to recruit a complex of factors that prevent 

transcription, known as corepressors. In the presence of ligand binding, the 

heterodimer recruits a complex of factors that promote transcription, known as 
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coactivators. Hence, the heterodimer function as a reversible switch that both 

decrease and increase transcriptional activity of genes [66]. The cofactors regulate 

different functions, including transcriptional activity, post-translational modifications 

and chromatin remodelling [66, 80].

Location of VDREs and gene trancription
Gene transcriptional machinery are assembled at promoter elements often situated 

immediately upstream to the transcription start site [81]. If there is a VDRE/binding 

site for VDR-RXR near the promoter of a specific gene, this indicates a regulatory 

role of vitamin D on that gene. In a database of many cistrome data sets, the median 

distance from the binding sites to the closest gene was 10 kb away [75]. More 

specifically, 13% of the VDR cistrome in osteoblasts was located in promoter regions 

(defined as within 5 kilobases (kb) upstream of the start site), 38% was located in the 

intron, 6% in the exon, 5% within 5 kb downstream of the gene and 39% in the 

intergenic regions which do not code for proteins, often referred to as “dark matter”.

[76].

The total number of genes which transcription is regulated by vitamin D may 

be identified by gene expression studies using microarray technology. As the 

cistrome vary, also the number of genes reported varies from 200 to 900 [75-77, 82, 

83]. Overall, VDRE binding seems to mostly enhance transcription of genes. This 

was illustrated by the up-regulation of 276 and ~175 genes and down-regulation of 54

and ~45 genes in osteoblasts treated with calcitriol [76] and lymphoblastoids [75],

respectively.

Intergenic regions and non-coding RNAs
Out of the ~3 billion bases which constitutes the length of the human genome [73, 

74], approximately three-quarters are transcribed into RNA [84], but only a few 

percent code for the molecular structure of proteins [85]. The activity of the much 
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more abundant non-protein coding RNAs, which functions are just beginning to be

unraveled [86], suggests a more complex understanding of molecular biology than 

what has been historically referred to as the “central dogma” [85, 87]. Due to the 

widespread location of VDREs in intergenic regions, it is likely that vitamin D 

activity is relevant to the regulation of non-coding RNA transcription and thereby 

their function. Although an intergenic VDRE may be distal from a gene according to 

genomic sequence, it may in fact be much closer physically. Proteins interacting with 

DNA may bind two different sites simultaneously, bringing them in proximity of 

each other, known as DNA looping [88]. Cofactors that remodel chromatin may be

particularly relevant in intergenic regions, contributing to gene regulation by 

chromatin interaction [66]. Nevertheless, genomic proximity of VDREs to genes

appears to be a determinant of transcription regulation, as demonstrated by calcitriol

stimulation in vitro, where sites bound by VDR where closer to differentially 

expressed genes than expected by random chance [75].

1.1.6 Effects of vitamin D

Bone and mineral homeostatis
Vitamin D participates in the regulation of bone and mineral homeostasis. It is crucial 

that the circulating concentrations of calcium remain within a narrow interval in order 

to sustain critical bodily functions. This requires interplay between circulating 

concentration of minerals, proteins, hormones and enzymes involved in vitamin D 

metabolism.

Receptors in the parathyroid glands sense low calcium concentrations in blood

and thereupon release parathyroid hormone (PTH). PTH circulates to the kidneys and

stimulates conversion of 25OHD to calcitriol by the activity of CYP27B1 [89, 90].

Transcriptional activity of calcitriol results in increased absorption of dietary calcium 

and phosphate in intestines, reabsorption in proximal tubules of kidneys and 

resorption from bone [91]. Altogether, these mechanisms prevent hypocalcaemia and 

hypophosphatemia. As PTH and calcitriol both have strong calcium-resorbing effects, 
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their joint activity could result in a rapid loss of bone minerals that could, when

coupled with dietary intake and kidney reabsorption, result in increased ectopic 

calcification due to hypercalcaemia and hyperphosphatemia [91]. Several

mechanisms are in place to prevent this scenario. Expression of VDR in parathyroid 

glands [92] allow calcitriol activity to inhibit PTH synthesis, a negative feedback 

loop that prevents hypercalcaemia [93]. Hyperphosphatemia is prevented by

transcriptional activity of calcitriol on bone osteocytes and their subsequent increased 

expression and release of fibroblast growth factor 23 (FGF23) [94]. FGF23 reduces

absorption and reabsorption of phosphate in the intestine and kidneys, respectively

[95]. It also reduces circulating calcitriol by inhibiting expression of CYP271B and 

increasing expression of CYP24A1 [96, 97]. In addition, calcitriol also performs

autoregulation [98], by enhancing the expression of its primary catabolic enzyme, 

CYP24A1 [99-101]. The importance of CYP24A1 in preventing hypercalcaemia is 

illustrated by patients with inborn errors in the CYP24A1 gene [102, 103], as 

mentioned earlier. In 1997, the first animal VDR knockout models were successfully 

created [104, 105]. Mice with global knockout were first reported to develop

normally until mother’s milk was withdrawn and then displayed a rachitic phenotype 

similar to that of human genetic diseases, causing death within 15 weeks. 

Normalisation of mineral ion homeostasis by dietary intervention prevented the 

rachitic phenotype and prolonged life [106].

Hair regeneration
The skin abundantly express VDR, which is crucial for the regeneration of hair [91].

Mutations in the VDR cause hair loss, alopecia, in both humans and mice. However, 

treatment with calcium does not ameliorate the disorder [106] and mutations in 

CYP27B1 that diminish calcitriol concentrations do not cause alopecia. This indicates 

that the activity of VDR on the hair follicle is independent of calcitriol [91, 107].
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Other effects
With the combination of ChIP-seq and microarray expression analysis, researchers

are able to identify genes that are differentially expressed upon calcitriol stimulation.

The list of genes is likely to differ between cells, as they vary in expression of VDR, 

co-regulatory molecules and enzymes involved in either the transport of 25OHD or 

activation and catabolism of calcitriol [108]. The list of genes may also vary within 

cell types as a result of the experimental conditions, as this may change the activity of 

pathways relevant to the availability of VDR, RXR or binding sites. Hence, a list of

differentially expressed genes is specific to the cell type studied and the experimental 

conditions.

By the use of bioinformatics, the list of differentially expressed genes can be

linked to databases containing information about associated protein products and the

functions and biological pathways the proteins are involved in. From these studies, 

the functions most strongly linked to vitamin D activity have been elucidated. The 

most strongly linked functions are involved in bone formation and mineralisation, but

also fundamental cellular processes, cell signalling and the regulation of gene 

expression [82]. These latter non-skeletal physiological effects are often referred to as 

pleiotropic effects. Among the differentially expressed genes, the most extensively 

studied so far are those with intragenic VDREs and a strong response to vitamin D 

activity.

Effects on fundamental cellular processes
Proliferation is defined as the growth and division of cells. Mitogenic signals ensure

that proliferation is sufficient when needed to build, maintain and repair the 

organism, while a number of growth inhibitory factors restrict the clonal autonomy in

order to avoid overpopulation and formation of autonomous colonies [109]. Thus, a 

cell will commit to proliferation only if the weight of these counter-balancing factors 

are shifted in one direction by sufficient stimuli [109]. A further restriction of 
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proliferative capacity occurs when primitive cells differentiate into more specialised 

cells, resulting in cell-cycle exit [110].

Anti-proliferative actions of vitamin D are mediated directly by transcriptional 

regulation of genes involved in cell cycle progression and indirectly by regulation of

genes that promote cell differentiation [111]. It is possible that vitamin D activity 

may either inhibit or enhance proliferation, dependent on whether the cell is under the 

influence of physiological or pharmacological concentrations of calcitriol [112].

Several disease pathways are characterised by cellular hyperproliferation, such as 

cancer, psoriasis and diseases with an inflammatory component, implicating that

vitamin D may play a role in their aetiology or for treatment [108].

Apoptosis is the process of programmed cell death [113], an integrated part of

normal human physiology acting as a counterpart to mitosis and proliferation [114]. It

is a genetically regulated mode of cell death that does not result in necrosis and local 

inflammation. Consequently, it is important in buffering the approximately 10 billion 

cells that arise from stem cells every day [115]. Apoptosis prevents hyperplasia and 

help maintain healthy tissue populations [114]. The role of apoptosis during

development is studied extensively in the roundworm Caenorhabditis elegans where

131 of 1090 generated cells are genetically programmed to undergo apoptosis at a 

specific time point [116]. How and whether a cell commits to apoptosis depends upon

the initiating signal, the stage of development of a specific tissue and the 

physiological milieu [114].

Vitamin D activity may also regulate cell growth by inhibition of apoptosis 

[108]. One potential mechanism is by transcriptional regulation of pro-apoptotic and 

anti-apoptotic members of the Bcl-2 family of proteins, which determine if cells

commit to or abort apoptosis [108]. Another potential mechanism is by regulating

expression of genes that initiate and carry out the proteolytic cascade which

characterise apoptosis [108, 114]. Changes in normal rate of cell death may result in 

disorders of cell loss and cell accumulation. Disorders of cell loss include

neurodegenerative disorders, AIDS and osteoporosis. while disorders of cell 
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accumulation include cancer, autoimmune diseases and viral infections [117]. The

potential roles of vitamin D in these diseases are under investigation.  

Nongenomic activity of vitamin D
Ligands of several members of the nuclear receptor superfamily exert biological 

activity which is too rapid to be caused by interaction with their cognate receptors in 

the nucleus [107]. Effects of calcitriol on ion-channel activity and enzymes involved 

in signal transduction has been demonstrated in various cell types [107] and may 

involve interaction with membrane receptors and VDRs located in the cytosol [118].

1.1.7 Vitamin D status and dietary recommendations

Vitamin D status
Scientific data on requirements and health effects of vitamin D was recently reviewed 

by American-Canadian [8], Nordic [119] and German-Austrian-Switzerland (D-A-

CH) [120] committees with the purposes of reviewing and updating dietary

recommendations within these countries. Vitamin D status was defined by the use of

25OHD concentrations and dietary recommendations set to reflect the amount of 

vitamin D necessary to obtain and maintain a certain level of 25OHD. The effect of 

vitamin D on several diseases was reviewed, including cancers, autoimmune diseases 

and cardiovascular diseases, but the scientific evidence only convinced the reviewers

about a relevant effect on bone health. The committees concluded that there was little

causal evidence that a 25OHD concentration above 50 nmol/l would provide

additional benefit in terms of indicators of bone health and that this concentration 

would be sufficient to cover the requirement for 97.5% of the population [8]. The

average requirement or median requirement that would ensure sufficiency for 50% of 

the population was estimated to 40 nmol/l. It should be noted that a review by the

Endocrine Society Task Force weighted the literature somewhat differently. They 

concluded that 25OHD concentrations above 50 nmol/l led to a further reduction in 
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PTH concentrations, as well as a positive effect on muscle function, and suggested 75 

nmol/l as the threshold for sufficiency [121].

Dietary recommendations
In order to estimate the amount of dietary vitamin D required to obtain a target 

25OHD concentration, the dose-response relationship must be established, preferably 

in studies performed under conditions of no sunlight. The American-Canadian review 

performed a mixed model regression of eligible studies and estimated that the

increase in 25OHD from dietary intake of vitamin D was steep and linear until 25 μg 

(1000 IU) per day and then started to flatten for intakes above for all individuals [8].

Hence, the dose-response is not linear, but seems to follow a logarithmic curve. In 

practice, this means that the amount of vitamin D required to achieve an increase in

25OHD concentration from 30 to 40 nmol/l is much less than from 80 to 90 nmol/l.

The conclusions regarding the dose-response relationships differed between 

committee reviews and they also differed in dietary recommendations to achieve the 

target concentrations of 25OHD. In order to achieve 40 nmol/l and 50 nmol/l,

respectively, the American-Canadian and Nordic committees estimated that an intake 

of 10 μg and 15 μg would be required from dietary sources under conditions of 

limited sun exposure. As most Nordic individuals gain significant amounts of vitamin 

D during the summer period, the recommended dietary intake was set to 10 μg per 

day [119]. This is equivalent to the median requirement and is therefore not sufficient 

for 50% of those who, for reasons such as pigmentation, do not synthesise vitamin D 

from sunlight. The American-Canadian decided to recommend a daily allowance of 

15 μg in order to include also those who do not synthesise vitamin D from sunlight 

[8]. The committee of the German speaking countries emphasised the results of a

particular study from Ireland, performed during the winter at similar latitude as these 

countries [122]. In this study, only 50% of the study population achieved a 

concentration of 50 nmol/l from 10 μg supplemented vitamin D, while 90-95%

achieved this concentration from 20 μg. Consequently, they recommended a daily 



31

intake of 20 μg [120]. The Endocrine Society Task Force recommended a minimum 

dietary intake of 15 μg of vitamin D per day for individuals between 15 and 50 years 

of age in order to reach 75 nmol/l under conditions of sun exposure [121]. Due to the

non-linear dose-response relationship between vitamin D and 25OHD, they 

emphasised that an intake of at least 37.5 to 50 μg would be required during 

conditions of no sun exposure.

Average dietary intakes of vitamin D varies considerably between countries in 

Europe, with a higher intake in the north in comparison to south and central regions, 

and a mean daily intake of 4.9 μg for men and 3.4 μg for women [123].

Consequently, dietary intakes of vitamin D from food sources are well below 10 μg 

for most European countries, and in order to achieve the recommended amounts, 

extensive food fortification or intake of dietary supplements are required. In Norway, 

there is a tradition for consuming cod liver oil, while the extent of food fortification is

more conservative. 

Safety
The foregoing review by the American-Canadian committee from 1997 considered 

the safety of vitamin D almost solely on the risk of acute toxic effects, where 

calcification in the vasculature and soft-tissue due to hypercalcaemia results in renal 

and cardiovascular damage [8]. In contrast, the current committee had access to 

observational and some trial data reporting that 25OHD concentrations from 

approximately 75 to 120 nmol/l associate with negative health effects, including all-

cause mortality, cardiovascular risk, cancer, fractures and falls. This questions the 

safety of chronically excessive intakes of vitamin D. When deciding on the tolerable 

upper intake level, which is defined as the level of intake per day throughout a 

lifetime that is not likely to cause any harm to most individuals of the population, the

committee therefore adopted a cautious approach. They concluded that daily intakes 

below 250 μg are unlikely to cause symptoms of acute toxicity, equivalent to a no 

observed adverse effect level, and specified the tolerable upper intake level to 100 μg 
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per day [8]. This was later also the conclusion by the European Food Safety Agency 

(EFSA) [124].

1.1.8 Research needs and information gaps

The review by the American-Canadian committee devotes a chapter on unanswered

research questions and information gaps in need of closure in order to advance our 

understanding of vitamin D in human physiology [8]. One of the most important

questions to answer is whether vitamin D is relevant to various health outcomes, and 

if so, to estimate the dose-response relationships. Cardiovascular diseases (CVDs)

cause the most death and disability worldwide [125] and even small clinical 

beneficial effects from vitamin D would be meaningful. Provided that there is an

effect, the dose-response relationship between 25OHD and CVDs would dictate

whether it is encapsulated by current dietary recommendations for bone health or if a 

further increase is required.

In the other end of the scale, the committee review also emphasised the 

importance of elucidating any adverse health effects of chronically excessive intakes 

of vitamin D. Toxicity results in hypercalcemia and evident calcifications of blood 

vessels in renal and heart tissue, while the mere combination of vitamin D and 

calcium supplements increases the risk of kidney stones [126]. Chronically elevated 

25OHD concentrations could result in an increased risk of CVDs, chronic kidney 

disease and thereby reduce life expectancy. The relationship between vitamin D 

status, cardiovascular disease and mortality should therefore be investigated with a 

two-way hypothesis in mind.

There are tendencies in the general population that warrants investigation of 

these questions sooner than later. In the lay press and blogosphere, uncritical and 

overenthusiastic interpretations of research and miraculous anecdotes are frequent.

The Hormone Laboratory at Haukeland University Hospital in Bergen, Norway, has

measured 25OHD in samples from hospitals and general practitioners in the region 
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since 2007. Despite the fact that two other hospitals in this region started their own 

analysis of 25OHD during this period, there has been an annual increase in 

measurements of 60-70% (personal communication, Kristin Viste, Hormone 

Laboratory, Haukeland University Hospital, Bergen, Norway). Consequently, there 

seems to be an interest in the curative effects of vitamin D in the general population

and among health personnel. In an example from neighbouring Sweden, a son with 

good intentions recently administrated daily 1250 μg of vitamin D to his father sick 

from dementia, resulting in severe hypercalcaemia. The son had read in a book about 

the miracles of vitamin D and then ordered supplements online, thereby bypassing 

legislation that controls the potency of dietary supplements [127]. Although this was 

a case of vitamin D toxicity, it could be the clinical manifestation of a tendency

among consumers to acquire more potent supplements to gain undocumented health 

effects of vitamin D.

1.2 Cardiovascular disease

1.2.1 Atherosclerosis

The human cardiovascular system is constituted by the heart and blood vessels. The 

heart pumps blood into the pulmonary circulation for oxygenation and then into the 

systemic circulation for distribution to peripheral tissue through an extensive network 

of blood vessels. The most important pathological condition causing CVDs is a

chronic inflammatory disease of the arterial blood vessels known as atherosclerosis

[128]. Atherosclerosis involves complex interplay between cells of the arterial wall as

they respond to damaging stimuli, intensified by the activity of cardiovascular risk 

factors [129, 130]. The resulting injury occurs in defined areas on the arterial wall

and is referred to as atherosclerotic lesions.
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Endothelial activation
Coating the arterial wall is a monolayer of endothelial cells (ECs), which is in 

constant contact with the constituents of circulating blood. The endothelium responds

to physical and chemical signals in an adaptive manner to regulate vascular tone, 

cellular adhesion, resistance to thrombosis, proliferation of cells and inflammatory 

processes in the arterial wall [131]. As a result of the effect of risk factors [132],

changes in the physical and chemical signals cause the endothelium to shift from a 

quiescent phenotype to an active state, characterised by expression of chemokines, 

cytokines and adhesion molecules [131]. Endothelial activation comes at the expense 

of normal functions, i.e. the enzyme nitric oxide synthase shifts from producing the 

vasodilator nitric oxide to produce reactive oxygen species that contribute to 

inflammation [131]. The effect of tobacco smoke, which is a risk factor of 

atherosclerosis, is in part mediated by a reduction in nitric oxide bioavailability in 

ECs [133]. This particular effect of smoking has been measured as a clinically 

evident reduction in blood vessel dilation and blood flow [134], which is reversible 

by smoking cessation [135]. The shear stress produced by the laminar (streamline) 

blood flow is crucial for normal vascular function [136]. Disruptions of laminar flow

and turbulence are important causes of endothelial activation and more common at 

specific arterial sites [128, 137].

LDL-particle retention and inflammation
Atherosclerosis is characterised by accumulation of mononuclear cells, which is a 

hallmark of chronic inflammation [138]. Upon activation, the endothelium becomes

adhesive to immune cells and permeable to low-density lipoprotein (LDL) particles

[130]. Parallel changes in the extracellular matrix composition of the intima layer 

below the endothelium contribute to trapping of migrated LDL particles [130]. Once

inside the intima layer, the lipid fraction of the trapped particles is subjected to

biochemical modifications, such as oxidative and enzymatically changes [138].

Monocyte-derived macrophages residing or migrating to the intima have scavenger 

receptors that recognise oxidatively modified LDL particles and are capable of
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internalising the particles, resulting in foam cell appearance [130]. The activity of 

macrophages and foam cells may propagate endothelial activation and inflammation

by recruitment and differentiation of immune cells, such as T lymphocytes, and is  

mediated by the release of cytokines, chemokines and presentation of internalised 

lipids [128]. Continued accumulation of immune cells and lipids appear

morphologically as a yellowish fatty dot or streak on the arterial wall, which may 

regress without causing further disease progression [139].

Advancing lesions and plaque stability/vulnerability
In advanced atherosclerotic disease, a more profound accumulation of cells and lipids

can take the shape of an atheroma, with a necrotic core of cellular debris and lipids.

Lesion growth triggers migration of smooth muscle cells (SMCs) from the media to

the intima arterial layer where they proliferate and produce extracellular matrix 

molecules. This activity results in the formation of a fibrous cap covering the

atheroma, referred to as a fibroatheroma. As there is limited area for expansion inside 

the arterial wall, lesion growth may result in the lesion intruding into the lumen of the 

afflicted artery, forming a stenosis [128].

Atherosclerotic lesions do not necessarily develop in the same predictable 

manner and may differ widely in morphology [139]. Characteristics relevant to 

classification of advanced lesions include the size and shape of the necrotic core, the 

thickness of the fibrous cap, the cellular composition of the lesion, calcifications and 

the degree of stenosis [139]. Microvessels may sprout from the outermost layer of the 

arterial wall, the tunica externa, and into the lesions [130].

Plaque rupture is not only the underlying cause of clinical events, but is also a 

major contributor to lesion growth. In fact, most ruptures are subclinical and result in 

growth of the necrotic core by influx of cholesterol from erythrocytes and

remodelling of the arterial wall from wound healing [140]. In contrast to more stable 

plaques that have a thick fibrous cap of collagen and smooth muscle cells, vulnerable 

plaques have a thin cap and a higher proportion of immune cells [140]. Inflammatory 
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activity regulates proteases, such as matrix metalloproteinases [141] and cysteine 

protease [142], which are responsible for degrading extra cellular matrix. Protease 

activity may theoretically result in a favourable reduction in lesion size, but also

cause thinning of the fibrous cap [137]. Production of cytokines and coagulation 

factors by immune cells may also contribute more directly to thrombus formation 

[137].

1.2.2 Ischemic heart disease

Atherosclerotic plaque may obstruct arterial blood flow and cause tissue ischemia by 

luminal narrowing or by formation of a blood clot. Blood clots can also dislodge from 

the site of origin and cause ischemia in distal arteries. In the case of myocardial 

ischemia, the patient may experience a characteristic strangling feeling of the chest 

which is referred to as angina pectoris. When symptoms occur during exercise and 

resolve during rest, it is more likely caused by a coronary stenosis and is referred to 

as stable angina pectoris (SAP). When symptoms develop suddenly, during rest, or

symptoms change in intensity independent of exercise, the cause is more likely 

thrombosis, and is referred to as unstable angina pectoris (UA). 

UA may cause ischemia to a part of the heart muscle to an extent where it is 

unable to perform properly, but does not cause permanent damage to the heart 

muscle. Once ischemia causes permanent tissue damage, a heart attack or acute 

myocardial infarction (AMI) has occurred by definition [143]. Patients with reduced 

heart function either due to UA or AMI are jointly referred to as suffering from acute 

coronary syndrome (ACS). Together with sudden cardiac death, SAP and ACS are 

the conditions which constitute ischemic heart diseases (IHD). Out of all deaths 

attributed to cardiovascular causes worldwide, IHD is responsible for 47 percent

[144].
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Assessement and treatment
Patients with suspected IHD are assessed to identify the most likely cause of 

symptoms and to determine the treatment associated with best prognosis. Initially, an 

electrocardiogram or an exercise electrocardiogram test is performed to assess heart 

function during rest or exercise. This test may indicate whether the patient is 

suffering from ACS or SAP and provide meaningful differentiating information. This

information is supplemented by the assessment of biomarkers in blood that reflect 

cardiomyocyte injury/necrosis, especially cardiac troponin T [145]. The next step is 

cardiac catheterisation, which involves catheter insertion through the femoral artery 

or radial artery, combined with coronary arteriography, which is an imaging 

technique. This combination allows the assessment of vessel anatomy, the underlying 

cause of the symptoms and determines the choice of action.

In order to restore tissue perfusion, occluded or blocked arteries can undergo 

revascularisation. The most common revascularisation procedure is angioplasty, 

where a balloon is inflated through a catheter at the target location. The full 

procedure of inserting a subcutaneous catheter and perform coronary angioplasty is 

referred to as percutaneous coronary intervention (PCI). To prevent restenosis of the 

vessel, it is common to insert drug-eluting stents following PCI. Revascularisation 

can also be performed with coronary artery bypass graft (CABG) surgery, in which 

perfusion is restored by redirecting the blood around the blockade by sewing on a 

graft, commonly a vein harvested from the patient’s lower extremities.

Medications are available for treating causes and complications of IHD [146].

Thrombolytic drugs are used with the aim of dissolving the blood clot and prevent or 

reduce myocardial damage. The risk of future thrombosis is reduced by antiplatelet 

drugs as well as anticoagulants.  Angiotensin-converting-enzyme inhibitors cause 

relaxation of blood vessels and lower blood pressure, thereby reducing cardiac work-

load and oxygen demand. Beta blockers are used to prevent cardiac arrhythmias in 

patients who have experienced AMI. The role of the different blood lipid fractions

and the therapeutic potential for manipulating their concentrations has been

extensively studied, although not elucidated fully for all fractions. Statins lower LDL-
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cholesterol by inhibiting the production of cholesterol in the liver, have a strong and 

well-documented effect on the risk of IHD and all-cause mortality, and have been 

administrated to patients since 1994 [147] and increasingly after the late 1990ies

[148]. In contrast, more recent clinical trials of medications that raise high density 

lipoprotein levels or lower triglycerides levels have not been conclusive [130, 146].

Attempts to reduce the potential impact of oxidative stress by the administration of

synthetic and vitamin antioxidants, such as vitamin C and E and beta-carotene, have 

not been successful [130, 149].

Epidemiology
When population aging and growth is taken into account, two million fewer deaths 

from CVD causes occurred in 2013 than expected from numbers in 1990 [144]. The

reduction has been especially profound in high-income countries, with differing 

estimates to whether it has been caused by changes in exposure to risk factors or

improved medical and surgical treatments [150]. Decreases in mortality from IHD in 

the US between 1980 to 2000 have been equally attributed to treatments (47%)  and 

risk factors (44%) [151]. Lowered cholesterol levels (24%), lowered blood pressure 

(20%), less tobacco exposure (12%) and less physical inactivity (5%) were deemed as 

favourable changes in risk factor exposure, while increases in body mass index (8%) 

and diabetes mellitus prevalence (10%) were unfavourable changes. Nevertheless, 

IHD continuous to be the leading cause of death for men and women worldwide 

(~15%) [125]. Survivors of AMI have higher risk of future illness compared to the 

general population and an estimated one-year mortality of 19% and 26% and five-

pectively 

[143]. Hence, both the general population and CVD patients could benefit from 

identification of novel risk factors. 
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1.3 Vitamin D and cardiovascular disease

1.3.1 History

A one-sided hypothesis
Vitamin D was first mentioned in relation to human CVD in case reports of idiopathic

infant hypercalcaemia. The reports succeeded widespread vitamin D fortification and 

cod liver oil supplementation schemes in Europe and the US starting in the 1920s

[152]. Autopsies showed calcifications of blood vessels in the myocardium and heart 

valves [153] and excessive intake of vitamin D proposed as a causal factor. As most

infants exposed to similar intake levels did not develop hypercalcaemia, it was argued 

that vitamin D could not be the sole factor [153]. Nevertheless, administrative action

taken in 1957 resulted in a reduction to half the previous intakes among infants and 

children in the UK, without aggravating rickets incidence [154]. Contemporary 

interpretations of the relationship between vitamin D and human CVD was that 

“…there is no possibility of ensuring an universal intake of vitamin D that will 

protect against rickets and eliminate risk of hypercalcaemia”[154].

In the 1970s, several case-control studies reported on the potential risk of CVD

from a high vitamin D intake. Knox was the first to observe a positive correlation

[155], proposing enhanced lead absorption by vitamin D as the causative mechanism 

[156]. Lindén (1974) observed a positive correlation in Northern Norwegians

consuming 100-200 grams of fish liver (62.5-125 μg vitamin D3) two to three times 

per week and proposed 30 μg as a threshold of increased risk [157]. The causal 

relationship between vitamin D and CVD suggested by Lindén was criticised due to 

the retrospective study design, and heavy metals coinciding in the fish liver suggested 

as the causative factor [158].

Meanwhile, methods for measuring 25OHD concentration were developed and

made available to researchers [159, 160]. In 1977 and 1978, two cross-sectional

studies from Germany and Denmark reported no difference in 25OHD concentration

between AMI patients and controls [161, 162]. In 1979, similar findings were 

reported in a case-control study nested within the prospective Tromsø Heart Study
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[163]. Although a one-sided hypothesis about the potential hazardous effects of 

vitamin D formed the basis for these studies, a small inverse correlation was in fact

indicated.

A two-sided hypothesis
In 1981, Scragg referred to this inverse tendency and hypothesised that vitamin D 

was in fact protective [164]. His hypothesis was rooted in a phenomenon observed by

Hippocrates (460-370 BC), that “All diseases occur at all seasons of the year, but 

certain of them are more opt to occur and be exacerbated at certain seasons” [165].

Sporadic reports on CVD seasonality appeared in the 20th century and intensified 

from the 1960s [166, 167]. Although no consensus has been reached today, data

suggests that both incidence and mortality vary with season [168]. Scragg 

hypothesised that vitamin D deficiency from limited sun exposure during the winter 

was the environmental risk factor responsible for the phenomenon, not temperature 

and respiratory diseases [164]. However, the proposed mechanisms were mostly 

attributed to calcium, reflecting the contemporary knowledge of vitamin D activity.

In 1990, Scragg returned with a case-control study showing lower 25OHD 

concentrations in AMI patients [169]. In comparison to earlier studies, this paper is a 

hallmark of the radical progress that occurred meanwhile in our understanding of

vitamin D activity. By 1990, VDR had been identified in rat cardiac muscle [170, 

171] and animal studies of diet induced deficiency had revealed a relationship 

between low vitamin D intake and hypertrophy of the ventricular muscle of the heart

[172, 173]. However, only a few epidemiological studies in the form of case-control

studies were published in the 17 years that followed the first publication by Scragg

[174-177].

Not until 2008 came the first longitudinal observational studies of hard 

endpoints of CVD, such as AMI, stroke and cause-specific mortality [178-181].

Accompanying these findings are studies of soft endpoints, such as measures of 

atherosclerosis progression. Parallel to epidemiological observations, a range of 
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experimental studies in vitro and in animal models have paved a mechanistic 

foundation for understanding how vitamin D activity may influence atherosclerosis 

and the risk of CVD events.

1.3.2 Mechanistic framework

Distribution of VDR
The prerequisite for activity of vitamin D in atherosclerosis is the expression of VDR 

in relevant tissue. VDR is expressed in almost all tissue [182] including heart [171],

and more specifically in myoblasts [170, 183], endothelial cells [184], smooth muscle 

cells [185] and immune cells [186, 187]. It has been discussed whether promiscuous 

antibodies used to detect VDR produced false positive results of VDR distribution in 

muscle cells [188], but improved release of VDR from DNA by the use of a 

hyperosmolar lysis buffer did confirm previous studies [189].

Lessions from VDR knockout mice
Knockout mice with either global or cell-specific deletion of VDR display a

phenotype of moderate hypertension and left ventricular hypertrophy [190-192],

increased thrombogenicity [193] and progression of atherosclerosis [194, 195]. Thus,

calcitriol may theoretically have a reverse role and prevent the development of this 

phenotype. However, it should be emphasised that findings in VDR knockout mice 

do not prove a role for calcitriol under normal physiological conditions in humans.

A role for calcitriol in preventing cardiac hypertrophy could be mediated by

inhibition of myocyte proliferation and differentiation, a mechanisms supported after 

observing that mice with cardiomyocyte-specific knockout develop cardiac 

hypertrophy [192]. Macrophage-specific knockout mice had more cholesterol and 

foam cells in the arterial walls, and the researchers observed macrophage-specific 

uptake of cholesterol [195]. Thus, calcitriol may prevent uptake of LDL-cholesterol 

and reduce inflammation by regulating macrophage activity. Aortas dissected from 
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VDR knockout mice show increased expression of adhesion molecules and 

proinflammatory cytokines, evident of endothelial activation [194]. Two mechanisms

for how calcitriol may influence endothelial activation are suggested from studies of 

VDR knockout mice, by the regulation of the renin-angiotensin system (RAS) and by 

a direct effect on endothelial cells.

Endothelial dysfunction can be caused by RAS activity. Renin is the rate-

limiting substrate of RAS, which chief effector is angiotensin II [196]. Angiotensin II 

is a vasoconstrictor that, when formed in the circulation, causes systemic constriction 

of blood vessels. This leads to increased peripheral resistance to blood flow and a 

compensatory elevation of blood pressure. Angiotensin II can also be formed by local 

RAS activity in many tissues [197], including aortic vascular SMCs [198] and

macrophages [199]. Under normal circumstances, vasoconstriction by angiotensin II 

activity is counterbalanced by nitric oxide production in the endothelial monolayer 

[131, 197]. However, over activity of RAS may provoke endothelial activation and 

contribute to atherosclerosis, tissue remodelling and thrombogenicity [196, 197].

When noticing that VDR knockout mice urinated more than wild-type 

counterparts [200], Li discovered upregulation of renin mRNA expression in renal 

juxtaglomerular cells [191]. This was later also confirmed in cardiomyocytes [190]

and macrophages [194]. Downregulation of renin expression by calcitriol occurs

through transrepression, in which calcitriol prevents cyclic AMP response element-

binding protein (CREB) from interacting with a responsive element on the enhancer 

region in the renin gene promoter [201]. This prevents CREB from enhancing renin 

expression. Observational studies report associations of both phenotypic and 

genotypic determined 25OHD concentrations with blood pressure [202], but a recent 

meta-analysis of RCTs concluded that vitamin D supplementation is ineffective as an 

agent for lowering blood pressure and treat hypertension [203]. Nevertheless,

calcitriol may prevent endothelial activation by regulating local and systemic RAS 

activity.
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Calcitriol may also prevent endothelial activation by a direct effect on 

endothelial cells. The expression of the enzyme nitric oxide synthase in endothelial 

cells from mice with endothelial-specific knockout of VDR was reduced, resulting in 

less nitric oxide synthesis. [204]. As a result, these mice displayed impaired 

endothelium-dependent vasorelaxation and responded to blood pressure-inducing

angiotensin II administration more adversely.
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2. Aims

The overall aims of this project were to study the vitamin D status of cardiovascular 

patients in Western-Norway and to investigate the longitudinal relationship between 

vitamin D status and cardiovascular disease.

Specific aims

Paper 1: 

In patients with stable angina pectoris and acute coronary syndrome who underwent 

repeat coronary angiography

Assess the relationship between 25OHD and progression of atherosclerosis

Paper 2: 

In patients with suspected stable angina pectoris

Assess the seasonal variation in 25OHD concentrations

Use cosinor models to identify correlates of 25OHD concentrations and the 

seasonal variation in 25OHD

Evaluate cosinor modelling as a method to adjust for seasonal variation in

25OHD by predicting repeat measurements of 25OHD

Paper 3:

In patients with suspected stable angina pectoris:

Assess the relationship between 25OHD and future risk of all-cause and CVD

mortality
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3. Methods

3.1 Study population

3.1.1 Source population

The source population to this thesis was patients who underwent elective coronary 

angiography due to suspected coronary artery disease (CAD) either at Haukeland 

University Hospital (HUS) or Stavanger University Hospital (SUH) roughly between 

2000 and 2004. From this source population, patients were recruited to participate in 

the Bergen Coronary Angiography Cohort (BECAC), the Western Norway B-

Vitamin Intervention Trial (WENBIT), and the WENBIT re-angiography sub-study 

(WENBIT-RA). These studies have overlapping populations and an overview is 

presented in figure 3.

Figure 3. Schematic overview of the source population and participation in overlapping studies.

BECAC was designed as a prospective cohort study and the overall aim was to

investigate prognostic markers of cardiovascular events. Patients who underwent 

elective coronary angiography at HUS between January 2000 and April 2004 were 

asked to participate.
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Among patients who agreed to participate in BECAC, some were asked to 

participate in WENBIT, a randomised controlled trial (RCT). The primary aim of the 

trial was to assess the effect of homocysteine-lowering B-vitamin treatment on a 

composite endpoint of cardiovascular events. WENBIT was a two-centre trial and 

also recruited patients who underwent angiography at SUH between September 2000 

and April 2004. This thesis also included patients who were enrolled in a pilot study 

(WENBIT-90 substudy) between April 1999 and September 1999. Patients reluctant 

or unable to attend long-term follow up due to alcohol abuse, mental illness or known 

malignant disease were not eligible for participation in WENBIT. Within the source 

population to WENBIT at Stavanger and Bergen, 10241 were eligible for 

participation. In WENBIT, scheduled follow-up exams were conducted after one 

month and one year.

The WENBIT-RA was a nested substudy in WENBIT conducted at and

among patients recruited at HUS. The aim of the substudy was to assess the effect of 

the WENBIT treatment on atherosclerosis progression. To ensure recruitment of 

patients with significant atherosclerosis at baseline, only patient who underwent PCI 

at the baseline angiography were asked to participate. Substudy participants agreed to

undergo a repeat angiography scheduled to coincide with the one-year follow in 

WENBIT, thus allowing the study of atherosclerosis progression. Most of the patients 

were recruited to WENBIT-RA at the baseline WENBIT exam, but some were also 

recruited during the scheduled WENBIT follow-up exams. Patients who underwent 

angiography during follow-up due to clinical indications were also included, as long 

as it occurred at least 90 days after the baseline. Patients with a high risk of future 

complications or a coronary anatomy that could cause difficulties when performing a 

repeat angiography were excluded. 

BECAC, WENBIT and WENBIT-RA were conducted according to the 

principles of the Helsinki Declaration and approved by the Regional Committee for 

Medical and Health Research Ethics and the Norwegian Data Inspectorate. All 

participants gave broad written consent for the use of the collected data in future 

research.
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3.1.2 Study populations 

To achieve the aims of this thesis we used data from the source population, including 

data from BECAC, WENBIT and WENBIT-RA. The study populations in the three 

papers therefore vary somewhat in respect to cardiovascular phenotype and study site,

but mostly, patients with suspected or verified SAP were included (Figure 4).

Figure 4. Flow of subjects with suspected SAP and ACS from BECAC, WENBIT and 

WENBIT-RA to the study populations in paper I, II and III.
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When studying atherosclerosis progression in paper I, subjects with verified

SAP and ACS from WENBIT-RA were included. The aim was to study progression 

in lesions not treated with PCI. To include more lesions, angiograms at baseline and 

follow-up were analysed to identify eligible lesions.

Subjects from BECAC and WENBIT referred to baseline angiography with 

suspected SAP were used in paper II and III. Hence, individuals with ACS were 

excluded in these investigations. In paper II, we also aimed to evaluate how accurate 

cosinor modelling could predict patients’ future vitamin D status. For that we used 

data from participants in WENBIT-RA with verified SAP and repeat measurements 

of 25OHD available from the follow-up exams.

3.2 Exposures

3.2.1 Clincial and demographical data

Prior to baseline coronary angiography, trained study personnel collected clinical and

demographical data, including anthropometrical and blood pressure measurements. 

Self-administrated questionnaires validated by hospital records assessed medical 

history and medication. Questionnaires also enquired on vitamin D supplement intake

and leisure time physical activity, but not on outdoor activity specifically

(Appendix).

Body composition was determined by body mass index (BMI, kg/m2) and

defined as normal weight (<25), overweight (25- . Current

smoking was defined as a self-reported smoker or having stopped smoking less than 

90 days ago in paper I. In addition to self-report, plasma cotinine concentration above 

85 nmol/l (~15 ng/ml) were also used to define current smoking in paper II and III 

[205]. Estimated glomerular filtration rate (eGFR) was used as a measure of kidney 

function and calculated with the formula suggested by the Chronic Kidney Disease 

Epidemiology Collaboration [206]. Diabetes mellitus type I and II were based on pre-
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existing diagnoses and combined into one variable. Hypertension was defined by 

systolic blood pressure (>140 mm Hg) and/or diastolic blood pressure (>90 mm Hg) 

and/or antihypertensive therapy. Hypercholesterolemia was defined as familial 

mmol/l = 251.4 

mg/dl). Heart function was assessed by left ventricular ejection fraction (LVEF), as 

measured by ventriculography during cardiac catheterization for most participants, or 

by ultrasonic echocardiography. LVEF is a percentage estimate of how much of the 

blood in the ventricle that is pumped out on each contraction. The extent of CAD was 

assessed from baseline angiograms and quantified by the number of blood vessels 

with This cut-off should be distinguished from the cut-off

criteria for eligible lesions in paper at baseline or follow-

up).

3.2.2 Laboratory data

Blood samples were collected by study personnel at baseline and follow-up exams.

Blood sampling was conducted non-fasting and prior to coronary angiography at 

HUS, and fasting and after coronary angiography at SUH. Fresh samples were used 

to measure routine blood parameters at the study site laboratories while samples for 

biobanking were stored at -80°C. Serum concentrations of apolipoprotein A-1,

apolipoprotein B and C-reactive protein (CRP) were analysed with the Hitachi 917 

system (Roche Diagnostics, GmbH, Mannheim, Germany). Plasma cotinine 

concentrations were measured by liquid chromatography tandem-mass spectrometry 

(LC-MS/MS) at Bevital AS [207].

3.2.3 Measurement of 25OHD2 and 25OHD3

Analyses of plasma 25OHD2 and 25OHD3 concentrations were performed between 

2011 and 2012 at Bevital AS (www.bevital.no) by LC-MS/MS [208]. Baseline

samples were measured for all BECAC/WENBIT participants and also follow-up
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samples for nested participants in WENBIT-RA. The lower limit of detection and 

quantification were 3.3 nmol/l and 6.6 nmol/l for both forms, respectively.

Measurements below the lower limit of quantification were excluded. In paper I, only 

25OHD3 was used to reflect exposure to vitamin D. In paper II and III, measurements 

of 25OHD2 and 25OHD3 were combined to reflect total 25OHD.

3.3 Endpoints

3.3.1 Atherosclerosis progression

Atherosclerosis progression was used as endpoint in paper I and assessed by coronary 

angiography at baseline and follow-up. Quantitative coronary angiography (QCA) 

analysis was performed on 16 coronary artery segments by two trained technicians

and supervised by a cardiologist. The software used was Quantcor QCA, CAAS II, 

version 5.0, Pie Medical Imaging, Maastricht, The Netherlands. A prerequisite for 

studying lesion progression is adequate visualisation of the lesion on both

angiograms. In the current study, a stenotic lesion was eligible for inclusion if at

baseline or follow-up had a reference diameter 2 mm and resulted in 30% diameter 

reduction compared to a healthy section of the same coronary artery segment.

Reanalysis by both observers was performed if they disagreed upon the eligibility of 

a specific lesion. Lesions were projected at the end of a diastole and, in case of 

differing projections, the one showing a more severe stenosis chosen. Quality control 

of QCA analyses ensured that the report referred to the correct stenosis, segment and 

angiogram.

From QCA analyses, minimum lumen diameter (MLD) and diameter stenosis 

(DS) of eligible lesions were measured and used as endpoints in paper I (Figure 5).

Inter-rater reliability for the measurement of DS was assessed at baseline and follow-

up. Reanalysis was performed for the top 10% with the largest inter-rater difference.
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3.3.2 All-cause and cardiovascular mortality

The risks of all-cause and cardiovascular disease mortality were used as endpoints in 

paper III. CVD mortality included code I00 to I99 and R96 from the International 

Statistical Classification of Diseases, 10th revision (ICD-10). Information was 

obtained from the Cause of Death Registry at Statistics Norway (www.ssb.no) and 

recorded until January 1st, 2013.

Figure 5. Endpoints derived from repeat coronary angiography for the study of atherosclerosis

progression in paper I.

3.4 Statistical analysis

Descriptive statistics of the study populations at baseline were presented with mean 

and standard deviation (SD) for continuous variables and with median and inter 

quartile range (IQR) for some biochemical variables in paper I. Categorical variables 

were presented with counts and percentages. When testing for similarities at baseline, 

analysis of variance (ANOVA) and the chi-square test were used for continuous and 

categorical variables, respectively. Probability values were two-sided and considered 
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statistically significant if the probability of observing a difference due to chance was 

less than 5%. No adjustments were made to account for multiple comparisons.

3.4.1 Statistical modelling

Regression refers to the process of fitting models to observed data in order to capture

meaningful relationships between variables, such as the exposure and outcome of 

interest. The choice of model depends on the nature of the relationship, whether it is 

linear or non-linear. Furthermore, different models require different mathematical 

methods in order to be fitted to the data. These methods requires assumptions that 

should be met in order for the regression to be accurate and for the results to be

generalised to the target population [209].

Linear regression
The conditional probability distribution P(Y | X = x) is the probability distribution of 

the response variable (Y) when the exposure variable (X) takes on a particular value

(x) [210]. It may be expressed as a function, i.e. 25OHD concentrations as a linear

function of dietary intakes of vitamin D and/or other exposure variables. Linear

regression, which is one of the most frequently used methods in epidemiological 

research, models the mean of the conditional probability distribution. It uses the least 

squares approach to minimise the distances from the fitted mean line to the observed 

values, thus minimising the residuals. Because it models the mean of the conditional 

probability distribution, results will be more accurate if this distribution is normally 

distributed. Results will also be more accurate if observed values are divided in equal 

proportions above and below the mean line for all values of the exposure (X),

referred to as homogeneity or homoscedasticity. Normality and homoscedasticity are 

therefore referred to as required assumptions justifying the use of linear regression.

During model validation, researchers inspect the residuals and may observe 

heterogeneity and non-normality [209]. This is not necessarily a reason to reject the 

model and the results altogether. A linear tendency in the data may still be captured

despite some degree of violations of the model assumptions.
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Quantile regression
If the conditional probability distribution is non-linear, i.e. U-shaped, linear 

regression may be misleading. It can for instance result in a null relationship between 

an outcome and exposure, despite strong inverse linear tendencies at both the higher 

and lower end of the exposure distribution. This is relevant when analysing the effect 

of micronutrient status, as they may cause disease if status is too low (deficiency) and

cause disease if too high (acute toxicity or chronically elevated). Thus a health 

outcome may be adversely affected both by low and high values of the exposure. If 

we want to estimate another quantile of the distribution, rather than the conditional 

mean, quantile regression is an optional method that performs regression by 

minimising the sum of absolute residuals [211]. Quantile regression may be used to 

assess the conditional median, the lowest or highest part (i.e. the 10th or 90th

percentile), or any other quantile. In contrast to linear regression, quantile regression 

does not require normalisation of skewed variables before analysis in order to 

improve accuracy. It is important to distinguish quantile regression of the conditional 

distribution from stratification directly on the distribution of an exposure variable, as

they are incomparable [210]. Because of its utility, quantile regression has been 

applied to estimate reference curves for growth charts for children as a function of 

age, sex and other relevant variables that may influence growth [212].

Mixed effects modelling
In nutrition, we are interested in elucidating the effects of diet and nutrients on

disease risk. The effect of a nutrient varies from person to person due to randomness. 

Randomness can for instance be the effect of genetic variation. If we obtain a large 

representative sample of the target population, this minimises the risk of the

randomness being unequally distributed, and allows us to elucidate fixed effects of 

nutrients, which can be generalised to the target population.

In the analysis of atherosclerosis progression in the first paper, we have data 

with clustered measurements: some subjects were represented by several

atherosclerotic lesions, while some were only represented by one. This we refer to as 

within-subject clustering of lesions. The probability of any subject taking the place of 
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each atherosclerotic lesion was therefore not random. Hence, the random effects in 

the target populations were not distributed equally for each lesion in the analysis.

To deal with this issue in statistical analysis, it was necessary to introduce a 

level of randomness for this random variation to occur. This is referred to as 

multilevel analysis and can be achieved by the use of mixed effects modelling [209].

In a mixed model, a categorical variable representing the clustering can be modelled 

as a random effect term to account for the specific cluster an observation belongs to.

In our case the clustering variable was “subject”, meaning all subjects in the study 

have different intercept values.

In the first paper, we used mixed effects modelling to account for within-

subject clustering of lesions in combination with conditional median regression to 

deal with skewed variables and outliers that could be more influential in an analysis 

with fewer subjects. The analysis was performed with the lqmm package version 1.02 

for R statistical software [213].

3.4.2 Modelling and adjusting for seasonal variation

Assuming that 25OHD concentrations vary throughout the year in a sinusoidal 

pattern (Figure 6), we applied cosinor models to analyse seasonality [214]. Cosinor 

modelling transforms the time variable into a sine and cosine term and then regresses

the observations of 25OHD concentrations onto these terms using linear regression. 

These two terms represent the sinusoidal pattern in an oscillating curve with

amplitude and phase that can be calculated directly from the regression coefficients.

The amplitude is an estimate of seasonal variation and defined as the distance from 

the mean to the highest or lowest value of the curve (y-axis), while phase is the value

of the time variable (x-axis) when the curve is at its highest location (peak). The use 

of these parameters allowed the study of seasonal variation in 25OHD concentrations 

in paper II.
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Interaction terms between covariates and sine and cosine terms enable

assessment of whether the sinusoidal pattern differs for covariate levels [215]. This 

allowed for the identification of potential determinants of the mean annual 25OHD 

concentration and the seasonal variation in 25OHD concentration in paper II.

Figure 6. The relationship between 25-hydroxyvitamin D concentrations (y-axis) and time (x-

axis) displayed as a sinusoidal pattern in an oscillating curve with amplitude and phase.

Assuming that the seasonal variation of the study population is representative 

for all participants, and knowing a patient’s 25OHD concentration at a particular 

month, his or hers concentration at a later point can be predicted. By comparing 

prediction to true follow-up measurements collected in WENBIT-RA, it was possible

to assess the accuracy of cosinor models in paper II.

Each participant’s baseline measurement of 25OHD can be adjusted for 

seasonal variation in the study sample by using cosinor models. To the mean annual

25OHD concentration of the study population, deviations from the sine curve are

added for each subject – yielding an estimate of each subject’s yearly average. This is 

useful when including 25OHD as an exposure variable in statistical models, when 
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measurements are spread throughout the year for different subjects. This approach 

was used in the third paper, prior to descriptive and inferential statistical analysis. In

the first paper, adjustment for season was performed by including season as a four-

level categorical variable in inferential statistical analysis. In order to reflect months 

during which sun exposure results in eligible or negligible synthesis of vitamin D, all

three papers defined seasons as from January through March, April through June,

July through September, and October through December.

3.4.3 Survival analysis

In paper III, Kaplan-Meier curves were used to present the unadjusted cumulative 

survival function according to 25OHD concentrations for all-cause and CVD

mortality, while Cox-proportional hazard models were used to assess hazard ratios

(HRs). Schoenfeld residuals were checked to test the assumption of proportional 

hazards. The functional forms of the relationship between 25OHD concentrations and 

the adjusted HRs of these endpoints were assessed by modelling 25OHD 

concentrations with a penalised smoothing spline [216] in Cox models, using the 

default algorithm in the survival package version 2.37-4 for R statistical software 

[217].

3.4.4 Threshold analysis

The functional relationships between 25OHD and all-cause and CVD mortality were

assessed for candidate thresholds, defined as the most optimal division of participants 

with a higher and lower risk of the outcome [218]. Wald statistics were extracted and 

ranked from adjusted Cox models in which the 25OHD concentration was modelled 

as a dichotomous variable for incremental increases of the 25OHD distribution [219].

The cut-off that resulted in the highest Wald statistics was proposed as a candidate 

threshold. This approach was used because it had a clear definition and a transparent 

and reproducible method.
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4. Summary of publications

4.1 Study population

Table 1 shows baseline characteristics of the study population. Data from participants 

with suspected SAP from BECAC/WENBIT (n=4116 and n=4114, respectively)

were used in the second and third paper. Data from WENBIT-RA were used in the 

first and second paper from participants with SAP and ACS (n=183) and participants 

with SAP (n=271), respectively. The lower number of participants in the first paper

was due to additional lesion inclusion criteria. 

As a result of study design, participants in WENBIT-RA differed from

participants in BECAC/WENBIT with suspected SAP. All were enrolled in Bergen, 

had significant CAD and underwent PCI at baseline (not shown). In addition, the 

proportion of males, 25OHD concentrations, and use of medications were notably

higher (P < 0.05). Within WENBIT-RA, participants with ACS (n=46) had more 

systemic inflammation (P < 0.05), as judged by serum CRP, than patients with SAP

(n=137).
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Table 1. Baseline characteristics of the study populations

Characteristics

BECAC/WENBIT

SAP

(n=4114)

WENBIT-RA

SAP

(n=271)

WENBIT-RA

SAP and ACS

(n=183)

Demography and lifestyle

Age (years) 61.7 ± 10.4 60.8 ± 10.2 60.3 ± 10.0

Male sex, n (%) 2959 (71.9) 218 (80.4) 154 (84.2)

Study site, n (%)

Bergen 3367 (81.8) 271 (100) 183

Stavanger 747 (18.2) - -

Regular consumption of cod liver oil, n (%) 1190 (33.6) 98 (37.5) 62 (40.5)

Smoking, n (%) 1302 (31.6) 82 (30.3) 67 (36.6)

Physical activity, 2135 (68.8) 185 (70.3) -

Clinical characteristics

Body mass index (kg/m2) 26.8 ± 4.0 26.9 ± 3.4 27.1 ± 3.3

Systolic blood pressure, mm Hg 141 ± 20.8 142 ± 21.6 143 ± 22.6

Left ventricular ejection fraction, (%) 64.0 ± 11.4 65.4 ± 8.2 63.5 ± 9.4

Extent of coronary artery disease, n(%)

No stenotic vessels 1029 (25.1) - -

One vessel 947 (23.1) 137 (50.6) 77 (42.1)

2121 (51.8) 134 (49.4) 106 (57.9)

Medical history and cardiovascular risk factors

Diabetes, n (%) 490 (11.9) 29 (10.7) 17 (9.3)

Hypertension, n (%) 1927 (46.8) 121 (44.6) 79 (43.2)

Hypercholesterolemia, n (%) 2227 (57.9) 162 (62.8) 108 (62.4)

Previous AMI, n (%) 1657 (40.3) 99 (36.5) 50 (27.3)
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Previous PCI, n (%) 790 (19.2) 59 (21.8) 34 (18.6)

Previous CABG, n (%) 473 (11.5) 10 (3.7) 6 (3.3)

Laboratory 

25OHD, nmol/l 59.4 ± 20.3 65.9 ± 21.4 64.1 ± 20.9

eGFR, ml/min per 1.732 87.8 ± 17.2 90.9 ± 14.6 92.4 ± 13.1

C-reactive protein, mg/l 3.70 ± 7.19 2.73 ± 4.2 8.20 ± 17.1

g/l, n (%) 278 (6.8) 13 (4.8) 34 (18.6)

S-Low-density lipoprotein cholesterol, mmol/l 3.10 ± 1.03 3.01 ± 0.86 3.12 ± 0.86

S-High-density lipoprotein cholesterol, mmol/l 1.29 ± 0.38 1.29 ± 0.33 1.23 ± 0.34

S-Apolipoprotein B100, g/l 0.90 ± 0.25 0.86 ± 0.22 0.90 ±  0.24

S-Apolipoprotein A1, g/l 1.32 ± 0.27 1.34 ± 0.24 1.29 ± 0.26

S-Triglycerides, mmol/l 1.78 ± 1.22 1.83 ± 1.96 1.88 ± 2.22

Medication at discharge, n (%)

Statin therapy 2982 (72.4) 255 (94.1) 171 (93.4)

-Adrenergic receptor antagonists 2982 (72.5) 207 (76.4) 141 (77.0)

ACE inhibitors 852 (20.7) 35 (12.9) 27 (14.8)

Acetylsalicylic acid 3355 (81.6) 264 (97.4) 178 (97.3)

ADP receptor antagonists 621 (15.1) 145 (53.5) 120 (65.6)

Continuous variables are presented as mean ± standard deviation and categorical variables as numbers (n) and 

percentages (%). SAP; stable angina pectoris, ACS; acute coronary syndrome, AMI; acute myocardial 

infarction, PCI; percutaneous coronary intervention, CABG; coronary artery bypass graft surgery, 25OHD; 25-

hydroxyvitamin D2 and D3 combined, eGFR; estimated glomerular filtration rate, CRP; C-reactive protein,

ACE inhibitors; angiotensin-converting enzyme inhibitors ADP; adenosine 5'-diphosphate receptor antagonists.
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4.2 Summary of individual papers

4.2.1 Paper I

Vitamin D status was not associated with ‘one year’ progression of 
coronary artery disease, assessed by coronary angiography in statin-
treated patients.

In the first paper, our aim was to assess the relationship between vitamin D status,

represented by baseline 25OHD3 concentrations, and atherosclerosis progression.

Atherosclerosis progression was assessed by QCA analysis from repeat coronary 

angiography and MLD and DS chosen as study endpoints. From 348 eligible 

individuals, we used data from 183 participants with at least one non-PCI treated

lesion that fulfilled lesion inclusion criteria. The remaining 165 subjects did not have 

eligible lesions and were excluded. From the 183 participants, we identified in total

309 eligible lesions for statistical analysis. Accordingly, 106 participants (58%) were 

represented by more than one lesion. 

During a mean ± SD follow-up time of 302 ± 79 days, we observed significant 

atherosclerosis progression, as evident from a decrease in MLD from 1.92 ± 0.55 to

1.75 ± 0.51 mm and increase in DS from 37.6 ± 9.64 to 42.0 ±10.4 percentage points 

(P < 0.001). The baseline median (interquartile range) 25OHD3 concentration was 

63.9 (48.1-78.5) nmol/l. We observed no linear association between 25OHD 

concentrations and MLD or DS (P > 0.05) overall nor when investigating the 

relationship in patients with SAP and ACS separately. We concluded that there was 

no association between vitamin D status and atherosclerosis progression in our study 

population.
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4.2.2 Paper II

Cosinor modelling of seasonal variation in 25-hydroxyvitamin D 
concentrations in cardiovascular patients in Norway.

The aims of the second paper were to use cosinor models to study vitamin D status by 

identifying correlates of vitamin D status and the seasonal variation, as well as to

evaluate cosinor modelling as an approach to adjust for seasonal variation. We fitted

cosinor models to baseline measurements of the combined sum of 25OHD2 and 

25OHD3 for 4116 subjects with suspected SAP. The annual mean and the total 

seasonal variation of 25OHD were estimated to 59.6 nmol/l and 15.8 nmol/l,

respectively. Hence, seasonal variation equalled to 26.5% of the annual mean and 

resulted in variation in vitamin D status throughout the calendar year. The curve 

trough occurred between January and February and the peak between July and 

August.

With P < 0.05 as level of significance and adjustments for age, gender, study 

site, BMI and smoking (n=4006), we observed that a higher annual mean 25OHD 

concentration associated with older age (>62 years), physical activity and vitamin D 

supplement consumption, while lower annual mean associated with female gender, 

study site, smoking, adiposity and diabetes mellitus. The most profound differences 

were observed when comparing those who reported consuming vitamin D 

supplements regularly or daily (33.6% of the study sample) with non-supplement 

users (mean difference (95% CI): 8.4 (7.1, 9.6) nmol/l) and when comparing obese 

with normal weight subjects (-8.6 (-10.3, -6.9) nmol/l). Patients aged 62 years or 

older displayed less seasonal variation than patients younger than 62 years, 12.3 

nmol/l and 19 nmol/l (P for difference = 0.025), respectively.

To evaluate cosinor modelling as an approach to adjust for seasonal variation,

we used predictive performance as a surrogate measurement. Predictive performance 

was assessed from estimating how accurate cosinor models fitted to baseline 

measurements of 25OHD predicted follow-up measurements from 271 nested

subjects. The nested subjects had either one or two follow-up measurements
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available, thus 528 predictions were possible. For reference, we compared predictive 

performance with a linear regression model adjusted for season with a dummy 

variable, which is common in epidemiology, and the approach we used to adjust for 

seasonality in the first paper. Performance was also compared to “doing nothing”, and 

we simply carried forward the baseline value as a prediction. We observed that 

cosinor models predicted most accurately, while no difference was observed between 

linear regression and simply carrying forward baseline values. In conclusion, we 

observed that seasonal variation in 25OHD was pronounced in Western-Norway, 

resulted in a higher frequency of vitamin insufficiency during the winter, associated 

with age, and was more accurately adjusted for by cosinor models. Consumption of 

vitamin D supplements, mainly cod liver oil, and obesity most strongly associated

with 25OHD concentrations. 

4.2.3 Paper III

Plasma 25-hydroxyvitamin D concentrations and all-cause and 
cardiovascular disease mortality among Caucasian patients with 
suspected stable angina pectoris.

In the third paper, the aim was to assess the relationships of 25OHD with all-cause 

and CVD mortality. The combined concentration of 25OHD2 and 25OHD3 were 

adjusted for seasonality with an unadjusted cosinor model and used to reflect 

exposure to vitamin D for 4114 participants with suspected SAP. 25OHD was

modelled as a continuous variable and as quartiles in Cox models adjusted for age, 

gender, smoking, BMI, eGFR and systolic blood pressure. 

During a mean follow-up time of 11.9±3.0 years, 895 (21.8%) deaths occurred 

in total and 407 (9.9%) due to CVD causes. For each 10 nmol/l incremental increase

in 25OHD, adjusted HRs and 95% confidence interval (CI) were 0.91 (0.88-0.95) and 

0.90 (0.85, 0.95) for all-cause and CVD mortality, respectively. When the lowest 

25OHD quartile was used as reference, HRs in the second, third and fourth quartiles 
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were 0.64 (0.54, 0.77), 0.56 (0.46, 0.67) and 0.56 (0.46, 0.67) for all-cause and 0.70 

(0.53, 0.91), 0.60 (0.45, 0.79) and 0.57 (0.43, 0.75) for CVD mortality, respectively.

We investigated the functional relationship of 25OHD with all-cause and CVD 

mortality and analysed for candidate thresholds, defined as the most statistical 

significant division of individuals into categories of higher and lower risk of the 

endpoint. The suggested thresholds for both endpoints were similar, with 42.5 and 

40.9 nmol/l for all-cause and CVD mortality, respectively. A second threshold at 100 

nmol/l was also indicated by a visual inspection of the functional relationships, which 

appeared U or J-shaped, and the threshold analysis. In comparison to those with 

concentrations 42.5-100 nmol/l (n=3214), adjusted HRs (95% CI) of all-cause and 

CVD mortality were 1.79 (1.31, 2.46) and 1.44 (0.87, 2.37) among subjects with 

25OHD >100 nmol/l (n=121) and 1.94 (1.66, 2.27) and 1.87 (1.49, 2.36) among 

subjects <42.5 nmol (n=779), respectively. From these findings, we concluded that 

25OHD associated with risks of all-cause and CVD mortality in patients with

suspected SAP and that a U-shaped or J-shaped relationship was present between

25OHD and all-cause mortality.
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5. General discussion

5.1 Methodological considerations

5.1.1 Study design

Cross-sectional and longitudinal observational data were used in this thesis. Cross-

sectional studies provide valuable data for identifying novel relationships; however, it 

is not possible to establish whether the exposure preceded the outcome in time. This 

is known as the temporality criterion for evaluating whether relationships are causal

[220]. Temporality can be ensured with longitudinal study designs by measuring the

exposure before the outcome occurs. Observational studies have the advantage that 

large representative samples may be obtained and many clinical events recorded.

Consequently, they have statistical power to identify and estimate the magnitude of

novel relationships throughout the length of the conditional probability distribution, 

relationships that might be the results of beneficial or adverse effects of the exposure

[221]. True relationships in nature may be accurately quantified in longitudinal 

observational studies and a strong case made in favour of causality [220].

However, errors and bias related to study design may reduce the ability to 

identify true relationships and increase the risk of observing spurious relationships.

For instance, when categorising the study population according to the exposure of 

interest, the groups may differ for relevant prognostic factors. If associated with the 

exposure and causally related to the outcome, they are referred to as third variables or 

confounders of the relationship between the exposure and outcome. Confounding is

not present if the third variable is causally related to both the exposure and the 

outcome, as then it is in the causal pathway. In order to elucidate the true relationship 

between the exposure of interest and the outcome, and reduce the risk of spurious

observations, the effects of confounders needs to be adjusted for by statistical 

methods [222]. However, dietary intake is associated with a host of social and 

behavioural factors which are difficult or impossible to accurately assess and thus 
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difficult to adjust for [221]. As a result, observed relationships between diet and 

health outcomes are often subjected to residual confounding.

In order to obtain an equal distribution of confounding factors between 

exposure groups and thereby limit the risk of residual confounding, researchers can

randomise individuals into groups by chance and then administrate the exposure of 

interest in varying doses. This is known as a randomised trial. In order for the 

treatment to be allocated without bias, the treatment must be concealed from the 

participants in order to prevent them from behaving differently. This is known as

blinding. In comparison to foods which are nearby impossible to blindly allocate, 

micronutrients and antioxidants may be distributed as indistinguishable pills and are 

suitable for randomised controlled trials.

On several occasions during the last 30 years, strong and robust relationships 

between micronutrients and health outcomes have been consistently reported from 

longitudinal observational studies [223]. In order to acquire necessary data for 

evaluating causality, large RCTs were subsequently conducted. Findings in trials 

were not consistent with previous findings in observational studies. Consequently, the 

result from observational studies were discredited as wrong and believed to be the 

result of residual confounding [222]. When performing observational research, it is 

therefore important to interpret results in light of the strengths and limitations of the

available data.

The use of RCT data as observational data
In the observational studies included in this thesis, we used data from a prospective 

observational cohort performed at HUS in Bergen (BECAC). The majority in

BECAC also participated in WENBIT, a two-centre RCT. WENBIT data from

patients recruited at SUH in Stavanger was also used. Trial data was considered

eligible for observational research because the homocysteine-lowering effect of the

B-vitamin intervention did neither affect the risk of CVD events or mortality in

comparison to participants who received placebo [224] nor the progression of
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atherosclerosis [225]. Another assumption underlying the use of trial data is that no

interaction between vitamin D metabolism and one-carbon metabolism could 

influence the results, for which a short summary of available evidence is provided 

below.

Cystathionine is an intermediate metabolite in the transsulfuration pathway 

which generates cysteine from homocysteine. Cystathionine beta synthase (CBS) is

the enzyme responsible for converting homocysteine to cystathionine. Global CBS 

knockout effectively prevents transsulfuration of homocysteine and results in 

hyperhomocysteinemia [226]. Hypervitaminosis D was reported to result in 

secondary cystathioninuria, indicating that vitamin D activity may increase 

transsulfuration of homocysteine [227]. This effect may be mediated by an intragenic

VDRE on the CBS gene, as demonstrated by induced CBS transcription upon

calcitriol stimulation in various cell lines in vitro and abolished transcription of CBS 

in murine osteoblast with VDR knockout [228]. Hypothetically, a reduction in 

vitamin D status could therefore contribute to elevated homocysteine by reducing

clearance through the transsulfuration pathway. However, VDR knockout mice did

not display any difference in circulating homocysteine concentrations [228] and no 

inverse correlation was observed with 25OHD concentrations in the study population 

(data not shown). If the transcriptional regulation of VDR on CBS is physiologically

relevant, it is probably not through a systemic influence on homocysteine, but 

occurring locally within specific cells.

5.1.2 Study population

The source population were patients in Western-Norway referred to coronary 

angiography for suspected CAD and the target population might be considered as 

comparable to patients in other countries around the world. The degree in which the 

results in the study population may be generalised to the target population is referred 

to as external validity [229]. To evaluate external validity, it is relevant to assess how 

representative the study population is of the source and target population. There was 
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not sufficient capacity to screen all eligible (n=10241) patients in the source 

population and we are thus unable to compare it to the study population. Participants 

in WENBIT were, however, comparable to contemporary samples of patients with 

verified CAD in Europe concerning age, gender distribution and smoking habits

[224]. Individuals with heavy alcohol consumption and mental illnesses, which were 

exclusion criteria, are not represented in the study population.

Agreeing to participate in a study could reflect personal traits such as 

willingness to follow doctor’s orders and dietary guidelines, both relevant to the 

patient’s health and risk of future illness. This is known as the healthy volunteer 

effect [229]. If present, it may result in the study sample differing from the source 

population and reduce external validity. As this was a prospective observational study

with data collection only at baseline for all participants, and in conjunction with 

elective coronary angiography, participation did not require too much effort for the 

participants. The healthy volunteer effect is probably small in the data from BECAC,

but could be more present in the data from patients recruited in Stavanger, as they 

agreed to participate in an RCT, which requires more effort. The effect could also be 

more present in data from participants in WENBIT-RA, who willingly agreed to

undergo repeat angiography. WEBIT-RA patients with SAP had a 25OHD 

concentration of 64.1 nmol/l, while SAP patients overall had 59.7 nmol/l. Minor 

difference in the timing of enrolment could explain part of this difference, although 

we did not observe any patterns. We did observe some differences in physical activity 

and cod liver oil consumption, hence, a small healthy volunteer effect could be 

present in this substudy data.

An alternative explanation to the higher 25OHD concentrations in WENBIT-

RA, was the timing of inclusion to the substudy. Inclusion to WENBIT-RA occurred 

primarily at the baseline WENBIT exam, but some patients were also included at the 

1-month and 1-year WENBIT follow-up exams. Although this resulted in a larger 

sample size, patients recruited to the substudy at follow-up may have been recruited 

from a pool of patients with higher 25OHD concentration than at baseline. This could 

be the result if those who died or experienced events in the intermittent period had 
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lower 25OHD than survivors. This is known as the survivor phenomenon [229]. This

phenomenon is relevant, as we observed relationships with all-cause and CVD 

mortality during follow-up.

5.1.3 Data collection

Random and systematic errors can occur during data collection. In general, 

systematic errors bias the available information and result in misclassification of 

subjects according to exposures, covariates and outcomes [229]. Measurements are 

seldom perfect and too much random error may cause sample distributions that are

more extreme than the true distribution. Depending on the research question, a certain 

degree of inaccuracy from random error is acceptable. As we ranked our individuals 

according to 25OHD concentration, a higher accuracy was required than if we were 

to compare the mean of two groups.

A concept known as regression to the mean, is that a single measurement is more 

extreme estimate of the average or true value, while repeated measurements jointly

provide a more accurate estimate [229]. For example, a study where repeat

measurements of 25OHD spaced 12 months apart were available, follow-up

measurements were ~8 nmol/l higher than baseline concentrations among subjects 

with baseline concentrations <40 nmol/ and ~8 nmol/l lower for those with baseline

>75 nmol/l [230]. When the assessment of exposures in longitudinal studies is limited 

to single inaccurate measurements that may change during follow-up, the consequent 

loss of ability to detect a true association with an outcome, also known as internal 

validity, is referred to as regression dilution bias [231]. As we relied on single 

measurements of 25OHD to reflect vitamin D status in the studies of mortality and 

atherosclerosis progression, a potential regression dilution bias may have influenced 

the internal validity of these studies. 
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Measurement of 25OHD
Plasma samples for biobanking were immediately frozen at -80°C in the time period 

between 1999 and 2004 and analysed for 25OHD between 2011 and 2012. The

stability of deep-frozen plasma samples of 25OHD have been demonstrated after 

repeated freeze and thawing cycles [232]. Analysis was performed by Bevital, a 

laboratory which participates and is certified by the Vitamin D External Quality 

Assessment Scheme (www.deqas.org). Certification requires reliable measurements of 

25OHD2 and 25OHD3 from 5 quarterly distributed samples of unprocessed human 

serum with unknown concentrations. Hence, we argue that there is little evidence for 

random errors in the measurement of 25OHD.

Blood sampling
Blood sampling was conducted differently at the two study sites. In Bergen, 

blood samples were taken non-fasting and prior to coronary angiography. In 

Stavanger, samples were taken after angiography and thereby also after at least 8 

hours of fasting. In patients from Stavanger, we observe ~5 nmol/l lower 25OHD 

concentration than in participants from Bergen, which could be explained by 

somewhat lower intake of vitamin D supplements and physical activity in patients 

from Stavanger (data not shown), although there was no a priori reason to assume 

that participants from the two study sites should differ in this matter. Circadian

variation in 25OHD concentrations in healthy and diseased populations has been 

described, with a nadir at early morning and peak around noon [233, 234]. This could 

be a potential source of systematic error if blood sampling is not standardised.

Lastly, the difference may be explained by the timing of blood sampling in 

relation to cardiac catheterisation. After knee arthroplasty, a post-operative reduction 

of 25OHD of up to 40% in comparison to preoperative concentrations has been 

observed [235]. A marked reduction was observed after 6 to 12 hours and a lasting 

reduction of up to several months. The reduction was not fully explained by reduction 

of vitamin D binding proteins (DBP and albumin) [235]. Other mechanisms include 
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increased uptake and metabolism of 25OHD by macrophages [52] or redistribution of 

fluids due to increased endothelial permeability [236]. The systemic inflammatory 

response, as measured by CRP, is strongly associated with 25OHD concentrations in 

observational studies [237]. However, there was no correlation between 25OHD and 

CRP after knee arthroplasty [235] and we did not observed any difference in CRP 

between participants sampled in Bergen and Stavanger (data not shown). However, it 

is possible that a reduction in 25OHD after cardiac catheterisation and related 

procedures could have occurred prior to or without an increase in CRP and thus 

resulted in the observed difference.

Seasonality
This thesis is in part dedicated to the issue of how to deal with seasonality, a 

source of systematic error and misclassification when assessing vitamin D status, as 

well as a confounder of the relationship with CVD and mortality. In paper II, we 

evaluated three possible approaches; not adjusting for seasonality, linear regression 

with dummy variables for season, and cosinor modelling. We observed that cosinor 

modelling performed more accurately than the other two, who were indistinguishable 

in terms of accuracy. When assessing atherosclerosis progression in paper I, we used 

linear regression adjusted with dummy variable for season to deal with seasonality. 

After conducting the second paper, we logically applied cosinor modelling in the 

third paper when assessing clinical events. If we assume that the findings in the 

second paper are valid, we must concede that the probability of misclassification due 

to seasonality was higher in the assessment of atherosclerosis progression than for all-

cause and CVD mortality.

Covariates
In this study we used only observational data and thus blinding was not an issue. All

participants who underwent cardiac catheterisation at the two hospital sites in the 

study period were required to fill out a self-administrated questionnaire (Appendix).
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From this questionnaire, we used data regarding dietary supplements, physical 

activity levels, smoking, previous and current medical conditions, medications and 

alcohol consumption. As these are based on self-report, they are subjected to several 

sources of bias. First of all, recalling is difficult by itself. Therefore, information 

regarding medical history was controlled against hospital records by trained 

personnel. Due to symptoms and visits to the general practitioner, they may also have 

made lifestyle changes recently that could distort or make recall more complicated. A

common phenomenon for humans is to underreport or overreport in order to appear

more healthy or less unhealthy to others and self. We may speculate that patients 

referred to coronary angiography are even more aware of the fact that the 

questionnaire assesses CVD risk factors. The information regarding dietary 

supplement data of vitamin D and physical activity are likely to contain some 

overreport, as it is socially desirable to take care of your body, and it can therefore be 

more difficult to accurately adjust for their confounding effects. However, there was 

much less focus on potential health effects of vitamin D at the time of recruitment 

(1999-2004) compared to now. To reduce bias in the assessment of smoking, we 

complemented the subjective measurement with an objective measurement based on 

cotinine concentrations, which has a good correlation with nicotine intake from 

tobacco [205]. In order to prevent underreporting of weight, anthropometrical 

measurements were performed by trained study personnel and not based on self-

report.

Atherosclerosis progression
From invasive imaging of atherosclerosis by coronary angiography, stenosis size and 

the extent of luminal intrusion may be assessed. Other invasive and non-invasive

methods to visualise atherosclerosis are available [238]. Non-invasive measurements 

require fewer resources and have therefore more often been used as endpoints in 

observational studies of 25OHD. A common non-invasive approach is to use 

ultrasound on the carotid artery to visualise plaque volume, plaque thickness and 

intima-media thickness, and another to measure coronary artery calcium by electron 
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beam computed tomography, a correlate of plaque burden. In general, non-invasive 

imaging does not provide the same accuracy and information as invasive techniques

[238]. Even more accurate than coronary angiography is intravascular ultrasound, an 

invasive imaging technique that is performed in conjunction with cardiac 

catheterisation. It enables the assessment of lesion size and characteristics within the 

arterial wall, such as the thickness of the fibrous cap, which aforementioned is more 

predictive of plaque vulnerable than lesion size alone [140]. A limitation of our study

is that, apart from assessing stenosis progression, we did not assess additional plaque 

characteristics relevant to vulnerability of rupture.

Registry data
Information about the time and cause of death was gathered from the Cause of Death 

registry at Statistics Norway and the Western Norway Cardiovascular Registry and 

controlled for by medical records at the hospitals in Western Norway. Based on this

information, two members of the endpoint committee who were blinded to baseline 

data considered whether the information was sufficient to be registered as an 

endpoint. All registry data share the potential error of missing data, however, most 

data should be missing at random. The strength of all-cause mortality as an endpoint

is that it does not suffer from misclassification, which is a major source of 

information bias when using registry data. Of  90% of deaths occurring in Norway,

information on cause of death is limited to certificates filled out by on-site medical 

doctors, and only 10% are supplemented by autopsies [239]. When autopsies are 

performed, the underlying cause of death is changed in 61% of the cases, including a 

32% reclassification between major ICD-10 chapters [239]. A net influx of cases to 

the chapter Diseases of the circulatory system (IX) was observed. If we apply their 

findings to our data and adjust for a 10% autopsy rate correction, 52 of 407 CVD 

deaths (12.9%) was not caused by CVDs while 127 of 588 non-CVD deaths (21.5%) 

were actually caused by CVDs. As we observed a relationship with all-cause 

mortality and 25OHD, reclassifying more deaths as CVD would probably not weaken 

the association between CVD mortality and 25OHD.
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5.1.4 Confounding

The categorisation of the study population according to 25OHD concentrations 

revealed an extensive list of potential confounding factors that were distributed 

unequally. Those with lower 25OHD concentrations were to a larger extent older, 

males, smokers, obese and diabetic, reported performing less exercise, had a more 

proatherogenic lipid profile and reduced heart function. Although we did not assess 

dietary patterns in this thesis, it is reasonable to assume that they also follow less 

healthy diets. Kidney function, as assessed by eGFR, was higher among individuals 

with low vitamin D status in our study sample, but we do not propose an explanation 

for this.

In order to identify and adjust for the effect of possible confounders, we 

evaluated the relationships of 25OHD with study outcomes in paper I and III with 

crude and multivariate models. Although there is a rational for adding many potential 

confounders, this also increases the probability of fitting random noise in the data. 

When assessing the relationship with atherosclerosis progression in paper I, the

multivariate model confirmed the null-finding observed in the crude model, 

indicating a robust relationship. CRP is as a measure of inflammation and both a 

source of systemic error and confounding, thus we included CRP in multivariate 

models when assessing the relationship with atherosclerosis progression. In the 

analysis of clinical events in paper III, we decided a priori to include age, gender, 

study site, smoking, body composition, seasonality, blood pressure and kidney 

function. We did not include other potential confounders in the final model, such as 

CRP, as they neither improved the performance of the model nor significantly

changed the magnitude of the relationship between our exposure of interest and the 

outcome. When modelling the relationship with CVD mortality using 25OHD 

thresholds, a difference in risk was observed between the medium and high 25OHD 

group in a crude model, but no difference was observed when confounding effects 

were adjusted for.
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A weakness of our study was that we did not assess all potential confounders,

such as socioeconomic position, which is, among other health behaviours, associated 

with dietary quality and the intake of vitamin D [240] and strongly associated with

coronary heart disease and all-cause mortality [241]. The frequency of outdoor 

activities, which is a surrogate marker for sun exposure, was not assessed directly, but 

may be indicated by physical activity levels. However, physical activity was 

incompletely assessed and, in order to keep statistical power, we did not include it in

final multivariate models when assessing subclinical and clinical outcomes. We 

performed a sensitivity analysis in paper III and observed no confounding effects on 

the relationships with all-cause and CVD mortality; nevertheless, it is questionable 

whether the adjustment itself was accurate as the measurement of physical activity 

was based on self-report which may overestimate physical activity and cause 

misclassification [242]. Consequently, results in paper I and III are limited by the risk

of residual confounding and we may not conclude that variation in 25OHD in the 

study population was causally related to CVD and all-cause mortality. 

5.1.5 Reverse causality

A cause must always precede the effect in time. In the situation where an 

outcome precedes and causes the exposure, known as reverse causality, biased

associations may be observed [243]. The majority of the study population had

significant CAD at baseline. More severely diseased participants could have 

experienced malaise and reduced appetite prior to study enrolment and reduced their 

dietary intake, including the intake of vitamin D. Consequently, associations of low 

25OHD with higher risk of all-cause and CVD mortality could be the result of reverse 

causation.

As the majority of our study population had significant CAD at baseline, the

frequency of CVD risk factors should, by definition, differ from the general 

population. A cluster of participants within our study population may have, despite a 

low frequency of risk factors and healthy lifestyle, developed CAD as result of 
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unfavourable genotypes. Upon symptoms or suspicion of CAD, it is possible that 

these subjects further increased intake of fatty fish and cod liver oil in comparison to 

individuals with high risk from lifestyle. Theoretically, individuals with an

unfavourable CVD genotype and healthy lifestyle may have been overrepresented

among those with a high 25OHD concentrations (>100 nmol/l) and the observed 

association with all-cause mortality within this group the result of reverse causality. 

However, as we do not observe a statistical significant relationship with CVD-

mortality at high 25OHD concentrations, this bias appears less likely.

5.2 Discussion of main findings

5.2.1 Vitamin D status and seasonal variation

Vitamin D status
In the study population overall, 6% were vitamin D deficient (<30 nmol/l), 28%

insufficient (30-50 nmol/l) and 66% sufficient (>50 nmol/l). The mean 25OHD 

concentration (59.4 nmol/l) was slightly higher than reported in various populations 

in Europe, lower than North America, similar to Asia, and higher than the Middle 

East and Africa [244]. As a result of seasonal variation in vitamin D status (15.8 

nmol/l, 26.5% of mean), the proportion sufficient was 53% from January through 

March and 83% from July through September.

The daily recommended intake of vitamin D in Norway is a flat 10 μg and

assumes a contribution from sun exposure. In the absence of sun exposure, 15 μg is

required if ~97.5% of Norwegians are to be sufficient [119]. Norwegians have access 

to affordable sources of fatty fish and share a culture for consuming cod liver oil,

nevertheless, every second participant in our study had inadequate vitamin D status

during the winter. By reversing the dose-response relationship, this finding indicative

that the mean intake of vitamin D during the winter was closer to the average 

requirement of 7.5 μg [119]. Consequently, vitamin D status and dietary intakes of 

vitamin D in our study population was not adequate.



76

Correlates of 25OHD
Vitamin D status is determined by many factors, and in the second paper, we 

assessed the influence from both known and potential determinants. As expected,

consumption of vitamin D supplements and physical activity, a surrogate marker of 

outdoor activity and sun exposure, were associated with higher 25OHD 

concentrations. A strong inverse relationship with adiposity was observed 

independently of supplement intake and physical activity. Adipose tissue

sequestration of calciferols has been suggested as the cause of this relationship, 

potentially the result of rapid uptake or a larger volume for distribution, and an 

attenuated response to both UVB irradiation [245] and dietary supplementation 

studies [230] has been demonstrated. Whether this phenomenon is adaptive or 

detrimental is unknown, but obese individuals do require more vitamin D than normal 

weight individuals in order to reach the target 25OHD concentration for sufficiency. 

Variation in the abundance and activity of converting and catabolising 

enzymes, cofactors and plasma carrier proteins can also determine 25OHD

concentrations, which is most profoundly illustrated from animal knockout models 

and humans with inborn errors in metabolism. Organ function is relevant in this 

respect, as a loss of kidney function i.e. may reduce abundance and activity of CYP 

enzymes and delivery of substrate to proximal tubule cells, impairing production and 

catabolism of calcitriol and catabolism of 25OHD [246, 247]. Although we observed 

that moderately reduced glomerular filtration associated with lower 25OHD 

concentrations, severely or completely loss of kidney function does not strongly 

associate with 25OHD concentrations, potentially due to extra-renal catabolism of 

25OHD [247, 248]. Genetic variation is also highly relevant and single nucleotide 

polymorphisms (SNPs) identified from genome wide association studies (GWAS) 

have been shown to determine the response in 25OHD concentration after 12 months 

with vitamin D supplementation [230]. The meaning of SNPs for circulating 25OHD 

concentrations in the general population is moderate, with single variants associated 

with ~5 nmol/l lower mean concentrations and the sum of several variants associated 

with ~13 nmol/l lower mean concentrations [249].
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The potential influence of age on vitamin D status is interesting, as we observe

both a higher mean 25OHD concentration and less seasonal variation among

individuals above 62 years of age. We hypothesised that retirement provides the 

opportunity to follow higher quality diets and perform outdoor activities when

sunlight is available during late spring and early autumn, thus resulting in a more 

stable vitamin D status. Retirement could also open up for traveling during the 

winter-time to warmer countries. This behavioural pattern may be in contrast to

indoor workers who have less time for outdoor activity during the day and 

compensate from the lack of sun exposure by “binging” during the summer holidays.

5.2.2 Cosinor models and adjustement for seasonality

The performance of cosinor models in predicting future vitamin D status was 

demonstrated previously in healthy individuals from North-America [215]. In 

comparison to our study population, they did not have symptoms of CVD, slightly 

higher 25OHD concentrations and displayed more seasonal variation. We argued that 

our findings in cardiovascular patients, combined with previous results, strengthened 

the external validity of the use of cosinor models to adjust for seasonal variation.

Cosinor models were fitted using linear regression that fits the conditional 

mean of 25OHD given covariate values and transformations of the time variable. 

Month was chosen to represent time. The model fits a sine curve through the 

observed means within each month. When adjusting person specific measurements 

for seasonal variation, individual deviations from the fitted curve are added to the 

annual mean of the study population according to the model. As an example, a person 

may have a measured 25OHD concentration of 70 nmol/l in January, and the sine 

curve in January is at 50 nmol/l. Further, the cosinor model estimates the annual 

mean of the study population to be 60 nmol/l. The resulting equation is 60 + (70 - 50)

= 80 nmol/l - an estimate of that person's yearly average. 
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A comparable and direct approach, which avoids modelling, may be performed 

by first calculating the difference between a person's observed value and the 

empirical mean of observations taken the same month [250]. Then, add this value to

the empirical mean of the entire population. Hence, if the person’s concentration is 

measured at 70 nmol/l in January, the mean in January is 50 nmol/l, and the 

population mean is 60 nmol/l, the equation becomes exactly the same as before, 60 + 

(70 - 50) = 80 nmol/l. Hence, in a hypothetical scenario where the sine curve is 

perfectly fitted to the empirical monthly means, the adjustments would be identical. A 

potential advantage of cosinor models, when it comes to adjusting for seasonality, is 

that it combines the information from all the months. Hence, it may compensate for 

few observations within one month, which could be a problem when using the 

empirical approach.

As seasonal variation associated with age, we also evaluated whether adjusting 

for age in cosinor models resulted in more accurate prediction than a simple cosinor 

model. Although we did not observe a difference, the possibility to include covariates 

in the adjustment for seasonal variation is a unique feature of cosinor models that is 

not available for the direct approach.

5.2.3 Atherosclerosis and clinical events

When assessing the relationship with CVD, we observed that 25OHD associated with 

fatal clinical events, but not progression of subclinical disease. Events were registered 

during 12 years of follow-up and subclinical progression after approximately 1 year.

Although atherosclerosis progression occurred in this period, as measured by repeat 

measurement of stenosis size by coronary angiography, a longer follow-up may have

been required to observe an association with 25OHD. Vitamin D activity may have a 

regulatory role in stenosis development, progression, as well as plaque vulnerability. 

Aforementioned, coronary angiography is not the most sensitive measurement for 

plaque vulnerability and prediction of future clinical events [140]. It is possible that a 
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relationship with other relevant characteristics of atherosclerosis may have been 

observed with a more sensitive method.

Patients received risk-reducing medications during follow-up in various 

extents. These medications target mechanisms suggested to be relevant to vitamin D

activity, including LDL-cholesterol, inflammation, platelet aggregation, hypertension 

and vasodilatation. It is therefore relevant to distinguish between development of 

incident disease in subjects without CAD at baseline from disease progression in 

subjects with CAD at baseline. Although we also studied progression in lesions 

which did not fulfil CAD diagnosis criteria (>50% luminal narrowing), lesions in 

other coronary vessels fulfilled this criteria. Our findings are perhaps not

generalizable to individuals without CAD.

The relationships with all-cause and CVD mortality were assessed in a large 

cohort with 25OHD concentrations spanning a wide interval. This combination 

provides statistical power to identify true relationships throughout the continuum of

the 25OHD distribution and increases both the internal and external validity of the 

results. Despite an accurate measurement of atherosclerosis by coronary angiography 

and the use of multiple lesions to increase the relative sample size, fewer observations

were available for the assessment of atherosclerosis progression, especially in the 

lower and higher end of the 25OHD distribution. Hence, we might not have had 

similar statistical power to identify relationships throughout the continuum of the 

25OHD distribution and somewhat lower internal and external validity.

5.2.4 Increased mortality with high 25OHD concentrations

Inclusion of the upper threshold
A comment is required for the assessment and use of the upper threshold at 100 

nmol/l. Despite statistically significant linear tendencies in the relationships between

25OHD and all-cause and CVD mortality, risk curves indicated non-linearity, with 

increased risk at the lower and higher end of the 25OHD distribution. From the 
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subsequent threshold analyses, limited to observations between 15 nmol/l and 150 

nmol/l, small peaks around 100 nmol/l were observed. This was less statistically 

significant than candidate thresholds around the peaks at ~40 nmol/l, but we

considered that the inclusion of an upper candidate threshold was justified. This 

decision was based on the visual interpretation of the risk curves, the threshold 

analyses and previous findings in other cohorts [251, 252].

Characteristics of subjects with 25OHD above the upper threshold
While patients below the lower threshold (~42.5 nmol/l) were younger, 

smoked more, were more obese, exercised less, were more diabetic, consumed less 

supplements, had better kidney function and a worse blood lipid profile than

individuals in the medium distribution (42.5-100 nmol/l), patients above the upper 

threshold (100 nmol/l) were older, leaner, exercised more, consumed more 

supplements, had lower kidney function and were to a larger extent enrolled at HUS. 

Hence, we observed that these patients tend to follow unhealthier and healthier

lifestyles, respectively. The distributions of blood measurements throughout the year 

were comparable between groups and consumption of vitamin D supplements other 

than cod liver oil did not differ. In light of available data, we suggested that 

differences in cod liver oil consumption, sun exposure from physical activity and 

BMI are responsible for the differences in 25OHD concentration.

Potential mechanisms
Why should healthier individuals with high 25OHD concentrations be at higher 

risk of mortality than individuals who are less healthy with medium 25OHD 

concentrations? They could be compensation for diseases or risk factors we did not

account for. The relationship could also be biased by reverse causality, as mentioned 

previously. Assuming that the observation reflects a detrimental effect of vitamin D, 

it may be mediated by several mechanisms. 

Elevated levels of calcium may cause vascular calcification [253] and 

arrhythmia [254]. Consumption of ionised calcium from supplements are believed to 



81

result in a rapid and long-lasting increase in serum calcium which differs from the 

pattern observed when dietary sources of calcium are consumed [253]. Calcium 

supplements may therefore have a negative effect on cardiovascular risk and it is 

questionable whether a beneficial effect on fracture risk outweighs a potential

negative effect [255]. Chronically high 25OHD concentrations may be relevant as

absorption from calcium supplements may further increase. Hence, vitamin D status 

may act as an effect modifier on the relationship with calcium and CVD risk and all-

cause mortality. Unfortunately, we did not have access to information on dietary data 

and calcium supplements specifically and thus were unable to investigate whether 

this differed for threshold groups. According to trial data, vitamin D3 supplements 

alone may reduce mortality in individuals of older age [126], but when co-

administrated with calcium, increase the risk of kidney stones [126], AMI and stroke 

[256]. However, not all meta-analyses of trial data find negative effects on CVD

endpoints from calcium supplements alone or co-administrated with vitamin D [257].

Participants almost exclusively consumed vitamin D supplements in the form of

cod liver oil, which has a high content of omega-3 fatty acids. Previous findings using 

dietary data from a subset of WENBIT patients showed increased risk of fatal AMI 

with higher dietary intake of omega-3 long-chain polyunsaturated fatty acids in 

patients with normal glucose tolerance [258]. The findings could describe the same 

underlying pattern and are connected by the consumption of cod liver oil and fatty 

fish. However, it is not possible to elucidate whether increased mortality was caused 

by a high intake of omega-3 fatty acids, vitamin D, serum calcium or a third variable.

An interesting area relevant to nutrient interactions is residing within the cell 

nucleus. RXR is a partner for several ligand-bound receptors, including vitamin A, D 

and fatty acids. Provided that RXR availability is limited, competition over this 

partner could result in functional insufficiency. Furthermore, the cistrome for RXR 

heterodimers overlap and may be relevant to nutrient interaction. Does the cistrome 

for VDR-RXR increase, decrease or become altered upon the activity of other ligands 

such as vitamin A and fatty acids, and vice versa? However, this is highly theoretical 

and difficult to elucidate at the moment. 
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6. Conclusions

We aimed to investigate the vitamin D status of patients referred to coronary 

angiography with suspected CAD in Western-Norway. In conclusion, we observe that 

the status is not satisfactory. Seasonal variation contributes to a variation in 25OHD 

concentration of ~25%, and in combination with insufficient dietary intakes, every 

second patient has inadequate vitamin D status during the winter. Adiposity was 

strongly associated with lower 25OHD concentrations, while consumption of vitamin 

D supplements and higher physical activity associated with higher concentrations.

Seasonality may cause a systematic error and misclassification when assessing 

vitamin D status and bias observational research. Cosinor modelling provides a 

flexible approach to adjust for seasonality, which is preferable to not dealing with 

season, and more accurate than an alternative method commonly used in 

epidemiology.

Concentrations of 25OHD was not associated with progression of 

atherosclerosis, as measured by stenosis size from coronary angiography, but was

inversely associated with higher all-cause and cardiovascular disease mortality. The 

association was reflected by a threshold located at ~42.5 nmol/l, defined as the most 

optimal division of individuals into high and low risk. This threshold is within the 

current threshold of sufficiency for optimal skeletal health.

All-cause mortality was increased in individuals with 25OHD concentrations 

above 100 nmol/l and we conclude that there is reason to be suspicious to chronic 

excessive intakes.
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7. Further perspectives

Fortification of foods with vitamin D in Norway is static throughout the year, but we 

observe a high prevalence of vitamin D insufficiency during winter. A Danish RCT 

demonstrated that bread and milk fortification from September to April prevented 

seasonal-dependent reduction in 25OHD concentrations in the fortification group, 

resulting in only 16% insufficiency in April compared to 65% in the control group 

[259]. Hence, a more dynamic approach to food fortification could prevent winter-

time insufficiencies without contributing to very high concentrations during the 

summer.

In addition to well-designed observational studies using 25OHD as a measure 

of vitamin D exposure, SNPs and common allele variants that influence 

concentrations of vitamin D binding proteins or activity of metabolising enzymes 

may be used. As the relationship between DNA sequences and endpoints are not 

confounded, they overcome some of the challenges with residual confounding.

However, it also requires the identification of potent genotypes that causes a distinct 

difference in vitamin D exposure. So far, candidate genotypes have been discovered 

and used in studies of hard endpoints. No associations with genotypes were observed 

in the comparable LURIC cohort, despite an inverse relationship of 25OHD with

higher risks of all-cause and CVD mortality [260]. Results from less comparable 

cohorts are mixed for all-cause and null for CVD mortality [261-263], while another 

study found an association with calcification scores [264]. Genotypes may be 

detrimental or beneficial depending on the patient’s vitamin D status and researchers 

should maintain a two-sided hypothesis.

Several large RCTs assessing the effect of vitamin D on CVD or mortality are 

planned or currently underway. These trials are designed to overcome suggested 

fallacies of previous trials that were either to small, administrated doses that did not 

raise 25OHD concentrations sufficiently or co-administrated calcium or omega-3

fatty acids. The US multi-ethnic VITAL trial finished recruiting over 25000 

participants in 2014 [265] and the Australian D-Health reported in 2015 that they had 
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finished recruiting over 21000 participants [266]. The Finnish FIND trial reported in 

2015 that they stopped recruitment at 2500 participants and would not obtain the 

planned sample size of 18000 due to problems with recruitment and funding [267].

The UK VIDAL trial finished a two-year feasibility trial of 1600 patients in 2015

[268] and is planning to recruit 20000 participants in the main trial [269]. Besides the 

study of hard endpoints, nested sub studies may provide information regarding 

potential mechanisms, such as repeat measurements of blood pressure and cardiac 

output using echocardiography in VITAL [265]. Measurement of genotypes in 

vitamin D metabolism is also planned in the VITAL and may reveal novel gene-

nutrient interactions. Considering the resources and time invested in vitamin D, we

may hope that these trials provide convincing and unidirectional data for drawing 

conclusions about vitamin D and its effect on cardiovascular disease and survival.

However, as illustrated by the promiscuous nature of nuclear receptors and the 

complex regulation of gene expression, even well-designed randomised controlled 

trials will not fully elucidate the intricate role of vitamin D in human health.
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