
Dreistadt: A language enabled MOO for language
learning

Till Christopher Lech 1 and Koenraad de Smedt2

Abstract. Dreistadt is an educational MOO (Multi User Domain,
Object Oriented) for language learning. It presents a virtual world in
which learners of German communicate with their fellow learners,
teachers and native language users in other locations via the Inter-
net. While the original Dreistadt had an artificial command language
for interaction with the system, we have provided it with natural lan-
guage processing capabilities, in order to allow a more seamless lin-
guistic interaction. For this purpose, an NLP interface for controlled
German has been added. The student’s natural language commands
are translated to system internal instructions by a set of syntactic,
semantic and pragmatic analysis tools. The system is capable of han-
dling pronouns and other referring expressions by applying domain
knowledge and includes an inferencing component based on predi-
cate logic.

1 BACKGROUND

A MOO (Multi User Domain, Object Oriented) is a programmable
platform for network based interaction between role players in a vir-
tual world [1]. Like chat programs, MOO-based environments pri-
marily enable the communication between multiple users, but in ad-
dition, this communication is set in an artificial world in which the
players move about and act.

MOOs are typically used for multi-user computer games, but they
are also appreciated as learning environments [4, 3]. There are a
number of so-called educational MOOs, examples of which are the
Lingua MOO at the Dallas University and the MediaMoo at Geor-
gia Tech3. The educational appeal is in the fact that communication
takes place in a virtual game reality which strongly appeals to the
students’ creativity and fantasy. The students participate in a reality
which, though virtual, ideally can be transformed into an integral part
of the students’ inner learning universe [10].

Dreistadt is such an environment for learners of German, and
presents a virtual world resembling a German village. It is imple-
mented in enCore, a Web-based MOO client specifically developed
for eductional purposes [3]. A screenshot of Dreistadt is shown in
Figure 1, where the following four windows are displayed:

1. Icons and menus for object manipulation.
2. Messages from the system and from other users.
3. A graphical and textual representation of the virtual world, its ob-

jects and its status.
4. An area for writing commands and messages to other users.

1 CognIT, Norway, email: till.lech@cognit.no
2 University of Bergen, email: desmedt@uib.no
3 A more comprehensive list of educational MOOs can be found at

http://moolist.yeehaw.net/edu.html

The Dreistadt world appears to the student as a German village
with buildings and rooms in which the students enter, move about, in-
teract with other participants, manipulate objects, and exit. The main
purpose of Dreistadt as a learning platform is to stimulate the com-
munication in German between participants. In this respect, it works
somewhat like a chat room, with the important difference that a chat
room is unstructured, whereas the interaction in Dreistadt is set in a
context defined by the virtual world and guided by assignments to
the students.

The possible movements and actions in this virtual world, carried
out by the student’savatar (role figure), may include, e.g., reading
road signs, going places, exchanging virtual objects with other users,
reading letters, etc. These actions imply the need to communicate not
only with other users, but also with the system itself. In the original
version of Dreistadt, this is achieved by means of a command lan-
guage for navigation and manipulation. An excerpt of an interaction
log in the original version of Dreistadt is shown in Example 1, where
commands to the system are preceded with an asterisk, while calls to
other participants are preceded by an asterisk and a double quote.

(1) #$#mcp version: 2.1 to: 2.1
Till kommt um die toten Augen zu besuchen.

* "Hallo Till!
Du rufst: "Hallo Till!"
Till meint: "Hallo! Ich habe gleiche eine

Literaturvorlesung und..."
Till ruft: "...muss noch den Projektor f ür

den Vrotrag vorbereiten!"
Till gibt Dir den Projektor ’uibpro’.

* schau Projektor
Ich sehe kein "Projektor" hier.

* schau uibpro

Du betrachtest den Projektor ’uibpro’ ...
<http://cmc.hf.uib.no:7001/3640/>.

* gib uibpro an Till
Du gibst Till den Projektor ’uibpro’.
Till sagt: "hier hast du noch einen Brief"
Till gibt Dir das Dokument ’Brief’.

* "Danke!
Du rufst: "Danke!"

* lies Brief

Du betrachtest das Dokument ’Brief’ ...
<http://cmc.hf.uib.no:7001/907/>.

Vorlesungsplan f ür die n ächste Woche:

Mittwoch und Donnerstag, 18-20,
anschliessend Zeit f ür Gruppen übungen!

(Du bist fertig mit dem Lesen.)

* gehe Universit ät
Du betrachtest die Universit ät ...

Communication among students or between student and teachers
is obviously supposed to be in natural German, allowing the teach-
ers to monitor the development of the students’ use of German. Ex-
amples of such interaction are the student’s utteranceHallo Till in
Example 1, and Till’s replyHallo! Ich habe gleiche eine Literatur-
vorlesung und . . . muss noch den Projector für den Vrotrag vorbere-
iten! (Hello! I have right now a Literature lecture and . . . still have to
prepare the projector for the persentation[misspelled]).

In contrast to the natural language communication between users,
any commands to the system had to be given in an artificial command
language in the original Dreistadt. Although this command language
was based on German vocabulary, its syntax was severely ‘crippled’
compared to German syntax, as can be seen from Example 1. Indeed,
commands likeschau Projector(look projector),lies Brief (read let-
ter) andgehe Universiẗat (go university) are equally unidiomatic as
their English counterparts.

The original command language syntax was basically limited to
that in definition 2, where parentheses denote optionality andname
is the name of someone or something in the virtual world.

(2) imperative (name (adverb| particle| preposition name))

The complete absence of function words from this syntax, among
other things, practically prevents the construction of any grammatical
German sentences at all. Moreover, the command language has other
severe restrictions in the semantic and pragmatic domain. While ob-
ject names can be used after verbs, object classes (including hyper-
nyms) cannot be used. In the above Example,schau Projector(look
projector) gives a negative result, but when the projectoruibpro is
mentioned by name, the result is positive. It is also impossible to
refer to objects in other ways than their names, e.g. by means of pro-
nouns or other referring expressions.

Furthermore, commands are basically imperatives. The command
language does not allow for questions, even though the possibility
of question answering would be very useful to the participants, and
even though relevant object properties, e.g. concerning the location
of objects, are in fact technically accessible for this purpose.

Since the choice between the command language and natural Ger-
man is clearly dependent on the addressee, the code switching is not
too difficult for users. Still, it is unfortunate from a pedagogical point
of view, because the student needs to learn two languages at once,
thereby complicating the learning process. Also, there is always a
risk of command language syntax slipping into the student’s conver-
sational German.

2 OVERVIEW OF THE NLP INTERFACE

In order to overcome the limitations outlined in the previous section,
we built a language enabled version of Dreistadt where the artifi-
cial command language was substituted by an appropriate subset of
German. In the new system, students can use correct and idiomatic
natural language in their interaction with the system as well as with
other human participants. The assumption is that this will increase
the language learning effect.

This change required new linguistic capabilities on the part of the
system, not only for analyzing German sentences syntactically, but
also for their semantic and pragmatic representation, and finally their
translation to system internal instructions that access or manipulate
properties of objects in the Dreistadt domain.

Some of the challenges of our endeavour are represented by Ex-
amples 3–5 which were included in the controlled German for the
language enabled version. Among the syntactic challenges are the
analysis of questions (Example 3) and imperatives (Example 4), with
a variety of complementation patterns and word orders. A seman-
tic challenge is represented by distinguishing between concrete ob-
jects and their classes, as in Examples 3 and 4, whereTestarchivis
the name of a specific object andArchiv refers to any object in the
generic class of ‘file cabinets’. One of the pragmatic challenges is the
handling of anaphoric pronouns as in Example 5.

(3) Liegt das Buch im Testarchiv? (Does the book lie in the test
archive?)

(4) Lege das Dokument in das Archiv. (Put the book in the archive.)
(5) Nimm es aus dem Testarchiv. (Take it out of the test archive.)

We have found other reports of research on language enabled
MOOs in the literature [9, 14, 8], which in our view do not achieve
the same semantic depth as the work in the present paper, as will be
discussed below. Our strategy consists of processing input sentences
by means of the following steps, which in the remainder of the paper
will be described in more detail.

1. Preprocessing: transformation of context objects into lexical items
and database facts.

2. Syntactic processing: chart parsing with a unification based gram-
mar.

3. Semantic and pragmatic processing: transformation of feature
structures into terms and application of inference rules.

4. Postprocessing: transformation from semantic structures into
MOO-instructions by means of an ATN (Augmented Transition
Network).

The interface and the MOO run on different machines, connected
by a data stream in a client-server setup. While the MOO runs on
a Windows NT server, all NLP programs run in Allegro Common
Lisp on a Sun Solaris workstation. The main NLP tools (chart parser
and ATN) were slightly adapted versions of Lisp implementations
described in the literature [2].

2.1 Preprocessing

In the preprocessing stage, the student’s utterance is explicitly tied
to its context, i.e. the objects in the vicinity of the role figure repre-
senting the student. This context includes the role figure’s location
(i.e. virtual room) inDreistadt, as well as all MOO-objects that are
located in the room. Thus a typical context includes a room, and pos-
sibly other players, or things they may have created or found. All
context objects are represented by their unique identifier, which con-
sists of a hash symbol followed by an integer (e.g. #1842 for the
object namedTestarchiv).

Together with thesecontext objects, the utterance is put in a data
stream to the NLP modules. On the NLP side, the first step consists of
the extraction of lexical units from information in the context objects,
as illustrated in Example 6 for the objectTestarchiv. The lexicon is
incrementally extended as objects are created in the virtual world. A
description of lexical features is given in section 3.3.

2

(6) (WORD (TESTARCHIV)
(CAT) = N
(GENDER) = NEUTRUM
(PRE PREDICATE) = NAME
(PRE ARG1) = TESTARCHIV
(PRE ARG0) = (REFERENT))

Furthermore, selected facts extracted from the context objects are
extracted and added to a database which is later used for inference.
In Example 7, object #1842’s class ($Dokumentenarchiv, a generic
document archive), its name (Testarchiv), its location (a room with
object identifier #874) and its gender (neuter) are transformed into
database facts.

(7) ((CLASS #1842 $DOKUMENTENARCHIV))
((NAME #1842 TESTARCHIV))
((LOCATION #1842 #874))
((GENDER #1842 NEUTRUM)))

2.2 Syntactic processing

Input sentences are analyzed with a unification based chart parser
implemented in Lisp [2]. The parser was driven by our PATR-style
[11] unification grammar [13] and lexicon for German. Further de-
tails on the grammar are given in section 3.3. The lexicon consists of
two parts:

• A fixed part that includes function words as well as open class
words with a constant denotation such as the nouns for the generic
object classes in the MOO.

• A dynamicpart, which includes all the nouns in a given context,
based on information from the current Dreistadt context objects.

Since the dynamic lexicon is based on the given context of the user
command, its entries must be automatically generated on the fly. As
mentioned in section 2.1, this is achieved by retrieving the object’s
name and gender from the MOO database, as this information must
be provided upon any object’s creation. Furthermore, noun-specific
semantic and pragmatic information is added to the lexicon entry, as
illustrated in 6.

The parser output consists of two feature structures, one repre-
senting the semantics and one representing a set of presuppositions
concerning the sentence’s meaning. Both of these structures are con-
verted into terms. The sentence in Example 8 gives rise to a semantic
structure represented as a term (Example 9) and presuppositions (Ex-
ample 10). It should be noted that these structures, at this stage, may
contain a number of logical variables (starting with an underscore).

(8) Lege das Buch in das Testarchiv. (Put the book in the test
archive.)

(9) (PUT_IN _505 _4018)
(10) (AND (FIT_IN _505 _4018)

(AND (NAME _505 BUCH)
(NAME _4018 TESTARCHIV)))

2.3 Semantic and pragmatic processing

The semantic structure in Example 9 specifies only that something
(represented by the logical variable505) has to be put into some-
thing else (represented by4018). At the same time, the presupposi-
tions specify a number of conditions that need to be true for what-
ever objects that may instantiate the logical variables. In the presup-
positions shown in Example 10, these objects must be namedBuch

(book) andTestarchiv(test archive) respectively, and we also assume
that the first one must fit into the other one, as specified by theFIT IN
predicate, in order to be put into it.

These conditions are checked against a database of rules and facts
extracted from the context objects in the preprocessing step. Suppose
that there are two objects that match the respective logical variables,
as represented by the variable bindings in Example 11, then these ob-
jects may replace the variables, resulting in an interpretation (Exam-
ple 12), which is a fully instantiated semantic structure (as compared
to Example 9).

(11) ((_505 #2820) (_4018 #1842)))
(12) (PUT_IN #2820 #1842)

2.4 Postprocessing

The final processing step consists of converting the instantiated se-
mantic structure into instructions internal to the MOO system. This
is achieved by an Augmented Transition Network (ATN, [12]) imple-
mented in Lisp [2]. The choice of the ATN formalism was motivated
by the need for flexibility, while linguistic complexity at this level is
limited. For instance, the interpretation in Example 12 was translated
into the instruction in Example 13. The instruction is sent back on the
client-server connection to the MOO, where it is executed.

(13) (@move #2820 to #1842)

3 INFERENCING

An important part of any NLP interface consists of a semantic and
pragmatic component which lend the interface robustness with re-
spect to targeting the user’s intentions. Our approach to this level
of processing is strongly based on inferencing with predicate logic.
This section first discusses how inferencing plays a role in question
answering, then how presuppositions are used in anaphor resolution,
and finally explains how presuppositions are computed with the help
of our grammar.

3.1 Question answering

In contrast to earlier approaches[9, 14, 8], our semantic structures
are based on predicate calculus with logical connectives and quanti-
fied expressions, as depicted in Example 15, which is our semantic
representation of the natural language question in Example 14.

(14) Passen alle Gegenstände, die ins Testarchiv passen, auch in die
Ideenkiste? (Do all objects, which fit in the test archive, also fit in
the idea box?)

(15) (all _x
(fit_in _x Testarchiv)
(fit_in _x Ideenkiste))

Questions are resolved by means of inferencing on a database con-
taining MOO-specific inference rules and facts concerning the ob-
jects currently present in the virtual world. Some rules are given in
Example 16, which specifies that anything of class$thing fits into
anything of class$container, and in Example 17, which specifies that
anything of class$notefits into anything of class$dokumentenarchiv
(document archive). To the extent that all notes are also things, the
question in Example 14 can be answered as true.

(16) ((fit_in _x _y)
(class _x $thing) (class _y $container))

3

(17) ((fit_in _x _y)
(class _x $note)
(class _y $dokumentenarchiv))

We use logical inference based on standard backward chaining; in
other words, inference is goal driven. In order to check the truth of
a term, we attempt to prove it by means of any rules. When a term
matches the conclusion in a rule (which in our notation is the first
element of the rule), we attempt to prove the premises (which in our
notation are the remaining elements of the rule). Only if all premises
are true, the conclusion is considered true. Facts are rules without
any premises.

3.2 Anaphora resolution

The inferencing engine is also extensively used for anaphora resolu-
tion. Whereas some earlier work [9, 14] attempts to achieve resolu-
tion of anaphoric pronouns in a MOO by means of pattern matching
heuristics, taking into account e.g. gender agreement, we employ a
logical inference mechanism on all referring expressions, not only
pronouns, but also e.g. nominalized adjectives as in Example 18.

(18) Nimmden rotenaus der Sammelkiste. (Takethe red oneout of
the collecting box.)

(19) (TAKE _8532)
(20) (AND (TAKEABLE _8532)

(AND (ROT _8532)
(AND (LOCATION _8532 _10012)

(NAME _10012 SAMMELKISTE))))

The analysis of the sentence in Example 18 produces a semantic
structure (Example 19) and presuppositions (Example 20). While the
semantic structure does not specify more than that something needs
to be taken, the presuppositions specify that the object to be taken
needs to be ‘takeable’ as well as red, and that its location is something
with the nameSammelkiste(collecting box). When these conditions
are satisfied, the logical variable in Example 19 can be instantiated.

In the case of pronouns, which are marked for gender in German,
a gender match is included as one of the presuppositions, as for Ex-
ample 21 which obtains a semantic structure (Example 22) and a set
of presuppositions (Example 23). Apart from this gender matching,
anaphora resolution in our NLP interface can be called knowledge
based, in the spirit of related work based on domain knowledge and
ontologies [5, 6].

(21) Nimm es aus dem Testarchiv. (Take it out of the test archive.)
(22) (TAKE _326)
(23) (AND (TAKEABLE _326)

(AND (GENDER _326 NEUTRUM)
(AND (LOCATION _326 _1394)

(NAME _1394 TESTARCHIV))))

3.3 Presupposition-oriented grammar

In order to support the extensive inferencing possibilities, the gram-
mar and lexicon need to generate the appropriate presuppositions.
Since our unification grammar is a lexicalized grammar, this is cru-
cially achieved by including appropriate features in the lexicon. By
way of example, consider the lexical entry fornimm(take) in Exam-
ple 24.

(24) (Word (nimm)
(cat) = V
(sem predicate) = take
(sem arg1) = (arg1)
(pre predicate) = takeable
(pre arg0) = (arg1))

Besides specifying the predicate and first argument in the seman-
tic structure, the lexical entry in Example 24 also specifies part of
the presuppositions in Example 23, namely that the first argument of
the verbtakeshould also be the first argument (i.e. arg0) of a predi-
catetakeable, in other words, whatever needs to be taken should be
‘takeable’.

Another case in point is the lexical entry forBuch(book) in Exam-
ple 25, which, besides providing morphosyntactic features, specifies
that a presupposition be constructed with the predicatename, and
with the referent (designating the MOO item, e.g. #543) andBuchas
arguments, in other words, the referent should be a book. An illustra-
tion of the use of this presupposition is given in Example 10.

(25) (Word (Buch)
(cat) = N
(gender) = NEUTRUM
(pre predicate) = name
(pre arg1) = Buch
(pre arg0) = (referent))

The assembly of the complete semantic structures and presupposi-
tions is executed at the levels of the phrase and the clause. In Example
27, we find the rule for the simple imperative sentence in Example
26. Besides a description of the phrase constituents and their mor-
phosyntactic features, this rule contains the semantic representation
of the imperative phrase(IMP sem) , which in this case is identical
with (V sem) , i.e. the verb’s semantics (as shown in Example 24).

(26) Nimm das Buch! (Take the book!)
(27) (Rule (IMP -> V NP)

(IMP cat) = IMP
(V cat) = V
(NP cat) = NP
(NP case) = akkusativ
(V arg1) = (NP referent)
(IMP sem) = (V sem)
(IMP pre connective) = and
(IMP pre prop1) = (V pre)
(IMP pre prop2) = (NP pre))

Furthermore, the rule in Example 27 provides features that provide
for the assembly of the corresponding presupposition(IMP pre) ,
which is composed of(V pre) , i.e. the verb’s presupposition infor-
mation, and(NP pre) , i.e. the NP’s presupposition information,
combined with the logical connectiveAND. This ultimately leads to
the presupposition feature structure as shown in Example 28 which
is transformed into a term (Example 29).

(28) ((CONNECTIVE AND)
(PROP1 ((PREDICATE TAKEABLE)

(ARG0 _2348)))
(PROP2 ((PREDICATE NAME)

(ARG0 _2348)
(ARG1 BUCH))))

(29) (AND (TAKEABLE _2348) (NAME _2348 BUCH)

4

4 DISCUSSION AND CONCLUSION

In conclusion, we have built a natural language enabled version of the
MOO-based Dreistadt virtual world. The interface language consists
of controlled German, which is analyzed at syntactic, semantic and
pragmatic levels. The subset of German which the system is capable
of handling can be used to give instructions in the Dreistadt world
and ask questions about objects. Although the system’s natural lan-
guage capabilities cover only a fraction of natural German, we claim
that our effort is worthwhile for a number of reasons.

We have demonstrated the feasibility of enhancing a MOO with
natural language. We could identify a subset of German that natu-
rally fits the needs of interaction in Dreistadt, because the need for
navigation and manipulation in the virtual world is limited to such
an extent that the interface language can be equally limited. The re-
stricted context of the MOO allows us to explore the benefits of using
natural language without facing the burden that unrestricted dialogue
would otherwise represent.

Although the domain can thus be controlled, we have shown that
challenges for natural language interaction in a MOO are far from
trivial. For one thing, the frequent creation or discovery of new ob-
jects in the virtual world implies that the lexicon must be highly ex-
tensible, as also clearly recognized by others in this research area [9].
We have solved this by generating new lexical entries on the fly as
needed during our preprocessing stage for each new sentence analy-
sis.

Another challenge we have tackled consists of the user’s refer-
ences to the multitude of objects which are typically present in the
virtual world. This requires a solid treatment of quantifiers, anaphors,
etc. In these respects, we found that educational MOOs are a highly
interesting application of language-enabled educational systems. We
claim that we have gone further than any other known research in our
semantic and pragmatic analysis of MOO user input, which is crucial
for an adequate interpretation of user intentions.

We have built our NLP interface on a platform largely based on
textbook components [2] which we have adapted and supplemented
with our own grammar, lexicon, inference rules, and pre- and post-
processing. The results seem to indicate that by using tools based on
well proven approaches and provided with appropriate linguistic and
domain information, it is possible to build good mechanisms for in-
terpreting, and ultimately achieving, the user’s intentions in this kind
of context.

Not only does our new interface offer the benefit of naturalness,
it also extends the functional capabilities of interaction. It is now
possible to ask questions about objects in the virtual world, whereas
the artificial command language did not allow for any queries. Also,
it is now possible to refer to classes of objects rather than just to
individual named objects.

We believe that in with respect to referring expressions, our in-
ference based approach is more sophisticated than work previously
reported for MOOs [9, 14, 8]. However, the problem of anaphor res-
olution is recognized as a complex one, and our approach takes into
account only the domain context but not the discourse context. Al-
though an evaluation of the accuracy of our anaphor resolution in
actual use has not been undertaken, we know that it has limitations.
A more complete approach to anaphor resolution needs to take into
account a variety of factors including discourse factors [7].

Besides the fact that coverage could be extended further, an obvi-
ous functionality currently lacking is the generation of natural lan-
guage output. While it is possible to ask questions, the formulation
of answers is presently limited to quite simple responses. Although

this is often sufficient, a more sophisticated interaction is required in
cases where, e.g., several possible referents are found for a referring
expression by the user. Indeed, discourse management and dialogue
strategies in general are missing from the system, since our work has
been strongly focused on the analysis side.

Although this paper mainly presents the computational linguistics
aspects of our work, it has also been driven by pedagogical motiva-
tions. We think that incorporating this natural language interaction
mode — rather than using an artificial language — may be pedagog-
ically desirable, especially in language learning systems. However,
any such pedagogical effects remain to be tested; at this point we lay
claim only to having created a system that will allow such testing.
Our NLP extension of Dreistadt is operational and has been actively
used by Norwegian learners of German at the University of Bergen,
who looked at it favorably and were mainly critical of the somewhat
slow response times, which are an implementation issue.

We do have a number of hypotheses concerning the reception and
benefits of the system over a longer time span. On the one hand,
we predict a synergy effect from the students using natural language
both with the system and with other human users. This should mani-
fest itself in better learning curves and a lack of command language
artifacts in the student’s conversational German. On the other hand,
we fear that students will at times provide input that goes beyond
the system’s capabilities, and will in those cases be disappointed. In
some cases, students may actually prefer an artificial command lan-
guage to writing fully grammatical German, as an easy way out, even
if it may not be to their educational benefit.

ACKNOWLEDGEMENTS

We would like to thank Carsten Jopp and Daniel Jung for provid-
ing an opportunity to work with Dreistadt and Sindre Sørensen for
technical help. The parser, semantic processing and inferencing are
based on Lisp programs written by Gerald Gazdar and Chris Mellish
[2] and adapted by us.

REFERENCES
[1] Pavel Curtis, ‘Not just a game: How lambdamoo came to exist and

what it did to get back at me’, inHigh Wired, eds., Cynthia Haynes
and Jan Rune Holmevik, University of Michigan Press, (1998).

[2] Gerald Gazdar and Chris Mellish,Natural Language Processing in
LISP, Addison-Wesley, Reading, 1989.

[3] High Wired, eds., Cynthia Haynes and Jan Rune Holmevik, University
of Michigan Press, 1998.

[4] Carsten Jopp, ‘Reell læring i virtuel by. bruk av virtual-realty-
omgivelser i (spr̊ak)-læringen’, inIKT og læring i humanistisk perspek-
tiv, ed., Carsten Jopp, Cappelen, (2001).

[5] Till Lech and Koenraad de Smedt, ‘Enhancing semantic annotation
through coreference chaining: An ontology-based approach’, inPro-
ceedings of the 5th International Workshop on Knowledge Markup
and Semantic Annotation (SemAnnot 2005) at the 4rd International
Semantic Web Conference (ISWC 2005), eds., Siegfried Handschuh
and Thierry Declerck, CEUR Workshop Proceedings, Aachen, (2005).
Technical University of Aachen.

[6] Till Lech and Koenraad de Smedt, ‘Ontology extraction for coreference
chaining’, in Proceedings of the Workshop on Anaphora Resolution,
Mjølfjell, Norway, September 28-30, 2005, (forthcoming).

[7] Ruslan Mitkov, ‘Robust pronoun resolution with limited knowledge’,
in Proceedings of the 18th International Conference on Computational
Linguistics, (1998).

[8] Doug Orleans, ‘Natural language processing for multi-user virtual
worlds’, Project report, Dept. of Computer Science, Northeastern Uni-
versity, (1998).

[9] S. Rochefort, V. Dahl, and P. Tarau, ‘Controlling virtual worlds through
extensible natural language’, inAAAI Symposium on NLP for the WWW,
Stanford University, CA, 1977, (1997).

5

[10] Tor Jan Ropeid, ‘Studenten, læreren og det elektroniske undervis-
ningsrom’, inIKT og læring i humanistisk perspektiv, Cappelen, Oslo,
(2001).

[11] Peter Sells,Lectures on Contemporary Syntactic Theories, CSLI Pub-
lications, 1985.

[12] Stuart C. Shapiro, ‘Generalized augmented transition network gram-
mars for generation from semantic networks’,American Journal of
Computational Linguistics, 8(1), 12–25, (1982).

[13] Stuart Shieber,An Introduction to Unification-Based Approaches to
Grammar, volume 4 ofCSLI Lecture Notes, CSLI Publications, 1986.

[14] Paul Tarau, Koenraad De Bosschere, Veronica Dahl, and Stephen
Rochefort, ‘Logimoo: An extensible multi-user virtual world with natu-
ral language control’,Journal of Logic Programming, 38(3), 331–353,
(1999).

6

Figure 1. Dreistadt screen

7

