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Abstract 

Autosomal Recessive Cerebellar Ataxia (ARCA) develops as a result of inefficient protein 

turnover and further accumulation of damaged proteins inside the cells. Some of mutations 

associated with ARCA are identified in the STUB1 gene which encodes CHIP (C-terminus of 

Heat shock protein 70-Interacting Protein) as a dimeric co-chaperone and E3 ubiquitin ligase 

protein. Currently, there is limited information available regarding the role of these mutations in 

the pathogenesis of ARCA. This study aims to characterize the effects of six selected mutations 

on the structure and function of CHIP, mainly by the use of in vitro methods.  

Mutant CHIP constructs were created by site-directed mutagenesis, and recombinant proteins 

were subjected to different assays including ubiquitination activity assay, limited proteolysis, 

oligomerization analysis, and circular dichroism spectroscopy. Results indicated that mutations 

N65S and T246M were associated with more severe consequences compared to the rest (E28K, 

K145Q, M211I, and S236T). Impaired Hsc70-ubiquitination activity was observed for both N65S 

and T246M. The N65S mutation resulted in more stabilized and compact protein structure, while 

the T246M mutant presented more flexible and loose structures with a high tendency for 

aggregation. The other mutations investigated were associated with intact ubiquitination activity, 

but showed lower protein stability and loss of some secondary structures, although to a lesser 

extent when compared to T246M.  

Altogether, this study provides insights into the development of ARCA through demonstrating 

the effect of STUB1 mutations in the expression of damaged CHIP proteins unable to participate 

efficiently in the protein turnover system, which may lead to toxic accumulation of abnormal 

proteins and cell death. 
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1. Introduction 

1.1 Protein quality-control system 

Being the chief actors within the cells, proteins are involved in nearly every concept of cellular 

life including shape, structure, biochemical pathways, movement, communication, and signaling. 

Protein functionality requires achieving a stable, defined native structure as well as maintaining 

conformational flexibility. Therefore, all the proteins must be folded correctly after being 

produced by the ribosomes. However, the optimal folded state of the proteome is constantly 

under the effect of changes in the environment such as heat, oxidation, and ultraviolet stress, 

causing subjection to various types of protein misfolding [1]. In addition to this, the high density 

of protein molecules inside the cytosol can increase the likelihood of protein denaturation and 

aggregation [2]. For this reason, a protein quality control system has been designed inside the 

cells to ensure that all the proteins are folded properly and to get rid of abnormal proteins. 

Marques et al. introduced a model called the “Triage Model” to describe this system in 2006 [3].  

 

Figure 1.1.1 Triage model of protein quality control system. The intrinsic signals (red) for interaction 

with molecular chaperones or the components of ubiquitination system are normally hidden inside the 

protein native structure. Under stressful conditions, such as heat or oxidation, these signals are exposed as 

a result of protein unfolding. These areas are then recognized by Hsp70 or Hsp90 molecular chaperones 

which function in collaboration with co-chaperones to refold the protein structure. If the protein cannot be 

refolded in this way, it will be instead targeted for ubiquitination and proteosomal degradation. However, 

the ubiquitinated protein might still have a second chance of refolding with deubiquitination activity of 

isopeptidases. Thus, the efficiency of protein quality control system relies on the competitive relationship 

existing between the molecular chaperones and the ubiquitin-proteasome pathway (UPP). Ub, Ubiquitin.  

This Figure is adapted from [3].
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According to this model, a protein turnover system functions through the interaction between 

molecular chaperones and the ubiquitin-proteasome pathway (UPP). Most of the proteins are 

predicted to have intrinsic signals such as hydrophobic patches hidden in their native 

conformation which can interact with molecular chaperones and ubiquitin-proteasome system 

compartments. Once the protein is denatured, these recognition signals will be exposed to 

molecular chaperones such as Hsp90 or Hsp70 and the protein will be refolded in an ATP-

dependent manner. Those proteins which are not able to be refolded rapidly in this pathway will 

be ubiquitinated and degraded by the 26S proteasome, unless they can be alternatively 

deubiquitinated by isopeptidases once again and have a second chance of being refolded by 

molecular chaperones. Therefore, there is a competitive functional relationship between the UPP 

and molecular chaperones which determines the fate of a damaged protein inside the cell (Figure 

1.1.1) [3-5]. 

 

1.2 Molecular chaperones help to fold/refold the proteins 

The initial folding of proteins necessitates participation of molecular chaperones to help them 

achieve a stable conformation. Some proteins do not interact with chaperones due to the high 

stability of their structure. Yet, about 10-20% of newly synthesized proteins are found associated 

with chaperones once they are out of the ribosome “exit site” [6, 7]. In addition, many proteins 

may suffer damage as a result of environmental stress including oxidative mechanisms and heat 

shock, as well as different mutations in their encoding genes. These proteins are recognized and 

refolded by molecular chaperones in the first level of the protein quality control system. This 

implies the crucial role of chaperones against protein misfolding and aggregation. There are 

several highly conserved families of the so-called “Heat shock proteins (Hsp)” involved in 

protein folding and remodeling. These proteins work as ATP-dependent chaperones together with 

several regulatory co-factors (co-chaperones). The two most well-studied families of the heat 

shock proteins are Hsp (Hsc)70 and Hsp90.  

The family of Hsp70 chaperones represents the central component of the protein quality control 

system, assisting a large variety of protein de novo folding processes in the cell. It has been 

shown that ATP cycles of binding and hydrolysis are essential for the activity of these 

chaperones. In the ATP-bound state, Hsp70 makes short-term interactions with the peptide 

substrate. Yet, upon ATP hydrolysis, a conformational change in Hsp70 structure traps the 
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substrate within the amino terminal Polypeptide Binding Domain (PBD) of the chaperone, 

resulting in longer association of the substrate within the PBD. This allosteric regulation of 

Hsp70 binding affinity is controlled by specific co-chaperones and nucleotide exchange factors 

[8]. 

There are several Hsp70 isoforms present in the cell having significant degrees of sequence 

conservation and overlapped functions. They are mainly detected in the cytosol, but can also 

perform essential functions in endoplasmic reticulum and mitochondria. In spite of similarities in 

their structure and enzymatic activity, these isoforms differ remarkably in the way their 

expression is regulated in each hosting tissue and during different developmental stages. Genome 

sequencing studies confirmed the presence of 17 genes and 30 pseudogenes with a high number 

of mRNA variants that encode Hsp70 isoforms both as organelle-specific and cytosolic 

chaperones. According to these studies, the organelle-specific Hsp70s are generally encoded by a 

single gene while those isoforms existing in the same cytosol are very often encoded by different 

homologous genes. These cytosolic Hsp70s consist of six canonical members including Hsp70-

1a, Hsp70-1b, Hsp70-1t, Hsp70-2, Hsp70-6 and Hsc70.  Some isoforms, including Hsc70 are 

constitutively expressed and play important housekeeping functions in the cell. However, the 

expression of other isoforms such as Hsp70-1a, Hsp70-1b and Hsp70-6 is induced under stress 

conditions. For each type of harsh condition, there are only specific isoforms capable of efficient 

binding to the protein substrates and/or co-chaperons and surviving in the cell, which explains the 

need of the cell for multiple Hsp70 isoforms in a complex organism [9-13]. 

While the Hsp70 chaperones help with the initial folding of the newly synthesized polypeptides, 

the Hsp90 family is involved mostly in the final maturation of proteins. For this, the chaperone 

needs to recognize certain conformations in the client protein rather than the primary sequence. 

Like Hsp70, the activity of an Hsp90 chaperone is regulated by ATP cycles; once the ATP is 

bound, the chaperone achieves a “tense” conformational state functioning as a clamp to hold the 

substrate.  Upon ATP hydrolysis and in the “relaxed” state, the clamp is open and the substrate is 

released [14, 15]. 

Hsp90 is found to be involved in the UPP and protein degradation as well [5]. This finding was 

further supported by the discovery of CHIP (Carboxyl terminus of Hsp70-Interacting Protein) as 

a chaperone-dependent E3 ubiquitin ligase. There are many other proteins that bind to Hsp70 and
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Hsp90 and participate in their functions. These co-chaperones can act by presenting a client 

protein to the chaperones as well as regulating the ATP cycles of binding and release of the 

chaperone in favor of protein folding or disassembly. To interact with chaperones, most of the co-

chaperones adopt one of the two main classes of domains: the “J” domain found in Hsp70 co-

chaperones like Hsp40, and the Tetratrico Peptide Repeat (TPR) domain found in co-chaperones 

interacting with Hsp70 or Hsp90 such as HIP, HOP and CHIP. TPR domain co-chaperones can 

take part in various biological processes due to the additional domains in their structure that 

catalyze different reactions such as ubiquitin ligation which is observed in CHIP [16, 17]. These 

co-chaperones are explained in more detail in Section 1.4. 

 

1.3  Ubiquitin-proteasome pathway mediates protein degradation 

As an ultimate mechanism to ensure quality control of proteins, the cell degradative machinery is 

designed to target damaged proteins for destruction after being labeled by ubiquitin in an 

enzymatic conjugating cascade. This process can be part of the protein turnover system wherein 

aged proteins are continually being degraded and replaced by new ones, or it can selectively 

destruct those abnormal proteins that have resulted from different types of mutations and folding 

errors. There is a high tendency for misfolded proteins to accumulate and form toxic aggregates. 

Aggregation happens through association of exposed hydrophobic domains that are normally 

buried inside the protein structure. In fact, intracellular aggregates are formed when the 

production of misfolded proteins exceeds the cell capacity for protein degradation. This situation 

can be found in various inherited neurodegenerative diseases in which inclusions lead to cell 

death (for more information on protein aggregation diseases, see Section 1.6). Therefore, 

studying the cellular proteolytic pathways is crucial for understanding the pathogenesis of such 

diseases as well as developing new therapies [18]. 

1.3.1 Ubiquitination pathway 

Ubiquitin is a 76-residue polypeptide which covalently binds to the intracellular proteins in the 

process called ubiquitination (ubiquitylation) and targets them to different fates. During 

ubiquitination, the C terminus of ubiquitin (G76) binds to the Ɛ-amino group of a substrate lysine 

residue by means of the sequential actions of three enzymes: an activating enzyme (E1) uses ATP 

to form a thiol ester with the carboxyl group of G76 and activate ubiquitin. The activated 
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ubiquitin is then transiently carried by a conjugating enzyme named Ubc13 (E2) and finally 

delivered to a ligase (E3) that transfers the ubiquitin to the lysine residue of the substrate it is 

bound to. In such a manner, the ubiquitins are added progressively to the substrate until the 

multiubiquitin chain becomes long enough to be recognized by the proteasome for degradation 

(Figure 1.3.1.1) [19]. 

Studying the ubiquitin fusion degradation (UFD) pathway of ß-galactosidase in yeast, Koegl et 

al. discovered a new type of ubiquitination enzymes, called E4, which is required for the 

assembly of the polyubiquitin chain on the substrate along with the E1, E2, and E3 enzymes [20]. 

Further studies identified E4’s affinity only for those substrates that are modified by ubiquitin. 

Therefore, the E4 activity was proposed to be a specialized type of E3 enzyme activity in which 

the oligoubiquitinated artificial fusion proteins serve as substrates [21]. Today, E4 enzymes are 

known to be required for efficient multiubiquitination and proteosomal targeting of the substrates 

through affecting the linkage between individual ubiquitin molecules in cells being exposed to 

stress conditions [22]. 

 

Figure 1.3.1.1 The ubiquitination pathway and its associated enzymes. The E1 enzyme binds to 

ubiquitin in an ATP-dependent manner (1). The activated ubiquitin is then carried by E2 enzyme and 

delivered to the E3-substrate complex (2). The E3 ligase transfers ubiquitin to the protein substrate either 

directly or indirectly (3). This process continues repeatedly until the resulted ubiquitin chain is long 

enough to be recognized by the 26S proteasome machinery and the protein is degraded (4). Meantime, 

ubiquitins are released by deubiquitination enzymes (DUBs) for further re-use (5). Pi, inorganic 

phosphate, ppi, pyrophosphate; Ub, ubiquitin. The figure is adapted from [23]. 

Studies focusing on the molecular structure of E3 ligase have identified three families of E3 

enzymes. These families act differently while transferring ubiquitin to the substrate: (a) a large 

family of E3 ligases that share the HECT (Homologous to the E6-AP Carboxyl Terminus) 

domain in their structure. HECT is a ~350-aminoacid region containing a highly conserved
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cysteine residue which binds to ubiquitin and forms a thiol ester intermediate, therefore these 

ligases catalyze ubiquitination of the substrate directly. (b) Other E3s share the RING (Really 

Interesting New Gene) finger domain which is a ~70-residue region with a globular conformation 

resulting from the two zinc ions in its structure. Enzymes with RING finger domain do not 

interact with ubiquitin themselves. Instead, they facilitate ubiquitination by bringing the target 

protein close to the E2 enzyme. (c) The last family of E3s shares a modified form of RING 

domain, termed U-box domain, which functions like the RING domain yet lacks the hallmark 

metal-chelating residue in its structure. The U-box domain has a conformation similar to that of a 

RING finger in which the stabilization is achieved by intermolecular forces (electrostatic 

interactions) rather than metal ion coordination (Figure 1.3.1.2) [19, 21].  

                      

Figure 1.3.1.2 Three classes of E3 ubiquitin ligases act differently while transferring ubiquitin to the 

protein substrate. E3 enzymes sharing the HECT domain (left) bind to ubiquitin and participate in the 

delivery process via forming a thiol-ester intermediate. However, the RING finger and U-box domain-

containing enzymes (right) do not interact with ubiquitin directly. Instead, they serve as a scaffold, 

bringing E2 and the protein substrate close together for interaction. These domains differ structurally in 

the presence of Zn
2+

 coordinating sites which are replaced with stabilizing hydrogen bonds and salt 

bridges in the U-box domain. Ub, Ubiquitin. 

A ubiquitin-labeled protein is destined to different fates based on its subcellular localization, and 

the number and topology of the conjugated ubiquitins. For example, polyubiquitin chains 

conjugated by K48-G76 isopeptide bonds often target the substrate to the proteasome, opposite to 

those linked through K63-G76 bonds that are involved in non-proteolytic signaling. In further 

contrast, the substrates marked by one or a few ubiquitins are subjected to endocytosis and 

lysosomal proteolysis [19].   
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1.3.2 The 26S proteasome 

The 26S proteasome is a 2500 kDa multiprotein complex with ~31 different subunits designed 

for protein degradation in eukaryotic cells. Studies using proteasome inhibitors have reported a 

huge number of cellular proteins (80-90%) to be degraded by the proteasome. These proteins are 

first recognized by their covalently attached ubiquitin labels in the 19S regulatory complexes 

located at both ending sites of the proteasome. Thereby, small conformational changes caused by 

the binding of a polyubiquitinated substrate will be used for its unfolding and translocation into 

the core complex known as the 20S proteasome. Proteolytic degradation happens once the 

ubiquitin molecules are released and the protein passes through the barrel-shaped 20S particle. 

Finally, small oligopeptides emerge from the proteasome and these are broken down into single, 

free amino acids by a number of ATP-dependent proteases [24]. 

From a structural point of view, the 20S proteasome of eukaryotes consists of 28 α- and ß- type 

subunits composing four stacked rings surrounding a central cavity. The two innermost ß-rings 

form the central proteolytic chambers with proteolytic sites: two sites that cleave after 

hydrophobic residues, two after acidic residues and two after basic residues; thus cutting most 

types of peptide bond. Substrates can enter the 20S complex passing through the narrow channel 

enclosed by the two outer α-rings. Before entering the channel, proteins need to be fully 

linearized in an ATP-dependent mechanism provided by the 19S proteasome. For this purpose 

there are 6 ATPase rings located in the base part of the 19S regulatory complex. The lid complex 

forms a distal mass on the outermost parts of the proteasome and contains 8 subunits necessary 

for degradation of the ubiquitinated, target protein [25].  

 

1.4  CHIP: a link between the chaperone and proteasome system 

As a co-chaperone with “anti-chaperone” functions, CHIP can interact with Hsp70 and Hsp90 

and inhibit their folding activity through interfering with the ATPase cycles of Hsp70 or 

prevention of Hsp90’s interaction with other co-chaperones [26, 27]. CHIP was identified as a 

TPR domain-containing protein during a human cDNA library screening carried out in 1998 

looking for all the proteins with a TPR domain that might be involved in stress regulation. 

Interestingly, structural analysis showed similarities between the C-terminus of this protein (the 

U-box) and the E3 ligase component of the ubiquitination proteasome pathway, suggesting an 

active role in the ubiquitination of the chaperone substrates for CHIP. In this way, CHIP was 
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discovered as the first ubiquitin ligase that directly associates with molecular chaperones [26-28]. 

As mentioned earlier, those non-native proteins unable to be refolded by chaperones are directed 

to the proteasome for degradation. This action is mediated by the interaction of CHIP with the 

chaperone-substrate complex through which the substrate is prevented from release and labeled 

for degradation by the ubiquitin ligase activity of CHIP. Although the ubiquitination activity of 

CHIP via its U-box domain has been confirmed by several studies, the mechanism by which the 

non-native protein clients are selected for this process is not fully understood. Some studies 

suggest the presence of an intrinsic polypeptide binding activity that enables CHIP to recognize 

and selectively bind non-native protein structures in both chaperone-dependent and –independent 

manners. However, the mechanistic details of how such a selective interaction between CHIP and 

Hsp70 influences substrate binding and release cycles require further investigation [29].   

                

Figure 1.4.1. The ubiquitination activity of CHIP. CHIP mediates ubiquitination of misfolded proteins 

via its U-box domain which binds to E2 ubiquitin ligase and facilitates ubiquitin transfer to the substrate. 

The TPR domain is used to interact with Hsp70, bridging CHIP to the targeted misfolded protein. CHIP 

and the Hsp70 molecular chaperone are subjected to ubiquitination as well. Several hypotheses have 

been put forward to explain this phenomenon. Ub, ubiquitin. Figure adapted from [30]. 

                                                  

The ubiquitination activity of CHIP is not limited to the protein substrate. The molecular 

chaperone to which the substrate is bound and the CHIP itself seem to be subjected to 

ubiquitination as well (Figure 1.4.1). Different theories have been proposed to explain this 

phenomenon. It can be considered as an auto-regulation strategy by which the ubiquitinated 

Hsp70/CHIP molecules are targeted to the proteasome during stress recovery when the non-

native protein substrates are depleted [31]. On the other hand, CHIP-mediated ubiquitination of 
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Hsp70 can be studied regarding the fact that the ubiquitin chains observed on the Hsp70 

molecules are both short and atypical (other than Lys 48 linked), suggesting that these chains can 

act as a targeting sequence during the signaling events rather than recognition signals for the 

proteasome. In this way, by ubiquitination of Hsp70, CHIP directs the chaperone towards a 

particular signaling pathway such as the endosome-to-lysosome trafficking [32, 33]. In other 

studies, CHIP self-ubiquitination is suggested to regulate its ligase activity and the substrate 

recruitment [34]. 

In addition to CHIP, the Hsp70 co-factor BAG-1 is also known to regulate chaperone’s functions 

negatively by acting as a link between the molecular chaperones and ubiquitin/proteasome 

system.  Once BAG-1 binds to the Hsp70-protein complex, its N-terminal ubiquitin-like domain 

is recognized by the proteasome components at the same time, ending up in the facilitated 

transfer of the complex to the proteasome. Besides, the ubiquitinated substrates are promoted to 

become separated from Hsp70 in the presence of BAG-1. Therefore, BAG-1 acts in concert with 

CHIP to target the non-native chaperone substrates for ubiquitination-mediated degradation [26, 

27, 35]. On the other hand, several co-chaperones including HIP, HOP, and Hsp40 assist the 

folding activity of Hsp70 and Hsp90 in different ways. While HIP and Hsp40 increase Hsp70’s 

affinity for substrates by binding to its ATPase domain and stabilizing the ADP-bound 

conformation, HOP promotes cooperation between Hsp70 and Hsp90 in a way that the substrate 

is efficiently transferred between them [17]. Maintenance of cellular homeostasis requires a 

balance between protein folding and degradation pathways. This balance is controlled by the 

folding kinetics of the protein substrates and the activity network of different co-chaperones that 

enable them to associate with the molecular chaperones and assist them in either folding or 

degrading the substrate. The two co-factors CHIP and HOP appear to compete on a common TPR 

acceptor site on Hsp70 and Hsp90. Similarly, HIP and BAG-1 bind to the molecular chaperones 

via their C-terminal competitively. Under normal conditions, the lower intracellular 

concentrations of CHIP and BAG-1, in comparison to the folding-inducing co-chaperones, direct 

the cell condition in favor of protein folding, whereas the over-expression of CHIP during stress 

exposure shifts the balance toward protein degradation [26, 27].  
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1.5 CHIP: structures and interactions 

CHIP is an evolutionary conserved ~35 kDa protein which is highly expressed as a dimeric co-

chaperone in tissues that are active in terms of metabolism and protein turnover, such as brain, 

heart, and skeletal muscle. The significant amino acid sequence similarity existing between 

human and mouse CHIP (98%), makes the latter animal a powerful model for in-depth 

characterization of the structural properties of CHIP and its interacting partners [35]. There are 

two main domains involved in the primary structure of CHIP: a C-terminal U-box domain which 

facilitates ubiquitination of the chaperone substrates through the interaction with different E2 

enzymes, and an N-terminal TPR domain which mediates the interaction of CHIP with Hsp70 

and Hsp90 molecular chaperones. These domains are separated by a central Helical Hairpin (HH) 

region (also termed the central Coiled-Coil (CC) domain) which itself plays an important role in 

the dimerization and stability of the whole protein [36].  In order to become dimerized, the U-box 

domain and the distal segment of the helical hairpin of the two separated CHIP monomers 

interact symmetrically through their strongly conserved amino acid chains, providing the two 

cores of the dimer interface (Figure 1.5.1  A) [37].  

Three pairs of TPR motifs together with an elongated seventh helix form a super helical domain 

with distinct ligand binding grooves at the N-terminal of the CHIP protein. Each TPR motif is 

~34 residues in length and consists of two antiparallel α-helices connected by a short turn. At the 

end of the TPR domain, where it meets the central dimerization region, there is an extended α-

helix packing against the third TPR motif with two different positions. This causes the TPR 

domain to adopt different conformations in each protomer of the homodimeric CHIP (Figure 

1.5.1 B). Two characteristic carboxylate clamps are found within the grooves of the TPR domain 

to interact with the C-terminal EEVD motifs of Hsp70 and Hsp90 selectively. Different amino 

acid residues located upstream of the EEVD motifs in Hsp70 and Hsp90 chaperones explain the 

specificity of their interaction with CHIP (Figure 1.5.1 C) [38-40]. 

At the C-terminal, CHIP is composed of a pair of ß-hairpins continued by two α-helices with 

another hairpin in between.  In contrast to the TPR domain, the structure of the U-box domain is 

similar in both protomers. As an E3 ligase, each U-box domain of CHIP interacts with Ubc13 

(E2) through the association of hydrophobic grooves on the U-box surface and the conserved Ser- 

Pro-Ala binding motifs of E2-conjugating enzymes. However, protein crystallography studies on 
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mouse CHIP have reported an asymmetry in this interaction via the detection of only one 

ubiquitin conjugating system coupled to a dimeric CHIP. In fact, as a consequence of having 

different conformations, the TPR domain interacts with its associated U-box and prevents the 

binding of E2 in one protomer of the CHIP dimer, while there is no obstacle for the interaction 

with E2 in the opposing protomer. Therefore, CHIP displays a “half-of-sites” activity in the 

formation of polyubiquitin chains on its interacting peptides [37, 41].  

 

A. 

 
   

 

B. 

 

 

 

 C.    

         

Figure 1.5.1  Architecture of the CHIP protein homodimer. A) CHIP protein domain and secondary 

structure cartoon of the homodimer from the N (orange) to C (green) terminus: The TPR and U-box 

domains are linked through the central coiled-coil (CC) region (blue). B) Asymmetric disposition of TPR 

domains: The two TPR domains of a dimeric CHIP are located asymmetricaly due to different structure of 

the extended helix 7 (blue) in the two protomers. In one (right), the α-helix is formed straight from Asp 

134 to Arg 155. In the other (left), the polypeptide is broken in two separate α-helices: Asp134-Arg155 

and Glu161-Arg183. C) detailed view of the Hsp90 C-terminal bound to the CHIP TPR domain: The C-

terminal EEVD sequence lies along the TPR channel in both Hsp70 and Hsp90 molecular chaperones. 

Yet, different amino acids located at the upstream side chains interact with TPR domain specifically. All 

the molecular graphics were produced by using PyMOL software (https://www.pymol.org). 

https://www.pymol.org/
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1.6 Protein aggregation and neurodegenerative diseases 

Mutations leading to “loss of function” of a single protein are the most probable cause of 

recessively inherited monogenic diseases [42]. Such mutations can either reduce the activity level 

or the steady-state concentration of the protein inside the cell. There is evidence suggesting that 

missense mutations can accelerate the degradation of a protein in two possible ways. First, they 

can decrease the thermodynamic stability of the protein through enhancing the level of free-

energy inside the native conformation and therefore increase its potency for unfolding. Second, 

these mutations can decrease the rate of correct folding of a protein via affecting its kinetic 

partitioning in a way that smaller amounts of protein enter the correct folding pathway once they 

are synthesized as polypeptide chains [42, 43]. The misfolded or damaged proteins are normally 

removed in cells via the protein degradation system. However, in some cases, when the load of 

unfolded proteins overreaches the amount of available chaperones and cell capacity for protein 

degradation, these proteins start to accumulate and form toxic aggregates inside the cell. This 

notion is supported by the observation of chaperones and components of ubiquitin proteasome 

pathway inside the aggregations. The accumulation of abnormal, damaged proteins appear as a 

type of disorders with gain of (abnormal) function phenotype, named “aggregation disorders” 

[42]. A large number of dominantly inherited disorders and many neurodegenerative diseases can 

develop in this way. The presence of protein aggregates as intra-neuronal inclusions is a common 

morphological feature and the hallmark of all neurodegenerative diseases. These lesions were 

first detected in neurofibrillary tangles and further recognized in the cytoplasm of neurons in 

patients hosting diseases such as Alzheimer’s, Parkinson, and Huntington [44].  

Further studies in this area have provided insight into the pathophysiological importance of 

aggregated proteins: once the protein is unfolded, exposed hydrophobic structures on its surface 

interact with each other in order to minimize the contact area to the hydrophilic environment. 

This, together with other non-covalent and cross-linking interactions, form a protein aggregate 

which increases in size by addition of more proteins to the surface over time. The resulting 

aggregates trigger a set of intracellular reactions ending up in toxicity and cell death [45]. 

Surprisingly, there has been an increasing number of studies over the past few years reporting 

little correlation between the level of protein aggregation and toxicity in cells associated with 

neurodegenerative diseases. According to these studies, the toxicity is related to those soluble 
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misfolded protein intermediates which are produced on the pathway to inclusions and can be 

detected by proteasomes for degradation. Yet, due to the high amounts of ß-sheets in their 

structure, their full entry to the proteasome is resisted, resulting in steric occlusion of the 

proteasome. In this way, protein aggregation is considered as a new mechanism of protein quality 

control system through which unfolded proteins are directed to specific cellular compartments for 

subsequent removal [46-48].  

Different factors are known to be responsible for abnormal protein folding, such as mutations, 

defects in protein biogenesis, environmental stresses including the presence of reactive oxygen 

species (ROS) inside the cell, and aging, which is characterized by reduced capacity of the 

protein quality control system for eliminating misfolded proteins. There are two sets of mutations 

resulting in protein unfolding and subsequent aggregation. Some mutations are believed to 

modify protein structure, and increase its tendency towards misfolding. Expanded CAG 

trinucleotide repeats in Huntington disease (HD), and mutations responsible for the development 

of various conformational diseases such as type 2 diabetes are examples of this type. Other 

mutations are found in genes encoding components of the protein quality control system. For 

instance, mutations in PARKIN (encoding an E3 ligase) are known to be strongly associated with 

Parkinson disease (PD) [48]. CHIP, as another E3 ligase enzyme in the protein ubiquitination 

pathway is subjected to various mutations in the Cerebellar Ataxia Diseases [49]. Cerebellar 

Ataxias (CA) consist of a wide range of inherited and sporadic neurodegenerative disorders in 

which ataxia, or the loss of coordination, is considered as the main phenotype. A general 

classification of the common ataxia subtypes is given in Figure 1.6.1.  

Patients with CA may suffer from balance and gait impairments as well as speech, vision, and 

cognitive disabilities [49, 50].  Repeat expansions in either coding or non-coding parts of the 

genome are responsible for the majority of inherited ataxias. For example, a gene called FXN 

contains a tri-nucleotide sequence (GAA) that is normally repeated between 7 and 22 times. 

However, when defective, the repeat can expand to hundreds. Alleles containing GAA 

expansions of 90-1700 repeats are associated with the development of Friedreich Ataxia (FA) - 

the most common type of Autosomal Recessive Cerebellar Ataxia (ARCA) [51]. Other rare 

ARCA forms are caused as a result of conventional mutations in related genes [51-53].  



 

Introduction 

14 

 

 

Figure 1.6.1 General classification of Cerebellar Ataxia diseases. MSA, multiple system atrophy/ 

OMIM #146500; ILOCA, idiopathic late-onset cerebellar ataxia; DRPLA, dentatorubral pallidoluysian 

atrophy/ OMIM #125370; SCA, spinocerebellar ataxia/ OMIM #164400; HD, Huntington disease/ 

OMIM #143100; HDL, Huntington disease-like/ OMIM #603218; FA, Friedreich ataxia/ OMIM 

#229300; AT, ataxia telangiectasia/ OMIM #208900; AOA, ataxia with oculomotor apraxia/ OMIM 

#208920; ATLD, ataxia-telangiectasia-like disorder/ OMIM #604391; SCAN, spinocerebellar ataxia 

with axonal neuropathy/ OMIM #607250; JBTS, Joubert syndrome/ OMIM #614464 ; AVED, ataxia 

with isolated vitamin E deficiency/ OMIM #277460; CTX, Cerebrotendinous xanthomatosis/ OMIM 

#213700; FXTAS, fragile X-associated tremor/ataxia syndrome/ OMIM #300623; MELAS, 

mitochondrial encephalopathy, lactic acidosis and stroke-like episodes/ OMIM #540000; MERRF, 

myonucleus epilepsy with ragged-red fibres/ OMIM #545000; NARP, neuropathy, ataxia and retinitis 

pignemtosa/ OMIM #551500. 

The focus of this thesis concerns one of these rare ARCA diseases caused by recessive mutations 

in STUB1 encoding the CHIP ligase protein. 

1.7 Autosomal Recessive Cerebellar Ataxia (ARCA): the current state of 

affairs 

The recessively inherited group of cerebellar ataxias is characterized by an early onset and 

gradual worsening of gait and balance with the development of hypotonia or excessive 

clumsiness over months and years. Friedrich Ataxia (FA) with the estimated prevalence of 2-

4/100,000 is known to be the most frequent type of ARCA. This is followed by Ataxia 

Telangiectasia (AT) (1-2/100,000) and early onset cerebellar ataxia with retained tendon reflexes 

(1/100,000) [53, 54]. Many new ARCA genes have been identified recently, owing to the 
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development of the whole exome sequencing (WES) approach. WES is a powerful tool for 

studying those rare Mendelian disorders for which the causative mutations could not be identified 

by conventional methods such as linkage mapping and candidate gene sequencing. Exome 

sequencing allows for a quick, cost-efficient sequencing of the entire protein-coding region of the 

genome through parallel sequencing of an enriched, amplified library of short DNA fragments 

containing approximately 3-10 billion base pairs (Gbp) of data. Candidate causal variants called 

by mapping and alignment of the sequencing data will be filtered subsequently against a set of 

polymorphisms available in public databases, and a minimum number of high priority variants 

will be detected for each individual, among which, mutations leading to dominant and recessive 

disorders are expected to be seen [55, 56].  

 

Table 1.7.1 Classification of ARCA based on molecular pathogenesis. IOSCA, infantile onset 

spinocerebellar ataxia/ OMIM# 271245; SANDO, sensory ataxic neuropathy, dysarthria and 

ophthalmoparesis/ OMIM #607459; MIRAS, mitochondrial recessive ataxia syndrome; ARSACS, 

autosomal recessive spastic cerebellar ataxia of Charlevoix-Saguenay/ OMIM #270550; MSS, Marinesco-

Sjogren syndrome/ OMIM #248800. 
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Different types of ARCAs can be distinguished based on the underlying disease mechanism: (1) 

mitochondrial dysfunction, (2) DNA repair deficiency, (3) mis-localization of synaptic 

myonuclei, (4) altered function of calcium-mediated chloride channels, (5) altered vascular 

trafficking, and (6) protein misfolding and chaperone dysfunctions. Common diseases and 

causative mutations related to each pathway are listed in Table 1.7.1. 

Some of these mutations are considered to be very rare, being restricted to isolated populations or 

single families, like mutations in C10orf2, TDP1, and KIAA0226 [51]. In addition, recessive 

mutations in STUB1 (encoding CHIP) have been discovered lately to cause another subtype of 

ARCA named autosomal recessive spinocerebellar ataxia-16 (SCAR16) in a limited number of 

families. These mutations affect different domains of CHIP, mostly through the substitution of a 

single amino acid in the protein sequence (missense mutations) (Figure 1.7.1) [30, 49, 57-63]. 

 

 
              

Figure1.7.1 STUB1 mutations and corresponding CHIP protein domains. The locations of all the 

mutations associated with SCAR16 are specified. The inserted tables indicate the respective nucleic acid 

and amino acid change for each mutation. This figure is adapted from [49]. STUB1 reference sequence 

(RefSeq) = NM_005861.3. 
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2. Aims of the study 

This project is based on identification of three mutations in STUB1 in two families with SCAR 16 

using a combination of homozygosity mapping and exome sequencing by our group. These 

mutations include p.E28K, p.N656S, and p.K144* [30]. Recent studies have characterized the 

molecular properties of these mutations to some extent, yet more investigations are required to 

achieve a clear picture of changes in CHIP structure and function under the effect of different 

mutations. Thus, the two mutations E28K and N65S together with four additional mutations on 

CHIP were selected for further analysis. The location of each mutation is illustrated in Figure 2.1. 

                             

Figure 2.1 The position of each selected mutation is shown in the 3D structure of the dimeric CHIP 

with colorful spheres. Mutations E28K (dark gray) and N65S (light gray) are located at the TPR domain 

(orange). Mutations K145Q (pink) and M211I (red) are placed at the central domain (light blue) and the 

two last mutations S236T (purple) and T246M (dark blue) are positioned in the U-box domain (green) of 

the protein. This figure was created by using PyMOL software (https://www.pymol.org). 

The overall aim of this study was to characterize the molecular properties of mutations in STUB1 

-a newly identified gene responsible for SCAR 16, following the specific objectives: 

1) To study in vitro ubiquitination activity of the wild type and mutant encoded CHIP proteins. 

2) To check the effect of mutations on CHIP protein susceptibility to limited proteolysis, in 

vitro. 

3) To identify different conformational states of mutant CHIP proteins and compare them with 

the wild type, in vitro. 
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4) To study the secondary structure and thermal stability of CHIP proteins for both wild type 

and mutant forms, in vitro. 

5) To investigate if the expression level of exogenous CHIP is affected by the mutations, in 

cellulo. 
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3. Materials and Methods 

3.1 Site-directed mutagenesis 

The QuickChange® XL Site-directed Mutagenesis Kit (Agilent Technologies, Santa Clara, 

California, USA) was used to introduce three specific mutations including p.K145Q (c.433A>C), 

p.M211I (c.633G>A), and p.S236T (c.707G>C) into the WT STUB1 cDNA (reference sequence: 

NM_005861.3, [64]) in the mammalian expression vector pcDNA3.1-V5/HisB and bacterial 

expression vector pETM-41-MBP/His [30]. Forward and reverse primers (provided by Sigma-

Aldrich, Missouri, USA) are listed in Table 3.1.1. Mutant plasmids for three mutations including 

p.E28K (c. 82C>G), p.N65S (c.194 C>A), and p.T246M (c.737C>T) were previously constructed 

[30] and, therefore, were not included here. 

Table 3.1.1 Mutagenesis primers 

Primer Sequence 

K145Q Forward 5´-GCT-GTT-CCA-GCG-CTG-CTT-CTT-CGC-GAT-TCG-3´ 

K145Q Reverse 5´-CGA-ATC-GCG-AAG-AAG-CAG-CGC-TGG-AAC-AGC-3´ 

M211I Forward  5´AAA-AAG-CTC-GTC-TAT-GTC-CGC-CAT-GTA-CTT-GTC-GT-3´ 

M211I Reverse 5´-ACGACA-AGT-ACA-TGG-CGG-ACA-TAG-ACG-AGC-TTT-TT-3´ 

S236T Forward 5´-CCG-CAT-CAG-CTC-AAA-GGT-GAT-CTT-GCC-ACA-CAG-3´ 

S236T Reverse 5´-CTG-TGT-GGC-AAG-ATC-ACC-TTT-GAG-CTG-ATG-CGG-3 

 

Each tube for a mutagenesis reaction was prepared by adding 1 µl of PfuUltra High Fidelity DNA 

polymerase to 50 µl master mix containing 5 µl 10x reaction buffer, 10 ng plasmid DNA, 125 ng 

forward and reverse primers, 1 µl dNTP mix, 3 µl QuickSolution
TM

 Reagent, and MilliQ water. 

The mutagenesis was carried out by running Polymerase Chain Reaction (PCR) (Gene Amp
®
 

PCR Systems 9700, Applied Biosystems, Thermo Fisher Scientific, Waltham, Massachusetts, 

USA) for the control and sample reactions using the program: 

 

Pre-denaturation 95 °C 1 min  

Denaturation 95 °C 50 sec  

Annealing 60 °C 50 sec x18 cycles 

Extension 68 °C 6 min  

Final Extension 68 °C 7 min  

End 4 °C ∞  
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Following the PCR, the tubes were cooled down to ≤37 °C for 2 min on ice, and the parent DNA 

plasmids were digested by adding 1 µl of diphosphopyridine nucleotidase Dpn I restriction 

enzyme directly to the tubes and incubating at 37 °C for one hour (BINDER Laboratory 

Incubator, Tuttlingen, Germany). The mutant DNA plasmids were further transformed into the 

bacterial competent cells for sequencing and analysis as described in the sections below. 

 

3.2 Transformation of XL10-Gold competent cells 

The XL10-Gold ultracompetent cells were gently thawed on ice and prepared in 45 µl aliquots 

for transformation with the control and mutated vectors. Two µl of XL10-Gold β-

mercaptoethanol mix (β-ME) was first added to the cells, swirling every 2 min during a 10 min 

pre-incubation on ice. The cells were then mixed with 2 µl of DpnI-treated DNA plasmid and 

incubated for 30 min on ice. Transformation was completed by subjecting the cells to a 30 sec 

heat-pulse in a water bath at 42 °C, and followed by a further 2 min incubation on ice. A volume 

of 500 µl pre-heated S.O.C Medium (Sigma-Aldrich) was added to the transformed cells, and 

they were grown at 37 °C for one hour with agitation (Innova 4300 Incubator Shaker, Thermo 

Fisher Scientific). After incubation, 250 µl of the cells were spread on room-tempered 

ImMedia
TM 

KanAgar (for pETM-41 plasmid transfected cells) and ImMedia
TM 

AmpAgar (for 

pcDNA3.1-V5/HisB plasmid transfected cells) LB-agar plates (Invitrogen, Thermo Fisher 

Scientific). Colonies were analyzed and selected after an overnight incubation at 37 °C. 

 

3.3 Colony PCR and sequencing 

A few colonies were selected and screened by sequencing to confirm that they contained 

plasmids with the desired mutations. Each colony was suspended in 10 µl of MilliQ water of 

which 1 µl was used for the PCR reaction. The PCR mixture was prepared in a final volume of 20 

µl by adding 1 µl 360 GC Enhancer (Thermo Fisher Scientific), 1 µl of each forward and reverse 

primer (Sigma-Aldrich) and 1 µl of the colony suspension to 10 µl of AmpliTaq Gold® 360 

Master Mix (Thermo Fisher Scientific). A negative control tube was prepared by adding 1 µl of 

MilliQ water in substitution for the bacterial suspension to the reaction mixtures. The PCR was 

conducted with the following thermocycling conditions:  
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Pre-denaturation 94 °C 10 min  

Denaturation 94 °C 30 sec  

Annealing 58 °C 30 sec x35 cycles 

Extension 72 °C 30 sec  

Final Extension 72 °C 7 min  

End 4 °C ∞  

 

For all the colonies and control reactions, T7 Promoter Primer was used as the forward primer. In 

addition, BGH and T7 Terminator primers were used as the reverse primer for pcDNA3.1-V5/His 

and pETM-41 mutant plasmids, respectively. For primer sequences, see Table 3.3.1. 

After the PCR, 5 µl of each reaction was mixed with 1 µl of DNA Gel  loading Dye (6x) (Thermo 

Fisher Scientific) and  analyzed for the presence of the amplified DNA fragment by agarose gel 

electrophoresis using 1 kbp DNA Ladder (New England BioLabs, Massachusetts, USA) as 

described in Section 3.15.1.  

Colonies with correct DNA size were subjected to DNA sequencing. In this step, the additional 

dNTPs and primers in the reaction tubes were first removed by adding 2 µl illustra
TM

 

ExoProStar
TM

 (Sigma-Aldrich) to 5 µl of PCR product in new sets of tubes using the PCR- 

program: 

 

1 94 °C 15 min 

2 80 °C 15 min 

End 4 °C ∞ 

  

This was continued with another PCR process in which 1 µl of the previous PCR product 

together with 0.5 µl of different internal STUB1 primers covering the area of mutations (Table 

3.1.1) were added to an 8.5 µl mixture containing 2 µl of 5x Sequencing Buffer (Applied 

Biosystems), 1 µl of Big Dye Terminator v1.1 cycle sequencing buffer (Applied Biosystems) and 

MilliQ water. The following PCR-program was used in this step: 

 

Pre-denaturation 96 °C 1 min  

Denaturation 

Annealing 

Extension 

96 °C 

58 °C 

60 °C 

10 sec 

5 sec 

4 min 

 

x25 cycles 

 

End 4 °C ∞   
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Sequencing was performed by the DNA sequencing facility core (Center for Medical Genetics 

and Molecular Medicine, Haukeland University Hospital) using an Applied Biosystems 3730 

capillary sequencer (Applied Biosystems) and the results were analyzed by Finch TV v.1.4.0 

software (Geospiza Inc., Seattle, Washington, USA). 

Table 3.3.1 PCR and cDNA sequencing primers 

Primer Sequence 

STUB1-1F 5´-ATG-AAG-GGC-AAG-GAG-GAG-3´ 

STUB1-1R 5´-CTC-CTC-CTT-GCC-CTT-CAT-3´ 

STUB1-2F  5´-GGA-GAT-GGA-GAG-CTA-TGA-TGA-G-3´ 

STUB1-2R 5´-CTC-ATC-ATA-GCT-CTC-CAT-CTC-C-3´ 

STUB1-3F 

STUB1-4F 

STUB1-4R 

T7 promoter 

T7 terminator 

5´-TTT-CTC-AGG-TGG-ATG-AGA-AGA-G-3´ 

5´-TGG-CTG-GGT-GGA-GGA-CTA-CTG-A-3´ 

5´-TCA-GTA-GTC-CTC-CAC-CCA-GCC-A-3´ 

5´-TAA-TAC-GAC-TCA-CTA-TAG-GG-3´ 

5´-GCT-AGT-TAT-TGC-TCA-GCG-G-3´ 

BGH 5´-TAG-AAG-GCA-CAG-TCG-AGG-3´ 

 

3.4 Plasmid purification 

Those bacterial colonies in which the desired mutations were verified by sequencing were 

selected and grown for plasmid purification using QIAfilter
TM

 Plasmid Maxi Kit (25) (Qiagen, 

Hilden, Germany). The first cultures were prepared by an 8 hour incubation of the bacterial 

colony in 5 ml LB Medium containing one LB Broth 1.1 G Tablet (Sigma-Aldrich) per 50 ml 

MilliQ water and 100 µg/ml kanamycin. Five hundred ml of the same medium was then 

inoculated with 500 µl of the grown culture and incubated overnight at 37 °C with agitation. On 

the next day, bacterial cultures were centrifuged at 4600 rpm for 40 min at 4 °C (Multifuge 3S-R, 

Thermo Fisher Scientific), and the resulting pellets were completely resuspended in 10 ml buffer 

P1 containing 100 µg/ml RNAase A and 1:1000 LyseBlue reagent
®
. The solution was then mixed 

well with 10 ml buffer P2 and incubated for 5 min at room temperature. Using LyseBlue reagent, 

the lysate turned blue after sufficient mixing. In order to precipitate non-plasmid material, 10 ml 

of pre-chilled buffer P3 was added to the lysate and mixed immediately until a homogeneous, 

colorless suspension was appeared. The lysate was poured into the barrel of the QIAfilter 

Cartridge and incubated for 10 min at room temperature. Thereafter, the cap was removed from 

the cartridge and the cell lysate was gently filtered into the QIAGEN-tip that had previously been 
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equilibrated with 10 ml buffer QBT. The tip was washed twice with 30 ml buffer QC, and further 

eluted with 15 ml buffer QF. To precipitate DNA, 10.5 ml room-temperature Isopropanol (Arcus, 

Oslo, Norway), was added to the eluted samples, followed by 1 hour centrifugation at 4600 rpm 

at 4 °C. DNA pellets were then washed with 5 ml room tempered 70% Ethanol (Sigma-Aldrich) 

and centrifuged at 4600 rpm for 30 min at 4 °C. The supernatant was carefully removed and the 

pellets were air-dried for 15 min before dissolving in 250 µl Tris-EDTA (TE) buffer  (1 M Tris-

HCl, pH 8.0, 0.5 M EDTA, pH 8.0). The DNA concentration in the samples was measured using 

Nanodrop ND-1000
TM 

(Saveen Werner, Limhamn, Sweden), and the samples stored at 20 °C.  

Finally, the entire sequence of STUB1 cDNA was verified by DNA sequencing, using the same 

primers as used before (Section 3.3, Table 3.3.1). Sequencing was performed in an Applied 

Biosystems 3730 capillary sequencer at the DNA sequencing facility core at the Center for 

Medical Genetics and Molecular Medicine at Haukeland University Hospital. 

 

For in vitro recombinant protein studies 

 

3.5 Recombinant protein production 

 

3.5.1 Transformation of BL21 bacterial cells with recombinant vectors 

WT and mutant CHIP cDNA in His6-MBP-tagged vectors pTEM-41 were transformed into 

BL21-CodonPlus (DE3)-RP competent cells (Agilent Technologies). One µl plasmid was added 

to 50 µl BL21 cells and incubated on ice for 30 min. In order to increase transformation 

efficiency, 2 µl of a 1:10 dilution of the XL10-Gold β-mercaptoethanol mix (Agilent 

Technologies) had been previously added to the cells and gently swirled for 10 min on ice. The 

cells were then heat-pulsed in a water bath at 42 °C for 20 sec, and placed on ice for another 10 

min. Transformed cells received 450 µl of pre-heated S.O.C medium and were incubated with 

shaking (225 rpm) at 37 °C for one hour. Fifty µl of the cell suspension together with 50 µl of 

S.O.C medium was further plated out on ImMedia
TM 

KanAgar LB-agar plates, and incubated 

overnight at 37 °C. Colonies were analyzed and selected the next day. 
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3.5.2 Recombinant protein expression in BL21 cells (E.coli) 

A start culture was prepared by picking a single colony of transformed BL21 cells and adding it 

to 20 ml LB medium containing 100 µg/ml kanamycin, 0.2% filtered glucose and 50 µg/ml 

chloramphenicol (Sigma-Aldrich). The culture was incubated overnight at 37 °C with agitation. 

Five hundred ml of the same medium was inoculated with 5 ml of the overnight culture and left 

to incubate at 37 °C with shaking until it had grown to 0.6-0.8 OD at 600 nm (measured in a 

spectrophotometer; PerkinElmer, Massachusetts, USA) which is an ideal value of cell density for 

initiating protein expression based on the Qiagen protocol for high-level expression and 

purification of 6X His-tagged proteins. After adding Isopropyl ß-D-1-thiogalactopyranoside 

(IPTG) (GE healthcare, little Chalfont, UK) to a final concentration of 0.5 mM, the cells were 

induced to express recombinant protein during an overnight incubation at 25 °C with agitation 

(Innova 4230 Refrigerated Incubator Shaker, Thermo Fisher Scientific). In order to check 

whether protein expression had been sufficiently induced before proceeding with protein 

purification, 1 ml culture was removed before and after IPTG addition and centrifuged at 3000 

rpm for 2 min (Centrifuge 5424, Eppendorf, Hamburg, Germany). The bacterial pellet was 

further resuspended in 400 µl MilliQ water, and a 10 µl aliquot was analyzed by SDS-PAGE and 

Coomassie blue staining as described in Sections 3.15.2 and 3.16.1. 

 

3.5.3 Recombinant protein purification 

The overnight culture was centrifuged at 4000x g for 45 min at 4 °C. Bacterial pellets were 

dissolved in 5 ml/g wet weight lysis buffer (50 mM NaH2PO4.H2O, 300 mM NaCl, 10 mM 

Imidazole, 20 mM 2-Mercaptoethanol, 0.1% Tween-20, pH 8) and sonicated 10 times (each for 

20 sec with 10 sec cooling time in-between) on ice at 300-400 W power output (VirSonic 300, 

VirTis, Gardiner, USA). Aliquots of 2 ml harvested cells were further centrifuged at 15000x g for 

40 min at 4 °C (Centrifuge 5417C, Eppendorf), and the supernatant was collected. In order to 

purify His-MBP-tagged proteins from the protein pool of the cells, 1 ml of Ni-NTA Agarose 

Nickel Resin (Qiagen, Venlo, Netherlands) was added as a 50% slurry in lysis buffer to the 

supernatant and left rotating for 1 hour (Labinco Beher B.V., Breda, Netherlands). The unbound 

material was removed by centrifugation at 1500x g for 2 min, and the protein-bound resin was 

loaded to the Micro Bio-Spin™ Size Exclusion Spin Columns (Bio-Rad Laboratories, Hercules, 

California, USA) and washed with 1 ml washing buffer (50 mM NaH2PO4.H2O, 300 mM NaCl,
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20 mM Imidazole, 20 mM 2-Mercaptoethanol, 0.1% Tween-20, pH 8) three times. The resin was 

centrifuged at 1500x g after each wash. Finally, 500 µl of elution buffer (50 mM NaH2PO4.H2O, 

300 mM NaCl, 250 mM Imidazole, 20 mM 2-Mercaptoethanol, 0.1% Tween-20, pH 8) was 

added and allowed to pass through the column by gravity to elute His-MBP-tagged proteins. The 

elution step was repeated three times and the protein fractions were collected in separate 

Eppendorf tubes each time. 

 

3.5.4 Determination of recombinant protein concentration  

The protein concentrations were measured on a Nanodrop ND-1000
TM 

using the molar extinction 

coefficient number of 12.29 (mg.mL
-1

.cm
-1

) for MBP-CHIP, decided according to the method of 

Gill and von Hippel [65]. Blank measurements were made with elution buffer, and a minimum of 

two parallel samples were measured for each protein sample. 

 

3.5.5 Recombinant protein buffer exchange 

Using Zeba™ Spin Desalting Columns (Thermo Fisher Scientific), the elution buffer was 

changed to the suitable buffer for protein storage (100 mM Hepes, pH 8, 5 mM DTT, 100 mM 

NaCl, 10% Glycerol). The columns were first put in collection tubes and centrifuged at 1000x g 

for 2 min with twisted-off bottom closures and loosened caps. The storage buffer was next added 

to the columns and centrifuged at 1000x g for another 2 min. This step was repeated 4 times to 

ensure optimal buffer exchange. Finally, the columns were placed in new collection tubes and 

protein samples were applied to the center of the compact resin bed. After 2 min centrifugation at 

1000x g, the MBP-CHIP proteins were collected in the new storage buffer. The concentrations of 

the protein samples were measured once again by Nanodrop ND-1000
TM

 using the storage buffer 

as the blanking solution. 

 

3.6 Separation of MBP tags by TEV protease 

In order to generate CHIP, the Hisx6-MBP-tagged proteins were subjected to TEV protease 

cleavage at 25 °C. The optimal conditions for cleavage was decided between three different ratios 

of MBP-CHIP protein to TEV 10:1, 20:1, 50:1 (by mass), and two different incubation periods of 

1 and 2 hours. For this, the protein concentrations of TEV Protease (produced from pTH24 vector 

with C-terminal His tag, a kind gift from Rune Kleppe, Dept. of Biomedicine, University of
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Bergen) and WT MBP-CHIP fusion protein were first measured on Nanodrop ND-1000

TM
, and 

the proper volumes for each protein solution were decided accordingly. The samples were then 

analyzed for complete cleavage by SDS-PAGE and Coomassie staining as described in Sections 

3.15.2 and 3.16.1. 

 

3.7 CHIP ubiquitination activity assay 

In vitro ubiquitination activity assay was set up for both MBP-fusion and MBP-cleaved CHIP 

recombinant proteins. The reactions were prepared in the total volume of 20 µl, containing 2.5 

µM (MBP-) CHIP (E3), 2.5 µM UbcH5c (E2) (Boston Biochem, Cambridge, Massachusetts, 

USA), 0.05 µM Ube1 (E1, a kind gift from Lise Bjørkhaug Gundersen, KG Jebsen Center for 

Diabetes Research, University of Bergen), 250 µM Ubiquitin (Boston Biochem), and 0.8 µM 

His-HSPA8 (HSC71) Recombinant Human Protein (Life Technologies AS, Thermo Fisher 

Scientific) in an ubiquitination buffer (50 mM Tris HCl, pH 7.5, 0.6 mM DTT, 2.5 mM Mg-

ATP). MilliQ water was added at the end to reach the final solution volume. A one hour 

incubation at 37 °C was allowed to complete each reaction before the samples were placed on ice. 

Protein samples were explored for self- and Hsc70-ubiquitination activities by Western blot 

analysis and SDS-PAGE electrophoresis (see Sections 3.17 and 3.15.2), using primary antibodies 

against CHIP (LS-C137950, LifeSpan Bioscience, Seattle, WA, USA) and Hsc70 (ADI-SPA-

815-F, Enzo Life Sciences, NY, USA), respectively. The goat anti-rabbit IgG-HRP (sc-2030, 

Santa Cruz Biotechnology, Dallas, Texas, USA) antibody was used as the secondary antibody in 

both cases. 

 

3.8 Limited proteolysis assay 

Limited proteolysis assay was carried out using 30 µg of the CHIP recombinant proteins 

separated from the MBP tag by TEV protease beforehand (Section 3.6).  To start proteolysis, 

trypsin was added to each protein sample at a CHIP to trypsin ratio of 1:600 (by mass) in a 100 µl 

reaction mixture (50 mM NaCl, 20 mM Hepes, and 2 mM DTT) and incubated at 25 °C over a 30 

min period of time. The reactions were terminated at different time points (0, 5, 10, 20, 30 min) 

by adding 18.5 µl of the reaction mixture to 5 µl NuPAGE LDS Sample Buffer (4X) (Thermo 

Fisher Scientific), 1.4 µl  NuPAGE Sample Reducing Agent (10X) (Thermo Fisher Scientific), 

https://www.google.no/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&cad=rja&uact=8&ved=0CBwQFjAAahUKEwjfxf3lidnIAhWDjXIKHYKXBWQ&url=https%3A%2F%2Fwww.thermofisher.com%2Forder%2Fcatalog%2Fproduct%2FNP0004&usg=AFQjCNGdSc8FSULPa1miWfC_kvRbtIzkvA&sig2=rIu3ZUxz77ZAAfpylLapaQ&bvm=bv.105841590,d.bGQ
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and 1 µl of the trypsin inhibitor (previously prepared using a protease to inhibitor mass ratio of 

1:1.5) on ice. Finally, all the samples were analyzed by SDS-PAGE and SYPRO Ruby staining as 

described in Sections 3.15.2 and 3.16.2. Full-length CHIP protein gel bands were quantified by 

Multi Gauge v3.0 software (Fujifilm, Tokyo, Japan) and Image Processing and Analysis in Java 

(Image J, National Institutes of Health, Bethesda, Maryland, USA) software. Rates of proteolysis 

were further plotted using Microsoft
®
 Office Excel 2010 (Microsoft

 ®
 Corporation, Redmond, 

WA, USA). 

 

3.9 CHIP protein purification on amylose resins 

To remove MBP tag from the CHIP protein solution, ~400 µg of the WT MBP-CHIP fusion 

protein was tested for amylose purification after being separated from MBP by TEV protease 

cleavage (Section 3.6). The Amylose Resin stored in 20% Ethanol (New England Biolabs) was 

prepared in a 200 µl volume as a 50% slurry with the protein storage buffer (for the buffer 

composition, see Section 3.5.5). The MBP-cleaved protein sample was added to the resins, and 

rotation was performed for 30 min at 4 ˚C. Next, the sample was transferred to the Micro Bio-

Spin™ Size Exclusion Spin Columns, and washed twice with 150 µl storage buffer.  The flow-

through was collected in separate Eppendorf tubes each time for further analysis by SDS-PAGE 

and Coomassie blue staining as described in sections 3.15.2 and 3.16.1. For a complete recovery 

of the flow-through, the resin was centrifuged for 2 min at 1500x g following each wash. 

 

3.10 Purification of CHIP by size-exclusion chromatography  

The purification of CHIP from MBP-CHIP protein solution was tested by size-exclusion 

chromatography using BioLogic DuoFlow
TM 

Medium-Pressure Chromatography System (Bio-

Rad Laboratories, Hercules, California, USA) after it had been separated from MBP tag by TEV 

protease cleavage (see Section 3.6). Two hundred µg of the WT MBP-cleaved CHIP protein was 

injected in a final volume of 600 µl protein solution to the top of the Superdex 200 Increase 

10/300 GL (GE Healthcare) chromatography column, passing through the column at a constant 

flow rate of 0.5 ml/min for 50 min at 4 °C (performed under supervision). To avoid possible 

aggregation, the protein sample was centrifuged for 10 min at 16000 rpm at 4 °C before injection. 

In addition, the column was equilibrated overnight with two column volumes (50 ml) of a buffer
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containing 20 mM NaH2PO4, pH 7.4 before starting separation. The purification process was 

repeated twice using different conditions so that optimized purification among the three trials 

could be achieved. For the second chromatography, the amount of protein was increased by as 

much as 2 mg, with a flow rate of 0.25 ml/min through the column that was equilibrated 

overnight by using another buffer composition (50 mM NaH2PO4, 5 mM DTT, pH 7.2). The last 

chromatography was performed using Superdex 75 Increase 10/300 GL (GE Healthcare) as the 

gel-filtration column material. A buffer containing 100 mM Hepes, pH 8, 5 mM DTT, 100 mM 

NaCl was used for column equilibration, and the same amount of protein (2 mg) passed through 

the column at a flow rate of 0.5 ml/min. At the end of each run, using BioLogic DuoFlow 

software (Bio-Rad Laboratories),  those fractions corresponding to the recorded elution peaks 

were collected and analyzed for protein content with SDS-PAGE and Coomassie blue staining as 

described in Sections 3.15.2 and 3.16.1. 

 

3.11 Oligomerization study of MBP-CHIP fusion proteins  

Different oligomeric states of the WT and mutant MBP-CHIP fusion proteins were studied by 

gel-filtration analysis, using the BioLogic DuoFlow
TM 

Medium-Pressure Chromatography 

System. One mg of MBP-CHIP protein was run on the Superdex 200 Increase 10/300 GL 

chromatography column at a constant flow rate of 0.3 ml/min as described in Section 3.10. The 

column was equilibrated overnight with 50 ml phosphate buffer (20 mM NaH2P04, pH 7.4) in 

advance. BioLogic DuoFlow software was used to monitor the elution peaks at the end of each 

run. Protein fractions associated with the recorded peaks were collected and analyzed using SDS-

PAGE and Coomassie blue staining as described in Sections 3.15.2 and 3.16.1. 

 

3.12 Circular Dichroism (CD) spectroscopy 

The secondary structure and thermal unfolding of MBP-CHIP fusion proteins (WT and mutants) 

as well as MBP protein were monitored with a spectropolarimeter. All the samples were prepared 

at a concentration of 6 µM in a CD compatible buffer containing 10 mM potassium phosphate 

(pH 7.4), and 100 mM sodium fluoride. The buffer was exchanged following the protocol 

provided by Zeba™ Spin Desalting Columns (see Section 3.5.5). Protein concentrations were 

precisely determined by the protein A (280) method, in which the protein absorption at 280 nm was 
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measured in a spectrophotometer and used to calculate the protein concentration (mg.ml

-1
), from 

the following formula:  

C=A/Ɛ (0.1%) * I 

Where Ɛ is the extinction coefficient number for a 0.1% protein solution (1.224 for MBP-CHIP 

and 0.512 for MBP, given by [66]), and I is the cuvette path length in cm. The protein absorbance 

was measured over the range of 220-340 nm, using a 1 cm absorption cuvette (Hellma Analytics, 

Müllheim, Germany), and Agilent 8453 UV-Visible spectrophotometer (Agilent Technologies) at 

a temperature maintained at 20 °C, controlled by a Hewlett Packard 89090A Peltier Temperature 

Controller (Hewlett-Packard, California, USA).  

Far-UV spectra and thermal denaturation analysis were performed for 300 µl of each protein 

sample in a 1 mm quartz cell (Hellma Analytics), using the Spectra Manager software v.1.53.04 

(Jasco Corporation, MD21601, USA) and a J-810 Jasco spectropolarimeter equipped with a 

CDF-426S Peltier element for temperature control (Jasco Products Company, Oklahoma City, 

Oklahoma, USA). The initial nitrogen flow rate of 10 l/min was used to measure the far-UV 

spectra in the wavelength range between 185–260 nm at a scan rate of 50 nm/min at 20 °C. Four 

scans were accumulated for each spectrum and averaged.  The final spectra were recorded after 

buffer-subtraction. Thermal denaturation profiles were obtained at 5 l/min nitrogen flow rate 

through recording the ellipticity at 222 nm as a function of temperature in the range 20–90 °C 

with a scan rate of 40 °C per hour. Online Dichroweb software (Dr. L. Whitmore, University of 

London, London, UK) was used to calculate secondary structure content of proteins from their 

far-UV spectra [67]. Figure 3.12.1 demonstrates a typical thermal unfolding curve for a globular 

protein, consisting of at least one melting transition region (two-state unfolding pattern) where 

the unfolded (U) form of protein is resulted from denaturation of the native (N) protein at a 

temperature reported as transition midpoint temperature or Tm. 

 Figure 3.12.1 Two-state thermal unfolding profile of 

globular proteins. The transition region indicates that the 

native protein unfolds while the temperature is increasing. 

Tm or denaturation midpoint is defined as the temperature at 

which both the unfolded (U) and folded (N) states of protein 

are presented equally at equilibrium. 
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For in cellulo protein studies 

 

3.13 Cell cultivation 

Human Embryonic Kidney 293 (HEK293) (ATCC, Manassas, Virginia, USA) cells were cultured 

in Dulbecco’s modified eagles medium (DMEM) (4.5 g/L glucose) (Invitrogen) containing 10% 

heat-inactivated FBS (Invitrogen) and 0.05 mg/ml of active Gentamycin
®
 (50 mg/ml) (Life 

technologies). The cells were grown at 37 °C with 5% CO2 (Steri-Cycle CO2 Incubator, Thermo 

Scientific); using 25 cm
2
 and 75 cm

2
 Nucleon

TM
 Delta Surface cell culture flasks (Thermo 

Scientific). The media was changed every second day. All cell procedures were carried out in a 

Scanlaf Mars Flowbench (Labogene ApS, 3540 Lynge, Denmark), and all the volumes 

correspond to 75 cm
2
 flasks, if not otherwise stated. 

 

3.13.1 Thawing  

Frozen cells were thawed quickly by placing Cryotubes
TM

 Vials (Nunc
TM

, Thermo Scientific) in a 

water bath (Lauda Aqualine water bath) (97912 Lauda-Konigshofen, Germany) at 37 °C for 2-3 

min. To the thawed cells in a 15 ml Falcon tube, 4 ml growth media was added, and the tube was 

centrifuged (Heraeus Megafuge 1.0R centrifuge) (DJB Labcare Ltd., Buckinghamshire, UK) for 

6 min at 1300 rpm. The cell pellet obtained was resuspended in 5 ml media and transferred to a 

25 cm
2
 flask for further growth. 

 

3.13.2 Splitting 

Cells were passaged into new flasks after reaching 80-90% confluency. The media was removed 

and the cells were detached from the flask surface after a quick wash with 10 ml PBS 

(Invitrogen). Two ml 0.05% Trypsin-EDTA (Invitrogen) was used to trypsinize the cells. After 5 

min incubation at room temperature cells were monitored under the microscope for complete 

detachment. Trypsin was next neutralized by adding 8 ml media to the flask, and resuspended 

cells were transferred into new flasks together with fresh growth media in a total volume of 10 

ml, using various ratios of cells to media. 
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3.13.3 Freezing 

In order to freeze cells, a flask of ~80% confluent cells was washed with 10 ml PBS and 

trypsinized as described in Section 3.13.2. Following trypsin inactivation, the cell suspension was 

centrifuged in a 15 ml Falcon tube for 5 min at 1300 rpm. The pellet was resuspended in 4 ml 

BAMBANKER
TM 

serum-free cell freezing medium (Lymphotec, Inc., Tokyo, Japan) and 

aliquoted into four cryotubes. The tubes were kept at room temperature for 20 min before a long-

term freezing at -80 °C. 

 

3.14 Determination of exogenous protein expression level 

 

3.14.1 Cell transfection 

Transiently transfected HEK293 cells expressing WT and mutant CHIP were prepared by using 

Metafectene. Cells were seeded into Nucleon
TM

 Delta Surface 6-well plates (Thermo Scientific) 

at a concentration of one million cells per ml (10
6
 cells/ml), counted by using a Scepter

TM
 

Handheld Automated Cell Counter (Merk Millipore, Massachusetts, USA). Each well was coated 

with 1 ml Poly-L-Lysine 0.01% solution (Sigma-Aldrich) (1:10 diluted in PBS) and washed with 

PBS three times before seeding. One million cells (1 ml) were added to 1 ml of media (DMEM 

without gentamycin) in each well, and grown overnight at 37 °C. In order to transfect the cells, 3 

µg of each WT and mutant STUB1 pcDNA/V5-HisB plasmid as well as a negative control 

(pcDNA/V5-HisB plasmid without STUB1 cDNA) was mixed with 2 µl Metafectene
®
 Easy

+
 and 

75 µl 1x Easy
+
 buffer (Biontex Laboratories GmbH, Martinsreid, Germany), and incubated for 15 

min at room temperature. Cells were further added by 50 µl of the prepared mixture in each well, 

and grown at 37 °C overnight. The media was changed to the one containing gentamycin 

antibiotic after 4-6 hours to avoid possible contamination. Cells were collected and lysed the 

following day as is described in the next section. 

 

3.14.2 Cell lysis 

Cells were washed twice with 1 ml cold PBS prior to being lysed. Two hundred µl Pierce
® 

RIPA 

buffer (Thermo Scientific) containing 1x Halt Protease Inhibitor Cocktail (PIC) (100X) (Thermo 

Scientific) was used to lyse the cells in each well. Cell lysates were next collected and transferred 
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into Eppendorf tubes by using a cell scraper (TPP Techno Plastic Products AG, Trasadingen, 

Switzerland). This was followed by a 15 min centrifugation at 15000x g whereby a cleared lysate 

was achieved and stored at -80 °C until further use (see the next section). 

 

3.14.3 Determination of cellular protein concentration 

The Pierce
TM 

Bicinchronic acid (BCA) protein assay kit (Thermo Scientific) was used to 

determine the concentrations of exogenously expressed proteins in HEK293 cell lysate fractions 

by measuring absorbance at 562 nm (A (562)). Measurements were performed in 96-well 

microplates (Greiner Bio-One GmbH, 72636 Frickenhausen, Germany) on a Synergy
TM

 HT plate 

reader (Bio Tek Instruments, Inc., VT, USA), using BSA standards and working reagents. 

Standard reagents were prepared by diluting the BSA standard stock solution in RIPA buffer to a 

series of concentrations from 0 to 2000 µg/ml according to the supplier’s protocol. The working 

reagent was made by mixing 50 parts of BCA Reagent A with 1 part of BCA Reagent B, and 200 

µl volume was added to 25 µl of each unknown and standard sample replicates in the microplate 

wells. Samples were mixed on a plate shaker for 30 second and incubated for 30 min at 37 °C. 

Protein absorbance was measured two times for both BSA standards and protein samples in 

parallel, and the average concentration for each sample was obtained from a linear regression 

standard curve using the Gen5 Microplate Reader and Imager Software (Bio Tek). 

Cell lysates were next analyzed by SDS-PAGE (see Section 3.15.2) and immunoblotting (see 

Section 3.17), using a primary antibody against CHIP and secondary antibody against rabbit. 

Samples were loaded in volumes equal to 10 µg cellular protein. To provide an internal loading 

control, the membrane was stripped and blotted against actin as described in Section 3.17.3. A set 

of antibodies against actin (sc-1615, Santa Cruz Biotechnology) and rabbit anti-goat IgG-HRP 

(sc-2768, Santa Cruz Biotechnology) was used in this step. CHIP protein bands were finally 

quantified using Multi Gauge and Image J softwares, and were finally normalized against actin.  
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For protein detection and analysis  

 

3.15 Electrophoresis 

*If not otherwise stated, all the materials in the electrophoresis techniques were purchased from 

the Thermo Fisher Scientific Company. 

 

3.15.1 Agarose gel electrophoresis 

For separation and analysis of DNA fragments by molecular weight, agarose gel electrophoresis 

was performed using 50 µl of 1% (w/v) Nusieve agarose gel placed in 1x TBE buffer (Sigma-

Aldrich). Three drops of ethidium bromide were added to the gel prior to solidification to 

visualize the bands on the gel. Six µl of loading sample was prepared by mixing 3 µl of DNA 

samples and DNA Gel Loading Dye (6x) to a final concentration of 1x, and loaded onto the gel 

along with 5 µl of DNA standard size marker (New England BioLabs). Following electrophoresis 

at 80 V, DNA fragments were visualized by UV-light using a Molecular Imager
®
 Gel Doc

TM
 XR 

System (BioRad Laboratories). 

 

3.15.2 SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

Using sodium dodecyl sulfate polyacrylamide gels, proteins were linearized and separated by size 

during SDS-PAGE. Ten µl of protein samples were added with NuPAGE
®
 LDS Sample Buffer 

(4x) and NuPAGE
®

 Sample Reducing Agent (10x) to a final concentration of 1x followed by 

denaturation at 70 °C for 10 min. Maximum recommended volumes of the denatured proteins 

were applied together with 5 µl of SeeBlue
®
 Plus2 Pre-stained Protein Standard ladder on the 

wells of precast Bolt™ 10% Bis-Tris Plus Gels. In order to prevent sample reoxidation, and to 

maintain reducing conditions, 500 µl of Nupage
®
 Antioxidant was added to the 1x MOPS 

running buffer (prepared in a total volume of 1 liter NuPAGE
®
 MOPS SDS Running Buffer 

(20x) in the Upper Buffer chamber of the XCell
TM 

sureLock
TM

 Mini-Cells. The gel was run at 

200 V for 1 hour, and the bands were visualized using the SimplyBlue SafeStain Coomassie 

staining technique as described in Section 3.16.1. 

 

3.15.3 Native polyacrylamide gel electrophoresis (Native-PAGE) 

To study different conformational states of the WT and mutant CHIP proteins, native gel
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electrophoresis was performed using NativePAGE

TM
 Bis-Tris Gels (12%) whereby the proteins 

get separated with maximum stability according to their molecular weight and electric charge. 

Wild type and mutant protein samples were prepared in 30 µl loading volume by adding 10 µg of 

MBP fusion protein to Native PAGE
TM

 sample buffer (4x), at a final concentration of 1x. To 

avoid protein denaturation, all the samples were prepared on ice. The lower (outer) buffer 

chamber of the XCell
TM 

sureLock
TM

 Mini-Cell was filled with 300 ml of the 1x NativePAGE™ 

Anode Buffer previously prepared in 1000 ml volume by diluting 50 ml of the pre-chilled 

NativePAGE™ Running Buffer (20x) in deionized water. For the upper (outer) chamber, 200 ml 

of the Light Blue 1x NativePAGE™ Cathode Buffer was prepared in similar way using the 

NativePAGE™ Running Buffer (20x) and 1 ml of the NativePAGE™ Cathode Additive (20x). In 

order to provide easy visualization, protein samples were applied to the wells in the 

recommended maximum load volume prior to filling the inner chamber. Seven µl of the 

NativeMark™ Unstained Protein Standard was loaded as the marker reference for estimation of 

the size of the bands. Electrophoresis was performed at room temperature for 110 min applying a 

voltage of 150 V. The gel was further prepared for SimplyBlue SafeStain Coomassie staining as 

described in Section 3.16.1. 

 

3.16 Staining techniques 

*All the steps in the following staining methods were carried out at room temperature with slight 

agitation. 

 

3.16.1 Coomassie blue staining 

Following SDS-PAGE, the polyacrylamide gels were rinsed three times for 5 min with 150 ml 

MilliQ water. The gels were then incubated in 20 ml SimplyBlue
TM

 SafeStain solution (Thermo 

Fisher Scientific) for one hour. A clear gel background was achieved by an overnight washing 

with 150 ml MilliQ water before gel documentation and analysis.  

 

3.16.2 SYBRO Ruby staining 

The Molecular Probes SYBRO
®
 Ruby protein gel stain was used as an ultrasensitive luminescent 

stain to detect the proteins separated on the gels after SDS-PAGE. The gels were first placed into 

a clean container and fixed with 100 ml of fix solution (100 ml Methanol and 14 ml Acetic acid 

added to 86 ml MilliQ water) for 30 min. This step was repeated once more with fresh fix
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solution. Afterwards, the gels were stained with 60 ml of SYBRO

®
 Ruby gel stain (Thermo 

Fisher Scientific) and incubated overnight. In order to minimize the background staining, the gels 

were transferred to a clean container the next day and washed with 100 ml of wash solution (10 

ml Methanol and 7 ml Acetic acid added to 83 ml MilliQ water) for 30 min. The proteins were 

visualized by UV-light using the Molecular Imager
® 

Gel Doc
TM

 XR System (BioRad 

Laboratories). Before imaging, the gels were washed twice for 5 min with ultrapure water to 

prevent possible corrosive damage to the imager. 

 

3.17 Immunoblot (western blot) analysis 

The SDS-PAGE-separated proteins were transferred on to a nitrocellulose membrane in order to 

be detected specifically by antibodies. The Nitrocellulose (NC) Membrane Filter Paper Sandwich 

(0.45 µm pore size, Novex, Life Technologies) was soaked together with the blotting pads and 

filter papers in 1x NuPAGE
®
 Transfer Buffer (Thermo Fisher Scientific), 10% Methanol, and 

0.1% Antioxidant and used to prepare a gel/membrane blotting sandwich following the supplier´s 

protocol (Invitrogen). The sandwich system was then placed vertically in a tank filled with 1x 

transfer buffer, where the proteins moved from the gel to the membrane at an electrical voltage of 

30 V, for one hour. The transferring process was cooled down using ice in the outer chamber of 

the tank. The presence of a protein ladder on the nitrocellulose membrane confirms a complete 

protein transfer step. Transferred proteins were further analyzed by antibody binding 

(immunoblotting) as described in the next two sections. 

 

3.17.1 Immunodetection 

The NC membrane was blocked for unspecific binding reactions by a one hour incubation in 10 

ml SuperBlock
TM 

(PBS) Blocking Buffer (Thermo Fisher Scientific) with 0.05% Tween 20 

(Sigma-Aldrich). The primary antibody (CHIP and Actin diluted 1:5000, HSC70 diluted 1:10000 

in blocking solution) was added to probe the membrane while shaking overnight at 4 °C. The 

next day the membrane was washed five times with 1x PBST containing 2 PBS tablets (Life 

Technologies) per 500 ml MilliQ water and 0.05% Tween 20, each time for 5 min and incubated 

in 10 ml blocking solution with 1:20000 diluted secondary antibody for one hour at room 

temperature. This was followed by a five-times washing step with 1x PBST before proceeding to 

protein detection step (see the section below).  
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3.17.2 Enhanced Chemo Luminescence (ECL) protein detection 

Finally, the membrane was developed and the immobilized proteins were visualized using the 

ECL detection method. In this method, the membrane was incubated for 5 min with an adequate 

volume of ECL solution to cover the membrane, which was prepared by mixing the enhancer and 

peroxide solutions 1:1, solutions being provided in the SuperSignal
®
 West Pico 

Chemoluminescent Substrate Kit (Thermo Scientific). The developed membrane was placed 

immediately inside the Molecular Imager
®
 Gel Doc

TM
 XR System (FujiFilm, Tokyo, Japan) 

between two plastic foils with the protein side facing up, and analyzed by Image reader LAS 

1000 Pro v2.6 (Fujifilm) software. 

 

3.17.3 Stripping of membrane 

This technique was used to detect a different protein on the same nitrocellulose membrane. First, 

the membrane was washed with 10 ml PBS for 15 min. The previously bound antibodies were 

next stripped from the membrane by incubation in 10 ml of Restore
TM

 WesternBlot Stripping 

Buffer (Thermo Scientific) for 30 min. The membrane was then rinsed with PBS for another 15 

min before blocking and immunoblotting with a different set of antibodies (for the 

immunodetection procedure, refer to Section 3.17.2). 
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4.0 Results 

 

For in vitro recombinant protein studies 

 

4.1 Generation of mutant STUB1 constructs by site-directed mutagenesis 

Three mutations corresponding to p.K145Q (c.433A>C), p.M211I (c. 633G>A), and p.S236T (c. 

707G>C) were introduced into WT STUB1 cDNA in pETM-41-MBP/His vectors and the vectors 

were subsequently transformed into XL10-Gold Ultracompetent cells as described in Sections 3.1 

and 3.2. Bacterial colonies were selected and examined for successful transformation by PCR 

amplification and agarose gel electrophoresis (Figure 4.1.1 A). In order to confirm the presence 

of correct mutations, DNA sequencing was performed for those colonies with correct DNA size 

(1100 bp for STUB1+ MBP/His tag) using primers that cover the mutated region. The DNA 

sequence of each mutation is shown in Figure 4.1.1 B.  

A. 

    

B. 

 
 

Figure 4.1.1 Generation of STUB1 mutants by site-directed mutagenesis. The STUB1 cDNA pETM-

41-MBP/His vector was used for in vitro recombinant studies. A) Agarose gel showing the PCR product 

from individual bacterial colonies transformed with potential K145Q (lane 1, 2), M211I (lane 3, 4), and 

S236T (lane 5, 6) mutant cDNA plasmids using T7 promoter and T7 terminator primers. B) cDNA 

sequencing of mutant plasmids directly from bacterial colonies, confirming the introduction of K145Q, 

M211I and S236T mutations analyzed by FinchTV software.                                                 
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All the mutant plasmids were purified from selected colonies (see Section 3.4) and DNA 

sequencing of the whole cDNA region verified that no additional mutations were present (data 

not shown) (for primer sequences and sequencing procedure, see Section 3.3). The plasmid 

vectors were used for further in vitro recombinant protein production together with E28K, N65S, 

T246M mutant vectors which had previously been prepared by other members of the research 

group [30]. 

 

4.2 Expression and purification of recombinant MBP-CHIP fusion proteins  

For in vitro studies of WT and mutant CHIP ligases, the His-tagged MBP fusion proteins were 

expressed and purified from BL21 competent E.coli following the Ni-NTA purification 

procedure as described in Section 3.5. Successful protein expression was verified for each mutant 

by SDS-PAGE and Coomassie blue staining before and after IPTG induction as shown in Figure 

4.2.1. The expressed MBP-CHIP proteins were seen as protein bands of ~72.5 kDa after 24 hours 

of IPTG induction. The fusion proteins were further cleaved by TEV protease in order to separate 

MBP from CHIP. To examine the optimal MBP/TEV ratio, three different ratios of TEV/MBP-

CHIP (1:10, 1:20, and 1:50, by mass) were tested during cleavage periods of one and two hours 

(see Section 3.6). Results from the SDS-PAGE analysis showed a complete cleavage after two 

hours with the ratio of TEV protease to MBP-CHIP 1:10 and 1:20, both generating three protein 

bands of MBP (~42.5 kDa), CHIP (~35 kDa), and TEV (~29 kDa) on the gel (Figure 4.2.2), with 

only a tiny fraction left of uncleaved MBP-CHIP. Therefore, a TEV/MBP-CHIP ratio of 1:10 for 

a 2 hour incubation was used for the downstream studies. 

                     
Figure 4.2.1 Expression of recombinant WT and mutant MBP-CHIP proteins. The expression of 

MBP-CHIP proteins of both WT and mutant forms at time 0 and 24 hours after induction of protein 

expression by 0.5 mM IPTG in BL21 E.coli cells, shown by SDS-PAGE and Coomassie blue staining. 
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Figure 4.2.2 MBP-CHIP fusion protein 

cleavage by TEV protease. Coomassie blue 

stained SDS-PAGE gel loaded with 30 µg 

TEV-cleaved WT MBP-CHIP protein, using 

TEV protease to MBP-CHIP mass ratio of 1: 10 

and an incubation time of one hour (lane 1), 

1:10, two hours (lane 2), 1:20, one hour (lane 

3), 1:20, two hours (lane 4), 1:50, one hour 

(lane 5), and 1:50, two hours (lane 6). 

 

4.3 In vitro ubiquitination activity of E3 ubiquitin ligase CHIP for WT and 

mutant variants 

As a co-chaperone with ubiquitin ligase activity, CHIP participates in the ubiquitination of 

unfolded or misfolded substrates bound to chaperones via its U-box domain, mediating their 

degradation within the ubiquitin-proteasome pathway. In addition to the substrates, CHIP itself, 

and the heat shock protein chaperones are also known to be ubiquitinated by the same 

mechanism. In order to examine whether the enzymatic activity of CHIP is altered for the 

mutants, the ubiquitination assay was performed on recombinant WT and mutant CHIP both as 

MBP-fusion and MBP-free (cleaved) proteins. As described in Section 3.7, the reaction was 

performed for one hour at 37˚C, using Hsc70 recombinant protein as the ubiquitination substrate. 

The negative control sample was prepared without adding ubiquitin to the reaction. Proteins were 

then analyzed for both self- and Hsc70- ubiquitination by Western blotting against CHIP and 

Hsc70, respectively.  

Results are shown in Figure 4.3.1 A and B. A complete ubiquitination reaction was observed as 

additions of several 8.5 kDa ubiquitin molecules to Hsc70 protein (shown as protein bands with 

increasing molecular weight) for the WT and four of the CHIP mutants. However, N65S and 

T246M displayed impaired activity for both MBP-fusion and MBP-free forms (Figure 4.3.1, 

lanes 4 and 8). Hsc70 seemed to be mono-ubiquitinated by the N65S mutant, while no Hsc70-

ubiquitination was detected for the T246M. Furthermore, T246M was found to be non-functional 

in terms of self-ubiquitination for both MBP-fusion and cleaved proteins, but the N65S mutant 

showed similar level of self-ubiquitination as the WT, and other mutants, in both protein forms. 



 

Results 

40 

 
A.  

 

B. 

 

Figure 4.3.1 Ubiquitination activity of recombinant WT and mutant CHIP proteins. In vitro 

ubiquitination activity assay was performed using WT (lane 2), E28K (lane 3), N65S (lane4), K145Q 

(lane5), M211I (lane 6), S236T (lane 7), and T246M (lane8) as ubiquitin ligases and Hsc70 recombinant 

protein as substrate. Self- ubiquitination and Hsc 70-ubiquitination activities were explored on MBP-

CHIP fusion proteins (A) and MBP- cleaved CHIP protein (B). The reaction was incubated for one hour 

at 37 °C, and samples were analyzed for both self- and Hsc70-ubiquitination by SDS-PAGE and Western 

blotting using antibodies against CHIP and Hsc70, respectively. As a negative control (lane1), the WT 

CHIP protein was used in a separate reaction set up without adding ubiquitin.  

In summary, the N65S and T246M variants were mostly affected by the mutation in this context, 

and the ubiquitination activity of proteins was not found to be significantly different when 

comparing cleaved (Figure 4.3.1 A) and MBP-tagged CHIP (Figure 4.3.1 B). 

 

4.4 Protein stability analysis by limited trypsin proteolysis 

As a serine protease, trypsin targets peptide chains at the carboxyl sides of the amino acids lysine 

or arginine. Some of these residues are normally buried inside the protein structure, being 

protected from proteolytic cleavage. The rate of tryptic cleavage can identify conformational 

changes happening in the protein structure caused by certain mutations. Thus mutations resulting 
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in increased structural flexibility can accelerate trypsin access to cleavage sites, and thereby 

increase the degradation rate. Therefore, in order to elucidate the impaired ubiquitination activity 

observed in the N65S and T246M variants, and to further characterize the structure and dynamics 

of the mutants, limited proteolysis assay was performed using trypsin for digestion. MBP-cleaved 

CHIP proteins were subjected to trypsin cleavage during a time period of 30 min, and their 

susceptibility to proteolysis was analyzed at different time points by SDS-PAGE analysis and 

SYBRO Ruby staining (see Section 3.8).  

A. 

 

B. 

 
Figure 4.4.1 Limited proteolysis of WT and mutant CHIP proteins. The proteolytic susceptibility of 

MBP-free CHIP proteins was explored for WT and mutants using trypsin for protein digestion. A) 

Proteins were detected by SDS-PAGE and SYBRO Ruby staining after being subjected to proteolysis for 

various time periods (0-30 min). B) Full length proteins were quantified by Multi Gauge and ImageJ 

software, and the data for the average of three individual experiments were plotted against time. Each time 

point represents the mean of three readings ± SD (n=3). 

Results for the limited proteolysis of the WT and mutant CHIP proteins are presented in Figure 

4.4.1. Compared to the WT, increased rate of proteolysis was shown for all but one of the 

mutants as less detectable protein at time 5 min (and later), while N65S which was associated 

with a slower rate of trypsin cleavage. Among those mutants with increased susceptibility to 

proteolysis, the E28K and T246M variants were most affected, as indicated by a more rapid 

cleavage observed at 5 min for these mutants compared to other mutants including K145Q, 

M211I, and S236T.  



 

Results 

42 

 
Overall, the N65S was found to be the only mutant with increased structural stability against 

proteolysis. 

 

4.5 Small-scale CHIP protein purification by amylose resin 

 Amylose resin generates a cross-linked matrix with high affinity for maltose-binding protein 

which can be used for the isolation of proteins fused to MBP tag. In order to test whether the 

purification of CHIP, free from MBP, can be achieved with this system, the TEV-cleaved WT 

MBP-CHIP was bound to amylose resin (see Section 3.9). In this way, CHIP is expected to 

remain in the flow through while MBP should bind to the amylose resin. Figure 4.5.1 shows 

results from the SDS-PAGE and Coomassie blue staining of the flow through after two washing 

steps. The presence of MBP (~42.5 kDa) together with CHIP (~35 kDa) and TEV (~31 kDa) in 

both lanes indicates that MBP, unexpectedly, did not bind to the amylose resins and thus protein 

purification was unsuccessful. 

 

 

Figure 4.5.1 Purification of CHIP from MBP using amylose 

resin.  ~400 µg of the TEV-cleaved WT MBP-CHIP was subjected 

to amylose resin purification by being passed through a gravity flow 

column. The collected flow through from the first (lane 1) and 

second (lane 2) washing steps were analyzed by SDS-PAGE and 

Coomassie blue staining. 

4.6 Size-exclusion chromatography as a purification strategy 

Protein purification can be achieved by using gel-filtration chromatography columns in which the 

medium, consisting of a porous matrix of spherical particles, is packed to form a 

chromatographic bed. Upon the injection of protein solution, larger molecules pass through the 

column at the same speed as the buffer flows, and appear as the first elution peak on the 

chromatogram after being monitored for UV light absorption at 280 nm. Smaller molecules with 

partial access to the matrix pores elute from the column later in order of decreasing size and 

create the next peaks of the chromatogram. The smallest molecules with full access to the pores 

appear in the final column eluate.  Purification of CHIP from MBP was tested with this method, 



 

Results 

43 

 
using different experimental conditions as described in Section 3.10. Fractions were collected and 

analyzed by SDS-PAGE and Coomassie blue staining. Following the procedure, three separated 

peaks were expected to be seen on the chromatogram due to the elution of dimeric CHIP (~70 

kDa), MBP (~42.5 kDa), and TEV protease (~28 kDa), in that order.  

Figure 4.6.1 shows the results from purification of 200 µg WT TEV-cleaved MBP-CHIP protein 

after passing through the Superdex 200 Increase 10/300 GL chromatography column, using 

phosphate buffer (20 mM NaH2PO4, pH 7.4) as the mobile phase. As is shown (Figure 4.6.1 A), 

the first small elution peak (Peak I, fractions 14, 15) appeared on the chromatogram at 

approximately 14 ml, immediately followed by another large peak (Peak II, fractions 16-20) at 16 

ml. The last peak (Peak III, fractions 28, 29) showed up at the end of the elution profile (21 ml) 

and was predicted to contain TEV protease. 

A. 

 

B. 

 

Figure 4.6.1 Separation of WT CHIP from MBP by size-exclusion chromatography. The experiment 

was performed on 200 µg TEV-cleaved WT MBP-CHIP at 0.5 ml/min with 50 ml phosphate buffer (pH 

7.4) as the mobile phase while monitoring protein absorbance at 280 nm. A) The elution profile obtained 

from chromatography on a Superdex 200 10/300 GL column at 4 °C, showing three elution peaks at 14, 

16, and 21 ml. B) SDS-PAGE analysis of the collected fractions associated with peaks I-III. 
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Results from SDS-PAGE analysis (Figure 4.6.1 B) indicated the presence of only CHIP (~35 

kDa) in fractions 14 and 15, corresponding to the first small peak. Fractions of peak II contained 

both CHIP and cleaved MBP (~42.5 kDa), and no protein band with molecular weight 

corresponding to TEV protease (28 kDa) was detected in fractions from the last peak. However, 

weak protein bands corresponding to CHIP seemed to be presented in these lanes. These results 

suggest that CHIP was eluted continuously in nearly all fractions, and a complete purification 

was not achieved during chromatography. Besides, those fractions containing only CHIP were 

too few to obtain a proper concentration of the protein. 

In the second attempt made to obtain pure CHIP protein (devoid of MBP), 2 mg of TEV-cleaved 

MBP-CHIP was subjected to gel-filtration chromatography, using a Superdex 200 Increase 

10/300 GL column using a different buffer (50 mM NaH2PO4, 5 mM DTT, pH 7.2). 

 A.

 

B. 

 

Figure 4.6.2 Separation of WT CHIP from MBP by size-exclusion chromatography. Two mg of 

TEV-cleaved WT MBP- CHIP was subjected to Superdex 200 10/300 GL chromatography column, 

flowing with the rate of 0.25 ml/min at 4 °C. A buffer containing 50 mM NaH2PO4, 5 mM DTT (pH 

7.2) was used as the mobile phase while monitoring protein absorbance at 280 nm. A) Elution profile 

showing three peaks at 9, 11, and 15 ml. B) SDS-PAGE analysis of collected fractions associated with 

peaks I-III. 
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Results showed three connected peaks at approximately 9 ml (Peak I, fractions 4, 5), 11 ml (Peak 

II, fractions 9, 10, 11), and 15 ml (Peak III, fractions 18, 19, 20) (Figure 4.6.2 A). SDS-PAGE 

analysis of protein fractions detected CHIP and MBP as the major protein contents of the first 

two peaks and the last one, respectively (Figure 4.6.2 B). But all fractions seemed to contain 

other proteins, too. In fact, proteins were separated with a higher yield in this experiment than the 

previous one and the percentage of MBP was minor compared to the total yield of purified CHIP. 

However, the required concentration of CHIP was not yet achieved. 

Using a longer chromatography column (Superdex 75 Increase 10/300 GL), the gel-filtration 

analysis was repeated once again for 2 mg of the cleaved WT MBP-CHIP. Columns with a longer 

packed bed provide more resolving power, and improve resolution in general. The column was 

equilibrated overnight with a buffer containing 100 mM Hepes, pH 8.5 mM DTT, 100 mM NaCl.  

A. 

 

B. 

 

Figure 4.6.3 Separation of WT CHIP from MBP fusion protein by size-exclusion chromatography. 

Purification of 2 mg MBP-cleaved WT CHIP was tested on Superdex 75 10/300 GL column at 0.5 

ml/min at 4 °C. A buffer containing 100 mM Hepes (pH 8), 5 mM DTT, and 100 mM NaCl was 

used as the mobile phase while monitoring protein absorbance at 280 nm. A) Elution profile showing 

three peaks at 9, 11, and 19 ml. B) SDS-PAGE analysis of collected fractions associated with peaks I-III. 
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Results from the protein elution profile (Figure 4.6.3 A) suggested an improved separation as can 

be seen by the appearance of two partially separated peaks at 9 ml (Peak I, fractions 12, 13) and 

11 ml (Peak II, fraction 16) associated with CHIP and MBP proteins, respectively. This was 

followed by another peak at 19 ml (Peak III, fraction 25). SDS-PAGE analysis results (Figure 

4.6.3 B) showed an increased amount of purified CHIP in fractions 12 and 13. However, the 

percentage of total MBP and TEV protease detected in these fractions was still substantial (~41% 

in fraction 12 and ~57% in fraction 13). No protein band was observed in fraction 25, 

corresponding to the last peak, probably because the amount of protein was too low to be 

detected by Coomassie staining.  

Since a complete separation of CHIP from MBP could not be achieved neither with amylose resin 

nor with size-exclusion chromatography methods, it was decided that the remaining experiments 

for the In vitro protein studies should be performed on the MBP fusion proteins.          

                                    

4.7 Oligomeric structure of the WT and mutant recombinant MBP-CHIP 

fusion proteins  

As mentioned earlier, CHIP proteins are functional as dimers that are formed through interactions 

between their putative coiled-coil domains [36, 37]. To study the effects of mutations on 

oligomerization properties of CHIP protein, gel-filtration analysis was performed on recombinant 

MBP-CHIP fusion protein of both WT and mutant forms as described in Section 3.11. With this 

method, different conformational states of protein, including monomeric, dimeric, and oligomeric 

forms, can be separated according to molecular weight by passage through the size-exclusion 

chromatography column. Results from gel-filtration chromatography of WT MBP-CHIP 

indicated the presence of dimeric structures as the dominant oligomeric state of the protein, 

visible as a high peak located at approximately 12 ml (Figure 4.7.1 A, Peak II) on the 

chromatogram. The amount of other protein structures appeared to be less as can be seen by the 

smaller oligomeric and monomeric peaks at ~9 ml (Peak I) and ~15 ml (Peak III), respectively. 

SDS-PAGE analysis confirmed the presence of MBP-CHIP fusion proteins with protein bands of 

~77.5 kDa in all fractions (Figure 4.7.1 B). SDS-PAGE though is not suitable for studying 

protein oligomerization as it is a denaturing protein electrophoresis technique.  
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A. 

 

B.   

 

    

Figure 4.7.1 Size-exclusion chromatography of WT MBP-CHIP fusion protein. One mg of WT 

MBP fusion protein was subjected to size-exclusion chromatography on superdex 200 10/100 GL 

column at 0.3 ml/min at 4 °C. ~50 ml of phosphate buffer (20 mM NaH2PO4, pH 7.4) was used as the 

mobile phase while monitoring protein absorbance at 280 nm. A) Elution profile showing three peaks at 

9, 12, and 15 ml. B) SDS-PAGE analysis of collected fractions showing the presence of MBP-CHIP 

fusion protein in Peak I (fractions 5, 6), II (fractions 10-12), and III (fractions 18, 19). 

The process was repeated for all the mutants under the same experimental conditions. Figure 

4.7.2 displays the elution profiles of mutant proteins as well as results from the SDS-PAGE 

analysis of fractions.  

A. 

 

B. 
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C. 

 

D. 

 

E. 

 

F. 

 

G. 

 

H. 
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K. 

  

L. 

     

Figure 4.7.2 Size-exclusion chromatography of mutant recombinant MBP-CHIP fusion proteins. 

All the experiments were performed on one mg of MBP-CHIP at 0.3 ml/min at 4 °C, using Superdex 200 

10/100 GL columns and ~50 ml of phosphate buffer (20 mM NaH2PO4, pH 7.4) as the mobile phase 

while monitoring protein absorbance at 280 nm. The elution profile and SDS-PAGE analysis of fractions 

corresponding to Peaks I-IV are shown for mutants E28K (A, B), N65S (C, D), K145Q (E, F), M211I 

(G, H), S236T (I, J), and T246M (K, L). 

As shown for all the mutants, except for T246M, the oligomer and dimer peaks seemed to be 

connected with another peak at ~10 ml, which was speculated to be associated with trimeric 

structures (Figure 4.7.2 A, C, E, G, I, Peak II). The presence of MBP-CHIP fusion protein was 

confirmed by SDS-PAGE analysis and Coomassie blue staining in nearly all the fractions. In 

I. 

 

J. 
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addition, small amounts of cleaved MBP protein and one additional purified protein of ~55 kDa 

(marked with*) were detected together in fractions corresponding to the monomer peaks of 

E28K, N65S, and T246M mutants (Figure 4.7.2 B, D, L, Peak IV). 

In the chromatogram of E28K, a smaller peak appeared at ~12 ml compared to what was seen for 

WT (Figure 4.7.2 A, Peak III, with UV absorbance of 0.07 nm vs. 0.16 nm), indicating the 

existence of a lower amount of dimeric structures for this mutant. In addition, trimeric structures 

seemed to be present at approximately the same level as the dimers as evidenced by a peak with 

UV absorbance of 0.06 nm, located at ~10 ml (Peak II). In contrast, for the N65S mutant, the 

dimer peak was higher compared to the WT (Figure 4.7.2 C, Peak III, UV absorbance of 0.23 nm 

vs. 0.16 nm). Results for K145Q, M211I, and S236T were similar to the WT (Figure 4.7.2 E-J). 

The K145Q mutant presented with a small oligomer peak at ~8 ml (Figure 4.7.2 E, Peak I). 

Moreover, the dimer peak was slightly smaller in this mutant as well as S236T compared to the 

WT (compare Peak III in Figure 4.7.1 A and 4.7.2 E, I). The presence of MBP-CHIP was not 

confirmed in the oligomer peaks of K145Q, M211I, and S236T as well as the monomer peak of 

S236T by SDS-PAGE and Coomassie blue staining (Figure 4.7.2 F, H, J, fractions corresponding 

to Peak I and IV) probably due to the small amount of protein. Finally, the T246M mutant was 

characterized by a remarkably increased amount of oligomeric structures, shown by a high 

oligomer peak at ~8 ml with UV absorbance of approximately 0.1 nm (Figure 4.7.2 K, Peak I,). 

This was continued by a very small dimer peak at ~11 ml (Peak II) and further by two connected 

peaks at ~13.5 ml (Peak III) and ~14.5 ml (Peak IV) in which small amounts of unidentified 

protein with ~55 kDa molecular weight and cleaved MBP were identified by SDS-PAGE analysis 

(Figure 4.7.2 L, fractions 16-19). 

Altogether, these data suggested that the conformational structure of MBP-CHIP fusion protein is 

most prominently affected by mutations E28K and T246M, demonstrated by elevated trimer and 

oligomer peaks on their chromatograms. Moreover, N65S was identified to contain large amounts 

of dimeric structures, which was shown by a dimer peak higher than that of WT. Lastly, K145Q, 

M211I, and S236T displayed chromatographic patterns similar to the WT with only minor 

changes in the level of oligomeric and dimeric forms. 
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4.8 Oligomeric states of MBP-CHIP fusion proteins analyzed using native 

electrophoresis (native-PAGE) 

Native polyacrylamide gel electrophoresis allows for a high-resolution analysis of the oligomeric 

state and molecular mass of native protein structure. This technique uses Coomassie G-250 as a 

charge-shift molecule which provides a net negative charge, and directs the electrophoretic 

mobility of proteins towards the anode while maintaining the proteins in their native 

conformation. The migration of 10 µg wild type and mutant MBP-CHIP proteins were 

determined on a native-PAGE gel as described in Section 3.15.3. Results are shown in Figure 

4.8.1. The different migration patterns of CHIP protein band size (compared to 35 kDa observed 

in SDS-PAGE) is due to the fact that the mobility of proteins on a BN gel is influenced by both 

charge and size. Therefore, the molecular weight of proteins cannot be estimated with this 

method. Separation of five major protein bands in the size range of > 242 to >1048 kDa was 

observed for all the samples apart from T246M (Figure 4.8.1, lane 7) in which a higher-order 

oligomer band (≥1048 kDa) was the only visualized band, suggesting the formation of aggregates 

for this mutant. 

                        

Figure 4.8.1 Oligomeric states of the WT and mutant MBP-CHIP by native gel electrophoresis. 

Ten µg of each WT (lane 1), E28K (lane 2), N65S (lane 3), K145Q (lane 4), M211I (lane 5), S236T 

(lane 6), and T246M (lane 7) MBP fusion protein was tested for migration on a 12% native-PAGE gel. 

Protein bands were visualized following Coomassie blue staining.  

The E28K mutant (lane 2) showed lower amounts of monomers, as indicated by a faint band at 

~242 kDa on the gel. In addition, the signal for dimers seemed to be slightly weaker for this 

mutant compared to the WT and other mutants. This indicates a small shift towards the lower-
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order oligomers (720-1048 kDa) in the dimer-oligomer equilibrium of the protein. Overall, these 

results suggested that while the higher-order oligomers serve as the major conformational state of 

the T246M, other mutants displayed almost the same oligomeric patterns as the WT with small 

deviations observed for the E28K variant. 

 

4.9 Secondary structures of WT and mutant MBP-CHIP fusion proteins 

measured by CD 

Circular dichroism (CD) refers to the differential absorption of the left-handed and right-handed 

circularly polarized components of the plane polarized light, after passing through the subject. 

The CD spectrum is obtained when the dichroism is measured as a function of wavelength. For a 

protein sample, absorption in the far-UV region (180-250 nm) is related to the peptide bond. 

Therefore, different secondary structure composition of proteins leads to characteristic CD 

spectra in this region. Results from the far-UV CD spectra of both WT and mutant MBP fusion 

proteins showed two minima at 208 and 222 nm, which is typical of proteins with a high helical 

content (Figure 4.9.1) [68]. Different extents of CD signals ([Ɵ]) observed for the mutants 

indicate changes of the conformational properties of these proteins relative to WT. 

 

 

Figure 4.9.1 Far-UV CD spectra of WT 

and mutant MBP-CHIP proteins. CD 

spectra for WT (dark blue), E28K (red), 

N65S (green), K145Q (dark purple), M211I 

(light blue), S236T (orange), and T246M 

(light purple) are shown in units of molar 

ellipticity versus wavelength (nm). Protein 

samples were used at 6 µM concentration in a 

buffer containing 10 mM KH2PO4 (pH 7.4) 

and 100 mM NaF. The spectra were recorded 

in the range of 185-260 nm at 20 °C. The 

spectra shown were the average of four 

separate scans. Buffer scans were subtracted 

from the protein spectra, using the Spectra 

manager software. For a complete figure, see 

Appendix 7.1. 
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In order to provide an estimation of the secondary structure composition of WT and mutant CHIP 

proteins, the spectra corresponding to the CHIP portion were generated by subtraction of an 

“MBP-only” spectrum from the spectra of the MBP-CHIP fusion proteins as is shown for WT in 

Figure 4.9.2 A. The resulted CD spectra were further analyzed using CONTIN algorithm 

(Dichroweb software) [69, 70]. The distributions of α-helix and β-sheet are illustrated for each 

sample in Figure 4.9.2 B. Wild type protein was estimated to contain ~24% α-helices and ~10% 

β-sheet structures after being subtracted from MBP portion. Decreased percentages of α-helix 

(~22-23%) were calculated for those mutants locating at similar levels of ellipticity, but lower 

than the WT (E28K, K145Q, M211I, and S236T, Figure 4.9.1), and the largest loss of α-helicity 

(~11%) was observed for T246M mutant (Figure 4.9.1, light purple line). On the opposite side, 

N65S with ~30% α-helix and ~8% β-sheet content was identified as the only mutant with 

increased α-helical content compared to the WT (Figure 4.9.1, green line). Decreased α-helicity 

was reflected in an increased percentage of β-sheet in all cases. 

 

 
 

Figure 4.9.2 Secondary structure content calculation of WT and mutant CHIPs. Each of the WT 

and mutant CHIP spectra were subtracted from an ‘MBP only’ spectrum, and further analyzed for 

secondary structure content. A) Representative CD spectra for MBP-CHIP/ WT (blue), MBP (green) and 

the calculated WT CHIP (yellow) are shown. The WT CHIP spectrum was obtained by subtraction of 

the MBP spectrum from the MBP-CHIP/WT spectrum. B) Quantitative analysis of α-helix (blue) and β-

sheet (red) percentage of WT and mutant CHIPs, performed on MBP-subtracted spectra by using 

CONTIN algorithm (Dichroweb software). 
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4.10 Conformational changes in CHIP structure as a function of temperature 

The effects of mutations on the thermal stability of the CHIP protein were next examined through 

the investigation of changes in the molar ellipticity ([Ɵ]) of the WT and mutant MBP-CHIP 

fusion proteins over a temperature range of 20-90 °C, at 222 nm (Figure 4.10.1). The mid-point 

of the transitions (Tm) for denaturation of each sample is given in Table 4.10.1. Three transition 

temperatures in the range of ~41-45 °C, ~55-57 °C, and ~62-74 °C were monitored for 

denaturation of all protein samples excluding T246M which was appeared with two (Tm)s of 55.4 

°C for the first transition and 66.8 °C for the second transition (Figure 4.10.1, light purple line 

and Table 4.10.1).  

      

 

Figure 4.10.1 Thermal 

denaturation profiles of WT and 

mutant MBP-CHIP proteins. 

Thermal unfolding curves were 

obtained for WT (dark blue), E28K 

(red), N65S (green), K145Q (dark 

purple), M211I (light blue), S236T 

(orange), and T246M (light purple) 

by monitoring CD signal at 222 nm 

from 20 to 90 °C. Each curve was 

smoothed and analyzed for 

denaturation transitions by Spectra 

manager software. The curves are 

plotted in units of molar ellipticity 

versus temperature. 

Table 4.10.1 Mid-point of transitions for thermal unfolding of MBP-CHIP proteins. Values are 

given by Spectra manager software in °C. 

 WT E28K N65S K145Q M211I S236T T246M 

Tm (1) 44.2 42.4 44.5 42.7 43.9 41.2 - 

Tm (2) 55.8 55 56.2 57 56.2 56.2 55.4 

Tm (3) 64.5 62.4 65.1 69.5 67.7 73.8 66.8 
 

T246M was also shown as the only mutant with a broad, non-co-operative unfolding pattern, 

possibly indicating a loose, flexible tertiary protein structure. Other mutants presented unfolding 
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pathways similar to the WT and with more apparent transitions than that of T246M, which may 

point to loss of intermediate structures during their thermal denaturation [71]. 

In addition to the MBP-CHIP fusion proteins, the thermal denaturation of MBP protein itself was 

investigated by CD spectroscopy. As shown in Figure 4.10.2, a Tm of 56 °C was identified as the 

only unfolding transition for this protein, which nearly coincides with the second transition of 

MBP-fusion protein samples (compare with Table 4.10.1, Tm (2), small deviations (±1 °C) might 

be due to the binding of CHIP to MBP). Therefore, it is most likely that the first and third 

transitions on the thermal denaturation curves of MBP-CHIP proteins are associated with 

unfolding of CHIP protein itself (not MBP). It was further speculated that the first transition 

represents denaturation of the dimeric CHIP, while the third transition represents unfolding of the 

monomeric CHIP (see Section 5.2.4). 

 

 

Figure 4.10.2 Thermal denaturation profile for 

MBP. CD signal was monitored at 222 nm for 6 µM 

of MBP in a buffer containing 10 mM KH2PO4 (pH 

7.4) and 100 mM NaF over a temperature range of 

20 to 90 °C with nitrogen flow rate of 5 l/min. 

Spectra manager software was used for smoothing 

the obtained curve as well as calculation of unfolding 

transition. 

 

Considering the Tm of 44.2 °C as the dimeric unfolding transition of the WT CHIP, all of the 

mutants showed Tm values smaller than that of the WT (Table 4.10.1, Tm(1)), indicating decreased 

thermal stability of dimeric structures for these proteins. Hence, S236T with the dimeric Tm of 

41.2 °C was regarded as the least stabilized protein in dimeric conformation (Figure 4.10.1, 

orange line and Table 4.10.1). Moreover, the absence of first transition on the thermal 

denaturation curve of T246M (light purple line) suggested a very small amount of dimeric 

structures for this protein. 
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Thermal unfolding of mutant CHIP proteins seemed to occur more differently in monomeric 

phase than the dimeric phase, as can be seen by the melting transitions at a broader temperature 

range of ~62-74 °C than that of the dimeric transitions (Table 4.10.1, Tm(1) vs. Tm(3)). Compared 

to the WT with monomeric unfolding transition of 64.5 °C, E28K showed transition at lower 

temperature (62.4 °C), indicating a less conformational stability in monomeric state for this 

mutant. However, other mutants acquired more stabilize monomeric structures, displayed by Tm 

values larger than 64.5 °C. In this regard, S236T with Tm of 73.8 °C was presented as the protein 

with the highest thermal stability, followed sequentially by K145Q, M211I, T246M, and N65S.  

  

For in cellulo protein studies 

 

4.11 Generation of mutant STUB1 constructs by site-directed mutagenesis 

Mutations including p.K145Q (c.433A>C), p.M211I (c. 633G>A), and p.S236T (c. 707G>C) 

were introduced into WT STUB1 cDNA in pcDNA3.1-V5/HisB plasmids, as described in Section 

3.1 and 3.2.  

A. 

 

B. 

  

Figure 4.11.1 Generation of STUB1 mutants by site-directed mutagenesis. The STUB1 cDNA 

pcDNA 3.1-V5/HisB vector was used for in cellulo protein studies. A) Agarose gel showing the PCR 

amplification product from individual bacterial colonies transformed with potential K145Q (lane 1, 2), 

M211I (lane 3, 4), and S236T (lane 5, 6) mutant cDNA plasmids using T7 promoter and T7 terminator 

primers. B) cDNA sequencing of mutant plasmids directly from bacterial colonies, confirming the 

introduction of K145Q, M211I and S236T mutations analyzed by FinchTV software. 

 



 

Results 

57 

 
Successfully transformed colonies were selected and verified by PCR amplification and agarose 

gel electrophoresis (Figure 4.11.1 A). DNA sequencing was further performed on selected 

colonies in order to confirm the introduced mutations (Figure 4.11.1, B). Plasmids were purified, 

and verified for correct mutations once again with DNA sequencing of the whole STUB1 cDNA 

insert (data not shown). Vectors containing E28K, N65S, and T246M mutations were prepared 

during previous studies performed by the group. 

 

4.12 Effects of mutations on the exogenous CHIP protein expression level in 

HEK293 cells 

To investigate whether the expression level of exogenous CHIP protein was changed for the 

different mutant proteins, HEK293 cells were transiently transfected with the WT and mutant 

STUB1 pcDNA3.1-V5/HisB plasmids. A pcDNA vector lacking the STUB1 cDNA insert was 

used as a negative control. Cell lysates were analyzed by SDS-PAGE and immunoblotting using 

CHIP specific antibody. Equal amounts of proteins were loaded on the gel and actin bands were 

used for normalization during quantification. Results for the Western blotting analysis and 

protein expression levels are shown in Figure 4.12.1. The protein band corresponding to CHIP-

V5/N65S (Figure 4.12.1 A, lane 4) migrates slightly faster on SDS-PAGE in comparison to the 

WT and other mutants probably because of protein conformational changes induced by this 

mutation. 

The exogenous CHIP-V5 and endogenous CHIP proteins were identified at ~37 and ~35 kDa, 

respectively. Another band at the molecular weight of ~32 kDa was also detected on the 

membrane for all the proteins but not the negative control (Figure 4.12.1 A, marked with *), 

which might be due to the degradation of exogenous CHIP in cells. When normalized with actin, 

four mutants including E28K, N65S, K145Q, and M211I showed higher expression levels than 

the WT protein (Figure 4.12.1 A, lanes 3-6 and Figure 4.12.1 B). Among them, E28K with a 

relative protein level of ~122% had the most increased level of expression sequentially followed 

by K145Q, N65S, and M211I. 

On the contrary, the two mutants S236T and T246M were found to be less expressed compared to 

the WT, shown by the protein levels of ~44% and ~87%, correspondingly. Taken together, these 

results indicate that STUB1 mutations might affect the expression of exogenous CHIP protein in-
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cellulo, by either an increase or decrease in expression level compared to WT. However, further 

experiments are needed before firm conclusions can be drawn. 

A. 

 

B. 

 

Figure 4.12.1 Expression of WT and mutant CHIP proteins in transiently transfected HEK293 

cells. 10 µg of total lysate were analyzed for the level of exogenous CHIP-V5 protein expression after 

being transfected by the WT and mutant CHIP pcDNA 3.1-V5/HisB vectors. A) SDS-PAGE and 

immunoblotting analysis of cell lysates corresponding to empty vector (lane 1), WT (lane 2), E28K (lane 

3), N65S (lane 4), K145Q (lane 5), M211I (lane 6), S236T (lane 7), and T246M (lane 8), using anti-

CHIP antibody. Actin was used as an internal loading control. B) The level of CHIP-V5 proteins 

(normalized to actin) were quantified by MultiGauge software (n=1). 
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5. Discussion 

Ataxia is a heterogeneous group of neurological disorders that involves degeneration or abnormal 

development of the cerebellum and spinal cord [51, 53]. Patients with ataxia are mainly 

characterized by walking, speech, and vision difficulties due to loss of coordination during 

muscle movements. Environmental factors as well as underlying medical conditions such as 

stroke, infection, or vitamin deficiencies are responsible for the acquired ataxia. Many ataxias, 

however, develop as genetic diseases with dominant, recessive, X-linked, or mitochondrial modes 

of inheritance. Inherited ataxias are estimated to include over 50 causative genes, and occur with 

a prevalence of 1-9 per 100,000 people [72]. 

Early attempts to discover the genetic origin of ataxia diseases were made in 1993 while CAG 

repeat expansions were identified as the common causative mechanism for many dominantly 

inherited ataxias including spinocerebellar ataxias (SCAs) [73]. Later, with the development of 

next-generation technology, several new genes were found to cause ataxia, including ATP2B3, 

KCND3, DNMT1, and TPP1 [74, 75]. Improved understanding of ataxia genes has led to 

identification of more disease pathways. For instance, many ataxia genes are involved in the 

ubiquitin-proteasome pathway. Mutations in the components of this pathway cause the 

accumulation of misfolded and damaged proteins inside the cell which, consequently, result in 

toxicity and cell death. An example is E3 ubiquitin ligase RNF170 which is found to be mutated 

in sensory ataxia. Another E3 ligase, parkin, interacts with deubiquitinating enzyme Ataxin-3. 

Mutated ataxin-3 results in more deubiquitinated parkin that accumulates and causes 

development of Parkinson disease (PD). Recently, mutations in the STUB1 gene encoding CHIP 

E3 ligase have been found to be associated with ARCA and hypogonadism [72]. 

In the present study, six different STUB1 mutations including E28K, N65S, K145Q, M211I, 

S236T, and T246M were characterized in terms of (1) ubiquitination activity, (2) 

structural/conformational properties, and (3) exogenous expression of the encoded CHIP protein 

using in vitro/in cellulo methods. These mutations were identified and reported by exome 

sequencing studies on individual families with SCAR 16 disease [30, 49, 57-63]. Some, including 

E28K, N65S, and T246M have been described previously [30, 61]. The selection of the three 

other mutations (K145Q, M211I, and S236T) was based on molecular analysis of the CHIP
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 protein structure by PyMol software, since the amino acid substitutions seem to be situated in 

crucial regions for CHIP dimerization or protein-protein interactions. 

 

5.1 The effects of different STUB1 mutations on the E3 ubiquitin ligase activity 

of CHIP  

The in vitro ubiquitination activity assay showed reduced levels of Hsc70-ubiquitination activity 

for CHIP-N65S (Figure 4.3.1). This mutation is located in the TPR domain affecting a residue 

that was previously reported to be involved in CHIP substrate binding [76]. Considering the 

intact auto-ubiquitination activity of the N65S mutant, the mutation is therefore predicted to 

impact CHIP substrate binding affinity and reduces its ability to ubiquitinate Hsc70. Another 

mutation in the same domain (E28K) resulted in a similar ubiquitination activity as the WT for 

both Hsc70 substrate and itself (auto-ubiquitination), indicating that the substrate binding of 

CHIP was not affected by this mutation. These assumptions were further supported by the 

microscale thermophoresis (MST) analysis of the E28K and N65S mutants which was performed 

during MST demo day by using a Monolith NT.115 instrument (see Appendix 7.2). In this 

method, the biomolecular interactions can be measured precisely and within a short time by 

detecting changes in the hydrogen shell, charge or size of molecules while passing through 

microscopic temperature gradients [77, 78]. MST analysis of CHIP vs Hsp70 displayed no 

interaction for N65S, while a strong interaction (with a Kd of 9 nM) was observed for E28K. In 

addition, a study by Heimdal et al. on ubiquitination activity levels of N65S and E28K variants 

showed similar results for both Hsc70- and self-ubiquitination. However, the co-

immunoprecipitation assays failed to firmly demonstrate the impaired binding between N65S and 

Hsc70 [30].  

A complete loss of ubiquitination activity was observed for CHIP-T246M for both Hsc70 

substrate and CHIP itself, indicating the deleterious effect of this mutation on CHIP’s ubiquitin 

ligase activity. In fact, the T246M substitution (located at the U-box domain of CHIP) can affect 

its interactions with the ubiquitin-proteasome pathway compartments and result in abolished 

ubiquitination activity of the protein. This idea was also suggested by Shi et al., who discovered 

the T246M mutation and tested its ubiquitination activity as well as interactions with Hsp70 

using both cell culture models and purified recombinant proteins [61]. They found an increased 
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interaction between T246M and Hsp70 compared to the WT. However, CHIP-T246M was not 

able to ubiquitinate Hsp70 as well as itself. Thus, the lack of chaperone activity for this mutant 

was suggested to be due to a defect in the U-box domain rather than the inability to bind to 

chaperone substrate. 

Reduced substrate affinity of CHIP-N65S and the loss of function of CHIP-T246M are assumed 

to contribute to the development of ARCA disease through accumulation of misfolded client 

proteins and increased potential for toxic aggregation in cells of homozygous patients carrying 

these mutations. Patients affected by the T246M mutation are reported to develop hypogonadism 

together with ataxia (Gordon Holmes Syndrome) which was not found in cases carrying the other 

STUB1 mutations [61]. Further studies are required to demonstrate whether the location of the 

mutation is critical for the development of hypogonadism. 

Results from the ubiquitination activity of K145Q, M211I, and S236T mutants revealed similar 

levels of function as compared to the WT. Other studies reporting the activity of these mutations 

were few, and limited to bioinformatics predictions [58, 60, 62]. These three mutations together 

with E28K exist as compound heterozygous with either a non-sense or deletion mutation in the 

genome of related ARCA patients [30, 58, 60, 62]. Therefore, the development of ARCA in these 

families is likely to be more related to the effect of second alleles [30]. 

 

5.2 Structural and conformational characterization of WT and mutant CHIP 

proteins 

 

5.2.1 Oligomerization studies discovered high aggregation propensity for CHIP-T246M 

Size-exclusion chromatography of MBP-CHIP proteins displayed a high oligomeric peak on the 

elution profile of the mutant T246M which did not appear for the WT and the rest of the mutants, 

pointing to a conformational change in the structure of this mutant that leads to an induced 

tendency to form aggregates (Figure 4.7.2 K, L). A study on the native CHIP homologues from 

Homo sapiens (hCHIP) and D.melanogaster (dCHIP) indicated the necessity of dimerization for 

activity of hCHIP by performing ubiquitination assays on full-length hCHIP as well as deletion 

mutants lacking the putative coiled-coil domain [36]. Another study analyzing the crystal 

structure of Prp19 U-box suggested dimerization as a common architecture for the U-box and 
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RING-finger families of E3 ubiquitin ligases, which play essential roles in the stability and 

functionality of these enzymes [79]. Therefore, the complete loss of function observed in the in 

vitro ubiquitination activity assay for the CHIP-T246M mutant might be caused by both impaired 

ubiquitin ligase activity (as a result of impaired interaction with ubiquitination enzymes) and 

formation of oligomeric protein structures. In addition to T246M, E28K presented higher 

trimeric/tetrameric structures compared to the WT and other mutants (Figure 4.7.2 A, B). The 

level of structural modifications imposed by the mutation, however, might not be sufficiently 

severe to affect the in vitro ubiquitination activity as this appeared to be similar to that of the WT. 

Moreover, increased amount of dimeric structures were noticed for N65S through observation of 

a dimer peak higher than that of the WT (Figure 4.7.2 C, D). However, since the mutation is not 

located in the coiled-coil domain of CHIP, this finding cannot be considered as a direct effect of 

the location of mutation on protein dimerization. 

These findings are in agreement with native gel electrophoresis results; a higher-order oligomer 

band was detected for T246M, indicating the formation of aggregates for this mutant, and a small 

shift towards the lower-order oligomeric structures (trimer/tetramer bands) was discovered for 

E28K (Figure 4.8.1). Small oligomerization changes occuring in the structure of N65S (and other 

CHIP mutants) were detected by gel-filtration analysis, while native-PAGE methodology was not 

able to show these changes possibly due to a lower resolution of this method per se. Native-

PAGE is generally considered a reliable method for determination of the oligomeric states of 

proteins, but, special conditions applied to this technique such as the bound Coomassie blue dye 

can affect the folding of the proteins, and lead to a small decrease in the accuracy of the method 

[80]. Nevertheless, the rapidity and relative simplicity of this approach allows for its general use 

in the investigation of molecular mass and oligomeric states of proteins. Several studies have 

reported the analysis of membrane protein complexes [81, 82] as well as neurodegeneration-

linked protein aggregates such as parkin and α-synuclein by using this technique [83, 84]. 

It is important to mention that these observations could be influenced by the presence of MBP 

attached to CHIP during the experiments. But, due to similar conditions applied to all 

chromatography procedures, the effect of MBP on CHIP oligomerization properties is considered 

to be the same for each of the protein samples, making the obtained results scientifically 

comparable. 
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5.2.2 Mutants T246M and N65S displayed remarkable differences in terms of secondary 

structure content  

Crystallographic analysis of mammalian (mouse) CHIP indicates a high degree of α-helicity in 

the structure of this protein due to the presence of two domains consisting mainly of α-helices 

(TPR and coiled-coiled domains) [37]. Our far-UV spectroscopy data of the wild type CHIP 

displayed an α-helical content that corresponds well with the crystallography data (Figure 4.9.1). 

Reduced levels of elipticity were, however, observed in the spectra of the majority of mutants, 

suggesting a decreased level of α-helical structure content of these proteins compared to the WT. 

The largest loss of α-helicity was shown by the T246M mutant (by ~13%) with the mutation 

located in the second β hairpin of the U-box domain. Given the fact that methionine (the amino 

acid for which threonine is exchanged in the T246M mutation) has a high helix-forming 

propensity [85], it is not clear why this mutation results in such a substantial decrease in α-

helicity. Nevertheless, it might be possible that the substitution of threonine as a polar amino acid 

by methionine as a non-polar amino acid disrupts the overall non-covalent polar interactions, 

from which the stabilizing energy of a fold comes from, and therefore causes some reductions in 

the level of α-helical structure content of the protein [86]. The loss of α-helix structures was 

associated with increased percentage of β-sheet in all cases. Mutants with increased β-sheet 

content have been proposed to show increased propensity for protein aggregation as a 

consequence of having exposed or extended β-sheet edges which are normally buried inside their 

native structure [71]. Accordingly, the aggregation behavior discovered by oligomerization 

studies of CHIP-T246M can be related to the significant increase in β-sheet content of this 

mutant (by ~20%). Additional studies on the structure and interactions of T246M are required to 

support this notion.   

On the contrary, being located at the beginning of three antiparallel α-helices in the TPR domain 

of CHIP, the N65S mutation generated a protein structure with considerably increased secondary 

structure content of α-helices (by ~7%). However, this observation does not correlate with the 

‘helix breaker’ role of serine as the exchanged amino acid in this mutation [87]. N65S was also 

identified with a larger amount of dimeric structures during gel-filtration analysis. But the 

relationship between increased α-helicity and dimerization still remains to be understood. 

Although each of the MBP-CHIP protein spectra were subtracted from an “MBP only” spectrum 



 

Discussion 

64 

 
during data analysis (Figure 4.9.2), it is important to consider limitations associated with the use 

of MBP fusion proteins while monitoring structural characteristics. The overall protein folding 

and assembly may be different for MBP-CHIP fusion proteins compared to purified CHIP. In 

addition, mutations causing misfolding and aggregation (T246M, for example) may have a less 

severe effect in the presence of MBP as a protein with solubilizing activity [71]. In spite of these 

issues, two studies have reported the secondary structure of purified CHIP with a similar high 

degree of α-helicity as was found in this study [36, 41]. In addition, regarding the fact that these 

experiments were performed under the same conditions with the aim of comparing WT and 

mutant proteins, the findings are believed to be useful and scientifically reliable.  

5.2.3 CHIP-N65S: the only mutant with increased structural stability against limited 

proteolysis 

Limited proteolysis provides a general method to unravel molecular features as well as structure-

function relationships of many proteins. Numerous studies have successfully uncovered protein 

folding pathways [88, 89] and identified optimal folding conditions for novel proteins [90-92] by 

using this approach. Protein conformational features predicted by limited proteolysis often 

correlate with results from other biophysical and spectroscopic methods such as circular 

dichroism and nuclear magnetic resonance (NMR) spectroscopy [93].  

The sites of proteolysis across a protein surface are very few and restricted to areas characterized 

by enhanced backbone flexibility (segmental mobility). Therefore limited proteolysis of a 

globular protein occurs mostly at flexible loops, and regular secondary structures (such as 

helices) are not subjected to cleavage [93]. Studies on the proteolysis of a variety of proteins with 

known 3D structures supported this idea, indicating that cleavage mainly occurs at the site of 

loops, but never at α-helices [92, 94].  

Taking this information into account, decreased susceptibility identified for CHIP-N65S against 

limited proteolysis is expected to be associated with a structure that contains a larger number of 

α-helices (compared to the WT) which is confirmed by far-UV CD spectra of the mutant (Figure 

4.4.1 and 4.9.1). The induced stability and proteolytic resistance in the structure of N65S may 

also be the consequence of more dimeric states discovered during gel-filtration analysis of this 

protein. However, more investigation is required in order to clarify the relationship between these 

two findings.   
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Limited proteolysis monitors the process of protein aggregation via the presence of cross-β 

structures which are resistant to proteolytic degradation. However, the unfolded and (or) flexible 

states of protein made in the early stages of aggregation cause an enhanced susceptibility to 

proteolysis [93]. Considering the high levels of oligomerization observed during size-exclusion 

chromatography of CHIP-T246M, the initial formation of protein aggregates is suggested to 

make this mutant more susceptible than the other variants towards limited proteolysis.  

Mutants including K145Q, M211I, and S236T displayed approximately the same extent of 

susceptibility towards proteolysis, being lower than that of T246M but still higher compared to 

the WT. These proteins are suggested to achieve some loose, flexible structures which make them 

more sensitive towards proteolytic cleavage. Likewise, results from far-UV spectroscopy of these 

mutants (together with E28K) showed similar levels of ellipticity, but lower than the WT 

spectrum, indicating that these mutants have lost the same amount of α-helical secondary 

structure. Therefore, a decreased number of α-helices in the structure of K145Q, M211I, and 

S236T mutants could be the reason behind their reduced stability against limited proteolysis. In 

contrast, CHIP-E28K presented approximately the same (slightly lower) level of susceptibility as 

T246M towards limited proteolysis. The high amount of trimeric/tetrameric structures identified 

for this protein during gel-filtration analysis could indicate that the high proteolytic susceptibility 

of E28K is due to the unfolded/flexible structures of the protein molecule that appear during the 

formation of lower-order oligomers. 

 

5.2.4 Circular dichroism revealed new insights into the conformational dynamics and 

thermal stability of CHIP protein mutants 

The thermodynamic stability of protein folding, i.e. the Gibbs free energy difference between 

folded and unfolded states (∆G),  is generally determined by thermal unfolding spectroscopy 

whereby a protein solution is heated at a constant rate, and changes in its conformation are 

reported as melting temperatures (Tm) of the unfolding response [95, 96]. Denaturation of small 

globular proteins generally follows a two-state mechanism involving a single unfolding transition 

(Tm), and two forms of fully native (N) and unfolded (U) proteins [97, 98]. However, many 

proteins have been recently observed to stabilize intermediates between the N and U states, and 

therefore show more than one transition during their unfolding profile [98, 99]. This behavior is 
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usually found in multi-domain/multimeric proteins where different domains/meres unfold 

independently and at different temperatures. Analysis of data obtained from such curves is often 

more complicated than that of a single-stage unfolding pattern [95]. 

In the case of MBP-CHIP, the three transitions detected during thermal denaturation of the WT 

protein are assumed to be associated with unfolding of (in order) dimeric CHIP, MBP, and 

monomeric CHIP (Figure 4.10.1). As a dimeric protein, CHIP structure is stabilized by the 

intermolecular forces which hold proteins together as a dimer as well as intramolecular forces 

that occur within the monomers [100]. Therefore, it is possible that the disruption of 

intermolecular interactions during the first transition temperature (~44 °C) of MBP-CHIP 

proteins generates both dissociated MBPs and monomeric CHIPs in the protein solution being 

examined. After that, increased temperatures result in unfolding of each MBP and CHIP through 

disruption of interactions within the proteins (intramolecular interactions). Following the 

examination of MBP (only) for thermal denaturation (Figure 4.10.2), and based on other CD 

studies done on the unfolding transition of this protein [71, 101], the second transition on the 

unfolding curve of MBP-CHIP (~56 °C) is thought to belong to the melting of MBP. Therefore, 

CHIP itself (monomer) is expected to unfold at ~64 °C corresponding to the last transition 

temperature. 

The majority of mutants presented unfolding pathways with a similar level of cooperativity as the 

WT, indicating that the whole conformation and dynamics of the protein was not largely affected 

by the mutations. Differences, instead, appear to lie between the dimeric and monomeric 

unfolding transition temperatures determining the thermal stability of mutant protein structures. 

In the dimeric state, N65S was identified with a similar stability as the WT but higher than other 

mutants (Tm of 44.5 °C). The discovery of more dimers during gel-filtration analysis of this 

mutant can possibly explain this observation. Moreover, N65S was presented as the only mutant 

with an increased level of α-helicity and stability against limited proteolysis. Taken together, 

these findings indicate a stabilizing effect for N65S mutation, resulting in a more condensed 

CHIP protein structure.  

However, as a monomer, the highest thermal stability was displayed by S236T (Tm of ~74 °C). 

This observation is not correlated with the loss of secondary structure content shown by the far-
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UV spectrum of the protein. Interestingly, at the same time, this mutant was associated with the 

least stabilized dimeric structure (Tm of ~41 °C). Therefore, a dual effect was observed for the 

S236T mutation, resulting in two completely different levels of stability for dimeric and 

monomeric forms of the protein. This might indicate that S236T does not form stable dimers and 

can be functional as a monomer, although such a hypothesis is not supported by gel-filtration 

analysis results where S236T displayed a dimeric peak similar to the WT. Further investigations 

are required in order to elucidate these findings precisely. 

Denaturation of the T246M mutants was characterized by less cooperative melting transitions, 

which may point to a loose, flexible tertiary structure. Results from limited proteolysis support 

this idea, indicating a high level of flexibility in the structure of this mutant as a result of initial 

formation of aggregations. The large loss of secondary structure content observed during the far-

UV spectroscopy of T246M can also explain the flexibility of its protein structure. In addition, 

the first transition corresponding to denaturation of dimeric intermediates was not found in the 

unfolding pathway of T256M. This observation correlates nicely with the gel-filtration analysis 

results where no peak associated with dimers was detected on the chromatogram of the T246M 

variant. In summary, the T246M mutation is likely to cause a high tendency for oligomerization 

in the CHIP protein structure which can be responsible for the lack of activity in corresponding 

mutants. However, on the way to the formation of aggregates, CHIP achieves a loose and flexible 

structure characterized by reduced stability toward proteolysis and a non-cooperative thermal 

unfolding profile.  

 

5.3 Expression levels of exogenous CHIP under the effect of mutations 

A pilot experiment was performed to study the effect of STUB 1 mutations on the expression 

levels of exogenous CHIP in HEK293 cells. The results from this initial analysis indicated an 

increased level of expression of E28K, N65S, K145Q, and M211I mutants (Figure 4.12.1). These 

observations do not follow the in vitro analysis of CHIP mutants, where a stabilized protein 

structure was detected only for N65S, and other mutations were associated with reduced 

structural resistance and secondary structure content. Furthermore, the immunoblot analysis of 

fibroblasts showed decreased levels of steady-state CHIP in patients carrying E28K, N65S and 

M211I mutations [30, 58]. On the contrary, lower levels of exogenous S236T and T246M CHIPs
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were detected compared to the WT in this study. In vitro analysis of T246M showed a high level 

of structural flexibility and aggregation for this mutant, while S236M mutation caused slighter 

changes in the structure of CHIP compared to T246M. No studies are available yet reporting the 

expression of these mutants in fibroblasts from patients.  

These findings must be considered preliminary before they have been supported by further 

experiments. In fact, due to the lack of transcription control (which verifies that the same levels 

of RNA are produced for all the mutants), false results can be achieved as a result of differences 

in transfection efficiencies. Furthermore, more repetitions of the experiment are necessary to 

obtain statistically valid data, which unfortunately was not possible within the limited time-frame 

of this project. 

 

5.4 Conclusion 

This study through examining the activity and structural properties of the encoded CHIP protein 

mutants provided further evidence regarding the role of STUB 1 mutations in the development of 

ARCA disease. The main results are summarized in Table 5.4.1. The ubiquitination activity of 

CHIP was impaired under the effect of mutations N65S and T246M while other mutants showed 

intact activities. Increased amounts of dimers as well as higher levels of secondary structures 

were discovered for CHIP-N65S, possibly resulting in the higher stability observed against 

limited proteoly°°sis and thermal unfolding. In contrast, T246M mutation generated a flexible 

protein structure with decreased α-helicity and a high tendency for aggregation. The CHIP-

T246M mutant presented the lowest stability against limited proteolysis. No dimeric unfolding 

transition was detected during their thermal denaturation. However, as a monomer, thermal 

stability of these mutants was found to be greater than the WT. Other mutations including 

K145Q, M211I, and S236T modified CHIP structure and conformation to a similar degree. 

Decreased secondary structure content and proteolytic stability was observed for these variants. 

Changes were detected to a lesser extent than those caused by T246M mutation. In addition, 

proteins became less resistant in terms of thermal unfolding while existing as dimers. However, 

different results were obtained regarding the stability of monomers against thermal denaturation. 

Finally, the expression levels of exogenous CHIP were increased in HEK293 cells for all the 

mutants excluding S236T and T246M among which, S236T was associated with the lowest 

degree of expression (reduced by 50%).   
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Table 5.4.1 Summary of data achieved during this master project. Results for ubiquitination 

activity, structural/conformational characterizations, and exogenous expression levels of CHIP protein 

mutants are presented together with the WT. For each mutant, upwards and downwards pointing arrows 

indicate increased and decreased levels when compared to the WT, respectively. No dimeric unfolding 

was detected in the case of T246M. 

 

5.5 Future perspectives 

Future studies should focus on the in cellulo characterization of STUB1 mutations using more 

relevant cell lines such as neuronal cell lines or induced Pluripotent Stem cells (iPSCs). Using 

this approach, major findings achieved during this study including high aggregation propensity of 

T246M and structural stability of N65S can be analyzed through different fluorescence 

techniques inside the cells. Moreover, study of interactions between CHIP and other co- As 

mentioned earlier, there are currently 18 STUB1 mutations identified by exome sequencing in the 

genome of patients with ARCA disease. The number of these mutations is increasing rapidly, 

making the experimental measurement of the functional impact of each variant require much 

more time cost and often impractical. Therefore, massively parallel functional analysis of STUB1 
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mutations, which will provide a high-throughput prospective interpretation of all variants within a 

short time, will be of great future interest. The potential of this new approach has been recently 

demonstrated in a study where nearly 2000 variants of the breast cancer-associated gene BRCA1 

were characterized using this technique [102]. 

Finally, given the fact that protein aggregation is the most common phenotype of many complex 

diseases, results obtained from ARCA cases can be successfully used in the study of Alzheimer, 

Parkinson and many other protein aggregation diseases as well. For instance, recent studies 

indicated that CHIP cross-functions with Parkin E3 ligase as the main cause of hereditary 

Parkinson disease [103]. Thus, functional analysis of Parkin in association with STUB1 mutations 

may in the future provide a better understanding of these diseases.  
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7. Appendix 

7.1 Far-UV spectra of WT and mutant CHIPs in the wavelength range of 190-

260 nm 

Due to the buffer noise at wavelengths lower than 200 nm, results for the far-UV spectra were 

given in the range of 200-260 nm (Section 4.9). The original data is shown here:  
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7.2  MicroScale Thermophoresis (MST) analysis 

The binding of Hsp70 to CHIP was quantified through measuring the changes in thermophoresis 

(directed movement of molecules along a temperature gradient) of Hsp70 as a fluorescent 

molecule at different ligand (CHIP) concentrations. Since the buffer is kept constant, alterations 

in the thermophoretic depletion or enrichment can only arise from changes in size, charge, or 

solvation entropy of the fluorescent molecule, indicating the presence of interaction between the 

molecule and ligand. Therefore, different traces can be observed as the thermophoretic movement 

of fluorescent Hsp70 changes upon binding to the non-fluorescent CHIP. For analysis, the change 

in thermophoresis was expressed as the change in normalized fluorescent (∆Fnorm), which is 

defined as Fhot/Fcold (average fluorescent values between hot and cold areas), and further plotted 

against different concentrations of ligand. 

        

Figure 7.2.1 MST experiment of NT-647-Hsp70 VS. CHIP. A fluorescent label (NT-647) was 

covalently attached to the Hsp70 protein. The concentration of NT-647 labeled Hsp70 was kept constant 

while the concentration of CHIP is varied between 0.3 nM to 10 µM. The assay was performed in MST 

buffer containing 50 mM Tris-HCl pH 7.4, 150 mM NaCl, 10 mM MgCl2, and 0.05% Tween. After a 

short incubation, the samples were loaded into MST NT.115 standard glass capillaries and the analysis 

was performed using the Monolith NT.115 instrument. Concentrations on the X-axis are plotted in nM. 

A Kd of 73 nM and 9 nM was determined for the WT CHIP and CHIP-E28K, respectively. No binding 

was observed between Hsp70 and CHIP-N65S mutant. 

 


