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Ionization dynamics beyond the dipole approximation induced by the pulse envelope
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When atoms and molecules are ionized by laser pulses of finite duration and increasingly high intensities,
the validity of the much-used dipole approximation, in which the spatial dependence and magnetic component
of the external field are neglected, eventually breaks down. We report that, when going beyond the dipole
approximation for the description of atoms exposed to ultraviolet light, the spatial dependence of the pulse
shape, the envelope, provides the dominant correction, while the spatial dependence of the carrier is negligible.
We present a first-order beyond-dipole correction to the Hamiltonian which accounts exclusively for nondipole
effects stemming from the carrier envelope of the pulse. We demonstrate by ab initio calculations for hydrogen
that this approximation, which we refer to as the envelope approximation, reproduces the full interaction beyond
the dipole approximation for absolute and differential observables and proves to be valid for a broad range of
high-frequency fields. This is done both for the Schrödinger and the Dirac equation. Moreover, it is demonstrated
that the envelope approximation provides an interaction-term which gives rise to faster numerical convergence
in terms of partial waves compared to its exact counterpart.
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I. INTRODUCTION

The dipole approximation is frequently applied when
studying photoionization of atoms and molecules. Because
the approximation consists of assuming the external vector
potential to be purely homogeneous, it completely disregards
both the magnetic component and any interaction with higher
multipoles of the electric field. Clearly this becomes too crude
an approximation at higher intensities. Indeed, experimental
observations of laser-matter interactions in which the magnetic
component of the laser plays a significant role are seen;
see, e.g., Refs. [1,2]. Although experimental manifestation
of nondipole effects are scarce for photon energies beyond
the optical region, we do expect such observations in the near
future as the brilliance of the strongest free-electron lasers
continues to increase [3]. Thus, in the theoretical study of
photoionization of atoms and molecules in such laser fields,
corrections to the dipole approximation must eventually be
included.

In the literature we see corrections to the dipole approxima-
tion implemented in various ways. In most of them, the fact that
the intensity varies across the laser beam is neglected; one is
usually interested in what happens only at the laser focus. The
spatial dependence in the propagation direction of the pulse,
however, must be accounted for. In several works this is done
by including the full interaction on a numerical grid [4–10].
Other implementations involve approximations which allow
for separating the interaction in spatial and temporal factors.
One way of achieving this is to write the plane wave in terms of
exponentials; see, e.g., Refs. [11–13], or by Taylor expansions
[14–18]. The latter typically involves the first-order correction
only. In a nonrelativistic treatment, this may be motivated by
the fact that higher-order corrections, being proportional to
c−2 or higher powers of 1/c, only come into play for field
intensities which would necessitate a relativistic treatment.

Accounting for the spatial dependence of the field in the
propagation direction, we take the vector potential A to depend

only on the variable

η ≡ t − k · r/ω, (1)

where ω is the central angular frequency of the laser and k is
the wave vector. These quantities follow the usual dispersion
relation ω = kc. Moreover, we take the polarization direction
to be orthogonal to the propagation direction k̂, i.e., the
Coulomb gauge restriction, ∇ · A = 0, is imposed. In addition,
we assume linear polarization.

The vector potential is separated into one factor for the
carrier wave and one function providing the pulse envelope
profile,

A(η) = E0

ω
f (η) sin(ωη + ϕ). (2)

Here E0 is the peak electric-field strength and ϕ represents
the carrier envelope phase. The envelope function f (η) is
frequently chosen to be the square of a trigonometric function
over half a cycle,

f (η) =
{

sin2 πη

T
, 0 � η � T

0, otherwise.
(3)

Another common choice is a Gaussian

f (η) = exp

[
− 4 ln 2

(
η

T

)2]
, (4)

where T in the latter case is the full width at half maximum
pulse duration. A third frequently used way of modeling the
pulse is a trapezoidal shape, i.e., the pulse has a linear ramp
on/off of relatively short duration at each end while held
constant in between.

In Ref. [19] it was shown that, for relatively short extreme
ultraviolet (XUV) laser fields, a first-order spatial expansion
of the vector potential indeed accounts for practically all
corrections to the dipole approximation when it comes to the
ionization probability. Moreover, the photoelectron spectrum
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as well as angular-resolved probability distributions were also
well accounted for by this comparatively simple approach.

In this work we present an approximate form of the
nondipole interaction Hamiltonian, which turns out to be
highly accurate. In effect, the approximation, which we coin
the envelope approximation, neglects the spatial dependence
of the carrier part of the laser field altogether. To some extent,
this may contradict intuition and, indeed, in the literature we
do find works in which the spatial dependence of the envelope
is neglected instead [11,16]. Other theoretical works beyond
the dipole approximation do not involve any envelope at all
[13]. While these approaches may be adequate in certain
cases, we demonstrate that in the general case the opposite
is true in the high-frequency regime; the spatial expansion
of the envelope alone provides the dominant correction to
the dipole approximation—in particular for short pulses.
Furthermore, we show that the same conclusion holds for both
the Schrödinger and Dirac equations.

We explain the accuracy and predictive power of the
envelope approximation by analyzing the Hamiltonian in
a generalized velocity-gauge form, i.e., the beyond-dipole
correction is included in a form similar to the (velocity-
gauge) dipole interaction. Two nondipole interaction terms
are identified: one “envelope term” which represents the
time average of the induced motion along the laser direction
of propagation and one “carrier term” which causes rapid
oscillations. We argue that the net contribution of the latter
term vanishes, thus permitting a scheme in which only the
former term is retained.

The envelope approximation is also attractive from a
computational point of view, both in the nonrelativistic and
the relativistic implementations. Numerical simulations are
subject to milder convergence criteria within the envelope
approximation compared to simulations including the full
interaction. In the following section the approximation is
outlined in detail, and its applicability is justified. Furthermore,
in Sec. III, its adequacy is demonstrated by explicit numerical
simulations.

II. THEORY AND IMPLEMENTATION

Both the nonrelativistic Schrödinger equation and its
relativistic counterpart, the Dirac equation, have the generic
form

i�
∂

∂t
� = H�, (5)

where the wave function � is a four-spinor in the latter case,
and H is the Hamiltonian.

A. The Schrödinger equation

For the case of the Schrödinger equation of a hydrogen
atom exposed to the external field A, the Hamiltonian H reads

H = 1

2m
[p + eA(η)]2 + V (r) =H0 + e

m
p · A + e2

2m
A2, (6)

where H0 = p2

2m
+ V (r) is the field-free Hamiltonian, and V

is the Coulomb potential. The last term in Eq. (6), which is
proportional to the square of the vector potential, is commonly

referred to as the diamagnetic term. It is well known that this
term alone provides the dominant nondipole correction; the
spatial dependence of (e/m) p · A(η) has been found to be
insignificant in this context [5,6,16,19].

If we resort to a first-order expansion of the vector potential
around η = t and keep only the first-order contribution to the
diamagnetic term, the corresponding Schrödinger Hamiltonian
takes the form [19]

H1st = Hdip(t) − e2

mc
x A(t)A′(t), (7)

where Hdip is the Schrödinger Hamiltonian including only the
dipole part of the interaction with the external electromagnetic
field, which in the velocity-gauge form reads

Hdip(t) = H0 + e

m
pzA(t). (8)

We have here taken the z-polarized external field to propagate
along the x axis. Moreover, the purely time-dependent zeroth-
order term in the diamagnetic interaction has been removed by
a rather trivial phase transformation.

In order to derive the envelope approximation and the
corresponding form of the Hamiltonian, we consider the
nondipole interaction within the propagation-gauge form [20].
In the particularly simple case of a first-order expansion of the
field, the transformation

�PG = U�, U = exp

(
− i

e2

2mc�
x[A(t)]2

)
(9)

transforms the initial Hamiltonian (7) into [6,20–23]

HPG = UH1stU
† + i�U̇U †

= H0 + e

m
A(t)pz + e2

2m2c
[A(t)]2px. (10)

The advantage here is that the beyond-dipole term,
e2/(2m2c)[A(t)]2px , and the velocity gauge dipole-interaction
term, (e/m)A(t)pz, are of similar forms and can be compared
on an equal footing. The two terms can be associated with the
corresponding classical motion of a free particle subjected
to the electromagnetic field [20]. The dipole field drives
the charged particle back and forth along the direction of
polarization whereas the nondipole field induces a perpen-
dicular motion in the propagation direction associated with
the (homogeneous) magnetic field. Since A2 is strictly non-
negative, the interaction along the propagation axis is very
different from the dipole-driven dynamics in that the induced
momentum in the former case points in one direction only,
giving rise to a non-negative velocity component in the laser
propagation direction. As such, the nondipole field associated
with the radiation pressure of the electromagnetic field mimics
a so-called nonzero displacement pulse [24], which in the
present case takes the form

e2

2m2c
[A(t)]2 = 1

4c

(
eE0

mω

)2

[f (t)]2[1 − cos(2ωt + 2ϕ)].

(11)

The nondipole field can further be decomposed into two
components: one which carries the nonzero displacement
characteristics of the pulse, the envelope component, and
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one component that in itself represents an ordinary zero-
displacement pulse. With this decomposition the propagation
gauge Hamiltonian (10) becomes

HPG = H0 +
(

eE0

mω

)
f (t) sin(ωt + ϕ)pz

+ 1

4c

(
eE0

mω

)2

f 2(t)px

− 1

4c

(
eE0

mω

)2

f 2(t) cos(2ωt + 2ϕ)px. (12)

The first term beyond the dipole approximation, i.e., the
envelope component which is proportional to f 2(t)px , imparts
a net momentum transfer to the particle in the propagation
direction throughout the laser pulse, while the last term,
proportional to f 2(t) cos(2ωt + 2ϕ)px , only induces high-
frequency oscillations around this mean. Now, since these
oscillations are superimposed on a net shift which changes on
a comparatively slow timescale, their contribution is expected
to vanish. This is in fact the situation when f 2(t) varies slowly
compared to π/ω, i.e., when the pulse extends over several
optical cycles. Integrated over the duration of the laser pulse
it is only the nonoscillating component, i.e., the envelope
component, that will induce a net displacement of the particle,
effectively providing the main contribution beyond the dipole
approximation. Therefore, from a physical point of view, and
in the case of high-intensity and high-frequency fields, the
important nondipole correction to the laser-atom dynamics
stems from the intimate interplay between the dipole field
and the displacement of the wave packet in the propagation
direction.

Correspondingly, the envelope approximation is obtained
by neglecting the last term in Eq. (12):

HPG → H env
PG = H0 +

(
eE0

mω

)
f (t) sin(ωt + ϕ)pz

+ 1

4c

(
eE0

mω

)2

f 2(t)px. (13)

Going from Eq. (12) to (13) effectively constitutes a time
averaging over the carrier wave in the nondipole operator, i.e.,
we have substituted the nondipole correction with its zeroth-
order Floquet component in terms of the carrier. In this context
it is worth noting that also for the dipole field within the
Kramers–Henneberger frame, truncated Floquet expansions
of the carrier field have proven useful [25,26].

While the nonzero displacement component of the first
beyond-dipole term in Eq. (12) dictates the corresponding
dynamics, cf. Ref. [27], perturbation theory applies to the last
term. Although, as we have argued, this term would contribute
marginally to the total ionization probability, one might expect
it to provide a peak near the “resonance energy” at 2�ω − Ip,
with Ip being the ionization potential, in the energy differential
ionization probability. However, due to the presence of the
much stronger dipole field, the initial state becomes strongly
field dressed, and the (neglected) interaction would ionize
the electron from a state without a well-defined energy.
Consequently, any such peak is broadened and diminished
to such an extent that it in effect vanishes.

Transforming the envelope approximation Hamiltonian
(13) back to the original velocity gauge formulation is
performed with the inverse of transformation (9) subject to
the envelope approximation,

� = exp

(
i

e2E2
0

4mc�ω2
x[f (t)]2

)
�PG, (14)

resulting in the following effective (envelope) Hamiltonian:

Henv = Hdip(t) − e2

2mc
x

(
E0

ω

)2

f (t)f ′(t). (15)

Equation (15) constitutes one of the main results of this paper.
We will demonstrate by numerical simulations that it indeed
leads to essentially the same final state as the Hamiltonian
including the full first-order beyond-dipole correction given
by Eq. (7).

B. The Dirac equation

For external fields strong enough to potentially accelerate
the electron to velocities comparable to the speed of light, the
nonrelativistic Schrödinger Hamiltonian has to be replaced
with the corresponding Dirac Hamiltonian:

HD = cα · [p + eA(η)] + V (r)14 + mc2β, (16)

with

α =
(

0 σ

σ 0

)
, (17)

where σ = (σx,σy,σz) are the Pauli matrices and

β =
(
12 0
0 −12

)
. (18)

An expansion of the Dirac Hamiltonian to first order while
omitting the spatial dependence of the carrier yields

HD,env = cα · p + V (r) + mc2β + ecA(t)αz

− eE0

ω
f ′(t) sin(ωt + ϕ)αzx, (19)

again with linear polarization along the z axis and propagation
along the x axis. Equation (19) provides the corresponding
envelope approximation within the Dirac picture, although the
interaction has a slightly different form.

Considering that the Dirac equation is to account for the
same physics as the Schrödinger equation with the same
physical fields, at least in the nonrelativistic regime, we
expect the envelope approximation to be valid for the Dirac
equation as well in the weakly relativistic regime. From a more
technical point of view, we could also apply the above analysis
in the nonrelativistic limit via a modified form [12] of the
well-established Foldy–Wouthuysen-like transformation [28].
The transformation given in Ref. [12] yields, after omission
of terms proportional to c−2 or smaller, the alternative form of
the Dirac Hamiltonian

HD,alt = cα · p + βmc2 + V + e

m
βA · p + e2

2m
βA2

+ e�

2m
βσ · (∇ × A), (20)
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where the two upper components of the four-component
wave function no longer couple to the two lower components
through the external electromagnetic field. Apart from the
spin-dependent term, which is of minor importance here,
the interaction terms working on the upper components are
the same as in the Schrödinger equation (6), and thus the same
analysis concerning the importance of different contributions
applies. Naturally, the use of Eq. (19) will result in spatial
contributions not only to the diamagnetic term, but also to the
fourth term of Eq. (20), as well as resulting in a nonvanishing
sixth term. As such, by construction, the relativistic version
of the envelope approximation, Eq. (19), will not be exactly
identical to the corresponding approximate scheme in the
Schrödinger picture, Eq. (15)—not even in the nonrelativistic
limit. However, since the conclusions from the nonrelativistic
treatment should still hold, we expect the contribution from the
A2 term to be completely dominating in the weakly relativistic
region.

C. Numerical implementation

The time-dependent Schrödinger equation (TDSE) has been
solved in two ways. In the first case, the time-dependent state
� is expanded directly on a product basis comprising B splines
in the radial direction and spherical harmonics in the angular
coordinates. Then, the resulting sparse system of ordinary
differential equations is propagated in time by using a Crank–
Nicolson-like method on a rather large simulation domain;
see Ref. [19] for details. In the second method, a spectral
basis consisting of the eigenstates of the time-independent
part of the Hamiltonian is constructed and complex scaling
is used in order to minimize the size of the basis set, cf.
Ref. [29], while the time propagation is performed with a
Magnus-type propagator in a Krylov subspace by using the
Arnoldi algorithm. The Dirac equation is solved in a manner
rather analogous to the latter method,1 although complications
arise due to the negative energy continuum [12] inherent in the
Dirac Hamiltonian (16).

III. RESULTS AND DISCUSSION

In order to establish the validity of the envelope approx-
imation, we compare results for a hydrogen atom initially
prepared in the ground state obtained with the original form of
the first-order Hamiltonian including corrections beyond the
dipole approximation, H1st in Eq. (7), and the approximate
versions Henv and HD,env, in Eqs. (15) and (19), respectively.
The relativistic treatment is partly motivated by the fact that
our calculations are performed in a domain of laser-field
parameters close to the relativistic regime, i.e., for field
intensities so strong that the corresponding classical electron
would attain velocities in the order of 10% of the speed of
light. Moreover, we are interested in confirming that neglecting
the spatial dependence of the carrier remains valid also
in the relativistic framework (granted that relativistic correc-
tions are small). The corresponding results obtained with a pure

1Details on the method and implementation is to be presented
elsewhere.

FIG. 1. The total ionization probability as a function of the laser
peak intensity (given in electric-field strength). The hydrogen atom
was exposed to a 15-cycle sine-square-shaped XUV laser pulse of
angular frequency ω = 3.5 a.u. The results are obtained with four
different theoretical frameworks. The time-dependent Schrödinger
equation (TDSE) is solved within the dipole approximation (8) (solid
blue) and for a Hamiltonian including the first-order expansion of
the full nondipole interaction (7) (thin solid black). The envelope
approximation is shown both when applied to the TDSE (15) (dashed
red) and the time-dependent Dirac equation (TDDE) (19) (green
diamonds).

dipole interaction Hamiltonian, cf. Eq. (8), are also included
in order to demonstrate that the dipole approximation actually
breaks down.

Figure 1 shows the ionization probability as a function
of electric-field strength for the four different Hamiltonians
mentioned above. The central angular frequency of the field
is here ω = 3.5 a.u. (where “a.u.” denotes atomic units),
corresponding to a photon energy of 95 eV, and the pulse
profile is described by a sine-squared envelope, cf. Eq. (3), and
with a duration of 15 optical cycles, which corresponds to 652
as. The local maximum of ionization, when the electric-field
strength is roughly equal to 11 a.u., and the following decrease
of ionization for increasing field intensity are predicted by all
the interactions considered, and the phenomenon is known as
atomic stabilization (see, e.g., Refs. [30–32]). Furthermore,
it is clearly seen that the dipole approximation breaks down
at around E0 = 30 a.u. More importantly, we also see that
neglecting the spatial derivative of the carrier leaves the
results virtually indistinguishable from the full solution; both
the approximative Hamiltonians (15) and (19) provide the
correct (nonrelativistic) total ionization probabilities within
the Schrödinger and Dirac pictures, respectively.

Turning to differential observables, Fig. 2 shows the energy-
differential probability distribution for the ionized electron.
Here, the calculations are performed with the same laser pulse
parameters as used in Fig. 1 and for the electric-field-strength
value E0 = 45 a.u. The probability distributions obtained
when modeling the dynamics with the three Schrödinger
Hamiltonians (7), (8), and (15) are compared with each other.
The figure clearly illustrates that solving the time-dependent
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FIG. 2. Differential probability distribution for the photoelectron
as a function of kinetic energy. Here, the laser field parameters are
the same as in Fig. 1 with the field strength E0 = 45 a.u. The energy
distribution is shown for three different interactions used to model
the laser-atom dynamics in the time-dependent Schrödinger equation.
First, the dipole-approximation results are shown in a solid blue line
whereas the corresponding predictions by a beyond-dipole interaction
to first order is depicted in a thinner solid black line. Lastly, the results
obtained by applying the envelope approximation, i.e., Eq. (15), are
drawn in a dashed red line. The energy distributions are shown on
absolute (upper) and logarithmic (lower) scale. The inset in the upper
panel is a closeup of the low-energy region.

Schrödinger equation with the Hamiltonian defined by Eq. (15)
provides the correct ionization probability differential in
energy, i.e., the beyond-dipole results obtained with the
simplified interaction are in quantitative agreement with the
corresponding calculations performed with the full correction
term in Eq. (7). We would like to remark that, in agreement with
previous findings [7,19,33], the most substantial difference
between the dipole and nondipole results is that, in the
latter case, a larger differential yield in the proximity of the
ionization threshold is observed, corresponding to the emission
of low-energetic electrons (see the inset in the upper panel of
Fig. 2). This is due to the nonadiabatic turn on and turn off
of the laser pulse and the corresponding large spectral width
associated with relatively short pulses. As the pulse length
T increases, the pulse becomes increasingly monochromatic
and nonadiabatic effects become of less importance, simply
due to the smooth temporal variation of the pulse envelope
[6,18,23]. This is consistent from the point of view of the

FIG. 3. Angular-resolved probability distributions for the final
continuum state obtained after the conclusion of the laser pulse used in
Fig. 1 for the field strength E0 = 45 a.u. Here, the axis of polarization
is oriented horizontally whereas the propagation direction is denoted
by the vertical black arrows. The panels correspond to, from the
top to bottom, the dipole approximation (8), beyond the dipole
approximation to first order, Eq. (7), and the envelope approximation
(15).

envelope approximation, in which the nondipole interaction is
proportional to f ′(t).

Figure 3 shows the corresponding angular-differential
probability distributions for the same laser-atom interactions
as shown in Fig. 2. The horizontal lines indicate the axis
of polarization whereas the vertical black arrows point in
the propagation direction of the laser. Here the panels show,
in descending order, the results obtained by solving the
Schrödinger equation with the Hamiltonians (8), (7), and
(15), respectively. In the dipole description of the interaction,
the electrons are emitted along the axis of polarization only,
whereas in the beyond-dipole case, electrons are also ejected in
the counterpropagation direction. The corresponding structure
in the angular distribution, which is known as the nondipole
lobe [8,34,35], is explained by a process in which the electron
experiences a temporary push in the laser propagation direction
due to the radiation pressure caused by the combined effort
of the electric and magnetic fields. Then, when the laser
pulse ramps off at the end of the interaction, the (displaced)
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electron falls back in the Coulomb potential of the bare nucleus
and scatters off it in the backward (counterpropagation)
direction. Therefore, a nonadiabatic turn off of the laser field
is expected to play a significant role in the beyond-dipole
ionization mechanism. The envelope approximation (lower
panel) and the reference Hamiltonian including the carrier
effects (center panel) both give rise to angular distributions
which do include the nondipole lobe. Moreover, the results
are in fact essentially identical, indicating that, also here,
the envelope approximation accounts for the dominating
ionization dynamics beyond the dipole approximation.

Our analysis suggests that the validity of the approximations
(15) and (19) prevails as the central frequency ω increases
indefinitely. The findings shown in Fig. 4 support this. Here
we plotted the ionization probability as a function of ω for
the electric-field strength E0 = mωc/(10e), and for a pulse
duration corresponding to 10 optical cycles in all cases.
Because eE0/(mω) is the maximum speed attainable for a free
classical electron exposed to the present laser field, this choice
ensures only small relativistic corrections—if any, while the
field remains strong enough to ensure significant corrections to
the dipole approximation. Again we see that the approximate
Hamiltonian (15) provides the same ionization probabilities
as the full one, Eq. (7), for all frequencies—including when
the photon energy �ω approaches the ionization potential at
0.5 a.u. The same is the case when it comes to the ionization
yield obtained with the Dirac equation, with the exception of
a small upward shift which is seen in the high-ω regime. This
is not surprising considering that the approximation has been
implemented in slightly different ways for the relativistic and
the nonrelativistic cases, cf. Eqs. (19) and (15), as discussed
in Sec. II B.

Because the dipole interaction with linearly polarized light
only drives transitions between states with the same azimuthal
quantum number (�m = 0) and our initial state is the ground
state, the population of m �= 0 states serves as an overall
measure of the significance of the correction to the dipole
approximation. Moreover, the population in different angular
channels may be studied directly in the time domain. In Fig. 5
the population in all m �= 0 states is plotted as a function of
time both including and excluding the spatial dependence of
the carrier. In this case, we applied a pulse shape given by

f (t) = (e−σT/2 + 1)2

(eσ (t−T/2) + 1)(eσ (−t−T/2) + 1)
. (21)

For small σ this envelope provides a Gaussian-like pulse shape,
cf. Eq. (4), while it becomes increasingly rectangular in the
limit σ → ∞. For intermediate σ values it is trapezoidal like,
albeit with a continuous derivative. Figure 5 shows the total
population in m �= 0 states for three different choices of σ .
While Eq. (15) gives rise to the correct final probabilities at
the end of the interaction, the corresponding wave functions
differ from the original ones at intermediate times. Specifically,
the full interaction provides an m �= 0 population which is
highly oscillatory during the laser-atom interaction, while the
approximation does not include these oscillations. As such,
Eq. (15) provides a rather stable frame.

For trapezoidal-like and near-rectangular envelopes, such
as the one in the lower panel of Fig. 5, the envelope only

FIG. 4. The total ionization probability as a function of the laser
angular frequency. The field intensity is adjusted so that the quiver
velocity of the free (classical) electron is kept fixed at 10% of the
speed of light for all the calculations. The pulse is described by
a sine-squared envelope function lasting 10 optical cycles. Three
different interactions within the time-dependent Schrödinger equation
(TDSE) are shown and compared to the results obtained with
the time-dependent Dirac equation (green diamonds). The TDSE
Hamiltonians include the dipole approximation (8) (solid blue), the
dipole interaction and the full first-order nondipole correction (thin
solid black) (7), and the envelope approximation applied to the latter
(dashed red), Eq. (15). The probabilities are shown on absolute
(upper) and logarithmic (lower) scale.

has a nonvanishing derivative towards the ends. Thus, any net
population shifts induced by interactions beyond the dipole
approximation tends to occur during the more-or-less harsh,
nonadiabatic ramp on and ramp off of the radiation pressure,
as is clearly seen in Fig. 5—in particular in the lower panel.
This is consistent with a physical picture in which the radiation
pressure in the propagation direction is more-or-less constant
at intermediate times, cf. Eqs. (12) and (13). The nondipole
transitions turn out to be larger towards the end of the pulse
than at the onset for all the panels in Fig. 5, which indicates
that the dominating dynamics take place when the radiation
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FIG. 5. Population in all m �= 0 states as a function of time. Here,
the photon energy is 3.5 a.u., and the laser intensity corresponds to
E0 = 45 a.u. at maximum. The plots show the results obtained with
both the full first-order nondipole interaction Hamiltonian (7) (thin
black lines) and the envelope approximation (15) (thick red lines).
The dotted black lines depict the shape of the laser pulse, f (t). Three
different envelope functions described by Eq. (21) with σ = 0.4 (top
panel), σ = 0.8 (center panel), and σ = 1.6 (bottom panel) have been
used to model the laser. In all three cases the pulse duration parameter
T corresponds to 7.5 optical cycles.

pressure suddenly ramps off, i.e., when the displaced electron
is pulled back toward the nucleus.

The fact that fluctuations in the populations seen in Fig. 5
vanish in the envelope approximation could suggest that this
approximation is numerically favorable when it comes to the
time propagation. Indeed, with the Arnoldi-type propagator, a
slight speedup is found due to the fact that a smaller dimension
of the Krylov subspaces is required. However, as the rather
rapid dipole dynamics still needs to be resolved, this advantage
is minor.

FIG. 6. Energy distribution of the ejected photoelectron after a
40-cycle laser-atom interaction. The photon energy and the field
intensity are set to �ω = 3.5 a.u. and E0 = 45 a.u., respectively. The
distributions are drawn around the one-photon absorption resonance
E ∼ �ω − Ip , and the different curves pertain to different values
of lmax. The upper panel shows comparison between fully converged
dipole, beyond-dipole (1st) and envelope approximation (Env) results.
The distribution obtained within the dipole approximation features
oscillations which vanish when the spatial dependence of the external
field is included. The second and third panels show the results as
obtained with the first-order nondipole expansion (1st) and with the
envelope approximation (Env) at different values of lmax, respectively.

A significant numerical advantage is seen, however, when
the convergence in terms of partial waves is considered.
Figure 6 shows the photoelectron distribution for energies
around the first photoionization resonance following an inter-
action with a laser pulse of frequency ω = 3.5 a.u. and electric
field strength E0 = 45 a.u. Strong oscillatory fringes within the
dipole approximation are usually observed in the photoelectron
emission spectra (cf. upper panel Fig. 6). These can be traced to
the interference between wave packets ejected during the laser
ramp on and ramp off [25,36,37]. However, the displacement
of the electronic wave packet along the propagation direction,
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induced by interactions beyond the dipole approximation,
partially prohibits this interference, resulting in a smoother,
less-oscillatory distribution. The photoelectron spectrum is
thus highly sensitive to the number of partial waves used in
our truncated expansion and, as such, the highest angular-
momentum number lmax used in the expansion provides an
ideal quantity to probe. The presence (dipole) and absence
(beyond-dipole) of oscillatory fringes is more pronounced for
longer laser exposure times. Therefore, we have increased the
pulse duration to 40 optical cycles in order to demonstrate a
very different convergence behavior. In the intermediate and
lower panels, the results obtained with the Hamiltonians (7)
and (15) are shown for different values of lmax. In the two cases,
the shape of the distributions are fully converged at lmax = 50
(exact Hamiltonian) and lmax = 20 (envelope Hamiltonian),
indicating significantly better numerical performance in the
latter case. This is mainly due to the fact that the envelope
approximation effectively reduces the maximum strength of
the beyond-dipole interaction by one half, which might seem
like a minor advantage considering that the dipole interaction is
an order c stronger. However, the asymmetric characteristic of
the nondipole field causes a nonzero displacement of the wave
packet, which in turn makes computations more demanding
with respect to convergence criteria, despite the comparably
weaker interaction strength.

IV. CONCLUSION

We have studied the photon-induced breakup of the hy-
drogen atom in a wide range of high-frequency super intense
fields by solving the time-dependent Schrödinger and Dirac

equations including the laser-atom interaction beyond the
dipole approximation. We showed that, for a large class of
examples involving laser ionization, the spatial dependence of
the envelope function of the laser pulse provides practically
all corrections to the dipole approximation. Based on the
numerical evidence and a more analytical discussion regarding
the correction terms to the dipole approximation, we propose
a simplified beyond-dipole interaction with a temporal factor
dependent only on the laser pulse profile and its time derivative.
This simplification provides both an interpretation of the
underlying dynamics as well as a numerically favorable
scheme. It is seen that any net contribution to the ionization
dynamics beyond the dipole approximation tends to occur
predominantly at the onset and at the end of the laser pulse.
Numerical studies suggest that the latter tends to dominate the
former.
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